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Abstract

Wetlands are recognized worldwide for the critical ecosystem services they provide and their
role in maintaining livelihoods and well-being. Earth observation can be utilized to assist in
mapping and monitoring wetland ecosystems and it is particularly useful in remote areas. This
research evaluated satellite-based multispectral data (Landsat 5 TM), radar (ALOS-PALSAR)
data, and terrain metrics in characterization and mapping of the Dabus Marsh, in the highlands
of Ethiopia. Using the Random Forest (RF) classifier, wetland types were classified based on
plant community composition and structure. RF produces independently constructed
classification trees using bootstrapped samples of the original data. When used with geo-spatial

data, the output class at each pixel is the class selected by the majority of the classifications.

RF models built with multi-source data yielded 94.4% and 92.9% overall classification accuracy
for the dry and wet season, respectively. RF effectively characterized localized changes in

wetlands between the dry and wet season. Seasonal differences in wetland aerial extent were
only 5-6%, a level that was considered too low to be significant and mainly attributed to model

errors.

Keywords: Wetland, Land cover, Random Forest, Classification, Landsat, ALOS PALSAR, Papyrus

cyperus, vegetation indices, livelihoods.
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1. Introduction

Wetlands are among the most biologically productive ecosystems in the world and are
recognized worldwide as biodiversity hotspots (Myers et al., 2000) and for their role in
maintaining livelihoods and well-being (Keddy, 2010). Important wetlands are found
throughout Africa, particularly along the Nile Basin (Chapman et al., 2001) where some of the
largest wetlands occupy large swaths of South Sudan. The Sudd wetland is emblematic of much
of the 80 wetlands of international importance found in Africa (UNEP, 2008). Throughout the
Blue Nile drainage basin, many smaller areas of wetlands are found, particularly among the
highlands of Ethiopia where ‘headwater wetlands’ (Wood, 2006) play an important
environmental role in regulating and storing water, and provide key ecosystem services (Jones
et al., 2009). Threats to wetlands from anthropogenic pressures are significant while global
assessment of wetlands shows that their extent, composition, and conditions are still poorly
understood (Finlayson et al., 1999; Mitsch & Gosselink, 2007; Betbeder et al., 2014;
McCartney et al., 2014). This situation is exacerbated by the difficult socio-economic and

environmental circumstances often plaguing many poor regions in Africa (UNEP, 2008).

This research fits within the larger context of the Wetland Theme of the Kyoto and
Carbon Initiative (K&C) (Chapman et al., 2015; Rebelo, 2009), an international collaborative
project led by the Japanese Aerospace Exploration Agency (JAXA), which has been set up to
support the data and information needs posed by international environmental conventions,
carbon cycle scientists and environmental conservation programs (De Grandi et al., 2011). Key

requirements of the Wetland theme include the establishment of regional and temporal

16



datasets of wetland extent and condition. These should incorporate an understanding of the
inundation dynamics of an area and spatially quantifiable measures of both anthropogenic and

natural pressures as well as threats to wetland communities (Lowry et al., 2009).

The sustainable management of wetlands requires information describing these
ecosystems at multiple spatial and temporal scales. Remote sensing plays a key role in assisting
with the development of wetland management plans (Rosenqvist et al., 2007). Remote sensing
technologies can provide up-to-date spatial and temporal information about wetlands and their
catchment areas (Ozesmi & Bauer, 2002). Satellite technologies can be employed to assist with
the establishment of national inventory and regional baseline information on wetland
ecosystems (Jones et al., 2009; Wolf, 2011). The establishment of a national inventory and
baseline information on the temporal extent, distribution and characteristics of wetland
ecosystems is still in its infancy in Ethiopia (Tekaligne, 2003; UNEP, 2008), and little is known
about some of the key wetlands found in this region such as the Dabus and Fincha’a-Chomen
marshes (Figure 1.1). The Dabus River Basin includes an area of important wetlands, which are
the focus of this research. Practical and cost effective approaches to wetland mapping in
developing countries, particularly in tropical regions, require access to affordable data and
classification methods that can incorporate a wide range of data sources. This research was

designed for these purposes in mapping wetlands of Ethiopia.

The wetland selected for this study is located in the Sudano-Guinea zone next to the
Afro-tropical highlands (Tilahun et al., 1996). In many parts of the world, particularly in tropical

Africa, wetlands generally experience significant changes between the wet and dry seasons,
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and during the dry season, wetlands are customarily exposed to widespread burning events
generally followed with extensive grazing or temporarily used for agriculture (Dixon & Wood,
2003). In the Ethiopian uplands, the role of wetlands for regulation of the hydrological cycles
and improvement of water quality is significant (Coughanowr, 1998; Finlayson et al., 2005).
Wetlands are also contributing significantly to carbon sequestration. Much of the permanently
flooded swamps in tropical Africa are dominated by Papyrus cyperus sedge (Hughes & Hughes,
1992), and the Dabus Marsh may comprise the second or third largest Papyrus stand in
Ethiopia. The high productivity of Papyrus is comparable to that of forest (Jones, 1987). There
are pressing needs to develop remote sensing monitoring techniques for these ecosystems and

their rich biodiversity.

Both remote sensing optical and radar imagery types have been used extensively, either
independently or in combination with topographic variables, in wetlands mapping for a diverse
set of goals (Ozesmi & Bauer, 2002; Wolf, 2011; Klemas, 2013; Belgiu & Dragut, 2016; Adam
et al., 2010; Dingle Robertson et al., 2015b; Dingle Robertson et al., 2015a; Millard &
Richardson, 2013). A summary of data types and methods used is provided in Chapter 2.
Optical imagery includes spectral bands in the visible, near-infrared (NIR) and mid- or short
wave infrared (SWIR). Reflectance in specific bands is related to vegetation chlorophyll
absorption for photosynthesis, structure and biomass, and moisture (Jensen, 2007; Kumar et
al., 2001). With respect to SAR (Synthetic Aperture Radar) image selection, Phase Array L-band
Synthetic Aperture Radar (PALSAR) images from the Advanced Land Observation Satellite

(ALOS) were favoured for this research, in part, due to the need to develop an approach that
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was consistent with methods used by global wetland projects such as the Wetland Theme of
the ALOS Kyoto and Carbon Initiative. SAR images present significant advantages over optical-
based sensors for wetland mapping (Ouchi, 2013). The ability of radar to penetrate clouds, and
to some extent, rain, as well as day and night operability are some of the key features that
provide a distinct advantage over optical sensors, especially in tropical environments where
frequent cloud cover prevails, especially during the rainy season. (Jensen, 2007; Ouchi, 2013).
SAR technology has many features that lend itself well to detecting water presence and
absence, and discriminating wetlands plant structure, among which are the sensitivity of radar
wavelengths and polarization to water and to canopy structure (Silva et al., 2010; Toyra &

Pietroniro, 2005).

To improve the detection of wetland plant communities, information provided by
optical and SAR imagery can be greatly enhanced by integrating topographic and hydrological
data. Local terrain attributes that are directly calculated from a Digital Elevation Model (DEM)
(e.g., slope, gradient) and secondary attributes that combine primary attributes and physically
based process, e.g., topographic wetness indices partly based on flow accumulation, are used
to derived a multitude of topographic indices (Hengle & Reuter, 2009; Wilson & Gallant, 2000).
This information is readily available at moderate spatial resolution from The Shuttle Radar

Topography Mission (SRTM) data (USGS, 2015).

Multi-source geo-spatial data used with classification techniques based on machine-
learning algorithms such as the ensemble learning classifier Random Forests (RF) present

significant advantages compared to more conventional approaches such as the Maximum
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Likelihood Classifier (MLC) (Rodriguez-Galiano et al., 2012; Waske & Braun, 2009). The Random
Forest classifier is a non-linear and non-parametric method that allows for fusion and
aggregation of data from various sources. Random Forest produces independently constructed
classification trees using bootstrapped samples of the original data. For the final classification,
the resulting class at a given pixel is the one corresponding to the majority of output classes
(votes) generated by all trees (Breiman, 2001). The ratio of the number of votes for a given class
out of the total number of trees generated provides an estimation of the classification

probability.

Recognizing that mapping wetlands has often proven difficult to achieve in many areas
due to the lack of temporally consistent data sets (Davidson & Finlayson, 2007), detailed
temporal characterization of the inundation dynamics of the wetlands can be acquired within
various basins throughout their respective cycles (Rosenqvist et al., 2007) using RS
technologies. Among these key wetland areas under the K&C investigation, the Sudd, is part of
the Nile Basin and shares similarities in terms of plant community composition and biodiversity
with the wetlands selected for this study. ALOS-PALSAR images are used to investigate change
for the period from 2009 to 2011. The Dabus Marsh with its large papyrus stand has a rich
biodiversity and provides a host of ecosystem services. Up to recently, knowledge about the
significance of the Dabus Marsh was lacking—it was missing from most regional maps of

wetlands (EPA, 2003; Geheb & Abebe, 2003).

The overall context of this research was the investigation of the use of multi-source geo-

spatial (EO) data and machine learning classification methods for characterizing and mapping
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wetlands and wetland spatial and temporal dynamics in the remote highlands of Ethiopia. The
main goal was to demonstrate how these important ecosystems can be effectively studied
under challenging environments, using readily available medium-resolution imagery from

multiple sources, and methods of analysis available with open-source geo-statistical software.

1.1 Research Objectives

The proposed approach to mapping tropical wetlands, while relying on the ensemble-learning
classifier algorithm Random Forests (RF), presents the advantage of the capability to
incorporate and analyze a wide range of multi-source multi-resolution data types. This includes
optical and synthetic aperture radar (SAR) imagery, commonly used vegetation and soil wetness

indices as well as morphometric terrain parameters.

The first objective was to assess the effectiveness of Random Forest for classifying
vegetation classes and dominant plant functional groups within a given class. Sub objectives

related to this included:

(a) Evaluate variable importance in the RF classifications. This provides a means to
determine which imagery types, morphometric terrain derivatives, and vegetation

and soil/water indices are most useful for wetland mapping; and

(b) Determine the optimal combinations of different imagery and data types to

maximize classification accuracy, overall, and at the class level.

A second objective was to evaluate seasonal and annual wetland dynamics using

classifications produced for the period between 2009 and 2011. This included determination of
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the inundation extent using the generated Random Forest wetland maps. Sub-objectives of this
component of the research required development of an understanding of the ecological

processes and plant community composition found in these wetlands:

(a) Carry out a descriptive analysis of the ecological characteristics of wetlands found in

the study site; and

(b) Evaluate the role and importance of natural factors and anthropogenic pressures on

these sensitive ecosystems and adaptation.

The impact of anthropogenic pressures, such as seasonal burning and extensive cattle
grazing, and the way in which these pressures have shaped the wetlands is assessed from
knowledge gained during the field surveys, while the generated land cover maps provide a

narrative that help contextualize the human-induced and natural processes affecting these

wetlands.
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1.2 Outline of the Thesis

This thesis comprises six chapters. Chapter 1, Introduction, sets the context of this study and
presents an outline of the main issues pertaining to the role and importance of wetlands,
particularly in tropical environments, and the use of EO data for wetlands characterization and

classification.

Section 2, Background and Theory, aims to provide an overview of key theoretical concepts and

methods on:

1. Wetlands — their importance globally, regionally and locally, focusing on tropical
wetlands, particularly Papyrus swamps, and those in tropical highland regions.

2. Remote sensing —theory/background on optical, radar, and terrain data with
respect to the components of wetlands — vegetation, water, soil background
etc.; Mapping and monitoring wetland composition and function using remote
sensing and geo-spatial data, focusing on wetlands of a similar physiographic and
ecological setting as those of this research; and

3. Classification techniques, including conventional parametric and non-parametric
approaches, with a focus on machine learning methods and specifically on

Random Forests.

Sections 3 and 4, Study Area and Methods, present the area of wetlands examined
under this research, and outline the methodology implemented to achieve the goal and
objectives of this research, including the collection of field data, the gathering and processing of

geo-spatial imagery and data, and the classification procedures and analysis.
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Results are presented in Section 5. Section 6 discusses the broader findings and
contribution of the results of this research, the limitations and potential further work, and the

overall conclusions of the study.
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2. Background and Theory

This chapter provides the theoretical background for this research. General concepts about
wetlands, their composition and ecological functioning, and their importance is presented first
followed by a review of applications of optical and SAR data to mapping and characterizing
wetlands. General wetland mapping approaches are reviewed next, including a review of
standard vegetation and water indices obtained from spectral data, DEM derived topographic
indices, and texture indices derived from spectral and SAR data. This chapter also includes
presentation of wetland studies that were conducted in Africa and more specifically in Ethiopia.
The last sections review the use of traditional and advanced classifiers including Random

Forests for wetland mapping.

2.1 The Importance of Wetlands

Wetlands are manifested through various forms and unique types of aquatic habitats and
ecosystems within which three main components are invariably present, i.e., water, hydric soils,
and hydrophytic vegetation (Mitsch & Gosselink, 2007). There are many definitions of wetlands
and types of classification in use. For example, the Canadian Wetland Classification System
(National Wetlands Working Group, 1997) divides wetlands into five classes, namely marsh, fen,
peatland bog, swamp, and shallow water bodies. Fournier et al. (2007) describe these classes
using characteristics that can be detected by medium-resolution remote sensing images: (/)
bogs are covered with bryophytes, mainly sphagnum, sedges, and bushes; (ii) fens are
dominated by sedges and grasses and can include bushes and trees; (iii) swamps are occupied

with bushes and trees found in generally stagnant water at high water or slowly draining water;
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(iv) marshes are mainly occupied by herbaceous plants, which are emergent in season, and are
periodically flooded (wet meadow) or permanently flooded; (v) shallow water is mostly
associated with river segments, coastal aquatic, lacustrine, or lentic areas where submerged
vegetation is visible (see Section 2.1.2 for further definitions of wetlands). These wet/moist
ecosystems occur on soils where conditions are wet during periods long enough to maintain
hydric soils, which in turn maintains hydrophyte communities. Wetlands perform important
ecological functions and various ecosystem services, including: regulation of the hydrological
cycle (e.g., flood alleviation, ground water recharge), improvement of water quality (e.g.,
retention and regulation of pollutants and water plant nutrients), and conservation of biological
diversity (e.g., refugia), and other attributes such as aesthetic value, cultural heritage, and more
(Chapman et al., 2001; Keddy, 2010). Wetlands are dynamic ecosystems, in both space and
time, which can experience significant changes on an inter- and intra-annual basis (Milne et al.,
2000). As a system open to influence from natural and anthropogenic factors, wetlands may be
affected in different ways in developed and developing countries (e.g., draining for farming in
N. America; burning for grazing and farming in tropical countries). There is a need to know the
extent, distribution, and conditions of wetlands worldwide. This information is particularly
difficult to acquire in tropical environments and particularly for wetlands on the African
continent. The Africover mapping program, led by the United Nations Food and Agriculture
Organizations (FAO), used manual methods with Landsat images to identify wetland classes in
sub-Saharan Africa—Ethiopia was not included (FAO, 2005). The global database of lakes,

reservoirs, and wetlands developed by Lehner and Da6ll (2004) is an important reference for
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estimating the extent of wetlands worldwide. The database includes a rough delineation of the

Dabus Marsh area.

Wetlands are complex ecosystems that are inherently difficult to characterize and map
using remote sensing techniques due to their high spectral and spatial variability (Amler et al.,
2015). Herbaceous wetland species often form complex mosaics of plant communities which
are well adapted to a low oxygen environment, highly variable edaphic conditions, and abrupt
environmental gradients (Keddy, 2010; Mitsch & Gosselink, 2007). Presence of water is a
determining factor controlling community composition and limiting plant growth. There are
clear structural differences between plant communities adapted to submerged, floating, or
emergent conditions (Silva et al., 2008). Water level fluctuations and duration of inundation can
significantly alter the physiognomy of wetland ecosystems, and in turn affect the overall

spectral characteristics of aquatic vegetation (Silva et al., 2008).

2.1.1  Wetland plant community composition, functional groups, and structure

Wetlands are largely defined by their flora, which forms biological assemblages that make up
specific plant communities adapted, to various extents, to hydric soils (Mitsch & Gosselink,
2007). These communities are composed of a mix of diverse species that carry out specific
ecosystem functions including primary production, decomposition, nutrient cycling, and

secondary production of harvestable species (Allan & Castillo, 2007).

Characterizing wetlands most often requires knowledge of the composition of the main
plant communities, information that had been typically obtained up to recently through

extensive field surveys. Species dominance found in wetlands is linked to a large extent to
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hydrological and soil conditions, resource availability, and disturbances (Keddy, 2010). Likewise,
changes in plant community composition are a result of internal (autogenic) processes, such as
competition, organic material build up, and external processes, such as climatic changes and
disturbances (Batzer & Sharitz, 2014). As previously stated, the most important processes and
characteristics shaping wetlands are hydrological regime (changes in water depth, periods of
inundation, flow rate) and chemistry, which influence species composition (Keddy, 2010). The
applications of remote sensing in studies of wetlands typically interpret physiognomic and
structural characteristics more readily than floristic composition. RS applications can classify
vegetation into broad classes based on canopy structure and estimate biophysical information
such as leaf area index (LAI), and net primary productivity measurements, for example (Silva et

al., 2008).

Plant functional types (PFT), which are nonphylogenetic grouping of species sharing
similar morphological, physiological, or life-history traits (Ustin & Gamon, 2010), present
significant advantages over traditional taxonomic groupings to interpret plant response to
resource availability, competition, stress constraints, and disturbance (Duckworth et al., 2000).
There is a wide range of traits that can be used to define PFTs, and their definitions should
follow the objective of studies. Two recent wetland classification studies demonstrated the
application of PFTs. Morandeira et al. (2016) mapped wetlands in the Lower Parana River
floodplain using C-Band polarimetric SAR data and found that shallow SAR incidence angles
produced higher accuracy classification of herbaceous PFTs than steep angles. Dronova et al.

(2012), using object-based classification, tested six algorithms from the family of statistical
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machine-learning classifiers, which included Random Forests, and found that individual PFTs
differed in the scale at which they were best discriminated from others, which reflected their

unique landscape positions, ecology of dominant species and disturbance agents.

In combination with traditional taxonomic approaches, PFTs can provide
complementary information that improves the understanding of wetland ecosystem
functioning and can also provide a rationale for the definition of wetland classes. In this study
wetland classes are primarily defined based on broad types of flora and structure, i.e.,
emergent herbaceous grass/sedge, shrub, Papyrus, and forested, but also intersect with
definitions derived from PFTs, e.g., Cs and Cy4 grasses, broadleaf evergreen tropical forest, etc.
The C4 photosynthetic carbon cycle, which is an addition to the C; pathway, evolved as
adaptation to adverse hot and dry environmental conditions (Edwards et al., 2010). Ca plant
produces 4-carbon compounds as their first stable products, whereas Cs plants produces
phosphoglyceric acid (Tieszen et al., 1979). C4 plant leaf structures and metabolic pathways
help them avoid photorespiration, a process whereby the key enzyme involved in
photosynthesis picks up 0; instead of CO,, which results in already-fixed carbon being lost as
CO; (Gowik & Westhoff, 2011). This process affects mainly C; plants when exposed to stressful
environments (Tieszen et al., 1979). Surface reflectance in the visible to SWIR is indicative of
ground conditions, primarily dominant species in the canopy overstory, and thus emphasis has
generally been on classification of land-cover type and ecosystem attributes rather than on
species (e.g., Sedge marshes rather than individual species). This is further explained in Section

2.2.1.
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2.1.2  Wetland classification schemes

Wetlands are defined as “lands transitional between terrestrial and aquatic ecosystems where
the water table is usually at or near the surface or the land is covered by shallow water”
(Cowardin et al., 1979). A broader definition was formulated at the Ramsar Convention (Article
1.1): “Wetland are areas of marsh, fen, peatland, or water, whether natural or artificial,
permanent or temporary, with water that is static or flowing fresh, brackish or salt including
areas of marine water, the depth of which at low tide does not exceed six metres” (Finlayson et
al., 2011; Ramsar Convention on Wetlands, 1971). Cowardin et al. (1979) provide a simplified
system for classification of wetlands that group five major wetland types, i.e., marine,
estuarine, lacustrine (related to lakes), riverine, and palustrine (related to marshes). Palustrine
wetland ecosystems include a wide range of inland wetlands that are non-tidal (with salt
concentrations of less than 0.5 parts per thousand), and which lack flowing water (Cowardin et
al., 1979). For the most part, the Dabus Marsh is comprised of palustrine wetlands and small
areas of riverine wetlands. For the classification system proposed by Cowardin et al. (1979),
basic controlling biophysical factors include salinity and pH, soil composition (i.e., organic or
mineral), plant community composition and their characteristics, and hydrological factors such
as frequency and duration of flooding. The three main sub-classes of palustrine wetlands found
in the Dabus are P-Emergent (predominantly, erect, rooted, herbaceous plant communities
with grasses, sedges, and forbs, which composition can change significantly between the dry
and flood periods); P-Scrub-Shrub (characterized by woody vegetation less than 6 m tall); and P-
Forested (woody vegetation that is at least 6 m tall). Both Scrub-shrub and Forested wetlands

should cover 30% or more of the area to be classified as such (Cowardin et al., 1979). The
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emergent class is further divided based on criteria defined in this study, which includes division
along dominant types, i.e., grass dominated versus sedge dominated emergent wetlands, and
wetland dominated by Papyrus cyperus. More detail on the specific classes used in this

research is given in Section 3.3.

2.1.3  The significance of Papyrus swamps

Papyrus cyperus is an emergent sedge that dominates much of the permanently flooded
swamps in tropical Africa (Hughes & Hughes, 1992; Thompson, 1985). Papyrus swamps occur
on lakes (lacustrine) forming floating mats, in river valleys with good hydraulic gradients, and
riverine and floodplain swamps (Denny, 1985). Papyrus largely favours river systems with small
water level changes such as those found in the Dabus Marsh. It is a perennial emergent wetland
plant, thriving on almost permanently waterlogged substrates, that exhibits a number of
exceptional characteristics: (i) it is the tallest sedge in the world, reaching heights of 4-5 m, and
among the tallest of all herbaceous species; (ii) it uses the C4 photosynthetic pathway, an
unusual feature among wetland vegetation types (Jones, 1987); and (iii) it dominates the
swamp habitat, comprising 95% of the plant biomass (Ellery et al., 1995). The high productivity
of Papyrus has been linked to the competitive advantage that C4 photosynthesis can confer
over Cs species. The annual production of Papyrus is comparable to that of forests with an

above ground biomass in excess of 30 t ha™ (Jones, 1987).

Papyrus swamps are among the largest areas of wetlands characterizing the Dabus

Marsh and these swamps may comprise the second or third largest papyrus stand in Ethiopia.
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There is a need to monitor the health of such critical wetland swamp ecosystems; remote

sensing presents potential for mapping their extent and distribution.

2.1.4 Wetland temporal dynamics

In tropical environments where patterns of rainfall are characterized by high amplitude with
precipitations concentrated on few months out of a year, wetlands experience flood pulse
events (Junk et al., 1989). Flood pulsing is an integral part of the functioning of wetlands, as
seasonal inundation drives hydrological, geomorphological, and ecological processes (Rebelo et
al., 2012). For many tropical wetlands, aerial extent of flooding, area of inundation, can vary
greatly on an annual basis. In the Nile basin, the Sudd wetland constitutes the largest wetland
ecosystem. It is also one of the largest tropical wetlands in the world (Rebelo et al., 2012).
While more than 9000 km? are permanent wetlands, the total area of flooding can reach as
high as 41,000 km? over a 12-month period (Rebelo et al., 2012). Similarly, annual variation in
water inflow and regional precipitation affect the area of inundation of the Okavango inland
delta in Northern Botswana—also one of Africa’s largest wetlands. The area varies from 4000 to

13,000 km? (McCarthy et al., 2005; McCarthy et al., 2003).

For the Dabus Marsh, inundation is driven primarily by regional precipitation patterns,
generally following a unimodal distribution, and generate relatively predictable high flood
events. Changes between the dry and wet season are significant and the water table varies by
as much as 10 m (Kebede, 2013). Inter- and intra-annual seasonal changes in environmental

conditions affect the extent of inundation and vegetation and land cover characteristics. Such
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changes can be evaluated using spectral and radar imagery, the latter which can consistently

acquire imagery for both the dry (November to May) and wet (June to October) season.

Burning and grazing are important factors that determine the current conditions in
natural ecosystems in Eastern Africa (Jones et al., 2009). These factors are of a particular
significance for many parts of Africa and particularly in Ethiopia where wetlands provide water
and pasture (fodder) for cattle grazing during the driest months of the year. However, wetlands
are often regarded as wasted productive spaces as they are not well suited for long-term
cropping /agriculture. Thus, they are consistently under pressure and are seasonally burned or
are drained whenever the technology and resources become available. As a result, large extents
of wetlands are converted to cropland, plantations, or used for urban development each year

(Dixon & Wood, 2003).

Fire is extensively used in many parts of the developing world as a land management
practice (EWNHS, 1996). It is used by farmers and pastoralist communities to promote
herbaceous regrowth for cattle feeding. In addition, large-scale plantations, such as palm oil
trees for biofuel production, are one of the many threats to wetlands, particularly peatlands in
many parts of SE Asia, for example. In Malaysia, virtually all the wetlands suitable for such
conversion have been turned into plantations and pressure has increased on the remaining land
available (Wetlands International, 2010). Land conversion and appropriation for large-scale
agro-industrial development projects is also rapidly expanding in many parts of Africa (UNEP,

2008).
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2.2  Wetland Mapping using Remotely Sensed and Geo-Spatial Data

2.2.1 Wetland mapping using optical imagery

The spatial complexity of wetlands and their temporal variability pose a particular challenge to
remote sensing applications for monitoring and assessment. Remote sensing is a physically-
based system and does not register wetland characteristics according to taxonomical
classifications of species per se, but rather as a mosaic of distinct areas that present unique sets
of biophysical characteristics that can be measured and quantified remotely. The main
components include chlorophyll and other pigments, water, proteins, starches, waxes and
structural molecules (Price, 1992). Methods available for measuring land cover attributes vary
widely from passive sensors that measure ground reflected solar radiance or emitted Earth
radiance (Jensen, 2007), to active sensors that measure reflected radiance that was transmitted

to the Earth from the sensor (Ouchi, 2013).

From a remote sensing perspective, wetlands exhibit various responses with respect to
reflection and absorption of the sun’s radiation. Plant communities characterizing wetlands are
defined by their dominant species (e.g., Papyrus cyperus) or their dominant plant functional
types (e.g., Ca grasses), of which distribution is largely controlled by access to resources and
disturbances as previously described (see Section 2.1). The reflectance properties of an object
(its surficial material), in this case of wetlands, are defined by the biophysical and biochemical
state of its constituents (chlorophyll a and b, carotene, xanthophylls), the surface roughness,

the sun’s relative position and the view position with respect to the object (Jensen, 2007).
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Spectral reflectance curves, which exhibit specific shapes (‘signatures’), are used to
identify ground features or types of material, such as illustrated in Figure 2.1 for vegetation,
soil, and water. As an example, healthy green vegetation exhibits: (i) relatively low reflectance
in the visible portion of the EM spectrum (0.4—0.7 um) resulting from the pigments in plant
leaves, particularly in the blue and red regions due to absorption by chlorophyll for
photosynthesis; (ii) much higher reflectance in the near-infrared (NIR: 0.7—-1.3 um) region due
to the cellular structure in the leaves (i.e., the additive reflectance properties of spongy
mesophyll) and; (iii) strong water absorption bands in the SWIR at 1.4, 1.9, and 2.7 um and high
reflectance at 1.6 and 2.2 um (Jensen, 2007). Water reflects only small proportions of solar
radiance in the visible and has negligible reflectance in the NIR and SWIR, while soil reflectance
increases with wavelength from the visible to the NIR, then decreases in the SWIR absorption

bands if moisture is present (Bowker et al., 1985).

Deriving impacts on vegetation from changes in environmental conditions such as loss
of plant moisture content (e.g., drought; senescence) can be done by comparing spectral curve
responses of a given type of vegetation. Typically, water stress in plants and senescence are
manifested by: (i) an increase in reflectance in the visible region, particularly in the red as
chlorophyll absorption decreases, (ii) a decrease in reflectance in the NIR, and (iii) an increase in

reflectance in SWIR as water content in leaves decreases (Datt, 1999; Kumar et al., 2001).

EO ecosystem studies are making extensive use of multi-spectral sensors for a range of
vegetation types and biomes as well as at various spatial and temporal scales (Silva et al., 2008;

Adam et al., 2010; Melack & Hess, 2011; Jensen, 2007). There is a wide array of optical remote
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sensors that are regularly used for mapping and monitoring wetlands (MacKay et al., 2009).
Multispectral data have been widely used to discriminate vegetation types including wetland
plant species (Ozesmi & Bauer, 2002; Klemas, 2013; Silva et al., 2008). Ozesmi and Bauer
(2002) present a comprehensive review of the status of the research on satellite remote
sensing of wetlands, and focus primarily on the use of more traditional sensors such as Landsat
MSS, TM and SPOT (Systeme Pour L’Observation de la Terre) as well as radar systems. A review
of multispectral and hyperspectral remote sensing applications for discriminating and mapping
wetland vegetation is found in (Adam et al., 2010) and draws from studies conducted on

African wetland ecosystems.

For remote sensing of wetlands, there is an increasing trend in research favouring the
use of multisensor approaches (see Section 2.2.7). Among the steadily growing number of
remote sensing satellites orbiting the planet, Landsat has been collecting optical data for more
than four decades, all data are archived and freely available, and the Landsat-8 Data Continuity
Mission (LDCM) will ensure continued development of Landsat in the future. Techniques to
derive thematic land cover information from its sensors and to carry out long-term time series
analysis are well developed (Vicente-Serrano et al., 2008; Melack & Hess, 2011; Dingle
Robertson et al., 2015a). This has contributed to the development of diverse mapping methods
and land cover and land use change detection techniques (Adam et al., 2010). SPOT-5 satellite
multi-spectral imagery provides an improved spatial resolution (10 m), yet employing only four
spectral bands, i.e., green, red, NIR, and SWIR (Davranche et al., 2010). Its image archive is not

as long as that for Landsat and the data are relatively expensive. Mapping of wetlands at even
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finer resolutions has been made possible by the development of high and very-high-resolution
satellite imagery from sensors such as IKONOS (Nyarko et al., 2015; e.g., May et al., 2002;
Anderson et al., 2010; Dillabaugh & King, 2008; Barbosa & Maillard, 2010) and more recently,
QuickBird (Dogan et al., 2009; e.g., Ghioca-Robrecht et al., 2008; Laba et al., 2008),
Worldview-2 (Dingle Robertson et al., 2015b), GeoEye, and Worldview 3 (including > 20 bands)
(Frazier et al., 2012; e.g., Baraldi et al., 2010; Dribault et al., 2012). ESA’s recent Sentinel
satellite program presents a great potential for wetland research. Sentinel-1 with C-band SAR
and Sentinel-2 with 13 optical spectral bands (10 m resolution; temporal revisit - 5 days) are a

promising addition to the current collection of EO sensors.
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Figure 2.1. Spectral reflectance of soil, vegetation and water, and spectral bands of Landsat 7 ETM+, top
panel, and percent atmospheric transmission as function of wavelength for Landsat (5-7 & 8), bottom
panel. Sources: modified (Siegmund & Menz, 2005), top, and USGS, bottom.

Since many wetland plant species have overlapping spectral reflectance (Schmidt &
Skidmore, 2003), hyperspectral sensors (e.g., HyMAP, AVIRIS, etc.), with their fine spectral
resolution, can provide further advanced capability to map plant species with greater levels of
detail compared with multispectral sensors (Zomer et al., 2009; Suess et al., 2015). HS imaging
has been mostly conducted from airborne platforms with pixel sizes from 1-20m but some
satellite sensors have been developed and are soon to become operational, e.g., Environmental

Mapping and Analysis Program hyperspectral imager (ENMAP) (Guanter et al., 2015),
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Hyperspectral Infrared Imager (HyspIRI) (Olsson & Morisette, 2014). Extensive field and
airborne acquired spectral libraries of wetland species have been developed (Michishita et al.,
2012; Hurd et al., 2005; Schmidt et al., 2004; Schmid et al., 2005; Jollineau et al., 2008). Rosso
et al. (2005) investigated the use of hyperspectral imagery to study the structure of wetlands in
San Francisco Bay. Other notable studies include spectral discrimination of Papyrus (Cyperus
papyrus L.) vegetation (Adam & Mutanga, 2009), monitoring of macrophyte plant species

proliferation in Lake Victoria, Kenya (Cavalli et al., 2009).

