Chest CT Interpretation Guide

Update 2020

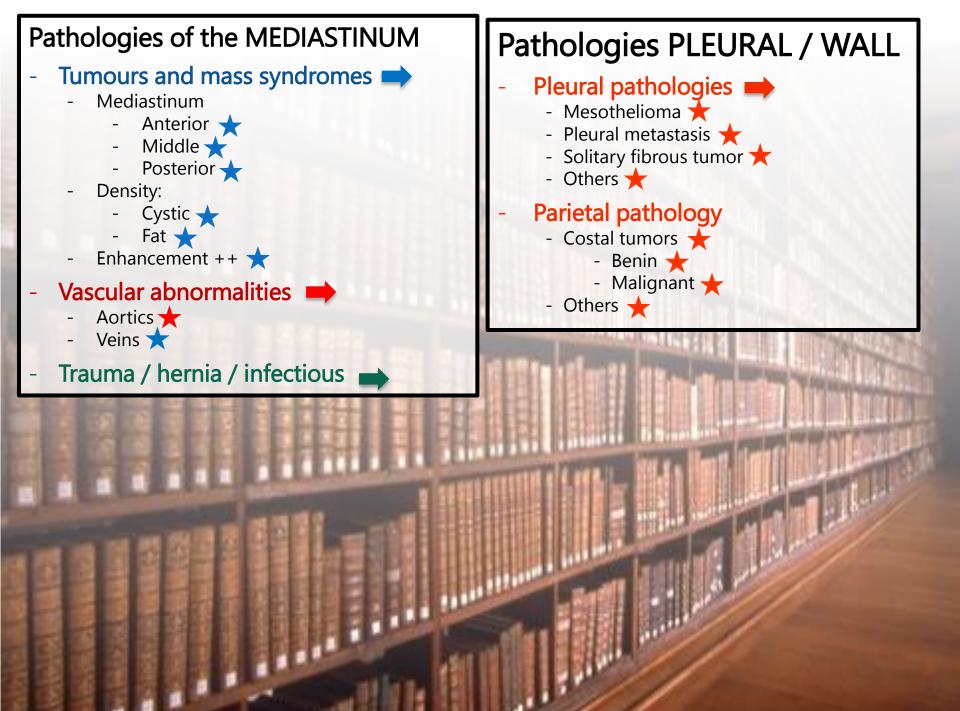
Fabien Craighero Hospices civils de Lyon, Croix Rousse Hospital, France Jade Miailhes

Table of contents

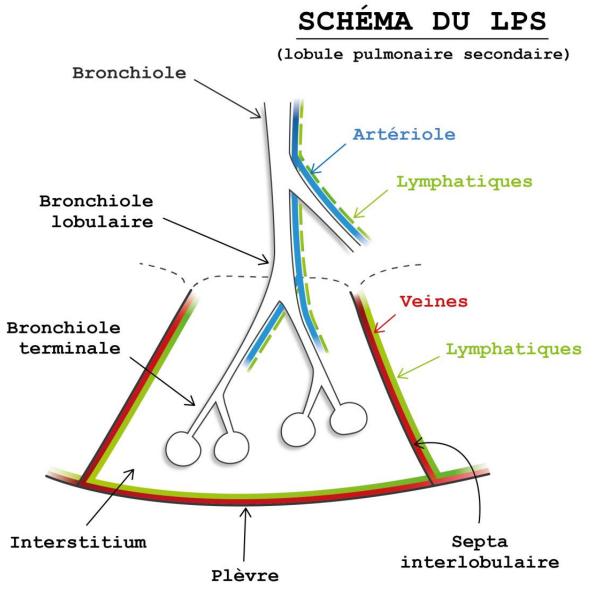
Semiology and Diagnostic

- Anatomy
- Main syndromes
- Topography
- Non-septal lines
- Inter-lobular septal thickening
 - Regular septal thickenings ★
 - Nodular ★
 - Irregular ★
- Intra-lobular septal thickening
- Ground glass opacities
 - Diagnostic ★
 - Crazy paving ★
 - Mosaic ★
 - 🛛 Head cheese sign ★
- Consolidation
 - Chronic consolidation range ★

Nodules


- Analysis / characterization ★
- Benign nodules ★
- Recommandation nodule size ★
- Halo sign ★
- Reverse Halo Sign ★
- Excavated ★
- Cavity ★
- Multiple Nodules ★
- Micronodules
 - Perilymphatic ★
 - Ubiquitous ★
 - Centrolobular ★
 - Tree in bud \star
- Hyperclarity
 - Emphysema ★
 - Cyst ★
- Fibrosis

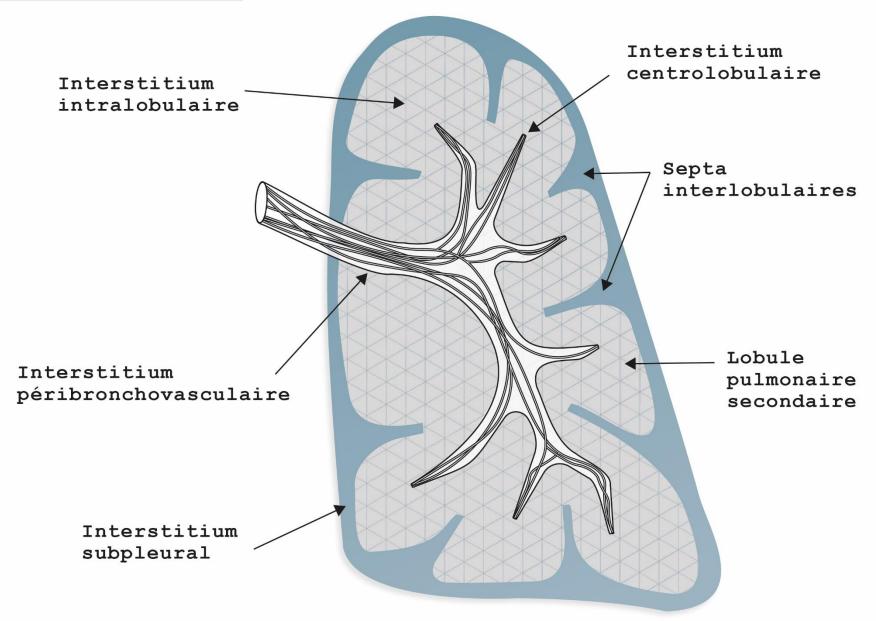
PARENCHYMA pathologies


- Airways
 - Tracheal Thickening ★
 - 🛛 Other tracheal pathologies ★
 - Tracheobronchial Tumors 🗙
 - Chronic bronchial pathologies ★
 - Bronchiolitis ★
 - IP (inerstitial pneumoniae)
 - idiopathic IP (IIP)
 - Chronic Fibrotic : IPF 📩 , NSIP 📩
 - Acute / Subacute : COP 🖈 , AIP ★
 - 🛛 Smoking related: DIP, RB ILD ★
 - Rare : LIP ★, EPFA ★
 - Sarcoidosis
 - Connective tissue disease
 - Vasculitis
 - Hypersensitivity Pneumoniae
 - Pneumoconiosis
 - Drugs, toxic <u></u>Radic pn
 - Miscellaneous
 - Eosinophilic Pn
 - LAM \pm Hystiocytosis X \pm , rare cysts

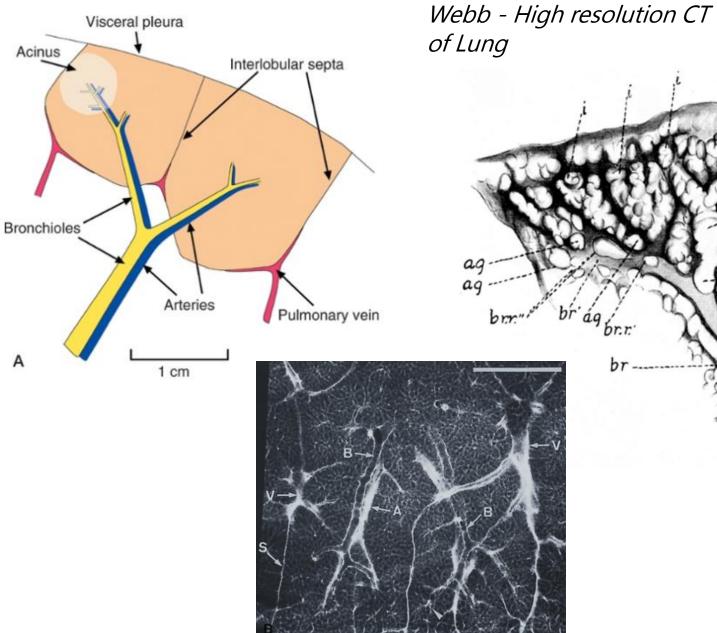
 - Amylosis 🖈 , LP 📩 , Alveolar microlithiasis

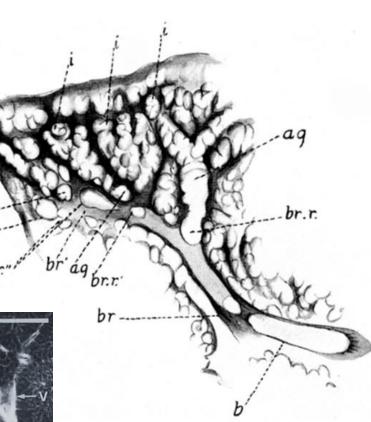
- Cardiovascular damage
 - PO ★
 - PAH ★ , VOD ★
 - 🛛 Pulmonary embolism ★
- Infectious diseases
 - Bacterial ★ , viral ★, fungal ★ , parasitic ★
 - Immunocompromised infections \star
- Congenital pathologies
- Tumor pathologies
 - Bronchopulmonary cancer ★
 - Pulmonary Lymphoma ★
 - Neuroendocrine tumors ★
 - Sarcomas ★
 - Others
- Lung Transplantation / GVH
 - Complications of lung transplantation ★
 - Allograft Complication ★
- Miscellaneous
 - Fat embolism ★
 - Lipid pneumopathy ★
 - Post op/surgery: Pneumatocele 🖈 , LM torsion 🖈

Anatomy



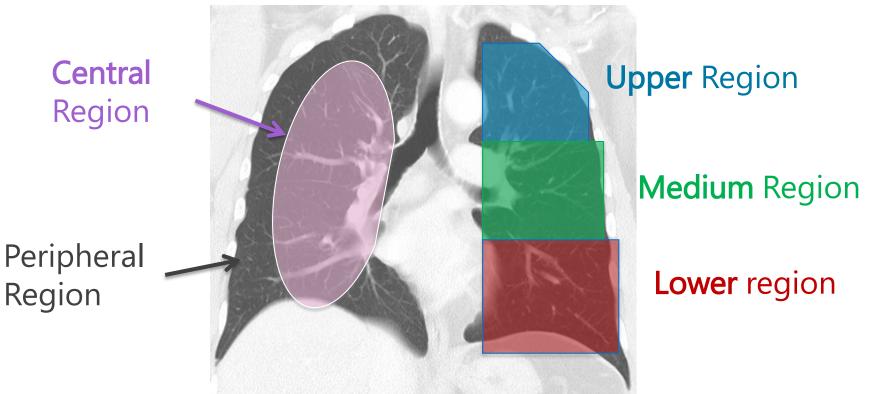
The secondary pulmonary lobule is **the anatomical and functional unit of the lung**


- Polyhedral, **1 to 2.5 cm** diameter
- Contains multiple *acini* (most distal parenchymal structure)
- <u>In the center</u> are **arterioles** and **bronchioles**...
- In the periphery, the veins and lymphatics drain off.
- The analysis is done by taking into account this anatomy



INTERSTITIUM

Main syndromes


Several types of opacities

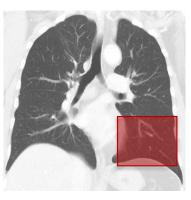
- Non-septal lines
- Reticular opacities
 - Inter-lobular
 - Intra-lobular
- Nodular opacities
 - Nodules
 - Micronodules
 - Perilymphatic
 - Ubiquitous
 - Centrolobular
 - Tree in bud
- Cavities
- Consolidation
- GGO
- Hyperclarity
 - Cyst
 - Emphysema
- Revision of pulmonary architecture / fibrosis

п.

<u>Analyze</u>

- The main pattern
- Associated signs
- And pinpoint their **topography** in the lung
 - Upper, middle, lower regions
 - Central, peripheral regions

Attention: the next 2 slides give the tendencies of certain pathologies to sit in such and such a region but there are many exceptions to the rule.



Upper/middle regions

- Sarcoidosis +++ Age: 20-40/ F60, peri-lymphatic micronodules, ggo, +/- fibrosis / fibrotic mass, diffuse lymphadenomegaly
- Silicosis Exposure, +/- calcified peri-lymphatic micronodules, +/- fibrotic mass, ganglia with "eggshell" calcifications
- Chronic eosinophilic pneumopathy (CEP) 40-50 years, asthma(1/2), multifocal conolidation/ggo, +/- bands, predominantly upper and peripheral
- Churg and strauss Asthma, appearance of CEP + centrolobular micronodules + bronchial thickening
- Smoker's bronchiolitis (RB-ILD) Tobacco++, upper centrilobular micronodules
- Acute/subacute hypersensitivity Middle++ and upper regions, centrilobular micronodules, ggo, lobular trapping
- Histiocytosis X tobacco, centrilobular micronodules upper regions
- Pleuroparenchymal fibroelastosis, Ankylosing spondylitis, Erdheim Chester...

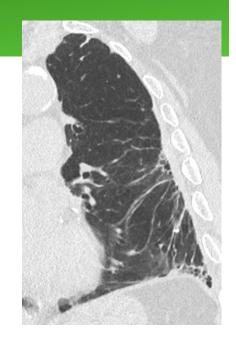
Lower regions

- > Pulmonary Oedema Regular septal lines + ggo, central regions, slope + effusions + cardiomegaly
- > Lymphangitis carcinomatous ADK, regular or nodular septal lines, asymmetrical
- Lymphoma
- Lipid pneumopania Swallowing disorders, consolidation/ ggo/ crazy paving
- Inhalation pneumonia Swallowing disorders, consolidation / ggo / Tree in Bud
- Congenital sequestration, LLL++, systemic artery
- Infarction (PE, sub-pleural triangular), septic emboli (toxic/catheter, sepsis, excavated nodules and lower infarction)
- > Organized pneumopathy (OP) Peripheral, lower, banded, reverse halo sign
- > UIP, IPF, collagen tissue disease, <u>asbestosis</u> Subpleural <u>fibrosis</u>, honeycomb
- **NSIP** Reticular syndrome, frosted glass, traction bronchiectasis, central + peripheral
- DIP Tobacco+++, peripheral ggo + micro cysts
- PIL (ggo + cysts), VOD (APH, lower septal lines, normal heart), <u>amyloidosis</u>

Central Regions

- Sarcoidosis +++ Age: 20-40/ F60, peri-lymphatic micronodules, ggo, +/- fibrosis / fibrotic mass, diffuse lymphadenomegaly
- Silicosis Exposure, +/- calcified peri-lymphatic micronodules, +/- fibrotic mass, ganglia with "eggshell" calcifications
- > PO Regular septal lines + ggo, central regions, slope + effusions + cardiomegaly
- > HIV pneumocystis, diffuse ggo, sometimes respect of the areas under pleurals
- > Alveolar hemorrhage
- > Lymphangitis carcinomatous ADK, regular or nodular septal lines, asymmetrical
- NSIP Reticular and GGO syndrome, traction bronchiectasis, central + peripheral regions (sometimes sparing band under pleural), sometimes peribronchovascular fibrosis
- Chronic hypersensitivity (chronic HS) Middle++ and upper regions, centrilobular micronodules, ggo, lobular trapping, sometimes peribronchovascular fibrosis

Peripheral regions


- Chronic eosinophilic pneumopathy (CEP) 40-50 years, asthma(1/2), multifocal consolidation /GGO +/- bands, predominantly upper and peripheral
- Churg and strauss Asthma, appearance of CEP + centrolobular micronodules + bronchial thickening
- > <u>UIP</u>+++, IPF, collagen tissue disease, <u>asbestosis</u> Subpleural fibrosis, honeycomb +++
- **NSIP ++ (50%)** Reticular syndrome, frosted ggo, traction bronchiectasis, central + peripheral
- > Organized pneumopathy (OP) Peripheral, lower, banded, reverse halo sign
- **DIP** Tobacco+++, peripheral GGO + micro cysts
- Infarction (PE sub-pleural triangular), septic emboli (toxic/catheter, sepsis, excavated nodules and lower infarction)
- Pleuro-parenchymal fibroelastosis (apex)



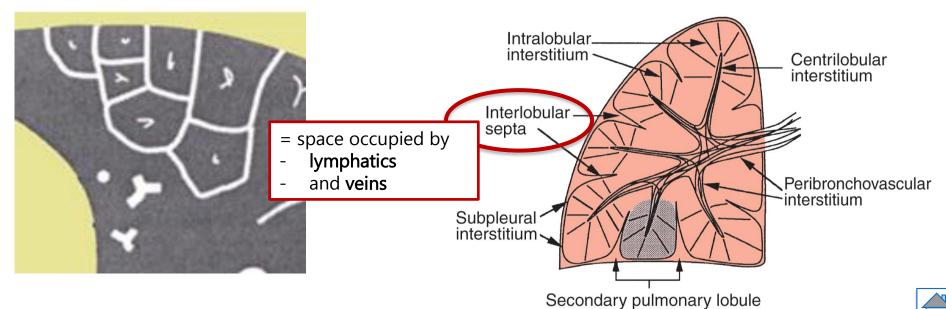
Non-septal lines

- Linear opacity **not repecting the pulmonary architecture** (SPL anatomy)
- Trans-lobular, trans-pulmonary line
- Two etiologies
 - atelectasis
 - Fibrosis

Courtesy Webb - HRCT of The Lung

Particular non-septal line: curvilinear opacity under the pleura

- Definition: concentric opacity less than 1 cm from the pleural surface.
- Lg = 2 to 6 cm, thickness < 5 mm
- **Procubitus makes** it possible to differentiate it from gravitational change.
- **Yoshimura** originally described it in **asbestosis** (a mixture of peribronchiolar fibrous lesions and alveolar collapse).
- No specificity as it has since been observed in other fibroses.


Inter-lobular septal thickening

Thickening of interlobular septa

- = Septal lines
- = Septal thickening

→Polygon-shaped linear opacities from 10 to 20 mm

\rightarrow <u>« Large mesh » cross-links</u>

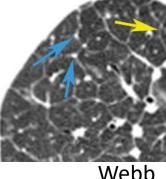
Regular septal thickening

- <u>PO</u> +++ (interstitial edema)

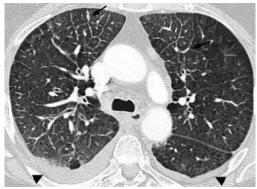
- By venous/lymphatic stasis, declining zones (gravity)
- + GGO, peribronchovascular thickening, tortuous veins, cardiomegaly, pleural effusion
 +/- Diffuse hypodense lymphadenomegaly (engorgement)

- Lymphangitic carcinomatosis

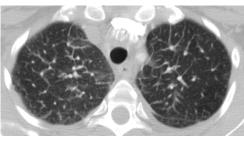
- Adenocarcinoma
- + Nodular peribronchovascular thickening +/-ADP +/- pleural carcinosis
- Lymphoma, leukemia
- <u>Atypical pneumonia (viral,</u> mycoplasma)
 - Cough, fever, + ggo (alveolitis) +/- bronchiolitis


- Acute eosinophilic pneumopathy

- Young patient, fever and acute dyspnea, normal-heart PO scan chart.
- Veno-occlusive disease (VOD)
- Panlobular Emphysema
- Erdheim-Chester
- Lymphangiectasis
- Nieman Pick

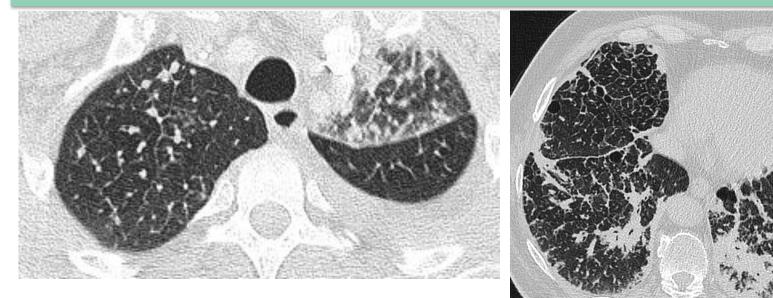


Interstitial PO +++



NB: These cross-linkages are best seen at the pulmonary **apexes** because these **interlobular spaces are** better developed in these regions.

Secondary Lymphoma Courtesy S. Hare

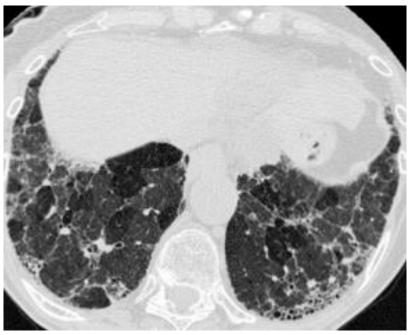

Acute eosinophilic pneumonia

Range of nodular septal thickenings

- Lymphangitic carcinomatosis

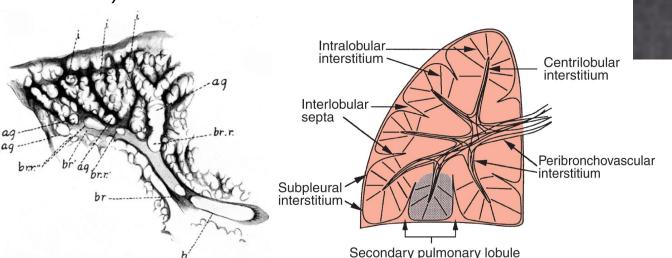
- Adenocarcinoma context
- + nodular peribronchovascular thickening +/- ADP +/- pleural carcinosis
- <u>Sarcoidosis</u>
 - Young, perilymphatic micronodules, superior predominance + diffuse mediastinal ADP
- <u>Kaposi's Sarcoma</u>
- <u>Lymphoma</u>
- Amylosis (rare)

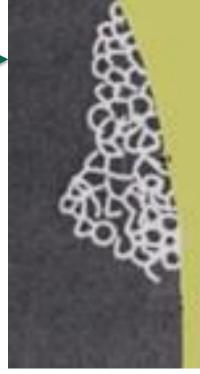
Lymphangitic carcinomatosis


Irregular septal thickenings

- Sarcoidosis with fibrosis
- <u>ILD/Fibrosis</u> (IPF, asbestosis, collagen tissue/vascular disease, chronic HSP)

Stage IV Sarcoidosis


Chronic HSP



Intra-lobular septal thickening

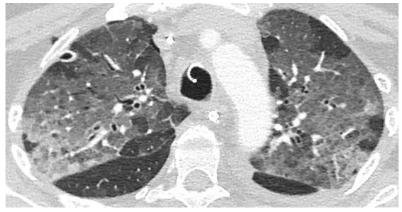
- Small rectilinear or curved intra-lobular opacities forming a cross-linking with a mesh size of < 10 mm: <u>"small mesh" cross-</u> <u>linkages</u>
- Histology
 - Wall alveolitis (inflammation of the inter-alveolar septa)
 - or luminal (inflammation of the wall of the alveoli)
- Rarely isolated
- Represent a stage of evolution to honeycomb imaging during fibrotic ILD. Caution: fibrosis can only be confirmed when there are associated signs of pulmonary architecture revision (traction bronchiectasis...).

Groung Glass opacities

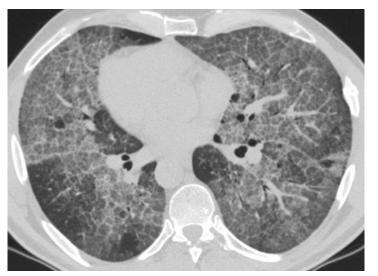
<u>Definition</u>: Opacity whose density **allows to see the pattern of fissures**, **bronchi and vessels** and that of any pathological structure.

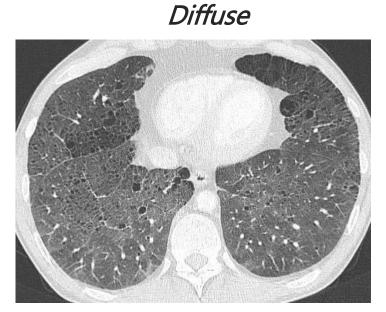
Translate an **increase in lung parenchyma density** 3 possible mechanisms

- Partial alveolar filling
- Alveolite: wall or luminal infiltration
- Increased capillary flow : interstitium++


 \rightarrow lack of specificity because several mechanisms may be at the origin of this

phenomenon.


Several pattern


- Centrolobular
- Patchy
- In mosaic
- Crazy paving
- Under pleural
- Diffuse

Mosaic

Crazy paving

GGO diagnostic

Location

 Diffuse PO +++ Pneumocystis ++ Drug ++ Haemorrhages and vasculitis (Churg Strauss, lupus, Good pasture, microangiitis) HSP acute/subacute ARDS 	Diffused + respect of the regions under pleural-Pulmonary oedema-Pneumocystis-Alveolar hemorrhage-(LPA)
- Sarcoidosis	Pariphary
Immunodepression	<i>Periphery</i> - ILD +++ - Asbestosis - Drugs
- Immunosuppressed	

- \rightarrow Opportunistic infections
 - Pneumocystis
 - CMV, HSV, RSV (respiratory syncytial virus)
 - Other viruses
- Aplasia (bone marrow transplant)
 - + Diffuse alveolar damage, alveolar hemorrhage
 - + Drug Toxicity

Temporality

<u>Acute/subacute</u>

- PO
- Pulmonary hemorrhage
- Mycoplasma pneumoniae
- Hypersensitivity
- Drugs
- AIP
- Pneumocystis
- Viral (herpes, CMV)
- OP

Progressive dyspnea

- Hypersensitivity Pn
- DIP (desquamative)
- AIP
- NSIP
- RB LTD
- Sarcoidosis
- PO
- Alveolar proteinosis

- adenoK

Crazy paving

Association of

- GGO
- Inter-lobular septal thickening
- Intra-lobular septal thickening

Etiologies Crazy paving

- Alveolar proteinosis +++ but also...
- Pulmnonary oedema 🔿
- Infectious pneumonia (viral++) =>
- Pneumocystis 🔿
- Drug induced pneumonia 📥
- Exogenous lipid pneumonia 📥
- Acute eosinophilic pneumonia 📥
- AIP / ARDS
- Lepidic ADK
- Alveolar hemorrhage 📥

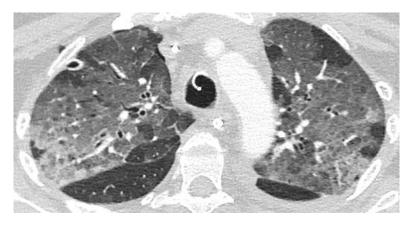
Crazy Paving

Alveolar proteinosis

Pneumocystis

Lepidic adenocarcinoma

Atypical pneumonia



GGO mosaic

Definition

- Coexistence of
 - GGO areas
 - Areas of normal or decreased lung density
- Distribution often systematized lobular, pluri-lobular, subsegmental
- This aspect is present in several types of damage: alveolitis, bronchiolitis (trapping) or vascular obstruction lesions.

<u>Alveolitis</u>

- Inflammatory lesions of the alveolar wall
- Fuzzy contours, not systematized
- GGO = pathological areas

OR MOSAIC PERFUSION

- Bronchiolar pathology
 - Bronchiolar obstruction
 - Clear areas of trapping (where hypoxic reflex vasoconstriction is added) = pathological areas

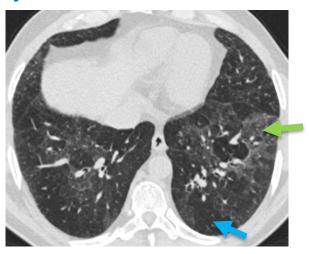
- Vascular

- Pulmonary arterial thrombosis
- Blocked arteries
- Clear **hypoperfused** territories (= pathological)
- Hyperperfusion in healthy territories (GGO)

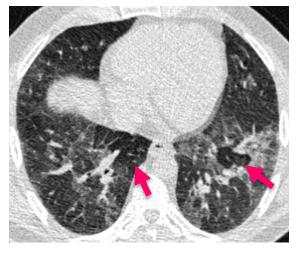
	Alveolitis	Bronchiolitis	Vascular
Pathological territories ?	Pathological territories are those affected by GGO (alveolitis)	Pathological territories have decreased lung density	
Expiration ?		Trapping (When the GGO gradient increases on expiration)	
Vessels?		Mosaic Perfusion	
		Caliber Normal or decreased	Caliber Decrease

Head cheese sign

Physiopathology


= ALVEOLITIS + BRONCHIOLITIS

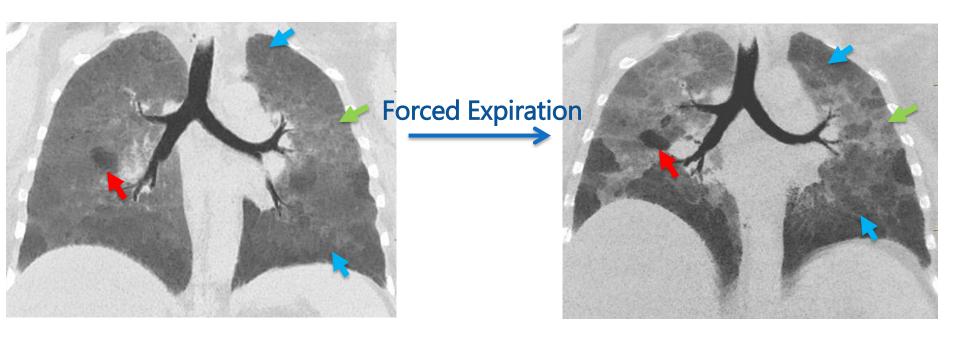
- GGO mosaic (alveolitis)
- Normal lung
- Trapping involving several lobules (bronchiolitis)


Head cheese sign diagnostic :

- Hypersensitivity pneumonia+++ =>
- DIP 📥
- Sarcoidosis 🔿
- Atypical pneumonia (viral, mycoplasma...)

In inspiration, GGO mosaic (alveolitis) + Healthy lobules

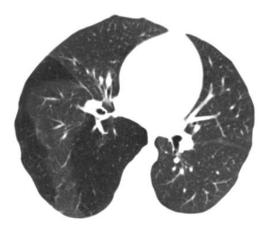
<u>Expiratory</u> Trapping ++ (lobular)

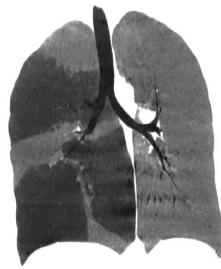


Head cheese sign Hypersensitivity pneumonia

<u>In inspiration</u>, **GGO** mosaic (alveolitis) + **Healthy lobules**

<u>Expiration</u> Trapping ++ (lobular)


Expiratory trapping


Indirectly explores the **reach of small airways** through the study of **aerial trapping**

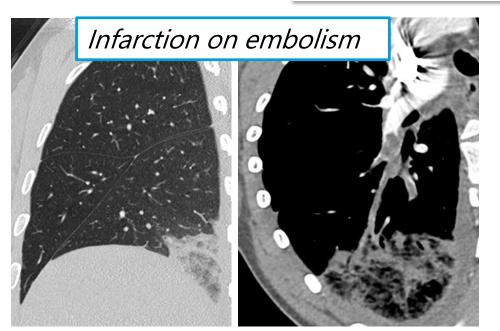
- Chronic pathologies of the airways (see table etiologies)
- Mosaic GGO +++ (bronchiolar etiology?)

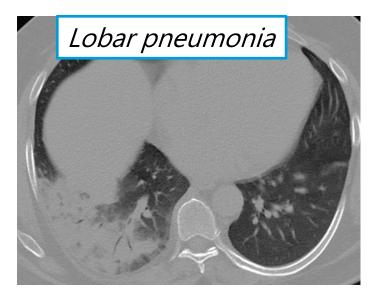
Use a <u>low-dose protocol</u> for this additional exploration, well enough for "black/white" analysis (0.2mAS/kg).

Constrictive Bronchiolitis

<u>Etiologies affected small</u> <u>airways</u>

- COPD, asthma
- Cystic fibrosis, primary ciliary dyskinesia (PCD)
 - Constrictive Bronchiolites'
 - Post-infection
 - Adenovirus, RSV, influenza
 - Mycoplasma pneumoniae
 - Mycobacteria
 - Bronchial Aspiration
 - Ammonia, phosgene
 - ✤ Collagenoses
 - Rheumatoid arthritis
 - Sjogren's syndrome
 - ✤ Transplantation
 - Bone marrow, lung, CP
 - Drugs
 - Penicillamine
 - ✤ Others
 - CBID
 - DDB
 - PPA
 - Idiopathic

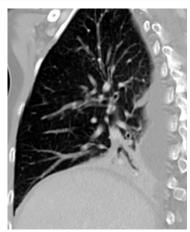

Consolidation


Increased lung density

- Erasing vascular pathways
- Bronchogram
- Absence or low degree of lung collapse (not to be confused with atelectasis!!!).

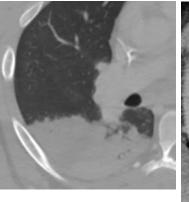
From an etiological point of view It is essential to distinguish between acute and chronic consolidation. because the etiologies are different.

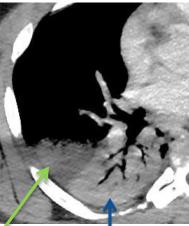
2 examples of acute consolidation



Differentiating consolidation / atelectasis

Atelectasis


- Triangular appearance with concave, sharp edges (use sagittal+++ reconstructions) (consolidation have convex edges, blurred contours with adjacent GGO)
- Pinching of bronchial structures and vessels
- Loss of lobe volume, fissure attraction
- Location (lower lobe++, declive...)/ effusion
- Contrast pickup +++ if chest IV
- Bronchogram : non-discriminating



atelectasis

- Triangular
- Concave edges
- Loss of volume
- Pinching of the bronchi

Consolidation[®] Lack of contrast pickup

Atelectasis Contrast pickup

Pulmonary infarction

"central lucencies"

- Peripheral consolidation
- GGO and **central** intra-lobular reticulation

Reflex! Peripheral Triangle + « central lucencies" → Evoke pulmonary infarction → Angio CT

Revel MP, Triki R, Chatellier G, Couchon S, Haddad N, Hernigou A, et al. Is It Possible to Recognize Pulmonary Infarction on Multisection CT Images - Radiology 2007


Chronic Consolidation

The 6 most frequent causes of chronic consolidation in the non-immunocompromised patient

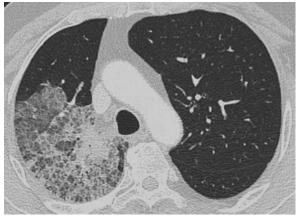
- Sarcoidosis 🔿
- ADKL Lepidic adenocarcinoma 🔿
- Lymphoma 🔿
- OP Organizing Pneumonia 🔿
- Connective tissue disease ->
- CEP Chronic Eosinophilic Lung Disease 🔿

Rare

- Exogenous lipid pneumopathy 📫
- Drug related pneumonia 📥
- Small vessel vasculitis (Churg Strauss, Wegener)
- Pneumoconiosis (silicosis...)
- Radiation pneumonia 📥
- IPF 📥
- Pulmonary amyloidosis 📫
- Crohn's disease

Sarcoidosis

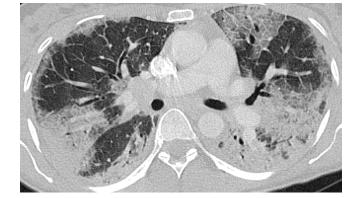
Lymphoma

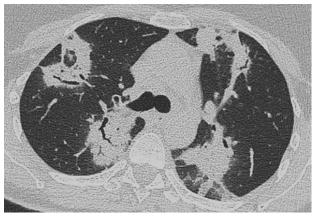

The 6 most frequent causes of chronic consolidation in

the non-immunocompromised patient

CEP Chronic Eosinophilic Lung Disease

Sarcoidosis


-


Lepidic adenocarcinoma

Lymphoma MALT

Dermato polymyositis

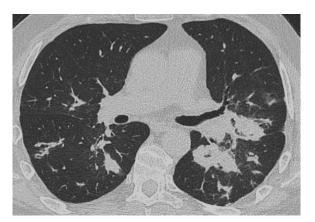
Lepidic adenocarcinoma

OP Organizing Pneumonia Connective tissue disease

Organizing pneumonia

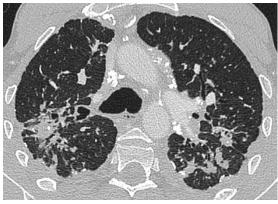


Chronic eosinophilic pneumonia

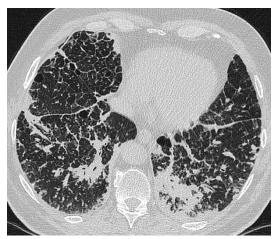


Lipid pneumonia


Cordarone Lung


Wegener

Rare


- Exogenous lipid pneumonia
- Drug induces pneumonia
- Small vessel vasculitis (Churg Strauss, Wegener)
- Pneumoconiosis
- Radiation pneumonia
- IPF
- Pulmonary **amyloidosis**
- Crohn's disease

Radiation pneumonia

Silicosis

Amylose

Nodule

Definition

Pulmonary infiltration by round shaped opacities with a diameter of 1 to 30 mm

- Micronodule < 5 mm
- Nodule > 5 mm
- (Mass > 3 cm)

Single nodule

Malignant tumors

- Bronchopulmonary cancer
- Lung metastasis
- Lymphoma
- Primitive carcinoid tumors

Minor injuries

- Granuloma
- Intrapulmonary lymph nodes
- Hamartochondroma (10%)
- Other causes (10%)

- Tumoral

Rare lesions

- Fibroma
- Chondroma
- Leiomyoma
- Lipoma

- Inflammatory, infectious

- Focal organized pneumonia
- Plasmocyte granuloma
- Winding atelectasis
- Pneumatocele

- Non-infectious

- Necrobiotic nodule (PR)
- Wegener's Granulomatosis

- Vascular

-80%

- Arteriovenous malformation
- Pulmonary arterial aneurysm
- Pulmonary varicose veins
- Pulmonary infarction
- Hematoma

- Others

- Bronchocele
- Mucoid Impaction

Nodule analysis

1) <u>Size</u>

- Less than 5 mm: often benign
- More than 1 cm: often malignant

2) Morphology

- Vessel-attached multilobulated form: AVM
- Bilobed glove finger shape: mucoid impaction
- Triangular, polygonal shape: intra-pulmonary lymph node
- Spiculated shape: neoplasia

3) <u>Content</u>

- Excavation +++: evaluate the wall thickness
 - < 5 mm: 95% benign
 - 5-15 mm: 73% benign
 - >15 mm: 84% malignant
- Calcification ++:
 - Diffuse: calcified granuloma
 - Lamellar, concentric: tuberculoma
 - Pop corn: hamartochondroma
 - Off-centre or scattered: neoplasia
- Fat tissue (-40 to -120 HU)++ Hamartochondroma
- Contrast enhancement ++ (MRI or CT scan injected)
 - Highly enhanced tumours: sclerosing hemangioma, carcinoid tumour, intrapulmonary solitary fibrous tumour, intrapulmonary Castelman, metastasis and primary neoplasia

4) Density

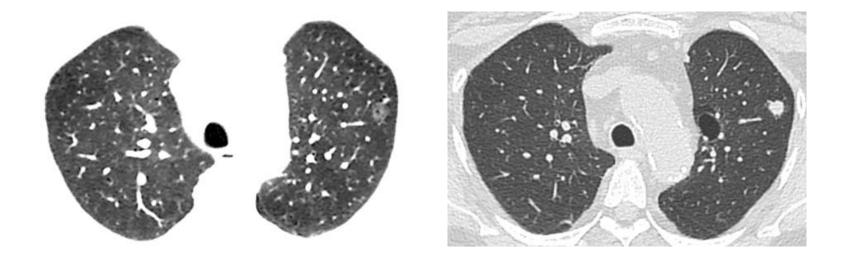
Mixed nodule

Pre-invasive lesion +++

- GGO = lepidic component
- Solid component = invasive component

GGO glass nodule

- Antibiotic test treatment (to eliminate focal pneumonia)
- Etiologies (table)
- Very long doubling time (if neoplastic) monitoring very spaced in time
- Pejorative criteria
 - Size increase
 - Appearance of a solid component


Etiologies

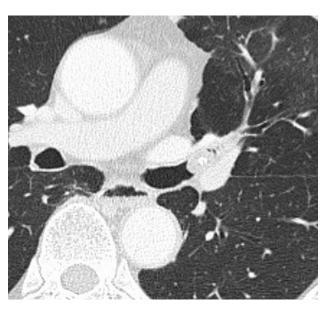
- Pre-invasive lesions
 - Atypical adenomatous hyperplasia (AHA)
 - Adenocarcinoma in situ
 - Minimally invasive adenocarcinoma
 - Slow evolution, very good prognosis, 5-year survival close to 100%. GGO nodule or partially solid nodule.

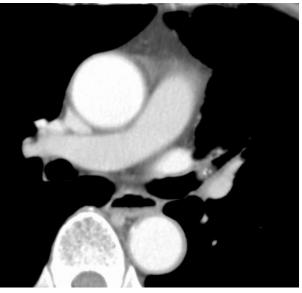
Non-neoplastic

- Focal Lung Disease (FLD)
- Small area of desquamative (tobacco) lung disease or fibrosis

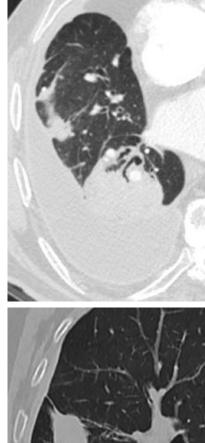
Evolution in adenocarcinoma of a GGO nodule in 2 years

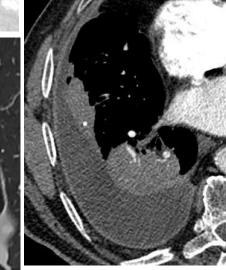
Benign nodules Typique Atypique Intrapulmonary ganglion - Bords concaves - Forme polygonale +++ Eloigné de la triangulaire plèvre - En contact/ Triangular or polygonal nodule proche de la plèvre - < 1 cm Smooth edges - Sous le plan de Bords non - Measuring <10mm la carène concaves - Located **under the carina** (bases) - Less than 10mm from a pleural or Incompatible scissural Contours spiculés Bords arrondis Hamartochondroma +++ - Most common benign lung tumour Intra parenchymal, peripheral (90%) - Composition Cartilage +/- calcifications **Bronchial epithelium** Fat tissue (-40 to -120 HU)


- Cystic portions Popcorn calcification (not enough)
- Fat ++ (pathognomonic)



Endobronchial Hamartoma


- Large bronchus
- Tumour well circumscribed
- Light obstruction
- Central fat + fibrous part



Round atelectasis ++

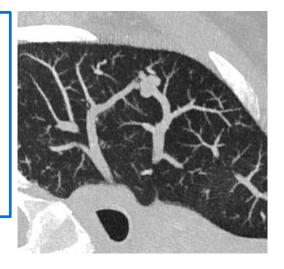
- Oval or round atelectasis on pleural pathology (pleural fibrosis/asbestosis, TB...)
- Round, oval shape
- Thickened pleura
- Twist of the vessels and bronchial tubes into a comet tail.
- Enhancement (not discriminating)
 +/- Calcifications, bronchogram

Mucoid Impaction +++

- Mucus filling of a dilated bronchus
- V" or "Y" shaped appearance

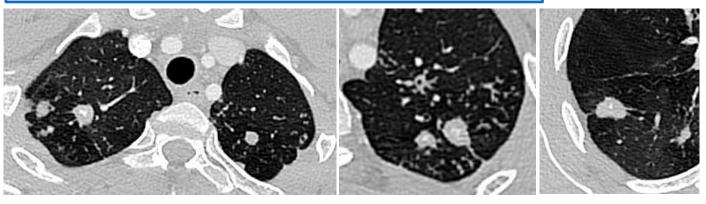
Variable etiologies

- Cystic fibrosis
- Asthma/ ABPA (spontaneous hyperdense mucus appearance)
- **Obstructive endobronchial** segmental/subsegmental **obstructive lesions**
 - Primary / Secondary Carcinoma
 - Carcinoid tumor
 - Congenital bronchial atresia
 - Endobronchial Hamartoma
 - Foreign body/broncholithiasis
 - Endobronchial tuberculosis with bronchial stenosis



Arteriovenous malformation +

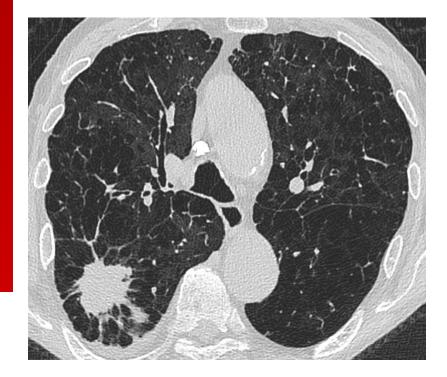
- Nodule with one or more artery(ies) and drainage veins whose <u>communication</u> is objective (PIM)
- Round or oval
- Lobbed, well limited
- Multiple (33%), or single (66%)
- Lower lobes (50 to 70%) or 1/3 medium


Tuberculoma ++

- One of the **most frequent** benign nodules (5 to 24% of nodules resected with sharp borders)
- Satellite lesions in 80% of cases
- Nodular, concentric or diffuse calcification in 20-30% of the cases.
- Histology: central caseous necrosis, peripheral epithelioid cells, layers of fibrous tissue

Sclerosing hemangioma

- Rare benign tumour
- Young or middle-aged woman
- Several histological components: solid, papillary, sclerotic and hemangiomatous.
- Imaging
 - Well limited
 - Juxtapleural
 - Good ++ enhancement in MRI or CT, peak at 2 min.
 - Hypo/iso/hyperdense areas



Malignant nodule

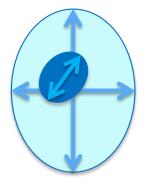
Criteria for high suspicion of malignancy

- > 20 mm +++
- Solid / mixed
- Spiculated borders +++
- Excavation
- Eccentric calcifications or scattered clusters
- Evolution +++
- PET scan uptake +++

How to think: Nodule

How to measure them?

Solid


If < 10 mm: average of the 2 axes</th>Example: $7 \times 9 mm (7 + 9)/2 = 8 mm$ If > 10 mm, both diameters are mentioned in the report.

GGO or Mixed

- GGO size

<u>If < 10 mm</u>: average of the 2 axes <u>If > 10 mm</u>, both diameters are mentioned in the report.

- Solid component if > 3 mm, large axis

- 2D Measurements

Fleischner 2017 Recommendations

- Axial cuts
- Round to the mm
- Nodules smaller than 3 mm should not be measured (micronodules).
- Taking into account the **oldest imaging**

Single nodule

Fleischner 2017 Recommendations

Low risk

< 6mm. No monitoring 6-8 mm
CT scan between 6 – 12 months
Up to 18 - 24 months

> 8mm

CT scan, PET, biopsy at 3 months

<u>High risk</u>

< 6mm. Optional 12month CT scan

6-8 mm

CT scan between **6 - 12** months Then at **18 - 24 months**

> 8mm

CT scan, PET, biopsy at 3 months

Multiple nodules

Fleischner 2017 Recommendations

Low risk

< 6mm. No monitoring

6-8 mm

CT scan between **3 - 6** months Up to **18 - 24 months**

> 8mm

CT scan at **3 - 6 months** Up to **18 - 24 months**

< 6mm. Optional 12month CT scan

6-8 mm

CT scan between 3 - 6 months

Then at 18 - 24 months

> 8mm

CT scan at **3 - 6 months** Then at **18 - 24 months**

Nb: apply the recommended follow-up to the most suspect of the CWS.

GGO / mixed nodule

Fleischner 2017 Recommendations

<u>GGO</u>		No follow-up if < 6 mm,
< 6mm. No monitoring	≥ 6-8 mm CT scan between 6 - 12 months Then every 2 years for 5 years if stable.	but some high-risk patients with nodule < 6 mm may have a CT scan at 2 and 4 years of age.
<u>Mixed</u>	Compare to initial CT scan	If growth or appearance of solid portion: consider resection.
< 6mm. Optional 12- month CT scan	 ≥ 6-8 mm CT scan between 3 - 6 months If unchanged and solid portion < 6 mm, CT scan every year / 5 years Compare to initial CT scan 	A persistent mixed nodule whose solid portion is ≥ 6 mm is considered very suspect .

Multiple frosted glass nodules:

- < 6 mm: CT scan at 3 6 months to confirm LOC.
- If unchanged: CT scan at 2 and 4 years
- ≥ 6 mm: CT scan at 3 6 months and then based on the most suspicious LOC.

NB: multiple NPs in frosted glass are most often benign, consider a CT scan at 2 and 4 years if high risk.

PET FDG

Benign/malignant nodule differentiation (nodule>10mm)

- Sensitivity = 90 %
- Specificity = 83 %

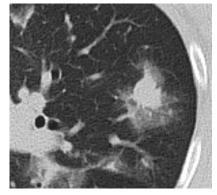
False negatives of malignancy

- < 8 mm
- Carcinoid tumor
- Lepidic ADK (GGO)/low grade adenocarcinoma

False positives of malignancy

- Tuberculosis, histoplasmosis, cryptococcosis...
- Rheumatoid nodules
- Wegener's Granulomas
- Sarcoidosis
- Lipid pneumonia

Halo sign


Nodule surrounded by a halo of GGO

Histology: 3 possible mechanisms in GGO

- Alveolitis
- Alveolar hemorrhage
- Non-specific infiltration

Diagnostic halo

- Infectious Diseases
 - Angio-invasive aspergillosis —
 - Candidosis 🔿
 - Viruses: CMV, Herpes 🔿
 - Septic Embolism 🔿
 - Wegener's Disease (GPA) →
- Tumors
 - Haemorrhagic metastasis
 - Kaposi's Sarcoma

Angio-invasive aspergillosis

Hemorrhagic metastasis of angiosarcoma

Reverse halo sign

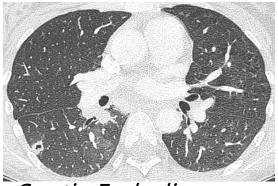
Reverse halo sign = GGO surrounded by a crescent or consolidation ring

- Atoll sign
- Reverse halo sign

Organizing pneumonia

Reverse halo diagnostic :

- OP Organizing pneumonia +++ 🔿
- Wegener (GPA) 🔿
- Sarcoidosis
- Invasive aspergillosis
- Pneumocystis
- Tuberculosis
- Lipid pneumonia
- Post RF



Tuberculosis

Excavated nodules

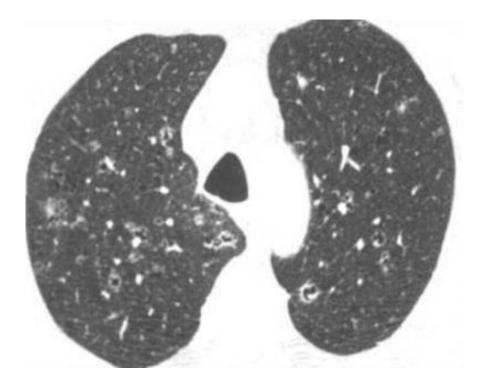
Histology: central necrosis++, ischemic, suppurative or tumourous necrosis or peribronchial cell infiltration with persistent central lumen

Septic Embolism

Wegener's Disease

<u>Diagnostic :</u>

<u>Neoplasia</u>


- Primary bronchopulmonary cancer ⇒
- Excavated metastasis+++ (squamous cell carcinoma of the cervix or ENT, ADK, sarcoma)
- Tracheobronchial papillomatosis (rare)

<u>Infections</u>

- Tuberculosis +++ →
- Angio-invasive aspergillosis +++ ➡
- Suppurative bronchopneumonia/ abscess 🔿
- Septic embolism+++ ⇒
- Rare infections: nocardiosis, cryptococcosis, actinomycosis, coccidioidomycosis.

<u>Granulomatosis/Vascularity</u>

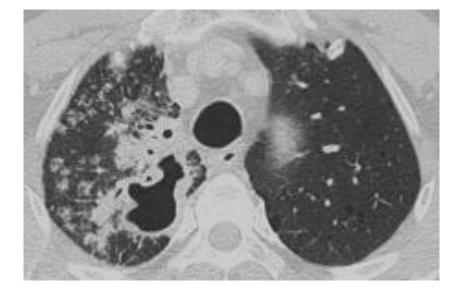
- Wegener (GPA) +++
- Nodules of aseptic necrobiosis (RA, ulcerative colitis, Crohn's) (perforated nodules)
- Histiocystis X (perforated nodules) =>

Langheransien Histiocytosis

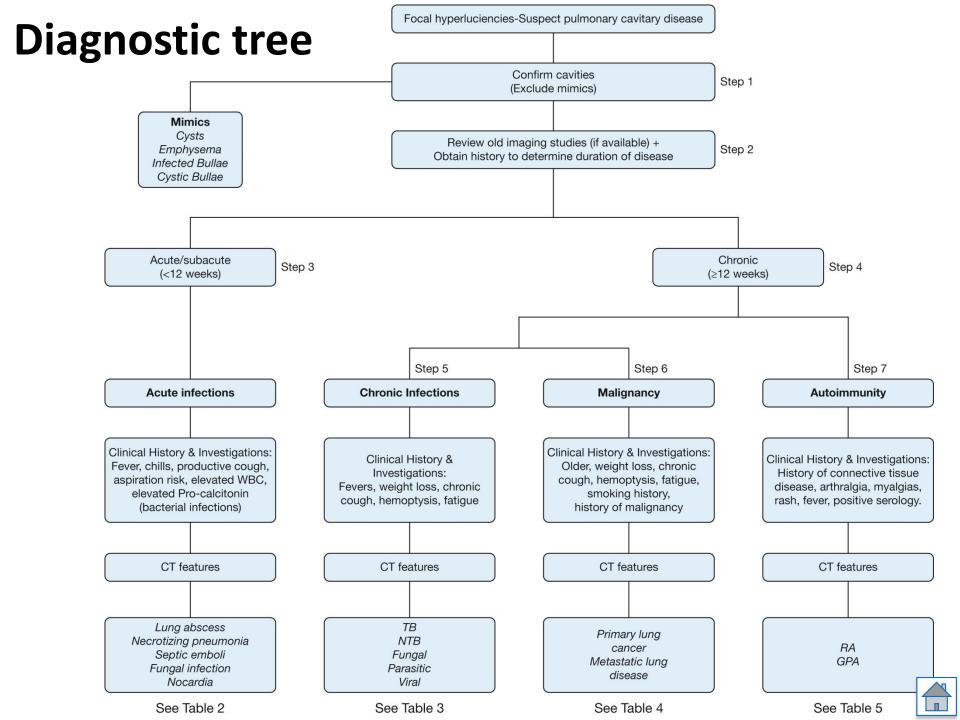
Association

- Centrolobular irregular nodules
- Nodules with holes
- Cyst

Predominance of upper regions



Unique Cavity


Etiologies single cavity

- Tuberculosis +++ 🔿
- Bronchopulmonary cancer + + + =>
- Abscess ++ 🔿
- Metastasis
- Necrosis of a fibrosed mass (silicosis, coal miner's pneumoconiosis)
- Malformations (sequestration, b-cyst, MAK) =>

Active tubercular cavity With bronchogenic diffusion (associated tree in bud)

Multiple Nodules

Tumoral

- Metastasis
- Lymphoma
- Lepidic carcinoma
- Kaposi's Sarcoma
- PTLD
- Benign metastatic leiomyomatosis

Infections

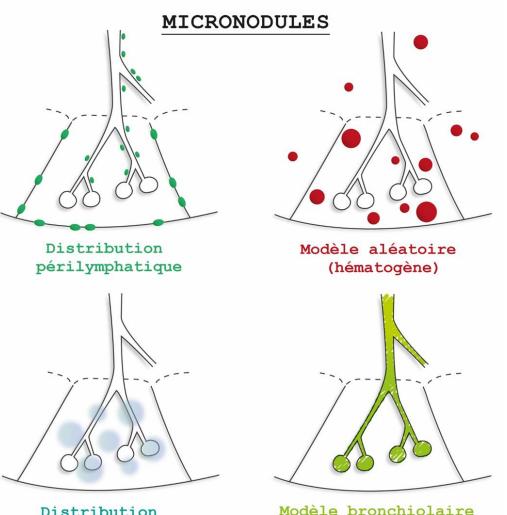
- Fungal
 - Angio-invasive aspergillosis
 - Histoplasmosis
 - cryptococcosis
- Bacterial
- Nocardiosis
- Septic Embolism
- Viral: CMV ...
- Mycobacteria

Other

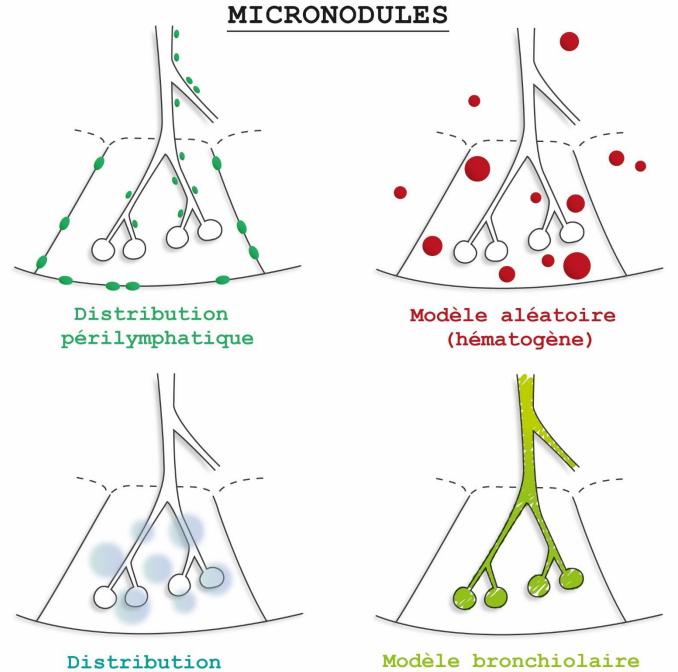
- Sarcoidosis 🔿
- Wegener (GPA) 🔿
- Arterio veinous malformation
- Pulmonary infarction →
- Amylose 🔿
- RL 💻
- Drugs
- Silicosis
- Histiocytosis
- Organizing pneumonia

<u>Rare</u>

- Papillomatosis
- Parasites
 - Echinococcus
 - Paragonimiase
 - Cysticercosis
- Lung Chondroma



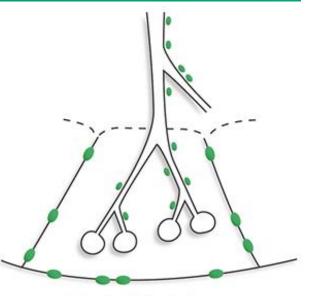
Metastasis of medullary thyroid cancer


Multiple Micronodules

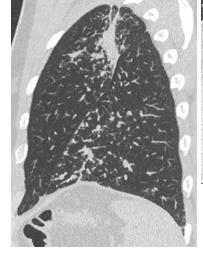
- Analysis of micronodular infiltration :
- ✓ Density (blurred / dense)
- ✓ **Border** (blurred / sharp)
- ✓ **Distribution** in the lobule

Distribution centrolobulaire

« arbres en bourgeons »



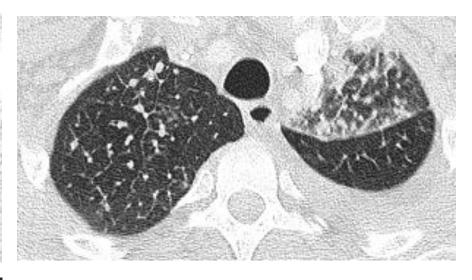
« arbres en bourgeons »


centrolobulaire

Perilymphatic model

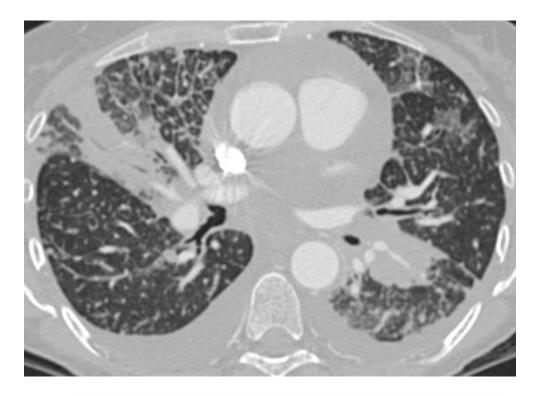
- High density
- Sharp border
- Peri-Lymphatic Distribution
 - Along the scissure ("pearl" scissure) and the pleura
 - Along the interlobular septa
 - Along vascular and bronchial pathways
 - At the heart of the lobule: arteriolo-bronchiolar axes

Distribution périlymphatique

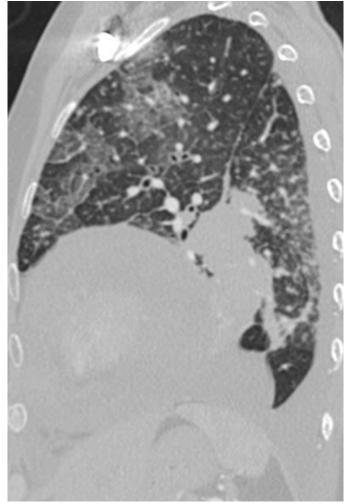

Sarcoidosis

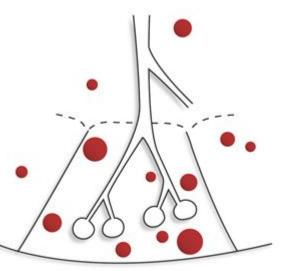
Diagnostic range

- Sarcoidosis +++ 🔿
- Silicosis 🔿
- Lymphangitic carcinomatosis 🔿
- Amylosis 🔿



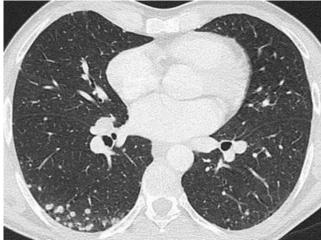
Lymphangitic carcinomatosis (in the context of bronchial adenocarcinoma)

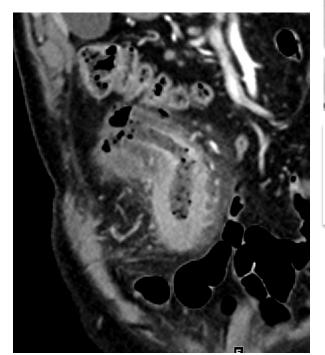

- Multiple peri-lymphatic micronodules
- Placed on thickened interlobular septa

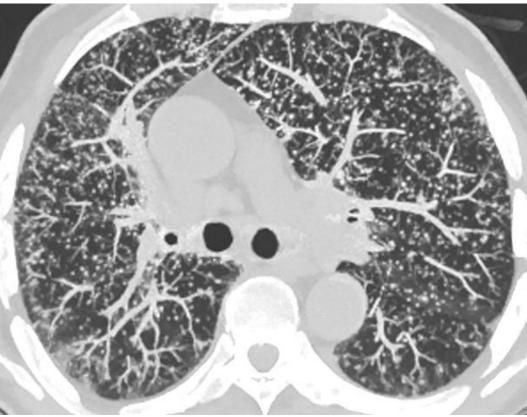

Lymphangitic carcinomatosis



Ubiquitous model

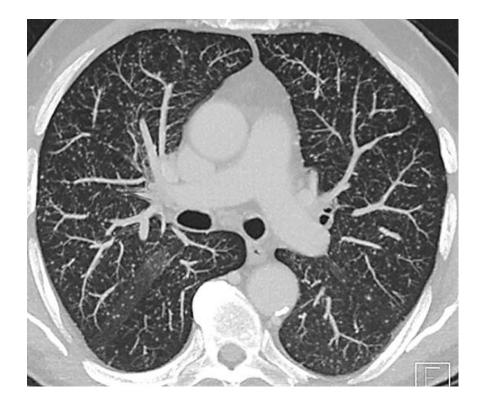

- Ubiquitous distributed micronodules
- Without topographic predominance +++
 with respect to the lobule
- Identical diameter


Miliary tuberculosis

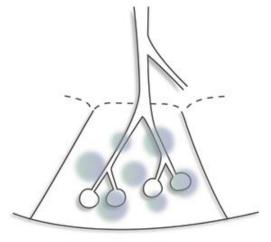


Chickenpox

Diagnostic :


- Tuberculosis miliary
- Metastasis
- If immunocompromised
 - Mycosis (histoplasmosis), blastomycosis, candidosis)
 - Viruses (herpes, CMV, chickenpox)

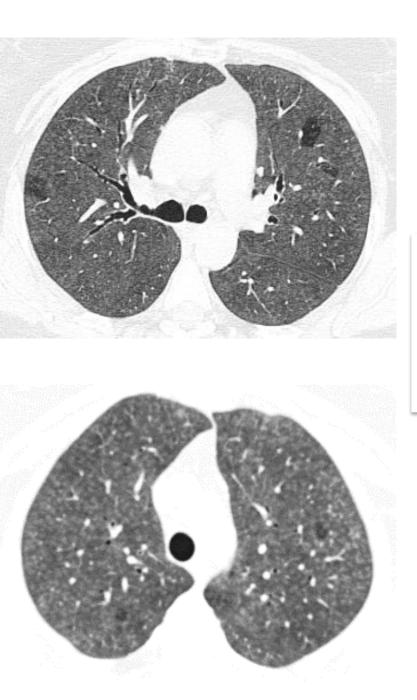
Miliary tuberculosis + Tuberculous Ileitis

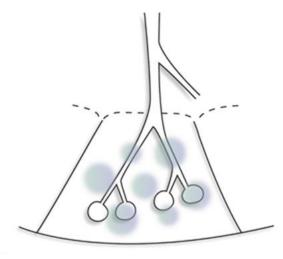

BCGite

- A serious, rare but not exceptional complication of BCG therapy for bladder cancer (non-muscleinvasive tumours).
- Fever after ttt
- Localized (urinary genital tree) or disseminated (pulmonary and hepatic damage)

Centrolobular model

- Fuzzy density
- Ill defined border
- At the heart of the lobule, distance from the pleural surface or septa (respect of the subpleural regions).


