1. A set-associative cache consists of 64 lines, or slots, divided into four-line sets. Main memory contains 4K blocks of 128 words each. Show the format of main memory addresses.
Answer:
The cache is divided into 16 sets of 4 lines each. Therefore, 4 bits are needed to identify the set number. Main memory consists of $4 \mathrm{~K}=2^{12}$ blocks. Therefore, the set plus tag lengths must be 12 bits and therefore the tag length is 8 bits. Each block contains 128 words. Therefore, 7 bits are needed to specify the word.

2. A two-way set-associative cache has lines of 16 bytes and a total size of 8 kbytes. The $\mathbf{6 4}$-Mbyte main memory is byte addressable. Show the format of main memory addresses.
Answer:
There are a total of 8 kbytes $/ 16$ bytes $=512$ lines in the cache. Thus the cache consists of 256 sets of 2 lines each. Therefore 8 bits are needed to identify the set number. For the $64-\mathrm{Mbyte}$ main memory, a 26bit address is needed. Main memory consists of $64-\mathrm{Mbyte} / 16$ bytes $=2^{22}$ blocks. Therefore, the set plus tag lengths must be 22 bits, so the tag length is 14 bits and the word field length is 4 bits.

Main memory address $=$| TAG | SET | WORD |
| :---: | :---: | :---: |
| 14 | 8 | 4 |

3. For the hexadecimal main memory addresses 111111,666666, BBBBBB, show the following information, in hexadecimal format:
a. Tag, Line, and Word values for a direct-mapped cache, using the format of Figure 4.10.
b. Tag and Word values for an associative cache, using the format of Figure 4.12.
c. Tag, Set, and Word values for a two-way set-associative cache, using the format of Figure 4.15.

Address	$\mathbf{1 1 1 1 1 1}$	$\mathbf{6 6 6 6 6 6}$	BBBBBB
a.Tag/Line/Word	$11 / 444 / 1$	$66 / 1999 / 2$	$\mathrm{BB} / 2 \mathrm{EEE} / 3$
b.Tag /Word	$44444 / 1$	$199999 / 2$	$2 \mathrm{EEEEE} / 3$
c.Tag/Set/Word	$22 / 444 / 1$	$\mathrm{CC} / 1999 / 2$	$177 / \mathrm{EEE} / 3$

4. Consider a machine with a byte addressable main memory of 2^{16} bytes and block size of 8 bytes. Assume that a direct mapped cache consisting of 32 lines is used with this machine.
a. How is a 16-bit memory address divided into tag, line number, and byte number?
b. Into what line would bytes with each of the following addresses be stored?

0001000100011011
1100001100110100
1101000000011101
1010101010101010
c. Suppose the byte with address 0001101000011010 is stored in the cache. What are the addresses of the other bytes stored along with it?
d. How many total bytes of memory can be stored in the cache?
e. Why is the tag also stored in the cache?

Answer:
a. 8 leftmost bits $=$ tag; 5 middle bits $=$ line number; 3 rightmost bits $=$ byte number.

TAG	LINE	WORD
8	5	3

b. Line 3.

Line 6.
Line 3.
Line 21.
c. Bytes with addresses 0001101000011000 through 0001101000011111 are stored in the cache.
d. 256 bytes.
e. Because two items with two different memory addresses can be stored in the same place in the cache. The tag is used to distinguish between them.
5. Consider a memory system that uses a 32 -bit address to address at the byte level, plus a cache that uses a 64-byte line size.
a. Assume a direct mapped cache with a tag field in the address of $\mathbf{2 0}$ bits. Show the address format and determine the following parameters: number of addressable units, number of blocks in main memory, number of lines in cache, size of tag.
b. Assume an associative cache. Show the address format and determine the following parameters: number of addressable units, number of blocks in main memory, number of lines in cache, size of tag.
c. Assume a four-way set-associative cache with a tag field in the address of 9 bits. Show the address format and determine the following parameters: number of addressable units, number of blocks in main memory, number of lines in set, number of sets in cache, number of lines in cache, size of tag.

