

Phylogenies

Constructing a Phylogenetic Tree

When analyzing a set of data, there are *many* possible phylogenies to consider. We would like to identify a good (the best) phylogeny.

How To Build a Phylogenetic Tree

• Start with a set of sequences

- Build a guide tree
- Perform a multiple sequence alignment
- Construct a phylogenetic tree
- Assess the robustness of the phylogenetic tree

K - 1

Constructing a Phylogenetic Tree

Character based methods are one type of approach for constructing a phylogenetic tree.

Character based methods are often based on the idea of *maximum parsimony*.

" IT IS VAIN TO DO WITH MORE WHAT CAN BE DONE WITH FEWER" OR Principle of parsimony OR ...smallest number of evolutionary changes...

Optimality criterion: The 'most parsimonious' tree is the one that requires the fewest number of evolutionary events (e.g., nucleotide substitutions, amino acid replacements) to explain the sequences. κ_{-4}

Character Based Methods

Maximum Parsimony Methodology

Step 1: Identify informative sites

Sites with at least two different characters at the site, each of which is represented in at least two of the sequences

Site										
Seq.	1	2	3	4	5	6	7	8	9	
I	Α	Α	G	Α	G	Т	Т	С	A	
II	A A	G	С	С	G	Т	т	С	Т	
III	A	G	Α	Т	Α	Т	С	С	Α	
IV	Α	G	Α	G	Α	Т	С	С	Т	
IV					1		1		1	

Maximum Parsimony Analyzes Sites At Which One Substitution Model Requires Fewer Changes

Maximum Parsimony Analyzes Sites At Which One Substitution Model Requires Fewer Changes

Maximum Parsimony Methodology

<u>Step 2: Calculate minimum number of substitutions</u> <u>at each informative site</u>

<u>Step 3: Sum number of changes at each informative</u> <u>site for each possible tree</u>

The tree with the least number of total changes is the most parsimonious tree Tree I

Maximum Parsimony Analyzes Sites At Which One Substitution Model Requires Fewer Changes

How Confident Are We In Our Tree?

Bootstrapping: Given a particular tree, how consistently does a tree-building algorithm find that branching order using a randomly sampled version of the original dataset?

K - 12

Why do we care about evolution and the evolutionary history of organisms?

Revolutionizing the Tree of Life

Phylogenetic Tree of Life

Discovering New Life Forms

K - 13

Developing Effective Snakebite Antivenins

Identifying Emergent Diseases

Common Phylogenetic Tree Terminology

Phylogenetic Trees Can Be Drawn Many Ways

Clade: group with a single common ancestor and its descendents

Branch length not proportional to number of changes/distance

Cladogram

Phylogenetic Trees Can Be Rooted or Unrooted

K - 23

C

Branch length

proportional to number of

changes/distance

Phylogram

Rotating Clades: Same Meanings

Structural Analogy Can Result From Convergent Evolution

How Are Phylogenetic Trees Built?

<u>Traditionally</u>: use homologous structures

Caveats:

- Closely related organisms don't always look similar
- Similar looking organisms not always closely related
- How do you decide importance of traits?

K - 25

Molecular Phylogenetic Trees

Large molecular data sets: Bioinformatics! Molecular clock vs. punctuated equilibrium Eliminates analogy and trait selection issues Result: great improvement on classical phylogenies

<u>Caveat</u>:

Gene divergence may not correlate with species divergence

K - 26

Molecular Phylogenies Can Be Constructed Using Different Elements

Radiata Bilateria

Molecular Comparisons vs. Body Plans

Radiata

Acoelo- Pseudo-

mates coelomates

Bilateria

Coelomates

Influenza Virus

- ssRNA genome, ~13,588 bases
- Genome in 8 segments, 10-11 genes

Influenza Nomenclature Neuraminidase Type of nuclear material Hemagglutinin A/Fujian/411/2002 (H3N2) Virus Geographic Strain Year of Virus type origin number isolation subtype • Subtype nomenclature based on HA and NA genes

16 Hemagglutinins, 9 Neuraminidases
Human: H: 1,2,3 ; N: 1,2; Birds: all combinations

K - 35

K - 33

Influenza Virus Genes

Genome <u>segment</u>	Segment size (bases)	<u>Gene(s)</u>	Gene function
1	2341	PB2	Transcriptase: cap binding
2	2341	PB1	Transcriptase: elongation;
		PB1-F2	Induces apoptosis
3	2233	PA	Transcriptase: protease activity
4	1778	HA	Hemagglutinin: host cell recognition
5	1565	NP	Nucleoprotein: RNA binding; transcriptase complex; vRNA transport
6	1413	NA	Neuraminidase: release of virus
7	1027	M1	Matrix protein: major component of virion
		M2	Integral membrane protein - ion channel
8	890	N51	Non-structural: RNA transport, splicing, translation. Anti-interferon.
		N52	Non-structural: nucleus and cytoplasm, vRNA export (NEP)

K - 34

Influenza Virus Can Change Rapidly

- High mutation rate (antigenic drift)
- Reassortment (antigenic shift)

Reassortment Can Produce Pandemic Influenza Viruses

- 1957 Asian flu: H2N2, 3 avian flu segments, 5 human flu segments
- 1968 Hong Kong flu: H3N2, 2 avian flu segments, 6 human flu segments
- Reassortment in pigs susceptible to avian, human, and swine flus

1918 Influenza Pandemic

- Highly virulent flu virus ("Spanish flu")
- Estimated deaths: 50-100 million worldwide (of 1.8 billion)
- Many people died within a few days from acute pneumonia
- Many fatalities were young and healthy people
- Lowered average U.S. life expectancy by 10 years

K - 37

1918 Influenza Questions

- Where did the 1918 flu come from?
- Why was the 1918 flu so pathogenic?
- Is it possible for a 1918-like pandemic to happen again?

SARS-CoV-2 Virus

K - 38

- ssRNA genome: 30,000 NTs, 11 genes
- Recombination events between bat and pangolin coronaviruses
- Half a billion cases, 6 million deaths
- Substitution rate: 1 in 1,000
- Variants: Delta, Omicron, etc.
- Spike proteins