
The following questions is about chapter 4 "Cache Memory":

1. A set-associative cache consists of 64 lines, or slots, divided into four-line sets. Main memory

contains 4K blocks of 128 words each. Show the format of main memory addresses.

Answer:

The cache is divided into 16 sets of 4 lines each. Therefore, 4 bits are needed to identify the set number.

Main memory consists of 4K = 2
12

 blocks. Therefore, the set plus tag lengths must be 12 bits and

therefore the tag length is 8 bits. Each block contains 128 words. Therefore, 7 bits are needed to specify

the word.

 TAG SET WORD

 Main memory address =

2. A two-way set-associative cache has lines of 16 bytes and a total size of 8 kbytes. The 64-Mbyte

main memory is byte addressable. Show the format of main memory addresses.

Answer:

There are a total of 8 kbytes/16 bytes = 512 lines in the cache. Thus the cache consists of 256 sets of 2

lines each. Therefore 8 bits are needed to identify the set number. For the 64-Mbyte main memory, a 26-

bit address is needed. Main memory consists of 64-Mbyte/16 bytes = 2
22

 blocks. Therefore, the set plus

tag lengths must be 22 bits, so the tag length is 14 bits and the word field length is 4 bits.

 TAG SET WORD

 Main memory address =

3. For the hexadecimal main memory addresses 111111, 666666,BBBBBB, show the following

information, in hexadecimal format:

a. Tag, Line, and Word values for a direct-mapped cache, using the format of Figure 4.10.

b. Tag and Word values for an associative cache, using the format of Figure 4.12.

c. Tag, Set, and Word values for a two-way set-associative cache, using the format of Figure

4.15.

Address 111111 666666 BBBBBB

a.Tag/Line/Word 11 / 444 / 1 66 / 1999 / 2 BB / 2EEE / 3

b.Tag /Word 44444 / 1 199999 / 2 2EEEEE / 3

c.Tag/Set/Word 22 / 444 / 1 CC / 1999 / 2 177 / EEE / 3

4. Consider a machine with a byte addressable main memory of 2
16

 bytes and block size of 8 bytes.

Assume that a direct mapped cache consisting of 32 lines is used with this machine.

a. How is a 16-bit memory address divided into tag, line number, and byte number?

b. Into what line would bytes with each of the following addresses be stored?

0001 0001 0001 1011

1100 0011 0011 0100

1101 0000 0001 1101

1010 1010 1010 1010

c. Suppose the byte with address 0001 1010 0001 1010 is stored in the cache. What are the

addresses of the other bytes stored along with it?

8 4 7

14 8 4

d. How many total bytes of memory can be stored in the cache?

e. Why is the tag also stored in the cache?

Answer:

a. 8 leftmost bits = tag; 5 middle bits = line number; 3 rightmost bits = byte number.

 TAG LINE WORD

b. Line 3.

Line 6.

Line 3.

Line 21.

c. Bytes with addresses 0001 1010 0001 1000 through 0001 1010 0001 1111 are stored in the

cache.

d. 256 bytes.

e. Because two items with two different memory addresses can be stored in the same place in the

 cache. The tag is used to distinguish between them.

5. Consider a memory system that uses a 32-bit address to address at the byte level, plus a cache

that uses a 64-byte line size.

a. Assume a direct mapped cache with a tag field in the address of 20 bits. Show the address

format and determine the following parameters: number of addressable units, number of

blocks in main memory, number of lines in cache, size of tag.

b. Assume an associative cache. Show the address format and determine the following

parameters: number of addressable units, number of blocks in main memory, number of

lines in cache, size of tag.

c. Assume a four-way set-associative cache with a tag field in the address of 9 bits. Show the

address format and determine the following parameters: number of addressable units,

number of blocks in main memory, number of lines in set, number of sets in cache, number

of lines in cache, size of tag.

Answer:

a. Address format: Tag = 20 bits; Line = 6 bits; Word = 6 bits.

Number of addressable units = 2
s+w

= 2
32

 bytes; number of blocks in main memory = 2
s

= 2
26

;

Number of lines in cache 2
r
 = 2

6
 = 64; size of tag = 20 bits.

b. Address format: Tag = 26 bits; Word = 6 bits.

Number of addressable units = 2
s+w

 = 2
32

 bytes; number of blocks in main memory = 2
s
 = 2

26
;

Number of lines in cache = undetermined; size of tag = 26 bits.

c. Address format: Tag = 9 bits; Set = 17 bits; Word = 6 bits.

Number of addressable units = 2
s+w

 = 2
32

 bytes; Number of blocks in main memory = 2
s
 = 2

26
;

Number of lines in set = k = 4; Number of sets in cache = 2
d
 = 2

17
; Number of lines in cache = k ×

2
d
 =2

19
; Size of tag = 9 bits.

8 5 3

6. Consider a computer with the following characteristics: total of 1Mbyte of main memory; word

size of 1 byte; block size of 16 bytes; and cache size of 64 Kbytes.

a. For the main memory addresses of F0010, 01234, and CABBE, give the corresponding

tag, cache line address, and word offsets for a direct-mapped cache.

b. Give any two main memory addresses with different tags that map to the same cache slot

for a direct-mapped cache.

c. For the main memory addresses of F0010 and CABBE, give the corresponding tag and

offset values for a fully-associative cache.

d. For the main memory addresses of F0010 and CABBE, give the corresponding tag, cache

set, and offset values for a two-way set-associative cache.

