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The success of scientists in revealing biological mechanisms has depended in large part on choosing
tractable model systems. In 1997, molecular phylogenetics revealed that two of biology’s most tractable
models—Caenorhabditis elegans and Drosophila—are much more closely related to each other than
had been thought previously. I began to explore whether any of the little-studied members of this
branch of the tree of life might serve as a newmodel for comparative biology that couldmake use of the
rich and ongoing sources of information flowing from C. elegans andDrosophila research. Tardigrades,
also known as water bears, make up a phylum of microscopic animals. The tardigrade Hypsibius
exemplaris (recently disambiguated from a closely related species, Hypsibius dujardini) can be main-
tained in laboratories and has a generation time of <2 wk at room temperature. Stocks of animals can
be stored frozen and revived. The animals and their embryos are optically clear, and embryos are laid in
groups, with each synchronous clutch of embryos laid in a clear molt. We have developed techniques
for laboratory study of this system, including methods for microinjection of animals, immunolocal-
ization, in situ hybridization, RNA interference, transcriptomics, and methods for identifying proteins
that mediate tolerance to extreme environments. Here, I review the development of this animal as an
emerging model system, as well as recent molecular studies aimed at understanding the evolution of
developmental mechanisms that underpin the evolution of animal form and at understanding how
biological materials can survive extreme environments.

BACKGROUND INFORMATION

In 1997, a new molecular phylogeny revealed that Caenorhabditis elegans and Drosophila are much
more closely related to each other than had been thought previously (Aguinaldo et al. 1997). Before
then,Drosophila was thought to be more closely related even to humans than to C. elegans (Sidow and
Thomas 1994). The 1997 molecular phylogeny placed the nematodes (which include C. elegans)
and arthropods (which include Drosophila) together in a clade that includes six other animal phyla
(Aguinaldo et al. 1997; Park et al. 2006). These eight phyla together are named the Ecdysozoa, or
molting animals. I imagined that other ecdysozoan phyla closely related to the nematodes and arthro-
pods might serve as valuable models for evo–devo biology (Goodman and Coughlin 2000) and for
modern comparative biology (Hall 1994) more generally, if it were possible to develop a practical
laboratory model from among these animals. In particular, animals related to but not within the
nematodes and arthropods might maximally take advantage of having two reference model systems in
C. elegans and Drosophila. In the long term, the use of a relative of C. elegans and Drosophila might
dramatically expand the sets of genes and mechanisms of interest for comparative studies, beyond the
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narrower sets of genes and mechanisms known to have conserved functions across a much greater
breadth of animal diversity (Erwin and Davidson 2002; Richter and King 2013). But little modern
molecular work had been done in any of the phyla closely related to nematodes and arthropods,
suggesting that it might be necessary to develop a new model.

Starting in 1999, I began an effort toward developing such a model by collecting species of one
ecdysozoan phylum, the tardigrades, from multiple sources. The tardigrades, also known as water
bears, are a phylum of eight-legged, microscopic animals estimated to include thousands of species,
over a thousand of which have been described to date (Bartels et al. 2016). I contacted tardigrade
zoologists Harold Heatwole, Diane Nelson, and Jette Eibye-Jacobsen, who kindly advised me on how
to find and keep tardigrades. I sought a species with several key characteristics: with small, clear
embryos so that development could be observed directly; that lacked the ornamented envelopes that
surround the embryos of some tardigrade species (Nelson et al. 2016), which are beautiful but can
obscure cell boundaries in DIC microscopy; and with small cells and rapid embryonic cell cycles,
because these characteristics correlate at least very roughly with small genome size—a feature that was
facilitating research in establishedmodel systems (Gregory andHebert 1999; Gregory 2001). A culture
from amateur scientist BobMcNuff, who runs the small biological supply company Sciento, appeared
suitable. Embryos were about 60 µm long with a smooth outer envelope, and early cell divisions
occurred every 50–55 min.Mark Blaxter’s laboratory had some unpublished sequence data from them
and from related species (Goldstein and Blaxter 2002; Blaxter et al. 2004). I began work on this species,
and I sent some animals to tardigrade expert Roberto Bertolani, who identified the species as resem-
bling most closely the identified speciesHypsibius dujardini (Gabriel et al. 2007). In 2018, the animals
we study were identified instead as a new species, a close relative of H. dujardini that was dubbed
Hypsibius exemplaris—a Latin form of “exemplar” marking the by-then “wide use of the species as a
laboratory model for various types of scientific studies” (Gas̨iorek et al. 2018). The animals are about
250 µm long and typify tardigrades in having two eyespots and eight legs (Fig. 1).