Distribution centrolobulaire


Diffuse and homogeneous distribution

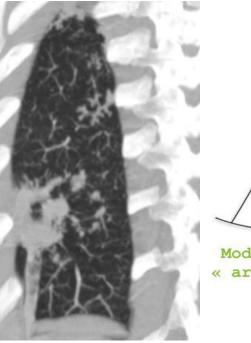
- Hypersensitivity pneumonia +++ (acute, subacute stage)
- Vascular disease
 - PO
 - Alveolar hemorrhage (Vasculitis, Churg and Strauss, PAM)
 - PHT
- Respiratory bronchiolitis, follicular 📥

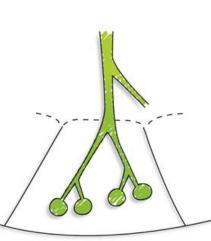
Heterogeneous distribution in multifocal ranges

- Infectious bronchiolitis 📥
- Respiratory bronchiolitis + + =>
- Follicular bronchiolitis
- Early interstitial lung disease
 - Histiocytosis X ++ 📫
 - Sarcoidosis (early)
 - Silicosis Asbestosis (at the beginning)

Subacute hypersensitivity pneumonia

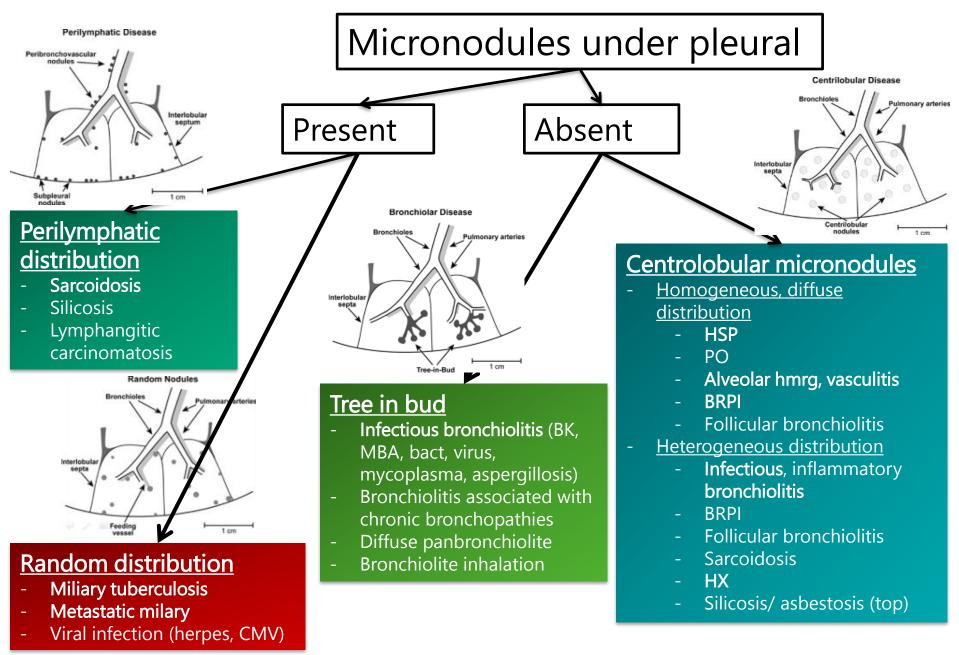
- Central-lobular micronodules
- GGO density
- Ill defined border
- At the heart of the lobule, at a distance from the pleural surface or septa (respect of the subpleural regions).





Tree in bud pattern

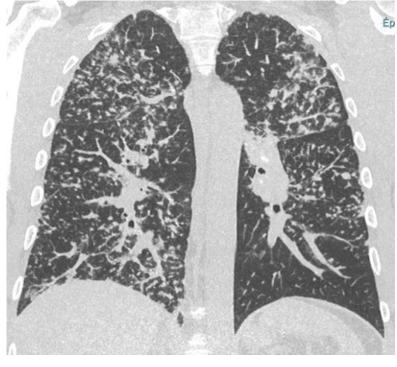
Appearance of **"plugged-in" micronodules** = **mistletoe ball** appearance Corresponds to a **bronchiolitis most often infectious**.



Modèle bronchiolaire « arbres en bourgeons »

Etiologies Bronchiolitis ++++

- Infectious +++
 - Viral, mycoplasma 🔿
 - Bacterial (bronchopneumonia)
 - Tuberculosis 🔿 , MA 🔿
 - Broncho-invasive aspergillosis
- Bronchiolitis associated with chronic bronchopathies
- Aspiration bronchiolites
- Diffuse panbronchiolite 🔿
- Organized pneumonitis 📥


FALSE tree in bud

1/ These are **peri-lymphatic micronodules of peribronchovascular distribution in the LPS**.

 \rightarrow bud mimicking

Some forms of **sarcoidosis** readily mimic tree in bud by their preferential peribronchovascular distribution up to the centre of the SPL (fairly common diagnostic trap).

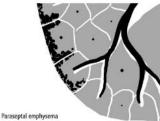
	Peri-lymphatic (fake tree in bud)	Tree in bud
Topography	Central Peripherals	Peripheral
Accompanying signs	Septal micronodules, subpleural	Respect of the under pleural area

Sarcoidosis

2/ Existence also of tree in bud vascular in the context of tumour emboli (ADK colon...)

Emphysema

COPD


Definition: destruction of lung parenchyma.

Centrilobular emphysema

Panlobular emphysema

deficiency

Alpha 1 antitrypsin

Etiologies

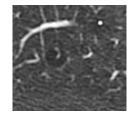
- Smoking +++
 - Centrolobular
 - Paraseptal
 - Panlobular (advanced destruction)
 - Alpha 1 antitrypsin deficiency
 - Pan lobular

Cyst Er

Emphysema lesion - No wall

- No

Centrolobular artery



Differential diagnosis

- Cyst
- Thin wall
 - But look at the small lesions!! because around the large emphysema lesions: compression of the pulmonary parenchyma...
- No central artery

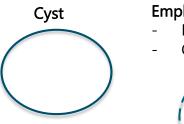
Honeycomb

- Differential with honeycom ->multilayer
 - Differential GGO with emphysema

Emphysema

Multi-cystic image

Definition: aerial image circumscribed by a thin wall


Histiocytosis X

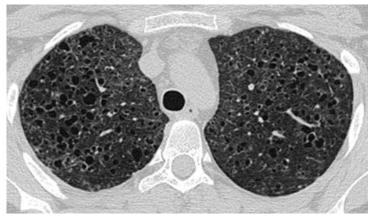
LAM

Differential diagnosis

- Cystic Bronchiectasis
 - Reformatting, bronchial communication
- Emphysema
 - No wall
 - **But look at the small lesions!!** because around the large emphysema lesions: compression of the pulmonary parenchyma...
 - Sometimes central artery in emphysema lesions.

Emphysema lesion

- No wall
 - Centrolobular artery


Cyst

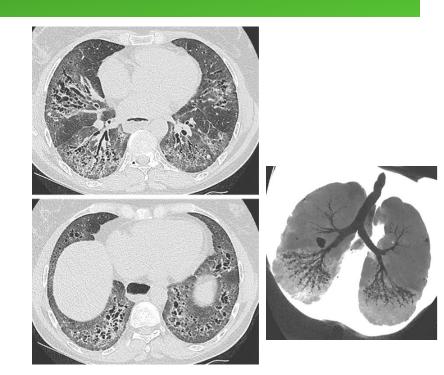
- Histiocytosis X +++ 🛶

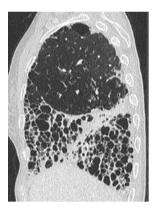

- Tobacco, centrilobular micronodules, perforated nodules, cysts with irregular contours, predominantly superior

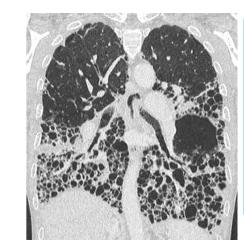
Pulmonary lymphangio leiomyomatosis ++

- Female, regular cysts, diffusely distributed
- Cystic lung metastasis
 - Background (ENT cancer, cervix)
- 🛛 Interstitial Lymphocyte Lung Disease (ILD) 🛛 🛁
 - HIV, Sjögren, ggo around cysts, peribronchovascular
- Pneumocystis 中
 - HIV, acute, ggo+ cysts
- Birt-Hogg-Dubé syndrome 📂
 - Genetics, cysts + kidney + skin tumours
- Desquamative Interstitial Pneumonia (DIP)
 - Smoking+++, GGO under pleural, basal + micro cysts++ in ggo
- Hypersensitivity pneumonia 📥
 - Exposure, fuzzy micronodules, GGO mosaic , trapping, cysts

Histiocytosis X

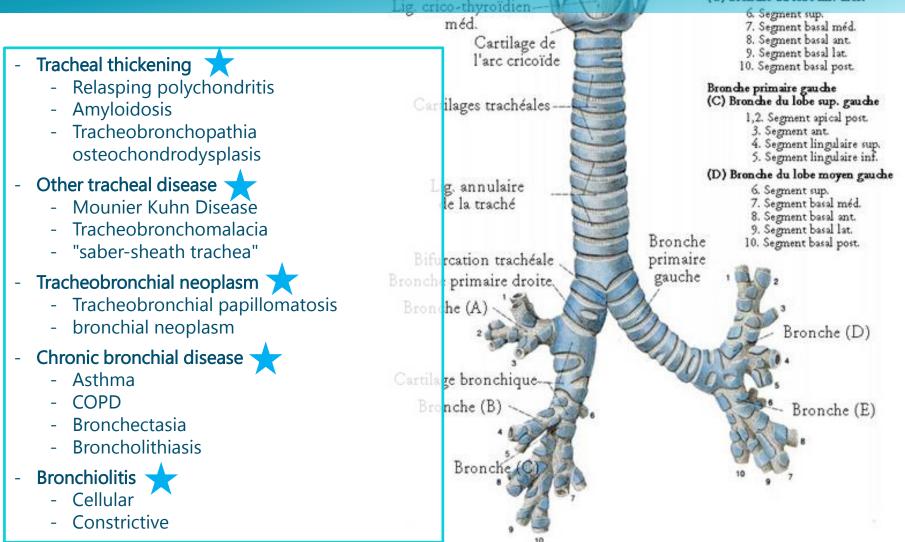

Lymphangioleiomyomatosis




Fibrosis

On imaging *= signs of lung architecture revision*

- Intralobular septal thickening and honeycomb
- Thick, irregular and deformed septa
- Bronchiectasis and traction bronchiolectasis
- Thickened, irregular and deformed scissure
- Pinching of bronchovascular pathways
- Irregular consolidation
- Scarring emphysema



Honeycomb image

- **Juxtaposition of** a **multitude of air spaces of** roughly rounded shape, delimited between them by a **wall with** a thickness exceeding 1 mm
- Predominance in subpleural areas
- Terminal stage of lung architecture revision
- <u>DD</u>: lesions of paraseptal emphysema (which present pseudowalls by compression. In favour of emphysema: topography and a single layer of "cysts" versus several for honeycomb.

Tracheobronchial disease (C) Bronche du lobe inf. droit

Tracheal thickening

Relasping polychondritis

- Rare (chondral involvement : nose, ears , trachea...)
- Thickening, clacification and spontaenous hyperdensity (+ malacia) sparing the posterior wall ++

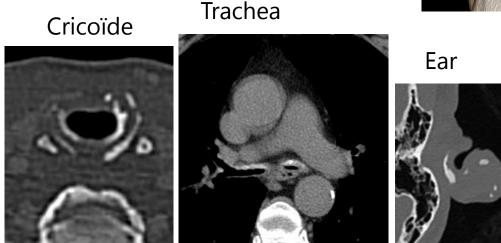
Amylosis

- Patchy infiltrative nodular wall thickening with ou without calcification.
- Trachea and main bronchi
- Circumferential involvelement

Wegener

- Thickening of tracheal wall/ sus glottic stenosis, circonférential or asymétric
- Tracheobronchopathia osteochondrodysplasis Nodular wall thickening +/- calcified . Sparing the posterior wall.
- Sarcoidosis
- Histoplasmosis
- Tuberculosis
- Rhinoscleroma

Chronic cought, main diagnosis: ✓ Wegener? ✓ Amylosis? ✓ Relaspsing polychondritis?

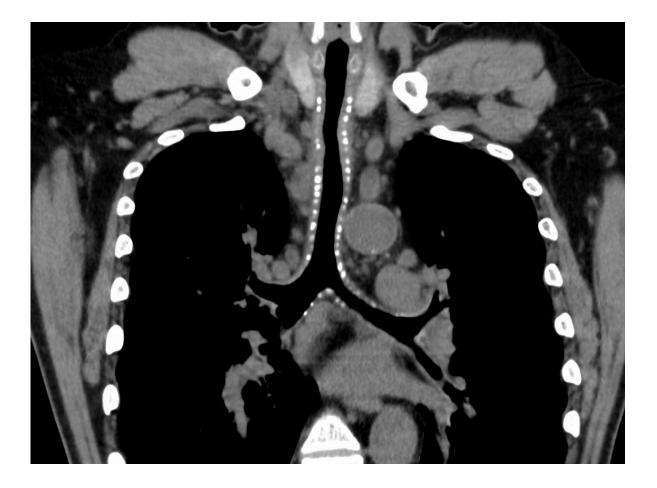


Relapsing polychondritis

Reccurent chondritis:

- Auto-immune disease
- Rare
 - ears (swollen, erythema)
 - Nose
 - Larynx
 - Joint
 - Tracheo- bronchial wall (50%)
 - deafness(50%)
 - + uveitis

CT


- Smooth and regular tracheal wall thickening
- Spontaneous hyperdentity(100%) +/- calcifications « dimmed »or «shewed »
- Sparing posterior wall +++
- +/- Stenosis
- Trachéobronchomalacia + Air trapping (early sign) (expiratory ++)

Lee KS, Ernst A, Trentham DE et-al. Relapsing polychondritis: prevalence of expiratory CT airway abnormalities. Radiology. 2006 Behar JV, Choi YW, Hartman TA et-al. Relapsing polychondritis affecting the lower respiratory tract. AJR Am J Roentgenol. 2002

Nose

Relasping polychondritis

Amylosis

- Extracellular amyloid deposit
- Local or systemic
- 2 types: LC (Light chain Ig), AA (non Ig)
- 2 forms
 - Primitive Amyloidosis (AL)
 - Secondary Amyloidosis
 - Myeloma, dysglobulinemia(AL)
 - Chronic infection(TB), Chronic inflammation(RA), tumot (Hodgkin, neoplasm) (AA)

Tracheo-bronchial involvement Rare

- Patchy nodular wall thickening
- Or diffuse wall thickening
- +/- stenosis
- +/- calcification
- Trachea/ main bronchi
- Circonferential

Amyloidosis

- Patchy nodular wall thickening
- Or diffuse wall thickening
- Trachea/ main bronchi
- Circonferential

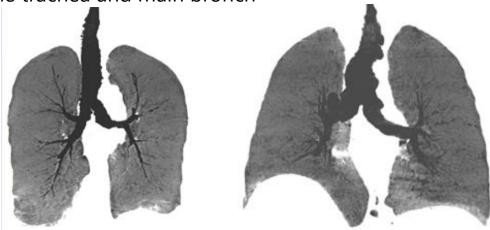
Tracheobronchopathia osteochondrodysplasis

- Rare, >50 years old , male>female
- Irregular thickening and nodularity of tracheal cartilage, sparing the posterior (membranous) tracheal wall in trachea and proximal bronchus
- Cought, dyspnea , hemoptysis

- Thickening tracheal wall
- Irregular calcification
- +/- lumen protusion
- +/- obstruction
- Sparing of the posterior wall

Differential diagnosis

- Amylosis
- Papillomatosis
- Relapsing polychondritis
- Submucosal nodule


Case courtesy of Dr Bruno Di Muzio, Radiopaedia.org, rID: 21517

Mounier Kuhn disease

Main bronchi and trachea enlargement

- Associated with tracheal diverticulosis , infection and bronchiectasis
- The underlying abnormality is an absence or marked atrophy of the elastic fibers and smooth muscle within the wall of the trachea and main bronch
- Treatment:
 - Stop smoking
 - Physiotherapy
 - Antibiotics for infection

Trachea enlargement during inspiration and collapse during expiration

- Trachea diameter> 3 cm (2 cm above the aortic arch)
- RBD > 2,4 cm et LBD > 2,3 cm
- Sus glottic trachea is normal ++
- Posteriorly, projecting tracheal diverticula may also be seen.

Tracheo-broncho-malacia

Increase in tracheal diameter as well as a tendency to collapse on expiration, by weakness of tracheal cartilaginous ring.

There are numerous causes of tracheomalacia, the commonest of which are :

- Tracheobronchomegaly
- COPD
- Inflammatory tracheal disease
- Post-traumatic

Crescent sign radiopedia

Expiration +++


- ↓ trachea lumen/ main bronchi > 50% expiration/ inspiration
 - → crescent or moon sign
 - → coronal diameter >>sagittal diameter
- COPD → diagnosis criteria :reduction trachea lumen > 70%

« Saber-sheath trachea"

Diffuse decrease of coronal intrathoracic trachea diameter.

- COPD+++
- Maybe secondary to intrathoracic pressure change.

↓↓ sagittal / coronal ratio is over 2/1 and the <u>extra-thoracic portion of the</u> <u>trachea is not narrowed</u>.

Tracheal tumors

- Rare
- Asymptomatic for a long time +++
- Dyspnea
 - Malignant tumor (90% primary, 10-30% in kids)
 - Squamous cell carcinoma and adenoid cystic carcinoma(86%)
 - <u>Benign tumors</u>
 - Papilloma and hamartoma.

Malignant tumors

- <u>Squamous cell carcinoma</u> +++ (50%)
 - Tobacco +/- upper aerodigestive tract (¼ of case), budding, infiltrative or ulcerated, mediastinal invasion? esophagus (+/- esotracheal fistula)? Lymph node ? bronchogenic spread?
- Adenoid cystic carcinoma++ (40%)
 - Potential for recurrence after excision and late metastases, 1/3 medium, rounded, sessile, well limited, invasion of the tracheal wall then mediastinum.

- **Mucoepidermoid tumor**: Endoluminal nodule, 50% <30 years
- **Carcinoid tumor:** Any age, less common than in the lung Intense contrast enhancement
- Lymphoma (lymphadenopathy)
- Sarcomas (connective tumor simulator)
- Chondrosarcoma
- Secondary tumors, neighboring tumor extension (thyroid, larynx, bronchial, esophagus)

Benign tumors

- Laryngo-tracheobronchial papillomas / papillomatosis + + + Multiple papillomas, child / young adult
- Hamartoma +++
- Hemangioma : child ++, cervical trachea by extension of a laryngeal location, nodular mass +/- phlebitis, +/hypervascularized
- Chondroma : well limited, hard, smooth surface, fixation to the cartilaginous ring, covered with a normal epithelium, mm -> 3 cm, calcifications
- Lipoma
- Leiomyoma In the wall, 1/3 lower trachea, sessile implantation, sometimes in "iceberg«
- Neuroma (isolated or NF)

Multiple tracheal papillomas

- Thyroid tumors
 - Goiter or malignant tumor of ectopic thyroid tissue: woman, goitrous endemic country, mass / thyroid connection
- Adenomas (rare)
 - Mucous glands, polypoid masses, clean, smooth contours, in trachea or stem bronchi

Laryngo-tracheobronchial papillomas / papillomatosis

Rare++, children++, young adult

- **Complication of laryngeal papillomatosis by aerial dissemination** (laryngeal papillomatosis: often acquired at birth by exposure to HPV 6 or 11).
 - 5-10% tracheobronchial
 - <2% lung
 - 10 years after the diagnosis of laryngeal papillomatosis
- Evolution: dyspnea and ↑ risk of squamous cell carcinoma.
- Imaging
- <u>Tracheo-bronchial nodules</u>
 - <u>Distal involvement</u>
 - Monoliform bronchectasis
 - Nodules / excavated nodules / thin wall cysts (2-3mm) / Cavities
 - hydro-aeric level if infection

Multiple tracheal papillomas

Case courtesy of Dr Maxim Stalkov, Radiopaedia.org, rlD: 36731

Ravin CE, Bergin D, Bisset GS et-al. Image interpretation session: 2000. Radiographics. 2000

Gruden JF, Webb WR, Sides DM. Adult-onset disseminated tracheobronchial papillomatosis: CT features. J Comput Assist Tomogr 1994; 18:640–642

Endobronchial tumors

Imaging

- Typically polypoid → "crescent sign"
- Can contain :
 - ✓ Fat → hamartoma, lipoma
 - ✓ Calcifications
 - ✓ Necrosis
- Enhancement → carcinoid ++
- Muco epidermoid
- Leiomyoma

Differencial diagnosis

- Mucus
- Foreign body
- Trachéobronchopathia osteochondrodysplasis
- Broncholithiasis

Etiologies

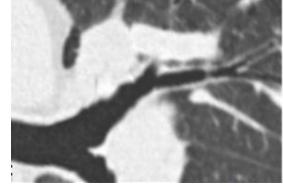
- <u>Malignant</u>
 - Non small cell carcinoma (>95%)
 - Carcinoid
- <u>Bénignes</u>
 - Hamartoma (70%)

Asthma

Chronic inflammatory airway disease

- Bronchial hyperreactivity
- Reversible obstruction on expiratory flow rates
- Bronchial wall reshaping : Chronic inflammation → neoangiogenesis, sub epithelial fibrosis, hyperplasia of the glands and mucus cells, enlargement of smooth muscle fibers

Chest Xray:


In all patients sick enough to be hospitalized, normal ++, DDX

Chest CT: not systematic

- Bronchial wall thickening = bronchial remodeling lesion
- **Air trapping** = damage to the small airways
- Bronchiectasis= 30%, sub-segmental and distal bronchi

Additional diagnosis

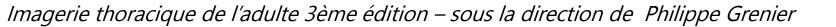
- Bronchectasis proximal, segmental, sub-segmental
- Upper lobes and middle parts
- Spontaneously hyperdense mucoid impactions -> suspect ABPA

Bronchial wall reshaping: Bronchial wall thickening


Air trapping

COPD

- Clinic, tobacco and professional exposure.
- Spirometry : The FEV1:FVC ratio should be <0.70 for all stages
- stage I: mild, FEV1 > 80% of normal
- stage II: moderate, FEV1 = 50-79% of normal
- stage III: severe, FEV1 = 30-49% of normal
- stage IV: very severe, FEV1 <30% of normal or <50% of normal with presence of chronic respiratory failure present.

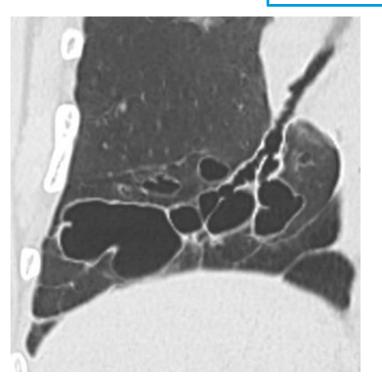

Emphysema

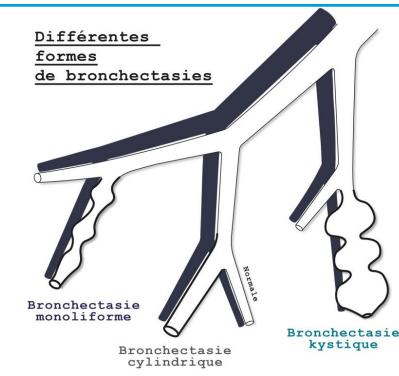
<u>Xray</u>

- Distension
- Arterial defect
- Expiratory trapping

<u>CT</u>

- Emphysema
 - Centro-lobular / para-septal
 - Pan-lobular
 - Bonchial reshaping (on the entire tracheobronchial tree proximal bronchi → small bronchi)
- Associated sign:
 - Trachéobronchomalacia
 - "saber-sheath trachea"
 - Bronchial diverticulosis
 - Interstitial change





Bronchectasis

Irreversible bronchial dilation associated with inflammation of the bronchial walls

- Lack of regression in bronchial diameter +++ (from proximal to distal)
- Visible bronchi at the periphery of the lung
- **↑** broncho-arterial ratio> 1: non-specific (elderly, altitude)
- Acute lung disease can lead to pseudo-bronchiectasis (functional)
- <u>Associated signs:</u> ventilatory disorders (collapse, atelectasis, constrictive bronchiolitis), bronchopathy / secondary infection, systemic hypervascularization

Bronchiolitis

Cellular bronchiolitis

- Inflammatory infiltrate : involve the lumen and the walls of the bronchiole
- Reversible with possible sequels
- Etiologies :
 - ✓ Infection
 - ✓ Respiratory
 - ✓ Follicular
 - ✓ Aspiration bronchiolitis
 - ✓ Diffuse panbronchiolitis
 - ✓ HSP acute
- CT Direct signs +++ Centrolobular micronodules, tree in bud+/- Reversible trapping

Constrictive bronchiolitis

- Circumferential submucosal fibrosis
- Resulting in **stenosis** or even obliteration of the bronchiolar lumen and obstruction of air flow .
- Irreversible

Etiologies

- Infection +++: viral infection during childhood
- Inhalation of toxic fumes
- Connective tissue disease
- Drug toxicity
- Chronic rejection after lung transplant
- Rejection of bone marrow transplant
- Inflammatory diseases of the digestive tract
- Idiopathic

CT

Indirect sign: irreversible trapping



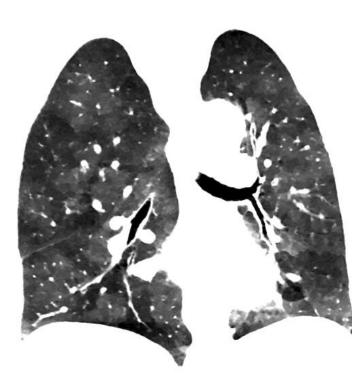
Bronchiolite cellulaire

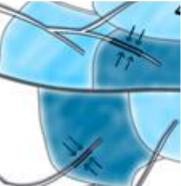
- Inflammatory infiltrate : involve the lumen and the walls of the bronchiole
- Reversible with possible sequels

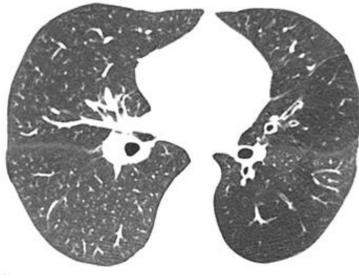
<u>CT</u>

- Direct signs +++
- Centrolobular micronodules, tree in bud
- +/- Reversible trapping

Modèle bronchiolaire « arbres en bourgeons » Distribution centrolobulaire

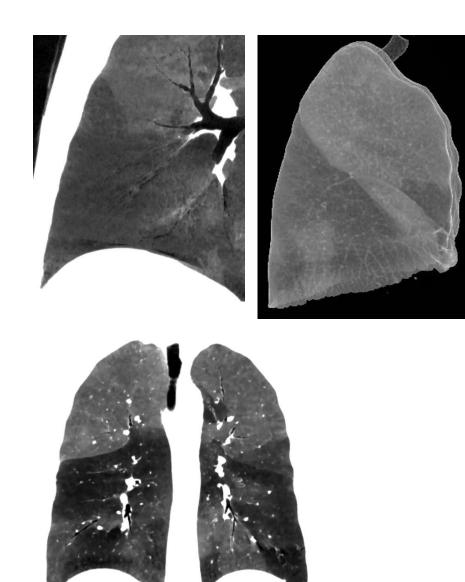

Infection


- Tree in bud
- Virus, bacteria (mycoplasma), BK/MBA, aspergillus; complete regression or bronchiectasis +/- constrictive bronchiolitis
- Tuberculosis: acinar enlargement (specific if no existing previous bronchiectasis)
- Respiratory
 - Tobacco, macrophages, centrolobular micronodules (CMN) upper.
- Follicular
 - Lymphocytic infiltration → centrolobular micronodules, trapping, cylindric bronchectasis.
 - Connective tissue disease (RA, Sjögren) ++, ID, HS
- Inhalation bronchiolitis
 - Repeated inhalations (cognitive impairment / swallowing)
- Diffuse Panbronchiolitis
 - Asiatic ++, centrolobular micronodules, tree in bud , bronchiectasis, lower lobe and diffuse.
- HSP acute/ subacute
 - Exposure, ill define micronodules, trapping, mosaic lung.



Contrictive bronchiolitis

Irreversible circumferential fibrosis Bronchiole stenosis or obliteration, without endoluminal granulation tissue or surrounding parenchymal inflammation



Imaging

- Air trapping (expiratory)
- → Mosaic lung
- Reflex vasocontriction
- Bronchectasis

Etiologies

- ✓ Post-infectious +++
 - Viral infection in childhood (respiratory adenovirus, RSV)
 - Infection occurring in adults or children (mycoplasma, pneumocystosis, influenza)
 - Mycobacteria

✓ Inhalation of toxic fumes

- NO², SO²

✓ Connective tissue disease

- Rheumatoid arthritis ++
- Sjögren's syndrom
- ✓ Drug toxicity
 - Penicillamine, gold salts...
- ✓ Transplantation
 - Chronic rejection of lung transplant
 - Rejection of bone marrow transplant
- Inflammatory diseases of the digestive tract
- ✓ Idiopathic

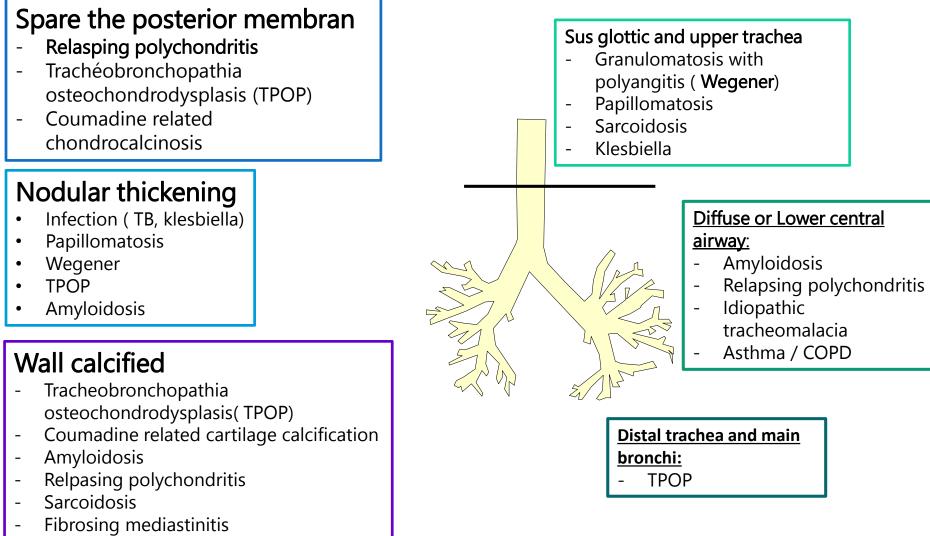
Broncholithiasis

 Calcium material in the bronchial lumen, the origin is a partially calcified peribronchial lymph node which has progressively eroded / deformed the wall

- Rare

= Lymph node with granulomatosis

- Tuberculosis
- Histoplasmosis
- Sarcoïdosis
- Silicosis



Chest Xray

- Hilar calcified material +/- atelectasis
- <u>CT</u>
- ✓ Peribronchial calcified lymph nodes
- Obstructive complications (atelectasis, obstructive pulmonary disease, bronchiectasis, expiratory trapping)
- ✓ Absence of associated tissue mass.
- Middle lobe and anterior segment of upper lobes
- ✓ -> Bronchial Fibroscopy

Tracheobronchial disease :Key point

Infection like TB

ILD : Interstitial Lung Disease

- ILD : Definition / classification
- Idiopathic ILD
 - Chronic fibrosing : IPF 🛧 , NSIP ★
 - Acute /subacute : OP 🛧 , AIP 🛧
 - Tobacco link : DIP, RB ILD ★
 - Raren. LIP 🛧 , FEPP ★
 - Unclassifiable
- Sarcoïdosis
- Connective tissue disease
- Vasculitis
- HSP
- Pneumoconiosis
- Drugs, toxic
- Post radic
- Miscellaneous
 - Eo LD ブ
 - LAM \star Hystiocytosis X \star Rare cyst
 - Erdheim Chester 🖈 Rosai Dorfman ★ Ig G4
 - Amylosis \star LPA \star Alveolar microlithiasis

ILD : Interstitial lung disease

Definition

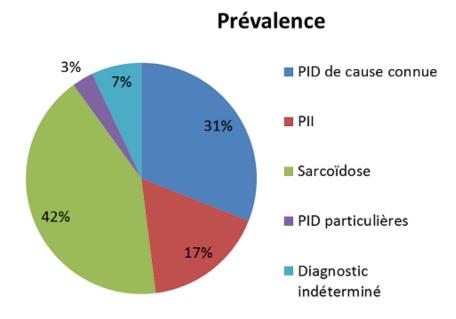
- Infiltration of pulmonary interstitium, often fibrosing
- by cells (inflammatory or neoplastic)
- edema
- or by an extracellular matrix rich in collagen

PID timeline:

- Acute (PIA): <3 weeks
- Subacute / Chronic (PCID)> 3 weeks

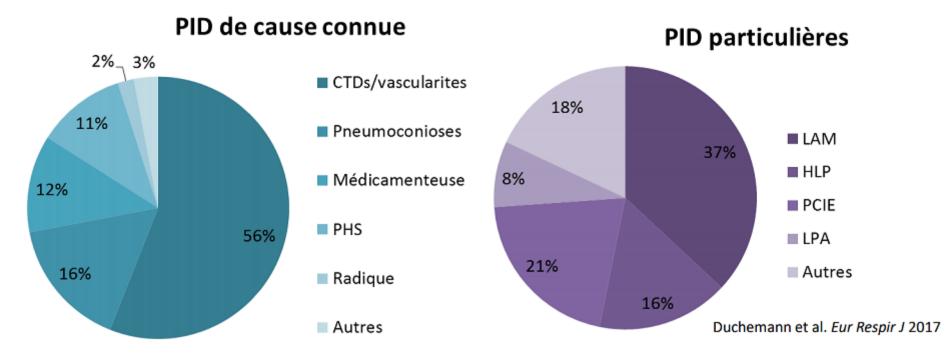
An Official American Thoracic Society/European Respiratory Society Statement: Update of the International Multidisciplinary Classification of the Idiopathic Interstitial Pneumonias, William D. Travis, 2013

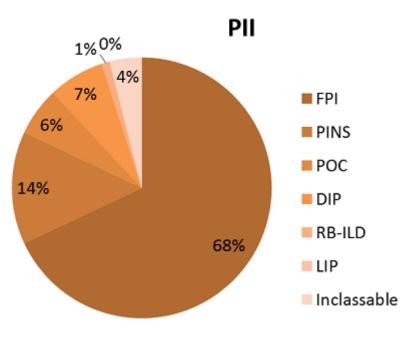
Idiopathic ILD


- Chronic fibrosing
 - IPF
 - NSIP
- Acute/ subacute fibrosing
 - COP
 - AIP
- Tobacco link
 - RB-ILD
 - DIP
- Unclassable
- Rares : LIP, FEPP
- Granulomatosis: Sarcoïdosis
- ILD known cause
 - Connective tissue disease
 - Vasculitis
 - HSP
 - Pneumoconiosis
 - Drugs, toxic, radic

> ILD others

- LAM, hystiocytosis X
- Alveolar proteinosis
- ELD
- Amylosis



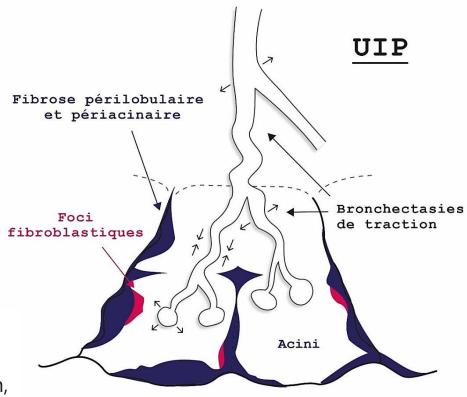

Overall incidence 19,4/100000/an

ATS/ERS Am J Respir Crit Care Med 2013

Histopathologic diagnosis	Idiopathic form Clinical diagnosis	Differential diagnosis
UIP Usual interstitial pneumoniae	IPF Idiopathic pulmonary fibrosis	Mixed connective tissue disease, asbestosis, CHP
NSIP Non-specific interstitial pneumonia	Idiopathic NSIP	Mixed connective tissue disease, chronic HP, DIP
RB-ILD respiratory bronchiolitis- interstitial lung disease	RB-ILD	Acute HP
DIP Desquamative interstitial pneumonia	DIP	NSIP, Acute HP/ chronic HP
OP organizing pneumonia	COP cryptogenic organizing pneumonia	Mixed connective tissue disease, infection vasculitis, sarcoïdosis, lymphoma, carcinoma, Chronic HP, drugs
LIP Lymphoid interstitial pneumonia	LIP	
DAD Diffuse alveolar damage	AIP acute interstitial pneumonitis	ARDS, infection, PO, hemorrhage

UIP

UIP usual interstitial pneumoniae

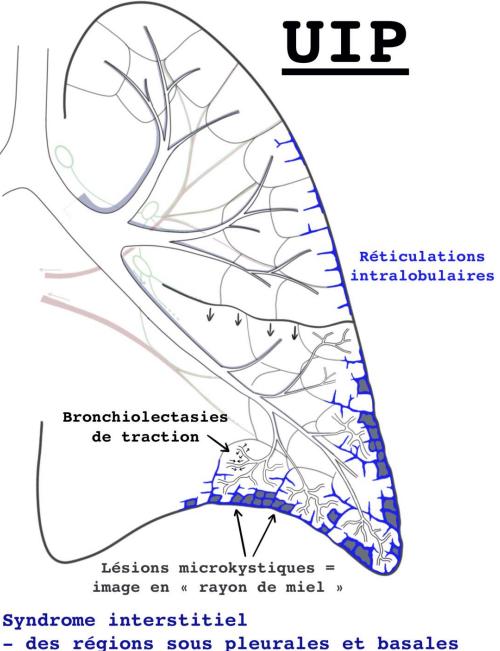

- Anatomo-pathological term
- ✓ Foci of **fibroblasts** and immature connective tissue in the pulmonary interstitium
- ✓ And temporal and spatial heterogeneity

It is a pattern !

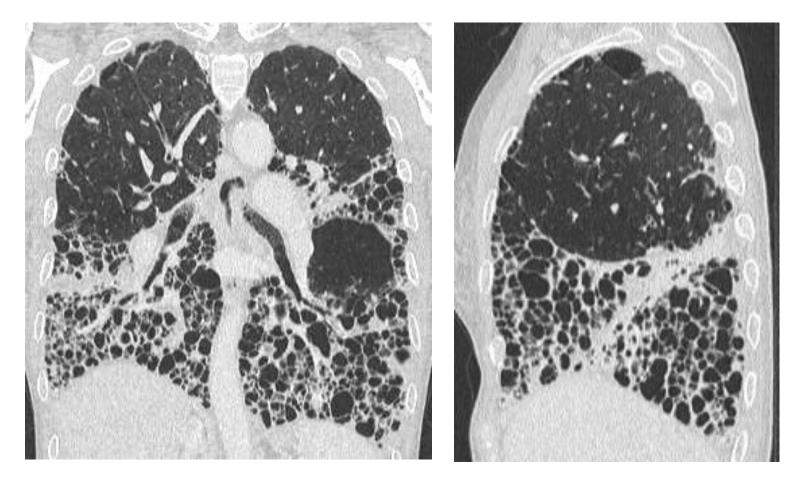
Histopathological and Imaging aspect and not a pathology. It can be of an idiopathic nature (idiopathic pulmonary fibrosis IPF) or secondary to a connective tissue disease (example: scleroderma)

Epidemiology/ pronosis

- 50 years
- Progressive dyspnea and unproductive cough, crackling groans, restrictive syndrome
- Prognosis :
 - Poor response to corticosteroids
 - Poor prognosis (average survival between 2.5 and 3.5 years)


Évolution vers l'aspect en « rayon de miel »

<u>UIP</u>


- Honeycomb +++
- Intra-lobular reticulations
- Traction bronchiectasis
- Location +++
 - Peripheral / subpleural
 - Apico-basal gradient

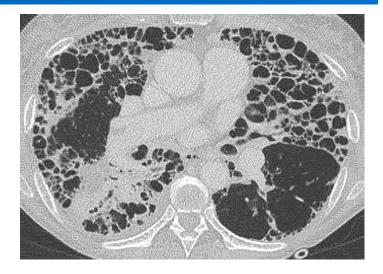
<u>Negative sign:</u>little or **no** Ground glass opacity

- <u>rayon de miel</u> +/- bronchectasies / bronchiolectasies de traction

Honeycomb

Apico-basal gardient

Subpleural / peripheral



IPF

Idiopathic UIP = IPF (Idiopathic pulmonary fibrosis)

Differential diagnosis (30% UIP)

- Connective tissue disease (RA++)
- Drug induce pneumonia
- Asbestosis
- CHP (chronic hypersensitive pneumonia)

UIP + GGO →

- Disease exacerbation
- APO (acute pulmonary oedema)
- Opportunistic infection
- Drug toxicity

Increased risk of malignancy Significantly increased risk of lung cancer from fibrosis (x 14 in IPF, peripheral ++) → CT: role of screening +++

UIP diagnostic (ATS /ERS/JRS/ALAT 2018)

UIP	Probable UIP	Indeterminate for UIP	Alternative diagnosis	
Subpleural and basal predominant; distribution is often heterogeneous	Subpleural and basal predominant; distribution is often heterogeneous	Subpleural and basal predominant	 Predominant distribution: Peribronchovascular Perilymphatic Upper or mid-lung 	
Honeycombing with or without peripheral traction bronchiectasis or bronchiolectasis	Reticular pattern with peripheral traction bronchiectasis or bronchiolectasis May have mild GGO	 Subtle reticulation; may have mild GGO or distortion ("early UIP pattern") CT features and/or distribution of lung fibrosis that do not suggest any specific etiology ("truly indeterminate for UIP") 	Findings suggestive of another diagnosis, including:CT features:• Cysts• Marked mosaic attenuation• Predominant GGO• Profuse micronodules• Centrilobular nodules• Nodules• ConsolidationOther:• Pleural plaques (consider asbestosis)• Dilated esophagus (consider CTD)• Distal clavicular erosions (consider RA)• Extensive lymph node enlargement(consider other etiologies)• Pleural effusions, pleural thickening(consider CTD/drugs)	
No need biopsy		Biopsy recommandation		

UIP/PIC diagnostic (ATS /ERS/JRS/ALAT 2018)

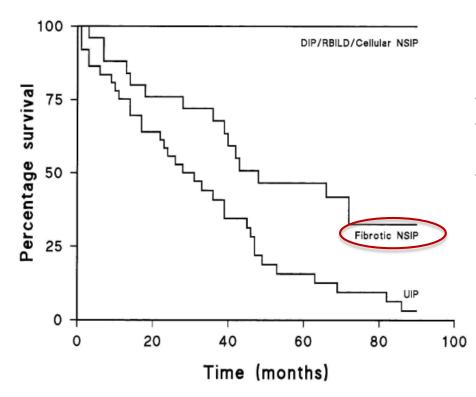
<u>IPF sus</u>	pected*	Histopathology pattern			
		UIP	Probable UIP	Indeterminate for UIP	Alternative diagnosis
HRCT pattern Inde	UIP	IPF	IPF	IPF	Non-IPF dx
	Probable UIP	IPF	IPF	IPF (Likely)**	Non-IPF dx
	Indeterminate for UIP	IPF	IPF (Likely)**	Indeterminate for IPF***	Non-IPF dx
	Alternative diagnosis	IPF (Likely)** /non-IPF dx	Non-IPF dx	Non-IPF dx	Non-IPF dx

Figure 8. Idiopathic pulmonary fibrosis diagnosis based upon HRCT and biopsy patterns.

*"Clinically suspected of having IPF" = unexplained symptomatic or asymptomatic patterns of bilateral pulmonary fibrosis on a chest radiograph or chest computed tomography, bibasilar inspiratory crackles, and age greater than 60 years. (Middle-aged adults [>40 yr and <60 yr], especially patients with risks for familial pulmonary fibrosis, can rarely present with the otherwise same clinical scenario as the typical patient older than 60 years.) **IPF is the likely diagnosis when any of the following features are present:

- Moderate-to-severe traction bronchiectasis/bronchielectasis (defined as mild traction bronchiectasis/bronchielectasis in four or more lobes including the lingual as a lobe, or moderate to severe traction bronchiectasis in two or more lobes) in a man over age 50 years or in a woman over age 60 years
- Extensive (>30%) reticulation on HRCT and an age >70 years
- Increased neutrophils and/or absence of lymphocytosis in BAL fluid
- Multidisciplinary discussion reaches a confident diagnosis of IPF.
- ***Indeterminate for IPF
 - · Without an adequate biopsy is unlikely to be IPF

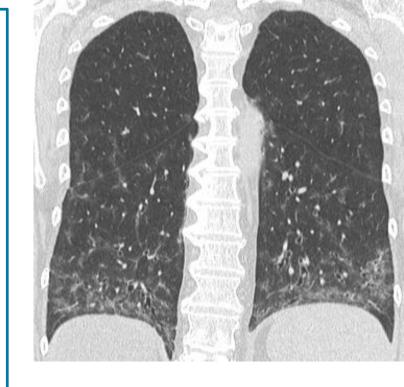
• With an adequate biopsy may be reclassified to a more specific diagnosis after multidisciplinary discussion and/or additional consultation.


dx = diagnosis; HRCT = high-resolution computed tomography; IPF = idiopathic pulmonary fibrosis; UIP = usual interstitial pneumonia.

NSIP

Histopathology entity

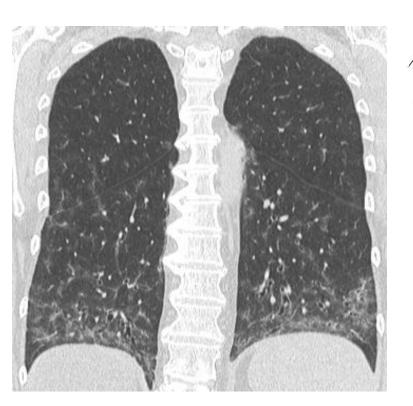
- Homogeneous thickening of the alveolar walls by inflammatory lesions and / or fibrosis
- Spatial and temporal homogeneity of lesions

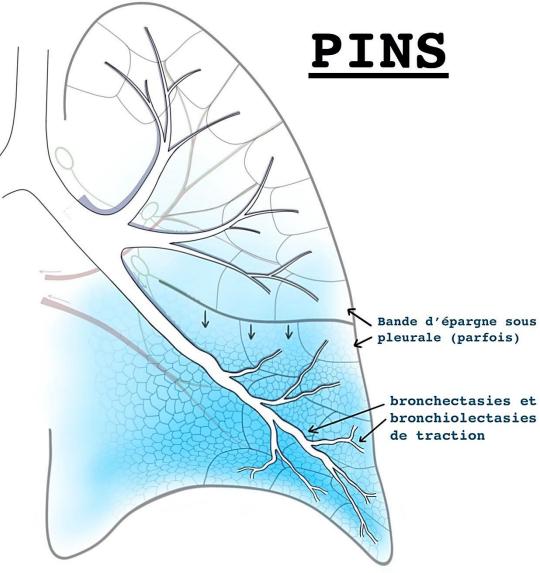

Epidemiology/ prognosis

- 40 50 years
- Prognosis significantly better than that of the UIP
- NSIP cell / cellular and fibrosis / fibrosing -> prognosis

<u>NSIP</u>

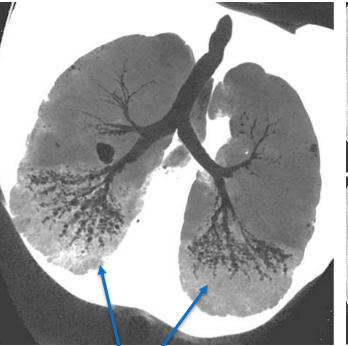
- ✓ **GGO** (100%) +++
- ✓ Intra-lobular reticulations (80%)
- ✓ Traction bronchiectasis (80%)
- ✓ Location
 - ✓ Bilateral +/- symmetrical
 - Central + and peripheral ++ with predominantly sub-pleural
 - ✓ Immediate subpleural sparing
 - ✓ Apico-basal gradient (50%)
- ✓ Rare consolidation




Differential diagnosis

- Connective tissue disease
- HP
- Drug induced pneumoniae
- DIP
- UIP
- Sarcoïdosis

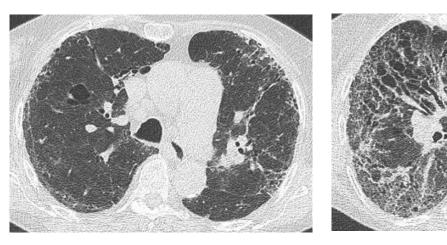
Infiltration diffuse :


- en verre depoli +/- réticulations (crazy
paving)

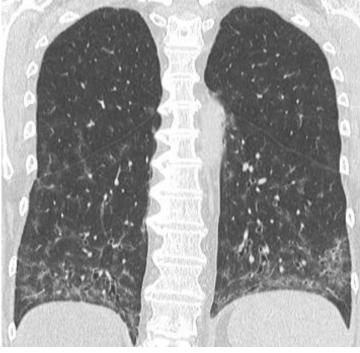

- régions centrales et périphériques
- faible gradient apico basal

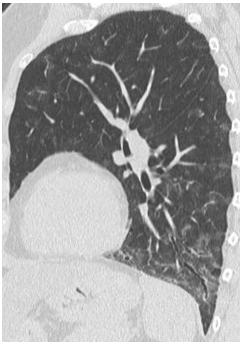
Scleroderma with NSIP pattern

TIPS ++ ILD (NSIP++, UIP+) + Dilatation of the esophagus → Scleroderma



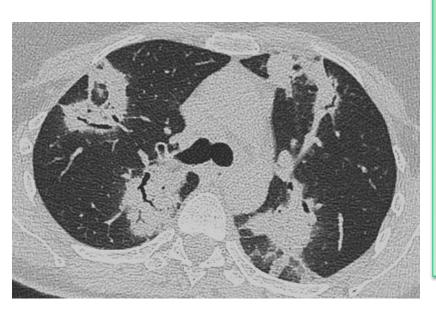





GGO + bronchectasis

dilatation of the esophagus

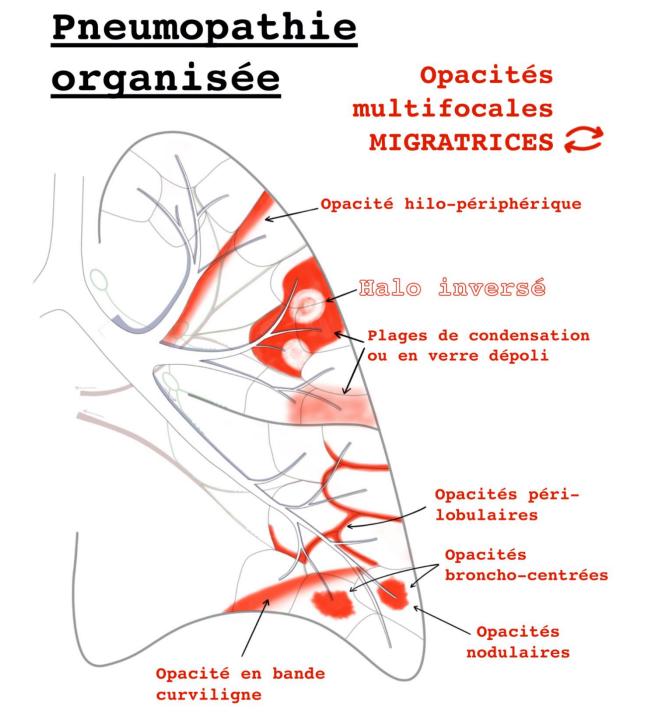
NSIP


Central and peripheral GGO + traction bronchectasis.

OP organizing pneumonia

Definition

- Terminology: BOOP -> OP: organized pneumonia
- Physiopathogy: Lung tissue repair process
- Cryptogenic
- OP Secondary

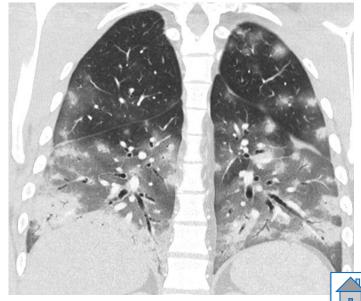


Seconday OP etiology:

- Pulmonary aggresion:
 - Infection
 - **Drug toxicity** (nitrofurantoin, carbamazepine, amiodarone, interferon)
 - Addiction (cocaine)
 - Inhalation of **toxic gas** (hydrogen sulfide, industrial gas)
 - MCTD (polymyositis, dermatomyositis)
 - Organ transplants (bone marrow)
 - Radiotherapy (sometimes away from the irradiation area)
- Oher pulmonary disease
 - Vasculitis (Wegener)
 - **Tumors** (lymphoma, bronchopulmonary cancer)
 - Pulmonary infarction
 - Hypersensitivity pneumonitis
 - Eosinophilic pneumonia
 - Diffuse infiltrative pneumonitis UIP, NSIP, AIP

Pneumopathie organisée; qu'est ce que c'est? Sémiologie conceptuelle et revue iconographique M, Baque-Juston, journal de radiologie 2014

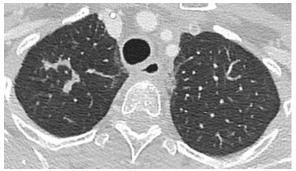
OP organizing pneumonia


1) Migratory multifocal parenchymal consolidation 70%

- subpleural and / or peri-broncho-vascular
- Lower prevalence (controversial)
- Bilateral and asymmetrical
- +/- GGO glass
- **DDX:** ADK, lymphoma, Eo pn, infectious, Hemorrhage, infarction, sarcoidosis, vasculitis
- Migrator (30%) +++ DDX: PO , Pn éo C

2) Nodules , solitary or multiple mass

- Solid, mixed nodules, rarely in GGO
- centimeter or supra-cm
- Random or peri-broncho-vascular +/- speculated
- frequent fixation with PET scan
- Rare excavation
- Miliary or rare "bud trees"



Reverse halo sign +++

Perilobular consoidation

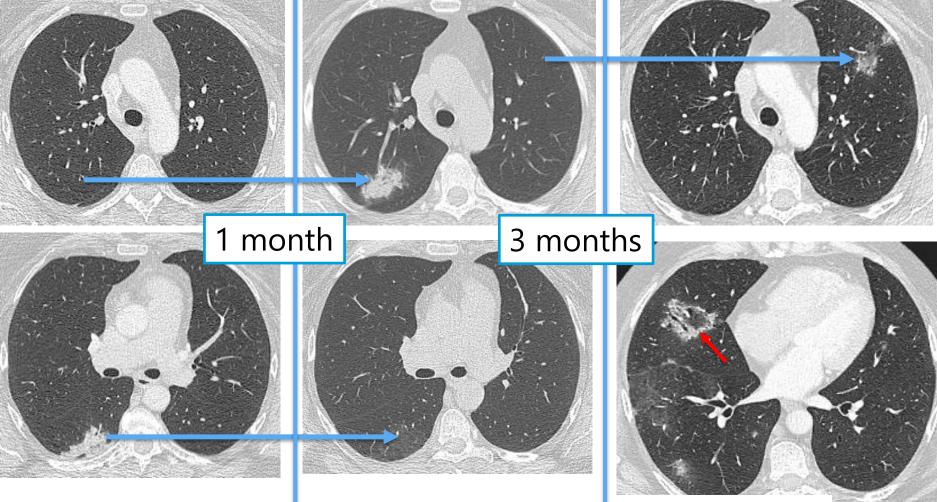
Linear opacity

3) The reverse halo sign (atoll sign) is considered to be highly specific, although only seen in ~20% of patients with COP:

GGO surrounded by a crescent or a ring of consolidation

4) Perilobular pattern with ill-defined linear opacities:

- Opacities that are thicker than the thickened interlobular septa and have an arcade or polygonal shape.
- Thick condensing strips (> 8mm) Hilo-peripheral, air bronchogram: very suggestive +++
- Under curvilinear pleurals



Other signs :

- Crazy paving
- Progressive fibrosis pathology ¼: sub-pleural crosslinks and architectural distortion: same as PINS

COP *Migratory consolidation*

Reversve halosign + peribronchovascular consolidation

COP

Mai 2011: subpleural lower lobe consollidation with reverse halo sign

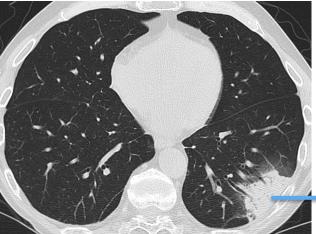
Reverse halo

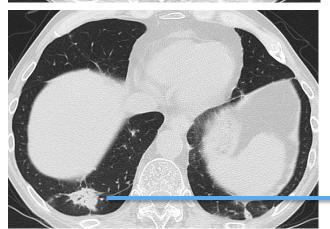

Subpleural linear opacity

July 2011

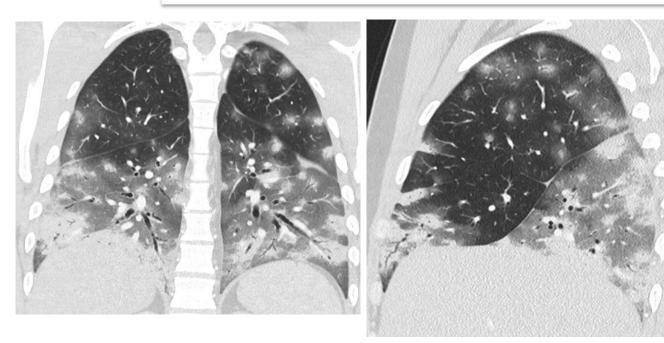
- Migratory
- Subpleural linear opacity

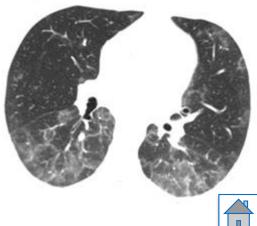




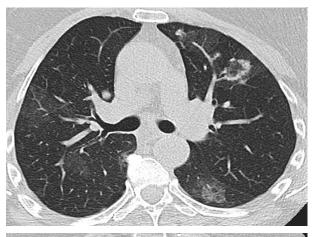


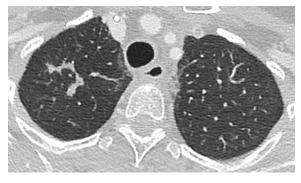
2 months

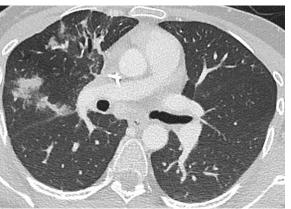




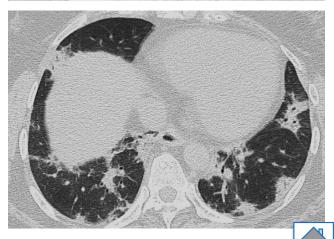
COP Nodular pattern

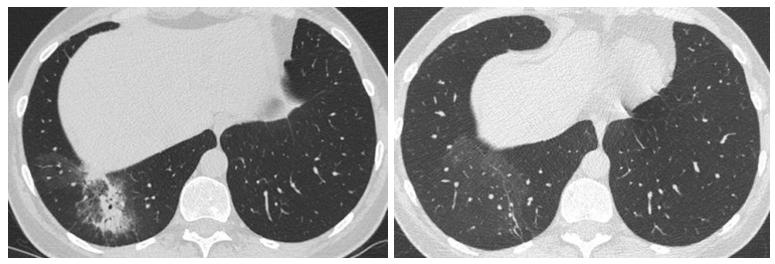

Improvement after steroids


Organised pneumoniae


Perilobular location

Reverse halo sign

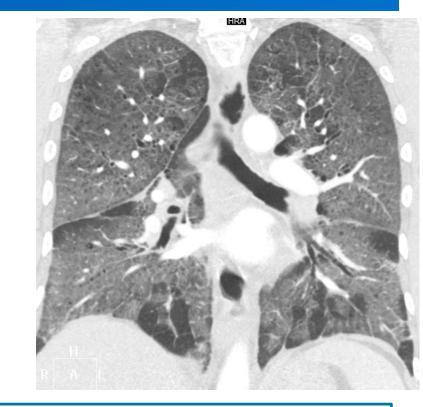




.

OP reverse halo sign regression after steroids

OP : perilobular consolidation +++ biopsy proof



AIP Acute interstitial pneumonia

= Diffuse alveolar damage (DAD)

- Acute, fulminant presentation
- Unknown etiology: "Idiopathic ARDS"
- Often in patients without any medical history
- Poor prognosis

Imaging

 GGO opacities, bilateral and symmetrical, geographic or diffuse
 Consolidation

Tobacco link disease

- COPD
- Neoplasia
- Atherosclerosis

- PID due to tobacco

- Chronic
 - **RB-ILD** ++ (interstitial involvement in the form of centrolobular micronodules of the upper region)
 - DIP (continuum with RB-ILD, basal and subpleural GGO)
 - Histiocytosis X (pathology closely related to tobacco, irregular cystic lesions, upper region)
- Acute
 - Eosinophilic pneumonia (recently started tobacco)

- Fibrosis

- IPF ++
- NSIP
- AEF (cystic lesions with thick walls of the bases)
- Emphysema-fibrosis syndrom (emphysema of the apex and basal fibrosis)

- Asymptomatic anomalies

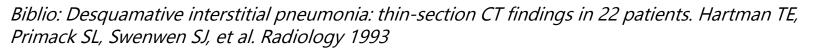
- **RB** (like RB ILD but asymptomatic)
- ILA (interstitial lung abnormalities, asymptomatic interstitial discovery abnormalities)

RB et RB-ILD

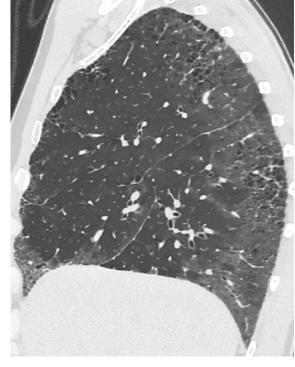
- Smoker
- RB = Respiratory bronchiolitis
 - It is asymptomatic bronchiolar and peribronchiolar inflammation
 - Histo pathology: macrophagic infiltration
 - CT: Centronobular fuzzy micronodules
 - **RB ILD**
 - ✓ Same as RB but symptomatic

DIP desquamative interstitial pneumonia

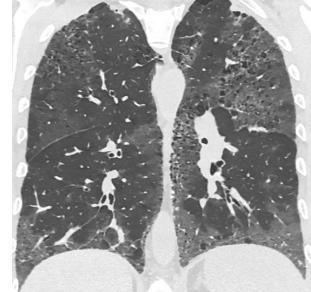
- Rare
- Active smoking +++, 40-50 years, predominantly male
- Histology: alveolar septa thickening + macrophagic intra-alveolar infiltration
- Clinic: dry cough, progressive dyspnea, digital hippocratism
- Treatment: smoking cessation and corticosteroids

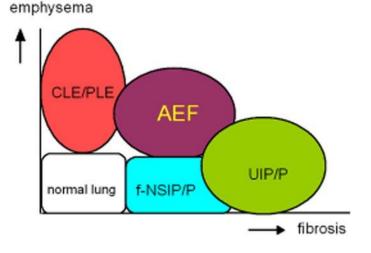

Spectrum of tobacco-related lung diseases

- Respiratory bronchiolitis (RB)
- RB + interstitial lung disease (RB-ILD)
- Desquamative pneumonitis (DIP)


- Peripheral / subpleural (60%)
- Lower region
- Basal bilateral in 70%
- Microcyst in GGO area
- +/- intralobular reticulation
- +/- traction bronchiectasis
- +/- honeycomb

DIP


- GGO
- Location: lower lobe and peripheral
- Small cyst in the same area



AEF Airspace enlargement with fibrosis

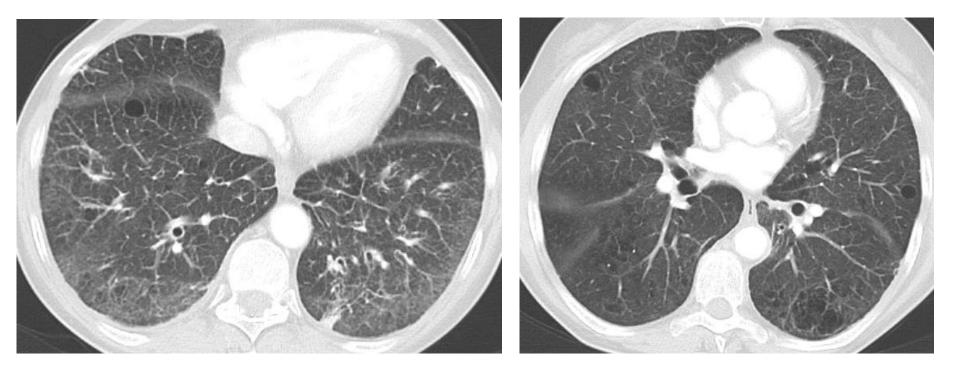

- In 2008 Kawabata et al. describe an entity called "airspace enlargement with fibrosis" (AEF) which can be included in the spectrum of tobacco-related pathologies
- These lesions are bronchiolo-centered and are characterized by interstitial fibrosis, readily hyalinized, without fibroblastic foci, with more fibrosis than in the emphysema lesion (intermediate lesion between emphysema and fibrosis)
- The histological characteristics differ from the other fibroses described in smoking (UIP, PINS, centrolobular emphysema, etc.)
- In imaging, they appear as large, thick-walled cystic lesions located in the lower regions.
- In patients with AEF lesions, there are few reports of exacerbations and a favorable prognosis.