Answer:

a. Because the block size is 16 bytes and the word size is 1 byte, this means there are 16 words per

block. We will need 4 bits to indicate which word we want out of a block. Each cache line/slot

matches a memory block. That means each cache line contains 16 bytes. If the cache is 64Kbytes

then 64Kbytes/16 = 4096 cache lines. To address these 4096 cache lines, we need 12 bits (212 =

4096).

Consequently, given a 20 bit (1 MByte) main memory address:

Bits 0-3 indicate the word offset (4 bits).

Bits 4-15 indicate the cache line/slot (12 bits).

Bits 16-19 indicate the tag (remaining bits).

F0010 = 1111 0000 0000 0001 0000

Word offset = 0000 = 0

line = 0000 0000 0001 = 001

Tag = 1111 = F

01234 = 0000 0001 0010 0011 0100

Word offset = 0100 = 4

Line = 0001 0010 0011 = 123

Tag = 0000 = 0

CABBE = 1100 1010 1011 1011 1110

Word offset = 1110 = E

Line = 1010 1011 1011 = ABB

Tag = 1100 = C

b. We need to pick any address where the line is the same, but the tag (and optionally, the word

offset) is different. Here are two examples where the line is 1111 1111 1111

Address 1:

Word offset = 1111

Line = 1111 1111 1111

Tag = 0000

Address = 0FFFF

Address 2:

Word offset = 0001

Line = 1111 1111 1111

Tag = 0011

Address = 3FFF1

c. With a fully associative cache, the cache is split up into a TAG and a WORDOFFSET field. We

no longer need to identify which line a memory block might map to, because a block can be in any

line and we will search each cache line in parallel. The word-offset must be 4 bits to address each

individual word in the 16-word block. This leaves 16 bits leftover for the tag.

F0010

Word offset = 0h

Tag = F001h

CABBE

Word offset = Eh

Tag = CABBh

d. As computed in part a, we have 4096 cache lines. If we implement a two –way set associative

cache, then it means that we put two cache lines into one set. Our cache now holds 4096/2 = 2048

sets, where each set has two lines. To address these 2048 sets we need 11 bits (211 = 2048). Once

we address a set, we will simultaneously search both cache lines to see if one has a tag that

matches the target. Our 20-bit address is now broken up as follows:

Bits 0-3 indicate the word offset

Bits 4-14 indicate the cache set

Bits 15-20 indicate the tag

F0010 = 1111 0000 0000 0001 0000

Word offset = 0000 = 0

Cache Set = 000 0000 0001 = 001

Tag = 11110 = 1 1110 = 1E

CABBE = 1100 1010 1011 1011 1110

Word offset = 1110 = E

Cache Set = 010 1011 1011 = 2BB

Tag = 11001 = 1 1001 = 19

The following questions is about chapter 5 "Internal Memory":

1. For the Hamming code shown in Figure 5.10, show what happens when a check bit (of bit

position 8) rather than a data bit is in error?

Answer:

The stored word is 001101001111, as shown in Figure 5.10. Now suppose that the only error is in

C8, so that the fetched word is 001111001111. Then the received block results in the following

table:

Poistion 12 11 10 9 8 7 6 5 4 3 2 1

Bits D8 D7 D6 D5 C8 D4 D3 D2 C4 D1 C2 C1

Block 0 0 1 1 1 1 0 0 1 1 1 1

Codes 1010 1001 0111 0011

The check bit calculation after reception:

Position Code

Hamming 1111

10 1010

9 1001

7 0111

3 0011

XOR = syndrome 1000

The nonzero result detects and error and indicates that the error is in bit position 8,

which is check bit C8.

2. Suppose an 8-bit data word stored in memory is 11000010. Using the Hamming algorithm,

determine what check bits would be stored in memory with the data word. Show how you

got your answer.

Answer:

Data bits with value 1 are in bit positions 12, 11, 5, 4, 2, and 1:

Poistion 12 11 10 9 8 7 6 5 4 3 2 1

Bits D8 D7 D6 D5 C8 D4 D3 D2 C4 D1 C2 C1

Block 1 1 0 0 0 0 1 0

Codes 1100 1011 0101

The check bits are in bit numbers 8, 4, 2, and 1.

Check bit 8 calculated by values in bit numbers: 12, 11, 10 and 9

Check bit 4 calculated by values in bit numbers: 12, 7, 6, and 5

Check bit 2 calculated by values in bit numbers: 11, 10, 7, 6 and 3

Check bit 1 calculated by values in bit numbers: 11, 9, 7, 5 and 3

Thus, the check bits are: 0 0 1 0

3. For the 8-bit word 00111001, the check bits stored with it would be 0111. Suppose when the

word is read from memory, the check bits are calculated to be 1101.What is the data word

that was read from memory?

Answer:
The Hamming Word initially calculated was:

bit number:

12 11 10 9 8 7 6 5 4 3 2 1

0 0 1 1 0 1 0 0 1 1 1 1

Doing an exclusive-OR of 0111 and 1101 yields 1010 indicating an error in bit 10 of

the Hamming Word. Thus, the data word read from memory was 00011001.

4. How many check bits are needed if the Hamming error correction code is used to detect

single bit errors in a 1024-bit data word?

Answer:
Need K check bits such that 2

K
 – 1 >= 1024 + K.

The minimum value of K that satisfies this condition is 11.