Historically, most tardigrade zoologists collected their animals outdoors repeatedly as needed
instead of maintaining cultures long-term in laboratories, and tardigrades had only rarely been
reared continually in laboratories because success with long-term culture had remained elusive in
many tardigrade species (Altiero and Rebecchi 2001; Suzuki 2003; Horikawa et al. 2008). So I was
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FIGURE 1. AdultH. exemplaris. (A) Photo by Sinclair Stammers, used with permission. (B) Illustration by Anya Brover-
man-Wray based on a scanning electron micrograph.
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surprised when Bob McNuff first told me by phone in 2001 that he had been raising his cultures
continuously, in a shed behind his home, for more than a decade—since 1987. Bob generously shared
his culture methods, which enabled us to establish our own robust, continuous laboratory cultures,
and then to begin to build a description of embryonic development and to work toward developing a
battery of tools for laboratory study.

In the accompanying protocols, BobMcNuff shares his culture methods (see Protocol: Laboratory
Culture ofHypsibius exemplaris [McNuff 2018]), and current and former members of my laboratory
describe in detail techniques that we developed (see Protocol: Desiccation of Hypsibius exemplaris
[Boothby 2018a], Protocol: Total RNA Extraction from Tardigrades [Boothby 2018b]; Protocol: Live
Imaging of Tardigrade Embryonic Development by Differential Interference Contrast Microscopy
[Heikes and Goldstein 2018], Protocol: Embryonic In Situ Hybridization for the Tardigrade Hyp-
sibius exemplaris [Smith 2018], Protocol: Embryonic Immunostaining for the Tardigrade Hypsibius
exemplaris [Smith and Gabriel 2018], and Protocol:Microinjection of dsRNA in Tardigrades [Tenlen
2018]). Most of the techniques that we developed had not been developed in the phylum previously,
for examplemicroinjection of animals and RNA interference (Tenlen et al. 2013), in situ hybridization
(Smith et al. 2016), immunolocalization (Gabriel and Goldstein 2007), and methods for identifying
specific, functionally validated mediators of desiccation tolerance (Boothby et al. 2017). We also share
our newly developed methods for introducing live-cell fluorescent markers into H. exemplaris
embryos by electroporation or soaking (see Protocol: Fluorescent Cell Staining Methods for Living
Hypsibius exemplaris Embryos [McGreevy et al. 2018]).

SOURCES AND HUSBANDRY

Bob McNuff collected the standard H. exemplaris strain from a pond in Lancashire, England. This
strain is designated Z151, a strain designation that originated as the Sciento catalog number that
Bob had applied to the cultures deriving from the tardigrades he collected in 1987 (using Z for all
zoological organisms he sold, with sets of numbers reserved for different types of organisms). To grow
this strain continuously in the laboratory, animals are maintained in shallow liquid in Erlenmeyer
flasks or Petri dishes and are fed a unicellular alga. Water and algae are changed every 10 d to 6 wk,
depending on choice of culture methods (see Protocol: Laboratory Culture of Hypsibius exemplaris
[McNuff 2018]). For scientists seeking to start their own cultures, H. exemplaris and their algal food
can be purchased from Sciento and are distributed bymail. Animals can also be stored frozen (Gabriel
et al. 2007). I receive frequent requests from other scientists for cultures, and to satisfy these without
disrupting my laboratory’s work, I have used Sciento as a stock center, placing orders to fulfill
the requests.