2.2.2  Mapping wetlands using SAR imagery

SAR data are commonly used for mapping wetlands, due to the strong microwave response to
variations in soil surface conditions, particularly roughness and moisture (Bruckler et al., 1988),
as well as the physical size and orientation of the scatterers (Oliver & Quegan, 2004). SAR is an
effective tool for extracting wetland biophysical data, especially given that wetlands generally
occur on flat terrain, and that water is one of the defining features of wetlands. Detection of
wetlands is enhanced by the presence of water, particularly for flooded forest (Hess et al.,
1990), but also for emergent herbaceous wetland communities. The homogenous nature of
some of the wetland communities (e.g., Papyrus swamp) also facilitates their detection using
SAR. Wetland characteristics derived from radar data analysis are generally influenced, to
various degrees, by the ground conditions at the time of the data acquisition—this is
particularly important if it had rained shortly before the event (Fournier et al., 2007; Parmuch

etal., 2002).
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As an active sensor operating in the microwave band, SAR has the advantages of day-
night operability and the capability to penetrate through cloud cover and rain (Ouchi, 2013),
thereby not requiring atmospheric correction (Lowry et al., 2009). Radar imaging consists of
measuring the reflected signal (echo) backscattered from the surface as it is received— with its
delay and relative intensity— by a side-looking antenna (towards the Earth’s surface) from
which the signal was emitted. SAR records the amplitude and the phase of the received echo,

and uses the Doppler history of the radar echoes to synthesize a large antenna.

SAR signals operate in the microwave portion of the EM spectrum (Ouchi, 2013) ranging
from 1.2 cm (K-band) to 65 cm (P-band). For SAR remote sensing of wetlands, the main satellite
sensors have been C-band (~5-cm) (e.g., ERS-1/2 SAR, RADARSAT-1/2) and L-band (~23 cm)
(e.g., JERS-1 SAR and ALOS/PALSAR 1/2). SAR pulses are also generally polarized horizontally or
vertically, transmitting and receiving in like/co-polarizations (HH or VV) or cross-polarizations
(HV or VH) (Oliver & Quegan, 2004). SAR scattering mechanisms are partially determined by
polarization and wavelength— longer wavelengths penetrate through vegetation layers or dry
sand more readily compared to shorter wavelengths (Ouchi, 2013). HH and VV polarizations
provide the best penetration through the vegetation canopy, while HV and VH provide more

information related to the canopy structure (Rosenqvist et al., 2007).

The incidence angle (B), which is defined as the angle formed by the radar beam and a
line perpendicular to the surface, determines, in part, how the signal interacts with the surface.

Lower (steeper) incidence angle usually provides stronger returns since they may involve more
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types of interaction mechanisms with the surface. Incidence angles can be adjusted depending

on the type of satellite, which helps optimize SAR parameters for specific applications.

By combining the various SAR parameters, it is possible to draw a number of broad
inferences about ground surface characteristics: low backscatter, or dark areas on a SAR image,
indicate that the surface is generally smooth and flat, or in a shadow formed by a steep hill,
while high backscatter indicates the presence of a rough and/or wet surface, or a surface facing
the SAR antenna. Despite the strong response of microwave radiation to water (due to the high
dielectric constant (~80) of water compared to most other dry materials (3-8)), for calm water
radiation is mostly scattered from the surface away from the antenna and the water appears
black. Vegetation is usually a moderate scatterer and will appear grey or light grey, while
standing objects, such as buildings and tree trunks will appear much brighter, especially if water
is present below the canopy due to the double-bounce scattering mechanism— object

alignment will influence the strength of the return (Oliver & Quegan, 2004).

Henderson and Lewis (2008) compiled a detailed review of emergent trends in radar-
related wetland research and evaluated the performance of various wavelength and
polarization combinations for ecosystems studies and for wetland mapping applications in
particular. Applications of SAR polarimetry techniques for mapping and characterizing wetlands
are progressively developing and are making use of various satellite sensors operating with
microwave along varying bandwidths (Touzi et al., 2009; Pottier & Ferro-Famil, 2009).
Discrimination of major classes of wetland vegetation, such as herbaceous cover types, shrubs,

and forest has been achieved using C-band SAR polarimetry (Brisco et al., 2011a); using optical
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(WorldView-2) and polarimetric Radarsat-2 image variables in object-based image analysis

(OBIA) for mapping wetland classes of fen, bog and swamp (Dingle Robertson et al., 2015b).

The ability to discriminate the dominant wetland plant communities found in the Dabus
Marsh, such as Papyrus cyperus, and emergent herbaceous species, which comprise both grass
and sedge species, represented one of the objectives for this study. The selection of L-band SAR
data for wetland classification in this study was based on its ability to penetrate relatively dense
vegetation, as part of the Dabus Marsh wetlands are covered with thick Papyrus Swamps with
canopy height reaching 4-5 m (see Section 2.1.3 for further description), and emergent
herbaceous cover comprised much of the rest of the wetland areas. L-band can also aid in
detection and mapping of subcanopy inundation (e.g., Toyra & Pietroniro, 2005). Research has
shown that shorter wavelengths, such as C-band (~5.6 cm) RADARSAT are more effective for
herbaceous wetland separation, while both L- and C-band are effective at separating forest
from herbaceous wetlands and other land cover types. C-band has produced favourable results
in some wooded wetlands, however, it has performed best in leaf-off and low biomass

conditions (Henderson & Lewis, 2008).

For RS wetland studies, polarimetric decomposition techniques are regularly used to
identify flooded vegetation (Brisco et al., 2013). These techniques detect the strong double
bounce scattering mechanism provided by emergent plants. A 180° phase difference in the co-
polar channels can provide enhanced backscatter (Brisco et al., 2011b). Polarimetric
backscattering characteristics and variations can help discriminate vegetated versus non-

vegetated cover and dryland classes versus wetlands (Rosenquvist et al., 2007). Combining C-
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and L-band HH, HV, and VV polarizations has been used successfully to map forested wetlands
in the Amazon (Hess et al., 1995). They suggested the incorporation of optical data such as
Landsat, while Hess et al. (2003) found that the combination of C- and L-band (e.g., RADARSAT,
JERS-1) data provides higher accuracies for tropical wetlands with primarily herbaceous
vegetation. Similarly, C- and L-band dual polarization (HH/HV) data were used for a large-scale
land cover classification of the Brazilian Pantanal wetlands (Evans et al., 2014). Other examples
for SAR multisensor RS wetland research include (e.g., Pope et al., 1997; Lietal., 2012).
Arguably, by combining multiple SAR sensors, each with specific characteristics (e.g.,
wavelengths, incidence angle), greater discrimination of the complex structural variations in

wetlands may be achieved.

The determination of optimal incidence angle depends largely on the vegetation and
hydrological characteristics of the study area. A number of wetland studies established that
steeper angle performed better overall (Baghdadi et al., 2001; White et al., 2015; Henderson &
Lewis, 2008; Westra et al., 2010). Dingle Robertson et al. (2015b), using polarimetric Radarsat-
2 data, demonstrated that for swamps and treed bogs, steep angle (HH and HV) has greater
ability to penetrate vegetative cover compared to that of shallow angle, which translated into
increased volume scattering and depolarization of the signal. For herbaceous wetland
vegetation cover, shallow incidence angle scenes (C-band) performed well (Morandeira et al.,

2016; Henderson & Lewis, 2008).
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2.2.3 Vegetation and water indices

Monitoring changes of the Earth’s vegetative cover is facilitated by the use of spectral
vegetation indices (VIs), which are broadly defined as radiometric measures of photosynthetic
activity (Lu et al., 2004; Vifa et al., 2011). Vls can be used to derive a range of vegetation
properties, e.g., biomass, leaf area index (LAI), percent green cover (Lhermitte et al., 2011;
Glenn et al., 2008). A comprehensive review of VI applications is presented in Lu et al. (2004);
Coppin et al. (2004) discuss the use of Vls in the context of change detection analysis, and a
review of over 40 VIs is presented by Bannari et al. (1995). VIs are used to enhance vegetation
response while reducing the variability caused by factors such as differences in illumination,
variation in atmospheric conditions, changes to underlying soil colour and moisture, and
variations in canopy structure (Bannari et al., 1995). For temporal change detection, Vls
response to variations in vegetative cover is more sensitive than that of single spectral bands

(Coppin et al., 2004).

Vis can be broadly classified based on the spectral bands involved and their
combinations, as well as the targeted biophysical features they attempt to discriminate. Table
2.1 presents a list of vegetation and water indices derived from spectral data commonly used
for wetland studies (Bannari et al., 1995) that were selected for this study. It includes the full
name of each VI, method of calculation and references; see 4.2.3.1 for additional information
on the specific use for the VIs presented here. These indices were used as input variables in
wetland classification due to their wide application and proven effectiveness in measuring

changes in vegetative cover as well as detecting ground moisture, for some. The selection of a
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relatively large number of VIs was motivated by the need to incorporate data from a wide range

of sources in order to capture the complexity of wetlands, as stated earlier.

For the main class of Vls, the spectral bands involved are primarily the NIR and red;
these are used to characterize vegetative growth properties. Some include the blue bandto
reduce atmospheric effects. Among some of the most commonly used indices are the
Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), both
based on a normalized red/NIR difference ratio. Other selected indices included SAVI, MSAVI,
ARVI, SARVI, TTVI, and GEMI. Another class of VIs employed mainly the shortwave infrared
(Landsat band 5) in combination with NIR, for NDMI and NBR, or green for MNDWI. Notably,
BRN2 uses the SWIR Landsat band 7 in place of NIR. These four indices were developed to

respond to soil moisture content (Xu, 2006; Gao, 1996; Garcia & Caselles, 1991).

The last two indices presented here include the Tasseled-cap derived variables,
brightness (TCB), greenness (TCG), and wetness (TCW), and the principal component analysis
(PCA) transformation into three uncorrelated components (PCs). Tasseled-cap transformation is
a feature space rotation that reduces the six Landsat TM 4 and 5 non thermal bands to three
orthogonal indices (Crist & Cicone, 1984). Similarly, PCA is a multi-variate statistical technique
that is used to reduce most of the information contained in a number of intercorrelated bands
into one or more orthogonal principal components. It produces a set of orthogonal axes that
effectively describe the majority of the variance (Pohl & Van Genderen, 1998); this information

can be used to derive physical characteristics from a scene.
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Green et al. (1998) improved classification accuracy of mangroves based on Landsat TM
bands and bands derived from PCA, and also incorporated the use of Tasseled-cap derived
components. Other mangrove mapping applications using PCA bands were evaluated by Kovacs
et al. (2001), and Béland et al. (2006). PCA performed poorly when used to extract optimal
bands from hyperspectral data in a mapping study of wetlands in the Great Lakes (Torbick &
Becker, 2009). Differences in NDVI have been widely used to assess land cover changes in
wetlands (Ozesmi & Bauer, 2002). Wang et al. (2012) combined NDVI images, functional traits
of wetland vegetation, and flood-driven local environment disturbances to monitor the

seasonal dynamics of wetlands over a large lake area.

Indices targeting surface water, such as the NDWI, were used to increase land-water
separation in a flood monitoring study using ASTER data in the Niger Inland Delta (Seiler &
Csaplovics, 2004). Similar water-indices (e.g., MNDWI), were used in various RS-based wetland
studies (e.g., Hui et al., 2008; Chen et al., 2013; Baig et al., 2013; Davranche et al., 2010;

Martinez-Lépez et al., 2013).

The Normalized Burn Ratio (NBR) was developed to highlight burnt areas and to
measure the severity of a burn using Landsat TM imagery (Garcia & Caselles, 1991). Differences
between pre- and post-fire NBR images (Delta NBR) have been used to assess changes in
vegetation and soil cover and to provide a measure of burn severity (Key & Benson, 2006). An
assessment of the NBR index over the South African savannah (Roy et al., 2006) found that the
index was fairly insensitive to the pre/post-fire changes. The NBR2 is another simple ratio-

based index with a formula similar to NBR but that uses the two Short-Wave Infrared band
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(SWIR-5) instead of NIR, in combination with SWIR-7. NBR2 and NDVI were found to be a useful

indicator of post-fire recovery (Storey et al., 2016). Both burn ratio indices, BRN and BRN2,

were adopted for this research, primarily to detect areas affected by fires and for wetland

classification.

Table 2.1. List of vegetation and water indices commonly used in land cover studies that were
incorporated into this research.

N

10.

11.

12.

13.

14.

Spectral Indices
Normalized Difference
Vegetation Index
Enhanced Vegetation
Index
Soil Adjusted Vegetation
Index
Modified Soil Adjusted
Vegetation Index-2
Normalized Difference
Moisture Index
Normalized Burn Ratio
Normalized Burn Ratio-2
Modified Normalized
Difference Water Index
Atmospheric Resistant
Vegetation Index
Soil and Atmospheric
Resistant Vegetation
Index
Thiam’s Transformed
NDVI

Global Environmental
Monitoring Index

Principal Component
Transform
Tasseled-cap
Transformation

Equation’

NDVI = (NIR—Red)/ (NIR + Red)
2EVI=G(NIR—Red))/(NIR+CixRed-CyxBlue+L)

3SAVI=((NIR-Red)/(NIR + Red + L)) x (1 + L)

MSAVI2 = (2xNIR+1—sqrt((2xNIR +1)2—8 x

(NIR — Red)))/2

NDMI = (NIR-SWIR1) / (NIR + SWIR1)

NBR = (NIR—SWIR2) / (NIR + SWIR2)
NBR2 = (SWIR1—SWIR2) / (SWIR1 + SWIR2)

MNDWI = (Green—SWIR1) / (Green + SWIR1)

*ARVI = (NIR—RB) / (NIR + RB)
Where: RB=RB—v(Blue — Red)

SARVI=(1+C) x (NIR—RB/(NIR + RB + C)
Where: RB = RB—v(Blue — Red)

TTVI=Sqrt (ABS (0.5 + NDV/))

GEMI = eta(1—-0.25 x eta)—(Red —0.125) /(1 -

Red) Where: eta =

[2(NIR*—Red?) + 1.5NIR +0.5Red] / (NIR+Red +0.5)

PCA main components

TCT: Brightness; Greenness; Wetness; & Wetness-

Greenness

Reference

(Rouse et al., 1974)

(Huete et al., 1997)

(Huete, 1988)

(Qietal., 1994)

(Gao, 1996)

(Garcia & Caselles, 1991)
(Garcia & Caselles, 1991)

(Xu, 2006)

(Kaufman & Tanre, 1992)

(Kaufman & Tanre, 1992)

(Bannari et al., 2002)

(Pinty & Verstraete, 1992)

(Richards & Jia, 2006)

(Kauth & Thomas, 1976)

TLandsat TM-5 band name: ‘Blue’ (1), ‘Green’ (2), ‘Red’ (3), ‘NIR’ (Near-infrared, 4), ‘SWIR1 & 2’ (Short-
wave infrared band No. 5, and No. 7); G represents ‘gain factor’, C; and C; are the coefficients of the
aerosol resistance term, L is the soil brightness correction factor and provides canopy background
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adjustment (soil -adjustment); gamma constant Y’ (used in ARVI) is a weighting function that depends
on aerosol type.

2EVI uses the blue band to correct for aerosol influences (scattering) and to correct for soil background
signals in the red band. The coefficients adopted in the EVI algorithm are, L=0.5, C;=6, C;=7.5, and
G =2.5 (Jiang et al., 2008; Huete et al., 2002).

3SAVI is similar to NDVI but suppresses the effects of soil pixels; optimal value for canopy background
adjustment factor ‘L’ is 0.5 as proposed by Huete (1988).

4ARVI provides an improved resistance to atmospheric factors as compared to NDVI. The coefficients
adopted in ARVI and SARVI are, C=0.5, y = 1 when aerosol model is not available (Kaufman & Tanre,
1992).

2.2.4  Topographic metrics and indices

The range and diversity of topographic indices is considerable (Conrad et al., 2015).
Morphometric terrain parameters derived from digital elevation data are used primarily to
guantify the effects of topography and hydrological processes (Hengle & Reuter, 2009). Primary
local terrain attributes such as slope, aspect, gradient, and curvature are first and second order
derivatives of elevation in the x and y axes. Secondary terrain attributes such as the terrain
wetness index are inferred by combining different primary terrain attributes, and as such they
are measures that estimate spatial variations of specific land processes (Bohner & Selige, 2006).
Topographic indices can provide important information as to the distribution of specific
wetland plant species and communities based on their soil and water requirements. In a typical
wetland environment, the extent and duration of inundation is largely determined by the

topography (Keddy, 2010).

Topographic indices have been widely used in combination with other EO data to
improve wetland detection and monitoring (Ozesmi & Bauer, 2002). For example, topographic
indices were used in the Congo Basin (Bwangoy et al., 2010) along with PALSAR L-band and

Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) (see Section 2.2.7)
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and by Betbeder et al. (2014) with PALSAR, MODIS, and LiDAR. In Ethiopia (Midekisa et al.,

2014) used topographic indices with Landsat TM/ETM+ spectral data. Other related examples

used various sensor combinations; e.g., RADARSAT and LiDAR data (including LiDAR derived

topographic indices) to map a northern peatland (Millard & Richardson, 2013); LiDAR data and

derived topographic indices to characterize northern forested wetlands (Richardson et al.,

2010); and SAR L-band and Landsat 5 TM to map wetlands in northern USA (Corcoran et al.,

2013).

The topographic indices presented in Table 2.2 were derived from the SRTM 30m DEM,

and were adopted for wetland classification in this research.

Table 2.2. List of morphometric terrain parameters investigated.

N

Variables/Derivatives

Elevation (m)

Slope (radians)
Catchment slope (radians)

Slope height (m)

Length slope factor*

Normalized height*
(n-dimensional)

Standardized height (m)

Mid-Slope position (n-
dim.)

Relative slope position*

Description/Remarks
SRTM-30 m data (void filled)
Slope inclination (radians, required as input to
‘wetness’ index calculation.
Catchment Slope (radians) output in module
“SAGA” wetness index
Height, output in module “Relative heights and
slope positions”
Based on Universal Soil Loss Equation (USLE),
modified: Combines Length of a slope segment
(flow length) and gradient (slope angle)

Normalized height of the local environment

Product of normalized height x by absolute
height

Height, mid-slope positions assigned to (0), max.

vertical distances to mid-slope (1)

AACL / (AACL + ABRL), where

AACL - Altitude above channel lines (m); and
ABRL — Altitude below ridge lines (m)

Reference Source
USGS (2015)

Conrad (2006)

Conrad (2006)

Bohner and Selige
(2006)

Wischmeier and Smith
(1978)

Conrad (2006)

Bohner and Selige
(2006)

Bohner and Selige
(2006)

Bohner and Selige
(2006)

Bock et al.
(2007),(Bohner & Selige,
2006)
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N  Variables/Derivatives Description/Remarks Reference Source
Topographic wetness Index for predicting zones of saturation — Boéhner and Selige
9. i dex Function of specific catchment area' (SCA) and (2006), Moore et al.
local slope angle B: In(SCA/tanp) (1993)
SAGA Topographic Topographic wetness index (see No. 9.) adjusted Bohner and Selige
10. wetness index [local slope- = to flat area, broad valleys, by applying weight to (2006)
ns] or flat slope angle.
) e Combines modified SAGA Wetness Index? (mSWI)
Terrain classification index . .
11. for lowland (TCliou) and altitude above channel lines: Bock et al. (2007)
((2 x AACL) + mSWI1) / 3
Topographic position Difference to the mean calculation (residual '
12. index analysis) proposed by Wilson and Gallant (2000); = Guisan et al. (1999)
Radius (0-500m); Gaussian weighting
Morphometric protection ‘Openness’ described as an angular measure of
13. . the relation between surface relief and Yokoyama et al. (2002)
index . . .
horizontal distance; Radius (2km)
Flow accumulation index calculated as difference .
14 Melton ruggedness between elevation in catchment area / square Marchiand Dalla
" number . Fontana (2005)
root of catchment area size.
Elevation difference between adjacent cells (8
15. Terrain ruggedness index first-order neighbours within a quadratic grid — Riley et al. (1999)
Moore neighborhood); Radius (2 cells)
16. Terrain surface texture Measure of frequency of valleys and ridges in the | lwahashi and Pike
' DEM; Scale (10 cells) (2007)
5 Vertical distance to channel network (ridges)
17.  Valley depth* (m) derived from inverted DEM Conrad (2006)
Valley depth [relative Valley depth output from ‘Relative Heights and Bohner and Selige
18. height] (m) Slope Position” module (2006)
1o, Vertical distance to Vertical distance to channel network base level Bock and Kéthe (2008)

channel network (m)

(elevation of channel network is interpolated)

* Based on original DEM; ' Compute catchment area (discharge contributing upslope area of each grid

cell) and ‘Specific Catchment Area’ (SCA), defined as the corresponding drainage area per unit contour

width, using Freeman (1991) method, and local slope using the approach of Zevenbergen and Thorne
(1987).

2 The modified ‘SAGA Wetness Index (mSWI) is derived by weighting the slope angle within the
calculation of the index (Bock et al., 2007).

3 “Valley depth’ and ‘Vertical distance to channel network’ are both calculated using the distance

between a DEM/DTM and a ‘base level’. However, the two algorithms differ in a number of ways. ‘Valley
depth’, which was generated using standard settings in SAGA ‘basic terrain analysis’ module, is
computed using an inverted DEM. The channel lines, or rather the ridges, are derived from theoretical
pathways whereas, the ‘Vertical distance to channel network’ module requires a channel line network as
input. The algorithm for the latter was written by Conrad (2002). The functionality of the SAGA module
‘Vertical distance to channel network’ in SAGA is described in Bock and Kéthe (2008) paper.
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2.2.5 SAR texture and band ratio indices

Texture metrics provide information about the spatial distribution of tonal variations within an
image, which, in turn, can be used to describe attributes of wetlands and capture their
complexity. Texture is a measure of the heterogeneity in pixel values within a defined
neighborhood (Dronova, 2015). Ozesmi and Bauer (2002) reported that in many studies,
wetland detection improved when using image texture derived from multispectral data with
classifiers such as maximum likelihood (ML) and decision trees, (e.g., Wang et al., 2004; Wright
& Gallant, 2007b; Dillabaugh & King, 2008). Texture variables derived from SAR data have also
been used for land cover classification (e.g., Balzter et al., 2015). In that study, SAR Sentinel-1
(C-band) data was used as input to Random Forest classification of land-cover types, using
CORINE classification schemes and 44 LULC types, (European Environment, 2007). SAR HH
texture gave the highest internal classification accuracy (68.4%) along with four topographic
variables. In other related studies involving SAR texture variables, wetland classification
accuracy was improved using grey-level co-occurrence matrix (GLCM) texture measures with a
single-date RADARSAT image (Arzandeh & Wang, 2002); in large area mapping of northern
wetlands in Alaska using Random Forest, PALSAR L-band data and derived texture variables,
along with a host of other variables, were evaluated (Clewley et al., 2015). Notably, Random
Forest variable importance assessment for HH and HV texture showed that they were among

the lowest ranking variables.

In broad scale mapping of the African continent using PALSAR L-band data, the o, /a5,

ratio increased vegetation class separability, an effect that was attributed to the relative
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differences between diffuse and surface scattering, as well as for discriminating flooded and
nonflooded vegetation (De Grandi et al., 2011). PALSAR L-band a2, /5, ratio images were also

found to be a good indicator of soil moisture (Li et al., 2007).

2.2.6 Temporal analysis of RS data

Detection and characterization of changes in wetlands using multi-temporal satellite imagery
rely largely on the ability to assemble well calibrated and consistent time series of data.
Geometric and radiometric normalization are critical for any change detection approach where
spectral information is compared across time (Lu et al., 2004). Consistent temporal ground
reflectance trajectories can be achieved using radiometric normalization after conversion of
image digital numbers (DN) to units of reflectance. For change detection analysis, absolute
atmospheric calibration can be achieved using physics-based algorithms, such as ATCOR-2
(Richter, 2010), which is based on the MODTRAN-4 radiative transfer code (Berk et al., 2003).
ATCOR is used for computing ground reflectance and emissivity images from multispectral and
thermal bands, respectively. Such reflectance data provide a more reliable representation of
the temporal dynamics within wetlands. However, consistent pixel brightness can also be
achieved through relative techniques without conversion to reflectance. The selection of
suitable reflectance invariant ground features is a critical aspect of such a normalization

procedure (Canty & Nielsen, 2008; Schroeder et al., 2006).

In the field of remote sensing, change detection analysis often comprises the use of
image pairs representing environmental conditions at different times (Lu et al., 2004; Coppin et

al., 2004). Yearly or multi-seasonal geo-spatial data from various moderate resolution sensors,

53



including ASTER, SPOT-5, and Landsat TM/ETM+ (optical) and ALOS/PALSAR, and Radarsat
(radar), have been successfully applied in change detection analysis of different wetland types,
including some studies in tropical wetland environments (Teferi et al., 2010; Davranche et al.,
2010; Pantaleoni et al., 2009; Millard & Richardson, 2013; Dingle Robertson et al., 2015a).
Examples of multitemporal applications based on radar data include: Townsend (2001) using
Radarsat for mapping forested wetlands; (Lehmann et al., 2012) using Landsat TM and
ALOS/PALSAR for monitoring forest; and (Silva et al., 2010) using Radarsat-1, optical, and
airborne sensors to monitor aquatic vegetation in the Amazon floodplain. High spatial
resolution optical data were used at the site level to identify changes in wetland extent and

habitat type (Rebelo et al., 2009; Herrero & Castafieda, 2009).

2.2.7 Mapping and classifying wetlands integrating multi-source data

Classification approaches based on remote sensing EO data from multiple sources has largely
outperformed single source approaches (Ozesmi & Bauer, 2002). There is a wide array of RS
studies of wetlands that involved multi-source data sets, most combining multispectral and SAR
data (e.g., Bourgeau-Chavez et al., 2007; Touzi et al., 2007; Lang et al., 2008; Costa & Telmer,
2007; Bourgeau-Chavez et al., 2004; Dingle Robertson et al., 2015b). In most cases, multi-
dates and multi-polarizations improved the classification results. However, adding dates only
increases accuracy to a point and an optimal number of dates should be established on a case-

by-case basis, for each study (Henderson & Lewis, 2008).

Most recently, Joshi et al. (2016) conducted a reviewed 112 studies on fusing optical

and radar data for land cover assessments, and concluded that fusion improved results
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compared to single sources. Various classification methods were involved but the most
common technique was based on the traditional maximum likelihood classifier. Combination of
Landsat and ALOS/PALSAR was the selection of choice followed closely by Landsat with the
European Remote Sensing ERS-1 and -2 C-band SAR sensor. For this study, Landsat 5 TM and
ALOS/PALSAR data were used in combination with topographic data derived from 1-arcsec
elevation data derived from the Shuttle Radar Topographic Mission (SRTM) as described in

Chapter 3.

The number of current wetland mapping studies from Ethiopia using remote sensing
data is limited compared to other regions in Africa. Tibebu Kassawmar et al. (2011b); Tibebu
Kassawmar et al. (2011a) investigated wetland loss in Ethiopia using Landsat imagery as part of
a long-term monitoring study of two Lakes, Chamo and Abaya, which spanned over three
decades. A combination of Landsat MSS, TM and ETM+ images were used as well as ancillary
data including soil maps, and SRTM data. Wet and non-wetland classes were derived primarily
using the Tasseled-Cap wetness component. The authors found that over the duration of the
study, the extent of inundation has steadily decreased in both lakes along with their area of
riparian wetlands. The most dramatic loss was found in Lake Chamo, which had lost nearly 30%

of its historical volume since 1973.

Another study conducted in the upper Blue Nile region in Ethiopia investigated the
extent of wetland loss and land cover change over a 15-year period ranging from 1985 to 2005
and used a combination of Landsat TM and ETM+, and MODIS data (Teferi et al., 2010). Area of

wetland loss was derived from classified (supervised and unsupervised) Landsat images.
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Wetland classes were aggregated, from an initial 17 classes down to seven, to reduce
redundancy and to improve mapping accuracy. The overall classification accuracy reported was
93% and 94% for the 1995 and 2005 images, respectively. Change detection analysis was
carried out using post-classification comparison of the two classified maps. Wetland loss over
the 20-year period included over 600 km? of ‘low-moisture’ seasonal wetland area converted to
cultivated land, including plantation, and 22 km? of open water area that was drained and
reported as bare land or cultivated area (Teferi et al., 2010). In a study investigating linkages
between wetland characteristics and occurrence of malaria in Ethiopia, Midekisa et al. (2012);
Midekisa et al. (2014) obtained high classification accuracies using Random Forest with spectral

Landsat TM/ETM+ imagery and SRTM data.

Finally, further afield, a study conducted in the Congo Basin (Bwangoy et al., 2010)
combined the use of multispectral images, Landsat-TM and ETM+, SAR, JERS-1 L-band imagery,
and topographic indices derived from SRTM data to produce a wetland probability map. A
classification-tree algorithm was used to estimate per-pixel probability of wetland occurrence.
The authors estimated the extent of wetland areas as 32% of the study area. They also found
that all sources of information, optical, radar, and topography, contributed to the classification
tree procedure. However, the most valuable wetlands discriminator was local topography and

the relative elevation of sub-catchments.

By investigating the Dabus Marsh, this study builds upon previous wetland classification
work that had employed a similar approach, i.e., using a machine learning classifier (RF), and

employing a wide range of input variables from various sources, including, for multispectral
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data the medium resolution sensor Landsat, in combination with ALOS/PALSAR L-band data,
and a host of topographic indices (Bwangoy et al., 2010; Betbeder et al., 2014). This study
hoped to demonstrate the efficacy of the RF classifier to discriminate the wetlands typically
found in the highlands in Eastern Africa, as well as to identify an optimal set of variables to

achieve this goal.

2.3 Background to the Classification technique of this research: Random Forests

In the context of this research, classification generally entails the attribution of values/labels for
land cover units to data obtained by means of remote sensing, in order to group or arrange
pixels (or objects) into meaningful entities— i.e., wetlands— based on their properties and
relationships (Sokal, 1974). The procedure for classification can follow traditional approaches
(e.g., maximum likelihood), rule or knowledge-based (e.g., decision tree) or more advanced and
non-parametric approaches, such as machine learning methods (e.g., support vector machines,
artificial neural networks, random forests, etc.). Classification can be supervised or
unsupervised. This research uses the machine learning Random Forest classifier, an advanced
non-parametric decision tree algorithm, which has the ability to handle large complex data sets

(Breiman, 2001); details are provided in Section 2.3.1.1.

An important aspect of a classification procedure is the definition of the decision
boundaries that are used to separate the classes in feature space. This depends largely on the
property of the classifier, e.g., Gaussian models use a linear decision boundary, Support Vector
Machines construct linear boundaries in a large, transformed version of the feature space

(Hastie et al., 2009; Richards & Jia, 2006). For a given classifier, the complexity of the decision
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boundaries is among a number of factors that affect the level of accuracy that can be achieved,
along with the size of the training sample, the adequacy of the training data in characterizing
the properties of the classes, the dimensionality of the data, and the properties of the classifier

employed (Pal & Mather, 2003; Raudys & Pikelis, 1980).

Methods for classifying and mapping wetland vegetation can be based on pixels or objects.
Object-based image analysis (OBIA) methods first segment the image into groups of pixels that
incorporate spatial neighborhood properties and share similar spectral characteristics (Mansor
et al., 2002). Although pixel-based land cover classifications have been more readily adopted
compared to object-based classifications (Duro et al., 2012), object-based approaches have
gained ground among the RS wetland research community (Dronova, 2015). Both approaches
have performed comparably well in mapping wetlands. A few notable examples of OBIA- and
pixel-based studies are: Barker and King (2012) using high-resolution ortho-photos to map
wetlands and turtle habitat; Johansen et al. (2010) in mapping riparian conditions using LiDAR;
coastal marsh habitat mapping using high-resolution IKONOS satellite imagery (Rokitnicki-
Wojcik et al., 2011); Great Lake wetlands mapping from RADARSAT and PALSAR data
(Bourgeau-Chavez et al., 2008); isolated depressional wetlands mapping in the US using Landsat
ETM imagery (Frohn et al., 2009); and Dingle Robertson and King (2011) comparing object-
based and pixel based classification for temporal change analysis of land use and land cover in
eastern Ontario, including wetlands, using Landsat TM. Given the data complexity in this study
and the additional requirement for in-depth segmentation analysis in object—based

classification, a pixel-based approach was selected.
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2.3.1 Decision Trees and the Random Forest classifier

Traditionally, the Maximum Likelihood Classifier (MLC), a parametric technique based on
probability theory, has been widely used to map various wetland types, e.g., temperate
forested wetlands (Sader et al., 1995), tropical freshwater swamps in Australia (Harvey & Hill,
2001), and the Okavango Delta in Botswana (McCarthy et al., 2005). In a flood monitoring study
in Africa using high-resolution radar and optical data, Seiler et al. (2009) performed a
supervised classification using the ML classifier on radar images even though SAR data often
violate the assumption of Gaussian distribution. For single polarization SAR intensity, the real
and imaginary parts of SAR returns are Gaussian distributed with mean = 0 and variance = 6*/2
(Lee & Pottier, 2009). Multi-look SAR images for intensity exhibit more of a gamma probability
distribution. However, the distribution approximates a normal distribution with greater number
of looks (Seiler et al., 2009; Holecz et al., 1994). These methods are often restricted to
classifying broad wetland classes, such as meadow or swamp, although many studies have used
finer classes at the cost of accuracy. There are clear limitations in discrimination of plants that
present overlapping spectral reflectance, particularly where wetland communities form
intricate mosaics. In such cases, aggregation of wetland classes often provides a means to
improve mapping accuracies (Wright & Gallant, 2007a; Dingle Robertson & King, 2011;
Dillabaugh & King, 2008). Automated unsupervised and supervised classification is applied using

different decision rules (Lyon, 2001; Richards & Jia, 2006).

