Bayesian Decision Theory

Jason Corso

SUNY at Buffalo

J. Corso (SUNY at Buffalo)

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<ロト < 回 ト < 臣 ト < 臣 ト 三 臣</p>

- Covering Chapter 2 of DHS.
- Bayesian Decision Theory is a fundamental statistical approach to the problem of pattern classification.
- Quantifies the tradeoffs between various classifications using probability and the costs that accompany such classifications.
- Assumptions:
 - Decision problem is posed in probabilistic terms.
 - All relevant probability values are known.

 $\checkmark Q (\sim$

Recall the Fish!

- Recall our example from the first lecture on classifying two fish as salmon or sea bass.
- And recall our agreement that any given fish is either a salmon or a sea bass; DHS call this the state of nature of the fish.
- Let's define a (probabilistic) variable ω that describes the state of nature.

$$\omega=\omega_1$$
 for sea bass (1)
 $\omega=\omega_2$ for salmon (2)

Let's assume this two class case.

Salmon

Sea Bass

Prior Probability

 The *a priori* or prior probability reflects our knowledge of how likely we expect a certain state of nature before we can actually observe said state of nature.

DQC

-

< □ > < 同 > < 三 > < 三 > <

Preliminaries

Prior Probability

- The *a priori* or **prior** probability reflects our knowledge of how likely we expect a certain state of nature before we can actually observe said state of nature.
- In the fish example, it is the probability that we will see either a salmon or a sea bass next on the conveyor belt.
- Note: The prior may vary depending on the situation.
 - If we get equal numbers of salmon and sea bass in a catch, then the priors are equal, or uniform.
 - Depending on the season, we may get more salmon than sea bass, for example.

 $\checkmark \land \land \land$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

Preliminaries

Prior Probability

- The *a priori* or prior probability reflects our knowledge of how likely we expect a certain state of nature before we can actually observe said state of nature.
- In the fish example, it is the probability that we will see either a salmon or a sea bass next on the conveyor belt.
- Note: The prior may vary depending on the situation.
 - If we get equal numbers of salmon and sea bass in a catch, then the priors are equal, or uniform.
 - Depending on the season, we may get more salmon than sea bass, for example.
- We write $P(\omega = \omega_1)$ or just $P(\omega_1)$ for the prior the next is a sea bass.
- The priors must exhibit exclusivity and exhaustivity. For c states of nature, or classes:

$$1 = \sum_{i=1}^{c} P(\omega_i) \tag{3}$$

Decision Rule From Only Priors

- A decision rule prescribes what action to take based on observed input.
- IDEA CHECK: What is a reasonable Decision Rule if
 - the only available information is the prior, and
 - the cost of any incorrect classification is equal?

DQQ

< 🗆 🕨

Decision Rule From Only Priors

- A decision rule prescribes what action to take based on observed input.
- IDEA CHECK: What is a reasonable Decision Rule if
 - the only available information is the prior, and
 - the cost of any incorrect classification is equal?
- Decide ω_1 if $P(\omega_1) > P(\omega_2)$; otherwise decide ω_2 .

What can we say about this decision rule?

Decision Rule From Only Priors

- A decision rule prescribes what action to take based on observed input.
- IDEA CHECK: What is a reasonable Decision Rule if
 - the only available information is the prior, and
 - the cost of any incorrect classification is equal?
- Decide ω_1 if $P(\omega_1) > P(\omega_2)$; otherwise decide ω_2 .
- What can we say about this decision rule?
 - Seems reasonable, but it will always choose the same fish.
 - If the priors are uniform, this rule will behave poorly.
 - Under the given assumptions, no other rule can do better! (We will see this later on.)

✓) Q (³

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ─ 豆.

Features and Feature Spaces

- A feature is an observable variable.
- A feature space is a set from which we can sample or observe values.
- Examples of features:
 - Length
 - Width
 - Lightness
 - Location of Dorsal Fin
- For simplicity, let's assume that our features are all continuous values.
- Denote a scalar feature as x and a vector feature as x. For a d-dimensional feature space, $x \in \mathbb{R}^d$.