ILA Intersitial lung abnormalities


- Interstitial opacities of chance discovery +++
- 7 to 9% in smokers, 2 to 7% in non-smokers
- GGO, reticulations
- Traction bronchiolectasis, honeycomb
- Sub pleural, posterior inferior regions
- Stable in 60% of cases, progression in 20 to 40% of cases
- Interrogate the patient (treatment? System disease? ...) to eliminate interstitial pathologies of drug origin, autoimmune ...

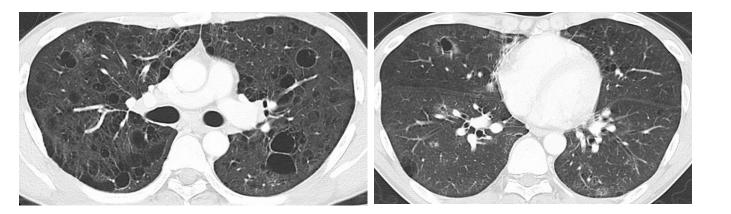
LIP Lymphocytic interstitial pneumonitis

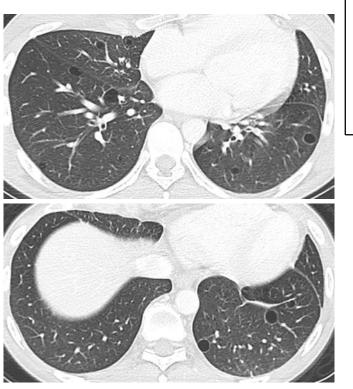
- Rare
- Histology: Diffuse interstitial lymphocytic infiltration
- polyclonal lymphocytic proliferation
- Often associated with Sjögren's syndrome AIDS Castelman disease, CBP, hepatitis and autoimmune thyroiditis

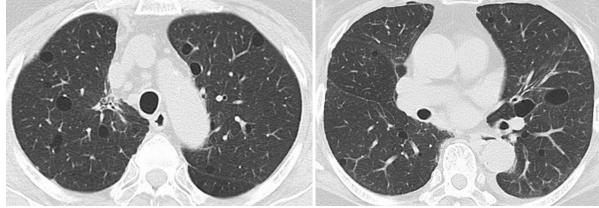


CT

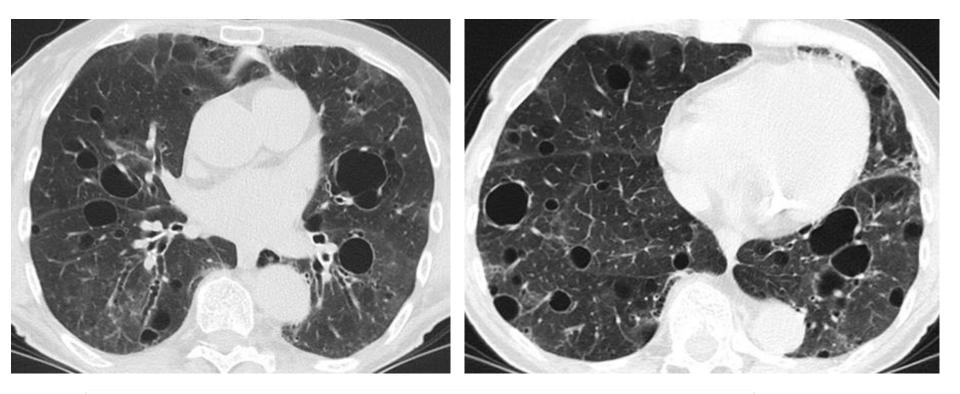
- **GGO** 100%
- Round peri-vascular cysts > 50%
- +/- peri-bronchovascular thickening
- +/- septal lines
- +/- fuzzy or peri-lymphatic micronodules


LIP + Sjogren Courtesy Kokosi MA Respirology 2015



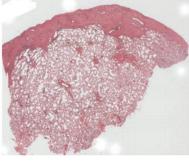


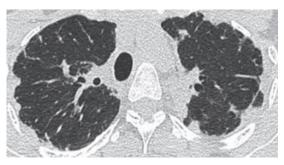
- LIP / Sjögren GGO Cyst



3 examples of LIP

LED + LIP + Sjogren


LIP + Sjogren

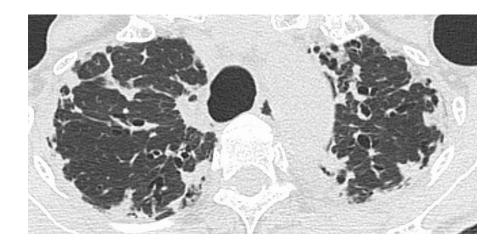

PPFE Pleuroparenchymal fibroelastosis

<u>Histology</u>: visceral pleura fibrosis and underlying parenchyma with elastic fibers highlighted on hematoxylin and eosin (HE) staining

- Recently described
- Very rare
- Benign 5th decade (3rd ->6th decade)
- Etiologies
 - Idiopathic (50%)
 - Post-transplant (50%)

Courtesy Taryn et al European respiratory journal

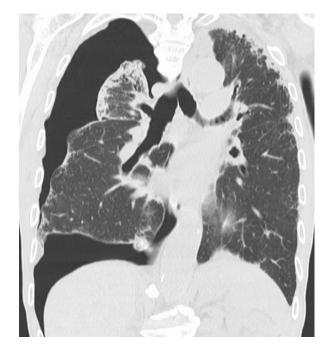
CT


- Apical cap +++
- Pleural thickening (visceral pleura fibrosis)
- Sub-pleural pulmonary fibrosis with thickening of the interlobular septa and traction bronchiectasis

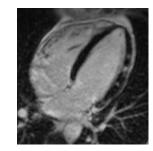

Differencial diagnosis

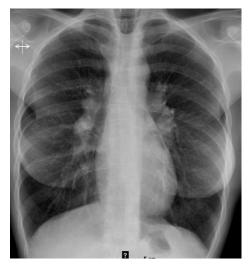
- Sarcoidosis fibrosis stage
- Chronic hypersensitivity pneumonitis
- Connectivity
- Asbestosis
- Radiation pneumonia
- Toxic pneumonia
- Spondylarthopahty

Pleuroparenchymal fibroelastosis: a spectrum of histopathological and imaging phenotypes Taryn L. Reddy - European Respiratory journal 2012



PPFE

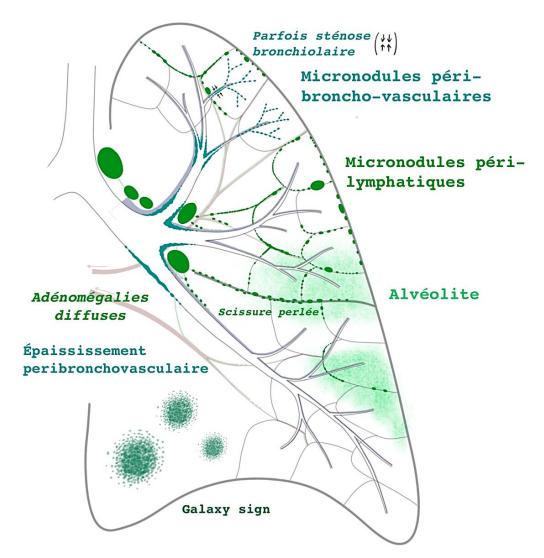

- Opacities of the apical caps with type of pleural pulmonary fibrosis (thickening of the septa and bronchiectasis)
- Risk of pneumothorax ++ (note the loss of volume of the upper lobe



Sarcoïdosis

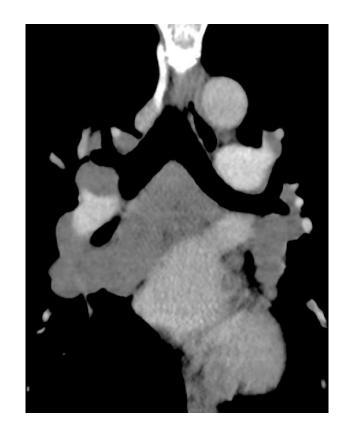
- <u>Histopathology:</u> Granulomatosis of unknown etiology, the basic lesion of which is gigantocellular epithelioid granuloma without caseous necrosis
- <u>2 peaks</u>: 20 to 40 years old and > 60 years old (women)
- Extra-thoracic manifestations (50% of cases)
 - Eyes (uveitis)
 - CNS
 - Cardio (life-threatening !)
 - Skin (knotty erythema)
 - Articulations
 - Bone...
- <u>Paraclinical</u>:
 - Tuberculin anergy
 - ACE elevation
 - Epithelioid granulomas without caseous necrosis (transbronchial biopsy),
 - CD8 lymphocyte alveolitis at LBA

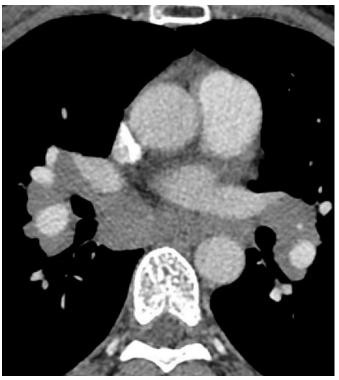
Stage 1


Xray:

- Stage 1: Non-compressive bilateral mediastinohilar lymphadenopathy
- Stage 2: Lymphadenopathy + interstitial involvement
- Stage 3: Interstitial involvement alone
- Stage 4: Fibrosis

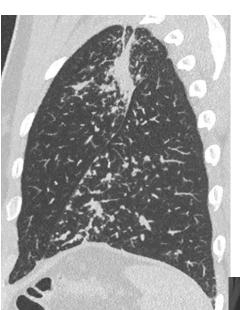
<u>SARCOÏDOSE</u>


Granulomatose de topographie péri-lymphatique et prédominance supérieure

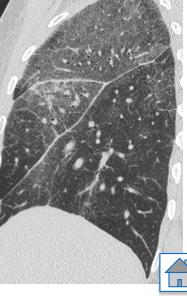


Mediastinum

- Hilar and mediastinal lymphadenopathy
- Non-compressive
- Symmetrical
- ± calcificied (punctuated, in popcorn, diffuse)

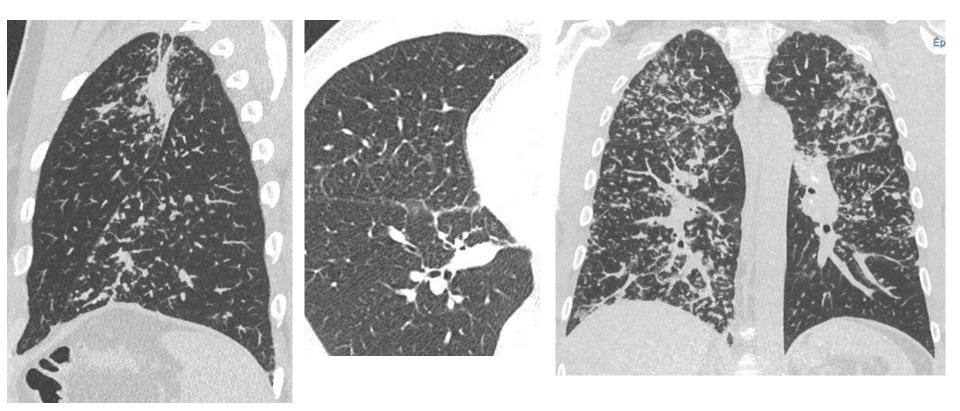





Parenchyma

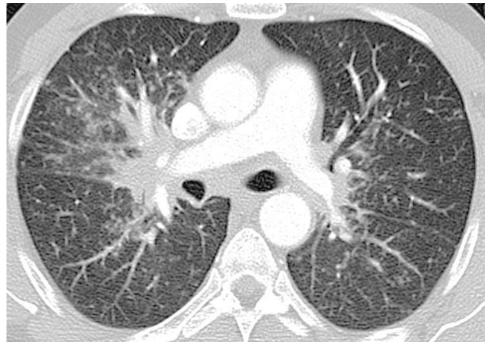
- Peri-lymphatic micronodules (27%):
 upper regions +++, often extending in line from the hilum to the periphery
- Nodules (often irregular borders)
- Nodular / regular / irregular septal lines
- Peri-broncho-vascular thickening (12%)
- GGO (11%): most often associated with nodules and septal lines

Peri-lymphatic micronodules

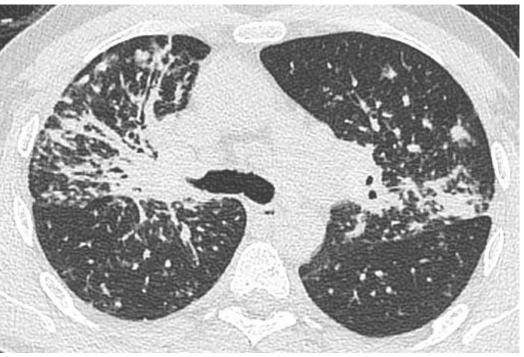


Nodule

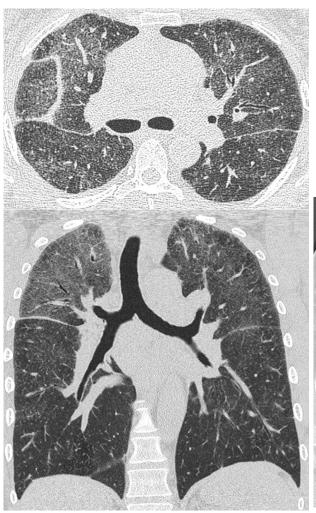
PBVT

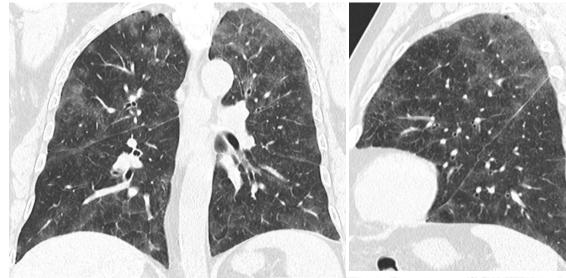

GGO

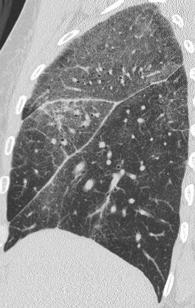
Septal thickening


Beaded along the fissures

Sarcoidosis


- Perilymphatic irregular nodular thickening in an upper/mid lung distribution
- Peribronchovascular thickening+++





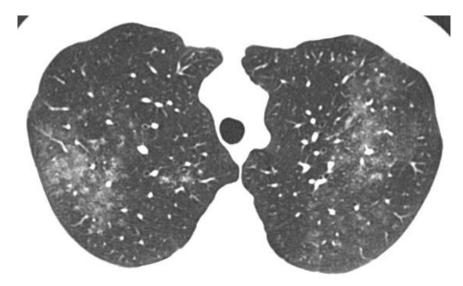
Sarcoidosis

- GGO + Beaded along the fissures



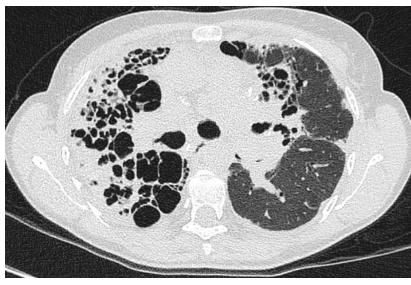
Sarcoidosis

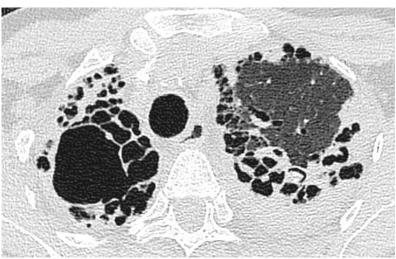
- Septal thickening
- Peri-broncho-vascular thickening



Multitude of perilymphatic topography micronodules

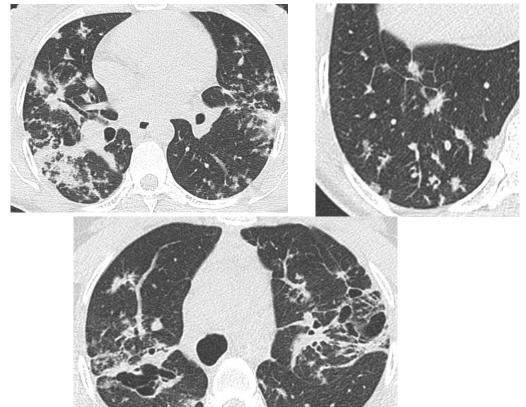
Beaded along the fissures





Sarcoidosis

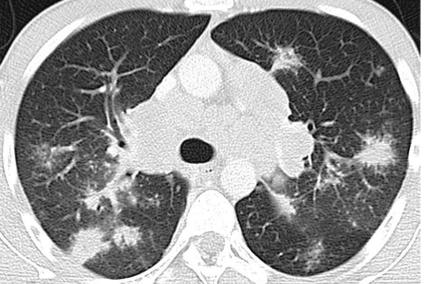
- GGO
- and centrolobular micronodules of the upper regions
- and **pseudo "tree in bud**" of medium regions

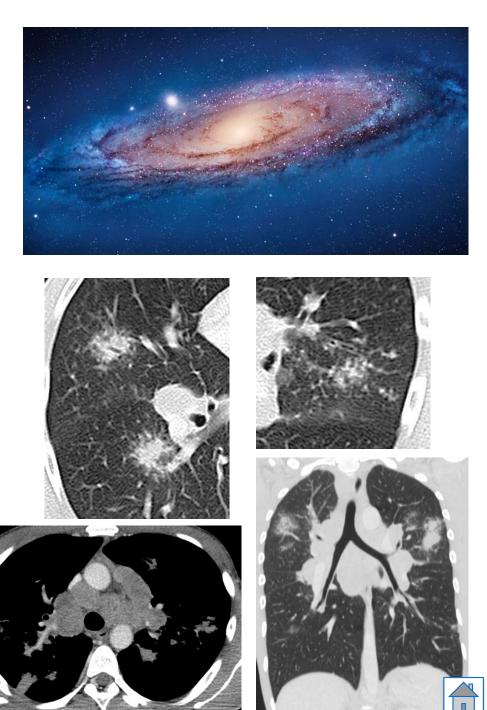

Sarcoidosis stage IV

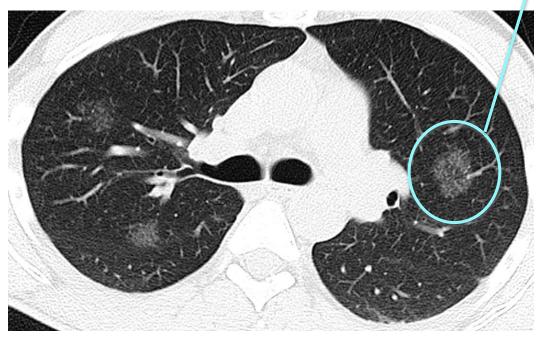
Pleural involvement

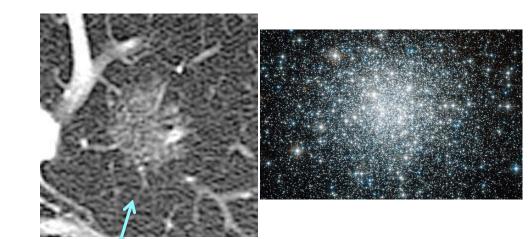
- Pleural thickening
- Effusions

Fibrosis

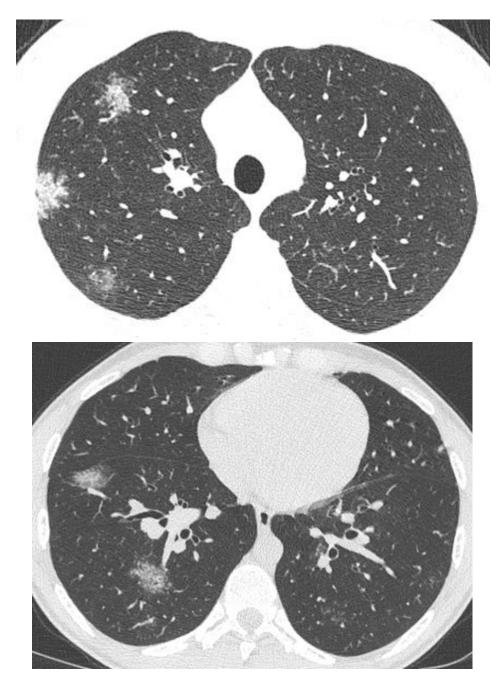

- Fibrosis (9%) : peri-bronchovascular / proximal
- Fibrosis masses : superior predominance and peribronchovascular, can be excavated (aspergilloma)



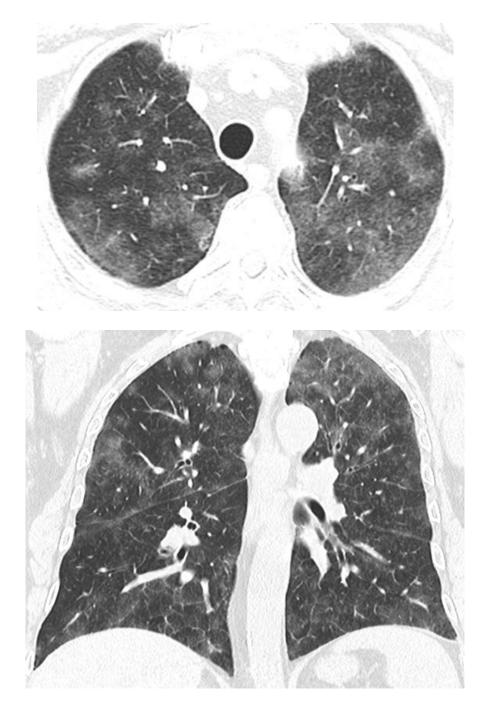

Galaxy sign = cluster of confluent micronodules



28-year-old patient with hearing loss with vertigo And uveitis Chest involvement with « Galaxy sign » → Sarcoidosis



By zooming in, we visualize a multitude of dense micronodules, with sharp edges, grouped in clusters



« Galaxy sign » Sarcoidosis

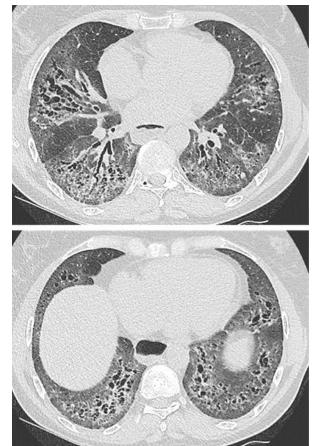
Sarcoidosis

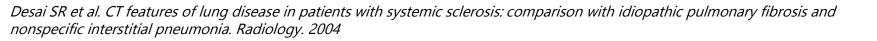
- Predominant GGO
- Slight septal thickening
- Beaded fissure

Connective tissue disease and Lung

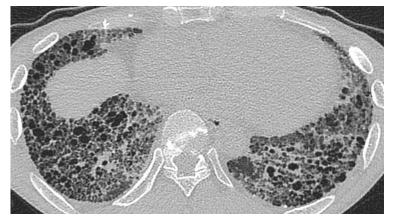
	SLE	Rhumatoid arthritis	Systemic sleroderma	Polymyositis Dermato-poly- myositis	Sjögren	Mixed connective tissue disease
UIP	+	++	++	++	+	++
NSIP	+	+	++++	++++	+	+++
AIP	++	+	+	+		
ОР	+		+	++	+	
LIP					+++	+
Alveolar hemorrhage	+++					
Respiratory tracks		++			++	

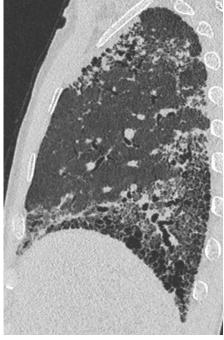
Case courtesy of Dr Wael Nemattalla, Radiopaedia.org, rID: 7409


Scleroderma

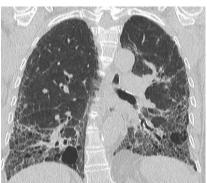

GGO

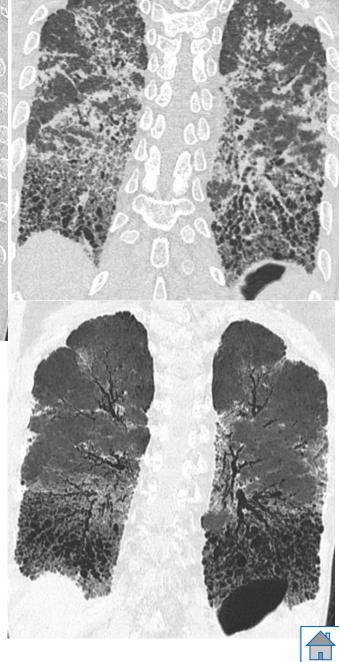
- 30-50 years, F> M 3: 1 (reproductive period ++)
- Biology: FR, Anti-nuclear Ab, Anti SCL-70 Ab (30-70%), Anticentromere Ab (20-40%)
- Musculoskeletal involvement: hand ++ Acro-osteolysis Subcutaneous and para-articular calcifications
- Gastrointestinal involvement: esophagus +++ (80%) 2/3 lower dilation + hypomobility ->Inhalation pneumonia
- Pulmonary involvement NSIP +++ or UIP +
- **PAH** secondary to scleroderma (vascular involvement)

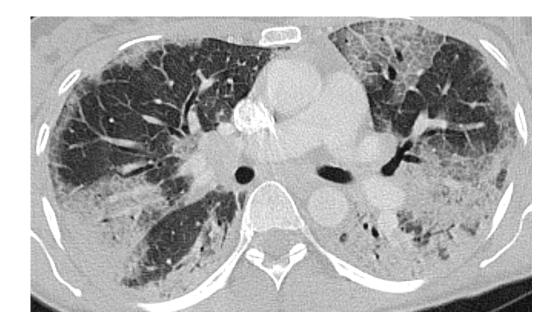



Esophagus enlargement

ILD (NSIP++, UIP) + esophagus enlargement \rightarrow Scleroderma



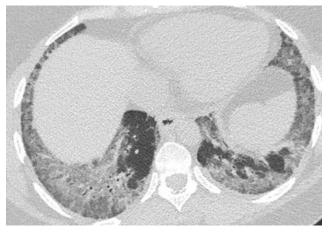




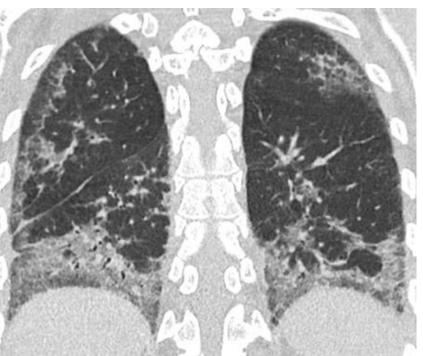
Scleroderma NSIP

Dermato-polymyositis

- Autoimmune myositis
- Adult around the age of 50
- Biology: Increase CPK and specific anti-RNA and anti-Mi2 antibodies
- Imagery:
- Myositis (edematous lesions + fatty infiltration + atrophy), posterior compartment thigh or diffuse
- Dystrophic calcifications: calcinosis, acro-osteolysis
- NSIP-type lung damage

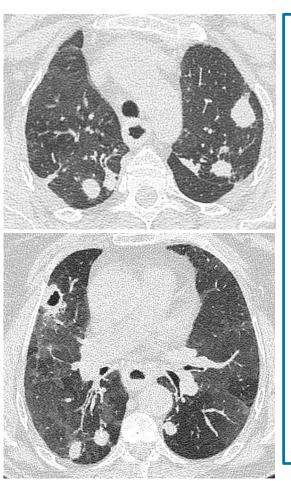


- Sharp syndrom
 = cross of 2 connective tissue disease
- Pattern NSIP _



Antisynthetase syndrome

- Rare disease, affecting more women than men (sex ratio W / M: 3: 2), without predominance of age.
- Association:
 - skin manifestations such as "mechanic hands"
 - inflammatory myopathy
 - Raynaud's syndrome
 - RA
 - pulmonary involvement: NSIP pattern +++, OP ++ or mixed COP + NSIP
- Biologically, presence of anti-nuclear auto antibodies called anti-synthetases
- > Complication: pulmonary arterial hypertension.



Rhumatoid arthritis

- Bilateral and symmetrical arthritis
- Pleuro-pulmonary manifestations during evolution

Pleural involvement +++

- Pleural thickening ++, effusions
- Rheumatoid nodules (aseptic necrobiosis nodules)
 - Prevalence histo series 32%, CT 49%
 - Nodules or masses, rounded, well limited, 0.5 7 cm, single
 / multiple ++, upper and middle territories, peripherals
 - **Excavation ++** (50%)
 - Same appearance as neoplastic nodules
 - Stable or ↓ spontaneously

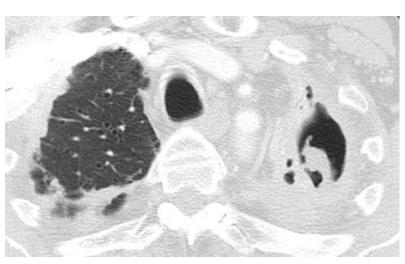
ILD

- UIP (honeycomb) or NSIP
- Biapical fibro-cavitary lesions (idem Ankylosing spondylitis)
- Airway damage ++
 - Bronchiectasis
 - Constrictive bronchiolitis
 - Follicular bronchitis / bronchiolitis
 - Thickening of the bronchial wall, « tree in bud »

Tanaka N, Kim JS, Newell JD et-al. Rheumatoid arthritis-related lung diseases: CT findings. Radiology. 2004

Caplan-Colinet syndrom RA + sillicosis

Aseptic necrobiosis nodules - PR - Crohn


Aseptic necrobiosis nodules in RA

Ankylosing spondylitis

- Pulmonary involvement is rare and always preceded by involvement of the axial skeleton
- Frequently causes restrictive ankylosis syndrome

AS+ aspergilloma

Imaging

- Mosaic lung with air trapping
- Thickening of the bronchial walls
- Thickening of the apical cap and / or apical reticulonodular opacities
- Parenchymatous bands
- Later Retractile and mutilating fibrosis with banded opacities and cystic cavities which can be complicated by aspergilloma
- In the most severe forms the retraction of the upper lobes leads to an ascent of the hilum with traction bronchiectasis.

Vasculitis and lung

Primitive vasculitis

- 1) <u>Small</u> caliber vessels
- Wegener's granulomatosis (GPA)
- Churg and Strauss Syndrome
- Microscopic polyangiitis (MPA)

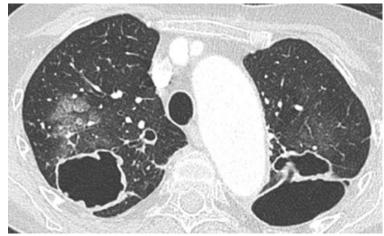
2) Medium caliber vessels

- Knotty peri-arteritis
- Kawasaki disease

3)Large vessels

- Takayasu primary aortitis
- Behcet's disease
- Horton giant cell arteritis
 - Peribronchovascluar thickening
 - Diffuse GGO
 - Crazy paving
 - \rightarrow EGPA (ex Churg)

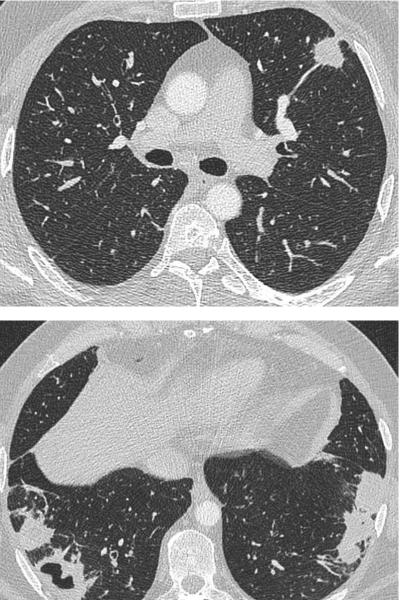
Diagnostic guidelines


- Nodules
- Condensations
 - Cavitations → GPA (ex Wegener)
- Thrombosis
- Pulmonary artery aneurysm
 - → Behçet /Takayasu
- Intra-avleolar hemorrhage
 - \rightarrow MPA
 - \rightarrow GPA
 - \rightarrow Goodpasture
 - \rightarrow SLE

Wegener disease (GPA)

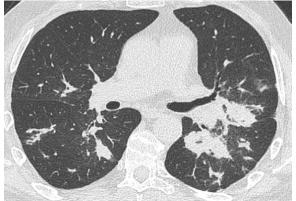
Granulomatosis with polyangiitis (GPA) (new name) Necrotizing granulomatous vasculitis of small and medium caliber vessels

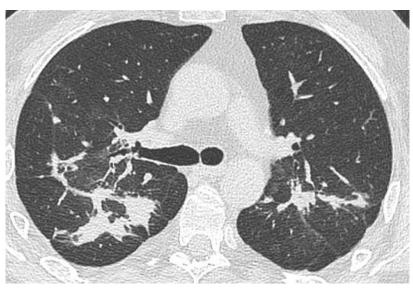
- Necrosis and hemorrhage
- Multisystem disease Lungs (90%)
- Tracheobronchial Kidneys, ORL
- ▶ Age of onset \approx 40 years old
- Biology: inflammatory syndrome, ANCA

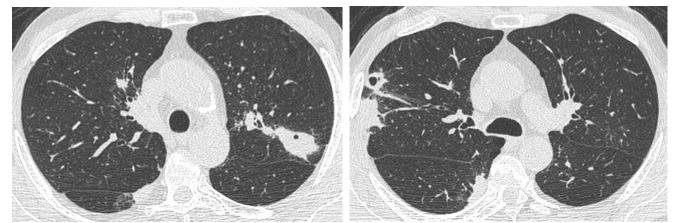


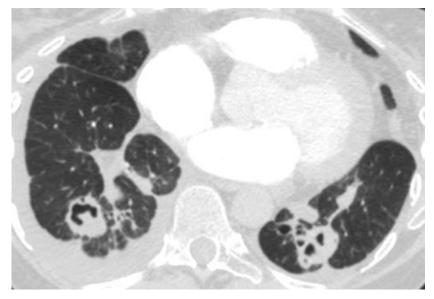
<u>Imaging</u>


- Nodules and masses (1-4 cm) +++
 - Excavation
 - +/- **GGO halo** (perinodular hemorrhage)
- **Condensation / focal or diffuse GGO** (alveolar hemorrhage)
- Triangular sub pleural condensation (infarction)
- Circumferential subglottic tracheal thickening / tracheal proximal portion, smooth and regular stenosis


Wegener Multiple mass syndromes +/excavated






Retractile mass without excavation

Wegener disease

Multiple mass ,excavated

Multiple mass , excavated

Wegener disease

ORL

- Necrosis of the nasal septum, cones, etc.
- Pansinusitis with major thickening of the sinus bone walls

Takayasu

Granulomatous vasculitis of large vessels Disease of "women without pulse" (9F / 1H), beginning: 15-30 years .

- 2 phases
 - Early or active = reversible inflammatory lesions of the vascular wall
 - Late = irreversible scar fibrous lesions
- Treatment: corticosteroids, immunosuppressants, surgery, angioplasty

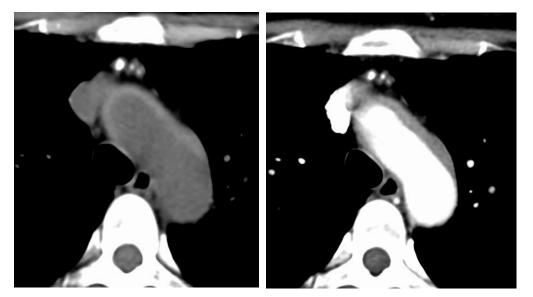

Case courtesy of Dr Varun Babu, Radiopaedia.org, rID: 45951

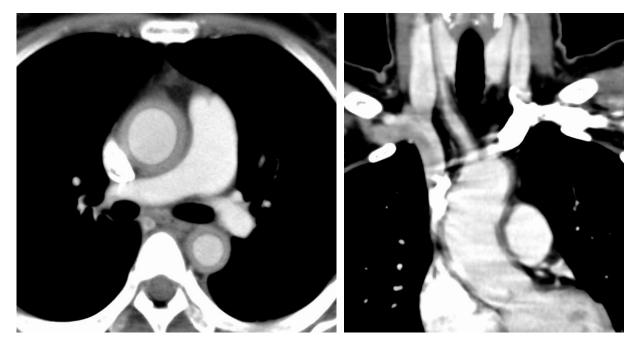
US / CT / MRI

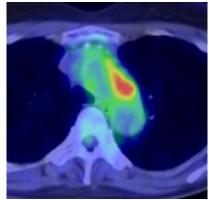
- Active phase
 - Vascular wall thickening: ASD, thoracic aorta, abdominal aorta
 - Aorta wall tickening from 3 to 7mm
 - Wall enhancement

Late phase = complications

- Stenosis 68%, occlusions
- Ectasias 12%, aneurysms 4%
- Coronaries : ostial and non-ostial stenosis, aneurysms


Aortic arch syndrome Case courtesy of Dr Roberto Schubert, Radiopaedia.org, rID:


14316


Gotway MB, Araoz PA, Macedo TA et-al. Imaging findings in Takayasu's arteritis. AJR Am J Roentgenol. 2005

Takayasu

Takayasu

Behçet

- Necrotizing lymphocytic vasculitis of vessels of any size (artery, vein, capillaries): destruction of the media -> aneurysms and thromboses
 - Skin and mucosal involvement (most common): oral and genital ulcers
 - Uveitis
 - Thoracic (10%): chest pain, dyspnea, hemoptysis
- Autoimmune systemic disease by lymphocyte activation via the stress protein HSP evolving by flares
- Young man from the Mediterranean basin
- Treatment: corticosteroids / IS (inconstant efficacy), endovascular treatment of aneurysms

Case courtesy of Dr Ahmed Abd Rabou, Radiopedia,org rID: 32749

Imaging

- Alveolar hemorrhage: localized or diffuse alveolar opacities
- **Pulmonary infarction**: triangular subpleural condensations.
- Venous thrombosis (VCS / VCI)
- Perfusion disorders: mosaic lung

Hiller N, Lieberman S, Chajek-Shaul T et-al. Thoracic manifestations of Behçet disease at CT. Radiographics. 2004

Churg and Strauss (EGPA)

EGPA = Eosinophilic Granulomatosis with Polyangeitis =

necrotizing vasculitis and granulomatous extravascular inflammation

- Clinical, histological and radiological similarities with chronic eosinophilic pneumonitis but associated vasculitis lesions
- Rare, middle-aged adult, predominantly male
- Biology Inflammatory syndrome Hypereosinophilia +++ (blood and LBA)

Multisystem involvement

- Late onset asthma > 20 years
- Chronic sinusitis
- Asthenia, prolonged fever
- Neuritis lower extremities, cardiac involvement, skin involvement

Classically evolution in 3 phases

✓ Prodromal phase:

- Asthma and rhinitis appearing around the thirties on an allergic ground
- Asthma is an absolute criterion (sensitivity = 100%)
- ✓ Hypereosinophilic phase
 - Pulmonary ++
 - Intestinal
- Vasculitic phase Pulmonary infiltrates Multineuritis Pleurisy, myocarditis Digestive, skin, kidney damage

<u>Imaging</u>

- GGO/ consolidation areas
- In scattered areas
- Peripheral and superior predominance
- (Looks like PCE but more polymorphic :)
- Central lobular micronodules (12%) Nodules (12%)
- **Bronchial wall thickening** +/- septal thickening: interstitial edema secondary to cardiac involvement

ACR (4 des 6 critères)

- Asthma
- Blood hyper-eosinophilia> 10%
- Multineuritis or poly-neuropathy
- Pulmonary infiltrate
- Sinusitis
- Extravascular eosinophilia

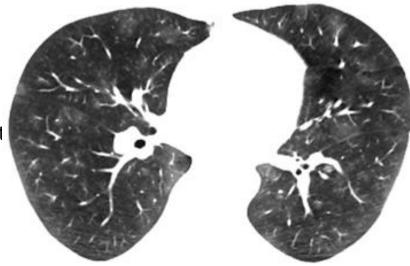
- GGO ranges / consolidation
- in an asthmatic patient
- With hypereosinophilia Think of Churg and Strauss

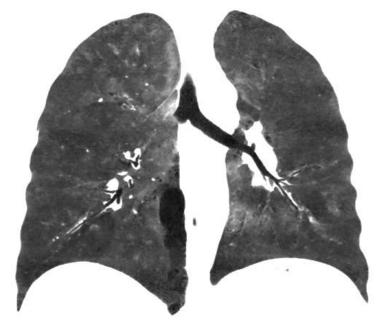


DDX

Other pulmonary diseases associated with hypereosinophilia:

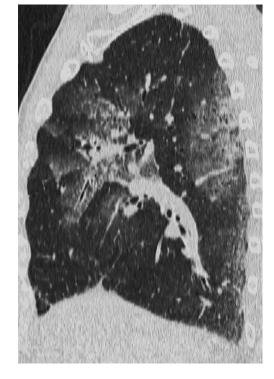
- Löffler
- ABPA
- PCE
- but no extrathoracic signs in these diseases


EGPA (ex Churg and Strauss)


- Asthma
- Hyper eosinophilia
- Bilateral consolidation
- bronchiolar involvement
- In addition, sinus involvement and multiple mononeuropathy

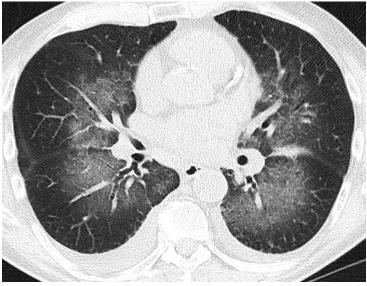
Microscopic polyangiitis

- Non-glomerulomatous necrotizing vasculitis
- Inflammation of arterioles, venules and capillaries
- Main cause of **pneumo-renal syndrome** (alveolar hemorrhage + glomerulonephritis)
 - Frequent and severe kidney damage (90%)
 - Pulmonary involvement (15 to 30% of patient
- Male ++, start at 50
- pANCA anti MPO

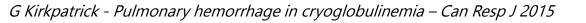


Imaging

- GGO and centrolobular micronodules (reflecting intra-alveolar hemorrhage)
- Pleural effusion in 15% of cases
- Pulmonary edema in about 5% of cases



MPA



Cryoglobulinaemic vasculitis

- Vasculitis of small and medium vessels
- Cryoglobulins: Ig which precipitate, several types I, II, III
- Associations with several pathologies: hepatitis C, autoimmune hepatitis, leukemia, myeloma, mycoplasma, PR, lupus, Sjögren
- CT: **GGO** (alveolar hemorrhage)

Goodpasture syndrom

- Reno-pulmonary syndrome with anti-GBM Ab (basement membrane)
- Rare (0.5 / 1,000,000), young adult, predominantly male
- Clinical:
 - Diffuse alveolar hemorrhage, hemoptysis, respiratory failure, iron deficiency, anemia
 - Glomerulonephritis, ARI and CRI
- Treatment: Corticosteroids and immunosuppressants

Imaging finding

- Acute: alveolar hemorrhage
 - GGO and multiple bilateral condensations
 - perihilar and lower topography
- Evolution towards an interstitial disease
 - Reticulo-nodular opacities
 - Septal thickening
 - Fibrosis .

SLE Systemic Lupus Erythematosus

- Pleuritis ++
- pericarditis
- Pulmonary hypertension
- Lupus pneumonia (DAD,...)
- PID

.

- Alveolar hemorrhage
- Diaphragmatic dysfunction

Hypersensitivity pneumonitis

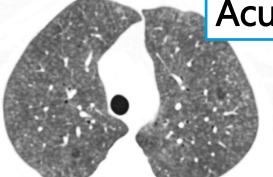
Examples of Hypersensitivity Pneumonitis

HP Hypersensitivity pneumonitis

- = EAA Extrinsic allergic alveolitis
- Inflammation secondary to inhalation of an allergen
- Organic or inorganic particles: microbes, animal or plant proteins, chemical compounds, > 200 antigens
- Farmer's lung, bird breeder, ...

	Disease	Antigen Source	Putative Antigen
tis	Bird fancier's disease	Various birds	Protein in avian feces, feathers
	Cheese worker's lung	Moldy cheese	Penicillium species
	Coffee worker's lung	Coffee bean	Unknown
	Farmer's lung	Moldy hay	Thermophilic actinomycetes
of	Furrier's lung	Animal fur	Protein in animal fur
	Hot tub lung	Warm water	Mycobacterium avium complex
	Humidifier lung	Warm water	Thermophilic actinomycetes
	Japanese summer disease	Moldy houses	Various fungi
es,	Machine worker's lung	Metal-cutting fluid	Mycobacterium species, Gram-nega- tive bacilli
	Malt worker's lung	Moldy malt	Aspergillus species
	Mushroom worker's lung	Mushrooms	Mushroom spores, various other fungi
	Peat moss worker's lung	Moldy peat moss	Various fungi
	Sauna bather's lung	Sauna water	Various fungi
	Sequoiosis	Moldy redwood dust	Various fungi
	Suberosis	Cork	Aspergillus species, cork dust

Histopathology


- = Chronic bronchial inflammation and
- peribronchial tissue
- Cellular Bronchiolitis
- Chronic interstitial inflammatory infiltration
- Poorly limited granulomas
- Alveolar/interstitial giant cells

Biblio: Hypersensitivity pneumonitis: a historical, clinical, and radiological review Jan V, Hirschmann, Radiographics 2009

Hypersensitivity pneumonitis

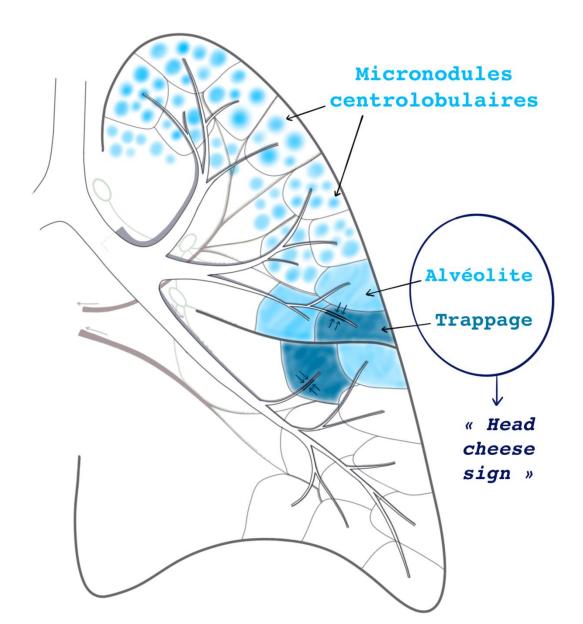
<u>Typical appearance</u> Numerous **centrolobular fuzzy micronodules with upper** predominance.

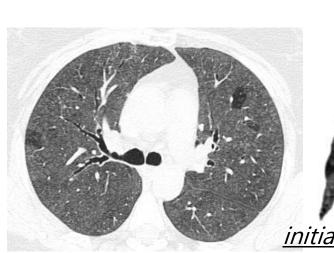
- <u>Clinic</u>: **4-12 hrs after exposure,** fever, myalgia, headache, dyspnea

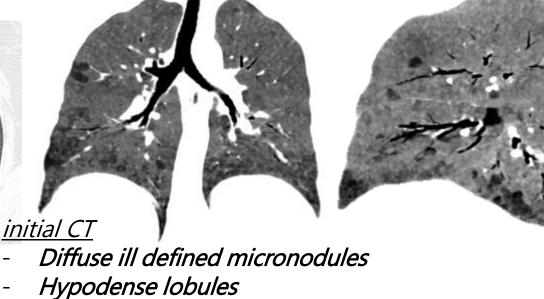
- Imaging
 - Centrolobular ill defined nodules ++
 - GGO
 - **Diffuse** bilateral and symmetrical or patchy **middle** and lower lung regions
 - Hypodense lobule (trapping due to bronchiolar obstruction) +/- cysts
 - Combination GGO patchy (alveolitis) + normal lung + trapping (bronchiolitis) **"head cheese sign".**
- <u>BAL</u>: white blood cells ++ with lymphocytes ++, CD8 ++.
- <u>DD</u>: smoker's bronchiolitis, NSIP, DIP, infantile bronchiolitis, acute Pn eo, viral infection, pneumocystis.

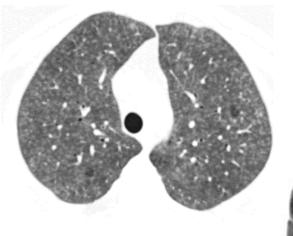
Biblio: Hypersensitivity pneumonitis: a historical, clinical, and radiological review - Jan V, Hirschmann, Radiographics 2009

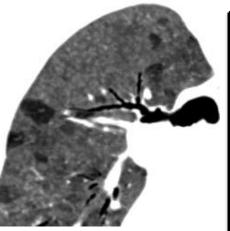
Acute/sub-acute form



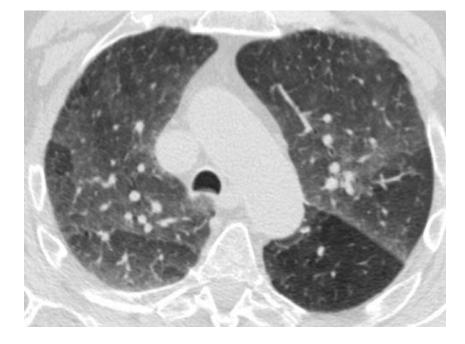



<u>Pneumopathie</u>


<u>d'hypersensibilité</u>

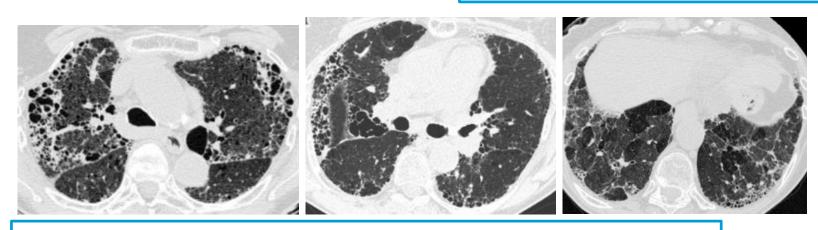


58-year-old patient, who "shelters" pigeons on her balcony, with non-febrile dyspnea. = **Hypersensitivity pneumonitis**


<u>CT scan 2 weeks later (intensive care)</u>


- Diffused ggo
- Intralobular reticular syndrome (crazy paving)
- Hypodense lobules

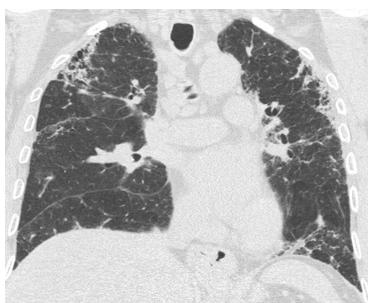
Hypersensitivity pneumonitis Farmer's lung in an 81-year-old man

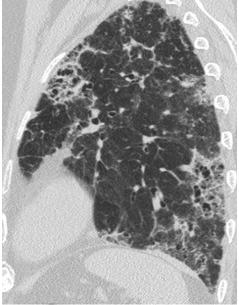


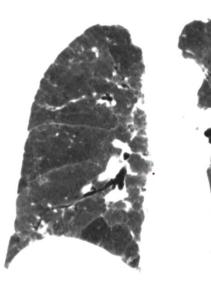
Hypersensitivity pneumonitis

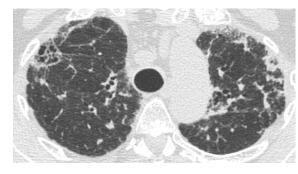
Chronic form with fibrosis

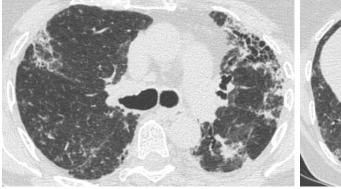
Anarchic fibrosis ++ without any particular distribution

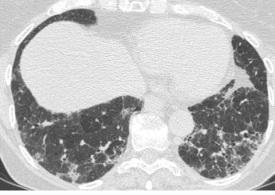

- Intra-lobular reticulation
- Bronchiectasis / Traction bronchiolectasis
- +/- Honeycomb
- Middle regions of the lung, relative respect for extreme bases and apex
- +/- Centrolobular ggo(active inflammation)
- +/- Lobular trapping
- DD
 - NSIP, IPF
 - PHS-like: ggo, trapping, no basal predominance

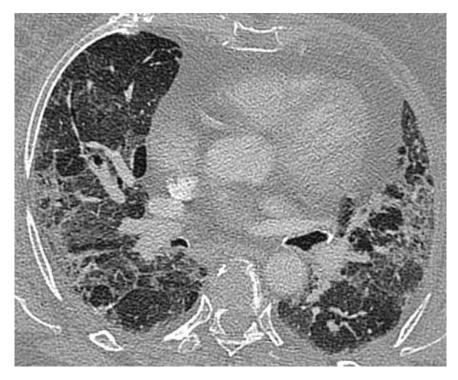


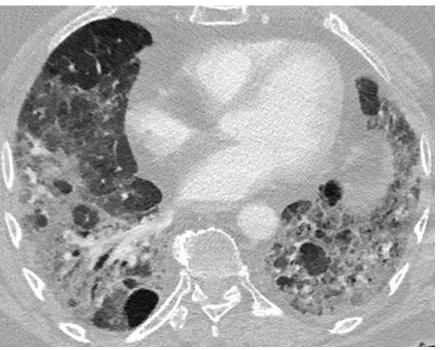

chronic PHS Jan V. Hirschmann Radiographics 2009


Biblio: Hypersensitivity pneumonitis: a historical, clinical, and radiological review - Jan V, Hirschmann, Radiographics 2009

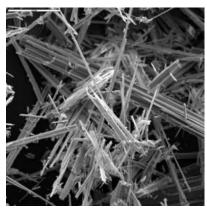


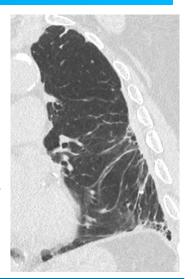



Chronic HP Anarchic fibrosis



HP chronic

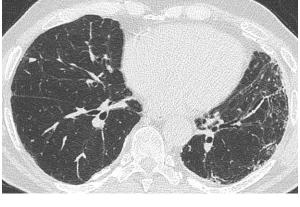


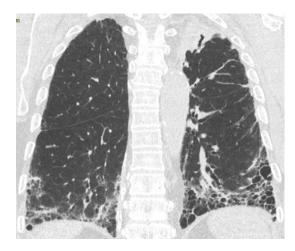

Asbestosis-related diseases

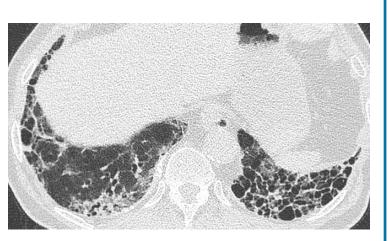
Pneumoconiosis due to prolonged inhalation of asbestos fibres

- Asbestos fibre: lg 100µm, Ø3µm bronchioles, alveoli fibrosis
- Anapath: asbestos **bodies**, asbestos fibres, fibrosis.

Crow's feet




- 1) <u>Pleural abnormalities</u> (does not fit the definition of asbestosis!!!!)
 - Pleural plaque +++: parietal leaflet, sign asbestos exposure, > 20 years old, raised +/- calcified, bilateral asymmetrical
- Pleural effusion: ^{1st} sign of pleural involvement, within 10 years, hemorrhagic exudate
- **Visceral pleural fibrosis**: less specific, thickening and fibrosis of the visceral pleura / fusion with parietal pleura
- Computed tomographic atlas of benign asbestos pathologies C Beigelman-Aubry, Journal of Radiology 2007


Asbestos: When the Dust Settles—An Imaging Review of Asbestos-related Disease - Huw D. Roach, Radiographics 2002

2) <u>Parenchymal abnormalities</u>

Consequences of pleural abnormalities

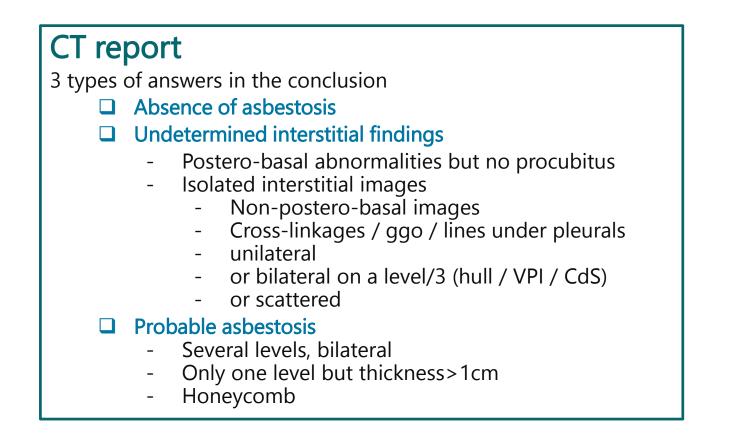
- "Crow's foot"
- Round atelectasis

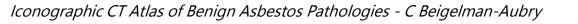
Asbestosis ++++

- Subpleural, basal regions
- Centrolobular micronodules :"dot sign" (early)
- Intra-lobular reticulation
- GGO
- Curvilinear subpleural line (Yoshimura)
- Traction bronchiectasia, honeycomb

Computed tomographic atlas of benign asbestos pathologies - C Beigelman-Aubry, Journal of Radiology 2007

Asbestos: When the Dust Settles—An Imaging Review of Asbestos-related Disease - Huw D. Roach, Radiographics 2002


CT protocol


 Spontaneous contrast, forced inspiration !! To think of a propeller in procubitus if declining anomalies !!!

PDL must be located at 200 mGy.cm

!! Search well

- Bronchopulmonary cancers
- Mesothelioma

Silicosis

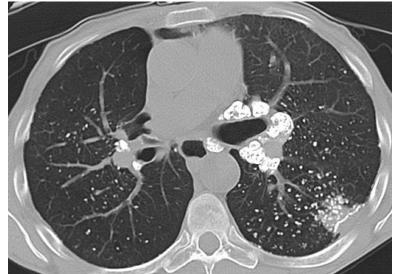
Inhalation of mineral dust (quartz)

- Acute silico-proteinosis (rare)
- Single silicosis: micronodules after 10 years of exposure
- **Complex** silicosis

Acute silico-proteinosis

(rare, severe++, 6 months to 3 years after exposure)

- Centrolobular nodules
- GGO
- Consolidation , crazy paving


Simple silicosis +++

- **Peri-lymphatic micronodules** (+/- calcified)
 - **Subpleural** (pseudo-plaque forming clusters under pleural) and **peribronchials**
 - Upper predominance (inhalation pathology):
 dorsal segment upper lobes +++
 - Pleural thickening
- Symmetrical mediastinal and hilar adenomegaly, eggshell calcifications (very suggestive)

Silicoproteinosis acute (courtesy Chong Radiographics)

Simple silicosis

Chong S, Lee KS, Chung MJ et-al. Pneumoconiosis: comparison of imaging and pathologic findings. Radiographics. 2006

Complex silicosis

- Aggregation of nodules in a larger mass > 1 cm
- Evolution from single silicosis

CT SCAN

- Peri lymphatic Micronodules + lymph nodes
- Progressive massive fibrosis
 - = Mass Syndrome > 1cm
 - Associated with peripheral micronodules
 - Bilateral
 - Upper lobes (posterior and apical segment of the lower lobes, right ++)
 - If >4 cm: hypodense patches corresponding to central necrosis excavation
 - Periphery hiles
 - PET: can be very positive (inflammatory activity)
 - If evolution: suspect tuberculosis or carcinoma

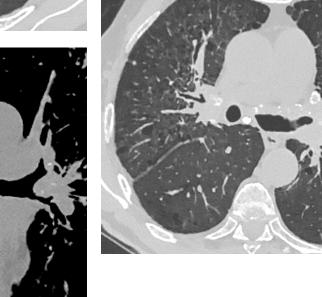
The differential diagnosis with neoplasia is difficult:

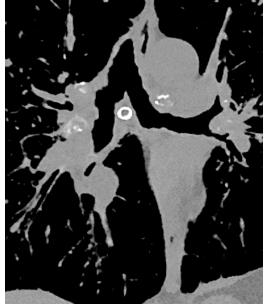
- Evolution ++
- PET : non discriminative
- MRI ++ because neoplasia: hyperT2 while fibrosis : hypoT2 / muscle

Matsumoto S. Diagnosis of lung cancer in a patient with pneumoconiosis and progressive massive fibrosis using MRI. Eur Radiol 1998

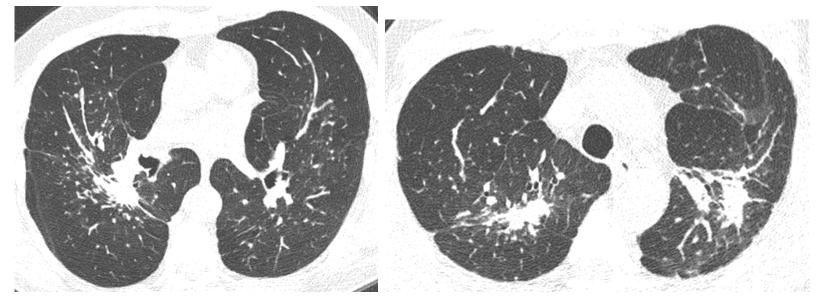
DD silicosis

- Sarcoidosis ++
- Other pneumoconiosis
 - Anthracose (silica-free coal): similar appearance
 - Berryliosis

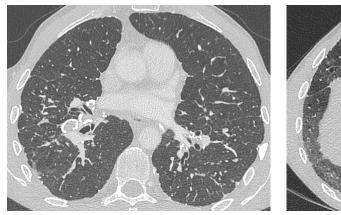

Associations

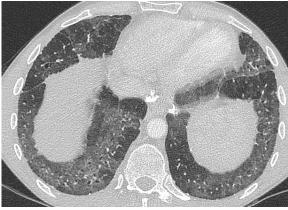

- Caplan Syndrome: RA+ pneumoconiosis
- Erasmus Syndrome: pneumoconiosis+ scleroderma
- Silico-tuberculosis

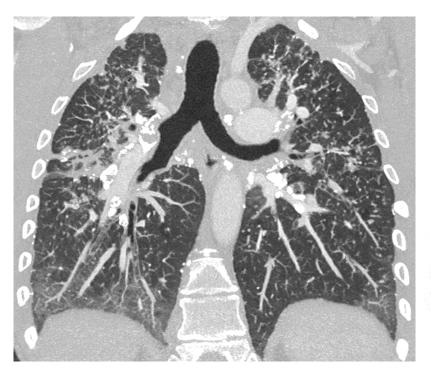
Complex silicosis


Calcified nodes + Perihilar and upper fibrotic pseudomass




Two cases of complex silicosis


- Pseudo mass of the upper and para hilar regions
- Architectural distortion
- Peri-Lymphatic micronodules



Erasmus Syndrome

- **Silicosis:** calcified +/- **perihilar** and bi-apical **fibrotic mass** +/- calcified lymph nodes
- Scleroderma: interstitial base syndrome with fibrosis.

Other pneumoconiosis

- Anthracosis

- Coal (coal worker)
- Silicose-like imaging

- <u>Berylliosis</u>

- Ceramics, aerospace
- Granulomes
- Imaging similar to sarcoidosis

Heavy Metals

- Cobalt++, tungsten, titanium, tantalum
- Interstitial syndrome (GGO, crosslinking, +/- honeycomb)
- DDX: UIP, NSIP

<u>Talcosis</u>

 Inhaled: centrolobular and subpleural µnodules, pseudomass (hyperdense foci).