Decision Tree (DT) based approaches (Quinlan, 1986) are constructed using a set of

binary rules for splitting variables iteratively into homogenous groups. The predictive model
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evaluates “homogeneity” within each group then splits the tree again if necessary. For the
selection of attributes used for decision tree induction, Quinlan (1993) used the Information
Gain Ratio criterion, while Breiman et al. (1984) used the Gini Index, which is also used by
Random Forest (Pal, 2005). Decision trees are an ideal base learner method. They perform
better in classification of data with nonlinear bounds between classes, but they need pruning or
else they can lead to overfitting. DTs are highly interpretable, at least for relatively small trees,
but it is harder to estimate uncertainty, and results may be variable (Hastie et al., 2009). The
most common DT method is the Classification and Regression Tree (CART), including the C4.5
and C5.0 decision tree algorithm (Quinlan, 1993). Extension of a single decision tree to multiple
trees can be achieved by using subsamples of the reference data for training in each DT. The
outputs of the multiple trees can be combined to provide a more accurate classification than
with a single DT. This approach is termed an ‘Ensemble Classifier’. Two techniques that can be

applied in such ensemble classifiers are Bagging and Boosting, as presented next.

Bootstrap Aggregating or ‘Bagging’ is a general supervised method (Breiman, 1996a)
that takes bootstrap samples (i.e., a random and uniform sample with replacement from a
sample set) of data points and trains a classifier on each sample. For each iteration, the bagging
algorithm resamples cases and recalculates predictions. After all classifiers have been trained,
votes are combined and a simple majority vote is used (James et al., 2013) as the output class
for each pixel. Bagging reduces the variance of the classification (Briem et al., 2002) but does
not change the bias. It works well with high-variance and low-bias procedures such as decision

trees; Random Forest uses a bagging procedure and is described in Section 2.3.1.1.
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The Boosting method (also supervised) is used to increase, or ‘boost’, the performance
of a “weak” classifier by using it within an ensemble structure (Freund & Schapire, 1995).
AdaBoost.M1 is one of the most popular techniques, as it can be used in classification with
more than two classes (Briem et al., 2002). The classifiers in the ensemble are added
incrementally so that each subsequent classifier is trained on data that have been ‘hard’ for the
previous ensemble members. Iteratively, the weight of the samples that are correctly classified
goes down forcing subsequent classifiers to focus on the difficult samples (Rodriguez et al.,
2006). This method is known to increase the overall accuracy of classification and to exhibit no
overfitting with noiseless data. Boosting tends to reduce the variance as well as the bias of the

classification (Briem et al., 2002).

Bagging and boosting are similar approaches as they both collect classifications and
combine their conclusions. However, bagging resamples without changing the sample
distribution, while for boosting, each sample set is based on the latest weights (Briem et al.,
2002). Boosting appears to outperform bagging on most problems, and has become the

preferred choice (Hastie et al., 2009).

Random Forest (Breiman, 2001) is a significant modification of the bagging procedure. It
builds a large collection of de-correlated trees, and then averages their results (for regressions),
or uses a majority vote (for classifications). The performance of RF is similar to boosting, but it
is simpler to train and easier to implement. RF was favored for this study as it is generally more
widely used for wetland classification studies (Dronova, 2015; Joshi et al., 2016; Ismail &

Mutanga, 2011).
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2.3.1.1 Random Forest classifier

Random Forest is an ensemble learning classifier that produces classification trees, similar to
the Classification and Regression Tree (CART) method (described above), with each tree
independently constructed using a bootstrap sample of the original data set; i.e., using a
bagging method (Breiman, 1996b), successive trees do not depend on earlier trees. (Liaw &
Wiener, 2002; Breiman, 2001). Satellite RS of wetlands and related ecosystems has greatly
benefited from the advance of machine learning applications for classification, particularly RF
(Belgiu & Dragut, 2016), which can use a high-dimensional data set from a wide range of
sensors or sources, e.g., using multispectral and SAR data combined with topographic variables
(Banks et al., 2015; Corcoran etal., 2011; e.g., Bwangoy et al., 2010); with SAR and
topographic data (Balzter et al., 2015; e.g., Millard & Richardson, 2013; Clewley et al., 2015);
and with multispectral data alone and topographic variables (Whiteside & Bartolo, 2015; e.g.,

Frazier et al., 2014; Midekisa et al., 2014).

RF classifications generally outperform conventional classification approaches, such as
the Gaussian classifier MLC (Rodriguez-Galiano et al., 2012; e.g., Waske & Braun, 2009), while
performing favourably, or equally well, to other non-parametric approaches; e.g., CART (e.g.,
Gislason et al., 2006; Sonobe et al., 2014), other machine learning algorithms such as Support
Vector Machines (e.g., Pal & Mather, 2003; Adam et al., 2014b; Duro et al., 2012), Artificial

Neural Networks (Joshi et al., 2016), and K-Nearest Neighbour (Abdikan et al., 2015).

The Random Forest (RF) decision tree classifier was selected for prediction of land cover

classes in this research. The ensemble-learning RF classifier is among the most used algorithms
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that can effectively process high dimensional data, particularly when there are a large number
of variables from various sources and types, including non-parametric data, and a relatively
small number of samples (Strobl et al., 2009). RF generates an ensemble of tree classifications
using the bagging method (Breiman, 2001; Breiman, 1996a), as described above. Random
bootstrap subsamples are drawn from the training set and the remaining samples are used in
validation of each tree’s classification. Also, at each split a subset of the variable set is randomly
selected and the best split on these attributes is used to determine the two nodes for the split.
The number of variables is held constant for each tree and each one is grown to the largest
extent possible, without pruning (Breiman, 2002). Two main RF model parameters, the number
of trees to grow (ntree) and the number of variables selected at each node (m:~, see Appendix
A for R scripts), were tested and selected to achieve optimal results. Tuning of RF parameters is

discussed below.

For each tree, each pixel in the study area is assigned to a class; this represents a vote.
The final class assignment for a given pixel is the class with the majority of votes (Breiman,
2001; Breiman & Cutler, 2008). The ‘winning’ class for an observation is the one with the
maximum ratio of proportion of votes to cutoff. The RF ‘cutoff’ parameter is a vector of length
equal to the number of classes. Its default value is set to 1/k where k is the number of classes.
Cutoff threshold values can be adjusted for each class separately, however, the sum of the
vector should remain equal to 1 for RF to run (Breiman & Cutler, 2008). For data sets difficult to
classify, RF predictions across classes are generally low with no clear dominant classes emerging

(Breiman, 2002).
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RF variable importance measures are computed to assess the relevance of each variable
over all trees of the ensemble. They have been found to be useful in variable selection with
high-dimensional datasets (Diaz-Uriarte & Alvarez de Andrés, 2006). The process of selecting
the optimal number of variables, from many to a few is an important step in RF model building.
The method most often used is based on measuring the magnitude of change of the out-of-bag
(OOB) prediction error, which entails permuting the values of the input variables. As previously
described, for each tree built using a bootstrapped training sample, the input variable set is
randomly permuted. This is significant as the permutation brakes the predictor variable original
association with the response (Strobl et al., 2009). The resulting predicted classes are checked
using the out-of-bag data as well as the original variable set. The out-of-bag error rate is
calculated from the proportion of the mis-classified sample data (OOB) based on the prediction
across all trees. In other words, RF puts the validation samples down each tree to reclassify the
tree and compares the proportion of times that the validation classification is not equal to the
predicted class. For each tree, the prediction error, or ‘error rate’ on the OOB portion of the
data is recorded. Then the same is done after permuting each predictor variable. The difference

between the two is then averaged over all trees (Breiman, 1996b; Liaw & Wiener, 2002).

The RF algorithm output includes the ‘raw’ permutation-based variable importance
score (unscaled) as well as its standard error. The scaled (standardized) version of the
importance score is obtained by dividing the raw importance by its standard error (Strobl et al.,
2008). RF importance output is scaled by default. Permutation-based variable importance

measures are computed for each class as well as for the entire prediction model.
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A simpler measure of importance based on the Gini-gain splitting criterion (an entropy
measure used to quantify the impurity in each node), is available in RF implementations. It
describes the average Gini gain over all splits and trees to evaluate the importance
(discriminatory power) of a variable (Hastie et al., 2009). The Gini importance measure is only
provided for the entire RF model. Its biased properties appear to have limited its use
(Nicodemus, 2011), thus it was not used as a focal means to assess variable importance in this

research.

Regarding the selection of training data for predictive modelling, it is commonly

recommended to split the reference data set into a training and a test sets, or “hold-out” set

using a 60:40 ratio (Hastie et al., 2009). However, Breiman (2001) contends that using the OOB

error estimates removes the need for setting aside a test set. For both approaches, OOB and

cross-validation, a portion of the reference data are set aside for testing. For OOB estimates, it

is possible to get an unbiased error estimate, whereas for cross-validation, bias is present but
its extent unknown (Breiman, 2001). However, there is empirical evidence that suggests that
the out-of-bag accuracy estimate will be positively biased if both the training and out of bag
samples are from the same or nearby location (Millard & Richardson, 2013; Millard &

Richardson, 2015).
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2.4 Synthesis

There have been many approaches to wetland classification and temporal analysis. Yet few
overall guidelines exist with respect to selecting appropriate wetland attributes, sensor
resolutions (spatial, temporal, spectral), or classification and temporal analysis techniques. The
approach followed for this study builds on RS wetland research examples drawn from tropical
regions, in the Congo Basin (Bwangoy et al., 2010), and the Amazon basin (Evans et al., 2014;
Hess et al., 2015). The main criterion for the selection of sensors and methods of analysis was
the need to have free or relatively easy access to data and means to carry out complex data
transformation and analysis, i.e., open-source applications. In addition, the study focused on
empirical methods, with knowledge of the targeted wetland primarily derived from field
surveys, during which wetland plant communities were described and characterized. Thus,
with these needs combined with the assessment of the literature on remote sensing for
wetland classification presented above, this research used Landsat, ALOS/PALSAR, and
topographic data in RF classification of wetland classes within the Dabus Marsh. Details on the

Study area, data types and processing and analysis methods are presented in Chapters 3 and 4.
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3. Study Area

3.1 Study area and research context

The study area is located in the central western region of Ethiopia along the highlands in the
administrative zones of West Wellega. The wetlands selected for this study are part of the
Eastern Nile Basin (Figure 3.1). This research focuses on the wetland ecosystems of the Dabus
River, a large tributary of the Abay-Blue Nile River, its various wetland habitats and their
ecological functioning. The wetland area is referred to as the Dabus Marsh throughout this

study.

Ethiopia is a country of contrasts experiencing extreme variations in environmental
conditions. The eastern regions are generally dry semi-arid desert type to very dry (McKee,
2007), particularly in the Afar Region. Lying ca. 140 m below sea level, the Afar is considered as
one of the hottest places on earth. By contrast, the western half of the country, which lies
largely within the Nile basin catchment, is broadly characterized by green vegetated landscapes
dominated by cultivated fields. This area experiences rainfalls ranging from nearly 2,000
mm yr~' in the Ethiopian Highlands to less than 1,000 mm in the lower parts of the basin along
its border with Sudan (Tesfahun et al., 2006; MoWR [Ministry of Water Resources], 1998).
Rainfall distribution is unimodal with a protracted wet season that starts in the middle of March
and lasts until October, while peak rainfalls generally occur from June to September (Gamachu,
1977). The mean annual rainfall reported for the study area region is approximately 1,414 mm
(mean annual, minimum and maximum temperatures are 19.8°C, 11.8°C and 30.9°C,

respectively; EMSA (2012)).
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The Nile Basin within Ethiopia comprises nearly 40% of the country (NBI et al., 2001).
This region is important for the predominantly rural Ethiopian population whose subsistence
critically depends on access to fertile land extensively used for agriculture (FAO, 2007). Notably,
Ethiopia has Africa’s largest livestock population. Wetlands are found throughout the Nile Basin
and play a significant role in providing ecosystem services, e.g., maintaining water balance and
water quality, and conservation of biodiversity (Keddy, 2010). They also provide access to
water, especially during the driest months of the year, which helps sustain various livelihoods

and provides pasture and fodder.
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Figure 3.1. Study area — geographic extent of the Dabus wetland shown using January 2010 Landsat-5

TM false colour composite (RGB: bands 5,4,3, respectively). The Dabus wetland is found near the
western border with Sudan; basemap image source: ESRI’s World Imagery.
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3.2 Rationale for Selection of the Study Area

The Dabus wetlands cover an area of approximately 80,000 ha which lies at an altitude of ca.
1,300 metres above sea level (m.a.s.l.). The Dabus River is an important tributary of the Nile
(Sutcliffe, 2009). The portion of the eastern Nile Basin found along the border with Sudan,
which is referred to as the Abay-Blue Nile, comprises 10 sub-basins among which the Dabus is

the third largest within Ethiopia, and seventh-largest sub-basin-wide (ENTRO, 2007).

The Dabus wetlands are among the most important wetlands in Ethiopia (Environment
Protection Authority [EPA], 2004). Their biodiversity is particularly significant as they harbour
one of the largest remaining papyrus swamps in Ethiopia. Papyrus forms dense and tall (3to 5
m high) plant communities in swamps which maintain perennially wet saturated soil conditions
(Muthuri & Jones, 1997). As a result, the Dabus swamps and associated wetlands are rich in
biodiversity, including numerous bird species, warthog, crocodile, as well as a large population
of common hippopotamus (Hippopotamus amphibius) estimated to reach several hundred

individuals, Dikaso (pers. comm. (2013). However, the diversity of macrophytes is relatively low,
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Figure 3.2. Papyrus cyperus swamp dissected by perennial drainage channel (August 2010).

The presence of one of the rarest birds, the Shoebill Stork (Balaeniceps rex), and the vulnerable!
Wattled Crane (Bugeranus carunculatus) were observed by the author during the dry season

field survey (Figure 3.3).

1 JUCN Red List of Threatened Species IUCN—The World Conservation Union. (2016) 2016-1 IUCN Red List of
Threatened Species, (version 2.1) [online]. Vol. [Access on 4-March-2016]. IUCN—The World Conservation Union,
Gland, Switzerland and Cambridge, UK, <http://www.iucnredlist.org>.
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Figure 3.3. Left: Shoebill Stork (Balaeniceps rex) fishing in emergent marsh at edge of papyrus swamp
(background). Right: Wattled Crane (Bugeranus carunculatus) pair. Both species were observed within
the same wetland area in March 2012.

The wetlands are formed where the Dabus River catchment broadens into a wider flat-
lying plain showing low relief landforms surrounded by volcanic hills and basement uplands
(Kebede, 2013). The low topographical variation of the floodplain (Figure 3.4) results in the slow
release of water from the drainage basin, with some areas holding water permanently. The
Dabus Marsh, which lies at the source of the Dabus River, represents important storage of
groundwater and its spongy nature is highly beneficial in sustaining its dry season flows
(Kebede, 2013). The river basin eventually narrows down to a smaller valley before it returns to

a faster flowing and more define stream channel.
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Figure 3.4. Cattle accessing remaining waterholes situated in the midst of a vast expanse of grass
marshes and wet meadows during the dry season (March 2012).

The wetlands of the Dabus River are representative of the many types of wetlands
found throughout the region. One of the benefits of studying these wetlands is that they
encompass an area made up of a system of seasonally inundated floodplains, notably with large
papyrus swamps, found in a relatively remote part of Ethiopia. Pressure is mounting on the
region’s fragile resources. These wetlands have been profoundly shaped by land use practices
and, according to local farmers, foreign and national developers have been looking into

converting this area into rice cultivation, among other similar development schemes.

The Dabus Marsh wetlands can be roughly divided into two main categories defined by
hydro-geomorphological characteristics: (i) areas that remain waterlogged for most part of the
year, and (ii) areas that are seasonally inundated but remain dry (i.e., low water table) during
the dry season (Section 3.3 describes the selected wetland classes in further detail). Papyrus

swamps thrive on the former and remain largely inaccessible, and as such were left in relatively

73



pristine conditions, whereas most other wetland areas are being rapidly encroached upon by
local farmers and pastoralists soon after water recedes. Wide expanses of tall emergent
meadows covering the lower half of the Dabus wetlands are transformed into barren land by
the end of the dry season. These areas undergo extreme seasonal changes, as shown in Figure
3.5 (panel c and d), which give a sense that the ecotone between aquatic and, what appears to
be, terrestrial zones shifts location significantly over the inundation cycle. Hydric soil conditions
are nevertheless maintained as periods of inundation are sustained for several months each
year. However, the floristic diversity in these meadows appears characteristically limited,
especially where the most severe impacts have occurred. These areas present high abundance
of annual C4 grasses, which are adapted to stressed environments, specifically from fire and

grazing (Spasojevic et al., 2010).

3.3 Wetland Classes

The selection of the wetland classes for this research was carried out in two stages, first
through field investigation, by conducting ground surveys of soil as well as vegetation
inventories, then by including additional classes that presented distinct characteristics after
evaluating results from preliminary analysis of the field data. The wetlands characterized in the
field included aquatic bed (AB), wet meadow (WM), marsh emergent (ME), papyrus swamp
(PS), shrub marsh (SM), and forested wetland (FW). In addition, upland areas surrounding the
Dabus wetlands were also characterized as Woodland (wdl), Forest (for), and

Agriculture/farmland (agr). The latter encompasses a wide range of land use activities, mainly
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crops (maize, guizotia, etc.) but also included rangeland used primarily for cattle grazing. The

agriculture class did not include land use activities occurring within the wetlands.

Subsequently, two additional wetland classes were added: Meadow Garden (MG) and
Grass Marsh (GM). The rationale for including these two classes is presented below. Within
each class, plant species composition, including abundance and dominance, was recorded, and
plant functional types were identified. The list of wetlands presented here constitutes, to the
best of the author’s knowledge, a representative sample of the wetlands found in this region,
however, it should be emphasized that the selection is based on surveys that cover a relatively
small fraction (< 1%) of the total wetland area. The field survey methods are described in detail

in Section 4.1.

The wetland classes established for this study broadly follow the US wetland
classification system (Cowardin et al., 1979). The Dabus wetlands are mainly comprised of
palustrine wetlands, which are area of wetlands commonly known as wet meadow, marsh, bog,
fen, or swamp. Palustrine wetlands are further divided by dominant vegetation life form and/or
substrate composition (Cowardin et al., 1979). For the Dabus Marsh, these include four main
categories, i.e., aquatic bed, emergent, scrub-shrub, and forested. The aquatic bed class
presents vegetation growing on or below the water surface, while the emergent class is
characterized by erect, rooted, herbaceous hydrophytes. Scrub-shrub wetlands are dominated
by woody vegetation less than 6 m tall, while forested wetlands are composed of woody
vegetation taller than 6 m (Cowardin et al., 1979). The emergent wetland sub-category was

further subdivided into four ‘non-persistent’ wetlands, and Papyrus cyperus (‘persistent’). The
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list of wetlands and terrestrial classes is presented in Table 3.1 including a description of their
main characteristics. Figure 3.6 shows box-and-whisker plots of the distribution of NDVI (Jan-
2010) and PALSAR L-band HV (July-2010) backscatter (¢°) values for each land cover class,
based on the training data (see Section 4.1). This figure is presented here to illustrate the wide

range of aquatic habitats and ecosystems represented in the Dabus wetland area.

The Dabus wetlands are largely dominated by herbaceous emergent wetlands. With the
exception of the more perennial Papyrus Swamps (PS), meadows and marshes undergo
significant seasonal changes. Annual peak rainfall and seasonal flood pulse events cause lateral
overflow of the Dabus River main course. During the wet season, tall grass species form
extensive areas of wet meadows often sharing structural similarities with emergent marshes,
while marshes exhibit higher spatial variability as well as greater plant species richness, which
includes various grasses and sedges along with other herbaceous species. Wet Meadows (WM)
are differentiated from marshes based on the duration of inundation, plant species
composition and diversity, and plant structure. Wet Meadows are typically dominated by
grasses and forbs and are generally less floristically diverse, whereas marshes include a wider
range of herbaceous species and sedges are more predominant. The Dabus wetlands
experience annual flood events of varying intensity that last about three months (between June
and September). Wet Meadows occur mainly on areas that are temporarily inundated during
the wet season, while marshes are found in area that are permanently inundated or for
duration extending beyond the wet season period. Seasonal changes due to human impacts are

most pronounced among Wet Meadows while impacts on marshes vary spatially, often
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depending on their relative ease of access. The transition from grass to sedge marshes is also
defined by hydro-geomorphological characteristics. Figure 3.5 illustrates seasonal changes in
wetland physiognomy, revealing a striking contrast for meadows (panel c and d) compared to
Emergent Marshes (panel e and f). The least impacted marshes were found on permanently
flooded or waterlogged soils, which can form thick floating mats. Marshes (ME and GM) were
among the most biologically diverse wetlands found throughout the study area. They were
distributed along varying environmental gradients primarily defined by the duration of
inundation and types of hydric soils. Marsh wetlands present a range of plant communities
comprised of a mixture of sedge and grass species, and forbs. The Grass Marsh (GM) class was
included as a marsh ‘sub-class’ to account for the highly variable nature of emergent marshes
(ME), and to separate permanently from seasonally inundated wetlands. Grass dominated
marshes (GM) are seasonally inundated and found on soils that remain saturated for most of
the year, often along the small drainage channels crisscrossing the main floodplain area
adjacent to the Dabus River. Grass Marsh often presented a rich floristic diversity with grass
species found in larger proportion than sedges, and occurred along a continuum between the
Wet Meadows and the sedge dominated Emergent Marshes. The distinction between Grass
Marshes and Marsh Emergent wetlands was generally difficult to make without an
understanding of the type of habitats in which they were found. These wetlands exhibited high
spatial variability creating heterogeneous mosaics that were sometimes difficult to attribute to

a given class.
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Findings from the field surveys (Section 4.1) revealed that the meadow class could be
potentially subdivided into Wet Meadow and a type of cultivated meadow, referred in this
study as Meadow Garden (MG), see Figure 3.5 (panel b). The Wet Meadow (WM) class forms
large areas of seasonally inundated grasslands, as previously described. In populated areas,
these wetlands are commonly cultivated for at least parts of the year, generally for common
crops such as sorghum, maize, etc. These areas are typically found along narrow drainage
valleys and are referred to as valley-bottom (grassy) wetlands (Dwaf, 2007; Hailu et al., 2000).
Crops are usually planted after flood waters recede (Dixon & Wood, 2003). These cultivated
meadows were relatively easy to identify using high-resolution satellite images. They are similar
to wet meadows, as both are seasonal and occurred on fairly well-drained soils and are, to
various extents, heavily impacted by human activities. Their main differences are defined in
terms of spatial distribution and hydro-geomorphology: Wet Meadows dominate the wider
floodplains, whereas Meadow Gardens generally occupy the many small drainages connected

to the main wetland.

Shrub Marsh (SM) wetlands were generally found in areas near or mixed with Papyrus
Swamps. They formed sparsely distributed scattered communities. Shrub Marsh presence was
recorded in less than 5% of the locations visited (Table 4.1). Forested Wetland (FW) forms
dense canopy forest and was typically found covering the bottom of valleys in drainage
channels or adjacent to rivers. Flooded forest experiences seasonal flood events of varying

intensity.
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The final list of classes includes eight wetlands and three terrestrial classes (Table 3.1). A
twelfth class was included to account for burned patches/scar (brn). The Burn class was only

used with the Landsat dry-season image (Jan-2010).
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Wet Season (July 2010) Dry Season (March 2012)

Figure 3.5. Aquatic Bed (a), Wet Meadow converted to cropland (b), Wet Meadow (c, d), Marsh
Emergent (e, f), Papyrus Swamp (g), Papyrus Swamp and Shrub Marsh (h), cropland (maize) and
Woodland (i), forested area at centre and fallow land in foreground with houses/tukul (j).
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Figure 3.6. Box-and-whisker plots showing the distribution of dry season (Jan 2010) NDVI (top) and wet
season (July 2010) PALSAR HV backscattering intensity (¢®) (bottom) for thematic classes derived from

pixel values extracted from training objects.

The “notch”, or narrowing of the box around the median line, extends 1.58 x IQR (Inter-Quartile Range)/ sqrt(n),
and shows median confidence interval (~95%); the lower and upper hinges denote the first and third quartiles, i.e.,
IQR; whiskers extend 1.5 x IQR; and outliers are denoted by the blue circles.
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Table 3.1. Land cover class description.

Class name Class Description
code
1. Aquatic Bed AB Vegetation growing on or below the surface and areas of open water.
2. Wet Meadow WM  Grass dominated but mixed with forbs, and sedges; mostly found on
low-lying areas; seasonally flooded (< 3 months).
3. Meadow MG Cultivated wetlands along narrow drainage channels formerly
Garden occupied by Wet Meadow, but also found in areas of
drained/converted marshes.
4. Marsh ME Sedge dominated but mixed with grasses and forbs found on
Emergent permanently inundated, or on saturated soils.
5. Grass Marsh GM Mixed Grass/Sedge with forbs, seasonally flooded (< 6 months).
6. Papyrus Swamp PS Papyrus cyperus dominated with ferns and other forbs.
7. Shrub Marsh SM Fabaceae-Shrub dominated marsh often associated with Papyrus
Swamp.
8. Forested FW Woody forest seasonally inundated, dominated by Syzygium
Wetland guineense, in assoc., Ficus sur, generally found along stream drainage
channels, also riparian community adjacent to main streams.
9. Woodland wdl  Open/sparse canopy woody savannah-like vegetation with shrubs and
scattered trees up to 10 m tall on grassy/herbaceous sub-layer.
10. Forest for Closed canopy broad-leaf forest.
11. Agriculture agr Cropland, cultivated pasture, and homestead areas.
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4. Methods

4.1 Reference Data Collection

Field surveys of the Dabus Marsh wetlands for characterization of vegetation units and
classification were carried out during the wet season (July 2010) and dry season (March 2012)
and included hydro-geomorphology and ecology, plant community composition and structure,
and land-use surveys. The wetland types characterized in the field were mainly comprised of
emergent herbaceous wetlands (see Section 3.3 for detailed wetland class description), i.e.,
grass dominated Wet Meadows (WM), emergent sedge/grass marshes (ME and GM), and large
Papyrus Swamps dominated by Cyperus papyrus (PS), and woody marshes dominated by shrubs

(SM), and Forested Wetlands (FW).

Field surveys entailed the collection of detailed GPS geo-referenced field data at each of
the selected survey plots. The GPS unit selected for this purpose (Trimble® Juno) claims a
horizontal accuracy of 2 to 5 metres. Geo-referenced ground survey points were collected for
use as training data for wetland classification. The total number of ground reference points
collected during the two field surveys was approximately 270, with a relatively balanced
number of points across most classes, while the rarer or less accessible classes (i.e., AB, SM)

were represented by only a few sample points.

In thematic mapping using classification algorithms, a common practice is to split the
georeferenced sample data randomly using a given ratio such as 60:40 for training and
validation, respectively (Hastie et al., 2009). However, in this study, based on the limited

number of ground reference points and taking into account the spatial heterogeneity of the
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classes, the entire dataset was used for training. For validation, additional sample data points
were derived subsequent to the fieldwork from interpretation of geo-referenced ground
photographs collected during the surveys as well as using manual photo-interpretation of high-
resolution optical images available from ESRI’s World Imagery and Google Earth. (see Section

4.1.1.2 Validation dataset, for a more detailed presentation).

Efforts were made to characterize wetland vegetation communities based on dominant
plant species and plant functional groups. Field surveys fulfilled an additional purpose, which
was to carry out a descriptive analysis of the wetland ecosystems and their adaptation to
anthropogenic pressures (see Section 4.1.2). This work was a collaborative effort with Dikaso
Unbushe for his research on the wetland vegetation composition and ecology of Ethiopia
(Dikaso, 2013). Wetlands characteristics were derived partly from the same data collected at
each quadrat/plot (see Appendix B: List of wetland attributes collected during field surveys:
Data entry form, questions 1 to 7). Additional information was collected through informal

discussions with local farmers and residents.

The initial field visit was carried out with limited prior knowledge of the study area and
with limited access to high-resolution imagery that would have aided the selection of
representative wetland types. This field visit took place during the wetter period of the year
(August 2010), which presented considerable challenges with respect to safety and access to
some of the sites. The second visit was carried out during the dry season (March 2012) and
consisted of revisiting a number of previously sampled plots as well as surveying new locations.

Overall, 49% of the sites were visited twice. The total number of days spent in the field was 15
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and 18 for the wet and dry season, respectively. The total number of training data points
collected for each class is presented in Table 4.1. The level of detail that could be obtained at
each location had to be balanced with the need to survey/visit as many different sites as

feasible.

The general locations targeted for surveys were identified in advance based on visual
interpretation of features from satellite images, including spectral signatures and textures in
combination with the SRTM Digital Elevation Model (DEM). Each location was comprised of a
mosaic of wetland vegetation types and habitats, both seasonally and permanently inundated
wetlands. For most areas, access was generally limited to footpaths. Additional locations were

subsequently added from knowledge gained during the field missions.

Representative sampling sites comprising relatively homogeneous vegetation units were
selected on the basis of physiography and physiognomy. Surveyed sites were established within
a 30x30 m plot size that was considered representative of a broader area covering about 90 x
90-metre in size. For a Landsat image, this represents a 3 x 3-pixel area. However, for narrow
linear ground features such as riparian stream vegetation, a minimum representative area of 30
x 30 m was considered more applicable. Replicate samples for each land/vegetation cover type
were collected. The total number of locations, transects and sample points (this term includes
quadrat and plots thereafter) sampled during each field visit was largely determined by physical
and time constraints. Effort was made to survey a representative range of plant communities

for each class (see Table 4.1 for field/training and validation sample numbers per class).
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Detailed information on the biophysical features of wetlands collected at each sampling
location included: general site environmental and landscape characteristics, dominant wetland
types, hydro-geomorphology and hydro-ecology (e.g., water depth, drainage conditions, slope,
etc.), land use and land cover types, disturbance level (e.g., burning, overgrazing), the farming
system in place, and threats to the wetland. See Appendix B: List of wetland attributes

collected during field surveys.

In total, 253 plots from a total of 272 sampled were used to assemble the preliminary
training data set (see Section 4.1.1 for additional information on how the full training set was
constructed). The 19 rejected plots were located along transitional areas between habitats.
Although, in-situ measurements were generally collected while standing at the centre of a plot,
in some cases, areas of interest that were located in water too deep to reach and/or in areas
too densely vegetated, could only be surveyed while standing very near the edge of the habitat
or from a short distance of up to 90 m away. Marshes and swamps, which form extensive areas
of wetlands, were particularly difficult to access. In addition, some of the more remote sites
were potentially hazardous to visit as they harbour large predators (pythons, crocodiles, etc.).
After initial classification results were reviewed a number of plots had to be repositioned to
new locations, usually 30 to 60 m away, which corresponds to one or two pixels on a
multispectral Landsat image. These changes were considered acceptable for sites where
detailed photographic documentation was available and where habitat types could be

confirmed in-situ with reasonable confidence.
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4.1.1 Post-field procedure and supplementing reference data

The training and validation point database was largely built upon the information collected in
the field as well as incorporating additional classes interpreted from imagery, as described in
the previous Section. Additional post-field procedures that were undertaken to confirm the
validity of the training and validation sets and to augment the number of usable reference

points are presented next.

4.1.1.1 Training data

Assessment of land cover and land use types was carried out remotely using the extensive
collection of photos collected in the field (~2,500 per trip), which, for the most part, included
geolocation, in combination with ESRI’'s world imagery and Google Earth high resolution
images. Both of these web-based services provide an extensive archive of fine to high-
resolution images that covered significant parts of the study area at various temporal scales.
Access to higher-resolution images for the area increased significantly from 2012 onward. This

material was used effectively for visual interpretation.

The process of establishing training points using remotely sensed based knowledge, in
lieu of in-situ measurements, in order to augment the number of training/reference points,
presented some difficulties. Since this study focuses on a timescale that spans over about two-
and-a-half years, from late 2009 to early 2012, significant changes occurred during that period,
including the steady conversion of large expanses of woodlands to agriculture. Prior to that
surrounding woodlands and grasslands had been exposed to seasonal burning on a wide scale

(Dixon & Wood, 2003). Land use activities such as crop cultivation and gardens and land cover
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types such as forest and papyrus swamps, are relatively easier to identify on a satellite image
compared to other land cover types that exhibit less distinct spectral patterns. In addition, the
year of acquisition of satellite images provided by web-based services, such as Google Earth, did
not match the study period well. Images available for confirming targeted land features were
restricted. For higher-resolution images found in Google Earth, the northeastern region of the
wetland areas was only showing images prior to 2007, while the central and southwestern parts
used more recent images, only from 2012 onward. Very few spots had images for 2010 and

none were found for 2009.