SQ (V

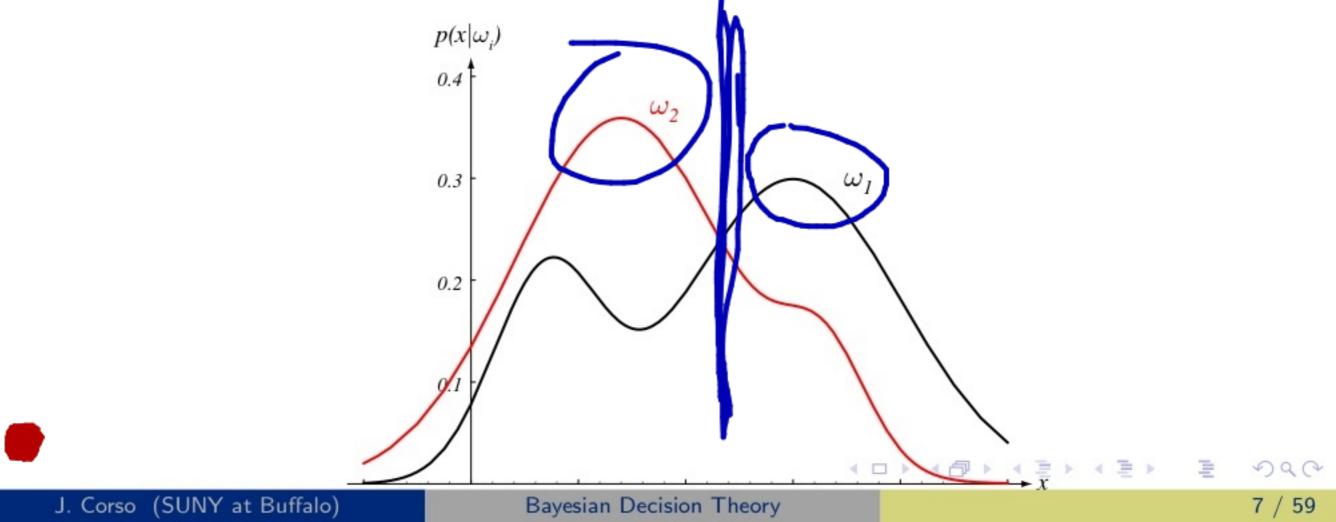
< = >

Class-Conditional Density or Likelihood

• The class-conditional probability density function is the probability density function for \mathbf{x} , our feature, given that the state of nature is ω :

$$p(\mathbf{x}|\omega)$$
 (4)

• Here is the hypothetical class-conditional density $p(x|\omega)$ for lightness values of sea bass and salmon.



Posterior Probability

Bayes Formula

- If we know the prior distribution and the class-conditional density, how does this affect our decision rule?
- Posterior probability is the probability of a certain state of nature given our observables: $P(\omega|\mathbf{x})$. Use Bayes Formula:
- Use Bayes Formula:

٨

$$P(\omega, \mathbf{x}) = P(\omega | \mathbf{x}) p(\mathbf{x}) = p(\mathbf{x} | \omega) P(\omega)$$

