

Constructing a Phylogenetic Tree

When analyzing a set of data, there are many possible phylogenies to consider. We would like to identify a good (the best) phylogeny.

I CAAG
 II GAAT
 III CATG
 IV GAAG

- Start with a set of sequences
- Build a guide tree
- Perform a multiple sequence alignment
- Construct a phylogenetic tree
- Assess the robustness of the phylogenetic tree

Constructing a Phylogenetic Tree

Character based methods are one type of approach for constructing a phylogenetic tree.

Character based methods are often based on the idea of maximum parsimony.
" IT IS VAIN TO DO WITH MORE WHAT CAN BE DONE WITH FEWER" OR
Principle of parsimony
OR
...smallest number of evolutionary changes...

Optimality criterion: The 'most parsimonious' tree is the one that requires the fewest number of evolutionary events (e.g., nucleotide substitutions, amino acid replacements) to explain the sequences. к-

Sites Where All Trees Require the Same Number of Changes Are Not Informative

Tree I

Tree II
Tree III

Site

Seq.	1	2	3	4	5	6	7	8	9
I	A	A	G	A	G	T	T	C	A
II	A	G	C	C	G	T	T	C	T
III	A	G	A	T	A	T	C	C	A
IV	A	G	A	G	A	T	C	C	T

Maximum Parsimony Methodology

Step 1: Identify informative sites
Sites with at least two different characters at the site, each of which is represented in at least two of the sequences

	Site								
Seq.	1	2	3	4	5	6	7	8	9
I	A	A	G	A	G	T	T	C	A
II	A	G	C	C	G	T	T	C	T
III	A	G	A	T	A	T	C	C	A
IV	A	G	A	G	A	T	C	C	T
					\uparrow		\uparrow		\uparrow

Maximum Parsimony Analyzes Sites At Which One Substitution Model Requires Fewer Changes

Maximum Parsimony Methodology

Step 2: Calculate minimum number of substitutions at each informative site

Step 3: Sum number of changes at each informative site for each possible tree

The tree with the least number of total changes is the most parsimonious tree

Tree I

Maximum Parsimony Analyzes Sites At Which One Substitution Model Requires Fewer Changes

How Confident Are We In Our Tree?

Bootstrapping: Given a particular tree, how consistently does a tree-building algorithm find that branching order using a randomly sampled version of the original dataset?

What Can Phylogeny Do For You?

Why do we care about evolution and the evolutionary history of organisms?

Discovering New Life Forms

Revolutionizing the Tree of Life

Phylogenetic Tree of Life

Developing Effective Snakebite Antivenins

Common Phylogenetic Tree Terminology

Terminal Nodes operational taxanomic units (OTUs)

Represent the TAXA (genes, populations, species, etc.) used to infer the phylogeny
thetical taxanomic
units (HTUs)

Phylogenetic Trees Can Be Drawn Many Ways

Phylogenetic Trees Diagram Evolutionary Relationships

1) No scale (cladograms)
2) Proportional to genetic distance (phylograms)
3) Proportional to time (ultrametric trees)

How Are Phylogenetic Trees Built?

Traditionally: use homologous structures

Caveats:

- Closely related organisms don' \dagger always look similar
- Similar looking organisms not always closely related
- How do you decide importance of traits?

Molecular Phylogenetic Trees

Large molecular data sets: Bioinformatics!
Molecular clock vs. punctuated equilibrium
Eliminates analogy and trait selection issues
Result: great improvement on classical phylogenies

Caveat:

Gene divergence may not correlate with species divergence

Molecular Phylogenies Can Be Constructed Using Different Elements

Nuclear genes
Mitochondrial DNA
Genome structure

Usually integrate analyses of multiple different genes K - 29

Which Species Are the Closest Living Relatives of Modern Humans?

Pre-molecular view

Great apes (chimpanzees, gorillas and orangutans) formed a clade separate from humans.

MitoDNA, most nuclear genes, and DNA hybridization

Bonobos and chimpanzees are related more closely to humans than either are to gorillas.

Molecular Comparisons vs. Body Plans

(a)Tree based on molecular comparisons

Copyright O Pearson Education, Inc., publishing as Beniamin Cumming

What is the Closest Living Relative of Whales?

Influenza Virus

- ssRNA genome, ~13,588 bases
- Genome in 8 segments, 10-11 genes

Influenza Nomenclature

- Subtype nomenclature based on HA and NA genes
- 16 Hemagglutinins, 9 Neuraminidases
- Human: H: 1,2,3 ; N: 1,2; Birds: all combinations

Reassortment Can Produce Pandemic

Influenza Viruses

- 1957 Asian flu: H2N2, 3 avian flu segments, 5 human flu segments
- 1968 Hong Kong flu: H3N2, 2 avian flu segments, 6 human flu segments
- Reassortment in pigs - susceptible to avian, human, and swine flus

1918 Influenza Questions

- Where did the 1918 flu come from?
-Why was the 1918 flu so pathogenic?
- Is it possible for a 1918-like pandemic to happen again?
- Highly virulent flu virus ("Spanish flu")
- Estimated deaths: 50-100 million worldwide (of 1.8 billion)
- Many people died within a few days from acute pneumonia
- Many fatalities were young and healthy people
- Lowered average U.S. life expectancy by 10 years

SARS-CoV-2 Virus

- ssRNA genome: 30,000 NTs, 11 genes
- Recombination events between bat and pangolin coronaviruses
- Half a billion cases, 6 million deaths
- Substitution rate: 1 in 1,000
- Variants: Delta, Omicron, etc.
- Spike proteins