Answer:
a. Address format: Tag $=20$ bits; Line $=6$ bits; Word $=6$ bits.

Number of addressable units $=2^{\text {s+w }}=2^{32}$ bytes; number of blocks in main memory $=2^{\text {s }}=2^{26}$;
Number of lines in cache $2^{\mathrm{r}}=2^{6}=64$; size of tag $=20$ bits.
b. Address format: Tag $=26$ bits; Word $=6$ bits.

Number of addressable units $=2^{s+\mathrm{w}}=2^{32}$ bytes; number of blocks in main memory $=2^{\text {s }}=2^{26}$; Number of lines in cache $=$ undetermined; size of tag $=26$ bits.
c. Address format: Tag $=9$ bits; Set $=17$ bits; Word $=6$ bits.

Number of addressable units $=2^{s+\mathrm{w}}=2^{32}$ bytes; Number of blocks in main memory $=2^{s}=2^{26}$; Number of lines in set $=k=4$; Number of sets in cache $=2^{d}=2^{17}$; Number of lines in cache $=k \times$ $2^{\text {d }}=2^{19}$; Size of tag $=9$ bits.
6. Consider a computer with the following characteristics: total of 1 Mbyte of main memory; word size of 1 byte; block size of 16 bytes; and cache size of $\mathbf{6 4}$ Kbytes.
a. For the main memory addresses of F0010, 01234, and CABBE, give the corresponding tag, cache line address, and word offsets for a direct-mapped cache.
b. Give any two main memory addresses with different tags that map to the same cache slot for a direct-mapped cache.
c. For the main memory addresses of F0010 and CABBE, give the corresponding tag and offset values for a fully-associative cache.
d. For the main memory addresses of F0010 and CABBE, give the corresponding tag, cache set, and offset values for a two-way set-associative cache.

Answer:
a. Because the block size is 16 bytes and the word size is 1 byte, this means there are 16 words per block. We will need 4 bits to indicate which word we want out of a block. Each cache line/slot matches a memory block. That means each cache line contains 16 bytes. If the cache is 64 Kbytes then $64 \mathrm{Kbytes} / 16=4096$ cache lines. To address these 4096 cache lines, we need 12 bits $(212=$ 4096).

Consequently, given a 20 bit (1 MByte) main memory address:
Bits 0-3 indicate the word offset (4 bits).
Bits 4-15 indicate the cache line/slot (12 bits).
Bits 16-19 indicate the tag (remaining bits).
$\mathbf{F 0 0 1 0}=11110000000000010000$
Word offset $=0000=0$
line $=000000000001=001$
$\mathrm{Tag}=1111=\mathrm{F}$
$01234=00000001001000110100$
Word offset $=0100=4$
Line $=000100100011=123$
Tag $=0000=0$
CABBE = 11001010101110111110
Word offset $=1110=\mathrm{E}$
Line $=101010111011=$ ABB
$\mathrm{Tag}=1100=\mathrm{C}$
b. We need to pick any address where the line is the same, but the tag (and optionally, the word offset) is different. Here are two examples where the line is 111111111111
Address 1:

$$
\begin{aligned}
& \text { Word offset }=11111 \\
& \text { Line }=111111111111 \\
& \text { Tag }=0000 \\
& \text { Address }=0 \text { FFFF } \\
& \text { ss 2: } \\
& \text { Word offset }=0001 \\
& \text { Line }=11111111111 \\
& \text { Tag }=0011 \\
& \text { Address }=3 \text { FFF1 }
\end{aligned}
$$