 $\sum_{i} p(\mathbf{x}|\omega_i) P(\omega_i)$

$$P(\omega|\mathbf{x}) = \frac{p(\mathbf{x}|\omega)P(\omega)}{p(\mathbf{x})}$$

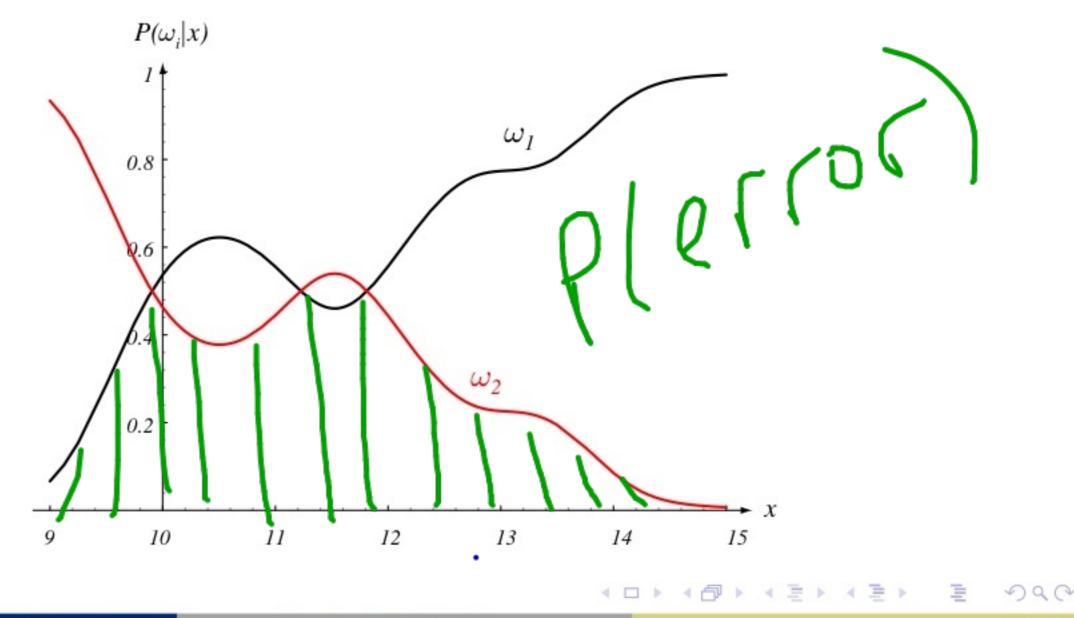
$$p(\mathbf{x}|\omega)P(\omega)$$
(6)

DQA

(5)

Posterior Probability

- Notice the likelihood and the prior govern the posterior. The p(x) evidence term is a scale-factor to normalize the density.
- For the case of $P(\omega_1) = 2/3$ and $P(\omega_2) = 1/3$ the posterior is



• For a given observation x, we would be inclined to let the posterior govern our decision:

$$\omega^* = \arg\max_i P(\omega_i | \mathbf{x}) \tag{8}$$

• What is our **probability of error**?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 For a given observation x, we would be inclined to let the posterior govern our decision:

$$\omega^* = \arg\max_i P(\omega_i | \mathbf{x}) \tag{8}$$

< 🗆 🕨

- What is our **probability of error**?
- For the two class situation, we have

$$P(\text{error}|\mathbf{x}) = \begin{cases} P(\omega_1|\mathbf{x}) & \text{if we decide } \omega_2 \\ P(\omega_2|\mathbf{x}) & \text{if we decide } \omega_1 \end{cases}$$

SQA

-

(9)

• We can minimize the probability of error by following the posterior:

Decide
$$\omega_1$$
 if $P(\omega_1 | \mathbf{x}) > P(\omega_2 | \mathbf{x})$ (10)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 • りへ ?

• We can minimize the probability of error by following the posterior:

Decide
$$\omega_1$$
 if $P(\omega_1 | \mathbf{x}) > P(\omega_2 | \mathbf{x})$ (10)

• And, this minimizes the average probability of error too:

$$P(\text{error}) = \int_{-\infty}^{\infty} P(\text{error}|\mathbf{x})p(\mathbf{x})d\mathbf{x}$$
(11)

(Because the integral will be minimized when we can ensure each $P(\text{error}|\mathbf{x})$ is as small as possible.)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 りへ ()

Decision Theory

Bayes Decision Rule (with Equal Costs)

- Decide ω_1 if $P(\omega_1|\mathbf{x}) > P(\omega_2|\mathbf{x})$; otherwise decide ω_2
- Probability of error becomes

$$P(\operatorname{error}|\mathbf{x}) = \min\left[P(\omega_1|\mathbf{x}), P(\omega_2|\mathbf{x})\right]$$
(12)

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● のへぐ

Bayes Decision Rule (with Equal Costs)

- Decide ω_1 if $P(\omega_1 | \mathbf{x}) > P(\omega_2 | \mathbf{x})$; otherwise decide ω_2
- Probability of error becomes

$$P(\operatorname{error}|\mathbf{x}) = \min\left[P(\omega_1|\mathbf{x}), P(\omega_2|\mathbf{x})\right]$$
(12)

- Equivalently, Decide ω₁ if p(**x**|ω₁)P(ω₁) > p(**x**|ω₂)P(ω₂); otherwise decide ω₂
- I.e., the evidence term is not used in decision making.