RELATED SPECIES

Recent molecular studies on tardigrades have used mostly H. exemplaris and two other tardigrade
species for which laboratory culture methods have been developed—Milnesium tardigradum and
Ramazzottius varieornatus (Suzuki 2003; Horikawa et al. 2008)—as well as Paramacrobiotus richtersi
recovered repeatedly from leaf litter (see, for example, Kondo et al. 2015; Smith et al. 2016; Hashimoto
et al. 2016; Boothby et al. 2017; Yoshida et al. 2017). High quality genome sequences exist for
H. exemplaris and R. varieornatus (Hashimoto et al. 2016; Yoshida et al. 2017), and a draft genome
exists forM. tardigradum (Bemm et al. 2017). All four of the above species and theH. exemplaris close
relative H. dujardini can survive extreme environmental conditions including desiccation (Wright
1989; Horikawa et al. 2008; Boothby et al. 2017). The proceedings of a recent international tardigrade
symposium, introduced by Rebecchi and Nelson (2016), describe recent work on a broader array of
tardigrade species.
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We continue to use H. exemplaris more often than the other two laboratory-cultured species
mentioned above because under laboratory conditions, H. exemplaris embryos consistently develop
successfully (�100% in H. exemplaris, 77.2% to 90% in M. tardigradum, and 82.5% in R. varieorna-
tus); embryonic development occurs in a consistent and shorter duration (4–4.5 d in H. exemplaris,
5–16 d in M. tardigradum, and 4–8 d in R. varieornatus); embryos are more transparent than the
embryos of M. tardigradum and lack the ornamented eggshell that surrounds embryos of R. varieor-
natus; generation time is short (13–14 d in H. exemplaris, 15 d in R. varieornatus, and about 27 d in
M. tardigradum) (Suzuki 2003; Gabriel et al. 2007; Horikawa et al. 2008); and because H. exemplaris
can be grown on an algal source that is readily available (Gabriel et al. 2007). H. exemplaris and its
close relative H. dujardini require more preconditioning to survive desiccation than do the other
three species (Wright 1989; Horikawa et al. 2008; Boothby et al. 2017), suggesting that both Hypsibius
species may activate a program to resist desiccation rather than being constitutively resistant. Consistent
with this, H. exemplaris has the largest transcriptional responses to desiccation among these species
(Boothby et al. 2017; Yoshida et al. 2017), which has facilitated finding genes that mediate desiccation
tolerance. Some of these genes are induced during desiccation in H. exemplaris but constitutively
expressed in a constitutively desiccation-tolerant species (Boothby et al. 2017). Although H. exemplaris
has advantages as a laboratory model, each of the tardigrade species above also has distinct advantages.
For example, males have been reported to arise rarely in otherwise parthenogeneticM. tardigradum and
H. dujardini cultures (Ramazzotti andMaucci 1995; Suzuki 2008), whichmay prove valuable for genetic
studies, and males have not yet been reported from the otherwise parthenogenetic H. exemplaris.
R. varieornatus and M. tardigradum have even more compact genomes than does H. exemplaris (104
megabase pairs for H. exemplaris, 75 megabase pairs for M. tardigradum, and 56 megabase pairs for
R. varieornatus) (Yoshida et al. 2017; Bemm et al. 2017).