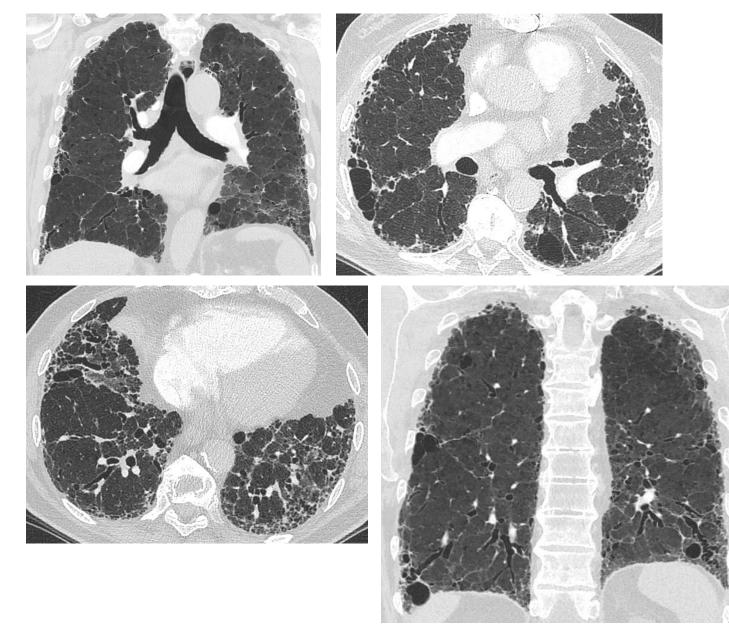
- <u>Siderosis</u>

- Iron oxide dust, soldering arc
- III defined centrolobular micronodules +/- VD

Dénomination	Fibrogène non = 0 oui = +	Contaminant	Professions exposées
Silicose) •	Poussière renfermant de la silice libre	Forage, extraction du minerai ou de roches Broyage de roches Forage de tunnels Manutention de produits et poudres contenant de la silice Fabrication porcelaine, céramique Fonderie, polissage, décapage Polissage au jet de sable
Asbestose) +	Amlante (silicate complexe) Variétés communes : chrysotile, amosite, trémolite, crocidolite	Très nombreuses, mais à des degrés divers surtout : Extraction du minerai (+) Transformation textile du minerai (+) Calorifugeage, isolation Garnitures et joints (freins) Application au pistolet (+) Fabrication carton et papier d'amiante
Bérylliose	+	Bényilium (silicate double d'aluminium et de glucinium)	Extraction du mineral Fabrication d'alliages pour industrie aéronautique de précision Fabrication tubes fluorescents et rayons X Industrie atomique Verrerie d'art
Fibrose à « poussières mixtes »	+	Quartz	Fonderie, sablage, minage dans les industries de fer et acler Mines d'hématite, nettoyage et écaillage de chaudières Soudure à l'arc, découpage au chalumeau dans les fonderies
	+	Taic	Extraction dans les mines, industries du caoutchouc, de céramique, prod de beauté, papiers
	+	Mica (composés de silicates d'aluminium)	Papeterie, isolants électriques
	Ŧ.	Smyridose : émeri et corindon (oxydes d'aluminium impurs)	Polisseurs de métaux qui utilisent le papier d'émeri et ceux qui le fabriqu
	+	1	Fondeurs de corindon
	3	Bauxite (alumine ou	Mineurs de bauxite
	+	oxyde d'aluminium)	Manufacture d'abrasifs
	+	Schistes	Ardoisiers
		Sidérosilicose due aux poussières	Fonderies, meuleurs de fer
	+	d'oxyde de fer et de silice	Mineurs de fer du Bassin Iorrain
	+	Spath-fluor (fluorine) Tungstène	Employés à l'extraction de ce minerai Industries aéronautique, automobile, instruments divers de haute résistar
Anthracose (pure)	0	Poussière de charbon	
Argyro-sidérose	0	Poussière d'argent et de fer	Mineurs, polisseurs
Barytose	0 + si association de silice	Dérivés du sulfate de baryum	Céramique, verrerie d'optique, pyrotechnie, laques, peintures, insecticide usages en laboratoire, glaçage du papier, industrie du savon, linoléum caoutchouc
Sidérose	0	Poussières et fumées	Mines de fer, soudure à l'arc en air confiné
	+	d'oxyde de fer	
	si association de silice		
Stannose	0	Oxyde d'étain	Raffinage du minerai, préparation de l'oxyde d'étain, céramique

Pulmonary Drugs Toxicity

- Frequent and under-diagnosed
- Cytotoxic+++ (cyclophosphamide, busulfan ++) and non-cytotoxic drugs (amiodarone→ NSIP, hyperdense opacities (+dense liver/rate)
- > 100 drugs
- Pneumotox ++ website


Variable histopathological manifestations

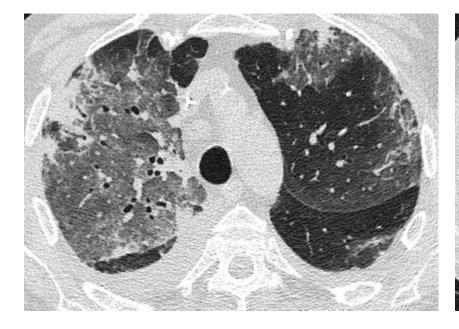
- DAD +++ Exudative phase (^{1st} week) then proliferative, fibrosis appears within a week
- NSIP
- **OP**
- Eosinophilic pneumonia
- Obliterative Bronchiolitis
- **Pulmonary hemorrhage**, edema, hypertension
- Veno-occlusive disease

Principal Histopathologic Manifestations of Pulmonary Drug Toxicity				
Mechanism of Injury	Drugs			
DAD	Bleomycin, busulfan, carmustine, cyclophosphamide, mitomycin, melphalan, gold salts			
NSIP	Amiodarone, methotrexate, carmustine, chlorambucil			
BOOP	Bleomycin, gold salts, methotrexate, amiodarone, nitrofurantoin, penicillamine, sulfasalazine, cyclophosphamide			
Eosinophilic pneumonia	Penicillamine, sulfasalazine, nitrofurantoin, nonsteroidal anti-inflammatory drugs, para-aminosalicylic acid			
Pulmonary hemorrhage	Anticoagulants, amphotericin B, cytarabine (ara-C), penicillamine, cyclophosphamide			

Pulmonary Drug Toxicity: Radiologic and Pathologic Manifestations Santiago E. Rossi, Radiographics 2000



Pulmonary Drug Toxicity: Radiologic and Pathologic Manifestations Santiago E. Rossi, Radiographics 2000



Drug induced pneumonia NSIP type

Toxic eosinophilic pneumonia link to intake of Daptomycin

- Acute dyspnea and hypereosinophilia at D5 of treatment
- Bilateral multifocal opacities and bilateral effusions, traction bronchiectasis begin in anterior regions

Amiodarone Lung

- treatment > 2 months, >60 years, dose
 >400mg...
- Prevalence: 1.4-18%.
- <u>Imaging</u>
 - Lung
 - ILD : NSIP++
 - **Consolidation often hyperdense** (due to iodine)
 - Hyperdensity **liver** (80%) + **heart** (20%)

Courtesy Santiago E. Rossi Radiographics

Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 6539

Radiation induced lung disease



Imaging

- GGO (minimal shape) / lung consolidation
- Well-defined or curvilinear limits, not anatomical but radiation field
- **OP** : especially in breast cancer under radiotherapy

Rule of 4

- 4 weeks to deliver 40 Gy (dose>40Gy)
- 4 weeks after the end of SR: early attainment
- 4 months later: peak of radiation pneumopathy.
- 12 months (4x3): consolidation decrease , scars ++
- After 12 to 18 months, change in appearance → recurrence, infection. PET useful for detecting recurrence

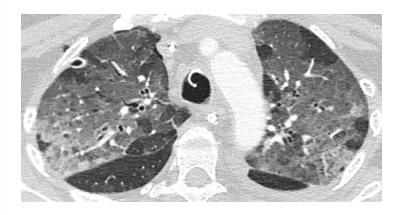
Courtesy Choi et al -Radiographics

Effects of Radiation Therapy on the Lung: Radiologic Appearances and Differential Diagnosis Yo Won Choi et al - Radiographics 2004

ARDS

- = Lesional Pulmonary Oedema Secondary to a condition
 - Lung
 - or extra-pulmonary
- **AIP** = idiopathic form of ARDS
- Histology: Epithelial and endothelial lesions

Diagnostic Criteria


- Pa02/FiO2 < 200
- Bilateral lung opacities
- No cardiac failure

Lung etiologies

- Fat embolism
- Drowning
- Viral pneumonia
- Oxygen toxicity
- Inhalation tobacco
- CIVD
- Gastric fluid aspiration
- Contusion

Extra-pulmonary

- etiologies - Pancreatitis
- Pancreatiti
- Burns
- Trauma
- Sepsis
- Hypovolemic shock
- Brain damage
- Transfusion reaction
- Cardiopulmonary bypass

Zompatori M, Ciccarese F, Fasano L. Overview of current lung imaging in acute respiratory distress syndrome. Eur Respir Rev. 2014

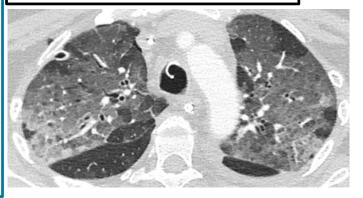
ARDS Imaging

1) <u>Acute phase</u>: ^{1st} week

Bilateral diffuse opacities with antero-posterior gradient+++

- **Consolidation of** the **declive regions** (atelectasis) of the lung with **GGO on the** surface
- Normal lung in non-declivable areas
- More peripheral distribution/ PAO
- Pleural effusion (50%)
- 2) Intermediate or proliferative phase: ^{2nd} week
- Occurrence of reticular opacities
- Traction bronchiectasias (sometimes reversible)

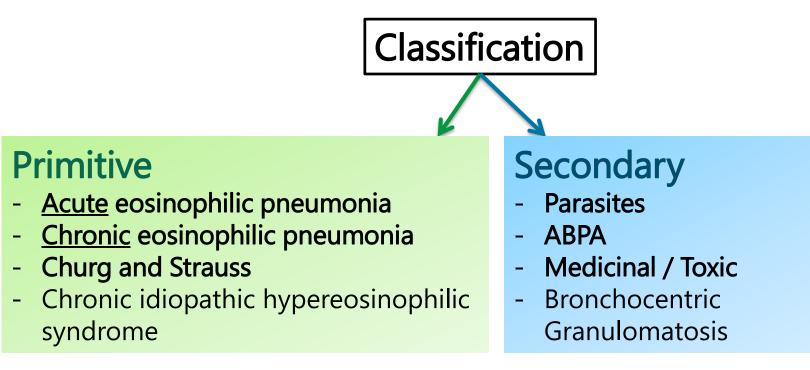
2) Late stage (fibrosis)


- Normal or abnormal (> 70% of patients keep abnormalities at 6 months)
- GGO, reticulation
- Cysts (hyper-insufflation?)
- Traction bronchiectasia ++
- Anterior ++ (hyper-insufflation lesions?) or diffuse ++ (rarely posterior) regions

ARDS of extra-pulmonary origin - Symmetry, slope

Courtesy Sarah Sheard - Respiratory Care

ARDS of **pulmonary** origin: - Asymmetry, less sloping

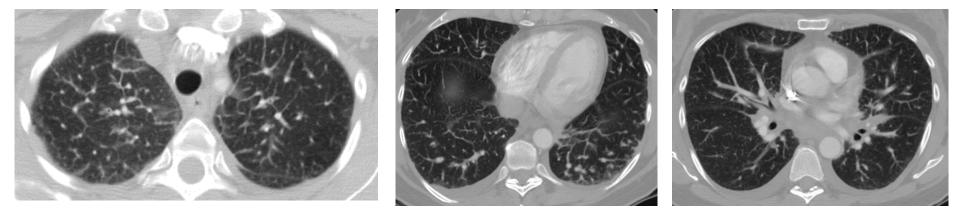

Zompatori M, Ciccarese F, Fasano L. Overview of current lung imaging in acute respiratory distress syndrome. Eur Respir Rev. 2014

ARDS differential diagnosis

- PAO
 - Difficult to distinguish, but <u>some signs point to PAO:</u>
 - Cardiomegaly
 - Central distribution (butterfly wings) +++
 - Increased septal+++ and peri-bronchial thickening
 - Spreads ++
- AEP Acute eosinophilic pneumopathy
- Diffuse alveolar hemorrhage (anemia, hemoptysis)
- Pneumopathy (no gravitoid dependence)

Eosinophilic lung

<u>Definition</u>: a group of conditions characterised by pulmonary infiltrates, associated with hypereosinophilia in the blood or alveoli.



Biblio: Jeong, Yeon Joo, et al. "Eosinophilic Lung Diseases: A Clinical, Radiologic, and Pathologic Overview - Radiographics 2007

Acute eosinophilic pneumonia

Acute febrile idiopathic pathology with dyspnea due to pulmonary eosinophilia

<u>CT: Looks like a PAO</u> +++

- **GGO +++** (100%)
- Consolidation
- Regular septal thickening +++ (90%)
- Centrolobular nodules
- Random distribution, diffuse
- Pleural effusion (bilateral, possible)
- Absence of cardiomegaly

AEP to discuss whether

- Normal heart PAO
- Young adult without cardiac deficiency
- Even in the absence of plasma hypereosinophilia (initial phase)

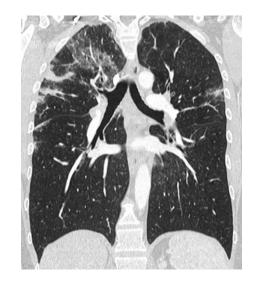
Differential diagnosis

- PAO
- AIP/ARDS
- Eosinophilic lung (toxic, parasites, Churg & Strauss, chronic hypereosinophilic syndrome)

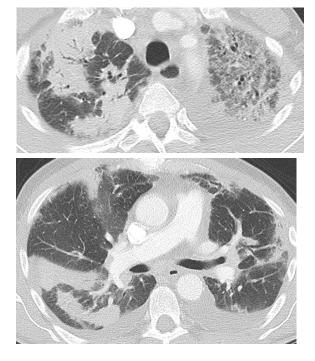
Diagnostic Criteria

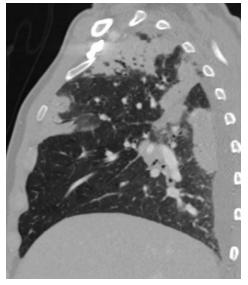
- Acute febrile illness < 1 month
- Hypoxemia
- Diffuse GGO, reticulations, consolidation, eosinophils in the BAL > 25%.
- Staining for negative fungal and parasitic infections
- Response to corticosteroids, no recurrence after discontinuation

Chronic eosinophilic pneumonia


- Most frequent form of hypereosinophilic pneumonia in metropolitan France
- Coexistence of **asthma (**50%) (and/or atopy) sometimes several years earlier
- Peak frequency: **40 to 50 years**, predominantly **female** (2/1)

Imaging


- Alveolar consolidation (100%)
- **GGO** (88%)
- **Peripheral** distribution (85%)
 - → Distribution in <u>« reverse butterfly wings"</u>
- Upper regions predominance (40%)
- Absence of pulmonary fibrosis
- Fixed Condensations
- + alveolar nodules, strip opacities



Chronic eosinophilic pneumonia

Parasities Cause

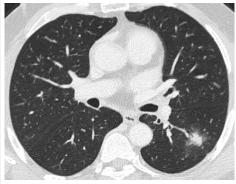
Physiopathology

2 mechanisms to eosinophilic infiltration in parasites infections

Loeffler's syndrome

- Direct invasion (ascaris, *schistosoma,* filariasis, paragonimiasis...)
- Allergic reaction (*entomoeba histolytica*, toxocarose, *clonorchis sinensis*)

Imaging



Ascariasis Courtesy Martnez S Radiographics

- Ascaris++, anguillulose: refers to an acute benign eosinophilic pneumonia of unknown cause. In some patients a parasitic cause, a drug cause, an ABPA is found.
- Peripheral eosinophilia
- Absent or slight symptoms: cough, fever, dyspnea.
- One or more **consolidation** ranges with blurred contours or **GGO** or **nodule with ggo halo**
 - Transitional and/or migratory
- Spontaneous resolution of opacities (1 month)

- Specific lesions for each parasite

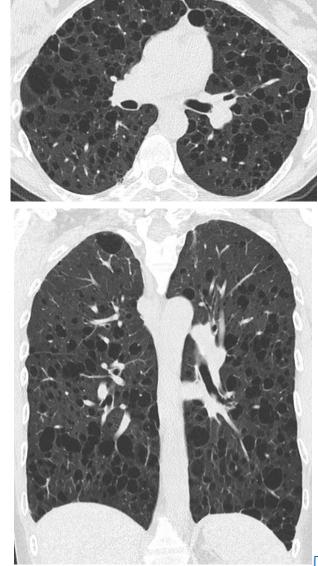
Anguillulose

Idiopathic hypereosinophilic syndrom

- Very rare, middle age, predominantly female
- Major and prolonged peripheral hypereosinophilia (>6 months)
- Negative etiologic balance
- Presentation
 - General non-specific signs: AEG, febricule
 - Visceral damage secondary to eosinophilic infiltration: cardiovascular (severe)++, neurological (severe), pulmonary ...

Imaging

- Pulmonary damage in **40-50% of cases** (often OAP secondary to cardiac damage)
- Histology: major eosinophilic infiltration, architectural destruction, necrotic areas
- Non-specific radiological signs
- Consolidation
- GGO focal or diffused
- Nodules +/- halo
- Septal thickening in case of cardiac damage



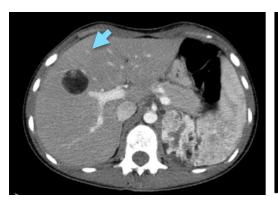
Lymphangio-leiomyomatosis (LAM)

- Rare, <u>woman of</u> childbearing age Smooth muscle cell proliferation
- - In the pulmonary interstitium
 - And along the retroperitoneal and thoracic lymphatic vessels
- Can be integrated with tuberous sclerosis (1% of cases)


CT SCAN

- Lung: cysts of diffuse distribution, variable size 2-5mm to 10mm (depending on evolution time), otherwise normal lung
- <u>Pleura</u>: chylothorax, pneumothorax
- Extra-pulmonary impairment (76%):
 - Retroperitoneal lymphangioleiomyomas + lymphadenopathy
 - Renal angiomyolipomas

Biblio: Case 116: Lymphangioleiomyomatosis - Anil K. Attili and Ella A. Kazerooni - Radiology 2007



Lymphangio-leiomyomatosis (LAM)

Hepatic Hamartoma

Renal angiomyolipomas



LAM/ Bourneville disease

Lymphangioleiomyomatosis (cysts with regular, diffusely distributed contours) complicated by bilateral pneumothorax

Tuberous sclerosis

- Autosomal dominant hereditary with variable penetrance and phenotypic expression. Phacomatosis.
- 50-70% spontaneous mutations
- 1/6000 to 10 000 births

Ubiquitous hamartomatous locations

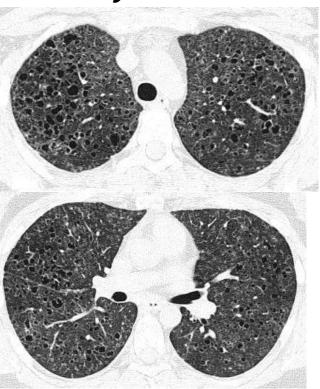

- Brain (mental retardation, epilepsy)
 - Subependymal nodules
 - Cortical Hamartoma (tubers)
 - Giant cell astrocytoma
- Eyepiece
- Cutaneous
- kidney
 - kidney angiomyolipomas
- Lung
 - LAM (1%)
 - More rarely, Multifocal micronodular pneumocyte hyperplasia(MMPH): ill defined micronodules, bilateral, 1-10mm.
- Hepatic
 - Hamartoma or adenoma
- Cardiac
 - Rhabdomyoma
- MSK
 - Osteopoecilia

Multifocal micronodular pneumocyte hyperplasia(**MMPH**)

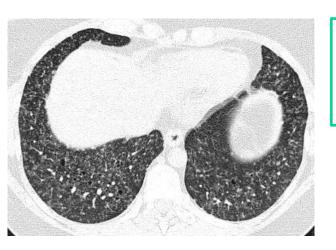


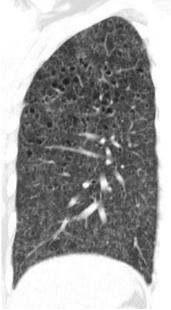
Langerhans cell histiocytosis

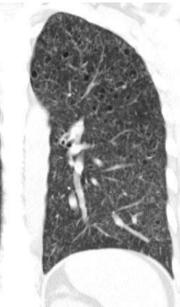
- Rare, almost exclusively in **smokers** (consistent with antigenic exposure hypothesis)
- Diagnosis often confirmed by biopsy
- Treatment: stop smoking +++
- Variable evolution: 1/2 stable, 1/4 regression, 1/4 progression


Imaging (the semiology differs according to the evolutionary stage)

- **Diffuse centrolobular ill defined micronodules** (early stage)
- Excavated ("holed") nodules and/or thin or thickwalled cysts with irregular margins+++
- Evolution to "lacey" lung appearance.
- Middle and upper regions with respect to costodiaphragmatic +++
- DD: in contrast to lymphangiomyomatosis, cysts of varying size, sometimes confluent, lose their rounded contours.
- pneumothorax

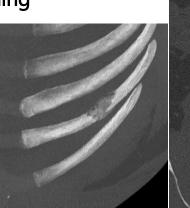



Leatherwood D. et al. Radiographics. 2007;27:265-8 Pulmonary Langerhans Cell Histiocytosis.



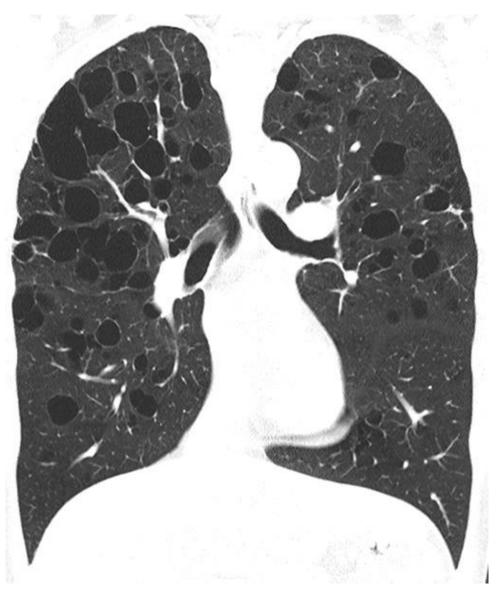
Centrolobular micronodules

Pituitary infundibulum thickening

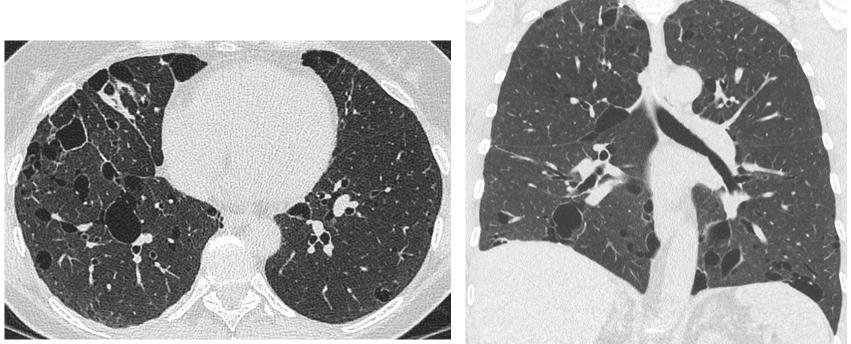

Langerhans cell histiocytosis

- Lung damage (centrilobular micronodules + cysts)
 - Costal eosinophilic granuloma Pituitary infundibulum thickening

Micronodule


- \rightarrow Nodule with hole
 - \rightarrow Thick-walled cyst
 - \rightarrow Thin-walled cyst

 \rightarrow Confluent cyst

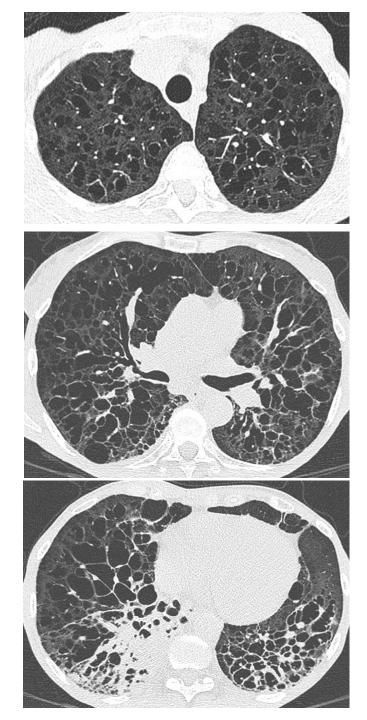

Langerhans cell histiocytosis : irregular shaped cysts

Rare cystic diseases

Birt Hogg Dubé Disease

- Pulmonary cysts (spontaneous pneumothorax)
- Kidney tumours (chromophobic cell cancer, oncocytomas)
- Cutaneous manifestations (angiofibromas, perifollicular fibroids...)

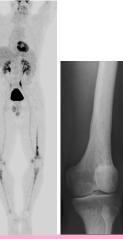
Birt Hogg Dubé disease in a 48-year-old patient



Light chain deposition disease in a 72-year-old patient

Light chain deposition disease

- Multiple cysts
- Monoliform bronchiectasias



Non-amyloid light chain deposit disease

Diffuse significant cystic impairment associated with monoliform and cylindrical bronchiectasias

Erdheim Chester disease

Non-Langherhansian histiocytosis

- Etiology unknown (rare)
- infiltration by lipid-laden histiocytes (foamy macrophages.

Multi-systemic impairment

- Bone: bone pain, bilateral and symmetrical osteosclerosis of the long bones, diaphyseal, metaphysis +/- epiphysis of the lower limbs, periosteitis (2/3), scintigraphic fixation.
- Lung: interstitial syndrome
- Vascular
 - Thoracic peri-aortic (aortic) infiltration + coronary + OSAD + abdo/iliac
 - Retroperitoneal fibrosis
- Peri-renal infiltration +++ ("hairy" kidneys)
- CNS: pituitary infundibulum /posthypohysis (diabetes insipidus), exophthalmos, xanthelasma
- Bilateral adrenal hypertrophy

Case courtesy of Dr Andrew Dixon, Radiopaedia.org, rID: 9351

Lung: Interstitial syndrome

- Predominant **septal lines** in **the anterior and superior regions with symmetrical** reticulations
- Centro-lobular micronodules
- Multifocal GGO areas, diffused
- Pleural effusion / associated pleural thickening in about 50% of cases
- Rarer cysts (borderline with histocytosis X)
- Frequent periaortic infiltrate
- +/- pericardial infiltrate, posterior infra mediastinal

Pleuro-pulmonary impairment in Erdheim-Chester disease. A.L. Brun , D. Touitou, J. Haroche, Y. Badachi, P. Grenier, C. Beigelman-Aubry, Journal of Radiology. Vol 89 - N°10, Oct 2008, p1455

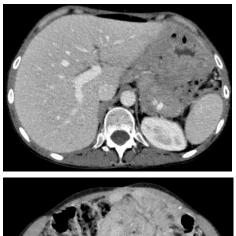


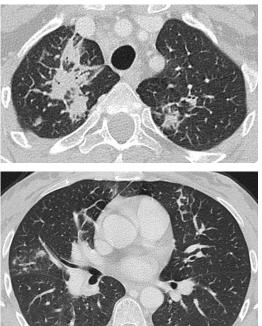
« Hairy » kidneys

Thoracic aorta/ abdominal aorta/ AMS

Erdheim Chester

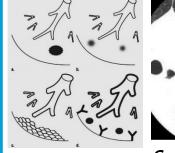
<u>Neuro/ORL impairment</u>

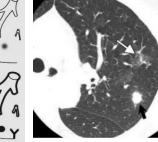

- Xanthelasma
- Brain infundibulum enhancement
- Thickening meckel cavum

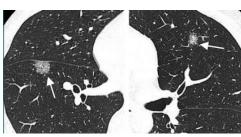

Rosai Dorfman disease

Non-Langerhansian histiocytosis, inflammatory

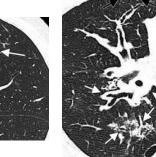
- Rare
- CD68 positive, CD1a negative histiocyte infiltration of the sinus ganglia
- Massive lymphadenopathy beginning in childhood or young adulthood (mean age 21)
 - Cervical lymphadenopathy ++
 - Inguinal, axillary, mediastinal, para aortic lymph nodes
- Extranodal damage (30%)
 - Lung (2.5%): nodules and perilymphatic interstitial infiltration
 - Skin, nasal cavity, orbit(7%), bone, intracranial and spinal disease: rare (rare)

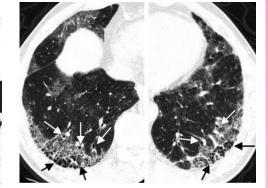


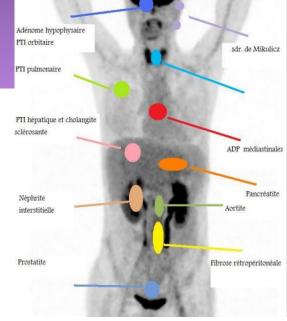



lgG4 disease

- Extensive IgG4-positive plasma cells and T-lymphocyte infiltration of various organs
- Keys to diagnosis
 - Determination IgG type (IgG4>1.35g/L)
 - Immunostaining the biopsy with Ab anti-IgG4
 - Sensitivity to corticosteroids
- a) Solid nodule
- b) Round-shaped ground-glass opacities
- c) Interstitial: septal thickening +/- peribronchial/pleural consolidation
- d) Broncho-vascular inflammation



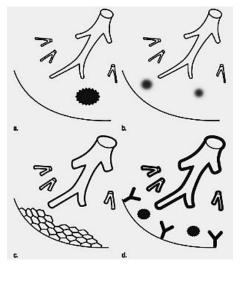

Solid nodule


Round GGO

Courtesy Inoue and al- Radiographics BV thickening

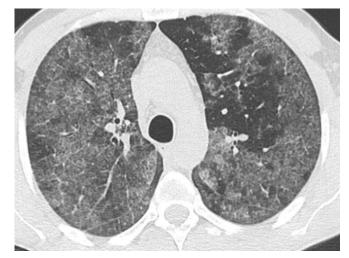
Interstitial

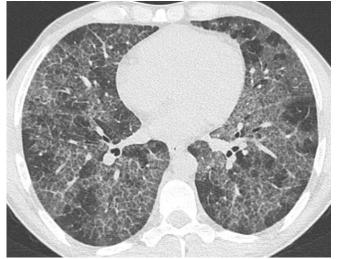
Courtesy Uncle Paul


Multisystemic disease

- Retroperitoneal fibrosis
- Kidney damage: tubulointerstitial nephropathy or pseudotumoral damage.
- Autoimmune pancreatitis
- Sclerosing Cholangitis
- Lymphadenopathy
- Riedel's thyroiditis
- Mikulicz's disease
- Inflammatory pseudotumors
- Lung

D. Inoue, Y. Zen, H. Abo,T. Gabata, H. Demachi, T. Kobayashi, et al. Immunoglobulin G4 related lung disease: CT findings with pathologic correlations. Radiology 2009

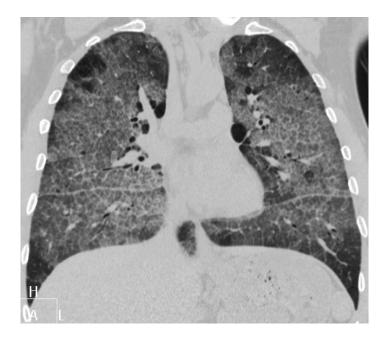

Pulmonary Alveolar proteinosis


- Dysfunction of pulmonary surfactant properties and immune function
 - Idiopathic (90%): middle-aged patient
 - <u>Secondary</u> (5-10%): inhalation/occupational exposure (silica, cement, aluminium, titanium, NO2...), hematological disease, immunodeficiency.
 - <u>Congenital</u> (2%)
- Rare, strong association with smoking
- Clinical (variable): moderate dyspnea progressive respiratory distress

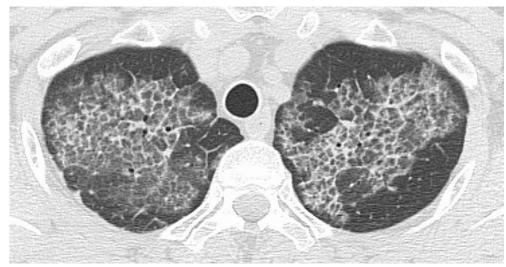
<u>Diagnosis</u>: lung biopsy or BAL (intra alveolar deposition of **protein material**, dissolved cholesterol and eosinophils)

<u>Treatment</u>

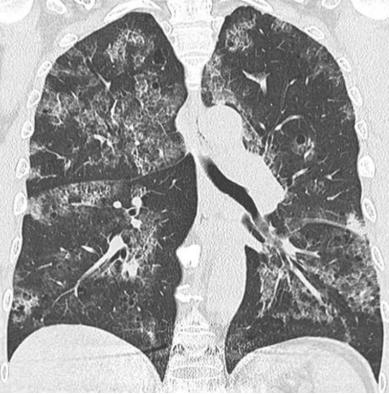
- Idiopathic whole-lung bronchoalveolar lavage
- Secondary shutdown of the trigger factor
- Congenital: transplantation


Biblio: Pulmonary alveolar proteinosis - Aletta Ann Frazier, Radiographics 2008

Imaging


- Crazy paving +++
 - **Diffuse**, **bilateral**, **geographical** with clear limits, **savings of healthy lobules**
- Often respect of costo-phrenic angles, apex, sub-pleural regions, etc.
- Fibrosis (<5%, late)

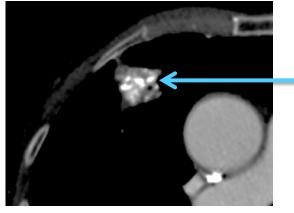
Multiple differential diagnosis (see diagnostic range semiology)


Alveolar lipoproteinosis

Crazy paving with here a superior predominance of opacities and a respect of the under pleural regions.

Autoimmune alveolar proteinosis

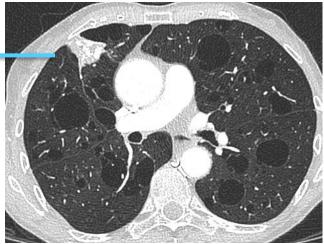
Amylosis


- Extracellular tissue deposit : amyloid substance (fibrillar proteins)
- Localized to a specific organ or systemic
- Biochemistry: 2 types: AL (Ig light chains) or AA (non-Ig protein)
- 2 forms
 - Primitive amyloidosis (AL)
 - Secondary amylose
 - Dysglobulinemia / myeloma (AL)
 - Chronic infection (tuberculosis), chronic inflammation (RA), tumour (Hodgkin's, deep cancer) (AA)

Tracheobronchial shape

Rare

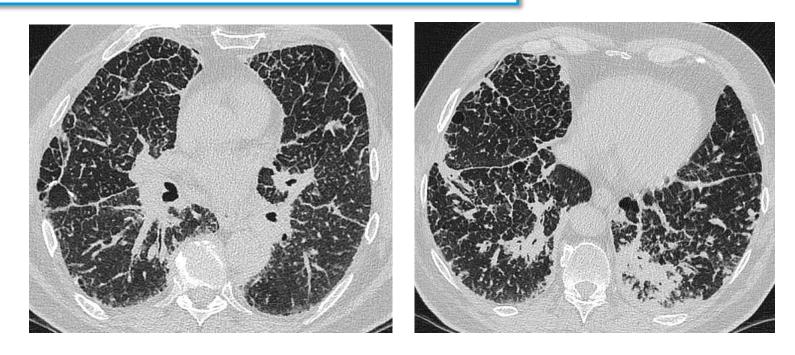
- Multiple small dispersed or confluent plaques
- Or diffuse damage
- +/- stenosis
- +/- calcifications
- Trachea/ large bronchus
- Circumferential ++



Nodular amylosis

Elderly patients. Often isolated, often asymptomatic, good prognosis.

- Solitary or multiple ++ nodule size, shape, variable number (0.5 to 5 cm), peripherals, well defined contours, round/ oval/ lobulated
- +/- Cysts
- +/- Calcifications (central or irregular or cloudy) or ossifications
- Slow increase in nodule volume, no regression


Biblio: Chest Imaging of Adults 3rd edition - edited by Philippe Grenier

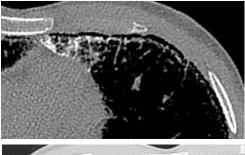
Diffuse pulmonary amylosis

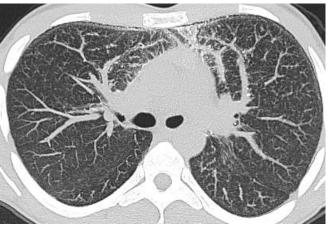
Rare form

Latent, progressive dyspnea

- Irregular thickening of interlobular septa
- Intralobular reticulation
- Micronodules
- Consolidation
- Lower and sub-pleural regions of the lung
- +/- small foci of calcifications

Biblio: Chest Imaging of Adults 3rd edition - edited by Philippe Grenier

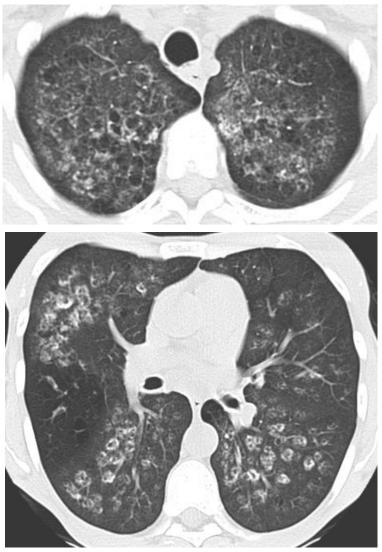



Alveolar microlithiasis

- Alveolar calcospherite deposits
- Rare, etiology unknown

- > GGO
- Micronodular calcifications +++
 - Slight on ggo area
 - On the periphery of theSPL
 - Subpleural cysts (black band) (risk of pneumothorax)
- Distribution: 2 patterns
 - Peripheral and basal
 - Previous Regions

Case courtesy of Dr Dalia Ibrahim, Radiopaedia.org, rID: 47106


Differential diagnosis

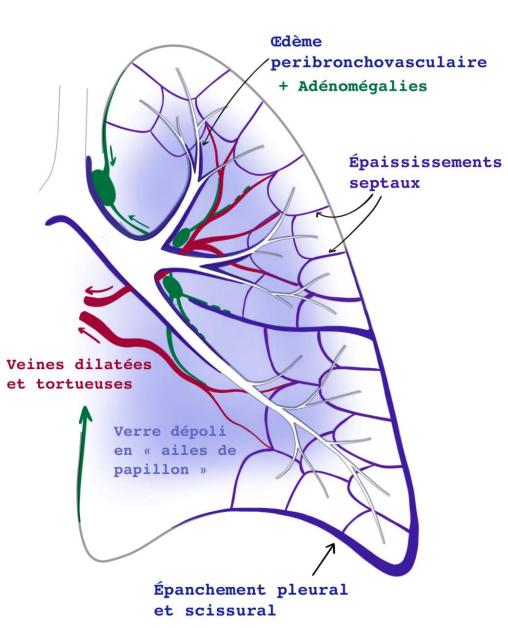
- Metastatic pulmonary calcification see next slide, larger calcifications, within GGO centrolobular, less well limited, upper areas
- Idiopathic ossification: elderly patients, dendritic ("coral") calcifications of the lower regions
- Talcosis, silicosis, sarcoidosis, amyloidosis, tuberculosis, mitral stenosis

Metastatic pulmonary calcification

- *Misleading term for metastatic: these are not metastases but an accumulation of excess calcium in the lung.*
- Secondary to a calcium homeostasis disorder
 - Primary or secondary hyperparathyroidism
 - Chronic Kidney Failure
 - Calcitherapy
 - Myeloma
 - Multiple bone metastases
- CT SCAN:
 - Calcifications with densities greater than 100 HU in GGO centrolobular glass hearths
 - Medium and apical predominance

Case courtesy of Dr Alexandra Stanislavsky, Radiopaedia.org, rID: 10887

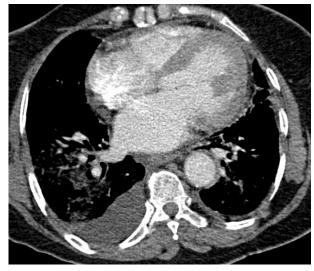
Cardio-vascular disease



- Pulmonary hypertension
 - Chronic pulmonary embolism
 - PVOD 📕
 - Pulmonary capillary haemangiomatosis
- Pulmonary embolism →
 - Pulmonary infarction
- Pulmonary artery aneurysm
- Stenosis of pulmonary artery

<u>Edème aigu du</u>

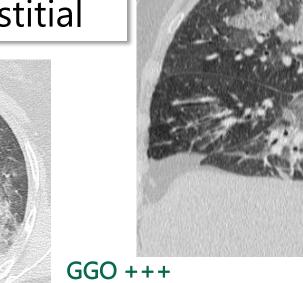
poumon


Imaging

- Alveolo-interstitial syndrom

- Interstitial syndrom: regular septal lines (interstitial + chronic component)
- +/- Alveolar syndrom: GGO (alveolar component visible in acute installation pulmonary oedema)
- **Bilateral, symmetrical, peri-hilar** "butterfly wing" (sparing subpleura space because of resorption of the interstitial liquid by the pleura, absent in the acute stage before resorption).
- Posterior Slope Gradient
- Associated signs
 - Dilated tortuous veins
 - Pleural effusions
 - Frequent hypodense centimetric
 lymph node swollen regressing
 after treatment
 - **Cardiomegaly** / left atrium dilatation / signs of heart disease

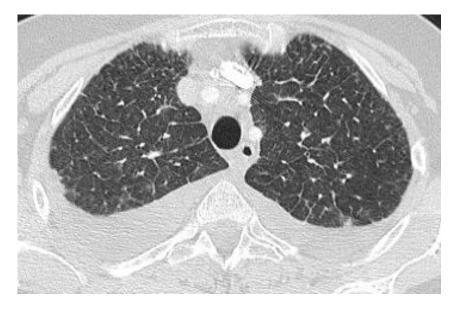
. n. l



Pleural effusion

Interlobular septal thickening +++ (interstitial component)

Pulmonary Oedema Alveolo-interstitial



(Alveolar component)

PO

- Thickening of septal lines
- Diffuse hypodense lymphadenopathy related to heart failure

Other types of POs

Focal pulmonary edema

- **Trap** (differential diagnosis with pneumopathy, infarction, inhalation)
- Observed in RSL
- In patients with mitral insufficiency
 - (Flow directed to the right upper pulmonary vein)

High altitude mixed edema

- Alteration of alveolar-capillary permeability by hypoxic vasoconstriction and increase in capillary pressure
- 2-5 d, 4000 m, individual susceptibility
- Rapid improvement (downhill/O2)

Neurogenic mixed edema

- Severe head trauma
- Mechanism: hydrostatic pressure increase++ and vasoconstriction PA + endothelial lesions
- Exclusion of other causes: cardiac infarction, inhalation, overload
- Imaging: Bilateral PO upper lobe.

Lesional edema without DAD

- Etiologies
 - Transfusions, drugs
 - Causes of ARDS: gas embolism, toxic shock.
 - Immunotherapy IL2
 - Infectious (hantavirus)
- Hydrostatic edema > ARDS

Mixed edema by re-expansion "a vacuo"

- Rare complication of re-expansion of the lung parenchyma after collapse (fluid or gas effusion).
- Uncertain pathophysiology (mechanical factors, proinflammatory cytokines, altered capillary permeability)
- Risk factor
 - Duration and extent of collapse
 - Rapid re-expansion of the lung

Post-obstructive mixed edema

- Secondary to upper airway obstruction
- Misunderstood mechanism: ↓+++ P inspiratory (↑gradient transcapillary) + ↑ permeability
- Laryngospasm ++ (during intubation or post-operatively after anesthesia), foreign body, strangulation

ARDS

- Increased capillary permeability by endothelial damage associated with major lesions of the alveolar epithelium
- Imaging: see chapter ARDS

Pulmonary hypertension

- PH = Average Pap > 25 mmHg at rest

- Hemodynamic classification
 - Hyperkinetics (increased flow)
 - *Post-capillary* Pulmonary Arterial Hypertension (Papo augmentation): cardiac origin and pulmonary veins
 - *Post-capillary PH* (increased Rvp): respiratory system, pulmonary arteries
- Venice Classification 2003

Poster "Pulmonary Arterial Hypertension: What role for the radiologist? Lombard V, CHU Nancy-brabois, JFR 2010

Venice Classification

1/ PH-P ("proliferating")

- Primitive: sporadic or familial
- Associated (no pulmonary parenchyma involvement): anorexigenics, HIV, connective tissue diseases, portal hypertension, drugs...
- Venous (MVOP) or capillary (pulmonary capillary hemangiomatiosis) abnormalities
- Persistent hypertension of the newborn, congenital heart disease

2/PH-VD

Left heart disease and valvulopathy

3/ PAH-pathology and/or hypoxemia COPD, ILD, OSA, altitude, fibrosis, alveolarcapillary dysplasia

4/ HTAP-TED

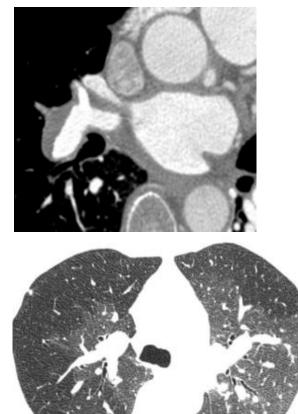
Proximal or distal thromboembolic disease

5/ Miscellaneous PAHs (rare)

Sarcoidosis, histiocytosis X, pulmonary vessel compression (adenopathy, mediastinal fibrosis, tumour)

Pulmonary hypertension

Positive diagnosis in CT scan


- PA diameter > 29 mm or > aortic diameter
- Segmental branches > 1.1 x bronchial size (3/4 lobes)
- Rapid reduction in arterial size
- Dilatation and hypertrophy RV
- Mosaic Perfusion
- Dilatation of bronchial arteries

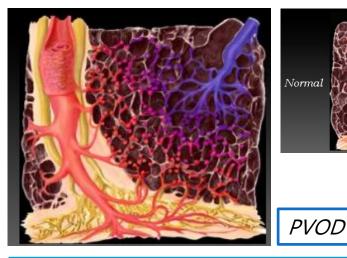
Confirmation by catheterization of the right cavities and evaluation of its pre- or postcapillary character.

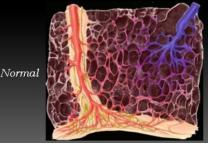
Chronic pulmonary embolism

Off-centre « marginated" thrombus

Pulmonary angio CT +++

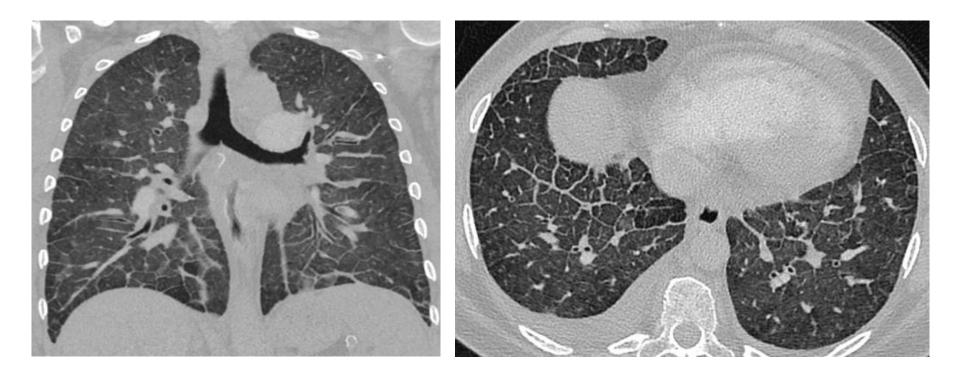
- HP


- Off-centre "parietalized" thrombus / eccentric thrombus+++
- pulmonary arterial bands/pulmonary arterial webs
- « Dead tree » appearance of the pulmonary arteries
 - By reduction of irregular caliber of occluded arteries
- +:- Calcifications
- Mosaic perfusion aspect +++
 - Alternating clear hypoperfused areas
 - And <u>healthy hyperdense areas with large</u> <u>vessels++</u>
 - No change in the expiration gradient
- **Mosaic Perfusion**
- « Dead tree » aspect


Poster "Pulmonary Arterial Hypertension: What role for the radiologist? Lombard V, CHU Nancy-brabois, JFR 2010

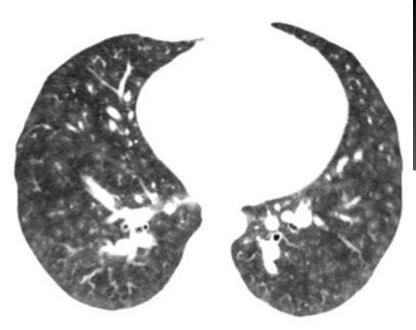
PVOD : pulmonary Veno-Occlusive Disease

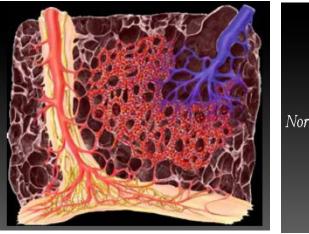
- Child or young subject, rare
- Repeated thrombosis and fibrosis of pulmonary veins and venules, capillary proliferation
- Sometimes combined with contraception, chemotherapy, BM transplant, autoimmune disease
- Clinic: Progressive dyspnea, PO

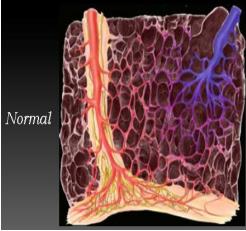

Imaging

- Septal thickening +++
- GGO (decompensation, advanced stage)
- Lower and declining regions
- Absence of left cardiac hypertrophy +++

PVOD and scleroderma

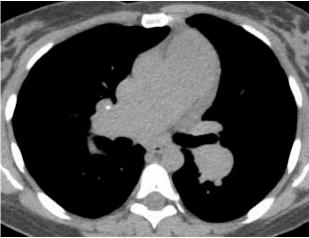

Septal thickening and GGO of post-capillary origin + no cardiomegaly

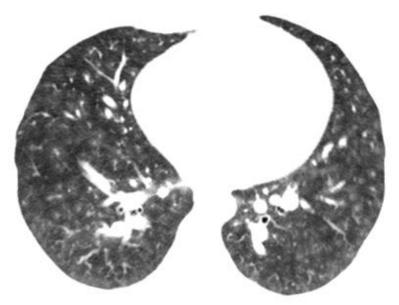




Pulmonary capillary hemangiomatosis

- Very rare
- physiopathology: intralobular capillary proliferation in the foreground


CT : ill defined **micronodules related** to capillary proliferation



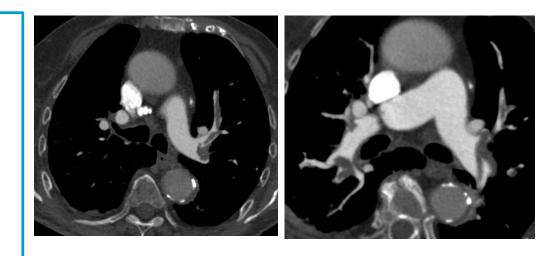
Pulmonary capillar, hemangiomatosis Centrolobular micronodules

Pulmonary embolism

- Occlusion of one or more pulmonary artery(ies) by fibrinocruoric thrombus
- ^{3rd} cause of acute mortality
- Mortality: past medical history + right ventricular failure
- Morbidity: persistent right heart failure

Pulmonary angioscanner +++

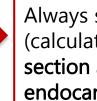
- Direct signs
 - Endoluminal defect of the lobar arteries, segmental, subsegmental...
- Indirect signs
 - Pulmonary infarction
 - Pleural effusion
 - atelectasis


<u>Technique</u>

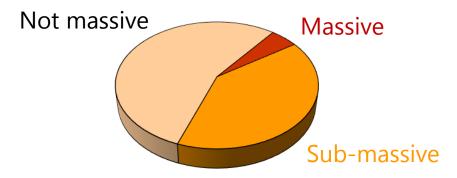
- Rapid injection (> 4 cc/sec)
- and ROI of detection in the pulmonary artery or straight cavities (alternative: bolus test)

Interpretable if Pulmonary artery trunk density > 200 HUs Interpretable sub-segmental arteries

- Stein PD, Woodard PK, Weg JG et-al. Diagnostic pathways in acute pulmonary embolism: recommendations of the PIOPED II Investigators. Radiology. 2007
- Wittram C, Maher MM, Yoo AJ et-al. CT angiography of pulmonary embolism: diagnostic criteria and causes of misdiagnosis. Radiographics. 2004



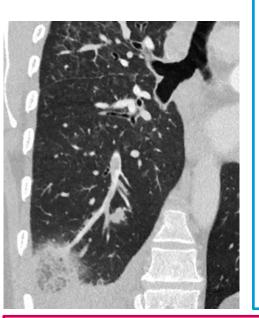
Risk stratification


- <u>Non-massive EP</u> \geq
- sub-massive EP
 - **RV** Dysfunction
- <u>massive</u> EP \geq
 - **RV** Dysfunction _
 - Hemodynamic failure -
 - Intravenous thrombolysis -

RV Dysfunction

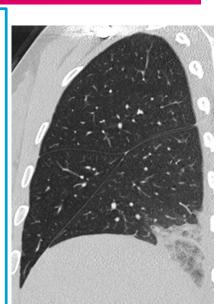
- RV/LV ratio > 1
- Biological criteria (BNP, pro BNP)
- and ECG

Always state the **RV/LV ratio** (calculated on a strict axial section and endocardium to endocardium) in the report.



Pulmonary infarction

Heart attack: <15% of embolisms


Imaging

- Juxtapleural consolidation without bronchogram
- Triangular
- **Central lucencies** : very specific for heart attack (Se:46%, Sp:98%)
- Embolism in the same territory, feeding vessel
- Lower lobes (more vascularized territories)
- Multiple ++
 - +/- hypodensity and peripheral enhancement
 - +/- convex edges with halo (alveolar hemorrhage)
- +/- excavation
- +/- minimal pleural effusion
 Spontaneous resolution in 3 months (like a "melting ice cube")

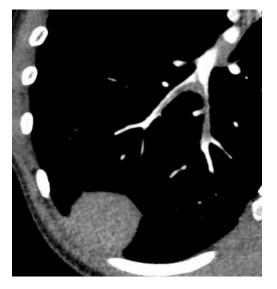
Pattern « central lucencies » or "bubbly consolidation" in Anglo-Saxon)

- Peripheral consolidation
- GGO and central intra-lobular thickening

Reflex! Triangle under pleural + central lucencies → Think of pulmonary infarction → Pulmonary angio CT

Revel MP, Triki R, Chatellier G, Couchon S, Haddad N, Hernigou A, et al. Is It Possible to Recognize Pulmonary Infarction on Multisection CT Images? Radiology 2007

Pulmonary infarction with « central lucencies » sign



Segmental embols

Atypical pulmonary infarction with convex edges ++



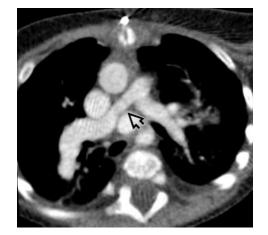
Feeding vessel sign

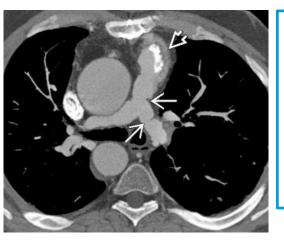
- A central vein
- the arteries bypass 🔿

Pulmonary artery aneurysm

- Normal diameter of the PA = 29mm
- Aneurysm if diameter increases by more than 50%.

Case courtesy of Dr Ahmed Abd Rabou, Radiopaedia.org, rID: 32749


Etiologies

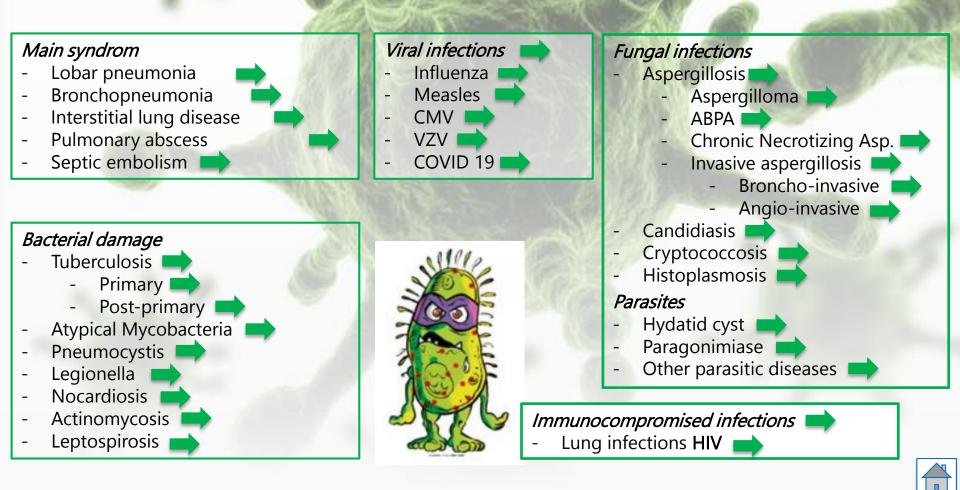

- Post Pulmonary Hypertension++
- Primitives
 - Elastic Tissue Disease: Marfan, Ehlers Danlos, Williams-Beuren Syndrome
 - Infectious disease: Infectious endocarditis, mycotic aneurysm, syphilis, necrotizing pneumonia
- Secondary
 - Venous thrombo embolic disease
 - Shunt left / right

Stenosis of a pulmonary artery

- Congenital pathology
- Often associated with congenital heart disease
- Differential diagnosis: acquired stenoses
 - chronic PE
 - Vasculitis (Takayasu, Connectivitis, Behcet's, Wegener's, allergic vasculitis)
- <u>Treatment</u>: surgical revascularization or angioplasty/stenting

Imaging

- Stenosis
 - Focal
 - Long
- Post-stenotic dilation
- Aorto-pulmonary circulation
- Normal size heart



Congenital interruption of a pulmonary artery

- Left ++
- X-ray: **small hemithorax** with **small hilum** and contralateral aortic arch.
- Scanner
 - Absence of pulmonary artery
 - Normal Bronches
 - Hemithorax volume reduction
 - Collateral circulation
 - Extrapleural fat hypertrophy
 - Pleural thickening
 - Peripheral interstitial syndrome, subpleural parenchymal bands, mosaic
 - Bronchiectasis (complication of infection)

Infectious diseases

Lobar pneumonia

Histology

Alveolar filling (inflammatory exudate)

Germs

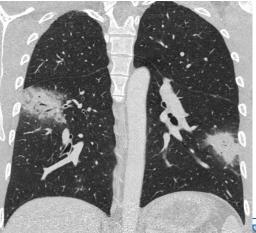
- Acute community lung disease
 - Pneumococcus (++++, extreme ages, postinfluenza, HIV, chronic alcoholics, asplenia)
 - **Klebsiella** (diabetics, alcoholics, aspiration, edema, excavation)
 - *Legionella* (2-15% CAP, mortality 10%, male, > 60 years, chronic lung disease, immunodepression, inhalation aerosols)

- <u>Similar aspects</u>

- Atypical germs (*mycoplasma*, *chlamydia*)
- BGN: *pseudomonas, enterobacter, E.Coli* (nosocomial++)
- G+: Community *Staphylococcus aureus*

- Immunosuppressed


Pneumocystis, fungal, mycobacterium


Imaging Lobar consolidation syndrom

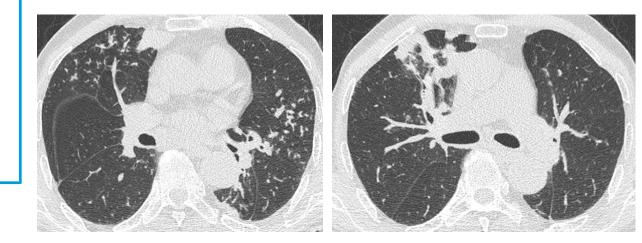
- Peripheral start, rapid extension

Round Pneumonia

- May look like a nodule/mass
- Child +++ but also in young adults
- Pneumococcus ++
- If signs of infection -> control after treatment TBA ->stable: biospy
- Interest of imaging
 - Positive diagnosis, prognosis (unilateral vs. bilateral), posttreatment follow-up +++
 - Low for etiological diagnosis

Broncho-pneumonia

Histology


- Airway-centric lesions
- Plurifocal ++
- Alveolar damage ++, more virulent organisms (lung destruction ++)
- Nosocomial > CAP
- Slower expansion

Germs

- Staphylococcus aureus
- Haemophilus
- BGN (pseudomonas aeruginosa, Escherichia coli)
- Anaerobes
- Invasive aspergillosis
- If hospital-acquired infection BGN: *Pseudomonas aeruginosa*, *E Coli*

Imaging

- Bilateral multifocal alveolar consolidation
- Bronchitis / Bronchiolitis
 - Bronchial parietal thickening
 - Centrolobular nodules
 - Tree in bud

Interstitial lung diseases

Histology

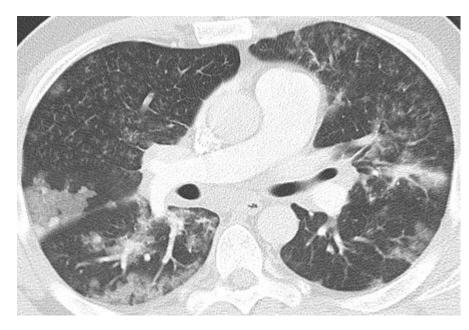
- Inflammation by mononuclear cells
 - alveolar *septa*: alveolitis
 - And distal peribronchovascular interstitial tissue
- Minimal alveolar damage
- **Bronchiolitis often associated** (mycoplasma, virus)

Interstitial syndrom +++

- GGO
- Reticulations
 - +/- tree in bud
- +/- consolidation

Differe	ntial	diagnosis
		1

DICC

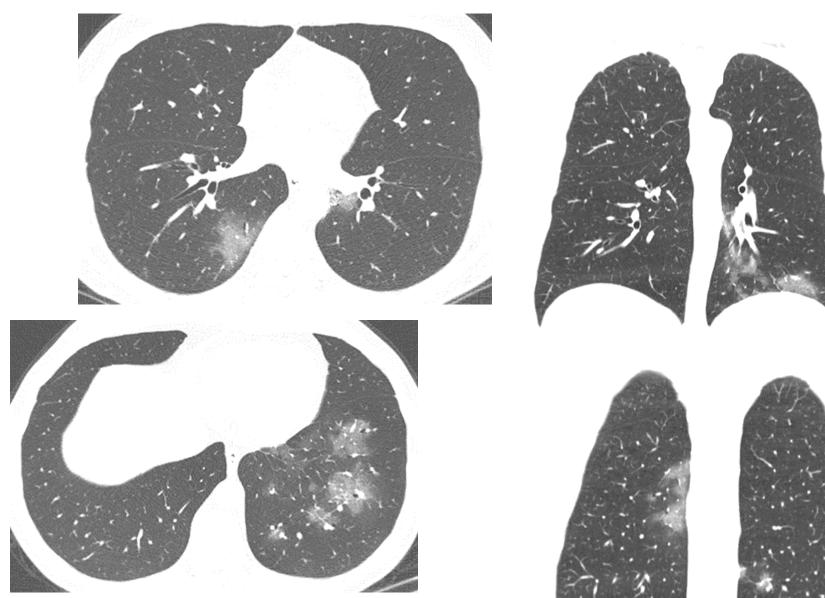

- Pn. Med
- PO
- Pulm Hg
- OP
- HP

Germs

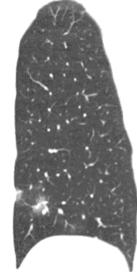
- Virus +++
- Mycoplasma
- ID pneumocystis, CMV, mycoplasma

Cause of Pneumonia	Centrilobular Nodules	Attenuation with Lobular Distribution	Segmental Consolidation	I hickened Interlobular Septa	Ground-Glass Attenuation
Influenza virus	+++	+++	+		+
Measles virus	++	+	+		+
Hantavirus			++	+	+++
Adenovirus	++	+	+++		
Herpes simplex virus	+	+++	+++		+
Varicella-zoster virus	+++	+			
Cytomegalovirus	++	++	+	+	++
Epstein-Barr virus	+	+	+		+

Interstitial / atypical pneumonia



TBA-resistant atypical pneumonia No germ found

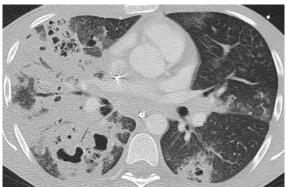


Mycoplasma

Coronarovirus infection (Covid 19): GGO areas of lower distribution

Varicella pneumonia

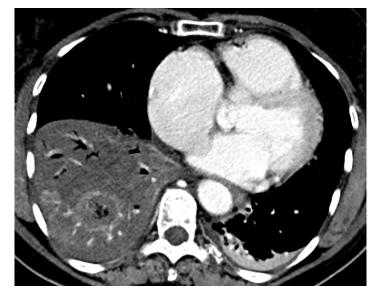
Multitude of ill defined, randomly distributed micronodules, confluent in the declining regions


Suppurative pneumonia

Several pattern

- Excavated lung disease Excavated consolidation ranges
- Pulmonary abscess Unique, air-generated, sloping, posterior
- Lung Gangrene Ischemic necrosis of a territory
- Septic emboli Multiple, disseminated, hematogenous
- Complications
 - Broncho-pleural fistulas Ruptured necrotic lesion in the pleura
 - Empyèmes By Pleural Suppuration

Pulmonary Staphylococcal Disease


Frequent germs

- Staphylococcus aureus
- Streptococcus
- Pseudomonas aeruginosa
- Klebsiella pneumoniae
- Anaerobes

Pulmonary abscess

<u>Imaging</u>

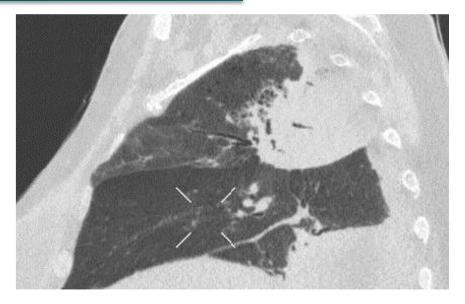
- Spherical mass (2 to 6 cm in diameter)
 - Necrotic content Cavitation (if bronchial communication)
 - **Contrast** (granulation tissue vascularized by hypertrophied bronchial arteries)
 - Irregular wall thickness
 - Single or multiple
- Adjacent parenchymal consolidation (50%)
- Location: RUL posterior segment, IL apical, LIL posterior segment.
- Complication:
 - Broncho pleural fistula

Pulmonary abscess in a 78-year-old patient with bone marrow aplasia

Frequent germs

- Staphylococcus aureus
- Streptococcus
- Pseudomonas aeruginosa
- Klebsiella pneumoniae
- Anaerobes

Lung Gangrene


Physiopathology

- Bronchogenic or hematogenic
- A single lesion
- Thrombosis of the feeder artery of the affected area

Klebsiella +++ Staphylococcus

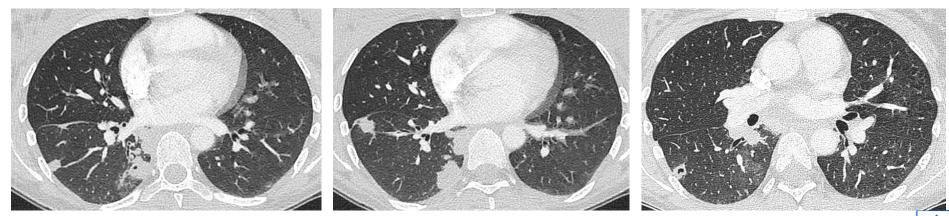
Imaging

- Alveolar opacity
 - Clarity "in meniscus" in the periphery
 - Liquefaction
 - Sequestrum
- Hydro-aerodynamic content
- More or less extensive

<u>If hemoptysis</u> Think about looking for a pseudoaneurysm...