DQQ

(雪) (ヨ) (ヨ)

Decision Theory

Bayes Decision Rule (with Equal Costs)

- Decide ω_1 if $P(\omega_1|\mathbf{x}) > P(\omega_2|\mathbf{x})$; otherwise decide ω_2
- Probability of error becomes

$$P(\operatorname{error}|\mathbf{x}) = \min\left[P(\omega_1|\mathbf{x}), P(\omega_2|\mathbf{x})\right]$$
(12)

- Equivalently, Decide ω_1 if $p(\mathbf{x}|\omega_1)P(\omega_1) > p(\mathbf{x}|\omega_2)P(\omega_2)$; otherwise decide ω_2
- I.e., the evidence term is not used in decision making.
- If we have $p(\mathbf{x}|\omega_1) = p(\mathbf{x}|\omega_2)$, then the decision will rely exclusively on the priors.
- Conversely, if we have uniform priors, then the decision will rely exclusively on the likelihoods.

▲□▶▲□▶▲≡▶▲≡▶ = つへぐ

Decision Theory

Bayes Decision Rule (with Equal Costs)

- Decide ω_1 if $P(\omega_1|\mathbf{x}) > P(\omega_2|\mathbf{x})$; otherwise decide ω_2
- Probability of error becomes

$$P(\operatorname{error}|\mathbf{x}) = \min\left[P(\omega_1|\mathbf{x}), P(\omega_2|\mathbf{x})\right]$$
(12)

- Equivalently, Decide ω_1 if $p(\mathbf{x}|\omega_1)P(\omega_1) > p(\mathbf{x}|\omega_2)P(\omega_2)$; otherwise decide ω_2
- I.e., the evidence term is not used in decision making.
- If we have $p(\mathbf{x}|\omega_1) = p(\mathbf{x}|\omega_2)$, then the decision will rely exclusively on the priors.
- Conversely, if we have uniform priors, then the decision will rely exclusively on the likelihoods.
- Take Home Message: Decision making relies on both the priors and the likelihoods and Bayes Decision Rule combines them to achieve the minimum probability of error.

Loss Functions

- A loss function states exactly how costly each action is.
- As earlier, we have c classes $\{\omega_1, \ldots, \omega_c\}$.
- We also have a possible actions $\{\alpha_1, \ldots, \alpha_a\}$.
- The loss function $\lambda(\alpha_i | \omega_j)$ is the loss incurred for taking action α_i when the class is ω_j .

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 のへ (~

Loss Functions

- A loss function states exactly how costly each action is.
- As earlier, we have c classes $\{\omega_1, \ldots, \omega_c\}$.
- We also have a possible actions $\{\alpha_1, \ldots, \alpha_a\}$.
- The loss function $\lambda(\alpha_i | \omega_j)$ is the loss incurred for taking action α_i when the class is ω_j .
- The Zero-One Loss Function is a particularly common one:

$$\dot{\lambda} = \lambda(\alpha_i | \omega_j) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases} \quad i, j = 1, 2, \dots, c$$
(13)

It assigns no loss to a correct decision and uniform unit loss to an incorrect decision.