Most of the recent developmental studies on tardigrades have used H. exemplaris strain Z151 from
Sciento (Gabriel et al. 2007; Gabriel and Goldstein 2007; Gross and Mayer 2015; Hyra et al. 2016a,b;
Smith et al. 2016; Smith and Goldstein 2017; Gross et al. 2017). Studies that used H. exemplaris strain
Z151 prior to the 2018 species disambiguation fromH. dujardini (Gas̨iorek et al. 2018) generally referred
to the species as H. dujardini, or as Hypsibius cf. dujardini, and in many of these studies the strain was
indicated as Z151 and/or sourced from Sciento (Gabriel and Goldstein 2007; Gabriel et al. 2007; Bavan
et al. 2009; Mali et al. 2010; Cesari et al. 2012; Beltrán-Pardo et al. 2013; Horikawa et al. 2013; Tenlen
et al. 2013; Smith and Jockusch 2014; Boothby et al. 2015, 2017; Gross and Mayer 2015; Kondo et al.
2015; Arakawa et al. 2016; Bemm et al. 2016; Fernandez et al. 2016; Hering et al. 2016; Hyra et al. 2016a,b;
Kosztyła et al. 2016; Koutsovoulos et al. 2016; Levin et al. 2016; Smith et al. 2016, 2017; Stec et al. 2016;
Erdmann et al. 2017; Gross et al. 2017, 2018; Vasanthan et al. 2017; Yoshida et al. 2017, 2018; Fadero
et al. 2018; Nelson 2018; Rost-Roszkowska et al. 2018). One study using Thulinia stephaniae (Hejnol
and Schnabel 2005) indicates some contrasting developmental features in a second tardigrade species.

USES OF THE H. exemplaris MODEL SYSTEM

Studies using this model and the other tardigrade species mentioned above have focused mostly on
survival in extreme conditions in the laboratory (Guidetti et al. 2011; Horikawa et al. 2013; Beltrán-
Pardo et al. 2015; Fernandez et al. 2016; Vasanthan et al. 2017), identifying extremotolerance mecha-
nisms (Kondo et al. 2015; Hashimoto et al. 2016; Boothby et al. 2017), development and anatomy and
the evolution of development and anatomy (Gabriel andGoldstein 2007; Gabriel et al. 2007;Mayer et al.
2013; Smith and Jockusch 2014; Gross andMayer 2015; Hyra et al. 2016a,b; Smith et al. 2016; Smith and
Goldstein 2017; Gross et al. 2017), taxonomic methods and relationships (Rota-Stabelli et al. 2010; Stec
et al. 2016), sequence comparisons with other species (Förster et al. 2009; Mali et al. 2010; Christie et al.
2011; D’Haese et al. 2011; Beltrán-Pardo et al. 2013; Hering and Mayer 2014; Mayer et al. 2015;
Szitenberg et al. 2016; Thiruketheeswaran et al. 2017; Nelson 2018), and analyses of specific proteins
(Bavan et al. 2009; Hering et al. 2016). Genomic studies are discussed in a section below.
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Here, I review briefly selected recent studies that highlight the use of H. exemplaris as a model
to understand how animal body plans can evolve, and how biological materials can survive extreme
environments.

Smith et al. (2016) sought to understand how new animal body plans can evolve using tardigrades
as a model in which segment identities might be identified by Hox gene expression patterns (Hughes
and Kaufman, 2002), but where body plan appears significantly different from that of Drosophila and
its arthropod relatives. All known tardigrades have a compact body plan, with four apparent body
segments plus a head. Multiple species of tardigrades lack apparent homologs of certain Hox genes,
for example homologs of the Drosophila trunk-segment Hox genes Antennapedia, Ultrabithorax and
abdominal-A, suggesting that these genes were lost early in the evolution of the tardigrades, perhaps as
tardigrades first evolved (Smith et al. 2016; Yoshida et al. 2017). Expression patterns of the Hox genes
that remain were found to be in a similar anterior-to-posterior register as in many other animals, but
with the anterior boundaries of each of the head-identity Hox genes (as defined by arthropod
homolog expression patterns) located not just in the head but instead throughmost of the tardigrade’s
body. The gene expression patterns suggested that nearly the entire body of tardigrades is homologous
to just the head of Drosophila, and that an ancient ancestor to tardigrades must have lost a significant
part of the body—corresponding to the entire thorax and nearly the entire abdomen of Drosophila—
perhaps through loss of a posterior elongation zone (Smith et al. 2016). These results implied that an
animal body plan can originate through loss of a greater part of an ancestor’s body than had been
recognized previously.