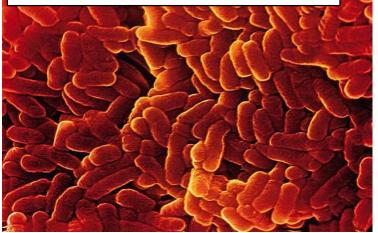
Septic embolism

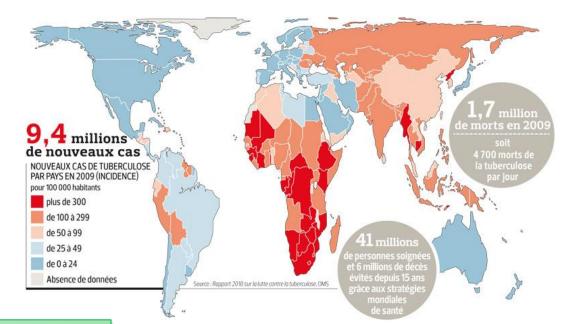
<u>Origin</u>


- Heart valves: endocarditis tricuspid
 valve +++, IV drug addiction
- Thrombophlebitis
- Venous catheters / pacemaker
- **Staphylococcus** +++, *pseudomonas aeruginosa*

Pathology

- Endothelial damage, brittle thrombus containing bacteria/fungi
- Ischemic infarction, hemorrhage...
- Toxins


Imaging


- ✓ Lung nodules 0.5 to 3 cm in size
 - Ill-defined
 - Excavated ++
- ✓ Infarction
 - **Peripheral triangular shaped** consolidation(under pleura)
- ✓ Lower ++ regions (most vascularized)
- Nourishing" vessel ++ (arteries bypass, veins center the embolus)

Pulmonary tuberculosis

Infection with *Mycobacterium* tuberculosis or Koch bacillus (KB)

Several stages

- 1) Primo-infection and primary infection
- 2) Latent tuberculosis infection
- 3) Post-primary (or secondary) infection

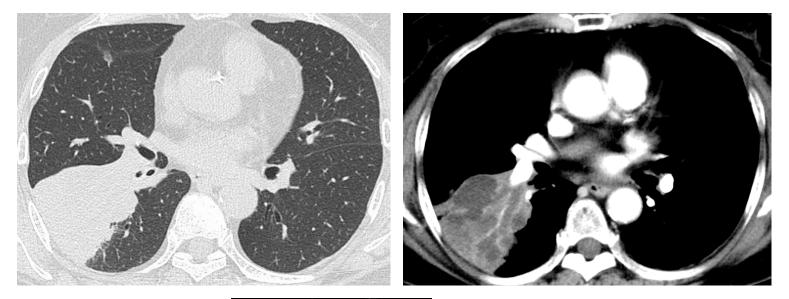
Treatment (tuberculosis adult disease)

- **6 months,** 2 phases: 2 months isoniazid, rifampicin, pyrazinamide and ethambutol followed by 4 months isoniazid and rifampicin.
- Radiological follow-up: 2 months of treatment, end of treatment, 18 months

Primary tuberculosis

Physiopathology

- Time-limited, child++, droplets inhalation (BK)
- One or more primary site(s): **granuloma** healing (calcium nodules) or excavation or dissemination of blood.
- Hilar or mediastinal lymph nodes healing


Lobar consolidation

- Lower lobe / medium lobe ++
- Not distinguishable from a bacterial pneumopathy
- 2/3 cases: resolution without sequelae
- Sometimes calcification (Ghon's focus), tuberculoma (9%)
- Lymphadenopathy
 - 96% child, 43% adult
 - **Homolateral hilum, right paratracheal+**, >2cm: necrosis, hypodense ganglion
 - Ranke complex: calcified ganglion + calcified nodule
- ➤ Miliary (1 to 7%)
 - Micronodules 2-3mm hematogenous resolution
- Pleural effusion (1/4 of the cases)

Primary tuberculosis

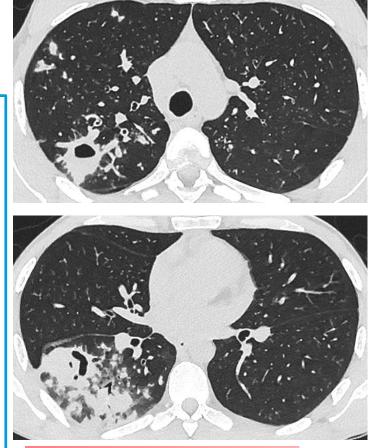
- Looks like bacterial pneumopathy
- Necrotic evolution under antibiotic treatment

Associated calcified adenopathy

Post-primary tuberculosis

Physiopathology

- BK reinfection/reactivation, cavitation +++
- Bronchogenic and hematogenic dissemination
- Healing with fibrosis and calcifications

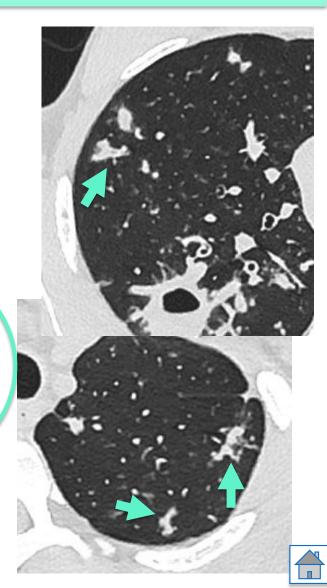

Parenchyma +++

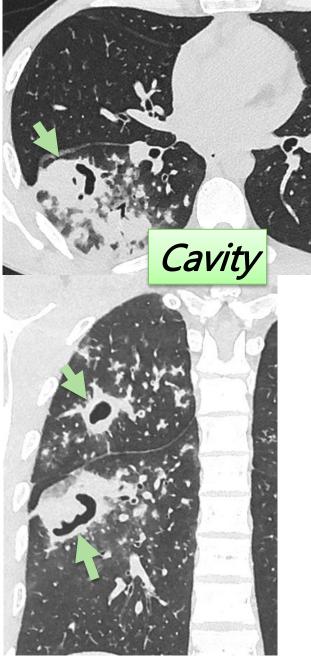
- ✓ Consolidation
 - Apical and posterior segment of LS, patchy, blurred edges, earliest sign, often bilateral
- \checkmark Cavitation (1/2)
 - **Thick wall**, irregular, multiple, in thin-walled condensations with ttt
 - Look for **Rasmussen ++ aneurysm** (aneurysm of the adjacent pulmonary artery or in a cavity)
- ✓ Tree in bud +++ (active tuberculosis)
- ✓ Bronchial stenosis (10 to 40% active tuberculosis)

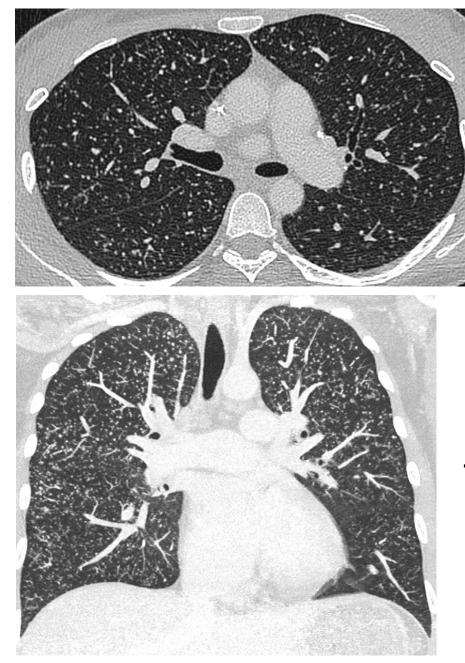
Lymphadenopathy (5%)

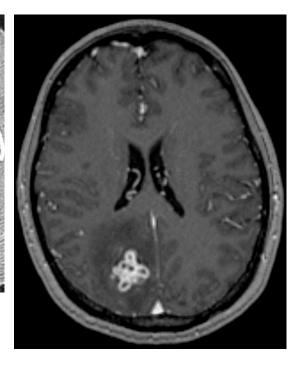
<u>Pleura</u> (18%): effusion (partitions++), thickening, empyema, risk of bronchopleural fistula. Pleural thickening and calcifications may persist

Wall: direct extension, bone/cartilage destruction, skin fistula




- **Cavity** (apical++)
- Tree in bud
 - --> Tuberculosis



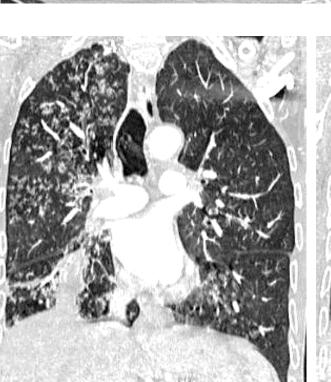

Tuberculosis: A Radiologic Review -Joshua Burill – Radiographics 2007

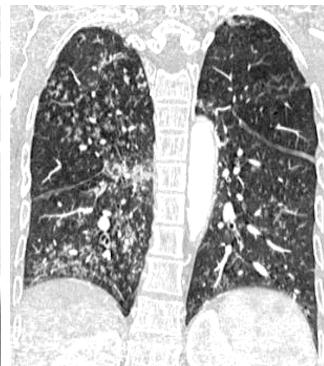
Tree in bud , with acinar dilations Very specific for tuberculosis if no preexistent bronchial dilatations!!!!

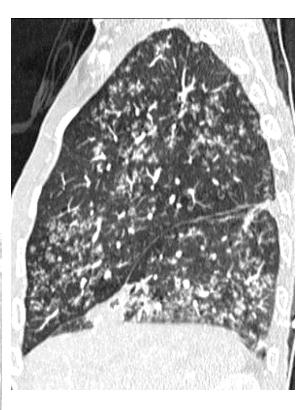
Pulmonary miliary tuberculosis associated with a cerebral tuberculous abscess ("bunch of grapes" sign) = Blood diffusion

Active bronchogenic tuberculosis

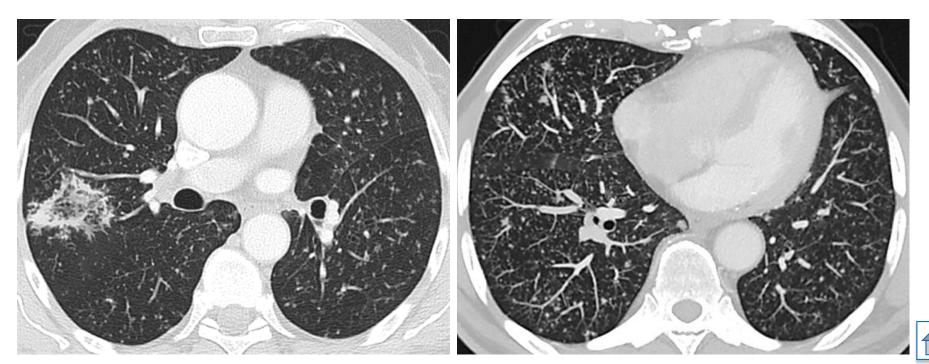
- Left apical cavity
- Multiple micronodules in « tree in bud"







Tuberculosis Many "tree in bud"



Chronic active tuberculosis

Cluster of micronodules with a perilymphatic distribution with **reverse halo sign**

Tuberculosis: galaxy sign (and reverse halo)

+ Profusion of random micronodules and a few « tree in bud"

Non tuberculosis Mycobacterial infection

- 15 pathological species including M. avium, M. intracellulare, M. kansasii, M. xenopi
- 2 positive BAL cultures for diagnosis

Differences from tuberculosis

- Non-human-to-human transmission
- Transmission through water
- No primary / secondary evolution
- Less sensitivity to anti-tuberculosis drugs
- Place of surgery

Lady Windermere's Disease

Imaging: different pattern possible

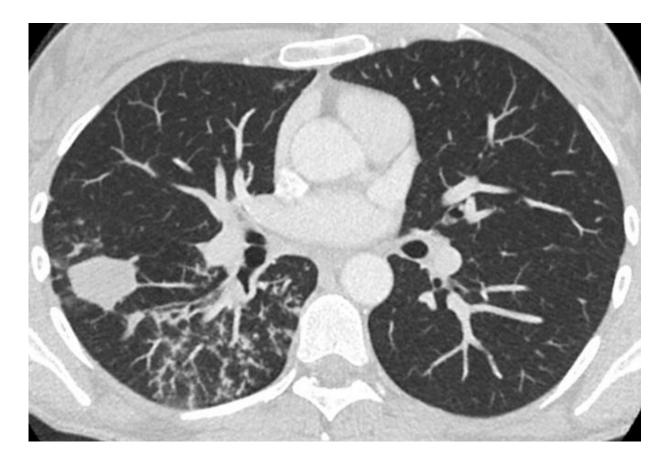
- **Bubble superinfection**: +/- pathogenic
- **Pseudo tuberculosis**: idem post-primary tuberculosis

- Lady Windermere Disease

- Mycobacterium avium complex infection (MAC infection)
- Female, 60 years old, nonimmunocompromised
- ML Bronchiectasias with atrophy
- Micronodules « tree in bud », apex respect
- Superinfection of lipid pneumoniae

Immunocompromised patient CD4<50:

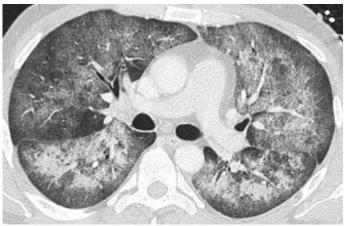
- MAC infection, M.kansasii
- Disseminated infection. Highly variable presentation
- Hilar or mediastinal adenopathies ++, Nodules ++



Non tuberculosis Mycobacterial infection



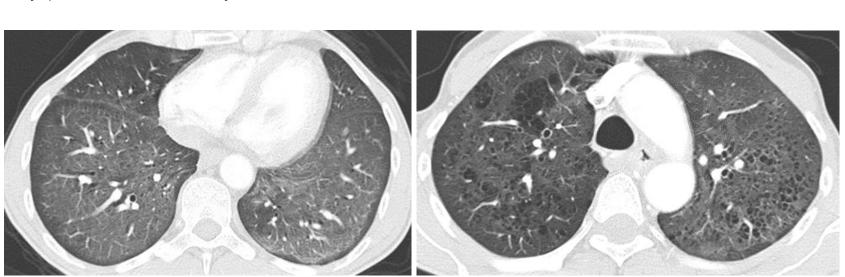
Non tuberculosis Mycobacterial infection



Pneumocystis jiroveci

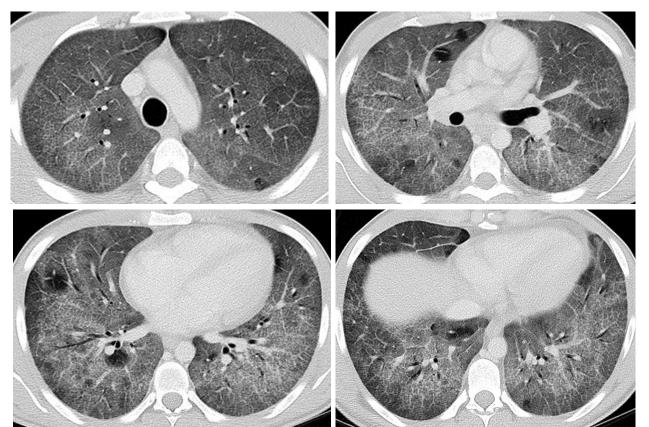
- HIV, CD4 < 200/mm3
- 1st mycosis in the AIDS patient
- Main differential diagnosis = CMV

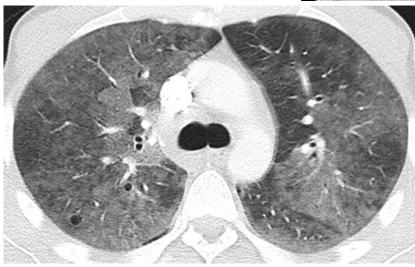
- GGO(100%)
 - Symmetrical, diffuse / mosaic / crazy paving
 - Subpleural sparing(40%)
 - Bronchiectasis within ggo
- **Cysts** (30%)
 - Atypical forms, patient HIV++.
 - Multiples, upper regions, diminish or disappear
 - Risk of **pneumothorax+++**
- Diffuse Consolidation in Severe Forms
- *"Miliary pattern*: centrolobular micronodules, rarer (5%), moderate immunosuppression, granulomatous inflammation.


Kanne JP, Yandow DR, Meyer CA. Pneumocystis jiroveci Pneumonia: High-Resolution CT Findings in Patients With and Without HIV Infection. AJR 2012

Pneumocystis

49-year-old patient, HIV, CD4 = 8/mm3, dyspnea, diffuse GGO+ cysts





Pneumocystis

- Diffuse crazy paving
- Cysts ++
- Relative sparing of subpleural area

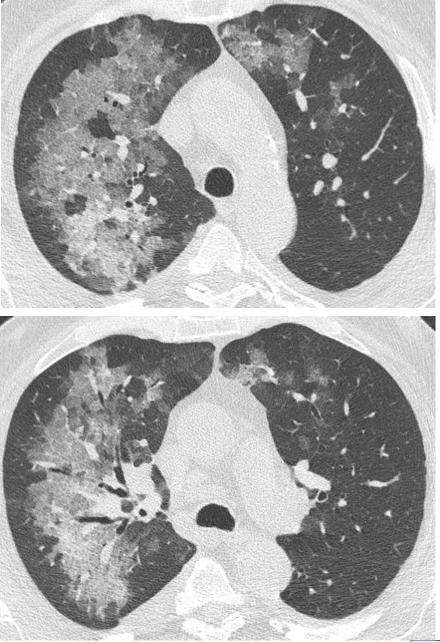


Pneumocystis (HIV discovery)


Legionella pneumonia

- Legionella pneumophila, BG negative, aquatic environment
- Immunosuppressed (kidney transplant, corticosteroid therapy)
- <u>Clinical</u>: rapid onset, hyperthermia, focal symptomatology, **extra-pulmonary signs** (digestive disorders, neurological disorders)
- Diagnosis: Legionella serology and antigen


<u>Imaging</u>


- Systematic or non-systematic alveolar consolidation
 → multiple
- Diffuse opacities (delayed shock oedema)
- Minimal pleural effusion (30%)
- Strip atelectasis
- Excavation in the immunocompromised

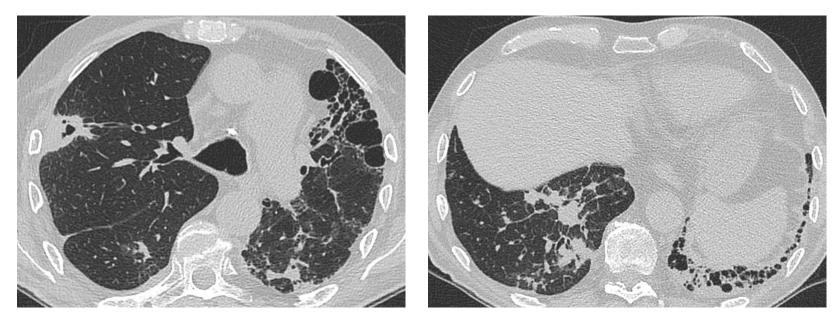
Legionella pneumonia

Pulmonary Nocardiosis

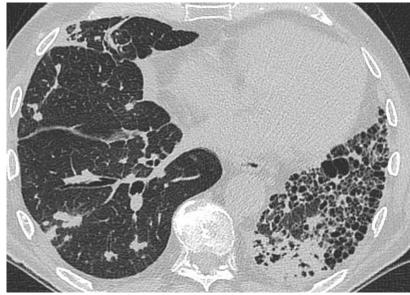
- BG (+), **severe immunocompromised**, **cellular immunity deficiency** (AIDS, transplantation, corticosteroid therapy)
- Clinic idem KB
- Extension to brain (abscess), skin, bones/joints

Nocardiosis in an allograft context

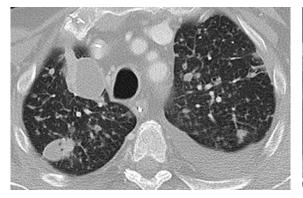
Imaging


- **Consolidation(s)** uni- or multifocal, patchy, segmental, lobular
- Nodule(s) or mass(es) with irregular edges
- Hypodensity / Excavation +++
- +/- Pleural effusion
- Sometimes pleural (empyema) or parietal involvement
- Sometimes endo-bronchial tumor

Differential diagnosis (consolidation/cavitation/nodules)

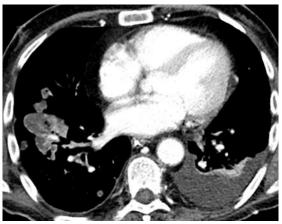

- Septic embolism
- Cancers, metastasis
- Vasculitis (Wegener's)
- Other infections, in particular **actinomycosis** (but not blood-born), cryptococcosis, etc.

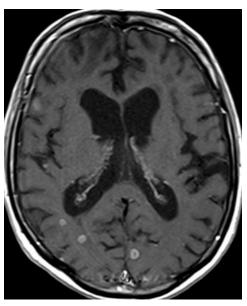
Kanne JP, Yandow DR, Mohammed TL et al. CT findings of pulmonary nocardiosis. AJR Am J Roentgenol. 2011



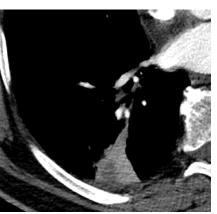
Nocardiosis

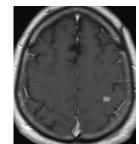
Nodules and pseudomasses with irregular edge +/excavated





Disseminated nocardiosis


- in a patient receiving long-term corticosteroid therapy
- bilateral excavated or hypodense nodules
- and multiple brain abscesses


Actinomycosis

- Immunocompetent
- Oropharynx (poor dental hygiene) → lung
- Interconnected multiple abscesses + fibrous tissue at the periphery

Pulmonary and cerebral actinomycosis 74-year-old diabetic patient Improvement in lesions after antibiotic therapy

Imaging: several pattern

Pulmonary actinomycosis ++

- **Consolidation** (periphery, lower lobes, sometimes multifocal)
- Can invade pleura / wall ++ (*empyema necessitans*)
- Hypodensity ++, cavitation
- Peripheral enhancement ++
- Adjacent pleural thickening, pleural effusion
- Hilar adenomegaly

Bronchiectasic form

 Colonization of a devitalized lobe or segment with bronchiectasis (sequelae of KB or bacterial infection)

<u>Endobronchial actinomycosis</u> with broncholithiasis or foreign body (rare)

Biblio: Mabeza GF, Macfarlane J. Pulmonary actinomycosis. Eur. Breathing. J. 2003

Actinomycosis

Excavated consolidation with peripheral **enhancement** (granulation tissue with leukocytes containing "sulfur granules")



Leptospirosis

<u>General</u>

- Spirochete leptospira
- Vector: rats
- Tropical, subtropical environment, contaminated water
- Fever, jaundice (liver damage), nephritis (kidney damage), meningitis
- Hemorrhagic syndrom++

CT

- Centrolobular micronodules ++ (hemorrhagic petechiae)
- GGO and consolidation (bleeding areas)

Viral infections

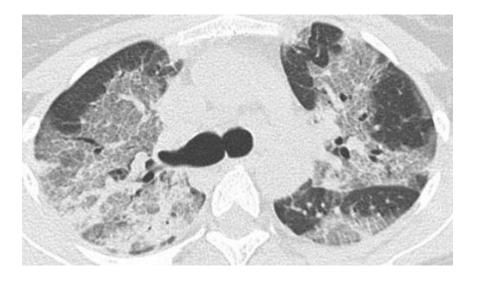
Immunocompetent patient

- Influenza virus
- Hantavirus
- EBV
- Adenovirus
- Measles

Immunosuppressed patient

- HSV
- VZV
- CMV

Cause of Pneumonia	Centrilobular Nodules	Ground-Glass Attenuation with Lobular Distribution	Segmental Consolidation	Thickened Interlobular Septa	Diffuse Ground-Glass Attenuation
Influenza virus	+++	+++	+		+
Measles virus	++	+	+		+
Hantavirus			++	+	+++
Adenovirus	++	+	+++		
Herpes simplex virus	+	+++	+++		+
Varicella-zoster virus	+++	+			
Cytomegalovirus	++	++	+	+	++
Epstein-Barr virus	+	+	+		+


Influenza virus

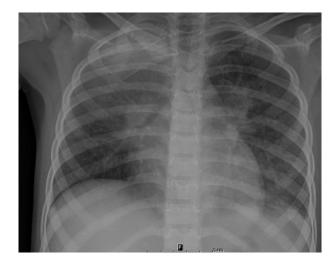
General

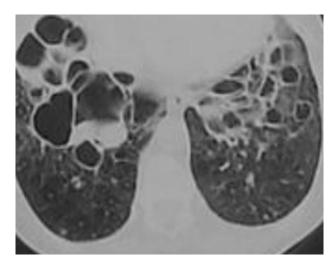
- Influenza A
- Numerous subtypes depending on H and N antigens
- H1N2 currently endemic in humans and pigs

Imaging

- Bronchogenic pathway \rightarrow descending evolution,
- Broncho-alveolitis

Measles

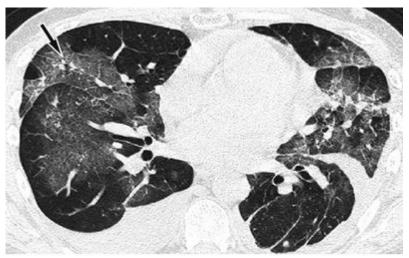

- Paramyxovirus
- Poor children
- Pneumonia within one month of rash


Imaging

- Lymphadenopathy
- Bronchial thickening
- Pneumoniae

Complications

- Follicular bronchiectasis and bronchiolectasis
- Abscess, cysts due to inflammatory necrosis

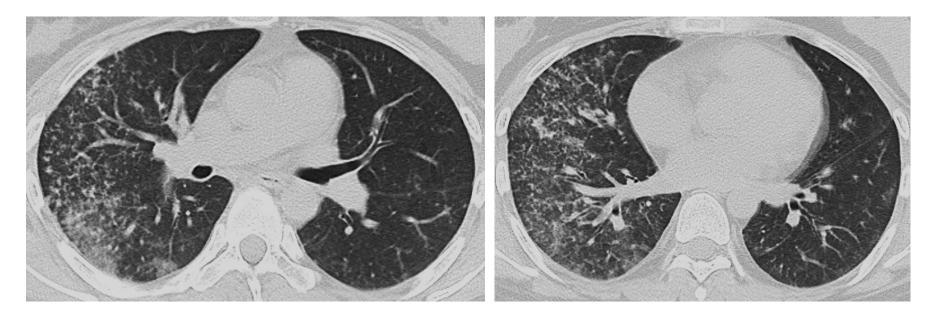


CMV infection

Affects the **immunosuppressed**, especially after **bone marrow transplant +++**

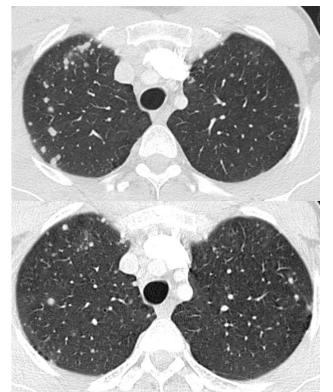
Courtesy Marius S, Horger - AJR

Courtesy Marius S, Horger - AJR


Imaging

- GGO
- Centrolobular micronodules
- Consolidation
- Bronchiectasis
- Bilateral, asymmetrical

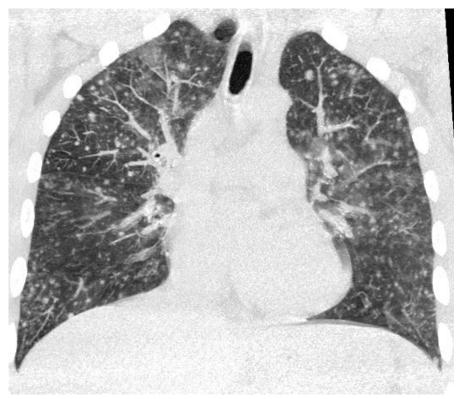
CMV pneumonia


- Multitude of centrolobular ill defined micronodules
- LBA documented

VZV pneumonia

- **The most frequent complication of chickenpox** (14%), concerns 50% of hospitalizations for chickenpox in adults.
- Immunosuppression (especially HIV) promotes the development of varicella pneumonia.
- Skin lesions

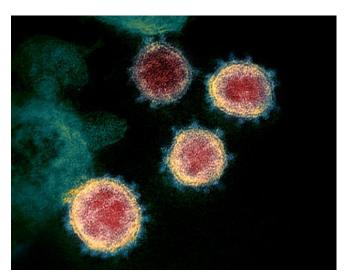



Imaging

Multiple micronodules / nodules (5 to 10 mm)

- Centrolobular distribution
- Or random
- Poorly defined , with blurred edges (halo sign)
- May be confluent
- Disappear within a week (up to 1 month) after the skin lesions disappear
- For some patients, evolution into 2-3mm calcified micronodules.

Kim JS, Ryu CW, Lee SI, Sung DW, Park CK. High-resolution CT findings of varicella-zoster pneumonia. AJR 1999


Varicella pneumonia

Multitude of random and centrolobular micronodules

Coronavirus - COVID 19

- Infection caused by a coronavirus: SARS coronavirus 2 (SARS-Cov-2) or 2019 novel coronavirus (2019-nCoV)
- First case in Wuhan, China in December 2019, followed by rapid expansion, currently recognized as a **pandemic infection**.

Diagnostic Test

<u>**RT-PCR blood or sputum**</u> = Gold standard <u>BUT</u>

- low sensitivity (60%)
- significant delays (at least 4 hours, even 24 hours in some center)

Place of CT:

Based on a Chinese cohort of 1014 patients suspected of COVID-

19: Among PCR + patient : 97% have a CT scan +Among PCR - patients : 75% have a CT scan + of which more than ³/₄ were considered probably infected.

Ability of CT to detect lesions before symptoms appear Overall: CT sensitivity = 97%; specificity = 25%.

CT

- <u>Early phase</u>

- GGO opacities, multifocal, asymmetrical
- Peripheral, posterior and lower regions
- Or sometimes round and central shape

- <u>Negative signs</u>

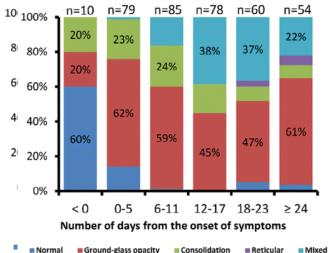
- No lymphadenopathy
- No pleural effusion (except severe forms)
- No micronodule

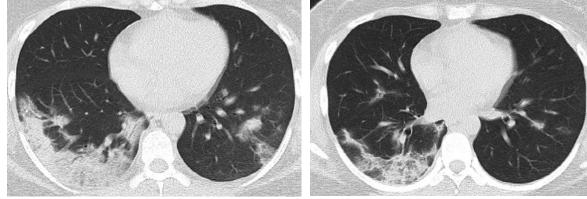
<u>Late phase</u>

- Crazy paving (secondary appearance of intralobular reticulation) (peak around D10)
- Areas of subpleural condensation, more extensive in severe forms
- ARDS +++ (wide declive consolidation) (20% of hospitalized patients)
- Organizing pneumonia (reverse halo, curvilinear bands under pleura ...)
- Architectural distortions (traction bronchiectasis): severity sign+++
- Pulmonary embolism (association discussed)
- Slow regression of abnormalities in one month, possible fibrous sequelae

Some messages


- French radiologic society recommandations
 - Chest Xray not indicated
 - CT scan indicated
 - If signs of severity
 - (desaturation)
 - If **fragile patients** with comorbidities
- There is currently no indication to perform a chest CT scan for screening purposes in patients without signs of severity and co-morbidities.
- The CT scan is normal in 56% of cases for patients seen between D0 and D2.
- **Suspect** a **pulmonary embolism** if parenchymal lesions are minimal and there is a need for oxygen.
- In Covid-19-positive ICU patients with worsening
 - ARDS?
 - Pneumothorax?
 - PE? (injection!!)
- Suspect myocarditis and confront troponin if there are signs of pulmonary oedema (septal lines)


Evolution of lesions

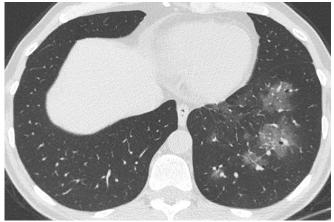


Day 1 of symptoms

Day 5 of symptoms

Day 11

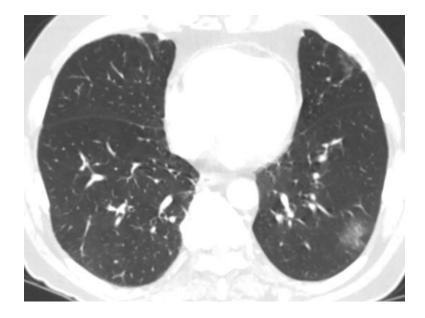

Day 15

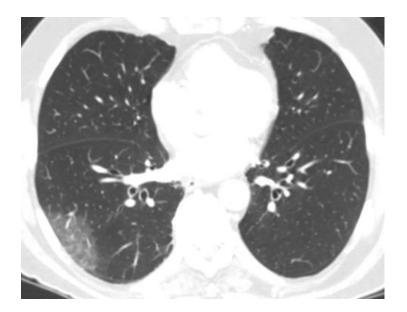

Temporal Changes of CT Findings in 90 Patients with COVID-19 Pneumonia: A Longitudinal Study Yuhui Wang et al, March 19, 2020, Thoracic imaging

Early stage:

- GGO opacities, multifocal, asymmetrical
- Peripheral and posterior, Lower regions
- Sometimes rounded shape

GGO areas of lower distribution

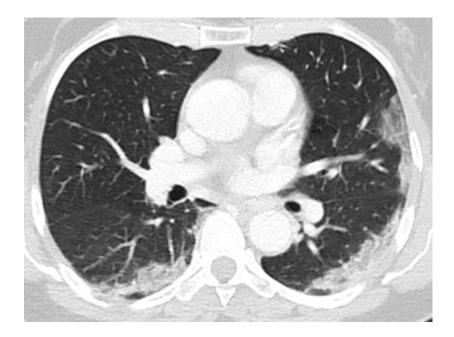


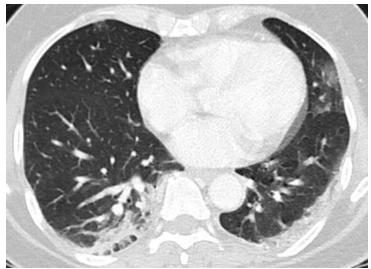




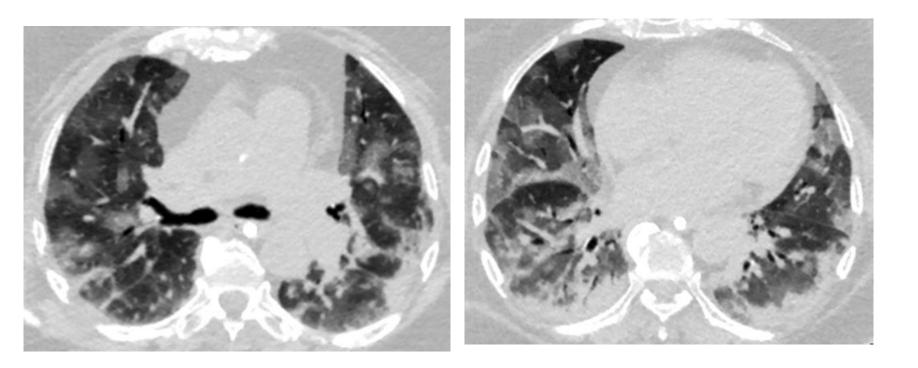
Early stage:

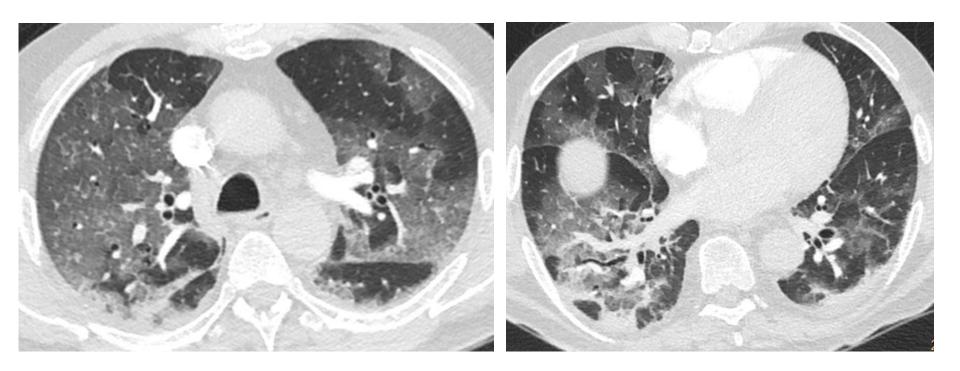
- GGO opacities, multifocal, asymmetrical
- Peripheral and posterior, Lower regions
- Sometimes rounded shape





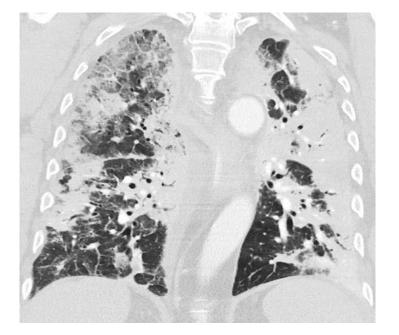
- Crazy paving
- Areas of subpleural consolidation, more extensive in severe forms
- ARDS +++
- Organizing pneumonia
- Architectural Distortions
- Pulmonary embolism

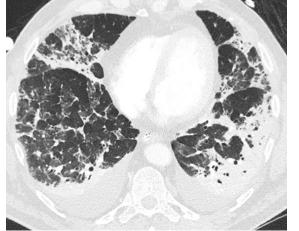


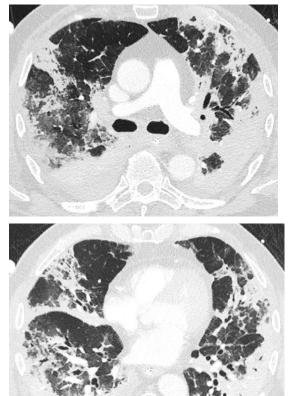


- Crazy paving
- Subpleural consolidation
- Early ARDS
- Organizing pneumonia
- Architectural Distortions
- Pulmonary embolism

- Crazy paving
- Subpleural consolidation
- ARDS
- Organizing pneumonia (reverse halo sign, perilobular opacities...)
- Architectural Distortions
- Pulmonary embolism

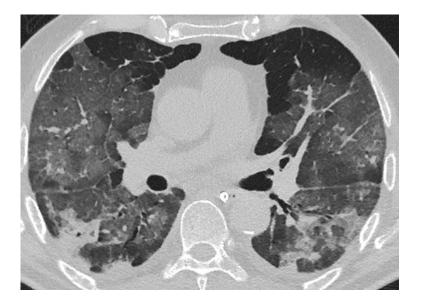


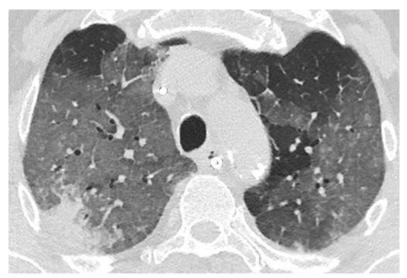

- Crazy paving
- Subpleural consolidation
- ARDS
- Organizing pneumonia
- Architectural distortions (traction bronchiectasis): severity factor
- Pulmonary embolism (association discussed)


In Covid-19-positive patients in intensive care and resuscitation with aggravation,

- \rightarrow look for worsening of lesions with progression to ARDS
- \rightarrow but also a ventilated pneumothorax
- \rightarrow or a thromboembolic complication and \rightarrow injection (angio CT)

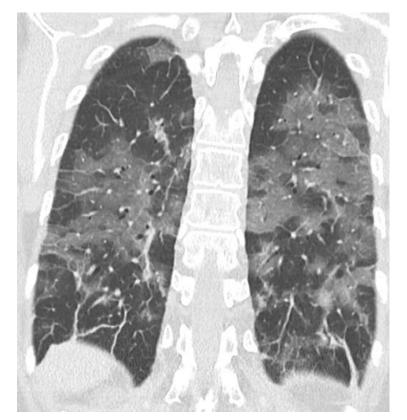
ARDS





Pulmonary embolism

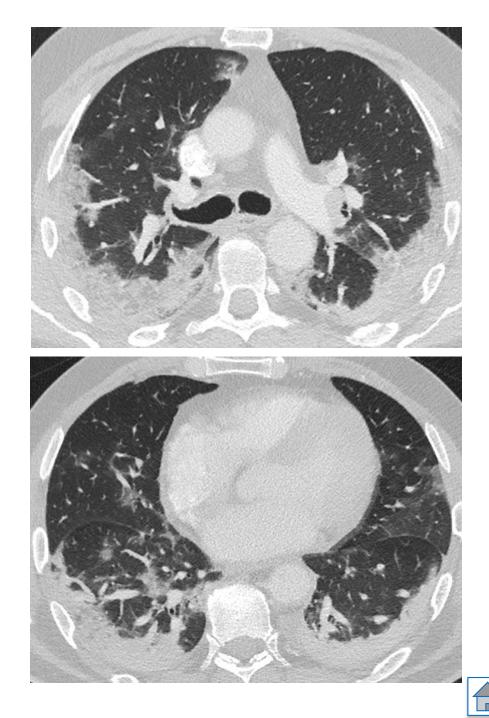
- Crazy paving
- Subpleural consolidation
- ARDS
- **Organizing pneumonia** (reverse halo, perilobular opacities, ...)
- Architectural Distortions
- Pulmonary embolism

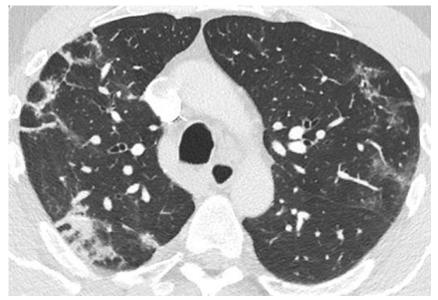


Crazy paving with the appearance of declive consolidation

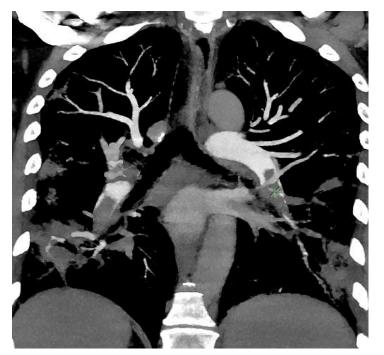
Subpleural curvilinear opacities



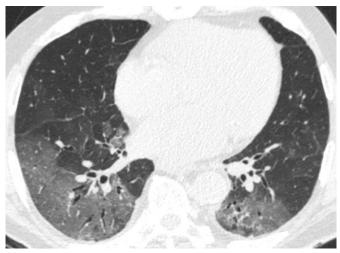

- Crazy paving
- Subpleural consolidation
- ARDS
- Organizing pneumonia (reverse halo, perilobular opacities, ...)
- Architectural Distortions
- Pulmonary embolism



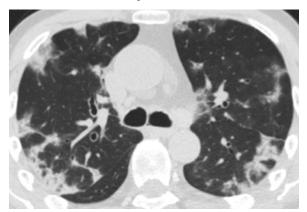
- Crazy paving -
- Sub pleural consolidation +++ Early ARDS? -
- _
- Organizing pneumonia _
- **Architectural Distortions** _
- Pulmonary embolism _



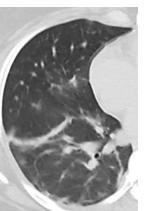

- Crazy paving
- Subpleural condensation zones
- Early ARDS
- Organizing pneumonia (perilobular opacities) +++
- Architectural Distortions
- Pulmonary embolism

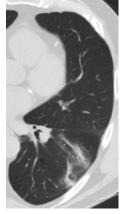

Perilobular arcade opacities ++

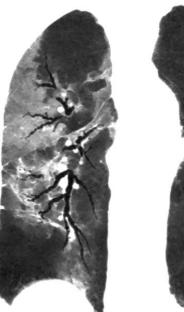
Lobar pulmonary embolism + left base infarction



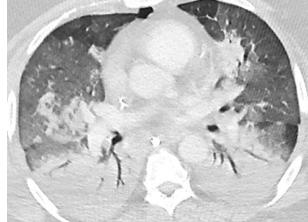
Bilateral and lower regions GGO

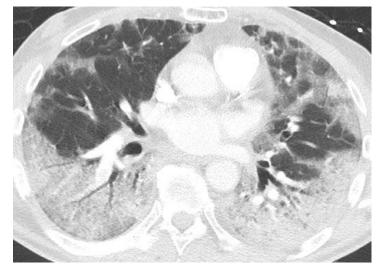


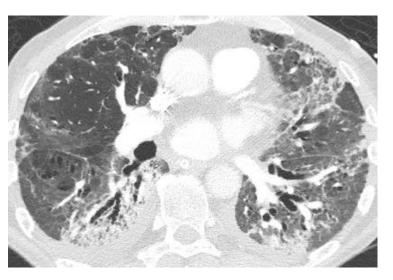

Crazy paving


Organized pneumonia Perilobular opacities





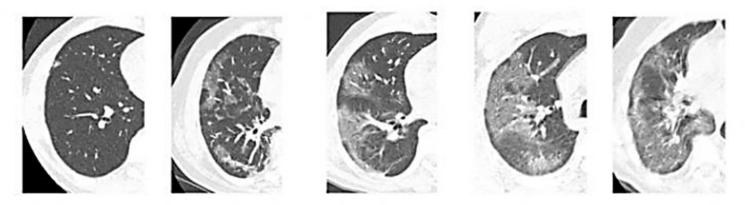



ARDS Declive consolidation

Traction bronchectasia

Hilo peripheric bands

COVID : rapid fibrosing evolution +++ (15 days) Traction bronchectasia +++



Clinical worsening \rightarrow watch for signs :

1) Grading of lesions (SIT)

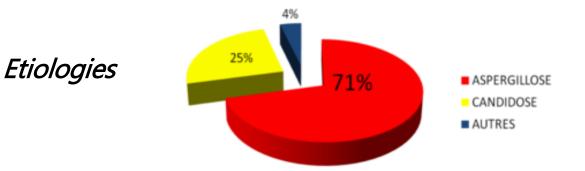
 Devant un cas typique ou compatible COVID-19, il est recommandé de grader l'étendue des lésions

>75%

Critique

50-75%

Sévère

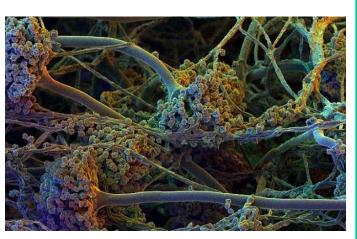


- Unilateral consolidation
- Pleural effusion
- Lymphadenopathy
- 3) Pneumothorax?
- 4) Pulmonary embolism ?

Invasive fungal infections

- Severe

- 45% at 12 weeks
- High ICU mortality (aspergillosis 75-95%, candidemia 50%)


En Onco hématologie, Pagano L et al, Clin Infect Dis 2007

Autres : Zygomycose (rhizopus, mucor, absidia, rhizomucor...), Cryptococcose.

Pulmonary aspergillosis

- Aspergillus fumigatus: saprophytic and ubiquitous fungus
- Spore concentration in the air increases when work is carried out
- The factors that expose to the development of pathology are
 - Atopy / asthma \rightarrow allergic reaction to aspergillar antigens \rightarrow ABPA
 - Airway involvement (DDB, cystic fibrosis) → Colonization (60% of cystic fibrosis patients)
 - Immune Deficiency → Chronic Necrotizing Aspergillosis or Invasive Aspergillosis
 - Chronic pulmonary cavities (caverns, bubbles, ...) → absence of intracavitary macrophages
 → Aspergilloma

Biology

Sputum / BAL, bronchial aspiration

- Direct examination +++: confirms at least one "colonization"
- Antigen testing (BAL)
- Culture (deferred result)

<u>Blood</u>

- Immunocompetent (capable of producing Ac) → Western Blot, Elisa, immunoelectrophoresis
- Immunocompromised (unable to produce Ac) → antigenemia (indicates invasive disease)
 - → Galactomananne+++: positive before clinical, radiological and earlier than cultures. Se 92 and spe 96%,
 - → **PCR**: VPN 100%, VPP 15%

Poster JFR- Pulmonary Aspergillosis: What the Radiologist Should Know- A. Goracci Franquet T, Müller NL, Giménez A et-al. Spectrum of pulmonary aspergillosis: histologic, clinical, and radiologic findings. Radiographics 2001

Aspergilloma

Aspergilloma = "fungus ball" = a bundle of mycelial filaments.

- Develops in a pre-existing cavity
- Immunocompetent or immunocompromised patients

Saprophytic infection

Aspergillar infection **without tissue invasion** (colonization by conglomerate of filaments, mucus and cellular debris)

- <u>Pathological airways</u> (COPD, bronchectasia, cystic fibrosis)
- <u>Chronic lung cavities (all types)</u>: aspergilloma

Complications

- Hemoptysis ++
- Superinfection (hydroaerial level)

<u>Imaging</u>

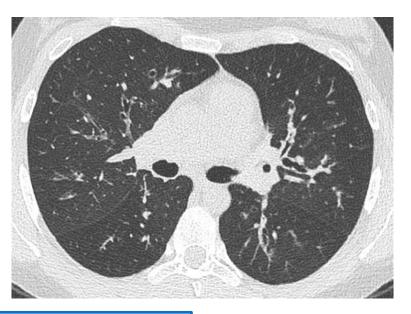
Filling of a pre-existing lung cavity with a "fungal ball" +++

- Pre-existing cavity
 - Tuberculous cavity
 - Excavated fibrosis blocks in sarcoidosis
 - Emphysema Bubbles
 - Honeycomb lesions
 - Post-radiofrequency excavation
 - (any chronic lung cavity tends to be colonized by aspergillus)
- Variable degree of cavity filling
- Mobility of the fungus ball
- Crescent sign +++ (CT +++) (non-specific because also present in angio-invasive or chronic necrotizing aspergillosis)

Aspergilloma

ABPA Allergic bronchopulmonary aspergillosis

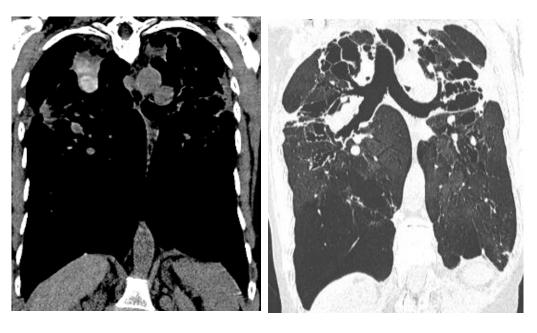
- Long-term asthma or cystic fibrosis (ABPA in 10% of cases)
- Allergic reaction to aspergillar antigens
 - Local inflammatory reaction with influx of eosinophils, hypersecretion, alteration of bronchial wall
 - Filling of (often dilated) airways with plugs of mucus, aspergillus and eosinophils


<u>Imaging</u>

Bronchiectasis filled with mucus+++

- Dilatation of segmental or sub-segmental bronchi
- Mucoid impactions (Y- or V-shaped appearance) +/calcifications or hyperdensity of mucous plugs
- +/- Lobar or segmental atelectasis
- +/- Spontaneous pneumothorax or effusion

New criteria (ABPA working group 2013)


- Predisposing condition: asthma or cystic fibrosis
- Mandatory criteria
 - Presence of immediate hypersensitivity to aspergillar skin test or aspergillar sp IgE > 0.35 kUA/L
 - Total Ig E > 1000 IU/ml
- Other criteria (at least 2 of the 3)
 - Presence of precipitating antibodies or IgG positive to aspergillus fumigatus
 - ABPA-related radiological infiltrates (transients/persistents/bronchial dilatations)
 - Hypereosinophilia > 500 elements/mm³ in the absence of current or prior corticosteroid therapy

Differential diagnosis

- Cystic fibrosis
- Asthma
- Congenital bronchial atresia

ABPA in a patient with cystic fibrosis

- Spontaneously dense mucous plugs are characteristic images of ABPA
- Visible in 30% of patients
- In connection with calcium and/or metal ions giving hyperdense mucus
- Their presence is correlated with the severity of the disease.

W. Richard Webb, Nestor L. Muller, David P. Naidich, High-resolution CT of the Lung, Fifth edition

Chronic Necrotizing Pulmonary Aspergillosis

- Rare and unknown form that can simulate other chronic lung infections (tuberculosis, etc.).
- Patients with chronic disease or moderate immunosuppression (diabetes, undernutrition, alcoholism, COPD)
- Histologically: necrosis and granulomatous inflammation.
- Chronic symptoms: productive cough, fever, hemoptysis

Imaging

Lung consolidation (consolidation + fibrosis)

- Upper lobe ++, single or bilateral
- Progressive excavation
- Pleural thickening
- Bronchiectasis

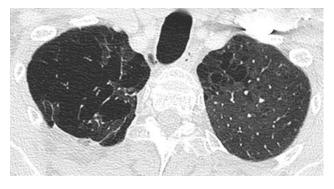
Denning Criteria (2003)

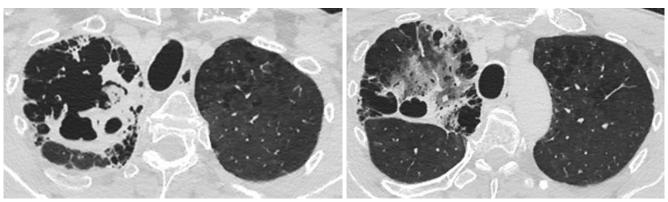
- General or respiratory symptoms > 3 months
- Pulmonary cavity lesion + para-cavitary infiltrate, new cavity formation or increase in size
- Detection of **aspergillus** or serology +
- Biological inflammatory signs
- **Exclusion** (cultures) of other pathogens giving similar tables
- No severe immune impairment

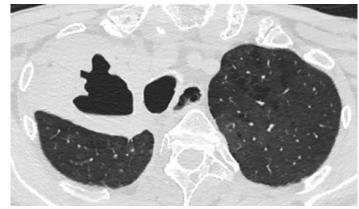
Bronchial necrotizing aspergillosis

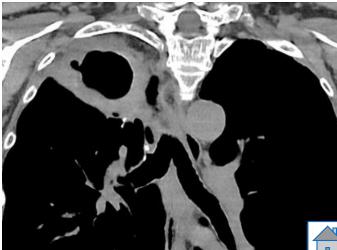
 Occlusive endobronchial mass + atelectasis

Evolution of chronic necrotizing pulmonary aspergillosis

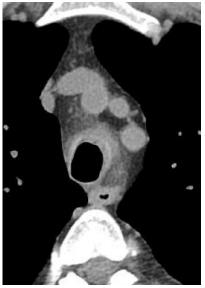

Initially (J0): Emphysema lesions


One month later (M1) :


- Fungus ball in emphysema bubble
- Consolidation around the edges of the emphysematous lesion (formation of a cavity)
- And GGO under the cavity related to an outbreak of invasive aspergillosis (hemorrhage)


Six months later (M6):

- Chronicization with
- Development of a **right** apical cavity
- and pleural thickening of the apical cuff around the cavity



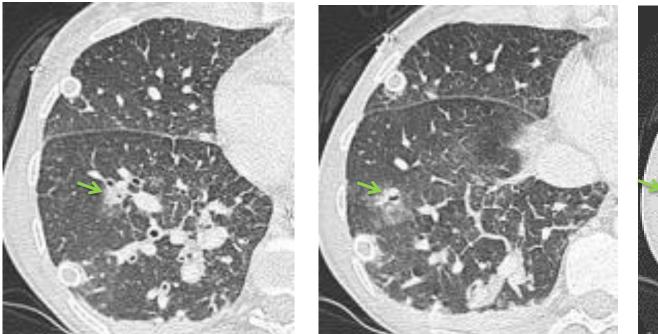
Invasive aspergillosis

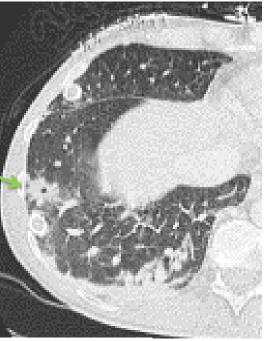
Broncho-invasive form	Angio-invasive form	EORTC/MSG 2008 criteria
Invasion through the bronchial wall to the basal membran ++	Invasion of the small and medium pulmonary vessels ++ → infarction, necrosis and pulmonary haemorrhage	Established criteria for the diagnosis of invasive aspergillosis - Host - Neutropenia < 500/mm3 since > 10d - Bone marrow transplant - Corticosteroid therapy > 0.3mg/kg/d pdt > 3 weeks - Ttt immunosuppressant - Acquired immunodeficiency - Clinic - Lung infection: dense lesion +/- halo, crescent sign, excavated lesion - Tracheobronchitis - Sinus infection - CNS - Disseminated candidiasis: candidemia + hepatic/splenic abscess - Microbiology
Most often, immunosuppressed patients - Immunocompromised neutropenic - AIDS	 Almost exclusively immunocompromised patients +++ with severe neutropenia +++ Bone marrow transplant Intensive chemotherapy for solid neoplasia, some lymphomas, leukemias, myelomas Immunosuppressive drugs (functional neutropenia) Organ transplantation (lung transplantation) Autoimmune disease 	
 But also critical care patients, in the absence of the immunosuppressive factors conventionally described Incidence: 7%, difficult to diagnose (EORTC criteria not very applicable because of concomitant bacterial infections) Risk factors: corticosteroids, COPD, kidney failure, liver failure 		 Direct examination, culture or cyto (ECBC, LBA,) Galactomannan (Ag aspergillar) Beta D glucan

Broncho-invasive form

- Tracheobronchitis
 - Imaging often **normal** in the acute phase
 - Tracheal/bronchial wall thickening
- Aspergillar Bronchiolitis
 - Centrolobular nodules / tree in bud, patchy
- Aspergillar bronchopneumonia
 - Similar to bacterial BP (infiltration of bronchial walls and adjacent parenchyma)
 - Peri-bronchial consolidation +++ (only specific sign)

Tracheobronchitis



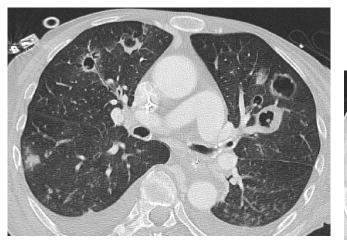


Tree in bud

Peri-bronchial consolidations+++

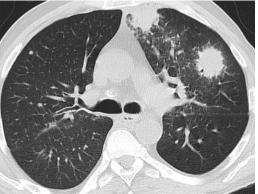
Peri-bronchial consolidation

- Peri-bronchial consolidation
- In an immunosuppressed patient
 - → Consider broncho-invasive aspergillosis



Aspergillosis: angio-invasive form

- Nodules with halo +++
 - Early sign (D0-J5)
 - Halo of GGO= bleeding
- Infarct like opacities
 - Wide base for pleural and quadrangular implantation
- Excavation of nodules and consolidations areas (4 -16%) at J10-J20 at the end of aplasia (PNN>500/mm3) (2ndarycoagulation necrosis with vessel infiltration by mycelial filaments)
 - Hypodensity sign ++ (pre-excavation) within the nodule or condensation
 Nodule with halo sign
 - Crescent sign +++



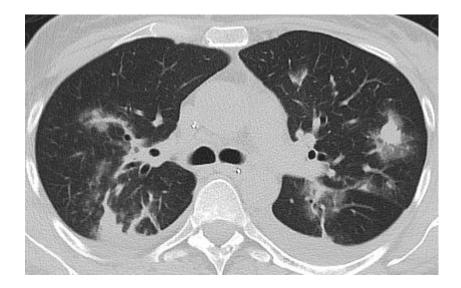
Halo sign

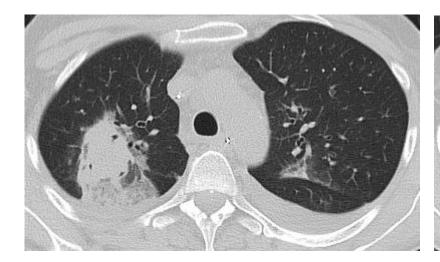
Excavated nodules +/- fungus ball

Halo sign

D15 : hypodensity sign

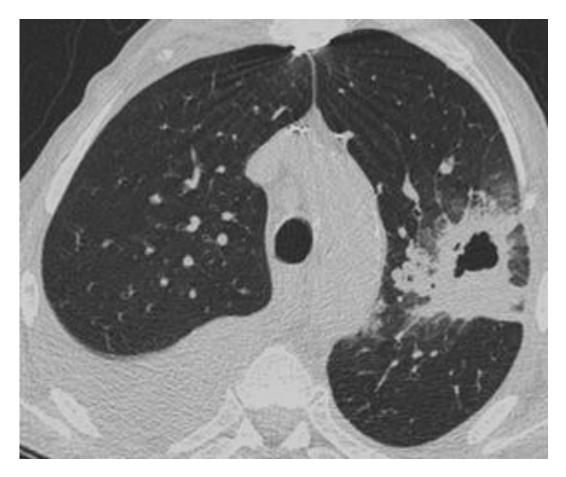
 \rightarrow Hypodensity


 \rightarrow Crescent sign


 \rightarrow Excavation +/- fungus ball



Aspergillosis Angio-invasive form

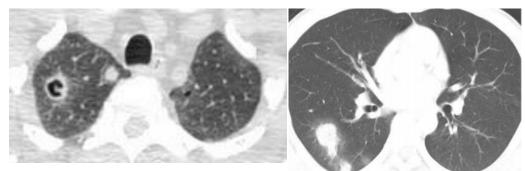

Nodule with halo sign \rightarrow Hypodensity \rightarrow Crescent sign \rightarrow Excavation +/- fungus ball

Invasive aspergillosis (acutisation of LLC) *Excavation + halo*

Candidosis pneumonia

- Severe and prolonged neutropenia, leukemia context, lymphoma
- Pathogen isolated (+) but often associated with other fungal pathogens (++)
- Multisystemic spread

Imaging


- Nodules (with halo in 1/3 of the cases)
- GGO
- "Tree in bud« micronodules

Cryptococcosis

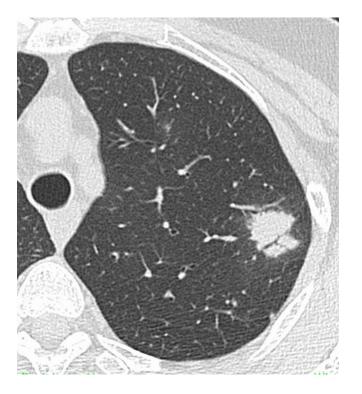
- Cryptococcus neoformans
- Cosmopolitan, soil contaminated by pigeon droppings, organic debris
- Inhalation contamination
- Immunosuppressed + + +: AIDS, transplantation, haematological cancers
- Immunocompetents: rare

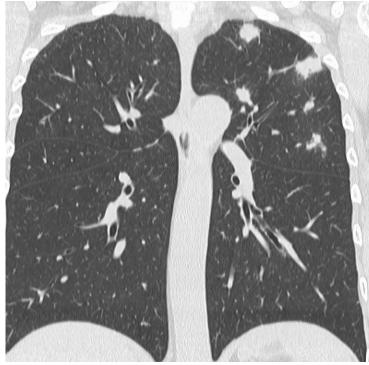
Case courtesy of Dr Praveen Jha, Radiopaedia.org, rID: 18688

Courtesy Song and al-Korean J Radiol

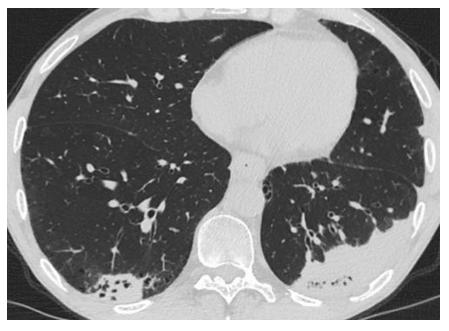
Case courtesy of Dr Jörgen Strömberg, Radiopaedia.org, rID: 46121

Imaging


- Immunosuppressed AIDS
 - Disseminated thoracic spread with **interstitial syndrome** and lymphadenopathy
 - Immunocompetent/ Non-AIDS ID (neoplasia) (more indolent)
 - Nodules (single + or multiple++) / mass
 - Cluster ++ of nodules in the same lobe
 - +/- halo sign +/- excavation +/- bronchogram
 - Slow evolution / resolution
 - TEP scan : fixation
 → Differential diagnosis with neoplasia
- *Song KD, Lee KS, Chung MP, Kwon OJ, Kim TS, Yi CA, Chung MJ. Pulmonary cryptococcosis: imaging findings in 23 non-AIDS patients. Korean J Radiol. 2010*
- Lindell RM, Hartman TE, Nadrous HF, Ryu JH. Pulmonary cryptococcosis: CT findings in immunocompetent patients. Radiology. 2005



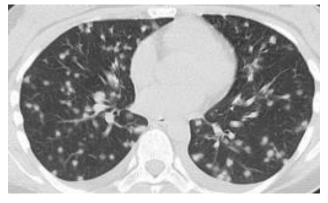
Cryptococcosis

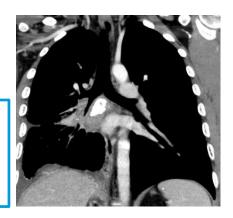

- Note the distribution of nodules in the cluster characteristic of the disease (here in the upper left lobe)
- Some excavated nodules
- Moderately immunocompromised patient
- Bronchogram

Cryptococcosis

- Immunosuppressed liver transplant patient
- Chronic bi-basal subpleural opacities, partly excavated

Histoplasmosis

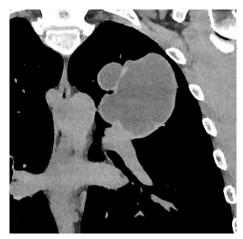

Fungus Histoplasma capsulatum

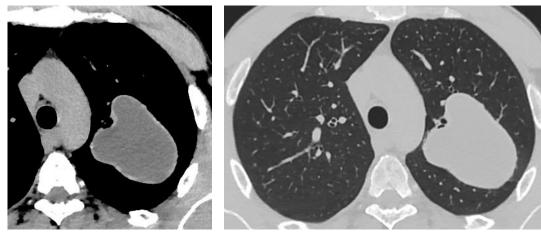

- All over the world, North and South America, the Caribbean, West Africa, South East Asia. Humid soils, caves
- Inhalation of spores
- 95% to 99% asymptomatic (symptoms with high exposure)
- Immunocompromised: severe pulmonary or systemic damage, possibility of reactivation of latent focus
- Diagnosis: serology, antigen, cyto/histo, cultures, antigenuria
- Treatment: antifungal agents
- Acute form (Massive inhalation of spores)
 - Miliary or reticulonoid + ill- defined nodules + lymphadenopathy
 - Resolution
 - **Histoplasmoma** (granuloma, nodule with central calcifications in target)
 - Calcified nodes \rightarrow bronchiolithiasis, splenic calcifications
- *Chronic form* (emphysematous ++)
 - Cavitations apex ++ (idem BK)
- Acute disseminated form (ID and child)
 - Lung involvement: diffuse, miliary or reticular infiltrate
 - Hepato-splenomegaly

Fibrosing mediastinitis

- Classical sequelae with excessive production of fibrous tissue → invasion and compression
- CT :infiltration + calcifications

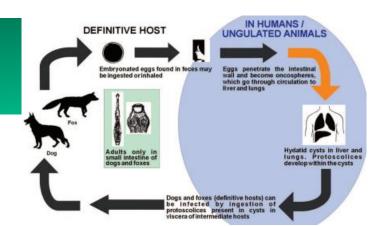
Acute immunocompetent histoplasmosis




Hydatid cyst

- Echinococcus granulosus
- Lung: ^{2nd most} frequently **affected organ** (10-30% of cases) after the liver
- Dissemination by transdiaphragmatic (0.6-16%) or haematogenic route++.