The majority of training data were acquired by visually interpreting moderate to high-
resolution imagery. For the four main wetland types, i.e., meadows, marshes, papyrus swamp
and forested wetlands, the ratio of remotely sensed to field-based training data points is about
3:1to 4:1. This ratio was higher for the terrestrial classes as fewer data points were collected
in the field since the focus of this study was on wetlands. The terrestrial land use and land cover
types account for the largest proportion (nearly 80%) of the study area, of which more than half
was agricultural. The distribution of training data points was relatively balanced with respect to
the land cover proportions observed across the classes (Table 4.1). The number of wetland
classes averaged 80 points per class, and 140 points for terrestrial classes. Meadow Garden was
the rarest class with 55 points and it was also the class with the smallest observed spatial
extent wherever it occurred. The overall performance of the wetland and terrestrial classes

was examined separately and the differences between the two compared across classifications.
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Although, it was felt that these latter image interpreted datasets were assumed to be of

slightly lower certainty for a number of class types than the field observations, they were used

in classifier training. Their reduced certainty was assumed to have had potential impacts on

classification accuracy. For herbaceous wetland classes (e.g., Marsh Emergent and Grass

Marsh), which were commonly highly confused, the use of remotely interpreted training points

for these classes would further exacerbate this confusion. However, efforts were made to

reduce uncertainty by selecting areas where ground photos were available. For the validation

stage, the focus was on comparing classifications to determine optimal input variables and not

on the absolute accuracy values, as accuracies were generally quite high.

Table 4.1. Training and Validation dataset, total number of points per wetland (1-8) and terrestrial
classes (9-11). Burn Patch/scars (12) are found within both wetland and terrestrial area.

Land Cover Code Training Field Plots Validation
(N) [n]' (N) (N) [n]
1. Aquatic Bed AB 78 0 33 29
2. Wet Meadow WM 90 43 136 119
3. Meadow Garden MG 55 [44] 8 62 45
4. Marsh Emergent ME 76 18 64 53
5. Grass Marsh GM 64 43 78 48
6. Papyrus Swamp PS 99 33 68 68
7. Shrub Marsh SM 87 7 49 41
8. Forested Wetland FW 98 [90] 31 75 57
9. Woodland wdl 152 26 166 112
10. Forest for 121 15 73 35
11. Agriculture agr 156 29 198 135
12. Burn Patch? BP 49 n/a n/a
Total 1125[1101] 253 1003 740

"Number in brackets [n]: points included within ‘diagonal’ (Figure 4.1) area.
2Burn patches training dataset collected from Landsat TM-5 image, January 12, 2010.
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The area of interest (AOI) for this study is approximately 6,276 km? in total. The portion
of the AOI where there is common data coverage that includes all variables used for RF
classifications is 4,279 km? (Figure 4.1) and forms a parallelogram shape 73 km wide x 60 km

long. Results presented in Table 5.10 and thereafter describe this ‘diagonal’ area.
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Figure 4.1. Map of study area showing the diagonal section cutting across the ‘area of interest’.
Wetland and terrestrial area were derived from Model 1 classification (see Section 5. Results)

4.1.1.2 Validation data

Approximately 600 and 500 points were, at first, randomly selected from wetlands and
terrestrial areas, respectively, in an attempt to assemble an independent sample set for
validation of RF classifications. Land cover classes were interpreted using high-resolution
satellite images and geo-referenced photos. Starting with the original intent of following a fully
random sampling design, a purposeful sampling scheme was subsequently applied to selected
points. Sites that could not be interpreted were either dropped or manually moved to alternate
locations more easily recognizable, selecting preferably lesser common classes in order to

90



create a balanced dataset and to minimize mis-registration problems and increase confidence
in the reference data labels. Examples of rare wetland classes included Meadow Garden and
Forested Wetlands, and for terrestrial classes, Woodland and Forest. The final validation set,
after extensive alteration of the original dataset, included interpretable points which

intersected with 565 wetland and 438 terrestrial points.

The difficulties in assessing some of the critical wetland classes call into question the
reliability of this source as a valid independent dataset for accuracy assessment. Although no
longer truly random, the final dataset remained evenly spatially distributed and relatively
independent from the training set (Figure 4.2). The majority of the training points were
collected from a limited number of accessible sites. As a result, less than 200 validation data
points (out of 1001) were located within 1 km of a given training point (average distance = 600
m) and only 22 points were within a 90 m distance. However, neither dataset can be considered

ecologically independent since they were both collected from the same general wetland area.

The most salient limitations concerning both the training and validation datasets include
class attribution errors between similar classes, i.e., marsh and meadow, forested wetland and
forest, papyrus swamps and shrub marshes. Significant errors are generally introduced during
the process of interpreting classes due to the observer’s confirmation bias against pixels that
cannot be readily identified. The final products likely led to optimistically biased accuracy

statements (Congalton & Green, 2009; Hammond & Verbyla, 1996).
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Training Validation

[wetand - wet (647) O Wet (565)
[ ] Terrestrial m Terr (478 W Terr (438)

The class ‘Burn Patch’ was included in some of the classifications to account for the
large areas of burned agricultural fields and wetlands found on the Landsat dry season image
(12 Jan. 2010). The independent validation set did not include ‘Burn Patch’ since it was
assembled to represent conditions that would occur during both the wet and dry seasons.
However, the burn class was subsequently added to the validation set as a 12" class (or a single

dummy point) to allow for cross-tabulation between classifications.

From a total of 1,003 reference points, 740 points comprised the portion of the study
area represented by all the variables included in the study, an area that extends across the

diagonal of the image, see Figure 4.1. This is referred to as the ‘diagonal’ validation set
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throughout the study. The number of reference points identifying the eleven land cover classes

is presented in Table 4.1.

This validation dataset provides a complementary source of validation, separate from
the others: (/) random Forest ‘Out-of-Bag’ error estimate, which generally represents inflated
accuracy (Millard & Richardson, 2015; Breiman, 2001), and k-fold cross-validation, presented
below. (ii) cross-tabulation/validation between classifications comparing various RF model

output.

4.1.2 Wetland plant community composition

Characterization of plant communities was carried out following a standardized method using
transects and quadrats (note: the term plot and quadrat are used interchangeably). Transects
were set up preferentially across an area where quick succession in vegetation was found,
usually along environmental gradients (i.e., elevation, soil wetness, etc.), to represent habitat
heterogeneity/diversity and variations in hydrological conditions (Mueller-Dombois &

Ellenberg, 1974).

The selection of sampling locations and number of transects and associated quadrats,
varied depending on the size of the wetland, and on the habitat diversity observed (i.e., local
topography and plant community composition). Generally, one transect was established for
each general sampling location, and a number of sample points were positioned along each
transect. Typically, transects started from a mid-point in the wetland (for palustrine wetlands),
or at the edge of an open waterbody (for lacustrine wetlands), and extended through the

ecotone zone bordering the wetlands.
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At each sample point on a transect, four 10x10 m quadrants in a 40 m x 40 m area were
surveyed following a sequential pattern starting from the northeast corner of the area. Within
each of the four quadrants, plant species composition was recorded and the percentage of
surface cover for each species was estimated. The list of main species was ranked by their order
of importance (dominance) and percent cover for each species, following the Braun-Blanquette
method modified by Maarel (1979). Cover was estimated for each species present following
Mueller-Dombois and Ellenberg (1974); (Dikaso, 2013). Plant species occurring outside the
plots were also collected and identified to describe the species diversity characterizing the
general area sampled. Photographic documentation was collected systematically for each
sample area, including one photo for each quadrant (taken from a corner), one ground looking
photo and a sky looking photo (taken from the ground) to assess ground cover and extent of
canopy cover. The geographic location of the sample area was collected at its centre point using
the average of 25 points. GPS tracking data were also collected throughout the day. Track logs
were used to maintain a daily ‘spatial’ journal for each location visited, while GPS point cloud
data were used to identify the general area surveyed and to help confirm the sample area

geographic location.

4.2 Geo-spatial Data

This section summarizes the pre-processing of satellite images and geospatial data.

The multi-source geospatial dataset assembled for this study included satellite optical
and SAR images, vegetation and water indices, and morphometric terrain parameters. The

optical multispectral data were gathered from the archive of calibrated Landsat thematic
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mapper 5 (TM) images with Level 1T pre-processing, which combines GCPs and a digital
elevation model to improve radiometric, geometric, and topographic accuracy (Chander et al.,
2007). The Landsat archive provides near-global coverage every 16 days (Xie et al., 2008) since
1972. Landsat data were obtained from various sources including the University of Maryland
Global Land Cover Facility (http: glcf.unmiacs.udm.edu) and the Earth Resources Observations

and Science (EROS) archive (http: glovis.usgs.gov/).

ALOS/PALSAR fine-beam single and dual polarization imagery were selected as they
were the only source of SAR data available (in the desirable wavelength range) for the study
area. PALSAR images were provided at no cost by the Japanese Exploration Agency JAXA, under

the Wetland Theme of the ALOS Kyoto and Carbon Initiative (K&C) (De Grandi et al., 2011).

The study duration, which can be approximated to a three-year period from mid-2009
to mid-2012, as shown in the timeline below (Table 4.2), and was defined in part by the timing
of the field investigation (2010 and 2012) and by the availability of geo-spatial information
during that period. Table 4.4 lists the image sources and dates of acquisition used in this study.
It should be noted that, dry season Landsat images were available for the year 2010, and only

for that year, whereas PALSAR images were available for both the dry and wet seasons.

Table 4.2. Acquisition timeline for Landsat and PALSAR images used in this study. Duration and timing of
wet and dry season periods are denoted by the blue and brown shade, respectively; the wet season field
survey is denoted by the red star.

2009 2010 2011
Landsat Nov |Jan ﬁ( Oct
PALSAR" |Jul Jan Jul Jan
PALSAR? | Jul Jul  [Oct
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Process Level 1.1 and 1.5; and
2JAXA 25 m mosaics.

The study area is captured using two Landsat scenes along a single path (number 169),
using row number 53 and 54. A Landsat scene covers 185 x 185 km. By comparison, the study
area is relatively small (~ 80 x 80 km) and most of its footprint is covered by a single tile (169,
53). A benefit of capturing the entire area from a single date is that Landsat images can be
readily mosaicked, after atmospheric correction, without having to account for temporal
differences between scenes, which simplifies the required number of processing steps. The
Landsat Thematic Mapping (TM) sensor simultaneously records incident radiance in seven

different spectral bands (Lefsky & Cohen, 2003).

Table 4.3. Band names and wavelength ranges for the Landsat Thematic Mapper (TM) 5 sensor
(Chander et al., 2007).

™ Band Name Wavelength

No. (um)
1 Blue 0.45-0.52
2 Green 0.52-0.60
3 Red 0.63-0.69
4 Near Infrared (NIR) 0.76 —0.90
5 Shortwave infrared (SWIR-1) 1.55-1.75
7 Shortwave infrared (SWIR-2) 2.08-2.35
6 Thermal (TIR) 104-12.4

Bands 1to 5, 7: nominal ground pixel size = 30 x 30 m;
Band 6: nominal ground pixel size = 60 x 60 m.

4.2.1 Multi-spectral images: Landsat data

Standard pre-processing of satellite optical images included masking of features obstructing
ground view, such as clouds and clouds shadows, and water using Fmask (‘Function of mask’)

algorithm (Zhu & Woodcock, 2012). The algorithm was developed to automate cloud, cloud
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shadow, and snow masking for Landsat TM and ETM+ images. Fmask detect clouds and water
effectively and can also detect thin layers of cloud and their shadows. The Fmask detection
algorithm calculates Landsat top-of-atmosphere (TOA) reflectance and brightness temperature
(BT) values as inputs to the model; i.e., image digital number (DN) values are converted to TOA
reflectance and BT (°C, for TIR band) using the LEDAPS atmospheric correction tool (Vermote &
Saleous, 2007). Cloud shadow detection employs a flood-fill transformation to generate a
shadow layer (Zhu & Woodcock, 2012). Cloud mask files were used as input to the atmospheric

correction model.

Radiometrically corrected reflectance values are important for analysis of temporal
reflectance and land cover changes (Coppin et al., 2004; Vicente-Serrano et al., 2008). To
correct for atmospheric and topographic effects, and to derive ground reflectance and
emissivity values from the multispectral and thermal bands, respectively, the ATCOR-2
algorithm was implemented (Richter et al., 2006), followed by production of mosaics of image
pairs using PCl Orthoengine. The ATCOR-2 algorithm is based on the Moderate Resolution
Atmospheric Transmission MODTRAN-4 radiative transfer code (Berk et al., 2003). ATCOR
retrieves surface reflectance, ground visibility and temperature, and applies an empirical
approach to normalize the data to nadir reflectance values (Berk et al., 2003). Radiometric
normalization was carried out on all multispectral images using the ATCOR module workflows
for Ground Reflectance and Surface Temperature implemented through PCl Geomatica (2014
PCl Geomatica, (Richter, 2010)). Sensor and radiometric information was extracted from the

Landsat scene metadata. Cloud mask files generated previously using Fmask were supplied as
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input to ATCOR. A water mask was created using reflectance in the near and shortwave infrared
of less than 5% and 3%, respectively (default values). Haze removal was carried out using the
default value for haze cover percentage (50%) and haze correction was applied to bands under

0.85 pm.

For illumination condition settings, topographic terrain derivatives (slopes and aspect)
were derived from the SRTM 30 m digital elevation model (DEM); see Section 4.2.3.2. This
provided ‘Sky view’ information, which was required as input to generate illumination layers
and shadow map products. Although this study focuses on wetland mapping, upland classes
were included and as such are subject to topographic brightness variations. For the selection of
types of aerosols, the ‘rural’ model was used. This model assumes that the aerosol background
originates from a combination of reactions between atmospheric gases (70%) and dust particles
picked up from the ground surface (30%). Visibility maps (optical depth) were modelled using a
‘tropical’ standard atmosphere (total water vapour content of 4.11 g/cm?) and calculated using
spatially varying conditions (Teillet et al., 2006). This is done using dark vegetation pixels
defined based on a minimum NDVI value of 0.8 and maximum TOA red reflectance of 2%
(default settings). Average visibility was set to 30 km (default) as a starting point for visibility

map calculation.

Surface temperature from Landsat band 6, with sensor settings (radiometric and
calibration coefficients) from the metadata file, was also corrected using the atmospheric
correction/surface temperature workflow included with ATCOR. In addition to the settings

listed above, the default constant emissivity (¢) value was set to 0.98, which is the nominal
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value obtained over water (Klemas, 2011); emissivity for wet healthy green vegetation is 0.96-
0.99 and 0.95-0.98 for wet soil (Lillesand et al., 2008). Surface emissivity represents the
proportion of radiance emitted by the surface in comparison to that which would be emitted by
a black body (a perfect emitter) at the same temperature (Lillesand et al., 2008). It is a measure
of the efficiency of the surface in transmitting radiant energy generated in the soil into the

atmosphere (Schmugge et al., 2002).

4.2.2  SARimages: L-band ALOS/PALSAR

ALOS Phase Arrayed L-band SAR images (PALSAR), processing Level 1.1 and 1.5, used in this
study were acquired in fine-beam single (HH) co-polarization (FBS) and dual co- and cross-
polarization mode (HH and HV) (FBD), in an ascending orbit with an off-nadir angle of 34.3°,
resulting in an incidence angle range of 36.6° and 40.9° from near- to far range. The cell size
was 12.5 m and the images covered ~70x 70 km. PALSAR images were provided by Dr. L.-M.
Rebelo (pers. comm.), a Principal Investigator under the Wetland Theme of the ALOS Kyoto and
Carbon Initiative (K&C). This initiative is an international collaborative project led by the
Japanese Exploration Agency (JAXA), which has been set up to support the data and
information needs of international environmental conventions, carbon cycle scientists and

environmental conservation programs (De Grandi et al., 2011).

SAR images were acquired from three different sources in order to capture annual and
seasonal changes for the study period between 2009 and 2011: 1) PALSAR SLC (Single-Look
Complex) Level 1.1 processed scenes were procured directly by JAXA, 2) PALSAR level 1.5G

processed scenes, which are Multi-Look Complex (MLC) and geo-referenced to UTM
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coordinates were obtained through the K&C Initiative, and 3) a mosaic with 25 m pixels was

obtained freely from JAXA website (http://www.eorc.jaxa.ijp/ALOS/en/palsar fnf/fnf

index.htm). Processing of each of these types of data is described below.

As image pairs from adjacent paths were required to cover the study area, varying
environmental conditions (such as flooding, drought, etc.) can cause the radar response signal
to change significantly over short periods of time between acquisitions. Revisit time for PALSAR
fine-beam mode scenes is 18 days and this constitutes a potentially significant temporal gap,
particularly when observing wetland changes at the onset or tail end of the rainy season.
Likewise, changing conditions during the dry season, such as burning of vegetation cover, is
frequent and unpredictable, which presents challenges when mosaicking multiple images is

required.

Two PALSAR scenes from consecutive orbital paths were required for complete
coverage of the Dabus wetlands, namely the scenes along paths 611 and 612, row 170 (Table
4.4). Image availability for the dry season was limited to single beam HH polarization scenes
(FBS), which were acquired in January 2010 and 2011, while fine beam dual HH and HV (FBD)
images were acquired in July 2009 and 2010, which corresponded roughly to the early/mid part
of the rainy season (the timing of the rainy season varies from year to year, generally starting in

June and ending in October).

PALSAR SLC images were available for the dry and wet seasons but limited to July 2010
(wet) and January 2011 (dry). Two sets of ortho-rectified images were generated, which were

subsequently used as reference images in geo-correction (image-to-image registration) of all
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other PALSAR images (geo-correction was performed using PCl Geomatica® Ortho-Engine,
2014). They included PALSAR Level 1.5G images for July 2009 and January 2010, and the 25-m
mosaic for the years 2009 and 2010. The list of SAR images used in this study is presented in

Table 4.4.

For georeferencing and geo-correction, over 20-30 GCPs were generally collected across
an image. GCPs were either collected manually using high-resolution Images (from various
sources, mainly using 5-m resolution PRISM panchromatic data) as the base map to supply
reference data (with known ground coordinates) for those GCPs or collected automatically
(with a default search radius of 100 pixels) using a base map image previously geo-corrected.
SRTM 1-arcsec DEM was used for elevation data. Geometric correction was carried out using a
first-order polynomial affine transformation and nearest neighbour resampling, to achieve a
Root Mean Square errors (RMSEs) below 0.5 pixel for the collected GCPs. The polynomial
transformation model creates a new geocoded image space and interpolates the value in the

new image raster by using least squares criteria.

4.2.2.1 PALSAR processing level 1.1

PALSAR SLC Level 1.1 images provided the most control for the calculation of SAR variables.

L1.1 images are still in the original acquisition geometry (i.e., slant range) and as such,
information relevant to acquisition geometry and radiometry is preserved. L1.1 image
parameters are used as input for the radiometric normalization and calibration process (Zhou et
al., 2011). PALSAR SLC Level 1.1 images were multi-look processed to a 4-look image (whereby

four independent observations of each resolution cell are averaged) (Bruniquel & Lopes, 1997)
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corresponding to 12.5 m pixel spacing (~70x70 km area coverage) using SARScape ‘image
processing workbench’ module within ENVI (ITT Visual Information Solutions, 2012; Sarmap SA,
2008). Multi-look processing reduces speckle noise without affecting the scattering
fluctuations. Next, the multi-looked images were speckle filtered (details below),
radiometrically calibrated and normalized by eliminating incidence angle effects and antenna
gain and spread loss patterns. The radiometric normalization process used a modified cosine
model (Ulaby & Dobson, 1989). Terrain geocoding used the SRTM 1-arcsec DEM, with the aid of

the ALOS orbit data, and followed the range-Doppler approach.

To compensate for illumination differences due to the local variations in topography and
the SAR sensor viewing geometry, terrain illumination correction is normally applied (Zhou et
al., 2011). However, due to the relatively flat nature of wetland topography in the study area,
regions of SAR layover (spatial distortion where points further from the sensor are imaged
closer to the sensor due to the geometric relationship between steep terrain slopes and
incidence angle) did not account for more than 0.1% of the images and were present only in

steep upland areas. As a result, illumination correction was not separately conducted.

Ortho images projected to UTM coordinates (zone 36) using the WGS84 reference
ellipsoid and then assembled to image mosaic tiles geocoded to 30 m pixel size to match the
Landsat images. In summary, these processing sequences generated a mosaic of geo-coded,
orthorectified, terrain-corrected, radiometrically calibrated and normalized PALSAR scenes with

a pixel size of 30 m.
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PALSAR Processing Level 1.5

L-band images from ALOS/PALSAR Level 1.5G fine-beam single and dual-polarization (HH and
HV) backscatter images (12.5 m pixel size) were acquired that had been radiometrically
calibrated for incidence angle and radiometric distortion (Shimada et al., 2009). Although, level
1.5g products are delivered geo-referenced, the set of images acquired for the study area
required additional geo-correction processing as they exhibited significant spatial anomalies
with shifts ranging from 1.5 to 5.5 km westward across the orbital path. The extent of the shift
(foreshortening) was a function of the sensor incidence angle and scene elevation (JAXA pers.
comm.). The fine-beam mode scene (34.3° incidence angle) shift was less pronounced

compared to that of the polarimetric images (21.5° incidence angle).

PALSAR level 1.5 geo-correction was done in two steps. First, geometric and radiometric
calibration tools in MapReady (software version 3.2), developed by the Alaskan SAR facility,
were used to improve spatial alighnment. Subsequently, images were geo-corrected a second
time using PCl Orthoengine, which provided additional control during the selection of GCPs and
tie-points, to improve accuracy. RMS errors of less than 1 pixel, with values ranging from 3 to 6

m were achieved.

Table 4.5 lists all SAR derived variables examined in this study, which included five main
variables: HH, HV, HV/HH backscatter, texture from each polarization, and five
‘multitemporal/bi-seasonal’ variables calculated using the following image pair: the wet season

July 2010 and the dry-season Jan. 2011 data; these included, (i) image ratio (wet/dry), (ii)
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coefficient of variation (wet/dry), (iii) gradient (wet/dry), (iv) maximum ratio (wet/dry), and (v)

mean backscatter values (wet/dry).

Table 4.4. List of multi-spectral and SAR images used for Dabus wetlands classification.

ALOS/PALSAR ALOS/PALSAR ..
Year Season Landsat’ . Polarization
(Level 1.1 & 1.5) Mosaic

2011 Wet Oct-14

Dry Jan (10-27)? HH
2010 Wet Nov-12 Jul (10-27)2 10-Oct (East) & HH & HV

27-Jul (West)

Dry Jan-12 Jan (07-24) HH
2009 Wet Nov-09 Jul (07-24) Jul (07-24) HH & HV

Dry

"Landsat TM-5 Orbital Path (WRS): 171; Rows: 053 and 054;
2PALSAR Process level 1.1

4.2.2.2 PALSAR mosaics

Since 2014, the Japanese Aerospace Agency (JAXA) has made available online the K&C
ALOS/PALSAR global mosaics, which are generated using data acquired annually from 2007 to
2010, (http: www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm). Pre-processing steps applied to FBD
(HH and HV polarization) amplitude data (dB strength of the radar signal reflected by a
distributed scatterer), included geometric and radiometric correction (slope correction). The
slope-corrected mosaics are provided in latitude/longitude using the WGS-84 datum, with a

pixel size of approximately 25 m at the equator.

The mosaics for the study area are comprised of images acquired mainly during the
wetter period of the year, from July to October. The four tiles selected were comprised of
images acquired along five different flight paths with dates ranging from June 28 to Sep. 3™

for the year 2009, and from May 8" to Oct. 10t for 2010. The image pair covering the study
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area was acquired from the same dates in July as those collected from Level 1.1 and 1.5, with

one exception, in 2010 the western scene was acquired on Oct. 10, i.e., 75 days later.

The Gamma MAP filter was applied for speckle filtering (see SAR speckle filtering Section
below) with a medium-sized kernel (5 x 5) (Lopes et al., 1993). The images were re-sampled and
re-projected to a regular grid with 30 x 30 m pixel size as part of the clipping/stacking final

process.

It was expected that the 25 m mosaics contain similar information to that provided by
Level 1.1 and level 1.5 processed images as image pairs from the same dates were used in 2009
and for one scene in 2010. However, the JAXA mosaic is an annual product that can be used to

characterize wet-season conditions only.

4.2.2.3 SAR speckle filtering

Speckle filtering is a widely used method applied to SAR data as an integral processing step
prior to conducting image analysis (Lopes et al., 1990). Speckle filters smooth the image data
without removing edges and can preserve ecotones between vegetation zones. They perform
spatial filtering on each pixel using the grey-level values in a window centred on each pixel (PCl
Geomatica 2014). Two types of filtering methods for SAR data targeting high-frequency noise,
or speckle were considered, the ‘Enhanced Lee Adaptive filter’ and the ‘Gamma MAP filter’. For
the Lee Filter (Lee, 1981), highly variable pixels are processed based on levels of spatial
homogeneity within the given window, whereas the Gamma MAP filter (Lopes et al., 1993)
assumes a gamma-distributed scene. In this study, PCl Geomatica (2014) both were

implemented using a 5 x5-pixel window. Lee and Gamma filtered images were used in RF
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classifications and their performance compared. The Gamma filtered images produced higher

accuracies so it was retained.

Table 4.5. List of SAR variables used in wetland classification.

SAR Variables Wet Season* Dry Season Bi-Seasonal
(wet—dry)
1. HH Gamma filter 2009 & 2010 2010 & 2011
2. HV Gamma filter 2009 & 2010
3. HV/HH Ratio 2009 & 2010
4. HH Texture 2009 & 2010 2010 & 2011
5. HV Texture 2009 & 2010
6. HH Ratio 2010-2011
7. HH Coefficient of Variation 2010-2011
8. HH Gradient 2010-2011
9. HH Maximum Ratio 2010-2011
10. HH Mean 2010-2011

* Wet season SAR data include 2 sets: PALSAR Process level 1.1 and JAXA 25m mosaics.
4.2.3 Variables derived from the spectral, SAR, and topographic data

To help characterize physical and biological land processes, derived information can be
extracted from multispectral or SAR images by combining data from the various wavelengths
(bands). This allows the production of a wide range of new variables, such as vegetation and
water indices from optical data (e.g., NDVI, MNDWI), or band ratios and texture metrics from
optical or SAR images. Morphometric terrain indices are commonly calculated using a single
dataset such as a DEM. The following sections describe the variables derived from the optical,

SAR and elevation data.

4.2.3.1 Spectral indices for vegetation, soil, and water characterization

Standard vegetation, soil, and water indices were derived from the Landsat 5 TM images (6

bands; thermal IR excluded). Calculations were carried out using the calibrated surface
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reflectance data (see Section 4.2.1,). A small representative subset of the most widely used
indices was selected from an extensive collection of spectral indices currently available (Bannari
et al., 1995; Ozesmi & Bauer, 2002) as described in Section 2.2.3 (Table 2.1). In total, 19

ecologically relevant spectral indices were evaluated and compared.

Notably, the selection included the seven spectral indices developed as part of the
‘Landsat Surface Reflectance’ data products, which aim to support land surface change studies
(Masek et al., 2006). These products are freely available from the USGS website
(Landsat.usgs.gov, 2016). The spectral vegetation indices (SVIs) dataset was narrowed down to
a final set of 14 for wetland classification through a process of elimination that mainly
considered three criteria, namely the variable (index) importance ranking and Out-of-Bag (OOB)
error reduction in RF classification, and removal of one from each pair of highly correlated
variables. Section 2.2.3 provides the background to each retained SVI and the selection process

using the RF classifier is further described in Section 4.3.4.

Of the indices retained, EVI requires a coefficient of the aerosol resistance, ‘C’, which
uses the blue reflectance region to correct for aerosol influences in the red band (Huete et al.,
2002). The values implemented in the EVI algorithm were C1 =6 and C; = 7.5 (Huete et al.,
1997). For SAVI and EVI, a canopy background adjustment term ‘L’, addresses nonlinear
differential NIR and red radiant transfer through canopy (Huete et al., 2002) and reduces the
saturation often found in dense vegetation conditions with NDVI. The optimal value for ‘L’ of
0.5 as proposed by Huete (1988) was implemented with both VlIs. Two similar indices were

added to the final selection that attempt to correct for atmospheric factors effects: SARVI and
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GEMI (Pinty & Verstraete, 1992). SARVI introduces a gamma constant ‘y’, a weighting function
that depends on aerosol type, however, the value proposed for Y’ is 1 when an aerosol model
is not available. SARVI was selected on the basis of its effectiveness in conditions where high

atmospheric aerosol content prevails, such as in tropical regions where burning of vegetation

cover is common (Kaufman & Tanre, 1992).

Among the list of indices designed to enhance detection of open water features, the
Modified Normalized Difference Water Index (MNDW!I) was selected. This is a ratio-based index
which uses the green and the short-wave infrared wavelengths (SWIR1) (Xu, 2006). The
Normalized Burn Ratio indices (NBR1 and 2) were assessed in this study for RF classification and

to detect areas affected by fires.

The three Kauth’s Tasseled-cap transformation (TCT) variables, which represent overall
scene brightness (TCB), vegetation greenness (TCG), and wetness (TCW) (Huang et al., 2002b),
plus a fourth one (Wetness—Greenness, TCW-G) were included in the final list of SVIs evaluated.
TCT spectral variable ‘wetness’ has been shown to be sensitive to plant moisture and
vegetation structure in forest (Cohen & Spies, 1992). The second set of spectral variables was
obtained through reduction of spectral information by means of Principal Component Analysis
(PCA). PCA was implemented in PCI Geomatica™ (2014) and required for this implementation
raw image brightness data (DN, Digital Number) as inputs. The PCA was not standardized and
no adjustment were made to the dynamic range. The first three PCs, which accounted for 90-
95% of the variance, were used as inputs to RF classification, while the remaining PCs were
considered to be noise.
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4.2.3.2 Elevation data, SRTM 1-arc DEM

Elevation data used in this study were obtained from the Shuttle Radar Topography Mission
(SRTM) interferometric DEM void filled data, which were delivered at a resolution of 1 arc-
second, (nominal pixel size ~¥30 m at the equator) (Farr et al., 2007)—see Figure 4.3. The USGS
released this dataset in late 2014 for areas outside the US (USGS, 2015). At the time of the
survey, the coarser (SRTM) 90 m spacing DEM was the only available option for the study area.
Another available DEM that was considered for this study was the ASTER (Advanced
Spaceborne Thermal Emission and Reflection Radiometer) GDEM from JAXA/NASA. Inspection
of this DEM showed it to contain more anomalies and noisier elevation data, especially in flat
areas, as compared to the SRTM-1 arc second dataset (Guth, 2010). The prevalence of freely
available DEM data was also taken into account as a justification for including topographic data

in this study.
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Figure 4.3. DEM derived from SRTM 30-m data; the inset map (top right corner) shows a detail view of
wetland areas surrounded by upland.
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4.2.3.3 Terrain metrics and indices

Morphometric terrain parameters derived from elevation data quantify the effects of
topography and hydrological processes (Hengle & Reuter, 2009). Metrics were derived from
the first and second order derivatives of the DEM (e.g., slope, aspect, gradient, and curvatures),
and combined to obtain secondary terrain attributes (e.g., terrain wetness index, terrain
classification index in lowland, and terrain ruggedness index). All topographic indices were
calculated using the open source GIS SAGA (System for Automated Geoscientific Analyses,
version 2.2.3) (Conrad et al., 2015). Nineteen terrain parameters covering a wide range of
physical processes were considered in this study. Most ‘Standard’ terrain parameters (e.g.,
slope, slope length factor, valley depth) were computed using SAGA ‘Basic Terrain Analysis’

package. A list and brief description of all the indices are presented in Section 2.2.5.

Although the SRTM-30m DEM dataset was delivered as a ‘void-filled” product, additional
processing was required to remove (i.e. fill) surface depressions and preserve downward slope
along flow path to generate a ‘depression-free’ (no-sink) DEM. This was required for generating
complex terrain parameters, such as Wetness Indices, Terrain Classification Index, etc. The
algorithm proposed by Wang and Liu (2006), in its enhanced version (Conrad, 2006), was used
to generate a hydrologically sound elevation model (Conrad et al., 2015). Standard terrain
parameters were derived using both, the original ‘void-filled’ SRTM-30m DEM and the ‘no-sink’
version, and their performance compared using varying minimum slope criteria value (i.e.
minimum slope gradient to preserve from cell to cell); selecting a minimum slope of zero results

in small depressions being filled up to the spill elevation. Changes made to the original DEM,
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which resulted in the removal of land features mainly from flat lowland areas where most
wetlands are found, had an impact on a number of potentially significant terrain parameters,
e.g., valley depth, ruggedness, and surface texture, that characterize wetland habitats. For
those, the original DEM was used in place of the ‘void-filled’ one if no significant differences
were observed. For the final version of the ‘no-sink’ DEM, a minimum slope of 0.01 degree was

selected.

4.2.3.4 Spatial and Geostatistical Texture

For the Dabus Marsh study, texture variables were derived from PALSAR L-band HH and HV
polarization data to evaluate how spatial heterogeneity in backscatter intensity can contribute
to improving the discrimination of wetland vegetation and classification. The coefficient of
variation (standard deviation divided by the mean), was computed as a measure of texture
within a 3 x 3-pixel moving window from the PALSAR data. Such a texture layer can reveal
landscape structural patterns that are characteristic of different wetland types (Simard et al.,

2000; Clewley et al., 2015).