Expected Loss a.k.a. Conditional Risk

- We can consider the loss that would be incurred from taking each possible action in our set.
- The expected loss or conditional risk is by definition

$$R(\alpha_i | \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i | \omega_j) P(\omega_j | \mathbf{x})$$
(14)

• The zero-one conditional risk is

$$R(\alpha_i | \mathbf{x}) = \sum_{j \neq i} P(\omega_j | \mathbf{x})$$
(15)

$$= 1 - P(\omega_i | \mathbf{x}) \tag{16}$$

< ロ > < 同 > < 三 > < 三 > < 三 > <

 Hence, for an observation x, we can minimize the expected loss by selecting the action that minimizes the conditional risk.

SQA

Expected Loss

a.k.a. Conditional Risk

- We can consider the loss that would be incurred from taking each possible action in our set.
- The expected loss or conditional risk is by definition

$$R(\alpha_i | \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i | \omega_j) P(\omega_j | \mathbf{x})$$
(14)

• The zero-one conditional risk is

$$R(\alpha_i | \mathbf{x}) = \sum_{j \neq i} P(\omega_j | \mathbf{x})$$
(15)
= 1 - P(\omega_i | \mathbf{x}) (16)

- Hence, for an observation x, we can minimize the expected loss by selecting the action that minimizes the conditional risk.
- (Teaser) You guessed it: this is what Bayes Decision Rule does!

 $\checkmark Q (~$

Overall Risk

• Let $\alpha(x)$ denote a decision rule, a mapping from the input feature space to an action, $\mathbb{R}^d \mapsto \{\alpha_1, \ldots, \alpha_a\}$.

This is what we want to learn.

DQQ

イロト イ団ト イヨト イヨト 三臣

Overall Risk

- Let $\alpha(x)$ denote a decision rule, a mapping from the input feature space to an action, $\mathbb{R}^d \mapsto \{\alpha_1, \ldots, \alpha_a\}$.
 - This is what we want to learn.
- The overall risk is the expected loss associated with a given decision rule.

$$R = \oint R(\alpha(\mathbf{x})|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$
(17)

Clearly, we want the rule $\alpha(\cdot)$ that minimizes $R(\alpha(\mathbf{x})|\mathbf{x})$ for all \mathbf{x} .

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Bayes Risk The Minimum Overall Risk

- Bayes Decision Rule gives us a method for minimizing the overall risk.
- Select the action that minimizes the conditional risk:

$$\alpha * = \arg \min_{\alpha_i} R(\alpha_i | \mathbf{x})$$
(18)
$$= \arg \min_{\alpha_i} \sum_{j=1}^c \lambda(\alpha_i | \omega_j) P(\omega_j | \mathbf{x})$$
(19)
• The Bayes Risk is the best we can do.

< 🗆 🕨

SQA

-

A = > < = >

Two-Category Classification Examples

• Consider two classes and two actions, α_1 when the true class is ω_1 and α_2 for ω_2 .

Writing out the conditional risks gives:

$$R(\alpha_1 | \mathbf{x}) = \lambda_{11} P(\omega_1 | \mathbf{x}) + \lambda_{12} P(\omega_2 | \mathbf{x})$$
$$R(\alpha_2 | \mathbf{x}) = \lambda_{21} P(\omega_1 | \mathbf{x}) + \lambda_{22} P(\omega_2 | \mathbf{x})$$

• Fundamental rule is decide
$$\omega_1$$
 if

$$R(\alpha_1|\mathbf{x}) < R(\alpha_2|\mathbf{x})$$
.

• In terms of posteriors, decide ω_1 if

$$(\lambda_{21} - \lambda_{11})P(\omega_1 | \mathbf{x}) > (\lambda_{12} - \lambda_{22})P(\omega_2 | \mathbf{x})$$

The more likely state of nature is scaled by the differences in loss (which are generally positive).

DQA

(22)

Two-Category Classification Examples

ullet Or, expanding via Bayes Rule, decide ω_1 if

 $(\lambda_{21} - \lambda_{11})p(\mathbf{x}|\omega_1)P(\omega_1) > (\lambda_{12} - \lambda_{22})p(\mathbf{x}|\omega_2)P(\omega_2)$ (24)

• Or, assuming $\lambda_{21} > \lambda_{11}$, decide ω_1 if $\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)}$ (25)

- LHS is called the likelihood ratio.
- Thus, we can say the Bayes Decision Rule says to decide ω₁ if the likelihood ratio exceeds a threshold that is independent of the observation x.