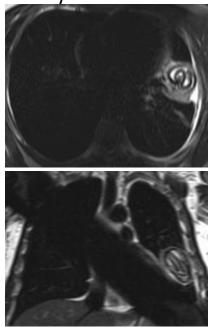
Echinococcus granulosus (*multilocularis in black*)

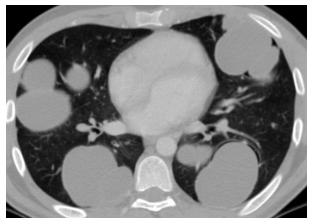


Non complicated cyst

- Solitary or multiple cyst (30%), well-defined contours, round, oval or polycyclic mass, 1 to 20 cm
- Hypodense content, capsule, very rare calcifications
- Single or bilateral (20%)
- Lower lobe ++ (60%)

Martnez S, Restrepo CS, Carrillo JA, et al. Thoracic Manifestations of Tropical Parasitic Infections: A Pictorial Review. RadioGraphics 2005



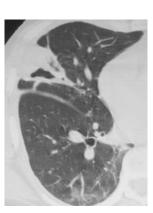


Complicated cyst

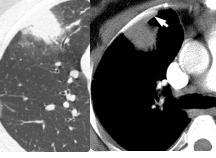
- Intrabronchial rupture
 - Air between pericyst and endocyst (**sign of crescent**) with floating endocyst (**sign of snake** or **water lily**)
 - Then air enters the endocyst (cumbo sign).
- Rupture within the pleura
- Allergic episode when rupture

Ruptured hydatid cysts in the pleura

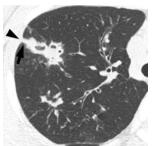
Crescent sign



Water lily sign.

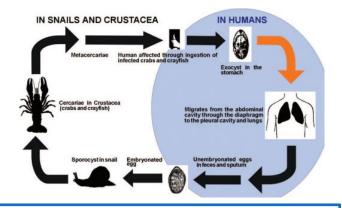


Paragonimiasis


- Trematode *Paragonimus Westermani* or other *paragonimus* species
- Contamination by ingestion of **raw or partially cooked freshwater crabs or crayfish** infected with *metacariae*
- East, South-East, South Asia, South America (Peru), Africa (Nigeria)
- Target organ: lung
- Clinic: fever, chest pain, cough, hemoptysis
- Diagnosis: detection of parasite eggs (sputum, pleural effusion, faeces) or larvae by bronchial brushing

Courtesy Martenez S. Radiographics

Courtesy Kim TS - AJR

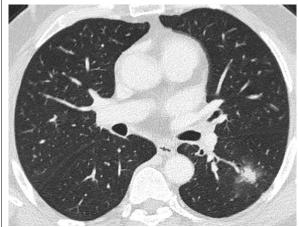


Imaging: well correlated with different stages of evolution

- 1) <u>Penetration of juvenile worms through the diaphragm into the</u> <u>pleural cavity</u> → pleural effusion or pneumothorax
- 2) <u>Lung damage</u>
 - Consolidation/nodule(s) of approx. 2cm, poorly defined contours (GGO)
 - Juxta-pleural or juxta-scissural +++
 - One or more central cystic zone(s)
 - **Cyst(s):** single/multiple, 0.5 to 1.5 cm, best visible when consolidation disappears, liquid/water/aerial content
 - Focal pleural thickening ++
 - Linear path ++ (often nodule → pleura): migration path of the worm.
 - +/- bronchiectasis

Martnez S, Restrepo CS, Carrillo JA, et al. Thoracic Manifestations of Tropical Parasitic Infections: A Pictorial Review. RadioGraphics 2005 Kim TS, Han J, Shim SS, et al. Pleuropulmonary paragonimiasis: CT findings in 31 patients. RDA 2005 JG Im et al. Pleuropulmonary paragonimiasis: radiologic findings in 71 patients. AJR 1992

Other parasitic diseases


Martnez S, Restrepo CS, Carrillo JA, et al. Thoracic Manifestations of Tropical Parasitic Infections: A Pictorial Review. RadioGraphics 2005 Kim TS, Han J, Shim SS, et al. Pleuropulmonary paragonimiasis: CT findings in 31 patients. RDA 2005

Amoebiasis

- Transdiaphragmatic passage from hepatic abscess ++ (hematogenous route also possible) → effusion, **RIL++ excavated condensation,** hepato-bronchial fistula. Sometimes VCI, pericarditis
- Malaria
 - **ARDS +++**, OP
- Trypanosomiasis (Chagas++)
 - Acute myocarditis, dilated cardiomyopathy +/- PAO
 - Achalasia
- Ascariasis
 - Patchy alveolar infiltrates, migratory, resolving in 10 days +/consolidation/alveolar bleeding
- Anguillulose (Strongyloides Stercolaris)
 - Same as ascariasis, patchy migrating patchy alveolar infiltrates.
 - "Hyperinfection syndrom" (AIDS, corticosteroids): severe, extensive pneumonia, alveolar hemorrhage, ARDS
- Filariasis
 - → Pulmonary v., infarction → nodule \leq 3cm (asymptomatic++)
- Echinococcosis
 - *Echinococcus granulosus* \rightarrow hydatid cyst
 - Echinococcus multilocularis → alveolar echinococcosis: pseudotumoral mass in the liver → lung affected by metastatic spread or direct extension.
- Schistosomiasis
 - Early: immunological damage, eosinophilic lung, ill defined nodules, diffuse GGO
 - Chronic: PAH (often preceded by liver damage and portal hypertension)

Ascariasis Courtesy Martnez S Radiographics

Anguillulosis

- Frequent and severe
- Prognosis related to treatment rapidity
- CT essential for early positive diagnosis
- Difficult etiological diagnosis but clinical correlation is helpful, especially type and degree of immunosuppression.

Complications after bone marrow transplant

	Neutropenic phase < 30j	Early phase 30-100j	Late phase >100j
Infectious	Aspergillosis Candidacy Bacteria	CMV Pneumocystis	
Non-infectious	PAO HAD Hypersensitivity Medication	Aplasia exit syndrome	Constrictive Bronchiolitis (GVH) OP

T M Wah et al. Pulmonary complications following bone marrow transplantation. British Journal of Radiology (2003)

Alveolar consolidation

Infections	Non-infectious DD	
 Bacteria +++ Angio invasive aspergillosis (neutropenia) Atypical pneumocystis (HIV, corticosteroids, transplant recipients) 	 OP Alveolar hemorrhage Invasive mucinous carcinoma Lymphoma 	

Consolidation + necrosis

Infections	Non-infectious DD
 Tuberculosis Angio-invasive aspergillosis Klebsiella Pyogens: staph, BG- Anaerobes 	 Cancer excavated Lymphoma (EBV induced)

HIV/AIDS: staph, BG- ++ Aplastic: aspergillosis +++

Bronchiolitis, bronchopneumonia		
Infections Non-infectious DD		
 Common CAP germs Tuberculosis, atypical mycobacteria Invasive Aspergillosis, broncho invasive 	 Inflammatory bronchiolitis Exceptional endobronchial/vascular metastases 	-

GGO

Infections	Non-infectious DD
 Pneumocystis Viruses, CMV Mycoplasma pneumoniae 	 Pn. Medication Alveolar Hgie PAO PO

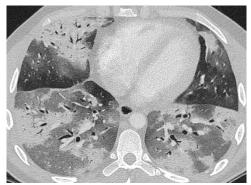
HIV/AIDS: pneumocytosis +++ ID: CMV +++

Multiple Nodules		Miliaire		
Infections	Non-infectious DD	Infections	Non-infectious DD	
 Viruses: CMV, HSV, VZV Fungi: candidiasis, cryptococcosis, aspergillosis, mucormycosis. Tuberculosis, atypical mycobacteria Nocardiosis Septic embolism 	 Metastasis Lymphoma Kaposi's Sarcoma 	 Tuberculosis Candidosis CMV, HSV, VZV 	 Metastasis Stage IV Lymphoma 	

Alveolar consolidation

Infections

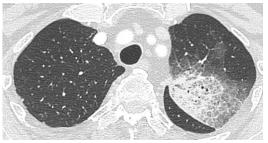
- Bacteria +++
- Angio invasive aspergillosis (neutropenia)
- Atypical pneumocystis (HIV, corticosteroids, transplantation)

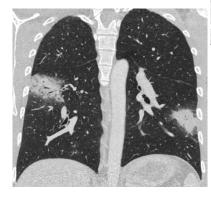

Non-infectious DD

OP

- Alveolar hemorrhage
- Invasive mucinous carcinoma
- Lymphoma

Angio-invasive aspergillosis


Organizing pneumonia


Adenocarcinoma

Lymphoma

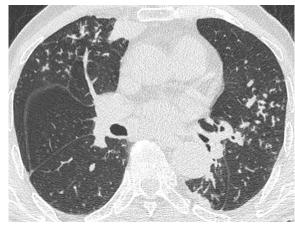
Consolidation + necrosis

Infections	Non-infectious DDx
 Tuberculosis Aspergillosis Klebsiella Pyogens: staph, BG- Anaerobes 	 Cancer excavated Lymphoma (EBV induced)

HIV/AIDS: staph, BG- ++ Aplasia: aspergillosis +++

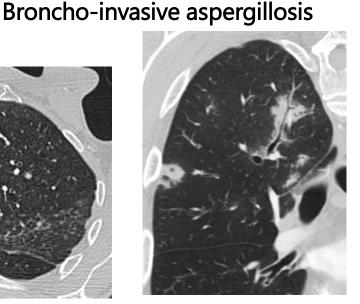
Tuberculosis

Bronchiolitis, bronchopneumonia


Infections

- Common CAP germs
- Tuberculosis, atypical mycobacteria
- Broncho invasive aspergillosis

Non-infectious DD


- Inflammatory bronchiolitis
- Exceptional endobronchial/vascular metastases

Bronchial pneumonia CAP

Tuberculosis

GGO

I	n	feo	cti	on	S
			LI		3

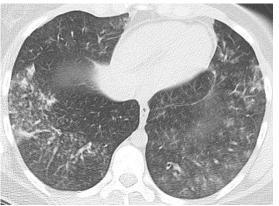
- Pneumocystis
- Viruses, CMV
- Mycoplasma pneumoniae

Pneumocystis

Non-infectious DD

- Drug toxicity
- Alveolar hemorrhage
- PAO OP

Viral



HIV/AIDS: pneumocytosis +++ ID: CMV +++

Mycoplasma

Courtesy Marius S, Horger - AJR Chest Imaging Workshops - Immunocompromised Infections - Anne-Laure Brun

Multiple Nodules

	Non-infectious	DD
--	----------------	----

Lymphoma

Kaposi's Sarcoma

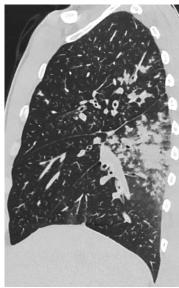
Viruses: CMV, HSV, VZV - Metastases

-

- Fungi: candidosis, cryptococcosis, aspergillosis, mucormycosis.
- **Tuberculosis**, atypical mycobacteria
- Nocardiosis


Infections

- Septic embolism


Nocardiosis

6765

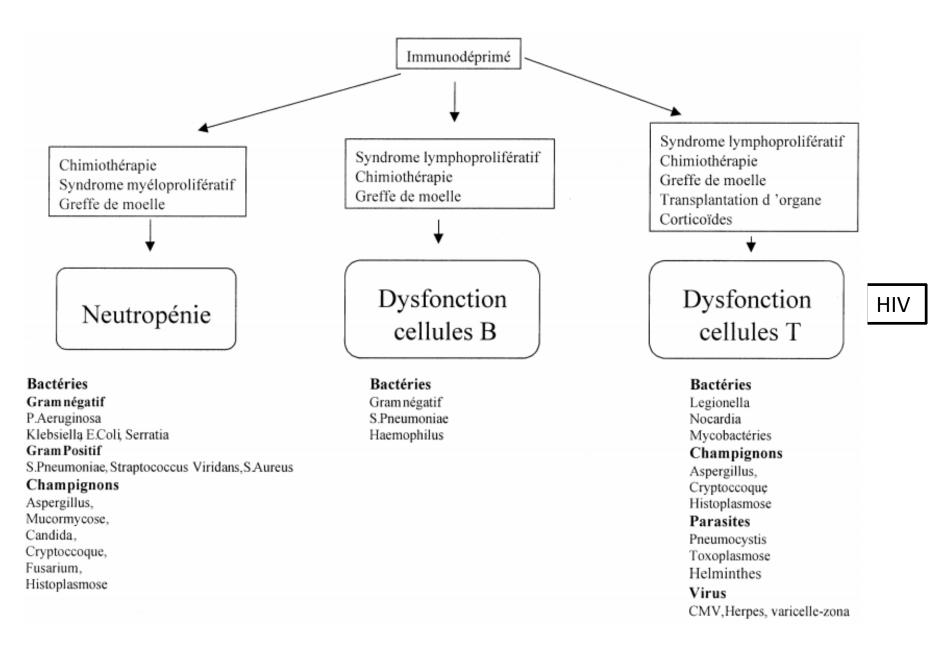
Septic embolism

Tuberculosis

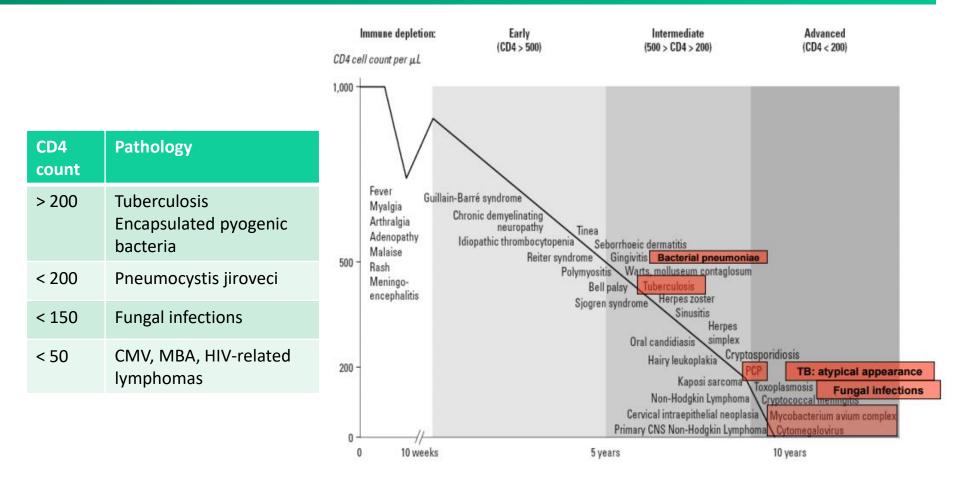
Candidosis

Miliary

Infections	Non-infectious DD	
 Tuberculosis Candidosis CMV, HSV, VZV 	 Metastasis Stage IV Lymphoma 	


Miliary tuberculosis

Candidosis



HIV infections

Low to moderate ID

Community-acquired bacterial pneumonia +++

- Most frequent
- Possible occurrence at modest degrees of ID
- Pneumococcus, Haemophilus, influenza, Staph aureus, pseudomonas aeruginosa ...
- Same presentation as IC

Pneumocystis +++

- *Pneumocystis carinii* (parasite), the most common early pathology of AIDS
- CD4 < 200 mm3
- Confluent, bilateral and symmetrical GGO+ cysts (10 to 30%)

Tuberculosis +++

- May occur at moderate stage of ID (CD4<300/mm3)
- Presentation a little different especially if CD4<200/mm3
 - Less apical predominance
 - Less consolidation, less excavation
 - More blood spread

High ID (<100CD4/mm3)

Cryptococcosis

- More frequent opportunistic fungal infections in France
- CD4 < 100/mm3
- Often disseminated: meningitis (^{1st)}, pulmonary (^{2nd})
- CT scan: bilateral abnormalities, multiple nodules, interstitial reticular syndrome, miliary

Atypical Mycobacteria

- *Mycobacterium avium intracellulare* (disseminated disease)
- Rare: *M. Kansasii* (respiratory tropism), *M. Xenopi* (disseminated disease).
- CD4<50/mm3, incidence ↓ (ARV)

Invasive pulmonary aspergillosis

- Rare in HIV, favoured by other risk factors or CD4 < 50/mm3
- Consolidation +/- halo

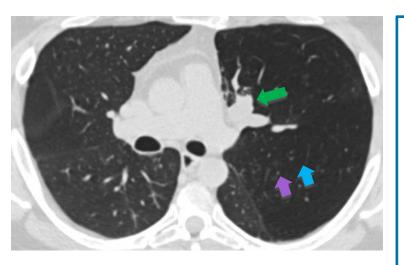
Other germs

- Mycosis
 - Histoplasmosis
 - USA++, alveolar condensation sometimes migratory, mediastinal lymphadenopathy, hematogenous dissemination: liver, spleen, CT, lung (very fine miliary +/- diffuse alveolar syndrome)
 - Coccidioidomycosis
 - Candidosis
- Parasitosis
 - Toxoplasmosis (<100 CD4) (disseminated toxoplasmosis)
 - Cryptosporidiosis
- Viral
 - CMV, etc.
 - Exceptionally incriminated

NB: Opacity of HIV/AIDS tumour appearance.

- Bronchial cancer +++
- Lymphoma++
- Kaposi+

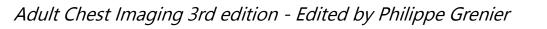
Congenital / Pathology from childhood to adulthood


- Bronchial atresia 📥
- Giant Lobar Emphysema 📥
- Diffuse Pulmonary Lymphangiectasis =
- Lung sequestration
- Cystic adenomatoid malformation =>
- Arteriovenous malformation
- Cystic fibrosis
- Primary ciliary dyskinesia 🔿
- Swyer James Syndrome 📥
- Alpha 1 antitrypsin deficiency
- Marfan disease 🔿

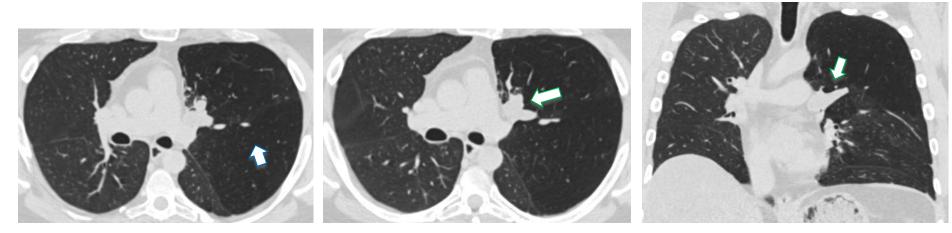
Bronchial atresia

Definition

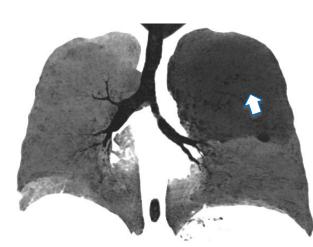
- Congenital atresia of a segmental bronchus
- with normal distal architecture

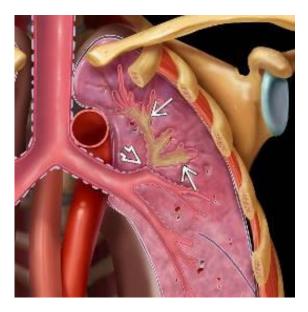


Differential diagnostis


- Mucoid Impaction
- Congenital Lobar Emphysema
- Intra-lobal sequestration

Imaging

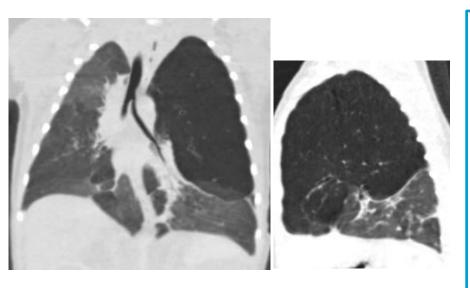

- Apico-posterior segment LUL (50%), then RUL (20%),
 LLL and RLL (15% each)
- Bronchocele 🗲
 - (\pm calcified)
 - plugged with mucus. Can give a finger-inglove appearance. Often with bronchectasia
- Hyperlucent lung ->
 - Systematized with trapping and distension of the affected segment
- Hypoperfusion ->
 - Rarefaction of the vascular weave
- Look for another cause of bronchial obstruction: tumor, foreign body, broncholithiasis...

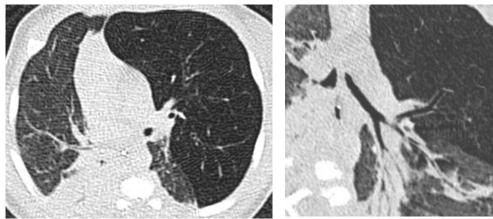


Bronchocele

Bronchial atresia

Hyperlucent lobe+ hypoperfusion





Giant Lobar Emphysema

Progressive distension of a lobe due to an incomplete bronchial obstacle.

- Rare lung malformation
- 3 times more frequent in boys
- Respiratory distress before 6 months of age
- **Treatment**: lobar resection in severe cases

Radiography

- Lobar low density ,vascular frame rarefaction
- Mediastinal deviation and flattening of the homolateral diaphragmatic dome

CT SCAN

- Hyperlucent lobe
- Rarefaction of the vascular frame
- Compression: +/- atelectasis of other homolateral lobes, +/- mediastinal deviation, +/- contralateral GGO by lack of expansion.

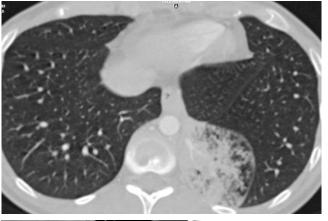
Adult Chest Imaging 3rd edition - Edited by Philippe Grenier

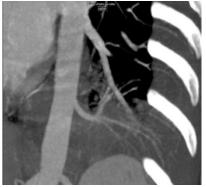
Diffuse Pulmonary Lymphangiectasis

- Rare, lymphatic disorder with dilation of lymphatic vessels, high mortality.
- Several types
 - Secondary to cardiac cause
 - <u>Primitive</u> +/- syndromic. No lymphatic vessel size regression after the 20th week of gestation. Dilatation of intra-pulmonary lymphatics
 - Isolated ++
 - Or may be part of a **generalized lymphangiectasis (lymphedema, hemi-hypertrophy).**
- Treatment: high-protein diet, triglyceride-free diet

Courtesy Bellini C Orphanet J Rare Dis. 2009

Imaging


- <u>Lung: lymphatic overload</u>
 - Inter-lobular septal thickening, sub-pleural
 - Peri-bronchial thickening
 - Patchy GGO
 - Basal predominance
- <u>Médiastin</u>
 - Infiltration of mediastinal fat, lymphadenopathy (50%)


<u>Pleura</u>

- Chylothorax, sometimes pleural calcifications

Lung sequestration

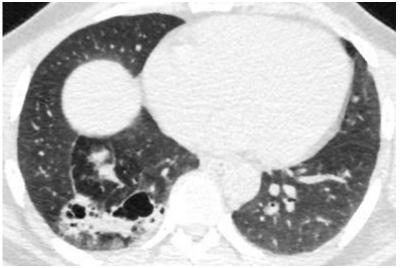
Congenital. Lung tissue detached from the rest of the lung Vascularized by a proper systemic artery +++: thoracic aorta (75%), abdominal (20%), intercostal...

Intra-lobular sequestration Systemic artery vascularize LLL consolidation syndrom

<u>1/ Intra-lobular</u> +++ (90%)

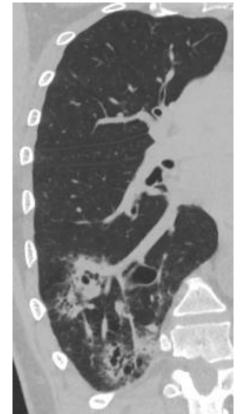
- Contained in the visceral pleura of the homolateral lung
- Artery from the aorta or its branches
- Drainage through the pulmonary vein (left-right shunt)
- Lower lobes: posterior segment of the LLL +++ (2/3)
- Complications: superinfections +++ (consolidation, hydroaerous levels)
- Different presentations
 - **Cystic / bronchiectasis** (communication with the tracheo-bronchial tree)
 - **Pseudotumoral** (homogeneous mass, well limited, posterior in the LLL) (no communication with the tracheobronchial tree)
 - Emphysematous


2/ Extra-lobular (10%)


- Clean pleural envelope
- Artery from the aorta or its branches
- Systemic venous return
- Sus, intra or sub-diaphragmatic

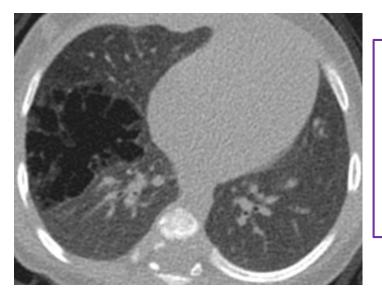
Reflex!

Consolidation syndrom or repetitive pneumonia of the lower left lobe +++ →Look for systemic artery (angioscan +++) to diagnose a sequestration



Intra-lobular sequestration

→ Hemoptysis → Discovery at 41



Adenomatoid malformation

Definition: **abnormal foetal development of the terminal respiratory structures of a segment of lung tissue** resulting in adenomatoid proliferation of bronchiolar elements with development of **cysts**.

- = MAKP: cystic adenomatoid pulmonary malformation
- = CAMC. congenital cystic adenomatoid malformation.
- 25% of congenital lung lesions
- 1/1500 to 1/4000, male dominated
- Treatment: Surgery if symptomatic

Complications

- Pneumothorax
- Hemopneumothorax
- Pyo-pneumothorax
- Degeneration
 - Carcinomas
 - Pleuro-pneumoblastoma
 - Rhabdomyosarcoma

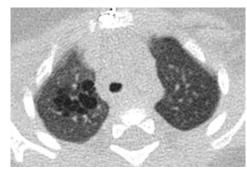
Pleuro-pneumo-blastoma

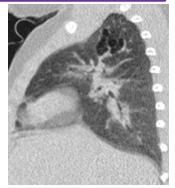
Imaging

<u>Diagnosis</u>

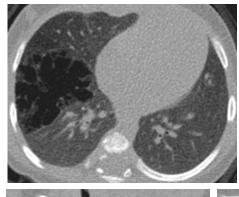
- Antepartum/post natal (respiratory distress)
 → US
- Sometimes in adulthood (recurrent infections) → CT

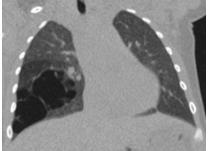
<u>Several types</u> (depending on the phases of development of the tracheobronchial tree)

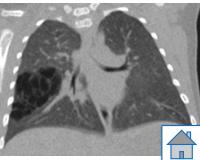

- <u>Type 1</u> +++ (70%): one or more large cysts
 (2 cm to 10 cm) +/- small peripheral cysts
- <u>Type 2</u> (15-20%): multiple small cysts (<2cm), associated with other anomalies (renal agenesis, pulmonary sequestration, cardiac malformations).
- <u>Type 3</u> (10%): microcysts (<5mm) → solid (adenomatoid tissue), typically affects a whole lobe
- <u>Type 4</u>: large cyst (risk of pneumothorax, blastoma degeneration)


Location

- Lobar
- Unilateral

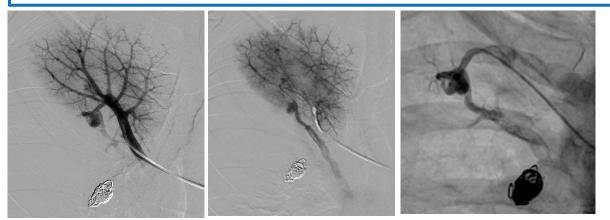

Differential diagnosis


- Bronchogenic cyst
- Pulmonary sequestration (feed artery)
- Congenital diaphragmatic hernia
- Giant Lobar Emphysema
- Cystic Bronchiectasis



MAKP type 2, 7 months

MAKP type 1 11 months



Arteriovenous malformation

- Direct communication between artery and pulmonary vein without capillary
- Osler-weber-rendu disease 80%
- Idiopathic 20 %

Imaging

- Nodule with one or more artery(ies) and drainage veins whose communication is objective (MIP)
- Round or oval
- Lobulated, well limited
- Multiple (33%), or single (66%)
- Lower lobes (50 to 70%) or 1/3 medium

Adult Chest Imaging 3rd edition - edited by Philippe Grenier

Consequences

- Shunt right / left -> hypoxemia
- Septic, cruoric, gaseous emboli: antibiotic for life
- **Risk of rupture** (especially during **pregnancy**)

Cystic fibrosis

- The most frequent serious genetic disease in the white population in France (1/3200 births)
- Autosomal recessive disease
- CFTR protein gene mutation
- → viscous mucus → chronic surinfection → bronchial dilatation and parenchymal destruction

Differential diagnosis

- ABPA
- Ciliary dyskinesia
- Tuberculosis

- Bronchectasis +++

- Upper regions
- Child/young adult
 → consider cystic
 fibrosis

<u>Radiology</u> (Mandatory at initial check-up (at birth or on symptoms) and annual check-up)

- Hyperinflation, bronchiectasis, mucoid impactions

<u>CT scan</u> (Optional for initial symptom assessment, 6-month and annual assessment (depending on the context), low dose CT +++)

- Cylindrical and cystic diffuse bronchiectasias with preferential involvement of the upper lobes +++ and posterior segment
- Thickening of the bronchial walls
- Mucoid impactions (normal bronchus) and bronchocele impactions (dilated bronchus), tree in bud
- Cysts or bubbles in the subpleural regions of the upper lobe
- Air trapping (mosaic lung) and atelectasis
- Thoracic distension with hyperinsufflation
- Emphysema
- Mediastinal nodes

- Muller NL, Silva CS. Imaging of the Chest. Saunders 2008

- HAS - Cystic fibrosis National protocol for diagnosis and care of a rare disease November 2006

Primary ciliary dyskinesia

Genetic lash structure disorder

- Diagnosis: Jorissen and Bertrand test

Imaging

- Bronchiectasis (of all types)
- Mucoid Impactions
- Tree in bud Trapping

Kartagener Syndrome Association

- Ciliary dyskinesia
 - Bronchiectasis
 - Naso-sinusal polyposis
 - Aplasia of frontal sinus
- Situs inversus or dextrocardia (50%)



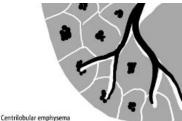
Swyer-James Syndrom

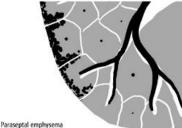
Physiopathology

- = MacLeod's syndrom
- Hemithoracic hyperlucency related to constrictive bronchiolitis lesions secondary to childhood bronchitis or bronchiolitis (adenovirus or mycoplasm)

- Hyperlucent lung/lobe / Air trapping
- Distribution: lung, lobe, ...
- Decrease in vessel size
- Normal or decreased volume (younger smaller)
- Often irregular segmental bronchiectasias

Differential diagnosis


- Partially obstructive lesion of the main bronchus
- Chronic thrombus
- Hypoplasia of the pulmonary artery


Alpha 1 antitrypsin deficiency

Physiopathology


- Alpha1 antitrypsin is a protein that protects the tissues from enzymes (elastase...).
- Associated Cirrhosis

Courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rlD: 9674

- Panlobular Emphysema
- Bubbles
- Bronchiectasia, moderate, cylindrical (40%)
 - Bronchial parietal thickening (50%)
 - Severity proportional to emphysema
- Distribution
 - Predominance in lower regions
 - Diffuse
 - Sometimes upper regions

Marfan disease

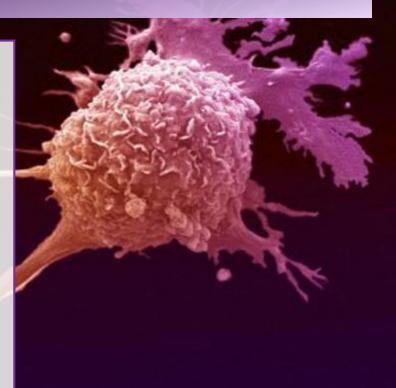
Elastic tissue system disease

- Autosomal dominant transmission (mutation of the fibrillin gene on chromosome 15)
- Prevalence: 2-6 / 1 000 000

Imaging: Multi-organ damage

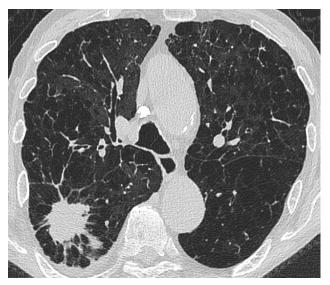
<u>Musculoskeletal</u>

- Slender morphotype, osteopenia, ligament hyperlaxity, acetabular protrusion
- Spine: atlanto-axial subluxation, dural ectasia, kyphoscoliosis, meningocel.
- Thorax: *pectus excavatum/ carinatum*


Eyes

- Myopia, lens subluxation, retinal detachment
- <u>Cardiovascular</u>
 - **Aortic aneurysm,** aortic insufficiency, aortic coarctation.
 - Arterial Dissection
- <u>Lung</u>
 - **Cysts** and **bubbles**, spontaneous pneumothorax

Tumors


- Bronchopulmonary cancer
 - TNM
 - Immunotherapy/ iRECIST
 - Lymph nodes
 - Lepidic adenocarcinoma
 - Lymphangitic carcinomatosis
- Pulmonary Lymphoma
 - Reactive lymphoproliferation
 - Primary pulmonary lymphoma 💷
 - Secondary Lung Lymphoma 🗾
 - Lymphoma of the immunocompromised
- Neuroendocrine tumors
 - DIPNECH
 - Carcinoid tumors
 - Giant cell tumors
 - Small-cell cancer 💷
- Thoracic sarcoma
- Kaposi's Sarcoma 📄
- Thoracic endometriosis
- Benign metastases of leiomyomas

Bronchopulmonary cancer

- Broncho pulmonary cancer: more than **30,000 new cases/year**: 4th most frequent cancer in France
- Average age at diagnosis: 65 years
- 80-85% non-small cell
- All stages combined, relative survival at 5 years is estimated at about 14%.

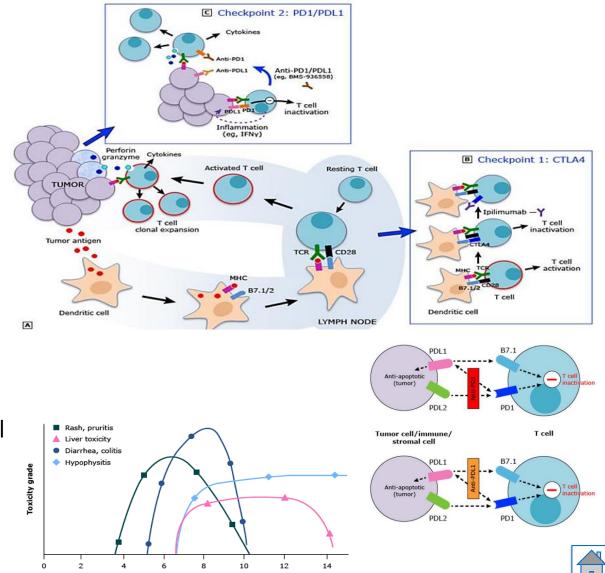
Bronchopulmonary tumor

Anatomopathology

- <u>Common forms</u> 95%
 - Adenocarcinoma 46%
 - Squamous cell carcinoma 26% NPC
 - Large cell carcinoma 10%.
 - Small Cell Carcinoma 13
- <u>Non-common forms</u> 5%
 - Carcinoid 80%
 - Bronchial tumors
 - Others

8th edition of the TNM

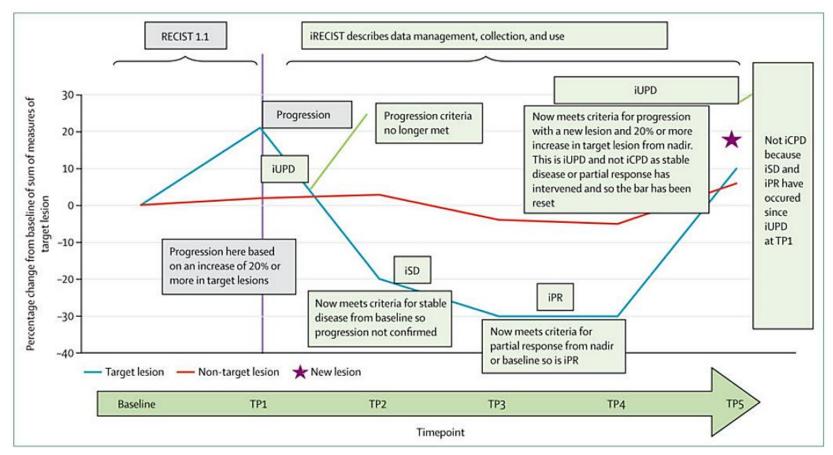
Descriptor	Definition	
T descriptor		
ТХ	Primary tumor cannot be assessed or tumor proven by the presence of malignant cells in spu- tum or bronchial washings but not visualized with imaging or bronchoscopy	
Т0	No evidence of primary tumor	
Tis	Carcinoma in situ	
T1	Tumor ≤ 3 cm in greatest dimension, surrounded by lung or visceral pleura, without broncho- scopic evidence of invasion more proximal than the lobar bronchus	
Tla	Tumor ≤ 1 cm in greatest dimension	
T1b	Tumor > 1 cm but \leq 2 cm in greatest dimension	
T1c	Tumor > 2 cm but \leq 3 cm in greatest dimension	
T2 descriptor		
T2	Tumor > 3 cm but ≤ 5 cm or tumor with any of the following features: involvement of a main bronchus regardless of the distance from the carina; invasion of the visceral pleura; associated with partial or complete lung atelectasis or pneumonitis	
T2a	Tumor > 3 cm but \leq 4 cm in greatest dimension	
T2b	Tumor > 4 cm but \leq 5 cm in greatest dimension	
Т3	Tumor > 5 cm but ≤ 7 cm in greatest dimension or one that directly invades any of the follow ing structures: parietal pleura, chest wall (including superior sulcus tumors), phrenic nerve parietal pericardium; or separate tumor nodule or nodules in the same lobe	
T4	Tumor measuring >7 cm in greatest dimension that invades any of the following structures: medi- astinum, diaphragm, heart, great vessels, trachea, recurrent laryngeal nerve, esophagus, vertebra body, carina; or separate tumor nodule or nodules in a different lobe of the same lung	


8th edition of the TNM

N descriptor		
NX	Regional lymph nodes cannot be assessed	
N0	No regional lymph node metastasis	
N1	Metastasis in ipsilateral peribronchial and/or ipsilateral hilar lymph nodes and intrapulmonary nodes, including involvement by direct extension	
N2	Metastasis in ipsilateral mediastinal and/or subcarinal lymph nodes	
N3	Metastasis in contralateral mediastinal, contralateral hilar, ipsilateral or contralateral scalene, or supraclavicular lymph nodes	
M descriptor		
M0	No distant metastasis	
M0 M1	No distant metastasis Distant metastasis	
M1	Distant metastasis Separate tumor nodule or nodules in contralateral lung; malignant pleural effusion or pleural thickening or nodules or masses; malignant pericardial effusion or pericardial thickening or	

Immunotherapy

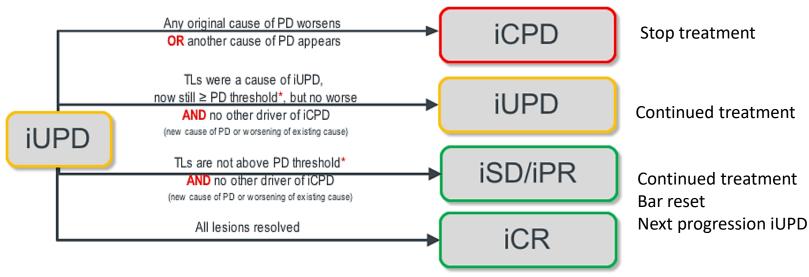
- Stimulate the immune response (T-lymphocytes) to destroy tumor cells
- Pembrolizumab, Nivolumab, Atezolizumab
- Side effects +++ (auto immune), toxicity
 - Cutaneous 16%.
 - Digestive 12%
 - Pneumology 7%
 - Endocrine 6%
 - Hematologic, hepatic, neuromuscular...
- Sometimes pseudoprogression on the ^{1st} control (by immune inflammatory reaction) while response
- Criteria i RECIST for immunotherapy


Time (weeks)

i RECIST

- i RECIST was developed in patients receiving this type of treatment because of the different cinetic response compared to conventional chemotherapy. In patients treated with immunotherapy, a "flare" or "pseudoprogression" effect is sometimes observed, i.e. an initial increase in the size of the lesion followed by a response in a second stage.
- To assess tumour response, RECIST 1.1 criteria are used up to the progression. Then the iRECIST criteria are used. The challenge is to wait and rescan the patient at 4 to 8 weeks :
 - to confirm progression
 - or pseudo-progression /response if lesions are decreasing
- The **iUPD** (unconfirmed PD) criteria is therefore used initially if the lesions are progressing and then at the reassessment scan:
 - i CPD if progress is confirmed: stop treatment
 - i UPD again when the patient maintains baseline progression criteria but without worsening from the previous scan
 - i SD / i PR: if the stability (i SD) or partial response (i PR) criteria with respect to the baseline are met
 - i CR when it is a complete response
 - In the i SD, i PR, i CR, the next time you progress, you start again on an i UPD

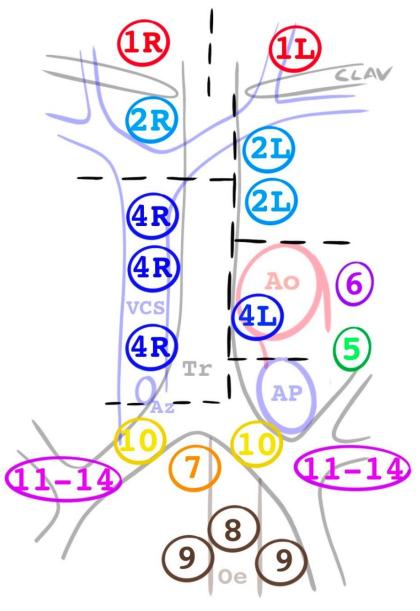
Criteria i RECIST


Figure 2. RECIST 1.1 and iRECIST: an example of assessment

Prefix "i" indicates immune responses assigned using iRECIST; others without "i" are confirmed by RECIST 1.1. RECIST=Response Evaluation Criteria in Solid Tumours. iCR=complete response. iCPD=complete progression. iPR=partial response. iSD=stable disease. iUPD=unconfirmed progression. TP=timepoint.

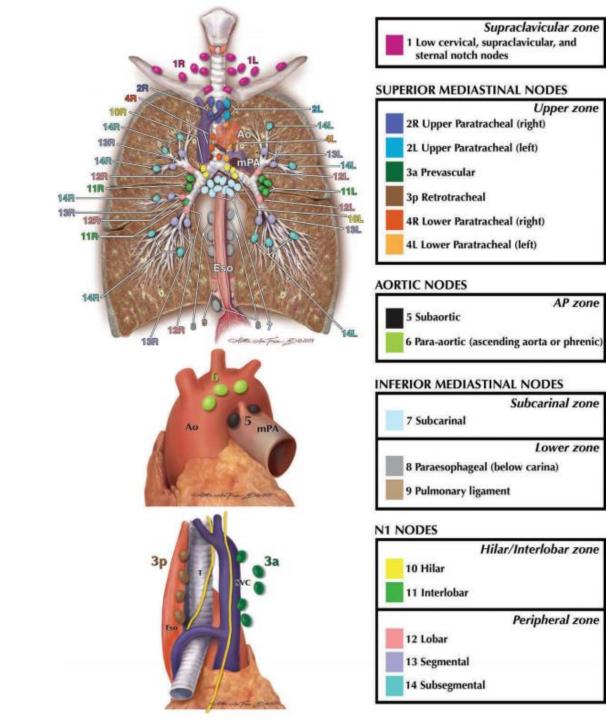
NB: **hyperprogression**: increase in tumour growth rate by a factor \geq 2 after the introduction of immunotherapy.

Possibilities After Initial iUPD



Note: <u>Only</u> target lesion PD, if present at iUPD, must resolve to achieve iSD/iPR. e.g. PR in TLs + unequivocal PD of NTLs + new lesions → unchanged = iPR

* PD threshold = 20% & 5 mm 🛧 from nadir

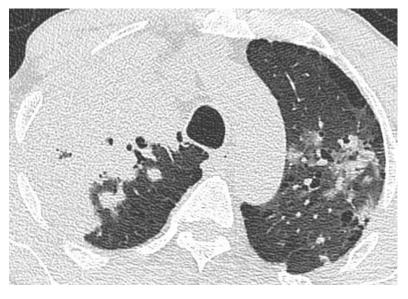


Nomenclature of mediastinal lymph nodes

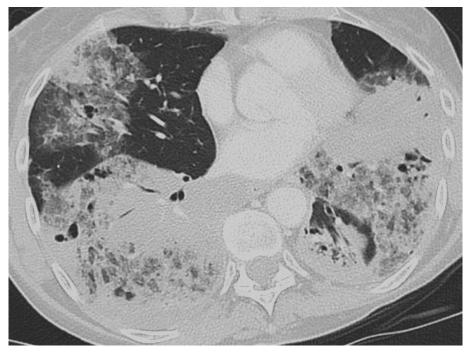
Area GG	Common Name
1	Supra-clavicular
2R	Upper right para-tracheal
4R	Lower right para-tracheal
2L	Upper left para-tracheal
4L	Lower left para-tracheal
3A	Pre-vascular
ЗP	retrotracheal
5	Sub-aortic
6	Para-aortic
7	Sub carinal
8	Posterior infra-mediastinal (or para- esophageal) space
9	Pulmonary ligament
10	Hilar
11, 12, 13, 14	Interlobar, lobar, segmental, sub-segmental

Lepidic predominant adenocarcinoma of the lung (LPAL)

- Proliferation of cylindrical cells lining the alveolar walls and respecting the alveolar architecture . Former " bronchiolo-alveolar adenocarcinoma ". Mucinous (80%: diffuse++) or non-mucinous (localized++).
- **Bronchogenic progression** to other lobes / controlateral lung, or lymphatic/hematogenic spread
- Presentations
 - <u>Early form:</u> **GGO nodule +/- mixed** (sometimes the transformation of an atypical adenomatous hyperplasia (AAH) which is a possible precursor)
 - **GGO +/- crazy paving** (consolidation)
 - Consolidation
 - Lobar , asymmetrical with <u>scissural bulging</u> + + + and stretched bronchogram
 - Nodules
 - Often the 3 signs together +++
 - DD: pneumonia

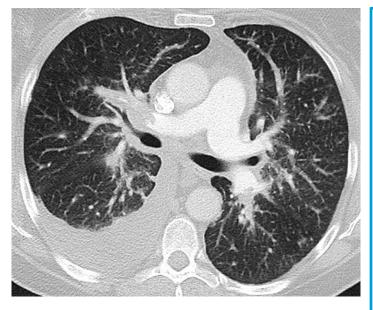

THINK to the LAPL when:

- Chronic consolidation
- **Resistant to broad-spectrum** antibiotic therapy



Consolidation Crazy paving Scissural bulging +++

LPAL



Lymphangitic carcinomatosis

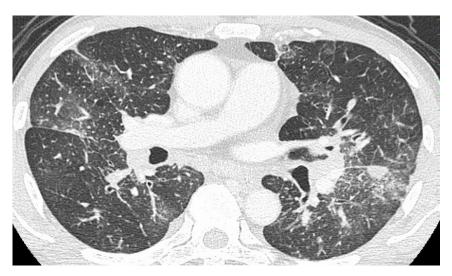
Extension of a tumour to the lymphatic system of the lung

- Adenocarcinoma +++ (breast+++, lung++, colon, stomach, prostate, ENT, thyroid)
- Dissemination :
 - Haematogen
 - **Direct** (pulmonary ADK)
 - or through the mediastinal lymph nodes...
- Restrictive syndrome (failure of the pulmonary lobules to expand), abnormalities in alveolo-capillary diffusion

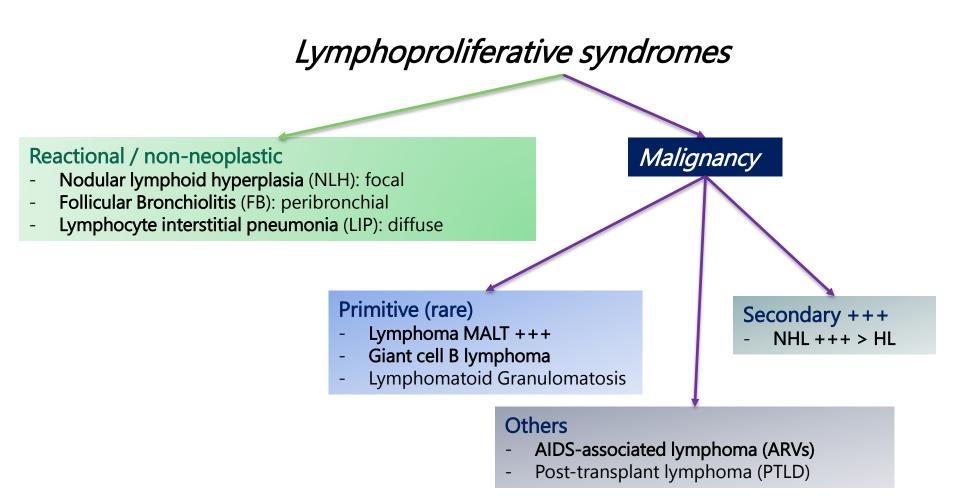
CT


_


- Septal thickening +++
 - Regular, **nodular** +++ or irregular polygonal appearance
- Peri-broncho-vascular thickening +++, irregular and nodular
- Homolateral (one or more lobes) or bilateral
- Respect for lung architecture
 - +/- Pleural carcinomatosis: pleural effusion with enhanced nodules on the parietal or visceral pleura and on the scissure
- +/- Hilar and mediastinal lymphadenopathy



Lymphatic carcinomatosis on lung adenocarcinoma Major peribronchovascular thickening



Lymphatic carcinomatosis on lepidic adenocarcinoma

- GGO= lepidic ADK
- Septic lines and micronodules = lymphangitis

Pulmonary Lymphoma

The radiological spectrum of pulmonary lymphoproliferative Disease S HARE The British Journal of Radiology, July 2012

Benign lymphoproliferative disease

Nodular lymphoid hyperplasia (NLH)

- Rare, called "Pseudolymphomas."
- 19 80 years (median 65 years)
- Asymptomatic
- Histology: **polyclonal** mature lymphocyte infiltrate

<u>Imaging</u>

- Nodule or condensation
 - Well defined
 - **Unique ++**, average 2 cm (0,6 to 6cm)
 - Sometimes conglomerate of 2-3 nodules
 - Bronchogram
 - Discrete lymphatic dissemination

NLH *Courtesy S HARE The radiological spectrum of pulmonary lymphoproliferative Disease The British Journal of Radiology, July 2012*

Follicular bronchiolitis (FB)

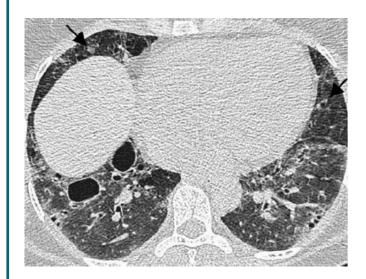
 Benign polyclonal hyperplasia of intraand peribronchial MALT tissue

Etiologies

- Collagenoses (PR, Sjögren) (adult)
- Immunodeficiency (HIV ...) (younger)

Imaging : airways+++

- Centrolobular micronodules +++
- Tree in bud
- GGO bilateral, patchy
- Bronchial dilatation

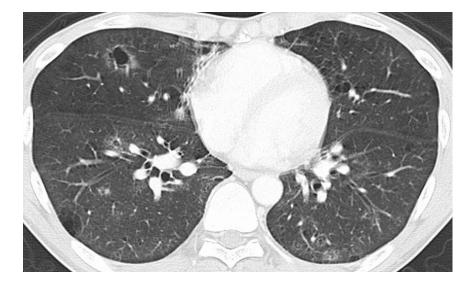


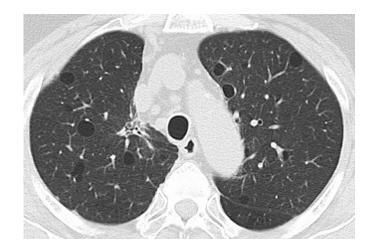
Lymphoid interstitial pneumonia (LIP)

- Polyclonal lymphocyte infiltration <u>Etiologies</u>
- HIV
- Connective tissue disease (Sjögren) (woman between 40 and 60 years old)

Imaging

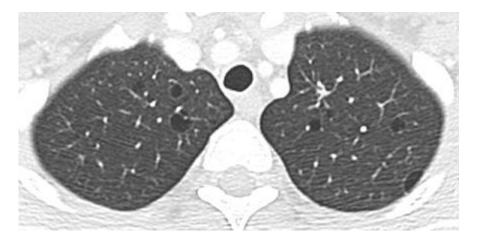
- Diffused or patchy GGO
- Perivascular cysts 1 to 30 mm
- Centrolobular micronodules
- Peribronchovascular thickening
- Moderate septal thickening
- Adenomegalies

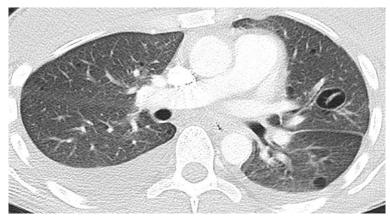


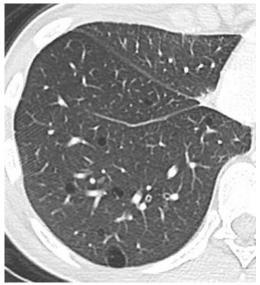

Courtesy S HARE The radiological spectrum of pulmonary lymphoproliferative Disease The British Journal of Radiology, July 2012



2 cases of LIP






LIP Lupus associated with Sjögren

Acute episode of systemic erythematous lupus (pleural effusions)

Primary pulmonary lymphoma

- Rare
- Monoclonal proliferation in the lung
- Criteria: no extrathoracic lymphoma found within 3 months of initial diagnosis.
- NHL B +++ (80%): MALTomes and Giant Cell B Lymphoma

MALTome

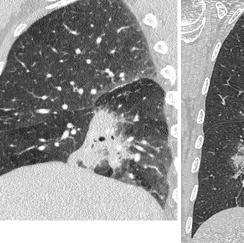
- Autoimmune disease associate ++
- Asymptomatic
- Good prognosis (5-year survival: 84-94%)

<u>Imaging</u>

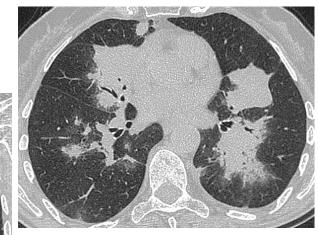
- Nodule or consolidation
- Single (30%) or **multiple** (>70%)
- **Bilateral** (>70%)
- Peri bronchovascular ++
- Bronchiectasis
- Bronchogram
- +/- Hilar or mediastinal adenopathies (30%)

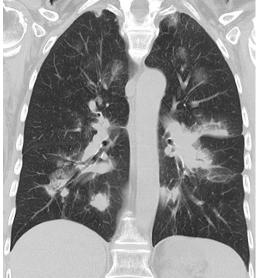
Lymphoma MALT

Diffuse Large Cell B Lymphoma (DLBCL)

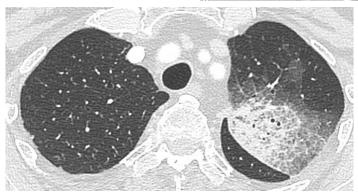

- Immunodeficiency ++
- Symptomatic (dyspnea, fever, weight loss)
- **Poorer prognosis** (5-year survival: 0 to 60%)


Imaging


- One or more nodules or mass
- Excavation ++
- +/- Lymphadenopathies



Silicosis + MALT



MALT Lymphoma

Primary pulmonary lymphoma

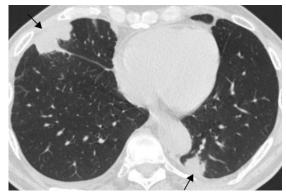
Lymphomatoid Granulomatosis

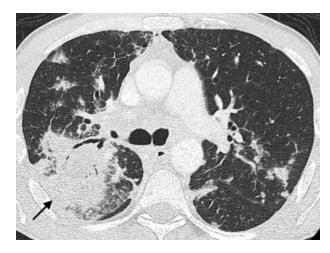
- Rare, men, 30-50 years old
- EBV, blood vessel destruction (angiocentric)
- Lung +++ (>90%) + CNS + skin
- Prognosis < 2 years

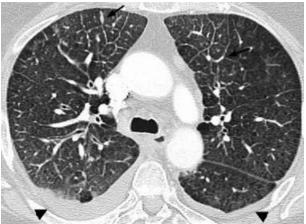
Imaging

- Multiple nodules, bilateral, round, poorly limited 0.5 to 8 cm
- Basal predominance
- Peribronchovascular distribution
- +/- confluence
- +/- excavation
- "Reverse halo sign."
- Migratory nodules

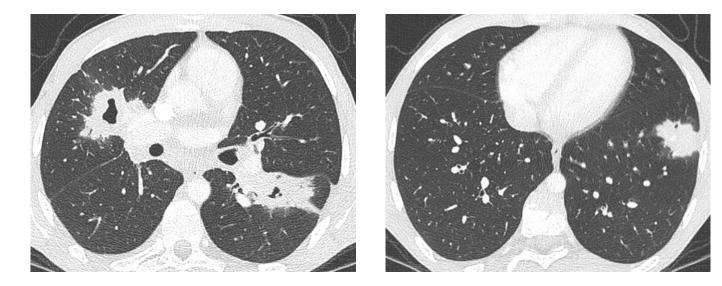
Courtesy S HARE The radiological spectrum of pulmonary lymphoproliferative Disease The British Journal of Radiology, July 2012

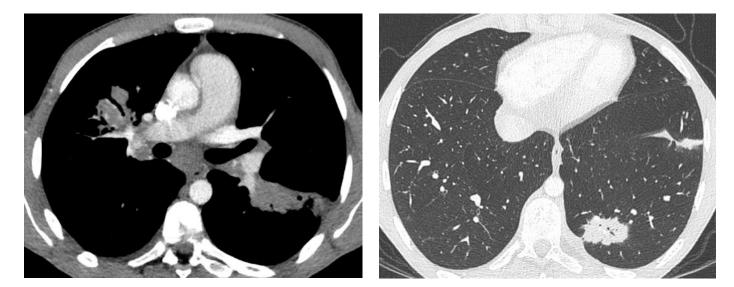

Pulmonary 2ndary Lymphoma


- All type of lymphoma can affect the lung.
- Mature B lymphoma ++ : HL (12%) > NHL (4%) but NHL more frequent


Non-specific imaging+++++

- Nodule -> interstitial involvement
 - Nodules < 1cm, single or multiple ++
 - Consolidation/ mass ++
 - +/- excavation, bronchogram
 - Peribronchovascular thickening
 - Lymphangitic spread (thickened and nodular septal lines)
 - Pleural effusion
- Mediastinal Lymphadenopathy
 - **LH++** > NHL




Courtesy S HARE The radiological spectrum of pulmonary lymphoproliferative Disease The British Journal of Radiology, July 2012

Pulmonary Hodking Lymphoma

Bilateral excavated mass

П.