4.2.4 Overall work flow

A workflow diagram summarizing the various steps followed in this study is presented in
Figure 4.4. Multi-source data were pre-processed and their derived indices were used as input
predictor variables to RF classification (models). For optical data, Landsat 5 TM images were
pre-processed to correct for atmospheric and terrain effects (ATCOR) and to mask cloud and
cloud shadows. Bi-seasonal satellite images were used during the evaluation of the RF classifier.

The topographic data were regarded as invariant information over the period of the study, and
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as such they were used with all RF classifiers. The training set was assembled from the ground
reference data and ancillary data. Thematic land cover maps were validated and used for
wetland change detection analysis. All data were re-sampled to 30 m grid size to match Landsat

spatial resolution, which was the coarsest resolution of the datasets.
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Figure 4.4. Summary of RF wetland classification workflow, from image pre-processing to final map
products generation.
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4.3 Random Forest classification

The previous sections addressed the selection of reference data for a classifier such as RF,
which for this study consists of points/pixel ‘representative’ of the respective classes followed
with the preprocessing steps performed on the geospatial information selected for this study
before it can be used as predictive input variables to the classification process. In this section,
the RF classification process is described first, followed by an outline of the methods used to
evaluate the contributions of the input variables to the classification, the quality of the

reference data, classification accuracy, and to map wetland change.

Random Forest classifications conducted in this study are based on the R packages
“randomForest” (Liaw & Wiener, 2002), “raster”, and “rGDAL” (Bivand et al., 2015) in R
Statistics (R foundation for statistical Computing) from the R Development Core Team (2014).
The R scripts developed for the RF classifications is presented in Appendix A: Random Forests—
R Scripts. The script was written by the author with the assistance of Millard and Richardson
(2015). RF classifications were performed on a range of different satellite image sources
(sensors) and dates, and parameter combinations. The RF models built for this study were
optimized using the out-of-bag error rates response to the variable selection for each time
period and season evaluated. In addition to this and to the assessment using the independently
generated validation data set (as described in Section 4.1), a repeated k-fold cross-validation
was carried out, (with N = 25 and K = 10), and results were compared to the RF model out-of-
bag error rates. K-fold cross-validation also provided measures of confidence for the overall

classification accuracy results. In k-fold cross-validation, the reference sample is partitioned into

114



k subsamples of approximately equal size. Each of the k subsamples serves as a hold-out test
set and the combined observations from the remaining k-1 subsamples serves as training set,
and this process is repeated k times (‘fold’). The performance for the k prediction equations
(i.e., estimates of prediction error) applied to the k hold-out samples are combined (Hastie et
al., 2009; Kabacoff, 2011). Cross-validation using larger k has lower bias but higher variance
(Hastie et al., 2009). Similar cross-validation approaches have been used by others to evaluate
the performance of various classifiers using EO data (Davranche et al., 2010; Huang et al.,

2002a).

4.3.1 Tuning of Random Forest algorithm parameters

In Random Forests, the number of variables randomly sampled for the classification at each
split/node (mty) is not set. By default, the value of myy varies according to the total number of

input variables (Liaw, 2012). The default setting is sqrt(p), where p is the number of variables.

To evaluate how ntree values impact model performance, the error rate was plotted
against the number of trees for each land cover class, based on ‘best’ RF model developed in
this study, which included 103 predictive variables and 1101 training points. RF classification
error was estimated internally using the out-of-bag (OOB) samples. The method is further
discussed in Section 4.3.6. Out-of-Bag error rates dropped rapidly down from 50% to less than
5% (less than 1.5% for classes such as ‘Aquatic Bed’ and ‘Forest) after the first 200 trees were
grown then stabilized at around 1000 trees to remain relatively constant henceforth. Selecting
a higher ntree value (5000) did not have any significant impact on the run-time performance of

RF models. The time difference between growing 1000 and 5000 trees was less than a minute
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when running a ‘full’ model (i.e. number of variables > 100 and number of training points >
1000). Consequently, the number of trees grown for each RF model run was selected
conservatively above values that have been shown to provide optimal predictive performance

in other studies (Millard & Richardson, 2013; Adam et al., 2014a).

The RF algorithm offers a number of options regarding ‘bagging’. In this study,
bootstrapped samples were collected without replacement. Sampling with and without
replacement were tested and showed no discernable trend with respect to RF model
performance. When bootstrap replicas are drawn to grow a tree, RF sets aside about 1/3" of
original data. This is called the Out-of-Bag (OOB) data and is used with each individual tree in
the forest to estimate prediction error, which is also referred to as the out-of-bag error

estimate (Breiman, 2001). The OOB prediction errors are averaged over all trees (Liaw, 2012).

An annotated R script used in this study for running RF model classifications and related

tests is included in Appendix A: Random Forests—R Scripts.

4.3.2 Class membership probability estimates

The proportion of votes is used by Breiman (2002) as a proxy for class probability estimates and
as an indicator of classification confidence. Maps derived from the RF model predictions of class
probability (using R raster package ‘predict’) helped visualize pixel classification ‘stability’ across
the landscape and were used to evaluate how well RF models could detect a given class. Class
probability map density plots were used to examine variability of probability values across
classes and to compare probability response between the dry and wet season and across years

(2009 versus 2011).
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43.3 Mixed classes

The second most likely class candidate predicted by an RF model was also extracted from the
class membership probability maps. The proportion and spatial distribution of ‘second-classes’
were closely examined. In areas where the RF model performs poorly, the difference between
the winning and second-place votes can be quite low. In such circumstances, the winning class
gets selected based only on a marginal vote. For a classification scheme comprised of 12
classes, for instance, any given class can have a majority with just over 1/12" of the votes. This

refers to the cutoff value previously discussed.

Difficulty recognizing patterns among pixels is a significant limiting factor affecting RF
model predictions. It is expected that transitional areas between classes would be more
sensitive to misclassification, e.g., along narrow band of forests bordering flooded forest, or
shrub marshes transitioning into areas of papyrus swamps. These ecotonal zones include pixels
that exhibit mixed characteristics, which generally translate in class votes being spread across a
number of likely candidates. Areas where a significant proportion of pixels displayed mixed
features were examined. It was postulated that unknown classes, distinct from the selected
ones, may have been present in areas where a dominant “second-best” class was found
consistently across the landscape; a class that may not have been encountered during the field
survey. Areas dominated by such mixed classes were mapped and quantified. From field
observations and expected overlaps between class distributions for the spectral, spatial and
topographic variables tested, it was expected that the classes of Table 4.6 may be confused,

resulting in a high 2"-class number of votes.
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Table 4.6. List of classes that were expected to be potentially confused and classified as the first or 2™
most probable class.

Class x Classy
1. | Wet Meadow Meadow Garden
2. | Wet Meadow Grass Marsh
3. | Marsh Emergent Grass Marsh
4. | Grass Marsh Shrub Marsh
5. | Papyrus Swamp Shrub Marsh
6. | Forested Wetland Forest
7. | Woodland Agriculture

434 Assessing variables

This section presents the approaches used to determine an optimal set of input predictor

variables for RF classification from the multi-source dataset.

4.3.4.1 Variable importance estimation

Random forest measures of variable importance were computed to assess the relevance of
each variable over all trees of the ensemble. Permutation-based variable importance measures
are computed for each class as well as for the entire prediction model. Scaled importance
measures are calculated by default when using the built-in RF function, which takes into
account its variance—the raw importance measure in RF is divided by its standard deviation
(Breiman, 2002). This penalizes or reward variables depending on whether they exhibit high or
low variance (Strobl et al., 2009). Both scaled and unscaled variable (Section 2.3.1.1)
importance measures were evaluated in this study and used primarily for descriptive ranking of
the predictor variables, however, the ranking of predictor variables using both types of

measures did not diverge substantially. In most cases, variables were found within a similar
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range along the importance scale, with some exceptions among those that exhibited greater
variability (wider confidence intervals). Predictor variables with relatively high standard
deviations were generally ranked lower using scaled variable importance than using unscaled
variable importance measure. Strobl et al. (2009) argue that descriptive ranking of the
predictors should be used when analyzing importance values. The choice of importance
measure mainly affects the score attributed to each variable and not the model prediction
outcome per se. However, the type of measure would have an impact on the final variable
selection, and therefore also on prediction outcome, when rigorous criteria for the exclusion of
so-called unimportant variables are applied (Gislason et al., 2006; Millard & Richardson, 2015).
Strobl and Zeileis (2008) and Diaz-Uriarte and Alvarez de Andrés (2006) found that the raw
(unscaled) importance had better statistical properties. Hence, its use was favoured over its

scaled version during the variable selection process for this research.

The variable importance measure was transformed to percentile rank scores (i.e., the
percentage of scores in its frequency distribution that are equal to or lower than it). This
approach was used for comparison between RF models since importance measures vary
according to the number of variables fitted into each model, which makes direct comparison
between models difficult. The overall average percentile score was calculated for each variable
across all 18 models (see Section 5.1, Table 5.1, for model descriptions). Variables were added
to the list of ‘important’ variables if at least one out of the 18 models, was equal to or above
the 75 percentile. Average percentile scores were also calculated separately for the multi-

season models (N = 3), the dry-season models (N = 3), and the wet-season models (N = 10). The
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percent of models and total number of models where a variable score was above 75 was also

calculated.

Twenty-two Landsat-derived spectral variables were selected, among which 14 were
derived spectral vegetation indices (SVIs) (see Table 2.1). The enhanced vegetation index (EVI)
was not included for the Jan. 2010 dry season image due to its poor predictive performance.
Five variables derived from SAR backscatter values were examined, which included two
polarizations (HH and HV), band ratio (HV/HH), and texture variables derived from each
polarization. Five multitemporal (by-seasonal) variables were calculated using two SAR scenes,
July 2010 and Jan 2011. The bi-seasonal SAR variables were evaluated in two multi-temporal
models, M1 and M3, and, with the exception of the variable ‘Mean’. This variable set exhibited
relatively poor performance and was subsequently excluded from further examinations. At last,

18 topographic variables were evaluated; see Section 2.2.4, Table 2.2.

4.3.4.2 Variable selection and reduction — how many variables is enough?

The R implementation of Random Forests includes a built-in tool for feature selection which
performs a cross-validated prediction performance of models through iterative classification
using a sequentially reduced number of predictor variables (ranked by variable importance) via
a nested cross-validation procedure (Svetnik et al., 2004). The tool was applied with a selection
of models that included multi-source, spectral, and SAR based representative examples. For the
cross-validation arguments, the number of folds (cv-fold) was set to 5; the number of variables

used for each run (mtry) was set to the square-root of the total number of variables (default);
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and variable importance was re-assessed at each step of variable reduction (recursive set to

‘TRUE').

To determine an optimal set of variables for classification, stepwise reduction of
variables was carried out and combined with RF variable selection based on OOB error rate
reduction and analysis, correlation analysis, and separability analysis. Various RF models were
evaluated and an optimal combination of variables established. As a general rule, the variable
importance score was used to exclude the variables that had the least effect on RF model
predictions. The minimum set of variables was determined based on an acceptable level of
overall accuracy, but also taking into account accuracy of specific classes. This vetting process
was carried out for optical and radar data separately to retain a number of representative
variables from each data source, in order to assess the performance of each EO source. A ‘core’
set of terrain indices remained ‘important’ in all RF models. This selection process also applied
to bi-seasonal studies. The use of a consistent set of variables was required for comparing
changes between the wet and dry season conditions. Variable importance measures for the
overall model and for each of the eight wetland classes were carefully evaluated to include
potential candidate variables of ‘high-importance’ for a specific class that would have been

otherwise rejected.

Additional considerations for assessing an optimal set of predictor variables examined
for this study included class ‘separability’ and correlation between variables. These are

presented next.
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4.3.4.3 Selection among highly correlated variables

As a complementary approach to RF importance-based variable selection, highly correlated
variables were identified prior to selecting the best candidate among the conflicting pairs.
There is substantial evidence indicating that reducing the number of highly correlated
predictors improves RF predictions (Millard & Richardson, 2015; Strobl et al., 2008). The
Spearman’s rank correlation coefficient ‘rho’ (p) was calculated for all variable pairs. Correlation
coefficient p>+0.9 between covariates was considered as highly correlated, while p>+0.85 was
used to extend the number of correlated variable pairs of interest. Correlation between
variables was evaluated, first within each data domain, i.e., spectral, SAR, and topographic,
then across domains. Among the variable pairs exhibiting high levels of correlation, the least
important variables were excluded first. However, in a number of cases, where important
variables formed highly correlated pairs, both variables were retained. Variable selection was
carried out on a case-by-case basis, and the number of highly correlated variables pairs was

kept below 10% for each image data.

Overall, spectral variables accounted for the largest proportion of highly correlated
variables (total number=58, from a total of 63 covariates). On average, about 8% of the
spectral variables generated from each image were highly correlated, 10% for the dry season
image and 7-8% for the wet season images. While correlation among the spectral bands along
the visible range (b1, b2, and b3) was generally high (0=0.9), levels of correlation varied
between dry and wet season images as well as between years for the same season. The table

below lists a selection of highly correlated important variables found by image date.
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Table 4.7. List of important highly correlated variables with more than 4 highly correlated covariates in
at least one image date.

Variable Jan-2010 (dry) Nov-2009 (wet) Oct-2011 (wet)

SWIR-1  SWIR-2; Net-Rad; TCG; PC1  SWIR-2; PC1

PC1 i\é\g?é"v\slwm'z; NetRad:  swir-1; swir-2 NIR; Net-Rad; TCB

TC-Green  PC2; NDVI; SARVI; GEMI NDVI; SARVI; GEMI NDVI; SARVI; GEMI

NIR GEMI TCG; PC2; NDVI; GEMI TCB; TCG; PC1; NDVI; SARVI; GEMI
GEMI NIR; TCG; PC2; SARVI NIR; TCG; PC2; NDVI; SARVI  NIR; TCG; PC1; NDVI; SARVI

Partial key to the variable codes: Net-Rad = Net radiation; TCB, TCG, and TCW = Tasseled Cap Brightness,
Greenness, and Wetness; PC = Principal Component. See Table 2.1 for the complete list of vegetation
and water indices, as well all feature space transformation indices used in this study.

In a number of cases, only one of the covariates was regarded as an important variable
(e.g., SWIR-1 and PC1), ranking above the 75™ percentile in most RF models. Among the list of
frequent covariates listed above, variables such as GEMI, PC2, and NIR scored below the 40-50t
percentiles for importance. Correlation matrices are presented in Appendix E: Spearman’s Rank
Correlation Matrix, for Landsat image variables, dry/Jan-2010, and wet/Nov-2009 and Oct-
2011, in Table A-20, Table A-21, and Table A-22, respectively. Highly correlated variables are
depicted in bold (shaded background). Similar correlation values were obtained from the two

wet season images.

In Figure 4.5, the range of correlation coefficients derived from Landsat spectral
variables is represented by year using box-and-whisker plots. The figure also includes pair-wise
comparisons among years. When comparing spectral variables between years, correlation was
in most cases relatively low (0=0.33 on average). The largest proportion of ‘highly’ correlated
variables was found for the 2010—2009 comparison. Twenty highly correlated variables were

found with p between 0.8 and 0.9, and included SWIR (b5 and b7), PCA-1, and Net Radiation
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(b6) among others. Correlation between spectral and non-spectral variables was low (0.19 on

average; N = 3,119) and the highest pvalue obtained was0.76.
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Figure 4.5. Box-and-whisker diagram depicting correlation coefficient p absolute value among spectral
Landsat variables for dry season (Jan-2010), wet season (Nov-2009 and Oct-2011), and pair-wise
comparisons among years.

Highly correlated (p >0.9) variables among the SAR data were found in only two
circumstances: HH and HV backscatter, collected from the same source, but where different
processing methods had been employed to create the final dataset (i.e., Level 1.5 compared to
JAXA’s 25-m mosaics). High correlation was found in 2009 for these two data types for both HH
and HV, with p=0.93 and 0.97, respectively. However, for the 2010 data, only HV was highly
correlated (p=0.89) between the two data types. This apparent inconsistency could be partly
due to the fact that, for parts of the July-2010 mosaic, coverage of the eastern region was

provided by an image acquired in October and not in July.
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Table 4.8 includes a number of highly correlated variables, i.e., using p >0.85, including

the HH and HV backscatter pairs obtained from the 25-m mosaic in 2009 and in 2010, and

correlation between the HV backscatter for 2009 and 2010.

Table 4.8. List of highly correlated PALSAR variables.

PALSAR 2009
Process L1.5 vs. Mosaic (JAXA) HH e HH
HV & HV
HV
JAXA 25-m Mosaic HH & HV
HV
Process L1.5vs. L1.1 HV

Process level 1.1 and 1.5: less than 2% p >0.85 (n = 190, average p=0.28);

25-m mosaics: 7% p 20.85 (n = 45, avg.: p=0.39).

2010

HV & HV
HV

HH & HV
HV
HV

rho (p)
0.9269

0.9672
0.8924
0.8577
0.8702
0.8625
0.8739
0.8607

For the 18 topographic variables, three variable pairs had p 20.9, as shown in Table 4.9.

Terrain Classification Index and Saga Topographic Wetness Index accounted for the largest

proportion of correlated variables. Correlation coefficients are presented for these two

variables with their covariates. Altogether, this subset of highly correlated variables represents

less than 4% of the total pair-wise permutations without repetition (N = 153). It is worth noting

that these six variables were also ranked by Random Forests as the most important topographic

variables. p values for topographic variables against other data domains were below 0.6 (0.16

on average).
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Table 4.9. List of highly correlated variables among important topographic variables.

Variable-1 Variable-2 rho (p)
Terrain Classification Index Saga Topographic Wetness Index 0.9957
Slope Length Slope Factor 0.9599
Relative Slope Position Vertical Distance to Channel Network 0.9358
Terrain Classification Index Slope -0.8886
Relative Slope Position -0.8841
Length Slope Factor -0.8565
Elevation -0.8526
Saga Topographic Wetness Index Slope -0.8887
Length Slope Factor -0.8611
Elevation -0.8560

4.3.4.4 Assessing separability between land cover classes

Separability analysis among the 11 land cover types was carried out using the Jeffries-Matusita
(JM) distance implementation to evaluate the class boundaries among the training datasets and
to gain an understanding of the biophysical characteristics discriminating wetland classes. The
JM distance, J, measures the average distance between two class density functions. For
normally distributed classes, it applies the Bhattacharyya distance (BD) (Richards & Jia, 2006).
The JM distance is related to the pairwise probability of error, i.e., the probability that a pixel
assigned to class i is actually in class j (Richards & Jia, 2006). The values of J lie between 0 and 2;
a value close to 2 indicates complete separability. The JM distance measure was used to
identify classes pairs that were highly similar and that would potentially cause classification
errors. The analysis was conducted primarily using the spectral dataset, including the Jan-2010,
Nov-2009, and Oct-2011 Landsat spectral data, derived vegetation/water indices, and band
transformations. The separability assessment was also extended to SAR wet-season data, i.e.,

HH, HV, and HH/HV ratio, and topographic data. However, since BD assumes a Gaussian
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distribution for the class pairs, the reliability of the JM measures is limited for non-Gaussian

distributions such as found with SAR data (Richards & Jia, 2006).

Separability between classes among training pixels was calculated using subsets from
the variable set in two implementations, then repeated for each image date. First, for each
Landsat image, the first 8 variables were used, which included all seven spectral bands; surface
sensible heat and net radiation were derived from the thermal infrared band. Then, the eight
most important variables based on RF measures were selected and results were compared
between the two implementations. The list of important variables is presented in Table 4.10.
The same set of important variables was used for the two wet season images (2009, 2011).
Eight variables for class separability assessment were considered sufficient to express variability
and to prevent the covariance matrices to become unmanageable (to avoid double precision
floating point numbers overflow). JM values were categorized using three levels of separability
measures, namely, moderate ‘+’ (< 1.25), “++" low (< 1.15), “+++" and very low (< 1.0). More
detailed class separability analysis is presented in Appendix F: Jeffries-Matusita Distance

Measures; Table A-23 and Table A-24.

Table 4.10. List of important variables evaluated for separability analysis.

2010 (dry) 2009 and 2011 (wet) Topographic PALSAR
Red Red Elevation HH Gamma fil.
SWIR-1 (b5) Green Slope HV Gamma fil.
SWIR-2 (b7) SWIR-1 (b5) Slope Height HV/HH ratio
Net Radiation (b6)  Net Radiation (b6) Length Slope Factor HH Texture (5x5)
TC-Wetness TC-Brightness Relative Slope Position HV Texture (5x5)
PCI-1 TC-Wet—-Greenness Saga Topo. Wetness Index
NDVI NDVI Terrain Classification Index
SAVI MNDWI Vertical Dist. to Channel Net.

127



As a complementary approach to JM distance, class statistics, including the average and
standard deviation, were calculated for each variable, and used as a screening method to assess
outliers among the training and validation datasets. To detect potential outliers, values outside
2.5 standard deviations from the mean were used as a selection criterion; pixels were flagged
for removal if they exceeded this threshold for more than five variables. However, the final
selection required ‘expert knowledge’ as many outliers were within a normal range of
measurement scales for a given parameter. This method proved to be an effective means for

detecting misclassified pixels but presented substantial limitations (Nielsen et al., 2008).

4.3.5 Training point selection and subsetting

Random forest classification performance was evaluated using various subsets of the training
data. The selection of bootstrap (OOB) samples drawn with replacement is implemented by
default by RF classifier algorithm (Breiman & Cutler, 2008) and used to calculate out-of-bag
error. For this study, however, sampling was conducted using the argument ‘without
replacement’ as proposed by (Strobl et al., 2007). Strobl et al. (2007) contend that RF
classification trees built using bootstrap samples without replacement reduces bias, which in

turn provides more reliable variable importance measures.

A multidimensional scaling (MDS) plot of the proximity matrix was used to display the
degree of association and separation of individual training pixels across the classes. Proximity is
measured by random forests based on the frequency that pairs of data points are in the same

terminal nodes, and as such it provides a measure of similarity among the training samples
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(Breiman & Cutler, 2008; Cox & Cox, 2000). Proximity measures represented in two-
dimensional scatterplots were used to inform the selection of training and validation sites.
Subsetting of the training set was carried out using highest class membership probability values
obtained from RF model M1 implementation (see list of models: Table 5.1). This set of ‘pure’
class members was compared to the original training samples. The MDS plots presented in
Figure 4.6 show a clear pattern of association and separation among the classes. The top plot
was created using the entire training sample set. The wetland classes form compact groups
generally stretching along the second axis representing forest wetland (magenta), which was
generally flooded, and forest (green). The two main terrestrial classes, woodland and
agriculture, show strong separation mainly defined by the first dimension (axis). However,
these two classes present a greater proportion of cases stretching along the two explanatory
axes compared to the wetland classes. This may be attributed to the fact that they represent
much broader land cover types with more variability in surface cover, thus their overall variance

in the given variables is higher.

129



0.2-

Class
® Aquatic Bed
Wet Meadow

0.0- A Meadow Garden

<]
H

iiarsh Emergent
Grass Marsh
Papyrus Swamp
Shurb Marsh
Forested Wetland

Dimension 2

-0.2-

Woodland

Forest

Agriculture

R < ® B + > e

Burn Patch
-0.4-

02 0.0 0.2 04 06

Dimension 1

Figure 4.6. Metric multidimensional scaling representation for the proximity matrix of land cover
classification predictions from RF models based on the full set of predictors, using all training samples
(top panel) and a subset of training samples including only high-class probability values (> 0.9) (bottom
panel).

130



o
o
1

A
d S

0.4- Class
® Aquatic Bed
Wet Meadow

A Meadow Garden

*

Marsh Emergent

0.2- Grass Marsh

X
0.0-

-0.2-

Papyrus Swamp

Shurb Marsh

Dimension 2

Forested Wetland
Woodland

B
® B 4+ D> e

Forest

<

Agriculture

Burn Patch

-0.50 -0.25 0.00 0.25
Dimension 1

Figure 4.6 (Cont’d)

4.3.6 Classification accuracy assessment

Classification accuracy assessment by means of error (confusion) matrices is a common
approach that relies on spatially and ecologically independent ground-based measurements to
reduce bias that can lead to inflated accuracy estimates (Pal & Mather, 2003). Yet, this
information is often difficult to obtain from wetland areas especially in remote parts of the

world. For this study, wetland mapping accuracy was assessed with a combination of various
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input predictor variables and classification schemes. The fusion of variables and its effect on

classification accuracy was also examined.

Error matrices included errors of omission (100%-producer’s accuracy) and errors of
commission (100%-user’s accuracy), as well as overall classification error, i.e., the percentage of
correctly classified pixels over all classes. Producer’s accuracy estimates the probability that an
observed (reference) pixel from a given class is correctly classified on a map, i.e., it estimates
the accuracy of the classification using the reference samples. The user’s accuracy is the
probability that a pixel on a map correctly identifies the actual class, i.e., it measures the
reliability of the output map (Congalton & Green, 2009). Expressed in terms of error, a
reference pixel wrongly attributed to another class is an ‘omission’ error, whereas a predicted

pixel attributed to the wrong reference class is a ‘commission’ error.

For each classification, overall accuracy measures were reported using predicted 95%
confidence intervals (Foody, 2009). Cohen’s kappa coefficient (K) was calculated, along with its
associated 95% confidence intervals. K is a statistical measure of agreement often used in
remote sensing studies to compare a classified map to a reference data set. It accounts for the
rate of correct classifications expected to occur by chance (Congalton & Green, 2009); thus K
indicates the accuracy of a classified map beyond that which would be achieved by randomly
assigning pixels to classes. Although, K is widely reported along with confusion matrix, its
usefulness has been recently examined (Pontius & Millones, 2011). Specifically, as a non-

probability based measure, its use for accuracy assessment is not recommended (Foody, 2002;
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Czaplewski, 1992). It is included here strictly for comparison between classification runs and

with other studies.

The McNemar test was used to test the statistical significance of differences in the
accuracy of RF classification runs built with different variable subsets and classification
schemes. It is based on the proportion of correctly and incorrectly allocated pixels in a binary 2
x 2 contingency matrix (Foody, 2004), and is designed to detect classification differences if they
exist (Dietterich, 1998). For this study, differences between RF models with different input

parameters were tested.

4.3.6.1 Analysis of temporal wetland dynamics

A series of wetland maps was produced using various RF prediction models and compared using
the suite of evaluation tools described in previous sections. The optimal set of input variables
described in Section 4.3.4 and full training set (Section 4.1.1.1) was used to generate a ‘model’
thematic map of land cover types for the entire study area. This map achieved the lowest out-
of-bag error rate estimate (> 1%). The optimized RF model predictions used a combination of
images (optical and radar) captured during the wet and dry season (August and March) over
multiple years (2009 to 2011), and as such, the resulting map aimed to represent a generalized
view of the extent and distribution of wetlands and terrestrial land cover types over a given
period. The highest classification accuracy results obtained, however, may indicate how well fit

the model is to its training set, more so than how well the map represents the real world.

To characterize changes in wetland conditions between the dry and wet season, one set

of maps were created for the dry season (January-March 2010), and two sets for the wet
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season (Oct-Nov 2009 and 2011) using the optimal multi-source variable set. However, since
optical images are often difficult to acquire over tropical areas, especially during the cloudy wet
season, a series of wetland maps were generated using only ALOS/PALSAR images in
combination with morphometric terrain parameters. These maps were used to conduct inter-
annual and seasonal comparisons. ALOS/PALSAR images available for the study area cover a

five-year time period from 2006 to 2010.

Out-of-bag error was used as an unbiased relative measure of model performance. As
described previously for the initial classification, multiple RF runs were performed to determine
the optimal variable and RF parameter set for each classification. Cross tabulation between
maps from different dates was used to assess temporal change and to aid selection of optimal

predictor variables.

In the absence of a true reference map for each date, accuracy assessment was carried
out using the 1003 sample point validation dataset (Section 4.1.1.2) generated from fieldwork
and from interpretation of high resolution imagery. Results were compared with out-of-bag
error rate estimates. The use of this validation set came with a number of caveats. These
limited the interpretability and confidence in classification results for some of the wetland
classes. Similar classes, such as the emergent marshes dominated by sedges or grasses were
aggregated to improve confidence in assessing classification accuracy based on the validation

dataset.
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4.3.7 Mapping changes in wetland extent, distribution, and composition

The overall aerial extents of wetlands and terrestrial classes were calculated from each map to
assess inter- and intra-annual changes. This temporal analysis was supplemented with a more
gualitative assessment that looked at wetland extent and spatial distribution based on class

membership probability scores for specific areas of interest.

4.3.7.1 Mapping wetland disturbances

The extent of burned surfaces within wetlands and upland/terrestrial area was estimated based
on dry season (January 2010) conditions (Figure 4.7). Burned patches/scars were identified
using a combination of three indices derived from the Landsat data: NDVI, modified normalized
difference water index (MNDWI), and burn ratio-2 (BRN-2). A set of 50 training points was
obtained from the image based on threshold values set for each index to identify the ‘darkest’
(most recent) burned areas (i.e., NDVI < 0.2; MNDW!I > -0.485; BRN2 < 0.02). The points were
added to the training set and used when the dry season image variables were included in RF
classification. Dry and wet season thematic maps were intersected (cross tabulated) to identify

the types of wetland impacted by the fire, estimate their extent, and map their distribution.
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Figure 4.7. Areas of Wet Meadow mixed with Grass Marsh wetland after burning (28 March, 2012).
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5. Results

This chapter presents the results of Random Forest classifications for the various datasets

tested.

5.1 Evaluation of RF Models

Overall performance for wetland classification based on 18 RF models of varying complexity are
presented in Table 5.1. The comparisons between models combined various temporal scales,
wet and dry seasons, and sources of remote sensing (RS) data using up to 103 predictor
variables. Topographic indices were used with all RF Models evaluated. The 18 RF models listed
in Table 5.1 were ranked according to their level of model complexity, which was defined in
terms of number of input variables and complexity or ease of acquisition of RS data types, as
well as by the overall model prediction accuracy expressed as the percentage of classes
correctly predicted. A map of classified wetlands using the top performing RF Model 1 is shown

in Figure 5.4.

The selection of variables/image sources used for each model was partly constrained by
the availability of spatial data. As shown in the timeline diagram (Section 4.2, Table 4.2), the
year 2010 was the focal point of the study, which also corresponded with the first field visit for

the wet season survey as well as being the year with the most RS data available.

For PALSAR data, classification results for the Level 1.1 and 1.5 data versus the 25 m
JAXA mosaics were generally close, with the mosaic yielding 1-2% higher accuracy. However, for

the first five RF models tested the Level 1.1 and 1.5 sources were favoured over the mosaics for
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models requiring a combination of dry and wet season images, as the mosaics are generated

during the wet season only. All remaining models used the data from the JAXA mosaics.

5.1.1 Overall classification accuracy

As shown in Table 5.1, multispectral data outperformed SAR data in all RF models by 5—-8% (e.g.
Model (M2 vs. M3, M6 vs. M7, and M10 vs. M15). In most cases, combining data from multiple
years and different data sources improved overall classification accuracy. It should be
emphasized that all the RF models tested included the set of topographic indices (18 variables)
developed in this study. The topographic data were regarded as invariant information over the

period of the study.

5.1.1.1 Seasonal effects—dry versus wet season imagery

The Landsat dry season (Jan-2010) image data produced a number of highly important class
discriminating variables, such as band 5 (SWIR) and NDVI. A detailed assessment of RF
permutation based variable importance is presented in Section 5.2.2. The contribution of dry
season multispectral data and derived SVIs towards improving RF model predictions was
consistent across all five RF models employing the Landsat dry season data (M1, 2, 4, 8, and
12); overall prediction accuracy was above 90% for both OOB error and independent validation.
Among these models, M2 and M12 did not include SAR data, which had relatively little impact

on the results when compared with similar models, such as M3 and M4.

RF overall prediction/classification accuracy results were generally higher for the dry
season compared to the wet season models. When considering the three single-source RF
models built with Landsat data (i.e., Models M10, 11, and 12), RF predictions for the dry season
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achieved 93.8% (2010), and 90.5% and 87.6% for the wet season, in 2009 and 2011,
respectively. However, when comparing wet and dry season models, multi-year/multi-source
models achieved similar results. Both M5 (wet) and M8 (dry), achieved 95% accuracy (OOB),

while accuracy based on independent samples was 3.7% lower for the wet season (88.9%).

Multi-year SAR RF models achieved similar performance when comparing accuracy
(OOB) between the wet and dry season, 86.9% (M7) and 85.9% (M15), respectively. The less
complex dry season model (M15), which was built using a single polarization (HH), provided
comparable performance to the wet season model, which employed HH and HV polarizations.
Accuracies for single-year SAR models are among the lowest for both OOB and independent
assessment, with 85.2% (M16) and 82.0% (M17) (OOB) for the wet season data and, and 81.9%
for an additional dry season model (Jan-2011) not included in the list of RF Models presented in

Table 5.1.