Address 2:
c. With a fully associative cache, the cache is split up into a TAG and a WORDOFFSET field. We no longer need to identify which line a memory block might map to, because a block can be in any line and we will search each cache line in parallel. The word-offset must be 4 bits to address each individual word in the 16 -word block. This leaves 16 bits leftover for the tag.
F0010
Word offset $=0 \mathrm{~h}$
Tag $=$ F001h
CABBE
Word offset $=$ Eh
Tag $=\mathrm{CABBh}$
d. As computed in part a, we have 4096 cache lines. If we implement a two -way set associative cache, then it means that we put two cache lines into one set. Our cache now holds 4096/2 = 2048 sets, where each set has two lines. To address these 2048 sets we need 11 bits $(211=2048)$. Once we address a set, we will simultaneously search both cache lines to see if one has a tag that matches the target. Our 20-bit address is now broken up as follows:

Bits 0-3 indicate the word offset
Bits 4-14 indicate the cache set
Bits 15-20 indicate the tag
$\mathbf{F 0 0 1 0}=11110000000000010000$
Word offset $=0000=0$
Cache Set $=00000000001=001$
$\mathrm{Tag}=11110=11110=1 \mathrm{E}$
CABBE = 11001010101110111110
Word offset $=1110=\mathrm{E}$
Cache Set $=01010111011=2 \mathrm{BB}$
$\mathrm{Tag}=11001=11001=19$

The following questions is about chapter 5 "Internal Memory":

1. For the Hamming code shown in Figure 5.10, show what happens when a check bit (of bit position 8) rather than a data bit is in error?
Answer:
The stored word is 001101001111 , as shown in Figure 5.10. Now suppose that the only error is in C8, so that the fetched word is 001111001111 . Then the received block results in the following table:

Poistion	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	9	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Bits	D8	D7	D6	D5	C8	D4	D3	D2	C4	D1	C2	C1
Block	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
Codes			$\mathbf{1 0 1 0}$	$\mathbf{1 0 0 1}$		$\mathbf{0 1 1 1}$				$\mathbf{0 0 1 1}$		

The check bit calculation after reception:

Position	Code
Hamming	1111
10	1010
9	1001
7	0111
3	0011
XOR $=$ syndrome	1000

The nonzero result detects and error and indicates that the error is in bit position 8 , which is check bit C8.
2. Suppose an 8 -bit data word stored in memory is $\mathbf{1 1 0 0 0 0 1 0}$. Using the Hamming algorithm, determine what check bits would be stored in memory with the data word. Show how you got your answer.
Answer:
Data bits with value 1 are in bit positions $12,11,5,4,2$, and 1 :

Poistion	$\mathbf{1 2}$	11	10	9	8	7	6	5	4	3	2	1
Bits	D8	D7	D6	D5	C8	D4	D3	D2	C4	D1	C2	C1
Block	$\mathbf{1}$	1	$\mathbf{0}$	$\mathbf{0}$		$\mathbf{0}$	$\mathbf{0}$	1		0		
Codes	$\mathbf{1 1 0 0}$	$\mathbf{1 0 1 1}$						$\mathbf{0 1 0 1}$				

The check bits are in bit numbers $8,4,2$, and 1 .
Check bit 8 calculated by values in bit numbers: 12, 11, 10 and 9
Check bit 4 calculated by values in bit numbers: 12, 7, 6, and 5
Check bit 2 calculated by values in bit numbers: 11, 10, 7, 6 and 3
Check bit 1 calculated by values in bit numbers: 11, 9, 7, 5 and 3
Thus, the check bits are: 0010
3. For the 8 -bit word 00111001 , the check bits stored with it would be 0111 . Suppose when the word is read from memory, the check bits are calculated to be 1101 . What is the data word that was read from memory?
Answer:
The Hamming Word initially calculated was:
bit number:

$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Doing an exclusive-OR of 0111 and 1101 yields 1010 indicating an error in bit 10 of the Hamming Word. Thus, the data word read from memory was 00011001.
4. How many check bits are needed if the Hamming error correction code is used to detect single bit errors in a 1024-bit data word?
Answer:
Need K check bits such that $2^{K}-1>=1024+K$.
The minimum value of K that satisfies this condition is 11 .