Lymphoma in immunocompromised patient

AIDS-related lymphoma (ARVs)

- ^{2nd} tumor after Kaposi
- Chronic stimulation HIV + EBV
- B-cell NHL aggressive +++
- Prevalence multiply per 40-100
- Advanced HIV, low CD4 count (average : 55/mm3)

Imaging

- Nodules (0.5 to 5cm), +/- excavated
- Or single lung mass (2 to 5cm)
- Pleural +/- pericardial effusion
- Consolidation, GGO

Nodules + effusions + lymphadenopathy + HIV = lymphoma +++

Post-transplant pulmonary lymphoma (PTLD)

- Within 2 years ++ (> 60 days) after organ or hematopoietic transplant. EBV, Type B++, T+
- 2% transplants (lung +++, heart ++), children ++

Imaging

- Single or multiple nodules 0.3 to 5 cm
- Well defined > ill defined
- Halo sign
- Consolidation or patchy GGO
- Peribronchial / sub-pleural
- Lymphadenopathy (30-60%)

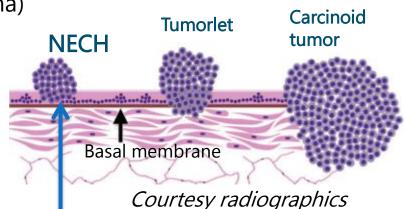
ARV

Biblio et images: The radiological spectrum of pulmonary lymphoproliferative Disease S HARE The British Journal of Radiology, July 2012

Neuroendocrine tumors

- Comes from **Kulchitzky cells** normally present in the bronchial mucosa.
- 25% of pulmonary neoplasia

Classification (1991, Travis et al)


- **Typical Carcinoid** (low grade)
- Atypical carcinoid (moderate grade)
- Large cell neuroendocrine carcinoma (high-grade)
- **Small cell carcinoma** (high grade)

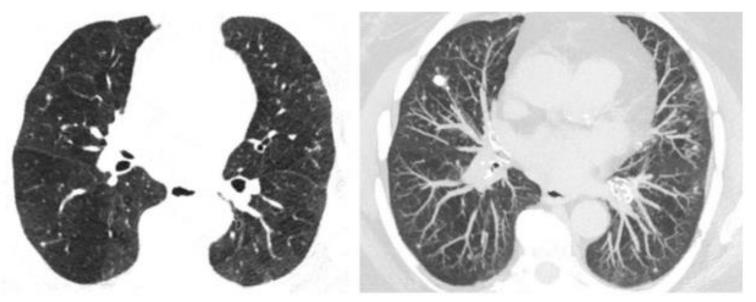
Prognosis 4

DIPNECH

- DIPNECH = Diffuse idiopathic neuroendocrine cell hyperplasia
- Idiopathic diffuse neuroendocrine hyperplasia (pre-invasive lesion)
 --> Carcinoid tumor
- Elderly woman (50 to 70 years old)
- Asymptomatic or respiratory symptoms (asthma)
- Good prognosis (83% at 5 years)
- Long-term follow-up by scanner (nodule/nodes)
- If symptomatic: corticosteroids, chemotherapy, surgical resection, even transplantation

Belong the group of neuroendocrine cell

hyperplasia (NECH)


- NECH
- PNECH (NECH + carcinoid tumor)
- **DIPNECH** (diffuse NECH)

Spectrum of pulmonary neuroendocrine proliferations and neoplasms Ryo E. Benson - Radiographics 2013

CT

- Multiple Micronodules
- GGO with **trapping** = **constrictive bronchiolitis**
 - \rightarrow Suggests diagnosis
 - \rightarrow Surgical biopsy for certain diagnosis

DIPNECH Courtesy Ryo E. Benson - Radiographics

Spectrum of pulmonary neuroendocrine proliferations and neoplasms Ryo E. Benson - Radiographics 2013

Carcinoid tumors

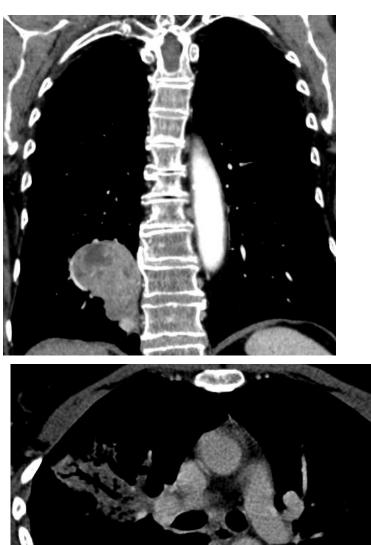

- 1/4 of neuroendocrine tumors
- 1 to 2% of pulmonary neoplasia
- 80 90% typical and **10 20% atypical**
- Median age: 46 years, variable+++++.
- (Very rare carcinoid syndrom)
- 5-years survival: 87% (typical), 56% (atypical)
- Histology: atypical: + necrosis + mitosis
- Treatment: surgical resection +++

Typical central carcinoid tumor

Imaging (typical and atypical shape)

- Nodule or mass (2 to 5 cm)
 - **Central** location (hilar or peri-hilar) (85%) (typical++), peripheral (20%)
 - Well-defined, discreetly lobulated, round or ovoid or elongated shape along the bronchial tubes.
 - +/- Endoluminal
 - Calcification (30%) punctuated / excentric / diffuse
 - Enhancement+++ (> 30UH)
 - +/- atelectasis / pneumonia / trapping
 - +/- lymphadenopathy : reactive or metastatic (atypical)
 - Atypical: bigger and more peripheral
- Octreotide scan (receptor for somatostastine)
- **PET scan : typical low fixation** (if fixation : atypical)

Differential diagnosis of a **solitary lung tumor with intense enhancement**


- Sclerosing hemangioma
- Intrapulmonary Castelman
- Solitary intrapulmonary fibrous tumor
- Metastasis
- Primary bronchopulmonary cancer

Typical carcinoid tumor CT scan + Octreotide scan

Atypical carcinoid tumor

Biblio: Neuroendocrine tumors of the lung: clinical, pathologic, and imaging findings. Chong S, Radiographics 2006

Giant cell NE tumours

Epidemiology

- 65 years old, men ++
- Tobacco +++
- **3%** of pulmonary neoplasia
- Survival at 5 years: 13% 45%,
 Average : 21%.

<u>Histology</u>

- Neuroendocrine characteristics
- NE markers (chromogranin...)
- Mitosis +++
- Necrosis ++
- Giant cells

<u>Imaging</u>

Non-specific: similar to non-small cell tumour imaging

- Nodule or mass
- 13-92 mm (avg = 37 mm)
- Well defined, lobulated or sometimes spiculate
- Peripheric (84%)
- Large necrotic tumor, heterogeneous enhancement
- Pleural effusion
- PET scan: fixing

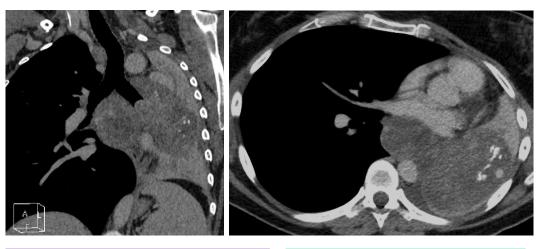
Small-cell lung cancer

Epidemiology/ histology

- 20% of lung carcinoma
- Smoking +++
- Histology: small cells, cellularity +++, mitosis+++
- 2 stages
 - <u>Limited</u>: hemithorax + regional and supraclavicular lymphadenopathy
 - ->chemo + radiotherapy on lymphadenopathy
 - Extensive chemo
- Prognosis
 - Survival at 2 years: 10%.
 - Median survival: 15-20 months

Imaging

- Central topography +++
- Voluminous hilar or mediastinal lymphadenopathy, confluent
- The primary tumor may not be seen...
- Displacement / compression
 - Tracheo-bronchial tree
 - Large vessels (VCS, pulmonary arteries etc...)
- Lobar atelectasis
- Pleural effusion
- Calcification (23%)
- 5 10%: nodule/peripheral mass, lobulated, peripheral GGO, spiculated: non-specific (idem CNPC)
- Secondary location: bone +++, liver +++, adrenal gland++, brain ++.


Biblio: Neuroendocrine tumors of the lung: clinical, pathologic, and imaging findings. Chong S, Radiographics 2006

Thoracic sarcoma

Malignant soft tissue tumour (mesenchymal cells with epithelial differentiation potential)

- contain a heterogeneous pannel of tumours
- 0.1-0.5% of primary pulmonary malignancies
- <45 years of age, H=F
- risk factor unknown (radiation? asbestos?)

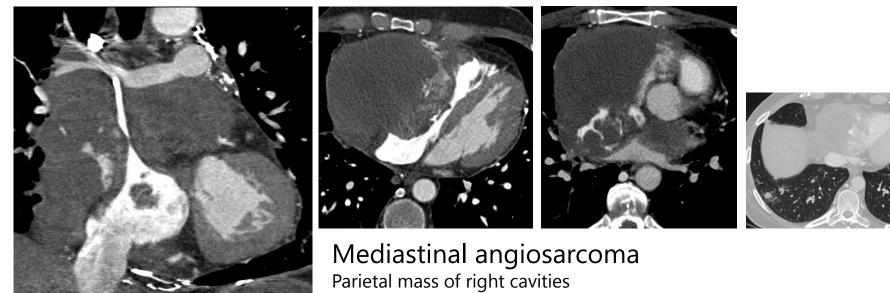
Evolution

- Metastases (rare): Bone, liver, skin, CNS, breast.
- 75% of local recidive at 2 years
- 50-80% survival at 5 years

Treatment

- Surgical resection if possible
- Neoadjuvant / adjuvant radiotherapy
- Chemotherapy

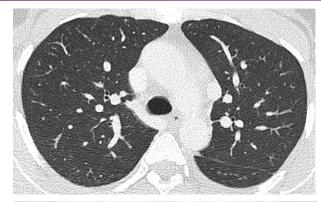
Gladish, G., Primary thoracic sarcomas, RadioGraphics, RSNA, May 2002 Frazier, A., Pleuropulmonary synovial sarcoma, RadioGraphics, RSNA, May 2006 Murphey, M., Imaging of synovial sarcoma with radiologic-pathologic correlation, RadioGraphics, RSNA, Sep 2006


Imaging: non-specific Tissue mass

- +/- well circumscribed
- Rounded, ovoid or lobulated
- Heterogeneous
 - Tissue area
 - Cystic area: necrosis, haemorrhage, myxoid material.
- Stovepipe
- **Peripheral**, para-scissural, pleural base with obtuse angle of connection with the pleura
- +/- encapsulated
- MRI: isoT1, hyperT2, same intensity as muscle, peripheral enhancement
- CT scan: fibrosis bands
- PET scan: fixation
- +/- homolateral pleural effusion, adenomegaly (rare), pleural adhesions

	Epidemiology	Clinic	Imaging features
Angiosarcoma	Middle-aged adult Risk factors radiotherapy/chemical exposure	 Lung: hemoptysis Mediastinum: vascular compression Cardiac: arrhythmia, RVI 	 Lung: bilateral nodules Mediastinum: anterior mediastinal mass around the vessels Cardiac: RA mass or diffuse parietal thickening
Leiomyosarcoma	 Lung, mediastinum: ≥ 50 years old, M>F Pulmonary artery: 50 years old 	 Lung: a∑ Mediastinum: mass effect Cardiac: CI Pulmonary artery: pain, dyspnea, RVI 	 Lung: nodules or large necrotic mass Mediastinum: bulky necrotic mass Cardiac: LA mass Pulmonary artery: mass into the pulmonary artery. Gd+
Rhabdomyosarcoma	Heart and mediastinum: child Other sites: bimodal (child, 5th-7th decades), M>F	 Cardiac: arrhythmia, Cl (L or D) Mediastinum/wall Lung 	 Cardiac: hypodense valve mass Wall: muscular origin Lung: bulky mass, cystic/necrosis.
Sarcomatoid mesothelioma	 7th decade, M>>F Asbestosis 	- Pain, shortness of breath, cough, fatigue	Focal mass > Diffuse nodular thickening

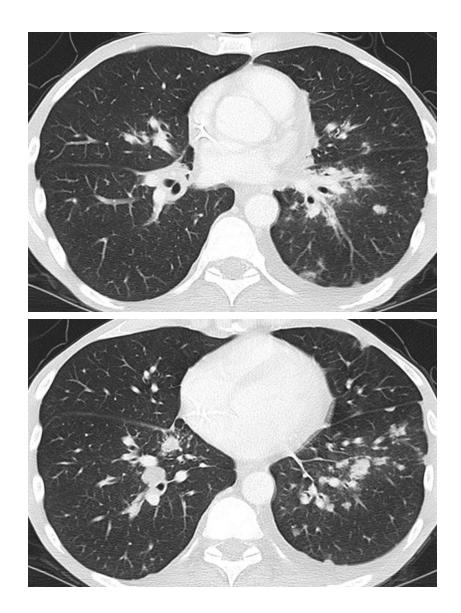
According to Gladish, G., Primary thoracic sarcomas, RadioGraphics, RSNA, May 2002.


Kaposi's Sarcoma

- Decreasing incidence (ARVs)
- Most often on untreated patients
- Patients with severe ID
- Already having a mucocutaneous or digestive disorder

Imaging: 2 CT forms

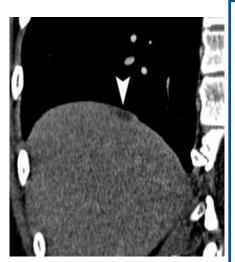
- Nodular shape
 - Multiple irregular, spiculate nodules
 - +/- halo
 - Predominantly peri-hilar, peri-bronchovascular distribution, frequent aerial bronchogram
- Infiltrating form
 - Peribronchovascular thickening, **septal thickening**, sometimes nodular septal thickening


Suspected kaposi's sarcoma, CD4 =0 40-year-old woman with esophageal Kaposi

Pulmonary Kaposi's disease (+ skin lesions) in a HIV patient

Multiple bilateral lower lung nodules and peribronchovascular thickening of the left hilum

Kaposi's disease Multiple bilateral irregular peribronchovascular nodules with some associated septal lines (upper left lobe)



Thoracic endometriosis

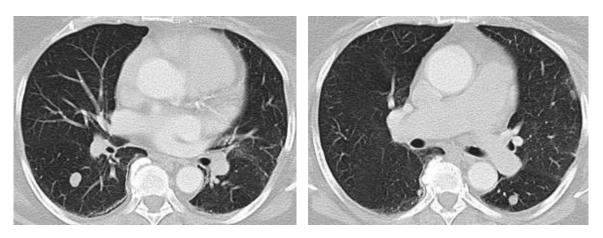
- Symptoms 24-48 hours after menstruation
 - Pleural: pneumothorax or catamenial hemothorax with chest pain and dyspnea, right-sided predominance.
 - <u>Parenchyma</u>: micro embolism of endometrial tissue, endometriotic pulmonary nodules, catamenial hemoptysis.
- Rare, 35 years old on average (20 to 30 years old), later onset than pelvic endometriosis. Exact prevalence difficult to establish, underestimated: 5 to 10%.
 Treatment: hormonal (GnRH agonists), surgical resection

Case courtesy of Dr Bruno Di Muzio, Radiopaedia.org, rID: 30293

Diaphragmatic implant Courtesy P. Rousset - Clinical radiology

Imaging

- Lesions varying in size during the menstrual cycle.
- Pneumothorax or catamenial hemothorax +++
 - **Right +++** (90%)
 - Hypodense diaphragmatic implants ++ (posterior superior part) (+/- isodense component), non-enhanced
 - MRI ++: hyperintense T1 (hemorrhagic)
 - Sometimes associated pneumoperitoneum
 - Pleural lesions
- Catamenial hemoptysis (rare)
 - Nodule(s) (implant or hematoma) +/- excavation
 - +/- signs of old or recent bleeding (GGO)


Thoracic endometriosis syndrome/ CT and MRI features – P. Rousset – Clinical Radiology 2014

Benign metastases of leiomyoma

- Rare, lung = ^{1st} site of metastases
- Hysterectomy for leiomyomas
 ++
 - Asymptomatic, incidental finding
 - Nodules can be seen 3 months to 20 years after hysterectomy
- The clinical course is generally indolent

СТ

- **Multiple nodules** (a few mm \rightarrow several cm)
- Sometimes miliary
- Absence of calcification
- No enhancement
- No uptake in PET scan

Case courtesy of Dr Paul Leong, Radiopaedia.org, rlD: 26803

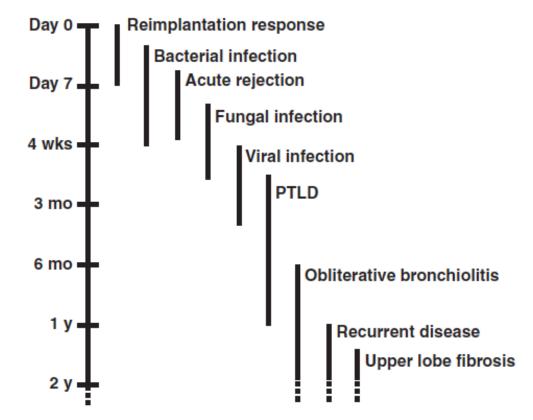
References:

- di Scioscio V. et al. J Thorac Imaging. 2009;24:41-4 Benign metastasizing leiomyoma of the lung: PET findings
- Abramson S. et al. Benign Metastasizing Leiomyoma Clinical, Imaging, and Pathologic Correlation. Am J Roentgenol. 2001

Lung transplantation and GVH

Complications of lung transplantation

- Hyperacute rejection 🛑
- Primary Graft Dysfunction (PGD)
- Acute rejection
- Chronic Rejection —
- Other Complications


Allograft complication

- Complication of allograft marrow transplantation
- GVH 🛑

Lung Transplant Complications

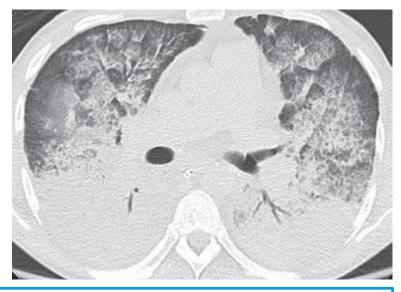
Time tree of complications

Hyperacute rejection

- **Rare** complication following lung transplant (vs. other transplants)
- Deadline: first 24 hours
- **Sensibilized patient** (antibodies following transfusion, anterior transplant)

Imaging Xray: lung consolidation (like unilateral PO)

Imaging of complications of lung transplantation - PB O'Donovan - Radiographics 1993



PGD Primary Graft Dysfunction

- = Reperfusion edema, reimplantation edema (11-57%)
- Increased capillary permeability, alveolar damage
- Following surgery, ischemia, graft preservation, lung denervation, lymphatic vx damage.
- Delay: **first 48 hours**, **max day 3-4**, up to 2 months before resolution
- Definition idem ARDS
 - **Diffuse alveolar opacities** in transplanted lung appearing within the **first 72 hours.**
 - Hypoxemia, PaO2/FiO2<200 persistent>48h after surgery
 - Exclusion other causes (PO, rejection, infection, venous obstruction)
- Severe PGD persists in 15% = ARDS

Imaging

- Peri-hilar alveolar opacities and lower lobes
- Peri-bronchovascular thickenings
- Septal Lines
- Pleural effusion

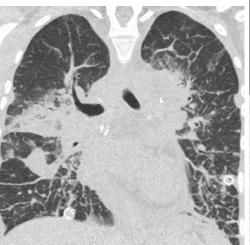
Acute rejection

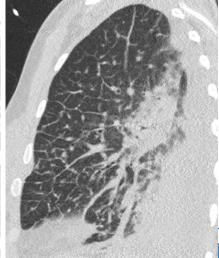
Cell-mediated immune response, lymphocyte activation **Perivascular lymphocyte infiltration** +/- bronchial invasion

- From the 3rd to 5th day after grafting (DPG earlier)
- Increased incidence in the first 3 months with about 2 to 3 episodes

Imaging

Grade 1 and 2


- Xray and CT can be normal *Grade 3 and 4*
- Focal or diffused GGO
- Peri-hilar or lower lobe consolidation
- Reticulo-nodular opacities
- Bronchial wall thickenings
- Pleural effusion


Differential diagnosis

- PO
- DPG
- Infection

Acute rejection at D15

Other complications

Anastomotic complications

- Incidence 4%
- Pathophysiology: ischemia ++
- Types
 - Bronchial anastomosis dehiscence (1st month) (posterior wall more significant)
 - Bronchovascular, bronchopleural, bronchomediastinal **fistulas**
 - Bronchial stenosis (long term)
 - Bronchomalacia (long term)

Infections

- Lung transplant: highest incidence of infection
- Pathogens
 - **Bacterial** and **fungal** (aspergillosis, candida) (^{1st} month)
 - Virus (CMV++, RSV, HSV, Varicella, adenovirus) (^{2nd} and ^{3rd} month)
 - Mycobacteria

Pleural complications

- Incidence 22%.
- Pneumothorax ++
 - Small 10%: resorption, if persistent: look for dehiscence anastomosis, bubble rupture
- **Pleural effusion**, **chylothorax** (defect of lymphatic vessel regeneration). Persistent effusion: chylothorax, acute rejection, aspergillosis, tuberculosis
- Empyema: 4%, after 6 weeks post-transplantation
- Hemothorax

Chronic Rejection

- Peri-bronchiolar fibrosis (alloimmune response + non-immune factors)
- 16-20 months after transplantation
- Constrictive bronchiolitis (50% of patients) (higher than in other transplants)

Imaging

- Constrictive bronchiolitis: expiratory trapping (forced expiration +++)
- Bronchiectasis
- Bronchial parietal thickening
- Mosaic appearance
- Vessel reduction in periphery
- Septal thickening
- Peri-bronchovascular opacities

Allograft complications

Early / neutropenic phase

- Pulmonary edema
- Engraftment syndrom: diffuse capillary leakage with pulmonary lesions and oedema, 7 days after transplantation, CT scan: GGO and perihilary consolidation with septal thickening.
- Diffuse alveolar hemorrhage (mortality 70-100%, ^{1st} month, incidence =10-20%)
- Drug Toxicity

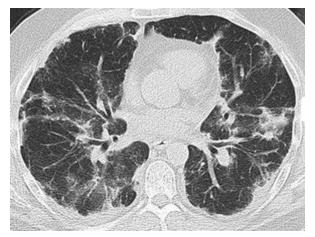
Early (<100 days)

- Idiopathic Pulmonary Syndrome (DAD J30-180, elimination diagnosis, mortality> 70%)
- Acute GVH (see next slide)
- Pericardial effusion and veno-occlusive damage to the hepatic veins

Late

- Chronic GVH (see next slide)
- Post-transplant neoplasia

Pulmonary GvHD

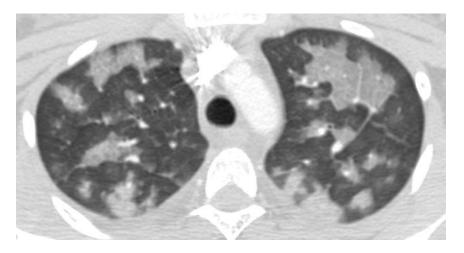

- GvHD = one of the complications of hematopoietic cell transplantation.
- Can be divided into acute and chronic GVH

Acute GvHD

- Lung involvement is rare
- Onset of respiratory symptoms is 5 months.
- Imaging
 - Moderate perihilar or diffuse interstitial fibrosis
 - Cyst
 - Nodules

GvHD chronic +++

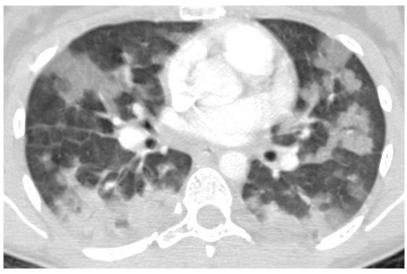
- Constrictive Bronchiolite
- Organizing pneumonia


Organizing pneumonia in chronic GVH Case courtesy of Royal Melbourne Hospital Respiratory, Radiopaedia.org, rID: 21990

Fat embolism

Clinic: classic triad

- Hypoxia
- Petechiae
- Neurological deterioration



Differential diagnosis

- PO / ARDS / neurogenic edema
- Pneumonia
- Alveolar hemorrhage

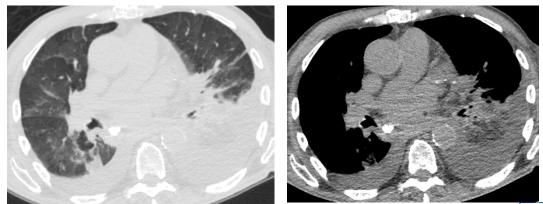
Imaging

- Bilateral GGO
- Septal thickening
- Centrolobular micronodules
- Resolution of the CT scan signs in about 2 weeks
- No visible or rare fat embolism
- Scintigraphy: several sub-segmental peripheral defects

Lipid pneumonia

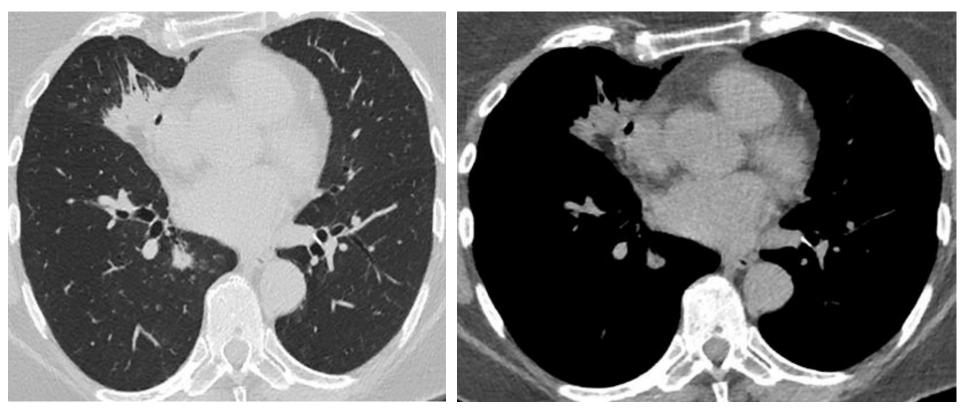
Accumulation of lipids in the alveoli

→ alveolar macrophages phagocyte lipid


- → interstitium
- Exogenous form +++
 - Inhalation of mineral, animal, vegetable oil
 - Favored by swallowing disorders, neuromuscular pathology, oesophageal pathology, elderly/children
 - Acute/Chronic form
- Endogenous form: obstructive pneumonia secondary to bronchial obstruction ++ (histological diagnosis, non-specific imaging)

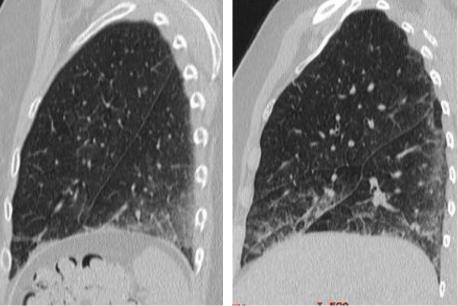
Lipid pneumopathy with left lower lobe **fat density** condensation syndrome

CT : Acute and chronic form :


In acute form: radiological manifestations 30 min to 24 hours after exposure.

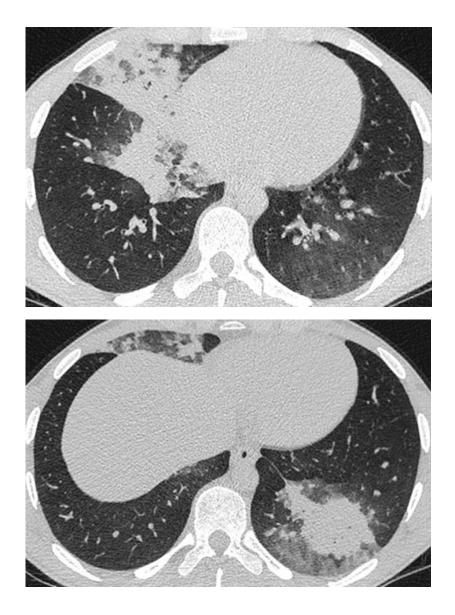
- Geographic GGO / consolidation, segmental/lobal, bilateral
- **Crazy paving** (passage of macrophages into the interstitium)
- **Declive regions ++** (lower middle lobe/lobe)
- Fat density +++ (-10 to -150 HU) but can be hide by reactive inflammation (dense)
- Nodule(s) / mass(es) with fat content, spiculated contours (reaction fibrosis) (chronic form)

Biblio: Lipoid pneumonia: spectrum of clinical and radiologic manifestations - Sonia L. Betancourt, AJR 2010



Middle lobe lipid pneumonia

- Parenchyma window: consolidation
- Mediastinal window: fat component into the consolidation

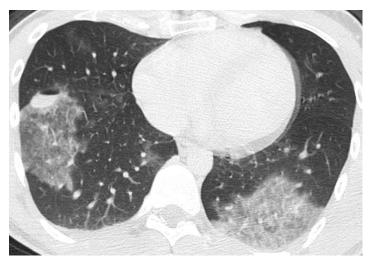


- GGO bi-basal opacities

- Fat density (medium lobe) -

Petroleum pneumonia (inhalation of hydocarbons in a fire-eater)

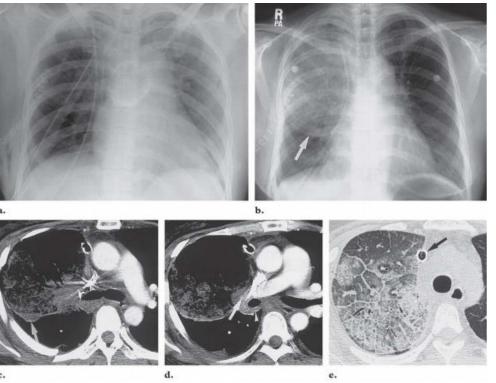
Pneumatocele


Cyst with air or hydro-aeric content **secondary** to parenchymal aggression

- Thin and regular wall
- Persistent

Etiologies

- Post-infectious (staph+++, strepto, haemophilus, E. Coli...)
- Post-ventilation newborn
- Road accident ...


Post-traumatic hematopneumatoceles

- Post car crash accident
- GGO: pulmonary contusions
- Hematopneumatoceles

Post-op middle lobe torsion

- Thoracic surgery complication, incidence: 0.1%.
- URL lobectomy++ (70%) ULL
- Medium lobe vulnerable due to small size occupying large space
- Mortality: 10-20% if undiagnosed.

Courtesy Eun A, Kim, Radiographics

<u>Xray:</u>

Main scissure under the hilum and **rapid** post-op consolidation

- <u>CT :</u>
- Occlusion of the pulmonary artery and bronchi
- Amorphous hilum mass syndrome
- ≻ <u>Lobe</u>
 - Consolidation GGO, inter and intra-lobular reticular opacities
 - Lobe distension
 - Low enhancement

Kim EA et al. Radiographic and CT Findings in complications following pulmonary resection. Radiographics. 2002

Mediastinum

1 / Tumours and mass syndrom 2 / Vascular abnormalities and variants

Mediastinal -Tumours and mass syndrom

Study of a mediastinal mass

- Location: compartiments

- Anterior 🔿
- Middle ⇒
- Posterior 🔿
- Density
 - Cystic 🔿
 - Fat 🔿

- <u>Contrast enhancement</u> →

Location

<u>ANTERIOR</u> <u>MEDIASTINAL MASS</u>

- <u>Thymus</u>
 - Thymic hyperplasia
 - <u>Epithelial tumors:</u> Thymoma +++ and thymic carcinoma
 - Thymic cyst
- <u>Germ cell tumor</u>
 - Teratoma +++
 - Seminome (TGS)
 - Non-Seminomatous Tumor (NST)
- Neuroendocrine tumors
- Ganglion
 - **Lymphoma +++**, metastasis
- Thyroid/ parathyroid
 - Thyroid goiter or thyroid nodule, ectopic parathyroid gland
- <u>Miscellaneous</u>
 - Lymphangioma, hematoma, mediastinal fibrosis, pericardial cyst, thymolipoma

<u>MIDDLE</u> MEDIASTINAL MASS

- Lymphadenopathies +++
- Bronchogenic cysts +++
- Esophageal injury
 - **Tumor**, diverticulum, megaoesophagus...
 - Hiatus hernia or traumatic
 - diaphragmatic herniaEsophageal varices
- Vascular

_

_

- Aneurysm of the aorta or supra-aortic trunks
- Aortic arch abnormality
- Retrotracheal endothoracic goiter
- Less frequent
 - tracheal lesion, Castelman's disease, mediastinitis, pancreatic pseudocyst, neurofibroma, sarcomas, paragangliomas

POSTERIOR MEDIASTINAL MASS

- Nervous Tumours +++ (63%)
 - T. peripheral nerves
 - Neurinoma+++
 - Neurofibroma
 - T. sympathetic chain
 - Ganglioneuroma
 - Ganglio neuroblastoma
 - Neuroblastoma
 - T. para GG cells
 - Paraganglioma
- Meningocele
- Neuroenteric cyst
- Extra-medullary haematopoiesis

Anterior mediastinal mass

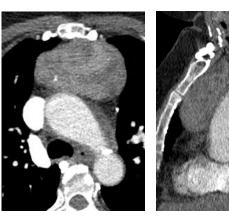
- <u>Thyroid/ parathyroid</u>
 - Thyroid goiter or thyroid nodule, ectopic parathyroid gland
- <u>Thymus</u>
 - Thymic hyperplasia 🗖
 - Epithelial Neoplasms
 - Thymoma +++
 - Thymic carcinoma
 - Thymic cyst 🛯
- Neuroendocrine tumors
- <u>Germ cell tumor</u>
 - Teratoma +++
 - Seminome (TGS)
 - Non-Seminomatous Tumor (NST)
- <u>Ganglion</u>
 - Lymphoma (Hodgkin's, NHL) +++
 - Metastasis
- <u>Miscellaneous</u>
 - Lymphangioma, hematoma, mediastinal fibrosis, pericardial cyst, thymolipoma

Necrotic appearance

- Tuberculosis
- Hodgkin (sclerotic or mixed cell form) (21% of cases)

Hopper KD, Diehl LF, Cole BA, et al. The significance of necrotic mediastinal lymph nodes on CT in patients with newly diagnosed Hodgkin disease. AJR 1990

Thyroid/ parathyroid gland mass


Goiter

- Thyroid tissue: spontaneously hyperdense (100UH), enhancement+++ and prolonged
- Anterior (in front of the venous plane, 80%, F++) or posterior (behind the trachea and vascular plane, D++)
- Heterogeneous++, well-defined contours,
 Link to the thyroid gland +++ (multiplanar reconstructions)

Thyroid adenoma/carcinoma

- Density, variable enhancement
- Look for continuity with the thyroid gland +++

Thyroid goiter Multinodular goiter ATCD operated

Ectopic parathyroid adenoma/carcinoma

- Nodule 0.3 to 3cm, intense enhancement
- Mostly inferior parathyroid in the anterior mediastinum.
- Scintigraphy 99mTc Sestamibi +++
- CT SCAN
 - <u>Without injection</u>: > 80 HU: thyroid, <80 HU: adenoma.
 - 45s: adenoma > 130 HU (GG<130 HU).
 - <u>Late 70s</u>: wash out >20 HU: adenoma (node: late enhancement)
- MRI: isoT1, hyperT2, wash-out enhancement++

New methods for parathyroid imaging: sonography, 4D CT, MRI Boury S. Ann Endrocrinology 2015

Thymic hyperplasia

Thymus

- Growth until puberty, then fat and fibrous involution with age, residual until 40-45 years old.
- Maximum thickness
 - 18 mm before 20 years, 13 mm after 20 years
- Triangular shape, straight or concave edges

2 types of hyperplasia

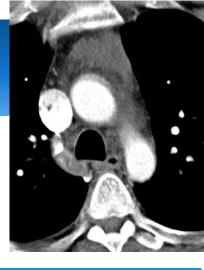
- True thymic hyperplasia
 - normal histology
 - = Thymic rebound after stress-related atrophy, immunosuppression (chemo, steroids, irradiation)
 - Increased size, normalization in 9 months

- Lymphoid hyperplasia

- Medullary Lymphoid Proliferation
- <u>Normal (45%) or increased (</u>30%) <u>size or</u> <u>thymic mass (</u>25%) → MRI++: in/out sequence (signal drop)
- Myasthenia gravis -
- Al disease (scleroderma, PR, Basedow, Addison, acromegaly)

Imaging

No distinction between the two types of hyperplasia \rightarrow « thymus hyperplasia »


<u>Criteria</u>

- Respected shape
- Two-lobulated shape
- Fat infiltration
 - MRI: drop in T1 in/out signal ++ (fat infiltration indicator: differential diagnosis lymphoma, thymoma...)

Myasthenia gravis Association

- 65%: lymphoid hyperplasia
- 15%: thymoma
- 20%: normal thymus

Thymic epithelial tumors

WHO histological classification

> Thymoma

- Benin:
 - > A (medullary)
 - > AB (mixed)
- <u>Signs in favour of malignancy</u> (histo/CTD)
 - B1 (predominantly cortical)
 - B2 (cortical)
 - B3 (well-differentiated thymic carcinoma)

Thymic carcinomas C

<u>Metastases</u>

- 5% metastasis if thymoma
- 50 to 65% if thymic carcinoma

Treatment

- Surgery
- +/- chemotherapy
- +/- radiotherapy

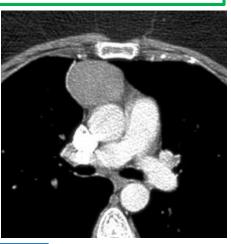
Masaoka's classification

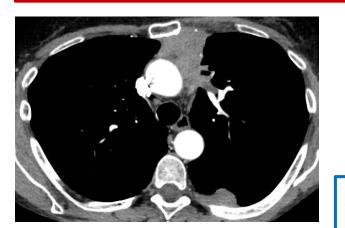
Based on degree of extension on postoperative staging

- I: no capsular effraction
- II: Invasion of fat tissue →additional radiotherapy
- III: invasion of close organs (lung, aorta, VCS)
- IVa: pleural or pericardial metastasis
- IVb: hematogenous or lymphatic metastasis
 →chimio/chir/Rx

Prognostic factors

- WHO and Masaoka classifications
- Complete surgical resection
- Size > 8cm
- → Median survival: 24 months for carcinomas
- → Median 10-year survival median for all stages of thymomas
 - 76% if complete resection
 - 28% if incomplete resection


CT+ / MRI++: difficult to distinguish type of thymic epithelial tumors in imaging but some Key point help...


Carcinoma +++

- Irregular borders
- Necrosis
- Vascular invasion
- Heterogeneous enhancement
- Lymphadenopathies

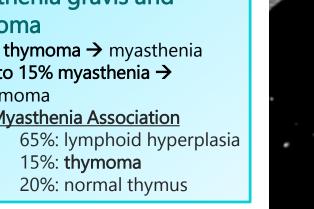
Low-grade thymoma

- Homogeneous enhancement
- Regular borders
- Thin capsule hypoT1 MRI
- Fibrous Septas

No discriminating value

- Calcification
- Hemorrhagic
- Pleural effusion
- Encaspulated

Thymoma


- The most common of the primitive masses of the anterior mediastinum. 15% of mediastinal tumors
- Epithelial tumor +/lymphocytes
- 40-50 years

Myasthenia gravis and thymoma

- 1/3 thymoma → myasthenia
 - 10 to 15% myasthenia → thymoma
 - **Myasthenia Association**
 - 65%: lymphoid hyperplasia

Imaging: CT+++

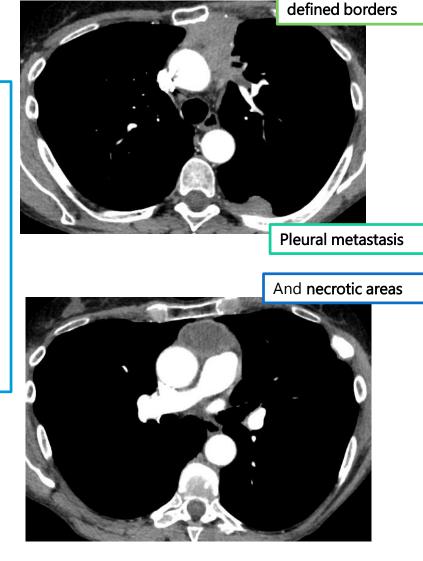
- **Tissular mass**
 - Oval or lobulated
 - Enhancement
 - Homogeneous for small tumors
 - Heterogeneous (cystic, necrotic zones) for the largest 20%
 - **Calcifications**: 20% (fine, linear, in capsule)
 - Sometimes cystic form
- Anterior mediastinum
- No sign of invasion, regular border+++
- Look for signs of high grade or thymic carcinoma.


The imaging workup aims to distinguish between local, stage I or II forms of Masaoka-Koga → surgery, and more invasive, stage III and IV forms, warranting neoadjuvant chemotherapy

Low-grade thymoma


Thymoma AB

Thymoma B1


High grade thymoma

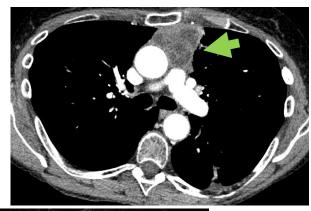
Thymic carcinoma

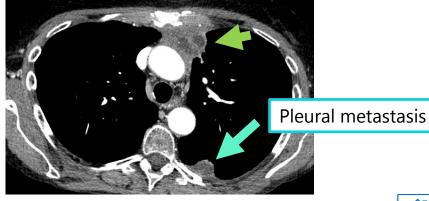
Imaging

- Heterogeneous enhancement mass with areas of necrosis
 - Calcifications 10 to 40%
- Invasive nature
 - Fat infiltration
 - Invasion of large vx and mediastinal structures: 40%.
 - Lymphadenopathies
 - Extension to pleura and pericardium
 - Metastases

Thymic mass with ill-

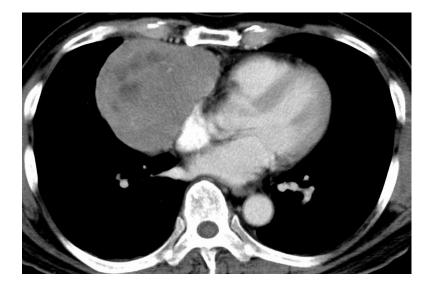
Neuroendocrine tumors

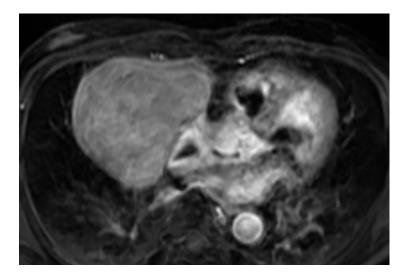

- = Carcinoid tumor
- Very rare, H, 40 to 60 years old
- Cushing's syndrome (paraneoplastic secretion)
- Association with NEM1
- Other syndrom
- Metastases at diagnosis: 20% (bone, GG, kidney, brain, lung, skin)
- Recurrence after resection: 70%.
- Survival at 5 years: 30%.
- Identical management as for other neuroendocrine tumours


Imaging

- Enhancement +++ heterogeneous
- Calcifications
- Necrosis
- Invasion of adjacent tissues
- → difficult to differentiate from a thymic carcinoma in morphological imaging +++
- Scinti octreotide + but not specific

Association


- Anterior mediastinal mass
- Cushing's or NEM1
- → Thymic Carcinoid

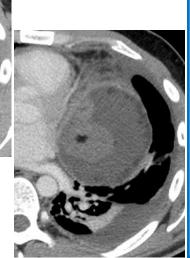


Mediastinal carcinoid tumor

Germ Cell Tumours

Classification - Extra-gonadal germ cells - Extra-embryonic Differentiation: Teratoma (70%) - Mature teratoma - Immature teratoma - Teratoma with malignant transformation - Embryonic differentiation - Seminomatous germ cell tumors SGCT (10 to 20%) - Non-seminomatous germ cell tumours NSGCT (10 to 20%) - Choriocarcinoma - yolk sac tumor - embryonal cell carcinoma

- < 10% of mediastinal tumors...</p>
- 2/3 extragonadic locations
 - 80%: mature teratomas
 - 20%: malignant germinal tumor
- Young adult, Klinefelter's syndrome


Teratoma

Most common germ cell tumor. 15% of anterior mediastinal masses (25% in children)

- Elements of the **3 embryonic layers**: endoderm, mesoderm, ectoderm
- Age of presentation:
 - 20-40 years old
 - < 1 year (immature)
 - Immature: almost exclusively male

Mature teratoma Rupture in the pleura

1) <u>Mature</u> (75%)

- H = F
- Well defined mass, encapsulated, 3 to 25 cm
- Generally **cystic** 90% (single or multilocular)
- +/- wall / septal contrast enhancement
- Several components
 - **Fat** (75%)
 - **Cystic** (90%)
 - Liquid-fat levels (10%)
 - Homogeneous tissue density
 - Calcification (26%) +/- tooth / bone (8%)
- **Rupture**: 35% (lung, bronchus, pleura, pericardium, Vx)
 - → pleuritis, pneumonia, fat/liquid level

2) <u>Immature</u>

Solid

(3) Malignant: teratocarcinoma

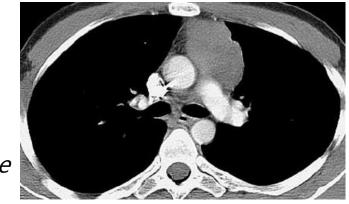
- Irregular border
- Tissue component +++, necrosis
- Thick wall , enhancement
- Compression

SGCT (seminoma) and NSGCT

SEMINOMA

- Male+++ (90%), 30-40 years old
- The most common malignant germ cell tumor
- Biology: βHCG normal or ↑, αFP normal+++
- Better prognosis than NSGCT
- Treatment: Rx and chemo

<u>Imaging</u>


- Massive tissue mass
- Well limited, lobulated
- No calcification
- <u>Homogeneous</u> moderate late enhancement
- No or little necrotic area+++

NSGCT

- M, 15- 35 years old
- Embryonal cell carcinoma (↑ αFP)
- Choriocarcinoma (↑ βHCG)
- Yolk sac tumor (↑ αFP)

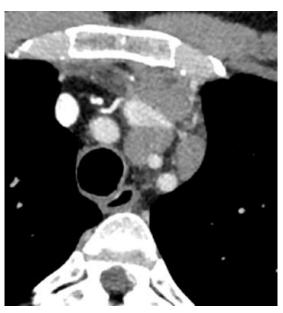
<u>Imaging</u>

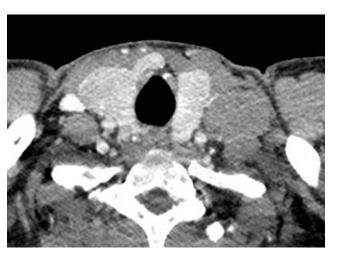
- Large size++++.
- Invasive +++, poorly limited
- Heterogeneous
- Necrosis
- Hemorrhage

Seminome DU Nancy

Hodgkin's Lymphoma

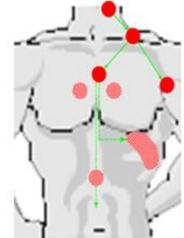
- The most common tumor of the anterior mediastinum
- In USA, 0,2 % of people are affected at some point in their life, 1% of all cancers
- Bimodal distribution : young adult (15-34 years) and older patient (>55 years)
- Curable in 90% of cases
- <u>Clinic</u>: inflammatory syndrome, fever, sweating, pruritus, weight loss

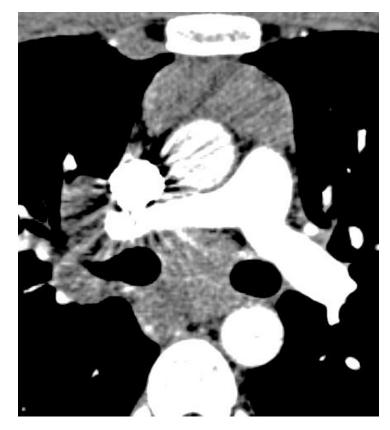

	Hodgkin	NHL
Mediastinal	65%-80%	20-40%
Anterior mediastinum	++	+
Latero-tracheal	++	+
Hilaire	++	+
Internal mammary gland	+++	+
Paracardiac	+	+++
Posterior mediastinum	+	+++



<u>Imaging</u>

- Thoracic +++ (85%)
 - Anterior mediastinum ++ and superior ++
 - +/- para-tracheal chains
- Progression by contiguity +++
- Rarely compressive ++
- +/- parenchymal, pleural, cardiac, parietal, thymic involvement
- Pet-scan needed for stage




Hodgkin's Lymphoma

- Anterior mediastinal and left supraclavicular lymphadenopathies
- Contiguous adenopathies characteristic of Hodgkin's lymphoma (affecting relatives close to the lymph node chains) in contrast to non-Hodgkin's lymphoma

Hodgkin's Lymphoma

NHL

- In USA, 2,1 % of people are affected at some point in their life (vs 0,2 % for HL)
- 7th cancer in annual incidence
- Large histological variety
- Good prognosis for B lymphoma

Imaging

- Diffuse spread without contiguous extension
- +/- Compressive
- +/- Parenchymal, pleural...

	Hodgkin	NHL
Mediastinal	65%- 80%	20-40%
Anterior Mediastin	++	+
Tracheal Latero	++	+
Hilaire	++	+
Internal mammary gland	+++	+
Paracardiac	+	+++
Posterior mediastinum	+	+++

Non-Hodgkin's Lymphoma

Primary mediastinum B Lymphoma

- 6 to 10% of adult NHL
- ^{2nd} mediastinal tumor after Hodgkin's.
- Large diffuse B cell subtype
 - Median age: 37 years
 - Predominantly female
 - Thoracic location: 70%, bulky++

Mediastinal involvement in lymphoma

- 20 to 40% of cases
- Ubiquitous

Lymphoblastic Lymphoma

- Medical emergency +++ (cave syndrome, obstructive dyspnea, high mass)
- young male+++
- Sometimes CBC: hyperlymphocytosis, LDH elevation, cell lysis...
- non-invasive biopsy + myelogram before steroids

Case courtesy of Dr Ayush Goel, Radiopaedia.org, rID: 25431

Middle mediastinal tumor

- Lymphadenopathies
 - Latero-tracheal, subcarinary, latero-esophageal chains
- Esophageal lesion
 - Malignant tumor
 - Leiomyoma I
 - Diverticule 🗖
 - Achalasia/ megaoesophagus
 - Hiatus hernia or traumatic diaphragmatic hernia
 - Esophageal varices
- Vascular
 - Aneurysm of the aorta or supra-aortic trunks
 - Aortic arch abnormality
- Bronchogenic cysts + + +
- Retrotracheal endothoracic goiter

Less frequent

- Tracheal disease
- Castelman's disease
- Médiastinitis
- Pancreas Pseudocyst
- Neurofibroma
- Sarcomas 📫
- Paragangliomas

Lymphadenopathies

Malignant

- Lymphoma
- Secondary malignant
 - Bronchial carcinoma
 - Esophagus
 - Extra-thoracic primitive tumors
- CLL, myeloma, Waldenström (rare)

Infectious origin

- <u>Tuberculosis</u>
 - Primary infection, clinical context, KB in sputum/BLA, IDR+, risk of abscess and fistula
- Bacterial, viral, parasitic, fungal: rare.

Benin

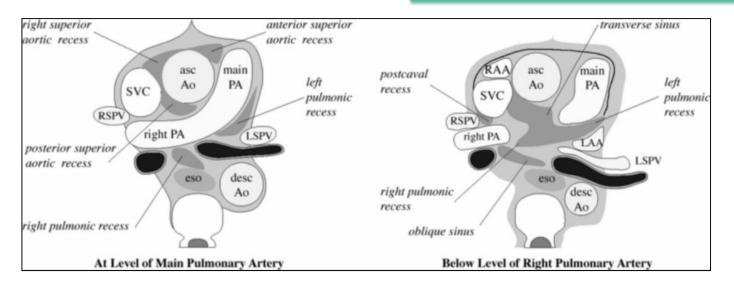
- <u>Sarcoidosis</u>
 - The most frequent, young adult. Asymptomatic. IDR-, biopsy: giganto-cellular granuloma without caseous necrosis

- <u>Silicosis</u>

- Calcifications, parenchymal damage
- Amylose
 - Calcification

Lymphadenopathies

Look out! Look out!


Don't confuse a **mediastinal node** with..:

- A pericardial recess
- An azygos vein
- The **oesophagus** (in sub carinary)

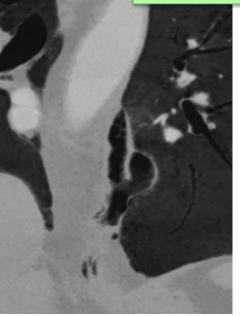
Lymph node vs. pericardial recess

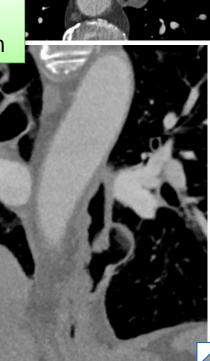
Pericardial recess:

- Water density
- No enhancement
- Interest of reformat reconstruction (continuity ++)

Esophageal diverticulum

Mucosal hernia without muscular wall

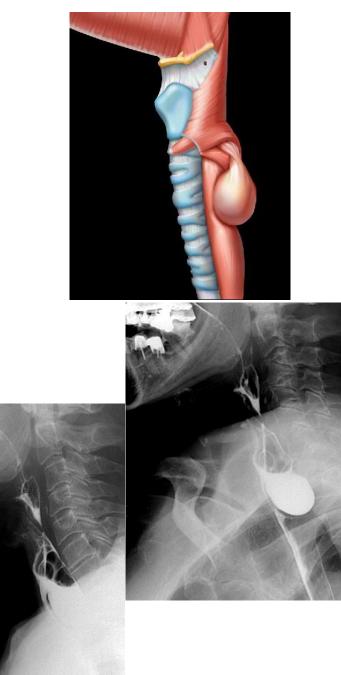

CT SCAN


- Thin wall
- Air or hydro-aerial content++++.
- Not visible on an empty stomach (except stenosis or achalasia)

Classification

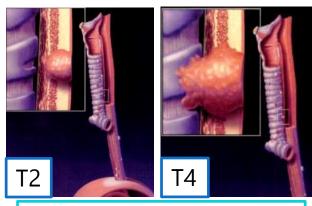
- **Zenker ++**: pharyngeal-esophageal junction
- Middle esophagus
- **Epiphrenic**: above the hiatus

Epiphrenic diverticulum



Zenker's Diverticulum

- Hernia through an anatomical weakness in the region of the crico-pharyngeal muscle
- <u>Imaging</u>
 - Large diverticulum either lateralized to the left or posteriorly compressing the cervical oesophagus.
 - <u>Sac</u> posterior to the cervical oesophagus
 - Orifice just above the crico-pharyngeal muscle (which can be thickened).
 - Narrowing lumen of pharyngo-esophageal junction
 - Association with esophageal mobility disorder, hiatus hernia...
- <u>Complications</u>
 - High dysphagia
 - Regurgitations
 - Inhalation pneumonia
 - Perforation during surgery
- <u>Treatment</u>
 - Diverticulectomy
 - or endoscopic (laser) treatment


Esophageal malignant tumor

Histology

- Squamous cell carcinoma (81-95%)
- Adenocarcinoma (4-19% (Barrett's esophagus, esogastic junction)
- Others: Mucoepidermal, cystic adenoid, sarcomas, lymphoma...

Case courtesy of Dr Roberto Schubert, Radiopaedia.org, rID: 17673

TNM

- Tis = carcinoma in situ
- T1 = lamina propria or submucosa
- T2 = muscular
- T3 = adventis
- T4 = adjacent structures

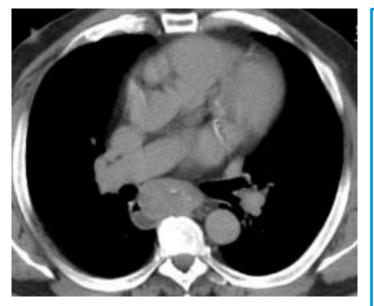
Extension

- Mediastinal nodes
- Liver, lung, adrenal gland...

CT SCAN

- Eccentric or circumferential wall thickness >5mm
- Peri-esophageal infiltration
- Hydro-aerial retention above the tumor
- Tracheobronchial tree / aorta displacement/ invasion


Kim TJ, Kim HY, Lee KW et-al. Multimodality assessment of esophageal cancer: preoperative staging and monitoring of response to therapy. Radiographics. 2009



Esophageal leiomyoma

Benign smooth muscle tumour

- 45-73% benign esophageal tumours,
 20 50 years old
- Often asymptomatic when < 5 cm
- > 5 cm: sometimes dysphagia ...

Case courtesy of Dr Vitalii Rogalskyi, Radiopaedia.org, rID: 29503

TOGD

- Regular stenosis by intramural lesion
- <u>CT</u>
 - Smooth, round, well-limited submucosal tumour
 - Rarely exophytic or intraluminal
- Moderate enhancement
- +/- Calcifications (quasi pathognomonic)
- No soft tissue invasion

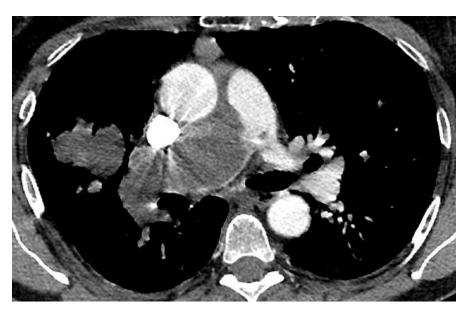
Location

- 1/3 lower esophagus: 60%.
- 1/3 middle: 30%.
- 1/3 upper: 10%.

Winant AJ, Gollub MJ, Shia J et-al. Imaging and clinicopathologic features of esophageal gastrointestinal stromal tumors. AJR Am J Roentgenol. 2014

Pulmonary artery sarcoma

- Extremely rare (0.001%-0.03%)
- Origin: intimal mesenchymal cells


Imaging

- <u>CT</u>
- Hypodense process occupying the entire arterial lumen
- Expansive character
- Extraluminal extension
- <u>PET scan</u>
- Fixation

<u>MRI</u>

 Very specific because enhancement +++ compared to thrombus

Differential diagnosis +++: often mistaken for pulmonary embolism (trap)

Pulmonary artery sarcoma

Treatment and prognosis

- Highly malignant tumor
- Average survival of 12-18 months
- Surgical resection +/- chemotherapy, radiotherapy

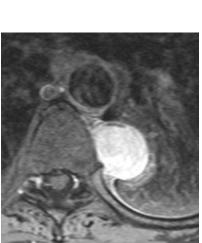
Posterior mediastinal tumor

Etiologies

Peripheral nerve sheath tumor (PNST) +++ (63%)
 Peripheral nerve tumors

 Neurinoma +++
 Neurofibroma
 Sympathetic chain tumors
 Ganglioneuroma
 Ganglio-neuroblastoma
 Ganglio-neuroblastoma
 Neuroblastoma
 Paraganglia neoplasms
 Paragangliomas

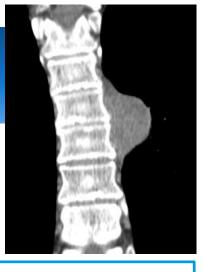
 Meningocele
 Neuroenteric cyst
 Extra-medullary haematopoiesis
 Teratomas (3-8% of teratomas in posterior mediastinum)

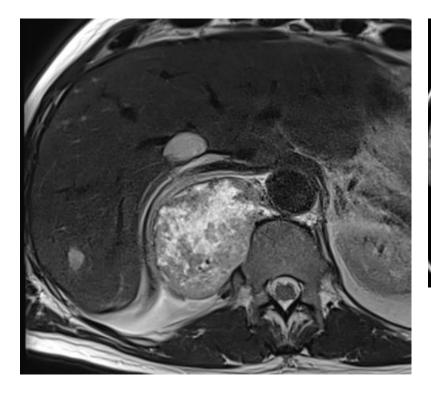


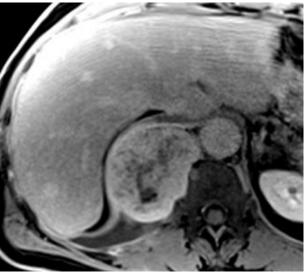
Schwannoma

Benign tumour developed from the sheath cells→ The tumour pushes nerve fibres away

- Encapsulated
- 2 cell patterns: ordered cell component (Antoni type A) and loose myxoid component (Antoni type B)
- Slow growth
- Clinical: asymptomatic ++, root pain
- Treatment: Surgical removal


- Tissular mass, hypodense, well limited


- Hourglass: 10% (if intracanalar portion)
- Round or elongated (intercostal direction)
- Para-spinal: scalloping
- Cystic form
- Calcification: 10%.
- If voluminous: heterogeneous (haemorrhage, necrosis)


MRI

CT

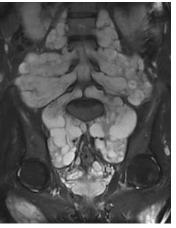
- T1: intermediate
- T2: intermediate to high
- Enhancement
- Topography
- Posterior mediastinum ++
- Along the vagus nerve or phrenic nerve

Schwannoma (pathological confirmation)

Neurofibroma

- 10% of neurogenic tumours
- Mixed tumour: sheath cells + nerve
- 20 to 40 years old
- NF1 Association (40%)

3 types have been described


- Localized +++ (90%)
 - ≈ idem schwannoma
 - CT scan: spontaneously hypodense mass in relation to muscles (15 to 20 HU) (73% of cases), little contrast enhacement
 - MRI: hypoT1, hyperT2, heterogeneous enhancement
- Diffuse
- Plexiform
 - Pathognomonic NF1

NF1

- Genetics, autosomal dominant
- Prevalence: 1/4000
- <u>Skin lesions</u>: coffee-milk spots, subcutaneous neurofibromas
- <u>Neuro</u>: Optic nerve glioma...
- <u>Thorax</u>: neurofibromas paravertebral regions, vagus nerve, phrenic nerve, recurrent laryngeal nerve, intercostal nerve

Plexiform NF

Thick mass infiltrating the entire nerve trunk and its branches (in a rosary), encompassing the rib

Case courtesy of Dr Vinay Shah, Radiopaedia.org, rID: 19700

Risk of degeneration into MPNST (malignant peripheral nerve sheat tumor).

- 40-60% of MPNST: NF1. 4% malignant transformation in NF1
- Criteria: size, rapid increase in size of a neurofibroma +++, +/- irregular edges
- MRI (heterogeneous T1, hypoT2), Galium scinti67

Pilavaki M, Chourmouzi D, Kiziridou A et-al. Imaging of peripheral nerve sheath tumors with pathologic correlation: pictorial review. Eur J Radiol. 2004

Mediastinal paraganglioma

- Paraganglioma = extra adrenal pheochromocytoma
- 1/3: non-secreting
- <u>2 types</u>
 - Non-chromaffinic and non-secreting P.
 - = Chemodectoma
 - Middle mediastinum, difficult resection
 - <u>P chromaffins and secreting agent</u>
 - = Extra adrenal pheochromocytoma.
 - <u>Posterior</u> mediastinum, easy resection
 - catecholamine secretion → HT, diabetes, headache, palpitation, sweating

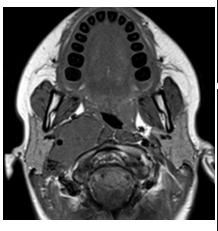
Paracardial paraganglioma

CT scan

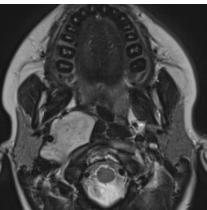
- Round mass
- Hypervascular +++
- Calcifications ++
- MRI: "salt and pepper" aspect in T2 (flow voids), dynamic MRI ++.
- Blush (angio)
- MIBG

Site

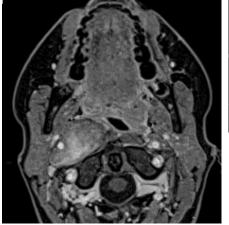
- Abdomen > Thorax (rare,1 to 2% pheo)
- Posterior mediastinum: costo-vertebral gutter (sympathetic chain)
- Middle mediastinum: aortic arch, pulmonary artery, adjacent or in the heart

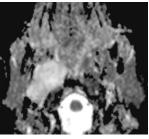


Ganglioneuroma

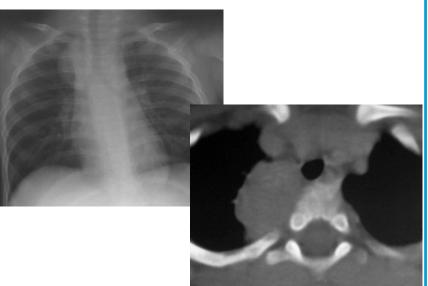

- Rare, adolescents and young adults (< 20 years of age)
- Tumours from **ganglion cells of** the sympathetic nervous system
 - Ganglioneuroma (benign)
 - ✤ Ganglioneuroblastoma
 - Neuroblastoma (malignant)
- Posterior mediastinum (32%), neck (8%)
- Encapsulated Tumor
- Treatment: curative resection

Imaging


- Round or oval mass
- Regular borders
- Hypodense
- Absence (20%) or low (80%) contrast enhancement
- Punctiform calcification (20%)
- Heterogeneous hypersignal in T2
- <u>Dynamic</u>: no early enhancement, **progressive** enhancement
- If atypical: think GNB (<10 years old, calcif + frequent), NB, pheo



Cervical ganglioneuroma



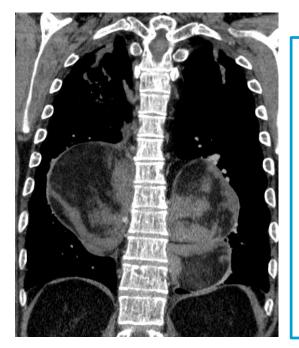

ADC between 1.7 and 2

Neuroblastoma

- Neoplasms of neuroblastic origin
- Kid < 10 years +++, pain, palpable mass...
- 3^{rd most} common tumour after brain tumours and leukaemia
- Huntchinson's syndrome: bone metastasis
- Pepper's syndrome: liver metastasis
- <u>Location</u>
 - Adrenal glands 35 %
 - Retroperitoneum 35%.
 - Posterior mediastinum 20% ...

<u>CT SCAN</u>

- Posterior mediastinum mass
- Heterogeneous, calcifications (80-90%), hypodense areas (necrosis)
 MRI
 - T1: heterogeneous, iso to hypointense
- T2: heterogeneous, hyperintense, very hyperintense necrosis, flow voids
- Gd: variable enhancement, heterogeneous <u>MIBG</u>
- Fixation with Se:88%, Sp:99% (fixation in ganglioneuroblastoma, ganglioneuroblastoma, carcinoid, pheochromocytoma)


Lonergan GJ, Schwab CM, Suarez ES et-al. Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologicpathologic correlation. Radiographics 2002

Extramedullary hematopoiesis

Extra-medullary tissue proliferation in response to insufficient production of hematopoietic cells

- Rare, asymptomatic
- Secondary to
 - plenectomy
 - **Chronic anemia** (thalassemia, sickle cell disease, myelofibrosis...)

<u>Imaging</u>

- Posterior mediastinal mass
 - Multiple ++, bilateral and symmetrical in contact with the vertebral bodies
 - T6-T12
 - = Herniation of myeloid tissue through a fine cortex
- Fat density +++
- Remodelling of bone in contact
- Medullary rarefaction, coarse appearance of the weft
- No aggressive criteria
- Biopsy or scintigraphy to confirm if doubt

Biblio: Yahya M. Berkmen and Benjamin A. Zalta. Case 126: Extramedullary Hematopoiesis Radiology 2007

Cystic DENSITY

Congenital cysts

- Bronchogenic cysts +++
- Esophageal Duplication
- Neuroenteric cyst
- Pleuropericardial cysts

Cystic or cystitic tumors

(favored by Rx/chimio)

- Congenital/acquired thymic cyst
- Germ Cell Tumours
- Neurogenic tumor (schwannoma, neurofibroma)
- Cystic Lymphangioma
- Lymphoma

<u>Miscellaneous</u>

- Meningocele
- Pancreatic pseudocyst

FAT DENSITY

Fat-containing lesions

- Teratoma
- Thymo-lipoma

Fatty lesions

- Lipoma
- Liposarcoma
- Lipoblastoma
- Mediastinal Lipomatosis
- Extramedullary hematopoiesis
- Hernias

CONTRAST ENHANCMENT +++

- Thyroid or parathyroid mass
- Castelman's disease
- Paraganglioma
- Carcinoid tumor
- Ganglion metastasis (thyroid, sarcoma, melanoma...)
- Extramedullary hematopoiesis

Necrotic nodes

- Hodgkin
- Large B cell lymphoma

- Chest Course Nancy Mediastinal lesions Radiological aspects
- Adult Chest Imaging ^{3rd} edition Edited by Philippe Grenier

Cystic density

Congenital cysts

Derivatives of the anterior primitive intestine +++

- Bronchogenic cysts +++
 - 1/5 mediastinal masses, 90% in mediastinum, subcarinary++, right paratracheal
- Esophageal Duplication
 - Adjacent to esophagus, vertical tubular form, often right, sometimes thick-walled
- Neuroenteric cyst
 - Posterior mediastinum, right, vertical tubule, vertebral anomalies (above, hemi-vertebrae...), upper thorax ++.