Tardigrades are a valuable model system for investigating longstanding questions about how
animals, and biological materials more generally, can survive some remarkably extreme conditions
(Keilin 1959; Crowe 1971). Recent work on identifying mechanisms by which tardigrades can survive
extremes of desiccation and radiation has begun to identify proteins of special interest. Boothby et al.
(2017) used transcriptomics to identify genes whose expression changed in response to desiccation or
freezing, and then used RNAi targeting such genes to identify functional mediators of desiccation
tolerance. The genes identified encode intrinsically disordered proteins, expression of which in bac-
teria or yeast can increase desiccation tolerance in these systems. This work, together with work that
identified a DNA-associated protein from R. varieornatus that can suppress DNA damage in human
cultured cells (Hashimoto et al. 2016) and mitochondrial proteins that modestly improved osmotic
tolerance (Tanaka et al. 2015), suggest the promise of tardigrades as a continued source of proteins
that can mediate tolerance to extremes.

GENOMICS AND ASSOCIATED RESOURCES

H. exemplaris has five pairs of chromosomes (Gabriel et al. 2007). A recent paper presents a high-
quality genome assembly using animal collection and analysis methods that are significant improve-
ments over previous methods (Yoshida et al. 2017). In my own laboratory’s earlier draft genome
publication, we had concluded that extensive horizontal gene transfer had occurred since the time
whenH. exemplaris ancestors had split from nontardigrade phyla, but several studies showed that this
was an artifact of contamination and of an elevation of apparent levels of horizontal gene transfer that
can occur when uncurated gene predictions are used; instead, current evidence is consistent with
horizontal gene transfer having occurred at a rate that is typical for animals (Boothby et al. 2015;
Arakawa 2016; Bemm et al. 2016; Delmont and Eren 2016; Koutsovoulos et al. 2016; Yoshida et al.
2017). A developmental transcriptome time series is available (Levin et al. 2016). This time series was
produced from RNA-seq of 62 individual embryos spanning over a little more than the first 48 h
of development. Currently the primary source for scientists seeking H. exemplaris RNA and DNA is
directly from animal cultures obtained commercially from Sciento.

A genome database established and maintained by the Blaxter and Arakawa laboratories is avail-
able (http://ensembl.tardigrades.org/Hypsibius_dujardini_nhd315/Info/Index), and a physical map
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of the genome can be accessed via NCBI (https://www.ncbi.nlm.nih.gov/genome/768?genome_
assembly_id=313403).

TECHNICAL APPROACHES

The accompanying protocols describe methods for animal culture (Protocol: Laboratory Culture of
Hypsibius exemplaris [McNuff 2018]), live filming of embryos by DIC microscopy (Protocol: Live
Imaging of Tardigrade Embryonic Development by Differential Interference Contrast Microscopy
[Heikes and Goldstein 2018]), in vivo fluorescent staining of embryos (Protocol: Fluorescent Cell
Staining Methods for Living Hypsibius exemplaris Embryos [McGreevy et al. 2018]), immunolocal-
ization (Protocol: Embryonic Immunostaining for the Tardigrade Hypsibius exemplaris [Smith and
Gabriel 2018]), in situ hybridization (Protocol: Embryonic In Situ Hybridization for the Tardigrade
Hypsibius exemplaris [Smith 2018]), desiccation (Protocol: Desiccation of Hypsibius exemplaris
[Boothby 2018a]), RNA extraction (Protocol: Total RNA Extraction from Tardigrades [Boothby
2018b]), and microinjection and RNA interference (Protocol: Microinjection of dsRNA in Tardi-
grades [Tenlen 2018]). As with other emerging model organisms, the suite of technical approaches
available to date makes it possible to address diverse questions of interest to scientists (Goldstein and
King 2016). Use of this system would benefit at this stage from the development of additional tools,
prominent among these being tools for transgenesis and CRISPR-based gene editing tools.
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