Pattern Classifiers Version 1: Discriminant Functions

- Discriminant Functions are a useful way of representing pattern classifiers.
- Let's say $g_i(\mathbf{x})$ is a discriminant function for the *i*th class.
- This classifier will assign a class ω_i to the feature vector ${f x}$ if

$$g_i(\mathbf{x}) > g_j(\mathbf{x}) \qquad \forall j \neq i$$
, (26)

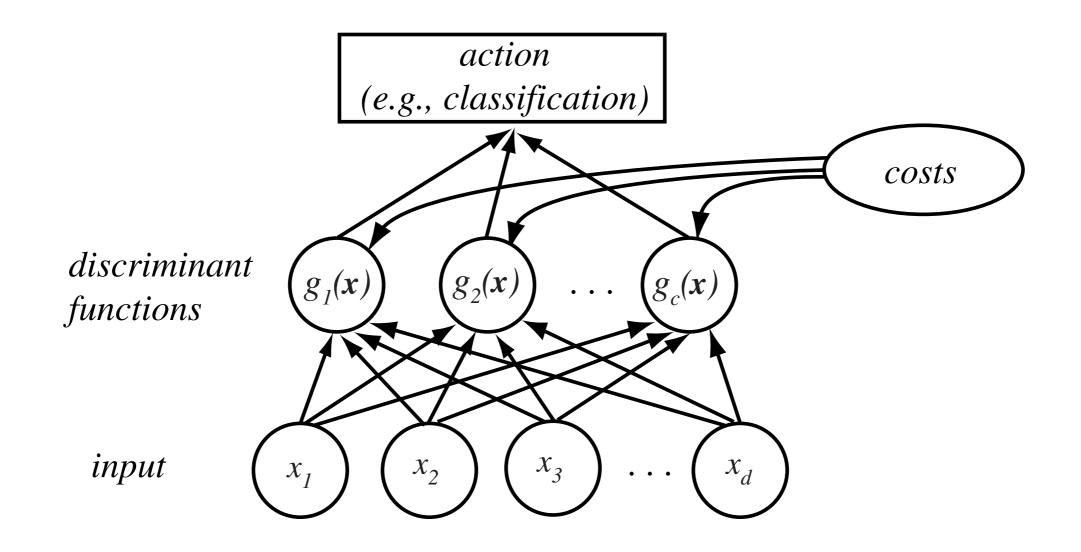
or, equivalently

$$i^* = \arg \max_i g_i(x)$$
, decide ω_{i^*}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少々⊙

Discriminants as a Network

• We can view the discriminant classifier as a network (for *c* classes and a *d*-dimensional input vector).



 $\checkmark Q (~$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bayes Discriminants Minimum Conditional Risk Discriminant

• General case with risks

$$g_i(\mathbf{x}) = -R(\alpha_i | \mathbf{x}) \qquad (27)$$

$$= -\sum_{j=1}^c \lambda(\alpha_i | \omega_j) P(\omega_j | \mathbf{x}) \qquad (28)$$

• Can we prove that this is correct?

Bayes Discriminants Minimum Conditional Risk Discriminant

General case with risks

$$g_i(\mathbf{x}) = -R(\alpha_i | \mathbf{x})$$
(27)
$$= -\sum_{j=1}^c \lambda(\alpha_i | \omega_j) P(\omega_j | \mathbf{x})$$
(28)

- Can we prove that this is correct?
- Yes! The minimum conditional risk corresponds to the maximum discriminant.

Minimum Error-Rate Discriminant

 In the case of zero-one loss function, the Bayes Discriminant can be further simplified:

$$g_i(\mathbf{x}) = P(\omega_i | \mathbf{x})$$
 (29)

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Uniqueness Of Discriminants

• Is the choice of discriminant functions unique?

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 • りへ ?