Pleuropericardial cysts

Adjacent to pericardium, cardiophrenic angles
 +++ (right), upper pericardial recess

Cystic or cystitic tumors (favored by Rx/chimio)

- Congenital/acquired thymic cyst
 - Anterior mediastinum
- Germ Cell Tumours
- **Neurogenic tumor** (schwannoma, neurofibroma)
- Cystic Lymphangioma
 - Single or multilocular, fine septal defects Complications: compression, infection
- Lymphoma

- Meningocele

- Posterior mediastinum, associated with neurofibromatosis, myelography
- Pancreatic pseudocyst

- Radiographics;2002;22;579 Imaging of Cystic Masses of the Mediastinum
- Chest Course Nancy Mediastinal lesions Radiological aspects
- Adult Chest Imaging ^{3rd} edition Edited by Philippe Grenier

Thymic cyst

- 3% of anterior mediastinal masses
- <u>**Congenital</u>** + + + typically unilocular (thymopharyngeal embryonic pathway)</u>
- Acquired: often multilocular
 - Secondary to a thoracotomy
 - Lesion (thymoma, thymic carcinoma...) \rightarrow chemo or irradiation
 - Inflammatory: multiloculate, thick fluid, thick fibrous wall, signs of inflammation on histology, diseases: Sjögren, myasthenia gravis, trauma, irradiation, AIDS

Imaging

- Cervical or mediastinal location
- Variable size: mm ->15 cm
- <u>CT SCAN</u>
 - Unilocular or multilocular cyst with a well-limited wall
 - +/- haemorrhagic
 - +/- Calcification (^{2ndaire} haemorrhagic)
- MRI ++: hypoT1, hyper T2, no enhancement

n ns of avis,

Complications

- Hemorrhage
- Infection

Differential diagnosis

- Cystic thymoma
- Cystic teratoma
- Lymphangioma
- Cystic degeneration of a seminoma
- Pericardial cyst

- Chest Course Nancy Mediastinal lesions Radiological aspects
- Adult Chest Imaging ^{3rd} edition Edited by Philippe Grenier

Bronchogenic cyst

Most common cystic lesion of the mediastinum (60%)

- Man > woman
- Possible Associations
 - Sequestration, lobar emphysema

Complications

- Superinfection
- Hemorrhage (1volume)
- Obstructive compression emphysema
- Bronchial fistulation (hydroaerics level)

Chest Course Nancy - Mediastinal lesions Radiological aspects
 Adult Chest Imaging ^{3rd} edition - Edited by Philippe Grenier

<u>CT SCAN</u>

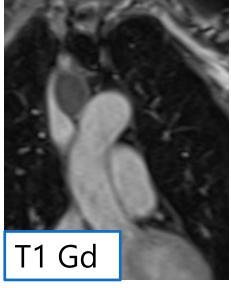
- Thin-walled cyst
- Spontaneous density: cystic to hyperdense (50%) (mucoid content, calcium oxalate)
- Calcifications in the periphery

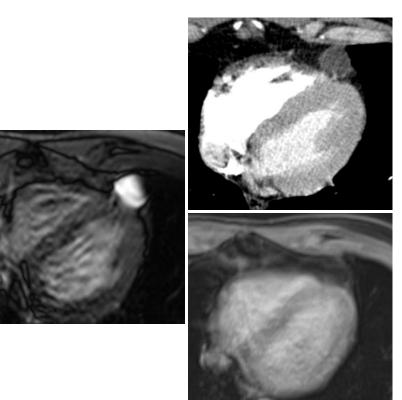
<u>MRI</u>


 Iso or hypersignal T1, hypersignal T2, thin wall not enhanced +++

<u>Location</u>


- Tracheo-bronchial contact
- Mediastinal+++ (85%) subcarinary or right paratracheal
- Intra parenchymal (+/- mediastinum beak)





Pleuropericardial cyst

Congenital formation due to abnormal closure of the coelomic pericardial cavity

- Asymptomatic
- Bordered by a wall containing conjonctive tissue and a layer of mesothelial cells.

Imaging

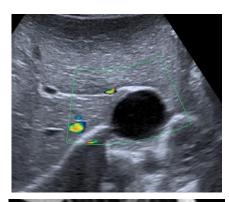
- Oval or round, unilocular, thin-walled cyst
- Liquid Content
- **Sometimes dense** if hemorrhage (but more cystic than bronchogenic cyst)
- · 3 to 8 cm
- <u>Location</u>
 - **Right anterior cardiophrenic angle +++** (70%), left (22%)
 - Rare: pericardial recess (aortic root, pulmonary artery)

- Chest Course Nancy Mediastinal lesions Radiological aspects
- Adult Chest Imaging ^{3rd} edition Edited by Philippe Grenier

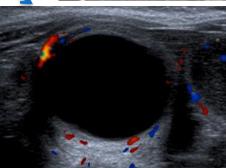
Esophageal Duplication

- Child +++
- Cystic formation adjacent to the gastrointestinal tract
- ^{2nd} location (20%) after the ileum (33%) but affects the whole digestive tract
- Wall: ectopic gastrointestinal mucosa, incomplete muscle layer, no cartilage
- Frequent associated malformations: vertebra, esophageal atresia

Imaging


- Cystic formation adjacent to the gastrointestinal tract
- With a proper wall (muscle layer)
- 2 forms
 - 82%: spherical, no communication with the IT >
 - 18%: tubular form, communicate with the IT
- Same as bronchogenic cyst BUT
 - Thicker wall
 - and intimate contact with the esophagus

Complications


- Rupture (acute mediastinitis, hemorrhage)
- Infection
- Esophageal compression (dysphagia), vessels
- Chest Course Nancy Mediastinal lesions Radiological aspects

- Adult Chest Imaging ^{3rd} edition - Edited by Philippe Grenier

Esophageal Duplication 3 year old child

Lymphangioma

Benign congenital malformation: proliferation of lymphatic tissue (ectasia

lymphatic ducts lined with endothelial cells)

- Rare (0.7 to 4.5% of mediastinal tumours)
- Slow growth
- <u>Histology</u>
 - Capillary L.
 - Cavernous L.
 - Cystic L. +++ (large macroscopic lymphatics)

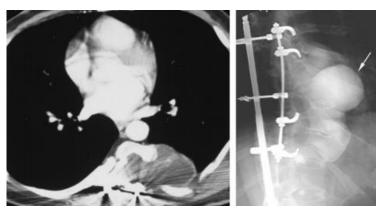
Complications

- Infection
- Superior airway compression
- Chylothorax and chylopericardia

Imaging

- Well limited mass, multilocular, sheathing the mediastinal structures (vessels...) without moving them.
- Homogeneous cystic density (hyperdense if complication)
- Location:
 - Neck and axillary +++
 - 10%: Cervical extended to the mediastinum (children++)
 - 1%: Pure mediastinal (upper and middle mediastinum: right tracheal edge)
- +/- Tissue areas, fatty areas
- +/- pleural effusion (chylous)

Biblio

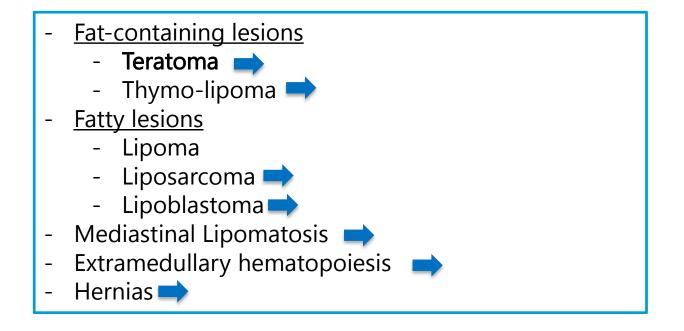

- Chest Course Nancy - Mediastinal lesions Radiological aspects

⁻ Adult Chest Imaging ^{3rd} edition - Edited by Philippe Grenier

Thoracic meningocele

- Herniation of the meninges through a conjugate foramen or a defect of the vertebral body
- Asymptomatic
- Surgical treatment (bag closure)

Courtesy Mi-Young Jeung -Radiographics

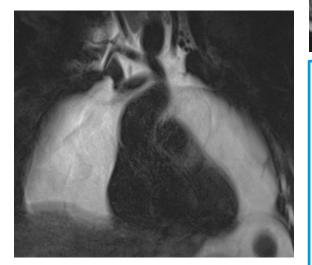

Imaging

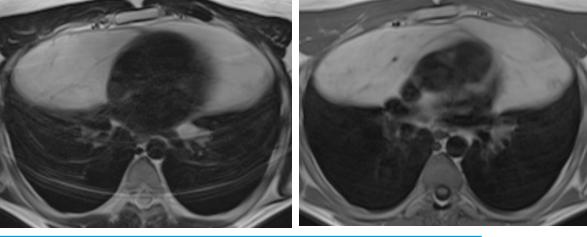
- Cystic lesion
 - Costo-vertebral angle (Right side ++)
 - Associated spinal abnormalities
 - **Scoliosis** (meningocele at the apex of the angulation)
 - Enlargement of conjugate foramen
- Association with NF1
- DD: Nerve sheath tumors
- <u>MRI +++</u>
 - Hypersignal T2 (cerebro spinal fluid (CSF) signal)
 - Widening of conjugate foramen
 - Vertebral "Scalloping"

- Mi-Young Jeung Radiographics 2002 Imaging of Cystic Masses of the Mediastinum
- Chest Course Nancy Mediastinal lesions Radiological aspects
- Adult Chest Imaging ^{3rd} edition Edited by Philippe Grenier

Fat Density

Biblio


- Chest Course Nancy - Mediastinal lesions Radiological aspects


- Adult Chest Imaging ^{3rd} edition - Edited by Philippe Grenier

Thymolipoma

- <u>Epidemiology</u>: 5% of thymic tumors
- <u>Treatment</u>: Surgical resection

Imaging

- Voluminous tumor (up to 20cm)
- Well encapsulated
- Repressed by neighbourhood structures
- Fat content+++ + septa + thymic tissue
- Location: cardio phrenic angle + +
- MRI: hyperT1 and Fat Sat suppression
- Differential diagnosis
 - Mediastinal Lipomatosis
 - Liposarcoma

- Chest Course Nancy Mediastinal lesions Radiological aspects
- Adult Chest Imaging ^{3rd} edition Edited by Philippe Grenier

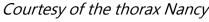
Liposarcoma

- Rare, 40 to 60 years old
- Long-term local aggressivity
- <u>Clinical</u>: weight loss, cough, pain, upper basement syndrome, asymptomatic
- <u>Treatment</u>: surgical (risk of recurrence) / radiotherapy

Imaging

- Mixed: fat + tissue
- Arguments for liposarcoma
 - Tissular component / infiltration
 - Ill defined borders
 - Infiltration/invasion of mediastinal structures

4 types


- Well differentiated +++ (<50%) (low grade)
 - 4 subtypes including "lipoma like"
- *Myxoid + +* (intermediate grade)
- *Pleiomorphic* (high grade, metastasis++)
- Round-cell

- Chest Course Nancy Mediastinal lesions Radiological aspects
- Adult Chest Imaging ^{3rd} edition edited by Philippe Grenier

Liposarcoma "lipoma like" Case courtesy of Dr Yune Kwong, Radiopaedia.org, rID: 32453

Lipoblastoma

- Rare
- Field: Child+++(90% before 3 years-75% before 12 months) / Teenager
- Topography: extremities +++ (2/3), mediastinum, retroperitoneum
- Tends to extend: neck, diaphragm
- Treatment: curative surgery

2 forms

- Lipoblastoma = encapsulated form
- Lipoblastomatosis = non-encapsulated form

Biblio

- Chest Course Nancy Mediastinal lesions Radiological aspects
- Adult Chest Imaging ^{3rd} edition Edited by Philippe Grenier

Mediastinal Lipomatosis

Abundant mediastinal fat, not encapsulated

Location

- Mediastinal (cardiophrenic angle)
- Cervicomediastinal

Enabling factors

- Cushing
- Steroids
- Obesity

Biblio

- Chest Course Nancy - Mediastinal lesions Radiological aspects

⁻ Adult Chest Imaging ^{3rd} edition - Edited by Philippe Grenier

Hibernoma

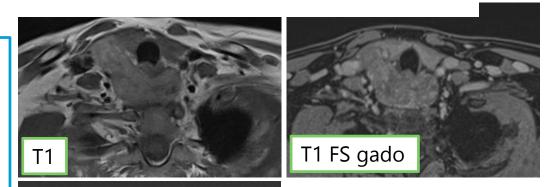
Benign fatty tumour derived from residual fetal brown fat

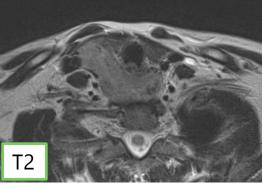
- "hibernoma" because it looks like the fat of hibernating animals...
- <u>Location</u>
 - Thigh ++, shoulder, back
 - Neck, Thorax
 - Arm
- Treatment: Surgical resection

CT SCAN

- Density: fat → muscle
- Well limited
- Caspule
- Discret enhancement

<u>MRI</u>


- Hyper T1 and T2 < subcutaneous fat
- +/- flow voids
- Fat sat: incomplete saturation


PET scan

- Hyperfixation +++

Biblio

- Chest Course Nancy Mediastinal lesions Radiological aspects
- Adult Chest Imaging ^{3rd} edition edited by Philippe Grenier

Posterior cervicothoracic hibernoma

Enhancement +++

Thyroid or parathyroid mass

- 10% of mediastinal tumors
- Goiter
- Thyroid adenoma/carcinoma
- Ectopic parathyroid adenoma/carcinoma

Castelman's disease

 Ubiquitous, right paratracheal, hilar, young adult, hyaline vascular type++, single non-invasive (50%) or invasive (40%) mediastinal mass, enhancement+++

Paraganglioma

 Posterior mediastinum mass (catecholamine secretion) or medium, enhancement +++, Ca

Carcinoid tumor

Anterior mediastinum

Ganglion metastasis

- Thyroid, sarcoma, melanoma...

Extramedullary hematopoiesis

Anemia, asplenia, costovertebral gutter, tissue + fat+++

Biblio

- Chest Course Nancy - Mediastinal lesions Radiological aspects

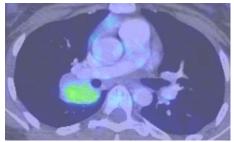
- Adult Chest Imaging ^{3rd} edition - Edited by Philippe Grenier

Castelman's disease

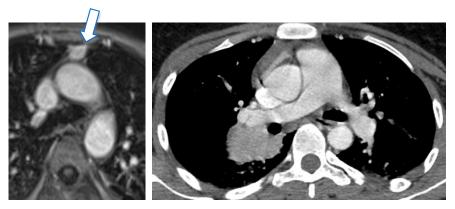
- Angiofollicular node hyperplasia : benign B-cell lymphoproliferation + capillary proliferation + endothelial hyperplasia
- Young adults ++ 20 40 years (but at any age)
- <u>2 morphological types</u>
 - Unicentric
 - Multicentric
- <u>2 histological types</u>
 - Hyaline vascular type +++ (90%): follicular structure, small lymphocytes, vx interfolliculars++
 - Often unicentric +++
 - Plasma cell
 - Multicentric +++
 - Few follicular vessels
 - Associated with HHV8
- Location
 - Thorax ≈ 70% +++
 - Abdomen/pelvis and retro peritoneum (10-15%)
 - Neck (10-15%)
- Biblio:
- Bonekamp D, Horton KM, Hruban RH, et al. Castleman Disease: The Great Mimic. RadioGraphics 2011
- Ko SF, Hsieh MJ, Ng SH et-al. Imaging spectrum of Castleman's disease. AJR Am J Roentgenol. 2004

Image from Nancy's chest DU

Case courtesy of Dr Vincent Tatco, Radiopaedia.org, rID: 40917

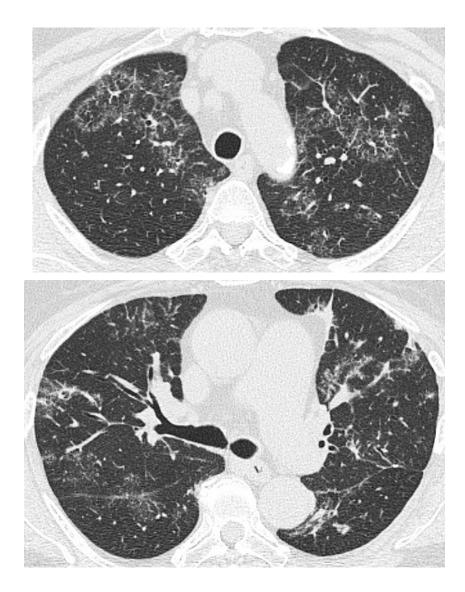


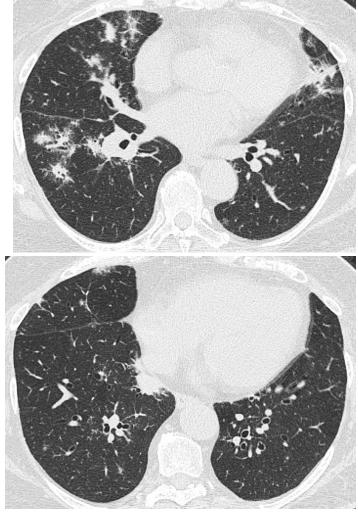
Hyaline vascular type +++ (90%)


- Unicentric +++
- <u>Location</u>: right paratracheal > hilum > posterior mediastinum
- <u>3 presentations</u>
 - Single non-invasive mediastinal mass (50%)
 - Infiltration mass (40%)
 - Multiple confluent adenopathies confined to a mediastinal compartment (10%)
- CT SCAN
 - Spontaneously: tissue, homogeneous
 - Homogeneous intense enhancement +++
 - Sometimes central hypodensity
 - Calcification (5-10%)
- <u>MRI</u>
 - Iso or hyper T1 /muscle, heterogeneous hyper T2 (sometimes septa to hypoT2), heterogeneous intense contrast

Castelman associated with HHV8

- Multicentric
- Plasmablastic Variant
- Low prognosis
- Immunocompromised patient, HIV



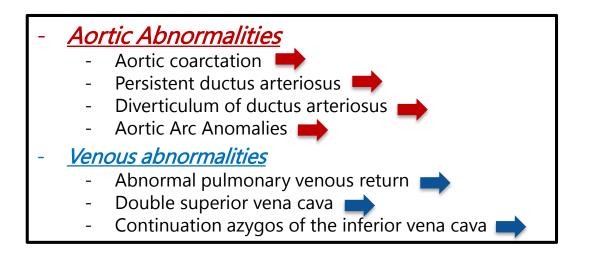


Plasma cell

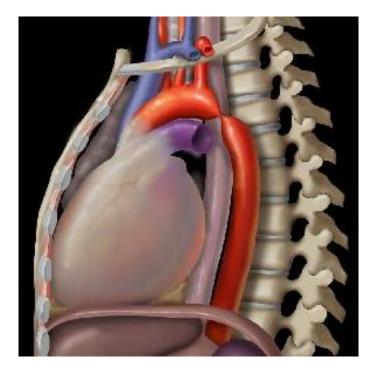
- Multicentric +++
- Bilateral and mediastinal hilar adenopathies
- Centrolobular nodules, ggo, consolidation
- -/+ symptomatic (fever...)

Castelman's disease

Opacity has been gradually increasing over the last 15 years and has become symptomatic in recent months. Antecedent of MALT Surgical Pulmonary Biospy Probably Plasma Cell type



Castelman parenchymal disease



Mediastinum -Vascular abnormalities

Aortic coarctation

Aortic lumen stenosis

- 2 sub-types
 - Infantile (preductal): diffuse hypoplasia or stenosis just after ABCT to *ductus arteriosus* → vascularization via *ductus arteriosus*
 - Adult (ductal juxta, post ductal or medioaortic)
- 5-8% of congenital cardiopathies (bicuspid +++, interventricular communication, transposition of large vessels...), syndromic associations (Turner...)
- <u>Clinic</u>: asymptomatic \rightarrow chest pain, claudication

Higgins CB. Radiography of congenital heart disease. In: Webb WR, Higgins CB. Thoracic imaging: pulmonary and cardiovascular radiology (pp742-767). Lippincott Williams and Wilkins. (2011)

Xray

- Sign of figure "3"
- "Inferior rib notching": Roesler's sign.
 - Secondary to dilated collaterals intercostal arteries that form an impression under the ribs (child > 5 years and adult)

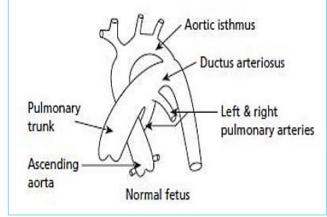
Angio CT/MRI, angiography

- Direct visualization of stenosis
- and the network of collaterals

Sign of figure "3" Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 6274

"Rib Notching" *Case courtesy of Dr Hani Al Salam, Radiopaedia.org, rID: 12461*

Case courtesy of Dr Andrew Dixon, Radiopaedia.org, rID: 18771



Patent ductus arteriosus

Definition ductus arteriosus: normal connection during fetal life between the aorta and the pulmonary artery, developed from the 6th aortic arch, during the 6th week of development, physiological closure 48H after birth.

Persistent DA

- Frequent, 5.3 to 11% of congenital heart disease, 3 F/ 1 H
- 1/3 of patients die before the age of 40.
- Pathophysiology: DA persistent isolated: Left → right / Ao
 → AP → Shunt post Tricuspid, volume overload left cavities and PA
- Complications
 - Heart Failure
 - Infectious endocarditis
 - HTAP Eisenmenguer syndrom
 - Aneurysm rupture systemic embolism
- <u>Treatment</u>
 - Medical: NSAIDs in premature infants
 - Endovascular: prothesis
 - Surgical: ligature or section/suture

- Isolated
- Or in association
 - other congenital cardiac abnormalities. tetralogy of Fallot, Eisenmenger's syndrome, hypoplasia of the left heart, pulmonary artery atresia.
 - other pathologies. prematurity, surfactant deficiency, Trisomy 18 and 21, rubella, etc.
- Goitein O, Fuhrman CR, Lacomis JM. Incidental finding on MDCT of patent ductus arteriosus: use of CT and MRI to assess clinical importance. AJR 2005

Morgan-Hughes GJ, Marshall AJ, Roobottom C. Morphologic assessment of patent ductus arteriosus in adults using retrospectively ECG-gated multidetector CT. AJR 2003

Radiographic signs

- Cardiomegaly (left heart)
- Dilatation of the pulmonary artery trunk
- Frequent pulmonary edema

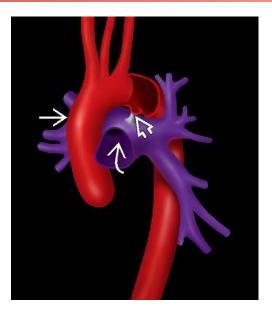
<u>CT Signs</u>

Direct signs

- Visible arterial canal
- Communication Ao PA

Indirect signs

- **Dilatation Ao ascending + aortic isthmus**, normalization of diameter Ao descending
- **Cardiomegaly + +** (**OG + VG** dilatation)
- Enlargement of the right ventricle
- Dilatation ++ of the PA trunk



Ductus Diverticulum

- **Ductus diverticulum** (just downstream of the left subclavian artery)
- <u>Differential diagnosis</u>: traumatic rupture of the isthmus
- Enlarged *Ductus*: Aneurysm

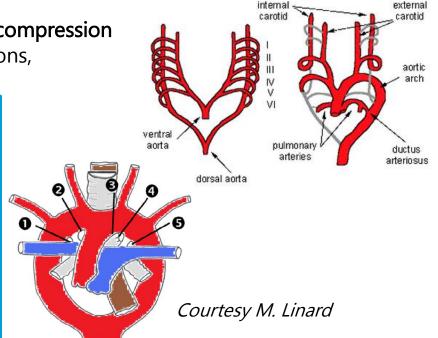
Features + + + (important for differential diagnosis of isthmus rupture)

- Smooth edges
- **Obtuse angles** with aortic wall (sometimes acute)
- No intimal flap
- Normal mediastinum (not hemomediastinum)

Aortic Arc Anomalies

Abnormal development of the aortic arches -> encirclement

+/- complete trachea, oesophagus


<u>Clinical</u>: asymptomatic or **tracheo-esophageal axis compression** (-> newborn stridor, respiratory gene, pulm infections, dysphagia...).

Anomalies of the 4th aortic arc Cut-off sites

- 1 Normal aortic arch
- 2 Aberrant right artery under clavicle on left aorta
- 3 Aberrant brachiocephalic arterial trunk on right aorta
- 4 Aberrant left subclavian artery on right junction
- **5** right aorta with mirror arrangement
- Double aortic arch
- Length anomaly of the 4th aortic arch: Aorta "kingking"

6th Aortic Arc Anomalies

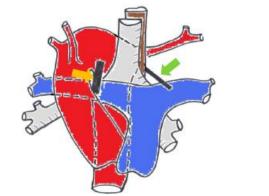
- Agenesis of a pulmonary artery
- Retrotracheal left pulmonary artery

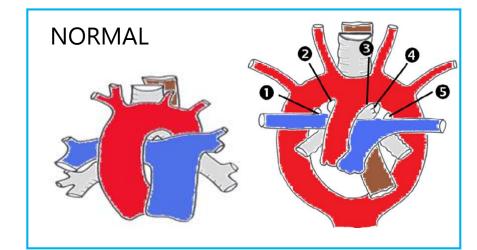
Imaging


- Chest X-ray: if right aorta -> left deviated trachea
- TOGD: Abnormal fingerprints
- Sectional imaging provides an anatomical diagnosis, objective compression and guides surgical treatment.

Diagnosis of 4th and 6th Aortic Arc Deformities: Contribution of the scanner.M. Linard, M. Arrot-Masson, J. Goupil, V. Pineau, F. Belloy, B. Richter- Pôle d'Imagerie, Service de Radiologie CHU CAEN

2) Retro-esophageal aberrant right subclavian artery on left aorta

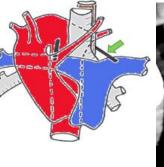

- Most frequent abnormality (0.5% of subjects), mass effect on posterior face of the esophagus.
- Dysphagia lusoria



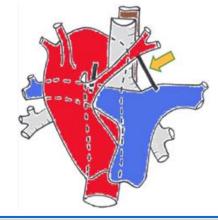
Courtesy Diagnostic imaging Case courtesy of Dr Mohammad A. ElBeialy, Radiopaedia.org, rlD: 35607

3) Aberrant brachiocephalic arterial trunk on right aorta

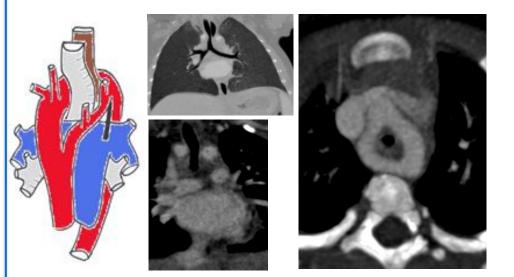
 Arterial ligament on the left (→ vasculoligamentary ring) or on the right



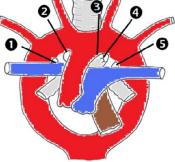
4) Aberrant left subclavian artery on right crosspiece


- Right aorta + arterial ligament (connecting the left pulmonary artery to the tranverse aorta) → vascularligamentary compressive ring around the trachea and oesophagus, defining a Neuhauser's anomaly
- The bulge at the origin of the left subclavian retroesophageal artery, where the arterial ligament is inserted, is called **Kommerel's diverticulum**.

5) Straight stock with "mirrored" arrangement In 98% of cases associated with congenital heart disease (tetralogy of Fallot++)



Case courtesy of Dr Hani Al Salam, Radiopaedia.org, rID: 8416


Double aortic arch

Absence of total or partial regression of the 2 arcs

Length anomalies of the 4th aortic arc: **Aortic kinking**

Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 8218

6th Aortic Arc Anomalies

Retrotracheal left pulmonary artery


 Severe, with noisy symptomatology from the neonatal period onwards

Agenesis of a pulmonary artery: see corresponding chapter

Situs inversus

- **Reverse position of the organs.** *Total* when inversion of all abdominal + thoracic organs
- Often associated with
 - A **dextrocardia** +/- cardiac malformation (transposition of large vessels)
 - A right thoracic aorta

20% have Kartagener syndrome Association

- Ciliary dyskinesia
 - Bronchiectasis
 - Naso-sinusal polyposis
- Situs inversus or dextrocardia (50%)
- Aplasia of frontal sinuses

Abnormal pulmonary venous return (APVR)

Drainage of one or more pulmonary veins in the systemic venous system

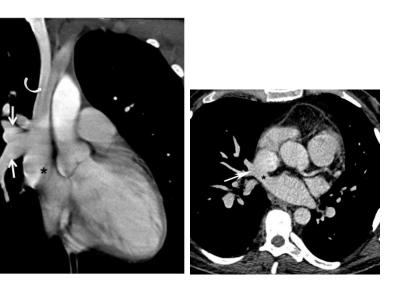
- Left-right shunt →Hyperdebit
- Types:
 - <u>Complete</u>: supra-cardiac, cardiac, infra-cardiac, complex
 - Partial: Simple, Scimitar Syndrome, IAC Sinus venosus.

Case courtesy of Dr Ahmed Abd Rabou, Radiopaedia.org, rID: 34707

Abnormal Partial Pulmonary Venous Return Simple

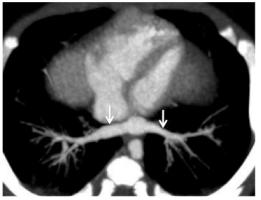
Left upper pulmonary vein draining into the left brachiocephalic venous trunk

When you see a vascular structure in a left para-aortic situation \rightarrow APVR

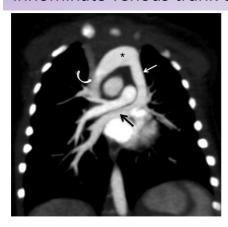

→ Double SVC

Case courtesy of Dr Cathal O'Brien, Radiopaedia.org, rID: 44093

Partial APVR: IAC / Sinus venosus Pulmonary vein drains in front of a high IAC.

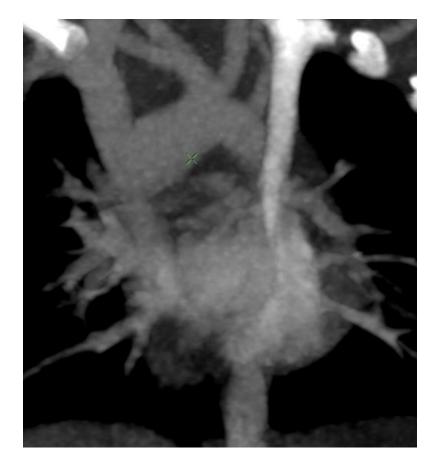


Partial APVR: Cemetery Pulmonary vein draining the right lung with drainage at the RA/IVC junction


Full APVR Infra-Cardiac

Collector draining into the trunk of the heart with infracardiac drainage

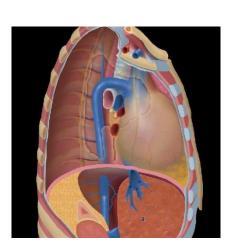
<u>Complete</u> Supra-Cardiac <u>APVR</u> Collector draining supracardiac through the left innominate venous trunk then VCS

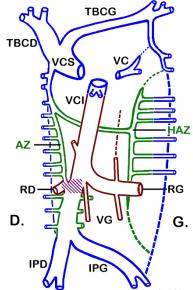


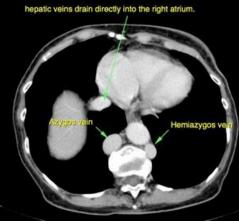
Double SVC

Double SVC

→ Left SVC draining into the coronary sinus






Continuation azygos of the IVC

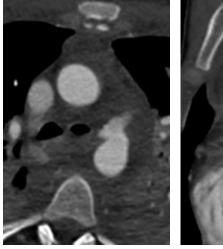
Continuation azygos of the IVC

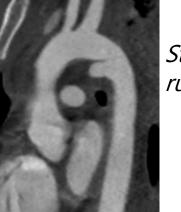
- Interruption of IVC above the renal veins
- Hepatic veins \rightarrow RA
- **Enlargement of the azygos vein** (right of the aorta) and the arch of the azygos.

Case courtesy of Dr Bruno Di Muzio, Radiopaedia.org, rID: 22642

Case courtesy of Radiopaedia.org, rlD: 11228

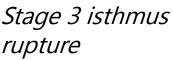
Case courtesy of Dr Abdallah Khateeb, Radiopaedia.org, rID: 44697


Mediastinum -Trauma / hernia / infectious

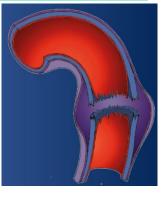

- Rupture of the aortic isthmus
- Diaphragmatic rupture
- Diaphragm eventration 🔿
- Hernias 📥
- Broncho-esophageal fistula 📑
- Esophagitis
- Achalasia 🔿
- Mediastinitis ➡
- Boerhave Syndrome
- Fibrosing mediastinitis 🛋

Rupture of the aortic isthmus

- **Sharp deceleration** (high kinetic accident +++)
- Isthmic location (90%) because segment 1 and 2 mobile and segment 3 fixed



Stage


1/ Intimo-medial laceration

Low/no risk of aneurysm

- 2/ <u>Subadventiel rupture</u> Emergency or delayed
- 3/ <u>Total rupture</u>(hemomediastinum) Extreme Emergency

Differential diagnosis

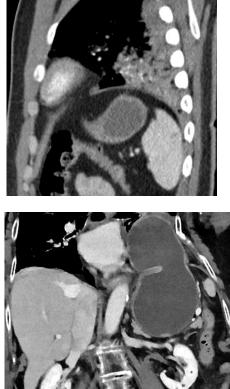
Aortic diverticulum

- Smooth edges
- **Obtuse angles** with aortic wall (sometimes acute)
- No intimal flap
- Normal mediastinum (no hemomediastinum)

2 forms

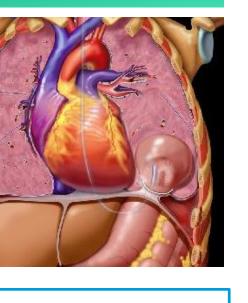
- Round shape
- **Spicular** shape (DD difficult): oblong or pointed addition image, directed towards the PA +/- calcification, analogy with persistent ductus arteriosus.

→ Addition image without any sign of intimate rupture ("smooth aortic light")

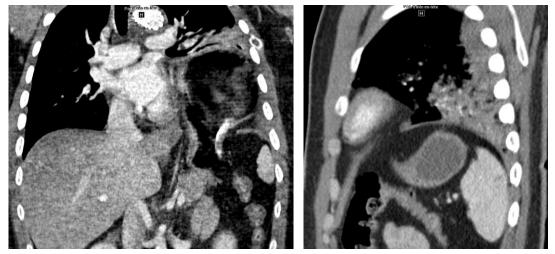


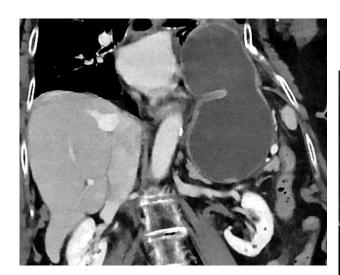
Diaphragmatic rupture

Post-traumatic hemi-diaphragm injury

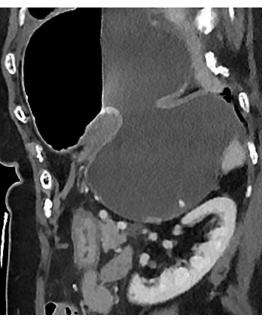

- Violent trauma (association of lesional rupture of the aortic isthmus, ...)
- Frequency R>>L
- Clinical manifestations Left (70-80%)

CT+++

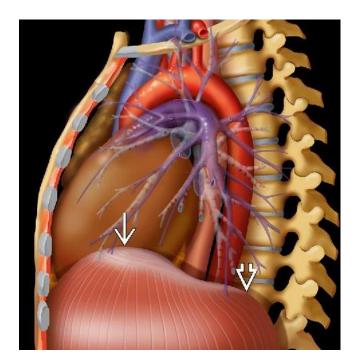

- **Dome** (fibrous portion) ++
- Discontinuity
- **Thickening** (shrinkage, hematoma): 30%.
- Hernia (intestine, stomach, liver) with strangulation



Diaphragmatic rupture


Highly kinetic polytrauma, rupture of the aortic isthmus (stent) At D3: discovery of an intrathoracic hernia through the diaphragmatic rupture.

A posteriori, visible defect in the anterior part of the dome at J1



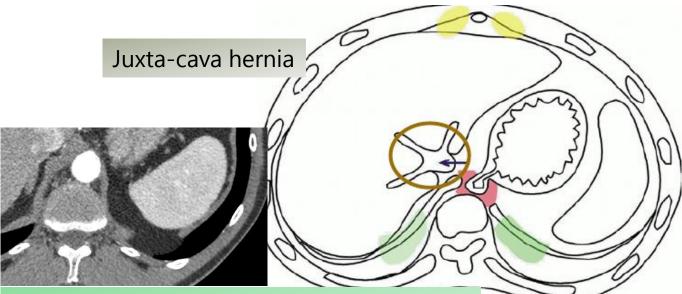
Diaphragmatic rupture Gastric hernia Traumatic ATCD with hemothorax

Diaphragm enventration

- Weakness and non-paralytic thinning of the diaphragm (anterior part and dome)
- Normal posterior part
- Complications: atelectasis, pneumonia.

Differential diagnosis

- Paralysis
- Rupture
- Morgani's Hernia


Hernias

Morgani

- through the anterior parasternal hiatus
- Omentum, GIT (colon), gastric volvulus

Larrey

Hernia by esophageal hiatus

- Through the posterior pleuro-peritoneal hiatus
- Fat, kidney, GIT, L++,

Bronchoesophageal fistula

- In adults
 - Malignant tumor
 - latrogenic: EC, trauma, iatrogenic lesions
- Insidious
- Symptoms
 - Chronic cough (++ at mealtime)
 - Asthma
 - Recurrent infections
 - DDB
 - Hemoptysis

Esophagitis

Infectious esophagitis

- Immunosuppressed patient, transplantation, AIDS
- Candida, Herpes, CMV
- KB (contiguity via adenopathy++) → fistula
- Mucosal damage

Eosinophilic esophagitis

- Chronic immune disease with eosinophilic inflammation, ^{2nd} to 5th decade, M>W, atopy ++
- Endoscopy: longitudinal grooves, white exudates, rings, contractions, oedema, stenosis.
- CT: diffuse thickening

Stefan L. Idiopathic Eosinophilic Esophagitis in Adults: The Ringed Esophagus. Radiology 2005;

Caustic esophagitis

Following accidental/suicidal ingestion of caustic If acidic substance, respect stomach

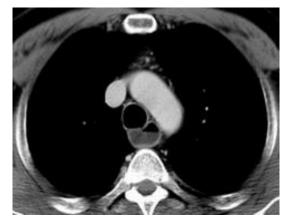
- D0-D10: ulceration, necrosis, dilated esophagus, atonic, perforation.
- J10-J20: same with stenosis
- After D21: fibrosis with strictions

Muhletaler CA, Gerlock AJ, de Soto L and-al. Corrosive acid esophagitis: radiographic findings. AJR Am J Roentgenol. 1980

Phlegmonous esophagitis

- Whole GI tract, stomach++
- Submucosa, sometimes affect muscularis mucosa and serous → perforation
- Favored by immunosuppression, alcoholism, ulcer, neoplasia... sometimes without factors (50%)
- CT: circumferential thickening with hypodensity and peripheral enhancement +/- air
- DDX: dissecting hematoma, tubular duplication
- Antibiotherapy+ surgical drainage

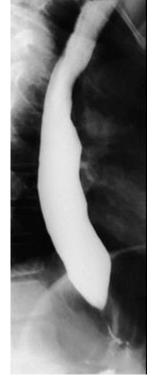
Jung C et al. Acute Diffuse Phlegmonous Esophagogastritis: Radiologic Diagnosis. American Journal of Roentgenology. 2003


Phlegmonous oesophagitis Case courtesy Yeonjoo Jeong, MD, PhD

Achalasia

Primary esophageal motor disorder with **lack of relaxation of the lower esophageal sphincter (LES)** due to involvement of the Auerbach's myenteric plexus++, involvement of esophageal peristalsis

- High resolution pressure measurement +++
- Differential diagnostics:
 - Pseudo-achalasia: neoplasia ++
 - Chagas disease
- Treatment: endoscopic dilatation++, surgery (myotomy)
- Complications: cancer (squamous cell carcinoma, ADK) (5%), mega oesophagus, inhalation pneumonia, candida oesophagitis.


Case courtesy of Dr Hani Al Salam, Radiopaedia.org, rlD: 883

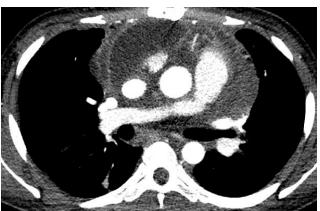
<u>TOGD</u>

- « Bird's beak » appearance
- Dilation
- Incomplete relaxation IOS
- Uncoordinated tertiary contractions

<u>CT SCAN</u>

- Dilated esophagus with thin wall
- Hydro-aerial level


Bird's beak" look Case courtesy of Dr MohammadTaghi Niknejad, Radiopaedia.org, rID: 23554



- Mr. Andrew Murphy and A. Prof Franck Gaillard et al. Radiopediae

- Sophie Ribière - Hépatoweb.com

Mediastinitis

Postoperative mediastinitis

<u>CT SCAN</u>

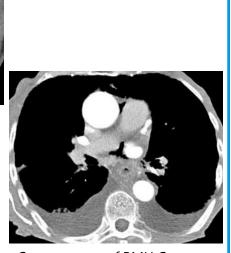
- Mediastinal widening
- Infiltration
- Abscess

<u>Secondary to</u>

- **Boerhaave's syndrome** (spontaneous rupture of the esophagus on effort of vomiting)
- Esophageal necrotic tumor
- Postoperative infection
- Diffusion from an infectious site (tonsil abscess, dental abscess) via the retropharyngeal space (virtual neck + thorax space)

Boerhaave's Syndrome

Esophagus rupture following vomiting effort


- Sometimes other causes (convulsions, trauma...)
- M>F, ethylism, incidence 1/6000

X ray

- Pneumomediastinum
- Left pleural effusion
- Sign of the "V" of Nacerio

Case courtesy of Dr Domenico Nicoletti, Radiopaedia.org, rID: 27683

Case courtesy of RMH Core Conditions, Radiopaedia.org, rID: 26240

Perforation is usually

- Vertical
- Range from 1 to 4 cm
- On the **left posterolateral wall of the distal esophagus** just above the esophageal-gastric junction (topography due to the fact that there are fewer mediastinal structures to protect against perforation)

<u>Imaging</u>

_

- Wall hematoma
- Perforation path
- Periesophageal hydroaerics collections (pneumomediastinum) \rightarrow mediastinitis
- Pleural effusion (pleuro-pneumothorax)
- Oral contrast extravasation

Ghanem N, Altehoefer C, Springer O et-al. Radiological findings in Boerhaave's syndrome. Emerg Radiol. 2003 White CS, Templeton PA, Attar S. Esophageal perforation. AJR 1993

Fibrotic Mediastinitis

Excessive fibrotic reaction in the mediastinum

- Rare
- **Compression/** occlusion mediastinal structures
 - Superior vena cava
 - HTPA
 - Esophageal compression

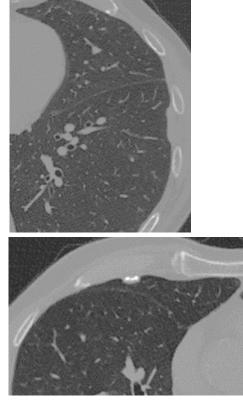
Case courtesy of Dr Darel E Heitkamp, Radiopaedia.org, rID: 13520

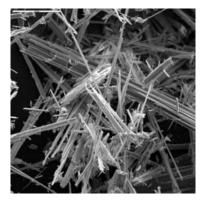
Etiologies

- Idiopathic +++
 - Without calcification
 - diffuse
 - Sometimes steroids-sensitivity
 - Often associated with retroperitoneal fibrosis, Riedel's thyroiditis, orbital pseudotumor...
- Histoplasmosis secondary
 - USA
 - Localize
 - Calcifications
- Tuberculosis
- Sarcoidosis
- Radiotherapy

Rossi SE, Mcadams HP, Rosado-de-christenson ML and-al. Fibrosing mediastinitis. Radiographics. 2001

Pleura / Wall


- Pleural abnormalities/ Asbestosis
- Mesothelioma 📫
- Pleural metastasis 📫
- Solitary fibrous tumour →
- Intra-thoracic splenosis
- Empyema necessitans 🛁
- Costal tumors →
 - Benign Neoplasms
 - Malignant tumors
- Elastofibroma 븆
- Scapulo-thoracic bursitis

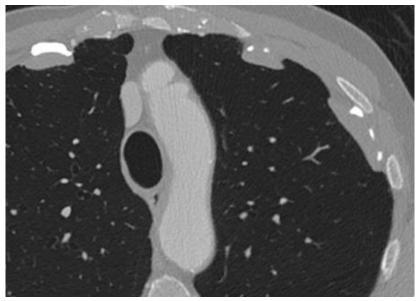


Asbestosis (Pleural abnormalities)

Pneumoconiosis due to prolonged inhalation of asbestos fibres

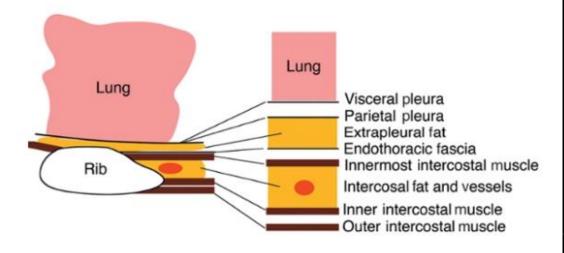
- Asbestos fibre: lg 100µm, Ø3µm bronchioles, alveoli fibrosis
- Anapath: asbestos bodies, asbestos fibres, fibrosis.





Pleural Anomalies - asbestosis!!!!

- Pleural plaques +++: parietal pleura, sign of asbestos exposure, > 20 years old, +/- calcified, bilateral asymmetrical
- **Pleural effusion:** ^{1st} sign of pleural involvement, within 10 years, hemorrhagic exudate
- **Visceral pleural fibrosis:** less specific, thickening and fibrosis of the visceral pleura / fusion with parietal pleura



Bilateral pleural plaques : context of asbestos exposure

Mesothelioma

- Asbestos exposure +++: main risk factor: 80% of cases
- Malignant tumor developing on the parietal part of the pleura
- Histological subtypes
 - Epithelioid (70%)
 - Sarcomatoid (10%)
 - Mixed
- Diagnosis: **biopsy under video-thoracoscopy**: malignancy: infiltration of fat tissue under the pleural

Mesothelioma: irregular, scalloping , thick left pleura

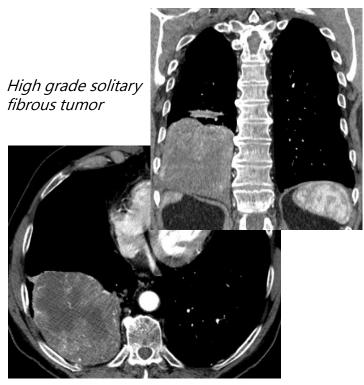
CT scan (if possible **two-phase injection**, impregnation 2 min)

- Isolated effusion
 - Find the pleural tissue nodule
- Pleural Carcinosis
 - Pleural thickening
 - Circumferential, mediastinal and scissural pleura
 - Nodular appearance, nippled / scalloped
 - Thickness > 1cm costal pleura = malignancy
 - Hemithorax retraction
 - Unilateral spread
- Localized form (very rare)
 - DD: solitary fibrous tumor, lipoma, fibrous malignant histiocytoma, hemangiopericytoma, sarcomas,...)

Pleural metastasis

Etiologies

- Lung +++
- But also breast, pancreas, stomach, ovary...


Differential Diagnosis Multiple pleural masses + effusion

- Pleural metastasis
- Mesothelioma
- Lymphoma

Solitary fibrous tumour

- <u>Histology</u>: **Mesodermal** origin, rare, < 5% of **pleural tumors**.
- Benign + + +, malignant (20%), very rarely intra-parenchymatous
- Incidental discovery++, all ages (>50 years++), hypoglycemia (large tumor size by glucose consumption), hypertrophic osteoarthropathy
- Attached to the visceral pleura (sometimes parietal) by a mobile pedicle (fluoroscopy).

<u>CT SCAN</u>

- **Tissue mass**, 1-39 cm, round or oval, sometimes lobulated, **well limited, mobile,** medium1/3 or lower
- Acute or obtuse connection angle
- Calcifications (large tumours)
- Spontaneously iso or hyperdense (collagen)
- Intense and homogeneous enhancement
- Non-enhancement: areas of necrosis, myxoid degeneration, haemorrhage.

<u>MRI</u>

- T1: hypo/iso signal
- T2: variable, hyposignal ++ (abundant collagen stroma), "black and white" pattern
- Intense enhancement
- Daniel T. G, Aqiba B, Shweta B. Imaging Features of Solitary Fibrous Tumors. AJR 2011
- Truong M, Munden RF, Kemp BL. Localized fibrous tumor of the pleura. AJR Am J Roentgenol. 2000
- Ferretti GR, Chiles C, Cox JE, Choplin RH, Coulomb M. Localized benign fibrous tumors of the pleura: MR appearance. JCAT 1997

Surgical treatment +++

- Because 20% risk of malignancy
- And DD

Case courtesy of Dr Abdallah Khateeb , Radiopaedia.org, rID: 44946

Signs of malignancy SFT

- >10 cm
- Central Necrosis
- Pleural effusion
- PET scan : high fixation

DD

- Mesothelioma (multiple pleural or diffuse masses)
- <u>Paraspinal</u>:
 - **Neurogenic tumor** (condensation or costal erosion, rare in SFT)
- Paramediastinal
 - Thymic, germ cell, teratoma...
 - A mediastinal tumour compresses the lung while the SFT compresses the mediastinum (+ help from the angioTDM, feeding vessels).

Intra-thoracic splenosis

Grafting of splenic tissue in abnormal locations after splenic trauma

- <u>Area</u>
 - Mesentery, *peritoneum*, *omentum*
 - Thoracic: less frequent but 18%.
- Asymptomatic

<u>CT SCAN</u>

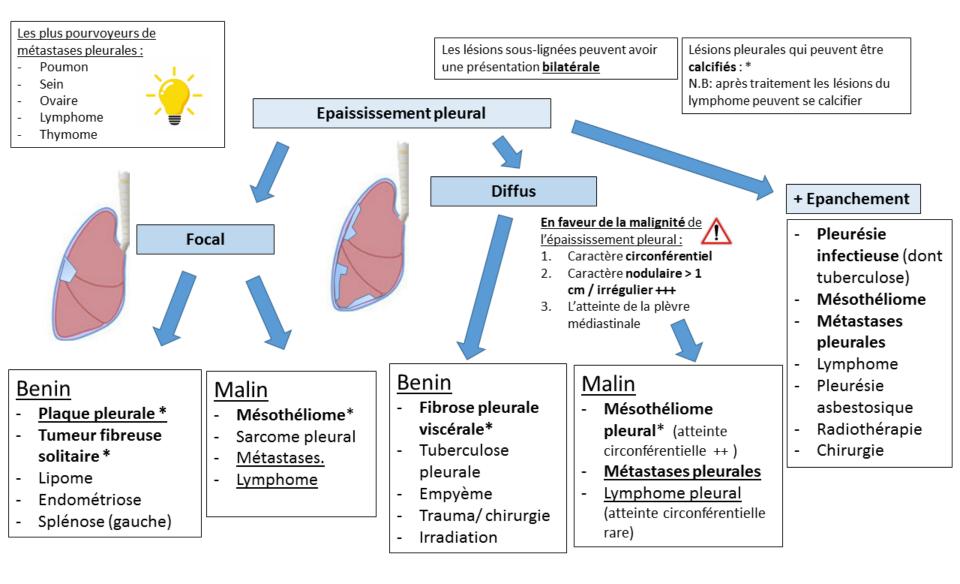
- One or more pleural mass(es)
 - Implants on visceral or parietal
- Density and enhancement identical to splenic tissue

<u>Diffusion</u>

- Diffusion : restriction

Scintigraphy GR marked altered

Specific splenic tissue fixation


DD

- **Pleural metastasis** (lung, breast, melanoma)
- Lymphoma
- Solitary fibrous tumour
- Mesothelioma
- Invasive thymoma

Reflex! Pleural nodules + history of thoraco-abdominal traumatic Or splenectomy → considere intrathoracic splenosis

Diagnostic tree Pleural thickening

Costal tumors

Benign Neoplasms

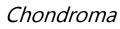
- Fibrous dysplasia +++
- Chondroma ++
- Osteochondroma ++
- Others
 - Aneurysmal bone cyst
 - Giant cell tumor
 - Chondroblastoma
 - Osteoblastoma
 - Brown Tumor
 - Paget
 - Osteoid osteoma
 - Postfracturnal bony callus
 - Postradic sequelae
 - Infection (tubercular osteitis)
 - Benign condensing ileum (enostosis)

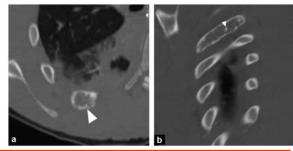
- Prevalence: 3 to 8%.
- Metastasis and myeloma: most common malignant costal tumours
- Benign lesions: fibrous dysplasia +++
- Age, sex, context, clinical +++
- Look for arguments in favour of a benign or malignant etiology (osteolysis, periosteal reaction, soft tissue mass).

Malignant tumors

- Metastasis +++
- Myeloma ++
- Chondrosarcoma
- Osteosarcoma

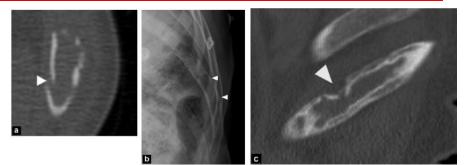
-


Ewing's Sarcoma

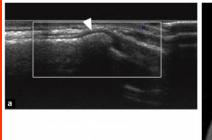


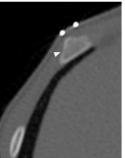
Benign Costal Neoplasms

Fibrous dysplasia +++


- The most common benign tumor
- Congenital, fibrous tissue/immature bones
- 30-50 years, medium arc/posterior++, K2
- Medullary lesion centered, lytic, blowing, elongated in the axis of the rib, thinning the cortical with osteocondensation border, no periosteal reaction, no soft tissue damage, GGO areas +++ very specific
- MRI: hypoT1, T2 variable
- Sometimes pathologic fracture

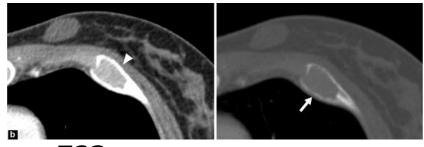
Osteochondroma ++

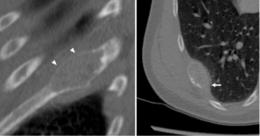

- Anterior, chondro-costal junction, children/adults young++
- Well-corticalized bone excrescence with medullary and cortical/adjacent bone continuity
- Cartilaginous cap (hyperT2) >2cm(adult),
 >3cm(child)→transformation into malignant if above

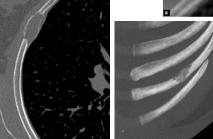


Fracture on fibrous dysplasia

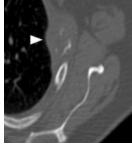
Enchondrome ++


- ^{2nd} benign lesion, cartilage tumor, 10-30 years old
- Anterior costal arch **near the chondro-costal ++ junction** or near the costo-vertebral joint
- Osteolytic lesion, well limited, lobulated, <4cm,
 +/- blowing, arciform calcifications in matrix
- MRI: hypoT1, high hyperT2, lobulated, septa hypoT2, peripheral enhancement

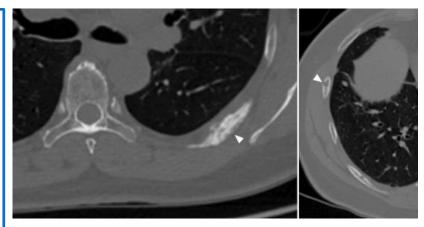


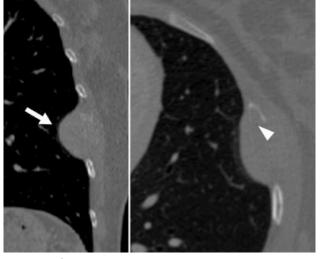

- Aneurysmal cyst Young, posterior arc++, expansive, liquid-liquid levels
- Giant cell tumor 20-40 years old, pain, +/fracture, lytic lesion, expansive, excentric, sharp contours, no peripheral osteosclerosis, no periosteal reaction, no cortical interruption, no calcifications, +/soft tissue extension (MRI), MRI: hypo/iso T1 and T2, elevation
- Chondroblastoma chondro-costal junction, costo-vertebral, medullary edema+++
- Osteoblastoma Bone matrix lesion, posterior arc
- Brown tumour Complication of hyperthyroidism, repeated micro fractures → macrophages → hypervascularised localised medullary fibrosis, well limited lytic lesion +/- expansive, when resolution bone reconstruction with scintigraphic fixation
- Eosinophilic granuloma Histiocytosis X, lytic lesion
- Rare **Paget** in ribs, widening, cortical thickening, rare and thickened bays
- Osteoid osteoma (rare in rib, small cortical lacuna, calcified nidus, compact periosteal reaction)
- Post-fracture bony callus +++
- Post-radiation sequelae
- Infection (tubercular osteitis)
- Benign condensing island (enostosis)




Brown T.

Eosinophilic Granuloma


Osteitis BK


Malignant Costal Neoplasms

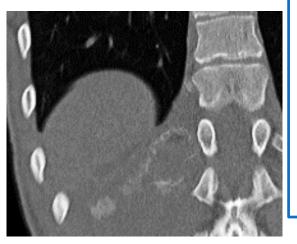
Metastasis +++

- ^{3rd} location of secondary lesions after spine and femur
- Neoplasia context
- Single or multiple focal lesions,
- Osteolytic (breast, lung, thyroid, uterus)
- Sclerotic (prostate, breast, bronchus, stomach, thyroid, colon)
- Mixed (breast, lung)

Metastasis

Myeloma ++

- ^{2nd} location after the spine, in 50% of patients followed for myeloma, > 50 years of age
- CT scan: multiple osteolytic lesions with rounded or ovalshaped, sharply contoured lacunae, rarely surrounded by an osteosclerotic border, often with soft tissue swelling.
- Mean costal arc++

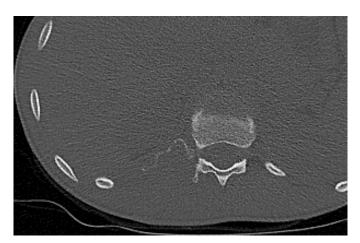


Chondrosarcoma

- 11-16% of chondrosarcomas are at the costal level → most common primary malignant tumour, 20-70 years old
- Primitive (90%) or chondrome/osteochondrome degeneration
- Anterior arch of the first 5 ribs
- Osteolysis, size > 4cm, aggressive (endosteal resorption, cortical lysis), cartilage matrix
- <u>DD /enchondrome</u>: size>4cm, endosteal resorption>2/3 cortical, MRI: early pdC, intense fixation in scintigraphy

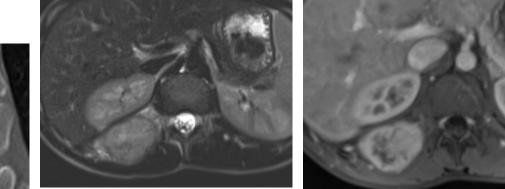


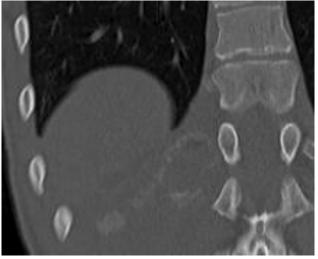
Osteosarcoma


- Reaches the ribs in 1 to 3% of cases.
- Primitive tumour young subject (15-25 years old) sometimes elderly (Paget, radiotherapy)
- Large bone matrix lesion , areas of necrosis, hemorrhage, ossifications.
- Osteolysis with cortical interruption and significant spiculated periosteal reaction in « sunburst »
- Invasion of soft parts

Ewing's Sarcoma

- 10 15 years
- Painful parietal mass, fever
- Voluminous (> 10 cm) eccentric extrapleural mass / rib with osteolysis and spiculate or lamellar reaction (+/- periosteal reaction in onion bulb)

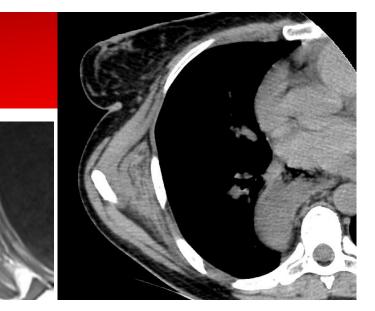




Osteosarcoma

- Lytic and blowing injury and a floating rib
- Hyper T2, heterogeneous contrast uptake

Parietal lesions


- Parietal lipoma

- Soft tissue mass, homogeneous, well circumscribed, whose spontaneous density is negative (between -65 and -120 HU)
- With **liposarcoma** as the main differential diagnosis, to be discussed in front of certain criteria:
 - Size > **5cm**
 - > 50 years old
 - **Deep** (subaponeurotic or muscular)
 - Tissular infiltration, enhancement, thick septa, nodules
 - Invasion of adjacent structures, justifying an MRI.
- Elastofibroma
- Schwannoma (intercostal or para-spinal)
- Extramedullary hematopoiesis
- Others
 - Hematomas (traumatic context)
 - Ossifying myositis
 - Desmoid tumor or fibromatosis
 - Empyema *necessitans* by extension of pleural empyema to the chest wall (e.g. tuberculosis, actinomycosis), possibly associated with costal osteitis.
 - Fatty tumours: lipoma, liposarcoma, hibernoma
 - Scapulo-thoracic bursitis

Elastofibroma

Benign fibroelastic tumor of the infrascapular space

- Right ++, 60% bilateral
- Older woman ++, 65-70 years old
- Asymptomatic ++ (sometimes slight pain)

CT SCAN

- Soft tissue mass of the infrascapular space (between ribs and anterior serratus / scapula / rhomboid muscle)
- Ill defined
- Isodense to muscles, heterogeneous with fasciculate appearance with bands of fatty tissue (sometimes homogeneous)

MRI

- Hypo T1 and T2 /muscles
- T1 hypersignal bands (fatty tissue)
- Variable increase

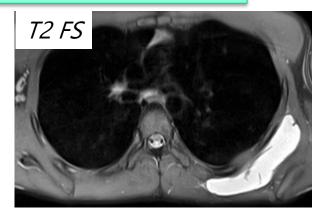
Dinauer PA, Brixey CJ, Moncur JT, Fanburg-Smith JC, Murphey MD. Pathologic and MR Imaging Features of Benign Fibrous Soft-Tissue Tumors in Adults. RadioGraphics, 2007

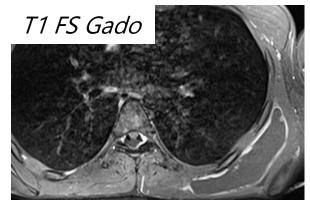
Empyema necessitatis

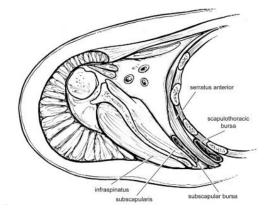
- Rare
- = empyema of necessity (empyema drains out through the chest wall)
- Empyema \rightarrow parietal pleura \rightarrow chest wall (\rightarrow skin)
- Germs
 - **BK +++**: 66%.
 - Pyogens
 - Actinomycosis
- +/- osteolysis

Scapulo-thoracic bursitis

Mechanical conflict between the scapula and the rib cage

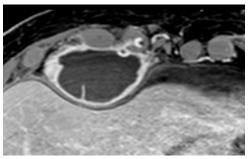

- = Snapping scapula
- = Rare cause of shoulder pain
- Female, 20-30 years old
- <u>Clinic</u>
 - Posteromedial shoulder pain
 - Audible and painful jump
 - +/- "winging scapula": removal of the scapula in abduction the arm.


Etiologies


- Congenital or acquired bone abnormalities: osteochondrome, callus, Luschka's tubercle prominence...
- ATCD thoracobrachial procession surgery
- Elastofibroma...

CT/MRI

- **Bursitis** between the anterior serratus muscle and the rib cage
- Fluid content +/- hemorrhagic
- Peripheral enhancement



Extra-medullary haematopoiesis

Chondrocostal tuberculosis

Ossifying myositis Peripheral secondary calcification on a control scanner at 4 months