5.1.1.2  Multi-year and multi-source data

RF models built using multi-year data generally performed better than single year models.
Similarly, multi-source models outperformed single-source models in most cases except when
comparing between multispectral and SAR models. Multi-year SAR Models M3 and M7
achieved lower accuracy (89.7% and 86.9%) compared to similar multi-source models, i.e.,
Model M5 and Model M8 (95% for both models). Accuracy for single-source models ranged

between 82% and 93.8%.

When comparing single-year models built on wet season data, 2009 multispectral data

(M10) provided higher classification accuracy than for 2011 (M11). Accuracy based on the
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independent data was markedly low, 70%, for M11 (Oct-2011), and was 18% lower than the
OOB error. Such levels of discrepancy between OOB error and independent validation error
were generally associated with wet-season RF models, and were particularly pronounced with

SAR based models (M16 and 17).

5.1.1.3 Landsat versus SAR

When comparing single source RF models, multispectral data outperformed SAR data by about
6-8% (OOB error) and by 14% and 22% (independent data), for multi-year M2 vs. M3 and M6 vs.
M7, respectively. For single year models, the difference in classification accuracy was about 5%
(OOB) and 15% (independent) between multispectral and SAR data (Model M10 vs. M16). The
largest difference in accuracy between multispectral and SAR data for a single year model was
for 2010 comparing dry season (M12) with wet season (M17) data (11.8% OOB error; 27.8%

independent validation error).

5.1.1.4  Variable selection—how many is enough?

RF cross-validated prediction performance was calculated for a selection of nine models (see
Section 4.3.4.2). The scatterplot presented in Figure 5.1 illustrates the relationships between

the number of input variables and RF prediction performance based on data source.

Model prediction errors drop from 60% to 10-20% in three stages. At first, rapid model
improvement occurs as the number of variables reaches about 5-8, for multi-source and
spectral-based models, and 9-10 for SAR based models. Between 8 and 20 variables, prediction
errors are 20-25% for multi-source and spectral models, and 38% down to 20% for SAR models,

and beyond 20 input variables performance continues to improve. For multi-source and
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spectral models, prediction errors drop below 10% with 30-35 variables, while for SAR models

the threshold required to drop below 20% error is 20- 25 variables.
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Figure 5.1. Number of predictor variables plotted against cross-validated model error rates, for nine RF
models. Models selected include ‘multi-source’ M1, M4, and M9, spectral M2, M10, and M12, and SAR

M3, M7, and M18; number of variables (x-axis) plotted on a logarithmic scale.
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Table 5.1. Overall classification accuracy for the RF classifications using various combinations of Landsat, derived spectral vegetation indices
(SVIs), and PALSAR data. Classification accuracy is given as OOB error and independent validation error (Indep.). Multisource data include
optical, SAR, and topographic’ variables.

PALSAR Variabl 3Trainin B Indep.

RF Model Landsat-5 (HH, HT-I/HV) ) Na:: = Pzintsg (z:/:) (c*’f)p

1. Multi-year—Bi-seasonal—Multi-source 2009*+20109+2011% 2009%+2010"¢+2011¢ 103 1101 99.0 98.2
2. Multi-year—Bi-seasonal—Spectral 2009%+2010%+2011" 83 1125 98.1 96.2
3. Multi-year—Bi-seasonal—SAR 2009%+2010%+2011¢ 47 1058 89.7 75.4
4. Single year—Dry Season—Multi-source 2010 2010 41 1101 94.4 92.0
5. Multi-year—Wet Season—Multi-source 2009+2011 2009+2010 72 1057 95.0 88.9
6. Multi-year—Wet Season—Spectral 2009+2011 62 1076 93.1 82.9
7. Multi-year—Wet Season—SAR 2009+2010" 28 1076 86.9 69.2
8. Multi-year—Dry Season—Multi-source 2010 2010+2011 43 1101 95.0 92.6
9. Single-year—Wet Season—Multi-source 2009 2009 45 1076 92.9 85.4
10. Single-year—Wet Season—Spectral 2009 40 1076 90.5 82.3
11. Single-year—Wet Season—Spectral 2011 40 1076 87.6 69.2
12. Single year—Dry Season—Spectral 2010 39 1125 93.8 90.0
13. Multi-year—Wet Season—Multi-source 2009 2010 45 1076 92.6 85.6
14. Multi-year—Wet Season—Multi-source 2011 2010 45 1076 91.1 73.5
15. Multi-year—Dry Season—SAR 2010+2011 22 1058 85.9 67.8
16. Single-year—Wet Season—SAR 2009 23 1076 85.2 67.2
17. Single-year—Wet Season—SAR 2010 23 1076 82.0 62.2
18. Topographic (only) 18 1076 71.4 41.7

Dry and wet seasons are denoted as ‘d’ and ‘w’ superscripts ®; Landsat image dates: dry season Jan-2010¢, Wet season Nov-2009%, and Oct-2011"; 'SAR

mosaic wet season (HH & HV) image dates: July 2009, July 2010 (Oct-2010 for eastern half of study area). SAR Level 1.1 and 1.5 image dates: dry season (HH)
Jan-2010, Jan-2011; wet season (HH & HV) July 2009, July 2010.
2Training point number: full dataset = 1125, centre diagonal =1101, centre diagonal and no Burned Patch = 1057/8, full study area and no Burned Patch = 1076.
Burned Patch was included for the dry season (2010) models only. The selected 18 topographic variables were included in all RF models.
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Overall, OOB accuracy was consistently higher than independent validation accuracy

across all RF models. As shown in Figure 5.2, the difference between the two decreased with

increasing classification accuracy. The strong linear relationship between model complexity

(i.e., number of input variables) and overall classification accuracy is clearly depicted for both

assessment methods. However, for the RF models employing between 40 to 50 variables,

independent validation accuracy varied depending on the types of input variables. The

multienactral/dry season models achieved the highest accuracy, while the SAR-based single-

source/wet season models achieved the lowest accuracy.
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Figure 5.2. Classification accuracy as function of the number of variables used to fit RF models, based on
OOB error rates (blue circles) and compared to the independent test set (red squares).

The lowest overall accuracy (71.4% (OOB) and 41.7% (independent validation)) was

achieved by M18, which employed only topographic data. This model was included to illustrate

143



how RF models handled extreme case scenarios such as those presented in this study. The
relationship between model complexity and overall accuracy is also depicted in Figure 5.3. For
OOB accuracy (top panel), the 95% confidence intervals (Cl) were calculated using a repeated
(N=25) k-fold (k=10) cross-validation resampling technique as described in Section 4.3 to split
the reference data into training and validation sets. This technique consistently achieved overall
accuracy within 1-2% of the RF OOB accuracy. For independent validation (bottom panel), the
95% confidence intervals were derived from the confusion matrix statistics along with the
Kappa coefficients (see Table 5.2 to Table 5.3). The resulting confidence intervals show a wider
range of accuracy compared to the k-fold method, with several models achieving less than 70%

overall accuracy, while the majority of models (10 out of 18) were above 80%.
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Figure 5.3. Overall classification accuracy with 95% Cl for the 18 RF models included in Table 5.1; OOB
accuracy and 95% Cl were calculated using the repeated (n=25) k-fold cross-validation (k=10) method
(top panel). Independent validation was based on approximately 1,000 points (bottom panel).
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RF Model-1
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Figure 5.4. RF classification of the Dabus River Wetland complex using multi-year/bi-seasonal and multi-
source Model 1 (103 predictor variables). Areas showing burned patches/scars were obtained from the
Landsat Jan-2010 image.

5.1.2  RF Model accuracy assessment—error matrix statistics

Error matrix assessment using the OOB samples and independent validation data was
performed for the first ten RF models listed in Table 5.1. These models were selected to

comprise a wide range of input variable types (spectral and SAR) as well as single date and
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temporal (inter- and intra-annual) data, and to provide insights as to how the type of input

variables affects class accuracy.

For this analysis, the RF models tested were categorized into three groups: (i) the
‘top/generalized’ three models (M1, 2, & 3), which were built using RS data acquired across all
study years (2009 to 2011); (ii) includes two models (M4 & 8) which focused on a dry season
month (Jan.); and (iii) the remaining five models (M5, 6, 7, 9, & 10) using data from wet season
months (Aug., Oct. and Nov). Alternatively, these models can be compared based on their
temporal scales. The majority of models uses multi-year data, while single-year models are
limited to M4 (2010) and M9 (2009), which use multi-source data, and one model, M10 (2009),
which uses only Landsat data. Among the remaining eight models not included here, two
models, M12 and M15, were subsequently considered for analysis. The error matrix obtained
from the spectral, dry-season, model M12 was similar to M4 and M8. The SAR-based dry season

model M15 is described separately.

The OOB error matrix summary statistics, including producer’s and user’s accuracy, (PA)
and (UA), are presented in Table 5.2 and the independent validation accuracy assessment in
Table 5.3. In further analysis, detailed OOB error matrices are presented for four representative
models. Also, to compare accuracy between the dry and wet season, (i) two multi-
source/single-year models were selected, Model 4 (Table 5.4) and M9 (Table 5.5), and (ii) two
SAR-based multi-year models were selected, Model 7 (Table 5.6) and M15 (Table 5.7). Detailed
OOB error matrices for the top 10 RF models can be found in Appendix C: Error Matrices, Table

to Table A-17.

147



The McNemar test showed that accuracy for six of the ten models (M1 to 4, 7, and 8)
was not significantly different (p>0.05) while the accuracies of four out of the five wet season
models (M5, 6, 9, and 10) were significantly different (p < 0.0001). Compared to the dry season,
wet season conditions presented greater difficulties with respect to detecting marsh classes
such as Grass Marsh and Shrub Marsh. Error matrix analyses among wetland classes for each of

the selected RF models are presented below.

Results presented in Table 5.2 and Table 5.3 show that the lowest PA and UA were
mainly for three wetland classes i.e., Grass Marsh, Shrub Marsh, Marsh Emergent, and, to a
lesser extent, for Meadow Garden. Grass Marsh had the lowest accuracy across all 10 models
for both methods of accuracy assessment with PA and UA as low as 60.94% and 83.82% for
OOB samples and 10.26% and 42.11% for independent samples, respectively. Marsh Emergent
was second lowest while Shrub Marsh had the lowest user’s accuracy only for the independent
validation data for all but one model. Grass Marsh and Shrub Marsh pixels were poorly
predicted but considering that the poor detection rates for Shrub Marsh were restricted to the
independent validation this raised questions as to the validity of the class. Garden Meadow
scored lower accuracy results during the dry season compared to the wet season for both PA

and UA. Confusion among wetland classes is further examined in the next section.

Non-wetland classes achieved 4-6% higher overall accuracy than wetland classes for 7
out of 10 models. Overall, the most accurate classes were Aquatic Bed and Forested Wetland,

being among the top ranking classes in over 75% and 60% out of the 10 models, respectively.
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Table 5.2. User’s and producer’s accuracy (UA & PA) results (%) for RF classification models 1 to 10,
using OOB samples. Model numbers (M1 to 10) correspond to the models listed in Table 5.1. The lowest

UA and PA for each model is highlighted in bold with shaded background.

RF Models: M1 M2 M3 M4 M5
Classes UA PA UA PA UA PA UA PA UA PA
1_Aquatic Bed 100.00 100.00 100.00 100.00 96.15 96.15 100.00 98.72 100.00 98.72
2_Wet Meadow 97.78 97.78 97.75 96.67 91.11 91.11 96.63 95.56 90.32 93.33
3_Meadow Garden 100.00 95.45 98.00 89.09 97.73 97.73 9231 81.82 97.67 95.45
4 _Marsh Emergent 97.44 100.00 94.81 96.05 82.72 88.16 91.89 8947 8043 97.37
5_Grass Marsh 96.83 95.31 9545 9844 83.64 71.88 83.10 92.19 9792 73.44
6_Papyrus Swamp 98.02 100.00 96.04 9798 8598 9293 90.20 9293 95.05 96.97
7_Shrub Marsh 100.00 9885 96.55 96,55 90.11 9425 87.95 8391 96.63 98.85
8_Forested Wetland 100.00 100.00 100.00 100.00 89.41 84.44 97.78 97.78 98.89 98.89
9_Woodland 99.33 98.03 100.00 98.03 87.84 8553 9542 96.05 9412 9474
10_Forest (mature) 100.00 100.00 100.00 100.00 87.50 86.78 97.54 9835 99.13 94.21
11_Agriculture 98.73 100.00 97.50 100.00 9494 96.15 96.79 96.79 96.79 96.79
12_Burned Patch 100.00 100.00 100.00 100.00 n/a n/a 97.78 100.00 n/a n/a

Overall Accuracy (%) 99.00 98.13 89.70 94.37 94.99

(95% Cls)

(97.63-100.0)

(97.38-98.88)

(87.85-89.70)

(93.74-95.00)

(94.37-95.60)

Table 5.2 (cont’d)

RF Models: M6 M7 M8 M9 M10
Classes UA PA UA PA UA PA UA PA UA PA
1_Aquatic Bed 100.00 98.72 93.67 94.87 100.00 98.72 100.00 98.72 100.00 98.72
2_Wet Meadow 87.23 91.11 85.39 84.44 9451 9556 90.32 93.33 86.96 88.89
3_Meadow Garden 93.75 81.82 8846 83.64 92.11 79.55 100.00 90.91 91.49 78.18
4_Marsh Emergent 77.53 90.79 75.00 78.95 9467 9342 79.07 89.47 75.28 88.16
5_Grass Marsh 9245 76.56 75.44 67.19 83.82 89.06 87.23 64.06 86.67 60.94
6_Papyrus Swamp 92.08 9394 8286 87.88 92.23 9596 88.68 9495 85.58 89.90
7_Shrub Marsh 92.31 9655 84.04 90.80 87.95 8391 86.46 9540 81.82 093.10
8_Forested Wetland 98.98 9898 8866 87.76 97.78 97.78 100.00 96.94 100.00 96.94
9_Woodland 9236 9539 86.84 86.84 96.73 9737 9338 9276 90.32 92.11
10_Forest (mature) 99.13 9421 9224 8843 9754 9835 99.15 9587 98.31 95.87
11_Agriculture 96.08 9423 9355 9295 98.08 98.08 95.57 96.79 94.84 94.23
12_Burned Patch n/a n/a n/a n/a 97.78 100.00 n/a n/a n/a n/a

Overall Accuracy (%) 93.12 86.90 95.00 92.94 90.52

(95% Cls)

(92.51-93.74)

(86.11-87.68)

(94.33-95.68)

(92.30-93.57)

(89.87-91.17)

Repeated (N=25) k-fold cross-validation (k=5) method used to calculate 95% Cl for overall accuracy (2,000 trees).
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Table 5.3. User’s and producer’s accuracy (UA & PA) results (%) for RF classification models 1 to 10,
using independent validation samples. Model numbers (M1 to 10) correspond to the models listed in
Table 5.1. The lowest UA and PA accuracy value for each model is highlighted in bold.

RF Models: M1 M2 M3 M4 M5
Classes UA PA UA PA UA PA UA PA UA PA
1_Aquatic Bed 100.00 100.00 100.00 100.00 86.67 50.00 100.00 88.46 100.00 100.00
2_Wet Meadow 93.10 99.26 94.89 9559 6892 8571 92.74 96.64 8571 90.76
3_Meadow Garden 98.11 83.87 91.67 88.71 9048 8444 9459 77.78 93.18 91.11
4_Marsh Emergent 96.88 96.88 98.33 92.19 60.71 32.08 91.11 7736 86.44 96.23
5_Grass Marsh 98.65 93.59 96.15 96.15 50.00 1042 79.59 81.25 9231 25.00
6_Papyrus Swamp 98.55 100.00 94.20 9559 7473 100.00 9143 9412 8649 94.12
7_Shrub Marsh 90.74 100.00 87.27 9796 49.28 8293 70.59 87.80 65.52 92.68
8_Forested Wetland 100.00 97.33 100.00 97.33 100.00 87.72 100.00 100.00 96.55 98.25
9_Woodland 100.00 9458 99.37 9458 8846 6161 9455 9286 95.05 85.71
10_Forest (mature) 92.41 100.00 93.59 100.00 60.00 94.29 92.11 100.00 84.21 91.43
11_Agriculture 98.51 100.00 98.01 9949 83.77 9556 97.04 97.04 93.66 98.52

Overall Accuracy (%) 98.24 96.21 75.41 92.03 88.90
(95% Cls) (97.01-99.06)  (94.84-97.31  (72.14-78.47) (89.84-93.88)  (86.41-91.08)
Table 5.3 (cont’d)

RF Models: M6 M7 M8 M9 M10
Classes UA PA UA PA UA PA UA PA UA PA
1_Aquatic Bed 100.00 96.97 81.82 54,55 100.00 88.46 100.00 90.91 100.00 90.91
2_Wet Meadow 81.02 81.62 59.04 7206 92.80 97.48 83.66 94.12 8182 86.03
3_Meadow Garden 69.70 74.19 65.28 7581 9459 77.78 86.21 80.65 7231 75.81
4_Marsh Emergent 69.23 8438 48.72 29.69 9130 79.25 67.47 8750 65.79 78.13
5_Grass Marsh 72.73 30.77 42.11 10.26 8298 81.25 86.96 25.64 7333 28.21
6_Papyrus Swamp 78.48 91.18 60.38 94.12 9130 9265 86.67 9559 7949 91.18
7_Shrub Marsh 62.86 89.80 4430 7143 69.23 8780 59.72 87.76 57.14 81.63
8_Forested Wetland 97.30 96.00 9545 84.00 100.00 100.00 96.05 97.33 94.81 97.33
9_Woodland 90.71 76.51 7536 62.65 9550 94.64 91.03 79.52 91.18 74.70
10_Forest (mature) 8590 91.78 66.67 87.67 9459 100.00 81.71 91.78 80.72 91.78
11_Agriculture 89.30 96.97 86.93 8737 97.78 97.78 93.66 96.97 90.19 97.47

Overall Accuracy (%) 82.93 69.16 92.57 85.43 82.34
(95% Cls) (80.46-85.21)  (66.20-72.01)  (90.44-94.35)  (83.09-87.56)  (79.83—84.65)
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Determining the most representative RF models

The range of predictions provided by the RF models reflects the strengths and weaknesses
inherent to each model. In general, the terrestrial classes were more accurately predicted than
wetland classes and with more consistency across models, whereas Grass Marsh, Marsh
Emergent, and Shrub Marsh were generally poorly predicted. PA and UA values show that the
most confused classes remain generally consistent across all models using either OOB samples
or independent validation data. Differences across models are mainly expressed by the degree
to which those classes are confused or misclassified. Further, the number of RF models was
reduced to a smaller number of constituents to investigate how factors such as seasons and RS
sources (spectral vs. SAR) impacted the classification results. To assess similarity between
models, classification concordance was calculated using cross-tabulation of classified maps.

Results are presented below.

In an attempt to compare changes in composition, distribution, and extent of wetland
area between the wet and dry season, multi-source models were favoured due to their higher
overall accuracy. Among the dry season models, about 2% difference was detected between
thematic maps from model 4 (Jan-2010) and 8 (2010/11). Changes in land cover area between
classifications for M4 and 8 represented about 0.33% of the total area. The McNemar test
showed no significant difference between the two classifications (p=0.99), which suggests that
either model could be used interchangeably. However, M4 single-year (2010) was considered
more suited than the multi-year model M8 for inter annual temporal/seasonal analysis. A third

model M12 (2010) was also considered for dry-season analysis. This is a single-source and
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single-year model that was selected for comparison with SAR data. The M12 thematic map
compared well with the maps for M4 and M8, with about 4-5% differences between

classifications.

From the larger selection of wet season models, the multi-source models were, once
again, considered first as they provided better classification performances than single-source
models. Model 5 (2009-2010) and M9 (Aug-2009) achieved the highest accuracies (95% and
93%, respectively). The map cross-tabulation difference was 4.47%, with a total difference in
land cover area representing about 2.3% of total area mapped. The McNemar test showed no
significant difference (p=0.12) between the two classifications. M5 performed better than M9,
however, since temporal scale in an important factor, and to reduce the number of
confounding factors (overlapping time period results are harder to interpret), a single-year
model was favoured. In the final analysis, M9-wet (Aug-2010) and M4-dry (Jan-2010) were

selected as representative models.

Differences in RF classifications between dry and wet season were also investigated
using SAR-based models and SAR-wet M7 (2009/10) and SAR-dry M15 (2010/11) were selected.
OOB accuracies using SAR data only were between 85.9-89.7% for multi-year, and 82-85.2% for

single-year models.

Finally, differences between models based on the type of RS sources, i.e., spectral
versus SAR, were briefly examined. M12 and M15 were selected for this analysis as both used
RS data acquired in January 2010. M12 significantly outperformed M15 with OOB accuracy

equal to 93.8% compared to 85.9%. The difference in accuracy between the two classifications
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was statistically significant, p < 0.0001 using the McNemar test. However, M15 also included

data acquired in January 2011.

An evaluation of temporal/seasonal changes in areas of wetlands is presented in Section

5.3.1. Confusion among classes is presented next.

5.1.2.1 RF models comparison

RF classification results are evaluated for the M1, M2, and M3 first as they provide the highest
accuracies in their respective category. Since data from all years/seasons were used,
comparison among these models conflates the role of the temporal and seasonal factors to
highlight the difference between spectral and SAR input data. While differences between M1
and M2 accuracies were negligible, by contrast, model 3 (SAR) overall accuracy was significantly
lower. It follows that marked differences were found in the pixel class assignments between the
thematic maps. Cross-tabulation between M1 -3 and M2 -3 classifications showed differences
of 31.6% and 32.9%, respectively. McNemar tests showed that the difference between these

maps was statistically significant (p = 0.01 and 0.03, respectively).

Model-1, which comprised the broadest selection of predictor variables, yielded the highest
overall OOB and Independent accuracy (99% and 98.2%, respectively). Errors were mainly
found among the herbaceous wetland classes, and in most cases, errors of omission and
commission involved one or two pixels only. The lowest PA and UA values were obtained for
Grass Marsh (95.31% and 96.83%, respectively), as well as for Meadow Garden (PA=95.45%).
These two wetland classes share many similarities with respect to plant species composition,

soil preferences, and spatial distribution (See Appendix J: Wetland plant community types and
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List of wetland plant species recorded from Dabus Marsh, and Section 5.4.1 for more
information on the wetlands distribution). Among the terrestrial classes, confusion between
Woodland and Agriculture was detected at only two locations. The low level of error obtained
with these models provided limited insights into patterns of confusion between classes. Such
near perfect model prediction was attributed, in part, to the method used to assemble the

training set, which could have been overfitting the model.

The next two models, M2 and 3, were built to replicate the temporal scale of Model 1 but using
single RS source data. The spectral-based Model 2 achieved similar results as M1 with less than
1% difference in overall accuracy (McNemar p<0.001), and 4% difference between the two
thematic maps. However, the difference was mainly attributed to a single class, Meadow

Garden, which M2 confused with woodland according to the classification performed by M1.

These results suggest that the contribution of the SAR variables towards improving
model accuracies between M2 and M1, accounted partly for about 2-3%, taking into account
the errors carried by both models. The main classes with high error of omission and confusion
were generally the same for all three models, mainly Grass Marsh and Marsh Emergent. For the
SAR model M3, however, while greater confusion between Grass Marsh and Marsh Emergent
was evident, for Shrub Marsh confusion was present with a larger number of classes. In
addition, confusion among classes that exhibit dense canopy structure, such as Papyrus Swamp,
Forested Wetland, and Forest, was more likely to be reported. Meadow Garden was the only

class that achieved higher accuracy (PA) using M3 compared to M1 and M2.
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Dry season Model 4 and wet Season Model 9 (multi-source)

Table 5.4 and Table 5.5 present the OOB error matrices for the wet and dry season models M4
and M9, respectively. M4 overall accuracy was about 2% higher than M9 (p<0.001). As
previously reported for dry-season models, Meadow Garden reference pixels were generally
more poorly detected (PA=89.09%). This was also found with M4 for Shrub Marsh

(PA=83.91%).

For the wet season model M9, Grass Marsh and Marsh Emergent accounted for more
than 40% of all confusion among pixels. A significant proportion of the Grass Marsh pixels
(reference) was not detected (PA=64.06%), among which a large proportion was classified as
Marsh Emergent, Wet Meadow, and Shrub Marsh. Errors of commission for Marsh Emergent
also involved Papyrus Swamp, and Wet Meadow, among others. Confusion between wetland
and terrestrial land cover classes was only about 1%, and generally limited to a few classes. The
rate of detection for terrestrial classes did not change between the dry and wet season, with

96-97% overall classification accuracy.

Wet season Model 7 and dry season Model 15 (SAR)

Table 5.6 and Table 5.7 present the OOB error matrices for the SAR models 7 and 15, for
comparison between wet and dry seasons. Overall accuracy between the two models differs by
only 1%, but this was statistically different using the McNemar test (p<0.001), probably due in

part to the large sample size.
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As for previous RF models, the lowest accuracy was obtained by Grass Marsh and Marsh
Emergent. PA and UA consistently scored equally low (PA < 79%) for both the dry and wet
season models. The dry season model also poorly predicted Forested Wetland (PA=78.89%)
and Shrub Marsh (UA=80.41%). Poor Shrub Marsh detection was also reported for the multi-
source model M9 (dry). Likewise, Shrub Marsh was confused with the largest number of classes,

7 out 11, contributing to the high error of commission.

In addition to the Grass Marsh/Marsh Emergent pair previously mentioned, classes that
were difficult to distinguish in both the dry and season models included: Forested Wetland and
Woodland, Woodland and Forest, and Woodland and Agriculture. Overall classification
accuracy for Terrestrial classes was markedly lower for the dry season model compared to the

wet season (86% and 90%, respectively).

Model 12-spectral/dry season (Jan-2010)

Among the dry season models, M12 was selected for its low model complexity, since it had the
least number and diversity of input variables, i.e., it is based on a single Landsat image acquired
in Jan. 2010. As previously shown, overall accuracies as well as class probability distribution
varied by only a few percentage points among dry-season models. PA and UA results for M12

were comparable to those for M4 (Table 5.4).

The SAR model M15 (Table 5.7) was selected for comparison. Its overall accuracy was
significantly lower than M12 (85.90% versus 93.78%). This reflects the general trend observed

when comparing overall accuracies between models. The performance of multi-source models
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is comparable to those single-source models built using spectral data. It was concluded that the
SAR data variables used in this study provide only a marginal improvement in overall
classification accuracy when added to optical and topographic data. To that effect, the error
matrix assessment presented for M4 characterized mainly the role of the spectral variables.
Arguably, the differences in classification performance between the optical and SAR-based
models could be attributed to the fact that the latter was relatively less ‘data rich’ compared to
the former; additional SAR data wavelengths and variables (e.g. polarimetric, interferometric

variables) should be investigated in future studies.

Aggregating Wetland classes

Herbaceous wetland classes were aggregated to address RF model multi-temp SAR limitations.
The Marsh Emergent and Grass Marsh classes were aggregated into a single class referred to as
herbaceous Marshes. A 4% gain in overall accuracy was obtained by aggregating the three types
of marshes, Emergent, Grass, and Shrub, into one class, from 75.5% to 79.5%, since the RF
model performed poorly at classifying each of those three classes. The overall accuracy

achieved was 81% with six wetland classes.

Burn Patch/Scar

Burn Patches/scars found on the Jan. 2010 Landsat image covered about 2.2% of the study area
(within the diagonal section). To reveal the underlying land cover classes masked by the fire,
the Burn Patch pixels classified using RF model 1 were obtained using classifications from

selected RF models. Five multi-year models using primarily wet season image data (except for
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M15) were selected, which included two spectral models M6 and 9, and three SAR models M3,
7,and 9. For each model, the proportion of wetland and terrestrial land cover area was
estimated. Results are shown in Figure 5.5. Overall, the percentage of land cover area was

consistent across the selected models with the exception of M7 (SAR-wet 2009/10), which is

considered here as an outlier.

Wet Meadow (WM) and Agriculture (agr) comprised the largest proportion of area
impacted by fires, ranging between 35-40% and 28-29%, respectively. The other affected
classes included Papyrus Swamp (PS), 7-9% for Shrub Marsh (SM), 8-13% for Woodland (wdl), 6-

7% for Grass Marsh (GM) 1-3%, and the remaining classes 3-6%.

m1AB m2WM m3MG AME ®m5GM ®m6PS m7SM m8FW mO9wdl m10for m1lagr

-
0.0 0.1 0.2 0.3

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Percent Area

RF Models

Figure 5.5. Proportion of land cover classes affected by fire based on Jan. 12, 2010 Landsat image. Areas
of wetlands (1-8) and terrestrial land-cover (9-11) were classified using selected RF models.
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Further analysis was carried out to visually examine wetland class predictions focusing on well-
known areas of wetlands in order to improve understanding of the nature of the misclassified

land cover classes, see Section 5.4.
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Table 5.4. OOB error matrix* for RF classification model-42. User’s and Producer’s accuracy (UA and PA), Overall Accuracy (OA), and 95%
Confidence Intervals = (Cl).

Classified PA
Reference 1.AB 2WM 3MG 4ME 5GM 6PS 7SM 8FW 9 wd 10 for 11_agr 12_brn Total (%)
1_Aquatic Bed 77 1 78 98.72
2_Wet Meadow 86 2 1 1 90 95.56
3_Meadow Garden 2 36 2 1 2 1 44 81.82
4_Marsh Emergent 68 1 5 2 76 89.47
5_Grass Marsh 1 1 1 59 2 64 92.19
6_Papyrus Swamp 3 1 92 3 99 92.93
7_Shrub Marsh 1 7 4 73 1 1 87 83.91
8_Forested Wetland 1 88 1 90 97.78
9_Woodland 1 146 1 4 152 96.05
10_Forest (mature) 2 119 121 98.35
11_Agriculture 5 151 156 96.79
12_Burned Patch 44 44 100.00
Total 77 89 39 74 71 102 83 90 153 122 156 45 1101

User’s Accuracy (UA) 100.00 96.63 9231 91.89 83.10 90.20 87.95 97.78 95.42 97.54 96.79 97.78 OA(%)*: 94.37

Kappa coefficient: 0.9377 (0.9308—-0.9448) (95% Cl)  (93.74—95.00)

The rows and columns represent reference and classified data, respectively; see Table 5.9 for the key to wetland codes.
Repeated (N=25) k-fold cross-validation (k=5) method used to calculate 95% ClI for overall accuracy estimates (2,000 trees).

2Single-year, dry-season (Jan-2010), and multi-source RF Model-4: This model achieved classification accuracy comparable to other similar dry-
season models, such as M8 (95.0%), as well as the single source multispectral model 12 (93.8%). Cross-tabulation between M4 and M8 shows a
high level of concordance, with differences as low as 2.1%. Classification error difference between M4 and M12 is 4.3%. Model 4 and Model 9,

below, were selected for seasonal change analysis (see Section 5.3.1).

30verall classification accuracy for wetlands = 93% and terrestrial = 97%.
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Table 5.5. OOB error matrix* for RF classification model-g2. User’s and Producer’s accuracy (UA and PA), Overall Accuracy (OA), and 95%
Confidence Intervals = (Cl).

Classified PA
Reference 1AB 2WM 3MG 4ME 5GM 6PS 7SM 8FW 9 wdl 10 for 11_agr 12 _brn Total (%)
1_Aquatic Bed 77 1 78 98.72
2_Wet Meadow 84 2 3 1 90 93.33
3_Meadow Garden 50 1 1 2 1 55 90.91
4_Marsh Emergent 1 68 1 3 3 76 89.47
5_Grass Marsh 6 9 41 2 6 64 64.06
6_Papyrus Swamp 4 94 1 99 94.95
7_Shrub Marsh 1 1 1 83 1 87 95.40
8_Forested Wetland 2 95 1 98 96.94
9 _Woodland 2 1 141 1 7 152 92.76
10_Forest (mature) 1 4 116 121 95.87
11_Agriculture 1 1 3 151 156 96.79
12_Burned Patch 0 0 n/a
Total 77 93 50 86 47 106 96 95 151 117 158 0 1076
User’s Accuracy (UA) 100.0  90.32 100.0 79.07 87.23 88.68 86.46 100.0 93.38 99.15 95,57 n/a  OA(%)*: 92.94
Kappa: 0.9215 (0.9144—-0.9285) (95% Cl)  (92.30-93.57)

The rows and columns represent reference and classified data, respectively; see Table 5.9 for the key to wetland codes.
Repeated (N=25) k-fold cross-validation (k=5) method used to calculate 95% ClI for overall accuracy estimates (2,000 trees).

2Single-year, wet-season, multi-source RF Model-9: This model was used for comparison with the dry-season M4 for seasonal change analysis.
For the majority of classes, PA’s results were above 90%, with the exception of Grass Marsh, which was significantly lower, 64.06%. UA for Marsh
Emergent was below 80%, exchanging with Grass Marsh pixels.

30verall classification accuracy for wetlands = 91% and terrestrial = 95.5%.
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Table 5.6. OOB error matrix for RF classification model-72. User’s and Producer’s accuracy (UA and PA), Overall Accuracy (OA), and 95%

Confidence Intervals = (Cl).

Classified PA
Reference 1AB 2WM 3MG 4ME 5GM 6PS 7SM 8FW 9 wd 10 for 11 _agr 12 _brn Total (%)
1_Aquatic Bed 74 2 2 78 94.87
2_Wet Meadow 1 76 3 5 2 3 90 84.44
3_Meadow Garden 46 5 4 55 83.64
4_Marsh Emergent 3 2 1 60 7 1 2 76 78.95
5_Grass Marsh 1 5 1 11 43 3 64 67.19
6_Papyrus Swamp 2 2 3 2 87 3 99 87.88
7_Shrub Marsh 1 1 1 3 79 2 87 90.80
8_Forested Wetland 5 1 86 5 1 98 87.76
9_Woodland 2 1 2 132 7 8 152 86.84
10_Forest (mature) 1 6 7 107 121 88.43
11_Agriculture 1 1 8 1 145 156 92.95
12_Burned Patch 0 0 n/a
Total 79 89 52 80 57 105 94 97 152 116 155 0 1076
User’s Accuracy (UA) 93.67 8539 8346 75.00 75.44 8286 84.04 8366 86.84 9224 93,55 n/a  OA(%)*: 86.90
Kappa: 0.8544 (0.8456—-0.8631) (95% Cl) (86.11-87.68)

The rows and columns represent reference and classified data, respectively; see Table 5.9 for the key to wetland codes.

Repeated (N=25) k-fold cross-validation (k=5) method used to calculate 95% ClI for overall accuracy estimates (2,000 trees).

2Multi-year/wet-season, SAR-based RF Model-7: This model achieved the lowest classification accuracy among the group of wet-season models
‘M5, 6, & 7°. These models illustrate the effect of RS sources on RF predictions.

30verall classification accuracy for wetlands = 84.5% and terrestrial = 90.5%.
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Table 5.7. OOB error matrix for RF classification model-152. User’s and Producer’s accuracy (UA and PA), Overall Accuracy (OA), and 95%
Confidence Intervals = (Cl).

Classified PA
Reference 1AB 2WM 3MG 4ME 5GM 6PS 7SM 8FW 9 wdl 10 for 11_agr 12 _brn Total (%)
1_Aquatic Bed 75 2 1 78 96.15
2_Wet Meadow 3 78 1 4 1 3 90 86.67
3_Meadow Garden 2 38 1 3 44 86.36
4_Marsh Emergent 3 1 1 60 6 2 3 76 78.95
5_Grass Marsh 3 1 6 46 4 4 64 71.88
6_Papyrus Swamp 3 91 4 1 99 91.92
7_Shrub Marsh 1 2 2 78 2 2 87 89.66
8_Forested Wetland 8 1 71 7 3 90 78.89
9 _Woodland 1 1 1 4 123 11 11 152 80.92
10_Forest (mature) 6 14 99 2 121 81.82
11_Agriculture 6 1 149 156 95.51
12_Burned Patch 0 0 n/a
Total 81 87 42 72 57 108 97 83 151 114 165 0 1057

User’s Accuracy (UA)  92.59 89.66 90.48 83.33 80.70 84.26 80.41 85.54 81.46 86.84 90.30 n/a  OA(%)* 85.90

Kappa: 0.8430 (0.8313-0.8547) (95% Cl)  (84.85—86.95)

The rows and columns represent reference and classified data, respectively; see Table 5.9 for the key to wetland codes.
Repeated (N=25) k-fold cross-validation (k=5) method used to calculate 95% ClI for overall accuracy estimates (2,000 trees).

2Multi-year, dry-season, SAR RF Model-15: This model is used in tandem with the wet-season model 7 for seasonal change analysis, and with
model 12 to evaluate classifications between spectral versus SAR based models. In keeping with most models evaluated, Grass Marsh achieved
the lowest PA and second lowest UA (71.88% and 80.40%). It should be noted that Forested Wetland achieved low PA (80.41%), with an
uncharacteristically large proportion of Forest pixels (ref.) mapped as Forested Wetland.

30verall classification accuracy for wetlands = 86% and terrestrial = 86%.
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5.1.3  Class membership probability

The distribution of class probability values (CP) was evaluated to gain further insights into the
RF classification confidence for the selected models 1—-12. Class membership probability
distribution is used here as an indicator of RF model performance. As the probability density
distribution of CP values approaches 1.0, models generally yield higher accuracy results. Here,
wetland and terrestrial land cover classes are evaluated separately. Results presented in Figure
5.6 show the class probability (CP) distribution median (50t") and 75 percentiles for wetland
and terrestrial classes. The probability with which terrestrial land cover was classified was
significantly higher overall compared to wetlands. Median CP ranged between 0.42-0.54 and
0.55-0.73 for wetland and terrestrial classes, respectively, while the median terrestrial CP was
consistently higher than the 75 percentiles for wetlands across all models tested. There is a
strong relationship between CP distribution and overall model accuracy, however, when
comparing wet-season models such as M5 and 6 (multi-year) with M9 and 10 (single-year), CP
values for the latter models were higher by a few percentage points while exhibiting slightly
lower accuracies. The dry season models (M4, 8, and 12) achieved the highest values of these
metrics for both wetland and terrestrial classes, with CP values above 0.53, 0.87 and 0.71, 0.97,

for median and 75" percentiles, respectively.
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Figure 5.6. Bar and dot graph showing (OOB) RF classification accuracy and class probability percentile
(median and 75 percentile) for wetland and terrestrial land cover types. SAR-based models - light grey
bars; dry-season models - downward diagonal filled bar. The lines connecting the CP values are used to
improve clarity.

In Figure 5.7, density distribution plots are presented for wetland and terrestrial class
probability. RF models were grouped as follows: multi-year ‘generalized’ models M1 to 3 (top),
multi-year/wet-season models M5 to 7 (second row), dry-season models, M4, 8, 12 (third row),

and single-year (wet and dry) models M9 to 12 (bottom).

Model parameters such as data source, i.e., spectral and SAR, and combinations thereof,
were important determinants for CP density distribution. This is shown when comparing similar
model sets such as M1, 2, and 3 with M5, 6, and 7; matching pairs (M1-5, etc.) exhibit similar CP
distribution. The CP distribution for models based on dry-season images shows the strongest
consistency across models, for both wetland and terrestrial, M4 and 8 (multi-source), and M12

(spectral only).
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Figure 5.7. Density plots showing class membership probability distribution for wetlands and terrestrial
land cover. 1°t and 2™ row (wet season), RF models are compared in two sets that include multi-sources,
spectral, and SAR data respectively. 3™ row, dry season RF models 4 and 8 include multi-sources, and
model 12 includes spectral data only. 4th row, a mix of RF models using single date images, 2009 for
Model 9 and 10, 2011 for Model 11, and 2010 for Model 12.
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5.1.3.1 Second class membership probability

To further evaluate the patterns of confusion among land cover classes, the frequency
distributions of the classes with the second most votes were extracted from each RF model
(Figure 5.8). For this analysis, results from RF models were aggregated based on their
parameter configurations; multi-source models and SAR-based models were analyzed
separately. The bar graphs (Figure 5.8) represent the ‘2"¥ class average percent frequency for

selected multi-source RF models (dark shade) and SAR-based models (light shade).

On average, the most frequently occurring 2"% class comprised about 48% of pixels, and
in most cases, the classes most likely predicted, or frequent, were also those that were most
confused as evident in the error matrices. Strong association/concordance between class pairs
included: (/) Wet Meadow and Grass Marsh (56% and 47%), (ii) Forested Wetland and Forest
(64% and 34%), (iii) Woodland and Agriculture (62% and 69%), and (iv) Papyrus Swamp and
Shrub Marsh (37% and 27%); the pairs of percentages represent the reciprocal association.
Apart from Papyrus Swamp, Shrub Marsh did not exhibit any clear correlate among classes. This
indicates partly that model predictions for this class are fuzzier, and further establish why Shrub

Marsh has been generally difficult to classify.
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Figure 5.8. Percentage of times a given wetland class was the 2" place class for each 1° place class
(indicated in upper left corner for each panel) in RF classifications. Multi-source RF models (dark-blue)
and SAR-based RF models (light-blue).
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Figure 5.8 (Cont’d).

As previously found, models built with only SAR data were considered less reliable

overall and provided class predictions that differed markedly from multi-source models. A

number of strong cases showing clear divergence between multi-source and SAR models with

respect to selecting the ‘2" class included Aquatic Bed (1AB), where 64% were Marsh

Emergent for multi-source models, while for SAR-based models, 56% were Wet Meadow. For

Marsh Emergent, the selection was 43% Grass Marsh and 43% Wet Meadow for multi-source

and SAR-based models, respectively (Figure 5.8), and for Meadow Garden, the selection was

40% Wet Meadow and 33% Shrub Marsh.
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5.2 Analysis of RF Model Variable Importance, Physical Meaning and Class Separability
An assessment of variable importance was carried out to gain an understanding of the relative

contributions of the variables in the RF models.

5.2.1 Variable importance assessment — overview of RF models

For this study, the use of the unscaled permutation-based variable importance measure was
favoured over the scaled one. In analysis of RF model 1 (103 variables), it was found that this
metric produced rank scores that were on average about 5% lower when scaled measures were
used compared to unscaled ones for spectral variables, while the reverse was found for a
number of SAR and topographic variables, with scores about 9% higher on average. The
variables that exhibited marked differences in their importance scores between scale and
unscaled measures were evaluated and results are presented in Appendix D: Random Forest
Variable Importance, for reference and for comparison with findings from similar studies (see

Table A-19).

The overall variable importance rank scores (percentiles) were calculated for each RF
model across all land cover classes. Detailed results are presented in Appendix D: Random
Forest Variable Importance, Table A-18. Table 5.8 presents a summary of results for the top
25% most important variables. Among the variables derived from Landsat data, short-wave
infrared (b5 and b7) reflectance produced the highest importance percentile scores of 0.84 and
0.87, respectively. High scores were found for nearly all model configurations (and in all models
with scores > 0.70). Such high importance could be attributed to the presence of moisture in

wetland soil surfaces and the strong response from the short-wave infrared bands (Skidmore et
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al., 1975; Pantaleoni et al., 2009). Differences between wet and dry season models were found
for a number of multispectral variables. For the wet season models, as expected, green band
reflectance was more important (percentile score >0.80) than in dry season models (0.33),
while the reverse was observed for the red band (0.93 vs. 0.76). Similar significant seasonal
differences between dry (scores >0.95) and wet season (<0.47) were found for Tasseled-cap

Wetness (TCW) and Soil Adjusted Vegetation Index (SAVI).

For the SAR variables, PALSAR cross-polarized backscatter (HV) was among the most
important variables in all RF models with average percentile scores above 0.90, and above 0.95
when considering wet-season models only. However, it is worth mentioning that the overall
contribution of SAR data to the reduction of RF OOB error rate was relatively small when used

in combination with spectral variables, see Section 5.1.1 for additional explanations.

There were six important topographic variables among the 18 selected ones (Table 5.8)
that consistently improved RF model predictions when combined with either multi-spectral or
SAR data, or both. For instance, Terrain Classification Index (TCI) ranking was in the top 15% for
nearly all RF models examined, while all six important variables were consistently ranked above

the 70™ percentile.
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Table 5.8. The 18 most important variables based on the RF permuted variable importance percentile
rank scores. Average scores are shown for RF multi-season models (N = 3), dry-season (N = 3), wet-
season (N = 10), as well as an overall score across all models (N = 18). The proportion and total number
of models with variables in the 75 percentile (top 25%) is included. The best variable scores for each
data type (optical, SAR, topographic) are shown in bold.

Variables Multi- Dry- Wet- top 25%
Season Season Season Overall (N)
Landsat TM-5
b2-Green 0.60 0.33 0.80 0.65 58 (7)
b3-Red 0.77 0.93 0.76 0.79 75 (9)
b5-SWIR 1 0.73 0.98 0.86 0.84 92 (11)
b7-SWIR 2 0.73 1.00 0.92 0.87 83 (10)
b6-Net radiation 0.71 0.83 0.80 0.77 50 (6)
TC-Brightness 0.63 0.51 0.65 0.61 8 (1)
TC-Wetness 0.47 0.95 0.47 0.55 25 (3)
PCA1 0.51 0.78 0.60 0.60 50 (6)
NDVI 0.75 0.84 0.65 0.71 33 (4)
SAVI 0.46 0.96 0.30 0.44 25 (3)
PALSAR
HH Gamma filter 0.66 0.61 0.80 0.71 45 (5)
HV Gamma filter 0.85 n/a* 0.95 0.91 100 (9)
Topographic
Elevation 0.89 0.83 0.86 0.87 88 (15)
Slope height 0.91 0.73 0.85 0.83 82 (14)
Relative slope position 0.90 0.73 0.90 0.87 82 (14)
Saga topo. wetness index 0.85 0.72 0.78 0.78 71(12)
Terrain classification index 0.93 0.88 0.91 0.91 100 (17)
Vert. distance to channel network 0.85 0.66 0.81 0.78 59 (10)

*HV data were not available during the dry season.

The multi-temporal model 1 provided a configuration that allowed the measure of
relative importance and contribution to classification accuracy using all 103 predictor variables
at once. This model was also used to compare variable percentile scores between wet and dry
season data. As shown in Figure 5.9, importance scores for the dry season variables were on
average significantly higher than that of the wet season models, 79% vs. 46%. This reveals that

when variables from all three image dates were used together, the contribution of dry season
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variables were generally higher than that of the wet season. Significant differences were also
found between the two wet-season dates, with average scores of 53% and 39%, for Nov-2009
and Oct-2011 respectively. Figure 5.10 shows a side-by-side comparison of importance

percentile scores for 22 spectral variables derived from images collected during the dry (2010)

and wet season (2009 and 2011).
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Figure 5.9. Box-and-whiskers comparing variable importance percentile scores derived from
multispectral data, between dry season (Jan-2010) and wet season (Nov-2009; Oct-2011) images. Each
image comprises 21-22 variables. Median denoted by line across box and average score by ‘x’.

When comparing the two wet-season images, rank varied by about 4% on average.
Variables that exhibited the most change, included TC-Brightness (-10%), Net-Radiation (-8%),
and NDVI (+8%). These differences can be attributed, in part, to inter-annual differences
between soil and vegetation conditions. It is possible that Oct-2011 image was greener than

Nov-2009 since the latter image was acquired closer to the end of the wet season beginning of
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the dry season. However, it is more likely that these variations in variable importance ranks are
spurious differences between RF classifications. Variables that exhibited significant change
between the dry and wet season included Modified Normalized Difference Water Index and
Green band (b2), which had their importance scores shifted from top 5 to bottom 5 between

the wet and dry season.
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Figure 5.10. Spectral variable importance ranked by percentile scores for RF model 1, derived from
three Landsat images: Jan-2010 (dry); Nov-2009 and Oct-2011 (wet). EVI was not used for the dry season

(Jan-2010) image.

1

The remaining variables from RF model 1, SAR and Topographic, are presented in Figure

5.11. SAR variable importance percentile scores were grouped by image date to highlight the

intra-/seasonal and inter-annual differences. HV polarization consistently outranked HH

importance; HV percentile scores were 20% and 42% higher than HH for July 2009 and 2010

respectively, whereas texture variable importance was essentially negligible. Figure 5.11 (right)
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shows the six most important topographic variables (Table 5.8), which occupy the 80t

percentile, while the bottom 11 variables tested generally ranked below the 50t percentile.
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Figure 5.11. Variable importance ranked by percentile scores for RF model 1 PALSAR and topographic

data. The PALSAR variables are presented in Section 4.2.2, Table 4.5; Topographic variables are

presented in Section 2.2.4, Table 2.2.

5.2.2  Variable importance response at the class level

Variable importance ranks were obtained from the 18 RF models tested (Table 5.1). In Figure

5.12 and Figure 5.13, error bars depict the 95% confidence interval of the mean importance

percentile score obtained for each class. This analysis focuses on the top 6—7 most important
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variables for the optical and topographic data types and all variables for the SAR data; the

figure legends list the variables in descending order of importance.

Variable importance varied widely among classes and between seasons. As previously
presented, the importance of the dry season spectral variables was generally higher compared
to the wet season with some notable exceptions (e.g., NDVI for Wet Meadow and Meadow
Garden). Percentile scores were above 80 for most dry season variables, while there was a
wider range of response across most classes for the wet season conditions, e.g., TC-Wetness
scored below 50 for all but one class, Papyrus Swamp (76). Similarly, MNDWI ranked high (0.86-
0.91) for Aquatic Bed, Emergent Marsh, and Grass Marsh, while it ranked below 0.4 for Garden

Meadow and Forested Wetland.

For the SAR data (Figure 5.13, top panel), wet season HH and HV backscatter were
among the most important variables; HV was important across all classes (mean score = 82),
while HH was less consistent and significantly lower in importance for Forest and Agriculture.
Dry season HH exhibited the widest range of percentile scores. Higher variance was partly due
to the smaller sample size (N = 7 per class) compared to the wet season data (N = 15). SAR
Texture variables were consistently ranked below 20 % for nearly all wetland classes, with

relatively low variability across classes.

The importance of topographic variables was generally high across all classes with a few
notable exceptions, such as Aquatic Bed. The percentile score for elevation was 99 for Forest,

while Woodland and Agriculture scored below 50 (Figure 5.13).
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Figure 5.12. Error bars showing average importance percentile scores with 95% confidence intervals for
Landsat variables by land cover class for the dry season (top) and wet season (bottom). SAVI is only
shown for the dry season (top) and MNDW!I for the wet season (bottom). Variable names are given in
Table 2.1.
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179



Land Cover Classes: 1 = Aquatic Bed; 2 = Wet Meadow; 3 = Meadow Garden; 4 = Marsh Emergent; 5 =
Grass Marsh; 6 = Papyrus Swamp; 7 = Shrub Marsh; 8 = Forested Wetland; 9 = Woodland; 10 = Forest; 11
= Agriculture.

5.2.3 Characterizing wetland physical attributes derived from RF input variables

As an initial analysis of the physical characteristics of each class and their distinguishing
responses for two primary variables (NDVI and SAR HV backscatter), Table 5.9 presents the list
of wetlands and terrestrial classes description including a summary of their main compositional
and structural class attributes. The Dabus wetlands are largely dominated by herbaceous
emergent wetlands. With the exception of the more perennial Papyrus Swamps, meadows and
marshes undergo significant seasonal changes. The four main types of wetlands are relatively
well separated based on measures of spectral reflectance, i.e., NDVI, and PALSAR HV
backscatter (¢°) intensity collected from ground reference locations. Figure 5.14 boxplots show
class separability for the selected variables. With NDVI, the four ‘non-persistent” herbaceous
wetlands exhibit poor separation, likewise for Papyrus Swamp and Shrub Marsh, while HV
backscatter (Figure 5.16) provides additional separation. The aquatic bed class presents
vegetation growing on or below the water surface, which explains its lowest surface reflectance
for all bands, as well as lowest backscatter intensity (HV). The emergent class is characterized
by erect, rooted, herbaceous hydrophytes. However, its backscattering coefficients (HH and HV)
were among the lowest. Shrub Marsh exhibits NDVI response comparable to that of Papyrus
Swamp, while backscatter coefficients are significantly lower. This can be explained by the fact
that Scrub-shrub wetlands are dominated by woody vegetation (less than 6 m tall and generally
associated with Papyrus Swamps) and form sparsely distributed scattered communities.

Forested wetlands are composed of woody vegetation taller than 6 m and form dense canopy
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forest and are typically found covering the bottom of valleys in drainage channels or adjacent
to rivers. They are strong surface (HH) and volume scatterer (HV), and exhibit high NDVI
response, comparable to those of terrestrial forests. Meadow Garden are commonly cultivated
for at least parts of the year, generally for common crops. These wetlands are typically found
along narrow drainage valleys and valley-bottom. NDVI response exhibited high variance, while
HV backscatter was significantly higher than Wet Meadow, with which they share numerous

compositional and structural characteristics.

In more detailed class-based analysis, the range of variable measures extracted from the
training point locations is presented by land cover class using box-and-whisker diagrams. A
close examination of the results helps identify some of the underlying factors that explain why
RF classifications produced low accuracies for some classes, particularly for the herbaceous
wetlands, such as Wet Meadow, Marsh Emergent, and Grass Marsh. This analysis is based on a
small subset (four) of the most important spectral variables that were determined in the
previous RF classification analysis. It is intended to aid development of understanding of the
physical meaning of the class responses and differences between classes for these predictor
variables (Figure 5.14); measures are shown for the dry (left panels) and wet (right panels)
seasons. SAR data are presented in Figure 5.16, while topographic data are found in Appendix

G: Variable distribution among land-cover classes —Box-and-whisker diagrams, Figure 5.16.

Box-and-whisker plots show the distribution of values as follows: the lower and upper

hinges denote the first and third quartiles, i.e., the inter-quartile range (IQR), whiskers extend
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to 1.5 x IQR; the “notch”, or narrowing of the box around the median extends to

1.58xIQR/sqgrt(n) and shows the 95% median confidence interval.

Based on the data presented here, the underlying spectral and radiometric measures of
each land cover class have relatively well-defined boundaries, which reveals the degree to
which class similarities and differences are expressed. For example, dry season SWIR (b5) and
NDVI show little difference between Forested Wetland and Forest or between Papyrus Swamp
and Shrub Marsh. More homogeneous land cover types such as Forested Wetland and
Agriculture are denoted by their narrow range of values across variables. Meadow Garden
areas are, by contrast, not as well defined (see SWIR and NDVI). Marsh Emergent wetland,
which is generally associated with permanently inundated areas, is among the classes with the

highest MNDWI scores, and also displays high variance.
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Table 5.9. Class descriptions, summary of spectral and SAR characteristics, i.e., Normalized Difference Vegetation Index (NDVI) and PALSAR L-
band cross-polarization (HV) backscatter response. See Figure 5.14 and Figure 5.16 for spectral and SAR variables, respectively.

Class name E::: Description Main characteristics (Spectral/SAR)
1. Aquatic Bed AB  Vegetation growing on or below the surface, and areas of open water. Lowest surface reflectance (all bands) and
lowest backscatter intensity (HV)
2. Wet Meadow WM Grass dominated but mixed with forbs, and sedges; mostly found on NDVI (0.4) narrow variability/range; among the
low-lying areas; seasonally flooded (< 3 months). lowest backscatter (also incl. EM and GM)
3. Meadow MG  Cultivated wetlands along narrow drainage channels formerly Low-medium NDVI, high backscatter, wide
Garden occupied by Wet Meadow, but also found where in areas of range of values for both attributes;
drained/converted marshes.
4. Emergent EM  Sedge dominated but mixed with grasses and forbs. High NDVI (0.45) and low backscatter
Marsh
5. Grass Marsh GM  Mixed Grass/Sedge with forbs, seasonally flooded (< 6 months). High NDVI (0.52) and low backscatter
6. Papyrus PS  Papyrus cyperus dominated with ferns and other forbs. Second highest NDVI (0.58) among wetlands
Swamp (0.55-0.6) and high HV backscatter
7. Shrub Marsh SM  Fabaceae-Shrub dominated marsh often associated with Papyrus NDVI (0.57), backscatter show clear separation
Swamp. with PS
8. Forested FW  Woody forest seasonally inundated, dominated by Syzygium Highest NDVI (0.68) shared with Forest
Wetland guineense, in assoc., Ficus sur, generally found along stream drainage
channels, also riparian community adjacent to main streams.
9. Woodland wdl  Open/sparse canopy woody savannah-like vegetation with shrubs and ~ NDVI (0.43) and backscatter lower than FW and
scattered trees up to 10 m tall on grassy/herbaceous sub-layer wdl
10. Forest for  Closed canopy broad-leaf forest Highest NDVI (0.68) shared with Forested
Wetland, backscatter
11. Agriculture agr  Cropland, cultivated pasture, and homestead areas Low NDVI (0.32), lowest backscatter for

terrestrial class
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Figure 5.14. Box-and-whisker diagram showing training data distribution of spectral measures derived
from Landsat data for all thematic classes. MNDWI y-axis upper limit was set to -0.2, which prevented
the display of Aquatic Bed medians 0.42 and 0.46 for the dry and wet season, respectively.
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In the analysis of SAR variables, the mean backscatter coefficient (¢°) with 95%
confidence interval was calculated for the wet season in 2009 and 2010, and dry season (only
HH) in 2010 and 2011 (Figure 5.15). Overall, mean HV backscatter coefficients were significantly
lower than HH, while backscatter was markedly higher in 2009 compared to 2010 for both, HH

and HV polarizations.

Figure 5.15 presents the range of HH and HV backscatter coefficient values. Overall, HV
provided the best class separation, especially when considering wetland and terrestrial classes
separately. By contrast, the dry season (2011) HH data provided poor separation across most
classes. Marsh Emergent and Grass Marsh were virtually indistinguishable and shared strong

similarities with Wet Meadow.
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Figure 5.15. Mean HH and HV backscatter coefficient (¢°) 2009 to 2011 with error bars.
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5.2.3.1 Class separability

In a final analysis, land cover class separability was assessed using the JM distance across the
training set for the spectral input variables only. This analysis provided further evidence that
supports why RF model performance was lower with some of the classifications, mainly among

the herbaceous wetland classes.

Low JM values (<1.15) comprised about 6% of the total number of paired variable
comparisons among the spectral data set. Class separability was low in dry and wet season
images between Wet meadow and Grass Marsh, and Grass Marsh and Emergent Marsh. In
addition, low separability was reported between Papyrus Swamp and Woodland, and between
Marsh Emergent and Shrub Marsh for wet season conditions. Forested Wetland and Forest
generally exhibited low separability using SAR data and also for the set of important spectral
variables for dry season conditions. Additional JM class separability results are presented in
Appendix F: Jeffries-Matusita Distance Measures, see Table A-23 for spectral and topographic

data and Table A-24 for SAR data.
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5.3 Estimation of Wetland Extent and Composition

The areal extent of wetlands and terrestrial land cover were estimated using the RF model
classifications M1 to 11 (see Table 5.1 for descriptions of each model). The area represented by
each class is presented in Table 5.10 as a percentage of the total area of wetland and terrestrial
land cover, respectively, for a subset of six representative models. Results for all the 11 models

are included in Appendix |: Land cover percentage area for Model 1 to 11, Table A-27.

The selection of models included: (i) M1, as a ‘generalized’ multi-year/bi-seasonal and
multi-source model, which for this study is the reference model; (ii) M4 and M9 are multi-
source, represent the best performing models in their category, and were selected for
comparison of dry and wet season predictions; (iii) M7 and M15 are SAR based models, which
were also used for seasonal comparison; and (iv) M12 was selected as the ‘best” model fit with
the least number of spectral variables. These models express a wide range of response with

respect to areas of wetland estimates.

Temporal change analysis

Changes occurring in the Dabus wetlands can be divided into three main categories. (i) Areas of
wetlands that are relatively permanent—these wetlands are not expected to vary much in areal
extent, and this has been shown by most RF models. These are mainly represented by
seasonally inundated treed wetland, and the duration of inundation does not appear to be a
determining factor controlling their spatial distribution. There were two main types of Forested
Wetland in the Dabus Marsh and some formed relatively large stands, e.g., patches in the

middle of Papyrus Swamps, within the many drainage channels with significant broad
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depressions, or riparian forests that stretch along mid to large-sized streams, at edges of
floodplains, etc. (ii) This group includes the slow changing, semi-permanent wetlands, of which
Papyrus Swamp is a prime example as well as Shrub Marsh. (iii) The highly dynamic types of
wetland, which include all the herbaceous classes— these are also most vulnerable to
anthropogenic pressures. See Section 5.4.1 for a description of Wetland plant community

characteristics.

For this section, results from the multi-source models (M1, 4, and 9) are presented first,
while the SAR based model estimates are discussed separately. Wetlands represented about
25-27% of the total land area. This estimate varied by less than 4 percentage points across all
the RF models evaluated. Areas of wetlands were dominated by two herbaceous classes, Wet
Meadow and Papyrus Swamp, which accounted for 37-41% and 19-21% of the total area of
wetlands, respectively, and an additional 12-18% for Shrub Marsh, altogether representing 69-
76% of the total wetlands. Wet Meadow and Papyrus Swamp remained proportionally constant
among most multi-source models. Aquatic Bed covered about half a percent of the total

wetland area and exhibited high variance across models.

The percentage of wetland area is compared in Figure 5.17 for six selected models. In
this figure, the underlying land cover classes rendered invisible due to the Burn Patches and
remaining scars from fires (see models M1, 4, and 12) were extracted using classification results
from corresponding wet season models, i.e., Multi-source (M9) to provide classes to M1 and
M4, and multispectral (M6) to provide classes to M12 (see Section 5.1.2.1, Burn Patch for more

details).
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Figure 5.17. Percentage of wetland area by wetland class for selected RF models. For models 1, 4, and
12, Burn Patch areas were attributed to wetland classes based on wet-season model classifications.

RF classifications of terrestrial classes were consistent in areal extent across the models
evaluated (Table A-27). Agriculture represented 64-67% of the total terrestrial land area. The
remaining non-cultivated area was comprised of large expanses of woodlands (23-26%), and

sparsely distributed patches of forest (9-10%).
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Table 5.10. Land cover area (ha) and as a percentage of wetland and terrestrial area, as estimated using
RF Model 1. Wet and dry season areal comparison using multi-source models, M9 (2009) and M4 (2010),
and multi-year SAR models, M7 (2009/10) and M15 (2010/11).

MS-SAR  MS-SAR MS SAR SAR
Land Cover Class Model-1 Model-1 M9-wet M4-dry M12-dry M7-wet M15-dry
Areatha) T ey w9
Aquatic Bed 601.65 0.55 0.64 0.40 0.35 1.36 2.78
Wet Meadow 39,301.02 36.11 37.06 41.21 34.85 29.97 33.53
Meadow Garden 5806.98 5.34 9.09 5.95 10.41 12.32 7.05
Marsh Emergent 2317.05 2,13 5.77 4.05 3.40 4.30 4.01
Grass Marsh 9378.36 8.62 2.76 11.68 9.64 2.63 1.59
Papyrus Swamp 19,773.36 18.17 21.48 18.62 17.11 25.38 24.75
Shrub Marsh 15,862.05 14.57 17.35 12.04 10.18 17.37 16.09
Forested Wetland 6215.22 5.71 5.85 6.05 5.73 6.66 10.20
Wetland Area Total 108,833.94 25.43 27.40 25.49 27.31 28.08 27.95
Woodland 79,643.43 24.96 23.16 26.12 26.18 27.08 20.65
Forest 31,088.34 9.74 9.21 9.26 9.25 11.42 16.01
Agriculture 208,335.42 65.30 67.63 64.63 64.57 61.51 63.33
Burn Patch* 9,578.25 8.80 n/a n/a 8.34 n/a n/a
Terrestrial Area Total 319,067,19 74.57 72.60 73.67 72.69 71.92 72.05
Total Area 427,901.13 100 100 100 100 100 100

*Burn Patch areas were defined using Landsat (Jan-2010) Image for dry season models.

RF predictions using SAR-based models

Estimates of wetland aerial extent using the SAR based RF models M7 (wet) and M15 (dry)
varied markedly across classes between the wet and dry seasons, representing an overall 14%
absolute difference in land cover area. The concordance between the two classifications was
about 70%, including 62% for wetlands and 73% for terrestrial. Allocation disagreement

accounted for 23% of the differences, as large areas of wetland exchanged classes reciprocally
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between classifications, i.e., these areas were classified as one of two classes (e.g., Papyrus
Swamp and Shrub Marsh), while other areas were classified as one class but had different areal
extents (quantity difference=7%). Some limitations about these two models are worth noting
here. The two models were fit using a relatively small number of input variables, 28 and 22, for
the wet and dry model, respectively, and HV backscatter was only available for the wet season
model. In light of these poor results, no further temporal change analysis was pursued using
models based on SAR data as it became evident that differences attributed to model
configurations were likely to mask any detectable real changes given the short timescale for

this analysis (approximately 18 months) and the relative permanence of most wetlands.

The seasonal change analysis presented next in Section 5.3.1 employed two models that
were built using the same set of spectral variables, however, for the SAR variables, the same

limitation with respect to the availability of HV data, described above, remained an issue.

5.3.1 Difference in RF model predictions between the wet, Nov-2009 (M9), and dry season, Jan-2010
(M4)

The overall areal extent of wetlands estimated using the wet (M9) season RF model was 7.5%
larger compared to the dry season (M4), while terrestrial areas shrank by 2.6%. These areal
changes are relatively small and insignificant considering the inherent classification errors in

each model. This is further explained below.

The difference between class percentage area was 10.85%. Comparison between the
wet and dry season model thematic maps by means of cross-tabulation of the thematic maps

found 25.83% difference between classifications. Wetland classes showed a larger difference
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(36-40%) than terrestrial classes (20-22%). A summary of the “from-to” statistics for the classes
is presented in Table 5.11. For the most part, the range of differences found between M9 and
M4 classifications fit within the range of classification errors (OOB) attributed to each class.
Most of the confusion occurs between the poorly predicted classes, i.e., Grass Marsh, Marsh

Emergent and Meadow Garden, as well as Shrub Marsh (see Table 5.4 and Table 5.5).

Table 5.11. Summary of change statistics among classes comparing wet- (M9) and dry-season (M4) RF
models (Wet->Dry; Dry>Wet).

From |Aquatic/ Wet |Meadow| Marsh | Grass |Papyrus| Shrub |Forested| Wood- | Mature | Agri-

-to Bed |Meadow | Garden |Emergent| Marsh | Swamp | Marsh | Wetland | land Forest | culture
\;VEDiy 49.84 | 81.13 34.13 31.90 | 43.32 | 63.86 | 31.87 | 68.04 | 63.60 | 71.69 86.18
Dry->

Wet 84.94 | 78.42 56.08 48.92 11.00 | 79.18 | 49.35 | 70.80 | 54.95 | 69.56 87.86

Classes which had lower accuracy in RF classification, i.e., Grass Marsh, Marsh
Emergent, Shrub Marsh, and Meadow Garden, exhibited the lowest degree of agreement, or
concordance between maps; e.g., as low as 11% for Grass Marsh area and 32% for Marsh
Emergent. Errors in lower accuracy classes can propagate when temporal analysis is conducted;
i.e., at a given pixel, it is less likely that the class in the initial map or final map was correct,
resulting in potential for erroneous detection of change, and erroneous assessment of the
from-to classes for the pixel. Concordance among spatially dominant classes such as Wet
Meadow and Agriculture ranged between 78% and 88%, respectively, which again remained
below or near the threshold for error detection between these models. When considering the
combined class accuracies, e.g., for Wet Meadow, accuracy was 0.96 (dry) and 0.90 (wet), given

temporal cross tabulation represents an AND operation, assuming the maps are independent,
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the output accuracy should be [0.91 x 0.97 = 0.87], while classification accuracies were 0.78—

0.81.

While changes in the spatial distribution of a number of wetlands were significant, for
most classes, the difference in areal extent estimates between seasons remained relatively
small, and represented less than 1% absolute change for any given class (i.e., 11% for all classes
combined). Relatively small changes were anticipated for classes such as Flooded Forest and
Forest, which form more perennial plant communities compared to the more transient
wetlands such as seasonally inundated meadows and marshes. The most notable seasonal
difference was reported for estimates of Grass Marsh areas, which increased by 323% between
the wet (2.76%) and dry season (11.68%). However, the majority of confused Grass Marsh

pixels were classified as Wet Meadow, thus this estimate of temporal change is not reliable.

A visual examination of the areas that experienced seasonal changes as well as their
spatial distribution (Figure 5.18) provides further indication that RF model classification
errors/uncertainty accounted for most of the differences found between the two maps. Pixels
exhibiting changes were in part aggregated along areas marking transitional change along class
boundaries, as denoted by the black pixels in Figure 5.18. This specific aggregated pattern was
found uniformly distributed across the map and among classes. For the most part, these pixels

fit within the noise range between the two classifications.

A closer examination of areas of change between the dry and wet season maps revealed
two locations of interest where changes were largely explained by flooding patterns and its

effect on wetland community composition. Area (A), shown in Figure 5.18, is known to
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experience flooding for extensive periods. Areas of open water (Aquatic Bed) were detected
only during the wet season. Likewise, Emergent Marshes were more likely to dominate areas
prone to flooding during periods of high water, while such areas were classified as Grass Marsh
during the dry season. This was also observed along the mid-section of the wetland in the area

under the circle at B.

Seasonal comparison between maps also revealed two distinct areas (C and D) where
large numbers of pixels had changed between seasons. These areas did not appear to have
undergone any environmental changes that could explain such rapid conversion between
classes. Although it would have been possible to convert tracks of woodland into agriculture
land use within the short time frame, for area ‘D’, the conversion occurred from agriculture to
woodland. For area ‘C’, the changes between classes were more complex and involved Wet
Meadow, Papyrus Swamp, and Shrub Marsh; changes occur at a much slower pace for the

latter two classes.
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Figure 5.18. Seasonal changes between dry season RF classification, shown as reference map, and wet
season class, where changes are denoted by black pixels. Areas under circles (A) and (B) exhibit changes
that are likely linked to seasonal factors, i.e., flooding and plant growth. Areas of change denoted by
rectangles (C) and (D) are unusually large and unexpected, i.e., Papyrus Swamp —>Shrub Marsh (C) and
Woodland = Agriculture (D) and are more likely attributed to RF model prediction error rather than real
change.

The area identified by the box ‘C’ (Figure 5.18), is comprised of a complex mosaic of wetlands.
During the dry season this area is dominated by Wet Meadow and Papyrus Swamp interspersed
with relatively small patches of Shrub Marsh. In the wet season, however, the spatial
configuration of these wetlands changes significantly. Areas of Shrub Marsh then extend much
beyond their dry season ranges, mainly replacing areas of Papyrus Swamp, while Papyrus

Swamp extends over areas of ‘dry-season’ Wet Meadow. This is one of the most complex areas

196



of wetland found throughout the study area and also one of the least known and understood

by the author due to limited access to the area.

Lastly, changes featured at location ‘D’ (Figure 5.18) concern Woodlands, classified in
the dry season (2010), which had replaced areas previously classified as Agriculture from the
wet season (2009). Although, it is possible that severe dry season conditions would justify such
change, it is highly unlikely that such conversion could have occurred in such a short time. It is
more likely that one of the classifications was incorrect. Based on the existing woodland
distribution just north of the highlighted area ‘D’, the wet season classification M9 was
probably incorrect and had underestimated the woodland coverage. It is not clear, however,
why this occurred only in this particular region of the study area; the Woodlands found just
north of the highlighted area ‘D’, for instance, maintained the same coverage between the two
seasons. It is worth nothing that, overall Woodlands coverage during the dry season was about
13% larger than in the wet season, yet, the differences detected between wet and dry season

maps were not large enough to be regarded as significant.
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5.4 Mapping Wetland Plant Communities

The Dabus River, along with its associated wetlands, can be divided into three main
reaches/regions positioned along the stream elevation gradient, i.e., the upper/headwater,
middle/midreach, and lower region. Each region presents distinct hydrogeomorphic/drainage
and soil characteristics that are the main determining factors controlling the wetlands
distribution and their floristic composition. Figure 5.19 shows the distribution of the dominant

wetlands found along the three regions.

An investigation of the floristic composition and plant communities for the Dabus
wetlands was conducted as part of this research and results were also part of a wetland
vegetation comparative study of four wetlands in Ethiopia (see Dikaso Unbushe’s doctoral
dissertation; (Dikaso, 2013). Results for the Dabus wetlands were adapted from Dikaso’s

findings and summarized below.

198



DR CONGO{ .
TANZANIA

Class (Dry Season)
I Aquatic Bed (1)
[] wet Meadow (2)
- Meadow Garden (3)
- Marsh Emergent (4)
|:| Grassy Marsh (5)
- Papyrus Swamp (6)
B shrub Marsh (7)
- Forested Wetland (8)
B Woodiand (9)

B Forest (10)

- Agriculture/Farmland (11) &

Figure 5.19. Dabus wetlands upper, middle, and lower reaches/ sections. Colour infrared image (CIR),
Landsat 12-Jan-2010 (top); Maps of classified wetlands from dry-season RF model M4 (left).
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5.4.1 Wetland plant community characteristics and distribution

Surveys of the Dabus wetlands rich floristic diversity that were carried out during the wet and
dry season identified four main plant community types, which were described primarily based
on the wet season conditions. Changes in floristic composition observed during the dry season
were noted. A total of 130 plant species belonging to 97 genera and 40 families were identified.
The main four families accounted for about 60% of the total species, and included Poaceae
(19%), Cyperaceae (12%), Fabaceae (11%), and Asteraceae (8%); see Appendix J: Wetland plant
community types and List of wetland plant species recorded from Dabus Marsh, Table A-28.
Herbaceous and forb species were the most floristically rich followed by sedges, graminoids,

and shrubs (Dikaso, 2013).

The four plant community types described by Dikaso (2013), and their correspondence
with wetland classes evaluated for this study, are presented in Appendix J: Wetland plant
community types and List of wetland plant species recorded from Dabus Marsh. A fifth plant
community, ‘Shrub Marsh’ is also briefly described, however it was not covered by Dikaso
(2013). The plant communities and their compositions were determined by means of
hierarchical cluster analysis using a similarity ratio as a resemblance index and Ward’s linkage
method to identify vegetation assemblages (Van Tongeren, 1995; Greig-Smith, 1983).
Dissimilarity levels of 0.3—0.6 were obtained for the Dabus communities. Determination of
dominance and sub-dominance of species within each cluster was based on the mean cover

value. Data analysis are presented in detail in (Dikaso, 2013).
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The general spatial distribution of the main three wetland classes, i.e., the extensive

Wet Meadow (C2), Papyrus Swamps (C4), and Shrub Marsh ‘C5’, is represented as class

membership probability in Figure 5.20.

Figure 5.20. Map showing spatial distribution of class membership probability (CP) for Wet Meadow
(left), Papyrus Swamp (middle), and Shrub Marsh (right), as predicted by RF Model 4 (multi-source/dry
season).
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Wet Meadow-C2 dominated grasses from the Poaceae family, form the largest areas of
wetlands, 34—36% of total wetland (see Table 5.10 for areal estimates from selected RF
models). The distribution of Wet Meadow shows a greater proportion in the lower,

downstream (North) area, which also comprised the area with the highest proportion of CP

values greater than 0.7-0.9 (Figure 5.21).

D Wet Meadow
[ ]Papyrus swamp

[ shrub marsh

0.50 075 1.00
Probabilty

Figure 5.21. Wet Meadow area represented as class probability values (0.15 to 1) from dry season RF
model M4. Insert plot shows class membership probability density distribution for Wet Meadow (blue
line), Papyrus Swamp, and Shrub Marsh, as predicted by RF Model 4. Basemap source: ESRI’s ‘World
Imagery’.
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This wetland exhibits the widest range of change on a seasonal basis. The upper area
exhibits lower classification confidence, CP < 0.4, as well as significant fragmentation, which is
characteristic for most herbaceous wetland classes found in this area. This is also the wetland
type most impacted by anthropogenic pressures. Its current condition and floristic composition
has most likely been shaped by human activities. These Wet Meadows are the first wetlands to
be grazed, once they have been burned. They form large expanses of grasslands on generally
flat terrain with poor and highly compacted soils. The large area of Wet Meadow situated in the
lower region, shown as a uniform red patch in Figure 5.21, is inundated for part of the year (< 3
months) from the Dabus River. After inundation recedes, the soil retains water from continuous
rainfalls for the remaining part of the wet season, generally until September or October. At the
end of the wet season, Wet Meadows undergo drastic transformation. After months without
much rain, the water table eventually drops beyond the reach of plants. Soils are extremely dry
and can no longer sustain vegetation. After extensive grazing, the entire plant cover completely
vanishes until the next rainfalls, then, as a testimony to the resilience of wetlands, the process

starts all over again.
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Meadow Garden can be regarded as a type of ‘specialized” Wet Meadow. They are found along
drainage channels, and streams floodplains, in areas where soils are relatively rich and remain

wet for periods long enough to allow production of crops, mainly maize (Figure 5.22).

Figure 5.22. Meadow Garden area represented as class probability values (0.16 to 0.98) from dry season
RF model M4, area along the northern, downstream, section of the Dabus Wetland area. Basemap
source: ESRI’s ‘World Imagery’.

Vegetable gardens are also found where floodplain meadows previously thrived, but
their distributions are not limited to Wet Meadow areas. Marshes are also converted to
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gardens and/or crops, usually targeting fringe areas where the duration of inundation is short
enough to allow for the production of at least one crop. Cultivated areas are clearly visible in
the satellite image of Figure 5.22, top panel, acquired in April 2007. The classification was
carried out using Landsat and PALSAR data (Jan 2010). The mid-size stream meandering
patterns are visible along with the symmetrical shape left by the cultivation practices. The
classified image (showing only Meadow Garden), bottom panel, follows closely the cultivated
area along the channel network. However, RF classification of Meadow Garden extends well
beyond the cultivated areas into small narrow drainage channels that do not appear to be wide
enough to be cultivated. Many false positive Meadow Garden areas were noted throughout the
study area, resulting in variable accuracy and areal extents that varied by as much as 155%

across RF models.

Meadow Garden is generally difficult to classify as it occurs along relatively narrow
areas, i.e., along stream drainage channels surrounded by land cover often dominated by
terrestrial classes, which partly explains the higher proportion of confusion with non-wetland
pixels. Adding to the general confusion, the type of vegetation growth during the dry season,
i.e., crops or vegetable gardens, is likely to be confounded with Agriculture with respect to the

land cover spectral characteristics and radar backscatter.

205



Marsh Emergent and Grass Marshes—C1 occur on a continuum from permanently inundated

wetlands to seasonal marshes (see Figure 5.23 and Figure 5.24).

Figure 5.23. Emergent Marsh (blue) and Grass Marsh (Orange/Green) represented as class probability
values (0.14 to 0.99) from the dry season RF model M4, area along the northern, downstream, section of
the Dabus Wetland area. Basemap source: ESRI’s “‘World Imagery’.
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Figure 5.24. Emergent Marsh (blue) and Grass Marsh (Orange/Green) area represented as class
probability values (0.14 to 0.99) from dry season RF model M4 (top panel) and from wet season model
M9 (bottom panel), from an area along the central section of the Dabus Marsh. Basemap source: ESRI’s
‘World Imagery’.
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Although the boundary between Marsh Emergent and Grass Marsh is often blurred, both
floristically and structurally, these wetlands form relatively well-defined plant communities that
are distinct from Wet Meadow (See description of plant Community C1) and Figure 5.24 shows
two significant sites where large areas of Marsh Emergent and Grass Marsh wetlands occur.
These marshes are important as they are comprised of the most floristically diverse plant
communities, yet they are not as productive as Papyrus Swamps and their coverage is relatively
small, mainly fourth in area, after Shrub Marsh and 10-12% of the total wetland area. Estimates
of the areal extent of these marshes varied markedly across RF models, and most significantly
between spectral and SAR based models; their area was half the size using SAR-based
compared to spectral-based models (Table 5.10). The drainage characteristics (hydro-
geomorphology), levels of disturbance, as well as elevation were the main determining factors

for their distribution.

The area to the north (lower region) provides a few examples of localized patches of
Emergent Marsh which favour inundated zones, mainly in areas relatively confined where
water appears to be trapped, or where flow is limited. Emergent marsh can also be seen as part
of the riparian vegetation associated with the main streams. The large patch of Emergent
Marsh clumped with Grass Marsh situated at the centre of the map, appears to be distributed

along environmental gradients defined largely by water depth and drainage.

Figure 5.24 illustrates the marked differences in areal extent of Marsh Emergent and
Grass Marsh between the dry and wet season. During the wet season, the Marsh Emergent

forms significant cover, whereas it is nearly absent during the dry season; the reverse was
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found for Grass Marsh. Yet, it should be noted that while this area experienced a shift mainly
between these two wetland types between seasons, other wetland types such as Wet Meadow
and Papyrus Swamp were involved during the seasonal changes. It is not clear, however, to
what extent this illustrates real changes in the plant community compositions or is more the

result of RF models.
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Papyrus Swamps are described as ‘Cyperus papyrus’ plant community type C4, also referred to
as ‘Reed-Swamp’, which thrives on poorly drained soils. It forms large areas of wetlands, which
are generally clearly distinct from most other wetland communities with the exception of Shrub

Marshes. Figure 5.25 presents the distribution of Papyrus Swamps alongside areas of Shrub

Marsh.
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Figure 5.25. Papyrus Swamp (red-white) and Shrub Marsh (yellow-black) area represented as class
probability values (0.15 to 1) from the dry season RF model M4. Insert plot shows class membership
probability density distribution for Wet Meadow, Papyrus Swamp (red line), and Shrub Marsh (green
line), as predicted by RF Model 4. Basemap source: Esri’s ‘World Imagery’.
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The map reveals two separate stands, the larger one located in the south is the
dominant wetland type for the upper reach/region. It starts from the uppermost Dabus Marsh
area and stretches for about 20-25 km to the northeast then comes to an abrupt stop. This
indicates significant changes in drainage conditions and also marks the beginning of the Dabus
middle reach/region. The second Papyrus stand, smaller in size and more localized, is found in
the lower reach/region (North) and forms a well-defined community exhibiting the highest

proportion of pixels with high class probability values.

Shrub Marsh is dominated by species of shrubs from the Fabaceae family. Although markedly
distinct from Papyrus Swamp, Shrub Marsh (SM) appeared to favour similar types of habitat. Its
spatial distribution was closely associated to Papyrus, as illustrated in Figure 5.25, where areas
shown in yellow shades appear as transitionary stages between Papyrus Swamps and Shrub
Marsh community. This may have resulted from changes in edaphic conditions (i.e., soil depth,
moisture, stability and fertility) that would result in part from the accumulation of organic
materials combined with elevation changes, altogether inviting shrub-like species to develop
following natural ecological succession processes. However, little evidence of the Shrub Marsh
habitat conditions was obtained from the field as only a few sites could be directly surveyed. It
is worth noting that most reference points for Shrub Marsh were derived from satellite images

and photographic evidence.

The relative rare occurrence of Shrub Marsh may be due, in part, to anthropogenic
pressures where land use practices prevent it from taking hold, as pastoral land is largely

favoured. However, for the study area, Shrub Marsh estimated areal cover by RF models
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appears to be inflated. This assessment is partly based on knowledge of various areas that were
wrongly classified, or suspected to be wrongly classified as Shrub Marsh. Yet, it was not possible

to verify these claims due to lack of reliable ground data.

These findings suggest that there is some indirect yet strong evidence that Shrub Marsh
may be poorly defined as a wetland class judging only from the generally low classification
accuracy and class membership probability values. It also exhibits high levels of fragmentation,
as shown in Figure 5.25. The area immediately south of the main Papyrus Swamp shows two
distinct patches where neither PS nor SM were classified with confidence (low CP value) and
were highly fragmented. This raises a number of questions as to how wetland classes should

have been better defined in this study, which is discussed in Chapter 6.
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Figure 5.26. Cyperus papyrus plant showing the age classes of organs from the youngest (culm-unit 1) to

the oldest (culm-unit, VI). Source: Muthuri and Jones (1997).
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Forested Wetland—C3 are dominated by large trees (Syzygium guineense and Ficus sur)
associated with shrub and herbaceous wetland species. A few examples illustrating their
distributions are shown in Figure 5.27. Forested Wetlands (FW) form permanent communities,
which are relatively invariant to seasonal changes, and are generally found along marginal

habitats such as along ecotones between terrestrial/upland areas and floodplains.

Figure 5.27. Forested Wetland area represented as class probability (0.17 to 1) from the dry season RF
model M4 prediction/classification. Southern/upper area (left) and northern/lower area (right);
basemap image source: Esri’s World Imagery (various imageries).
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A few large FW stands were situated in the midst of a large Papyrus Swamps (see left panel),
yet these wetland communities were relatively uncommon. For the most part, Forested
Wetlands were found along streams (as riparian forest) and in most drainage channels
throughout the Dabus lowland watershed. Forested Wetland aerial coverage was 5-6% of the

total wetland area.
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6. Discussion

6.1 Random Forest Classifier

Random Forest classifications performed well with overall OOB accuracy well above 80% for
most models, and above 90% for a selection of optimized models (Section 5.1.2). RF yielded
accuracies as high as 99% for model M1, which integrated spectral, SAR and topographic data,
and images from multiple years and seasons. These results confirm the widely reported
effectiveness of the RF algorithm for land cover classification; e.g., Clewley et al. (2015); Duro
et al. (2012); Belgiu and Dragut (2016); Sonobe et al. (2014), and particularly for applications
to mapping wetlands in tropical environments, e.g., Midekisa et al. (2014); Jones et al. (2013);
Dronova (2015). Notably, a recent epidemiological study in Ethiopia conducted by Midekisa et
al. (2014) employed Landsat and topographic variables for RF classification of wetlands in order
to evaluate linkages between incidence of malaria and wetland distribution. Wetland maps
comprised of herbaceous wetlands and open water (upland classes included Cropland, Sparse
and Woody Vegetation) were produced with an overall accuracy of 93.5% for the populous
region of Amhara. By contrast, Whiteside and Bartolo (2015) carried out the mapping of aquatic
vegetation in a tropical wetland in Northern Australia and achieved only 67% overall accuracy
mapping wetlands using RF classification with high spatial resolution multispectral images
(WorldView-2) and LiDAR. This study mapped 12 major vegetation communities and found that
most of the classification errors were due to the high spectral similarities between classes

dominated by grasses.
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The high level of accuracy obtained in the Dabus Marsh raises important questions as to
the likelihood of overfitting of the classifier. Model overfitting is a concern as it limits the
classifier’s ability to generalize (Strobl et al., 2009). However, RF is considered robust to
overfitting (Bernard et al., 2012). RF model accuracies obtained from independent validation
assessments were characteristically lower than those from the OOB data, which concurred with
findings reported by previous studies (Millard & Richardson, 2013). However, the differences
were small, being about 2% for the optimized RF models, which is usually indicative of a low
degree of overfitting (Rogan et al., 2008). Issues related to the selection of reference data are

further discussed in Section 6.1.1.

On the use and value of Variable Importance Measures

The RF permutation-based variable importance measure expressed as percentile ranks
exhibited relatively small differences across the various models evaluated; variations at the

class levels within models were more significant than across models.

The 18 most important variables out of 103 that were tested (Table 5.8) include
important variables from all three sources, i.e., spectral, SAR, and topographic data. Among the
most important variables were (i) for spectral data, reflectance in the shortwave infrared
(Landsat band 5, and 7), dry-season red, wet-season green, thermal infrared/Net Radiation
(Landsat band 6), dry-season NDVI, dry-season TC-Wetness, wet-season TC-Brightness, and
NDMWI (Figure 5.10); (ii) for PALSAR data, HH and HV backscatter intensity; and (iii) for
topographic indices, Terrain Classification Index, Relative Slope Position, SAGA Topographic

Wetness Index, etc. (Figure 5.11). Altogether, the variables listed here constitute a
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representative subset among some of the most ‘effective’ predictors that have been frequently
used in various land cover mapping studies e.g., (Corcoran et al., 2013; Lane et al., 2014;

Bourgeau-Chavez et al., 2013; Campos et al., 2012).

Scaled versus unscaled

The unscaled variable importance measure was used in this study, as suggested by Strobl et al.
(2009). However, the alternate scaled measure is commonly reported in the scientific literature
(Rodriguez-Galiano et al., 2012). Findings from this study have shown that when comparing
between unscaled and scaled measures, importance rank varied by as much as 40% in some
extreme cases. For example, the SWIR-2 Landsat band 7, wet season variable dropped 31%
points, TC-Greenness (dry season) dropped 28%, and EVI dropped 25% when scaled values
were used. The opposite was reported for PALSAR data where HH scaled importance was 20%
and 26% higher than unscaled, for the dry and wet season, respectively, revealing that HH data
exhibited less variance while the Landsat based bands and SVIs had greater variance and thus
penalized the scaled measure. Other similar shifts were reported for topographic indices, which
also generally exhibited less variance (See Appendix D: Random Forest Variable Importance,
Table A-19, for additional information). As earlier stated, RF variable importance measure
presents a number of limitations and biases, such as favoring highly correlated variables as well
as dominant classes. There are a number of alternate methods for assessing variable
importance: e.g., a method based on the area under the curve (AUC) was found to be more
robust towards class imbalance (Janitza et al., 2013), also the conditional variable importance

measure proposed by (Strobl et al., 2008) is known to reduce bias towards correlated predictor
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variables by using a conditional grid to reflect the true impact of each predictor variable.
Conditional importance provides improved results when predictor variables are of different

types. Hapfelmeier and Ulm (2013) presents an extensive review of literature on the topic.

The impact of highly correlated variables on the RF predictions of wetlands has been
evaluated by Millard and Richardson (2015). They argue that there is strong evidence of
bias/error when RF models include highly correlated variables, which usually results in an
overestimation of classification accuracy. RF models evaluated for this study included a
relatively small fraction of highly correlated variables; e.g., fewer than 10% of variable pairs for
the spectral data and highly correlated pairs included only important variables. However, it is
not known to what extent this contributed to the high classification accuracies, since similar
high classification performance results were achieved when running in turn RF classifications

with either member of each correlated pair.

High correlation levels among spectral variables were expected and found for Landsat-
TM surface reflectance in the visible for both the wet and dry seasons; i.e., the blue, green, and
red spectral bands. For the near-infrared band, high correlation with several derived spectral
indices that incorporated that band were noted mostly during the wet season. Conversely, the
SWIR bands 5 and 7 were strongly correlated with a number of derived spectral indices, mostly
for the dry season (See Appendix E: Spearman’s Rank Correlation Matrix: Table A-20). In
addition, spectral indices derived using all six bands of the Landsat TM, including the Tasseled-
cap and PCA transformations, were likely to contribute to a large proportion of highly

correlated covariates. This was found for TC-Greenness across both seasons, and for PCA-1 in
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2010 (dry) and 2011 (wet). Correlation among the same variables but for different dates was
also noted. In the final analysis, this highlighted the difficulty with the task of selecting an
optimal set of spectral variables among a variety of measures, while trying to minimize the use

of highly correlated ones, especially when attempting to fit RF models with bi-seasonal data.

The relative low frequency of highly correlated variables found in the training set and
the random subsetting of the variable sets in each split in a decision tree will likely reduce the
simultaneous participation of two members of a correlated pair within a given node. Further
analysis would have been required to determine the effects of each highly and important
variables used individually (e.g., green and red spectral bands) on the RF predictions. Using a
pair of variables in RF that are both important as well as highly correlated is likely to
overemphasize/reinforce their positive effects on the resulting classification accuracy. Hence,
by selecting only a very small set of uncorrelated variables among the most important ones, RF
prediction accuracy is likely to be lower. As one of the objectives of this study was to compare
RF predictions/classifications between seasons, it was considered necessary to use the same
variable sets for each season and each year. This prevented the application of data
reduction/fusion techniques, which can combine the strengths of different images from sensors
that have different spectral and spatial resolutions (Ashraf et al., 2012), and in particular
feature space transformation such as Principal Component Analysis. The final selection of
variables was the outcome of a compromise between reducing highly correlated variables
below a certain proportion (<10%) and preserving a relatively even proportion of highly

correlated pairs for each image date, while maintaining a wide selection of variable types for
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each date. There was also a question of tradeoff between accuracy and bias, as reducing the
number of ‘important’ variables would generally yield lower accuracy, by as much as 10-12%
depending on the models; thus, the intent of reducing bias can lead to inflated accuracy.
Results of this study show that the top 20 to 25 variables contributed most of the reduction in
cross-validation error, see Section 5.1.1, from about 60-70% down to 15-10% (Figure 5.1).
About 40-50% of the variables employed in most models ranked generally low in importance

and their contribution to improving accuracy was about 10% or less.

By removing all the ‘unimportant’ variables as well as the highly correlated ones, the
resulting RF models for this study would have been reduced to about 20 to 25 key variables,
i.e., spectral SVIs, HH/HV, and terrain indices. Simplified RF models would be worth testing with
a proper independent validation sample set. It should be emphasized that: (i) these findings are
based on internal assessment (OOB prediction accuracy), and (ii) the independent sample set
available for this study was considered too noisy to be used effectively for parameter
optimization of the RF models (see Section 6.1.1). A number of points raised here remain
speculative without having access to a set of truly independent valid validation points. The best
approach was to compare relative changes in OOB accuracy among RF models in combination

with other proxy measures of performance such as class membership probability.

6.1.1 Reference data for training and validation, and map outputs

An important aspect raised by this study concerned the selection of reference samples. It is
highly likely that errors were introduced during the process of assembling the training and

validation set. While about 30% of the training data were in-situ field data, the remaining
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data/pixels were subsequently added based on photographic information combined with visual
interpretation of high resolution imagery. Preferably, a post evaluation of these points based on
ground verification would have strengthened the confidence in this reference set. Still, the data
were carefully evaluated using separability analysis, and by assessing the statistical
characteristics of each data point, which was an important vetting process that helped
eliminate obvious outliers/misclassified points, e.g., Forested Wetland confusion with Forest,

Papyrus Swamp with Forest, etc.

For the selection of the training dataset, effort was made to acquire a relatively equal
number of reference points across most classes (Table 4.1), or at the very least, proportional to
the class representation in the wetland (information that was unavailable), in order to limit the
effects of using imbalanced datasets, more specifically where a class represents a small portion
of the training data, cases usually found with ‘rare classes’ or with classes difficult to sample,
which may have been accidentally underrepresented. RF classifications based on imbalanced
training data generally lead to trees predicting the majority class and a blurring of the variable
importance measures resulting from a much higher weighting of error rate differences in the
majority class (Janitza et al., 2013). The spatial distribution of the training data shows a highly
clustered pattern with a predictably high degree of spatial autocorrelation, which has not been
measured (Figure 4.2). This clustering of ground data is likely to have contributed to inflating
the classification accuracy (Millard & Richardson, 2015; Castilla, 2016), yet, these were
unavoidable circumstances giving the access difficulties in most areas of the Dabus Marsh.

Consequently, this raised another critical argument regarding the representativeness of the
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training set with respect to the land cover types present. The proportion of the area covered
during the field surveys represents less than 5—10% of the total area, and access to the Dabus
Marsh was mainly from its northwestern side. The likelihood of having missed important
wetlands is further discussed in Section 6.2. For the most part, the RF model predictions
provided an overall accurate picture, albeit a broad one, of the Dabus Marshes depicting

wetlands in a relatively consistent manner.

Concerning the validation sample set, although it was regarded as ‘independent’, in as
much as the dataset was never used for training the classifications and it was selected
randomly across the various land cover types, the attribution of classes was essentially based
on visual assessment of high-resolution images provided by ESRI’s World Imagery in ArcGIS 10
(ESRI'Inc.) and Google Earth (Google Earth, 2015). Hence, it is also likely that errors were
introduced using this process, especially for the herbaceous wetland classes, which is difficult to
interpret in remotely sensed images. Further discussion on wetland classification is presented

in Section 6.2.

Overall, the observed differences between the OOB prediction accuracy and the
independent validation assessment provided insights into the inherent limitations with using
the independent set for assessing RF performance. Results showed that: (/) the difference
between OOB and independent accuracy increases with decreasing classification accuracy
(Figure 5.2); (ii) the difference was larger for wet season classifications compared to the dry
season (iii) the difference was larger for SAR based models (15-18%) compared to multi-source

and spectral based models (Table 5.1). Errors attributed to model performance and bias
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introduced from the selection of the reference data were likely conflated and, as such, difficult
to interpret. Alternatively, and for comparison, a repeated (N =25) k-fold (k=10) cross-
validation run on all RF models resulted in accuracies about 2% lower on average than OOB

accuracy.

6.1.2 Multi-source and multi-date data

The integration of multi-source data to improve RF model performance has been reported by
several studies (Millard & Richardson, 2013; Corcoran et al., 2013; Belgiu & Dragut, 2016; e.g.,
Na et al., 2009). Optical and SAR data are often regarded as complementary and used in
combination with terrain data for wetland mapping. This allows for a more effective detection
of wetlands, which form highly heterogeneous and structurally complex ecosystems (Bwangoy
etal., 2010; Lietal, 2012; Mayaux et al., 2002; Mitsch & Gosselink, 2007). Findings from this
research support this claim, however, the improvement was largely realized by combining

SAR and Spectral data, as explained below. Overall OOB accuracy generally improved with
model complexity; i.e., for models built using more variables (Figure 5.2) or by combining
variables from different sources. These included: (i) optical data and derived vegetation and
water indices, (ii) PALSAR HH and HV backscatter intensity, and (iii)) SRTM terrain derivatives.
Model performance improvement was more significant when optical variables were added to a
SAR based model than the reverse (Table 5.1). For instance, the overall accuracy of the multi-
year RF model M3 increased by 9% when its dataset was combined with a corresponding set of
optical variables (M2), from 90% to 99%. Yet, the M2 performed nearly as well (98%) without

SAR data.
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Numerous studies have used Landsat (TM/ETM+) data and derived vegetation indices
for land cover classification, and particularly for wetlands (e.g., Corcoran et al., 2013; Martinez-
Lopez et al., 2013). As previously stated, shortwave-infrared (Landsat bands 5 and 7) were
among the most important variables and were consistently in the 75t percentile of ranked
importance in all models; i.e., with or without SAR data. The spectral characteristics of wetland
habitats should explain in part this RF response. SWIR reflectance from soil surfaces is greatly
influenced by moisture (Skidmore et al., 1975). Corcoran et al. (2013) successfully discriminated
upland, water, and wetland areas using RF with the Landsat 5 TM band 5 among an assortment
of ‘standard’ predictors, i.e., NIR, elevation and curvature, hydric soils data, as well as PALSAR

(L-band) cross-polarization (HV) data.

Other studies have confirmed the importance of NDVI (Adam et al., 2010), NDMWI
(Davranche et al., 2010), Tasseled-cap components (Wright & Gallant, 2007b; Baker et al.,
2007), and Landsat thermal band 6 as wetland predictors (Baker et al., 2007; Corcoran et al.,
2013). In a recent article, Castilla (2016) identified a number of flaws with accuracy assessment
that resulted in part from a lack of independence between the training and validation pixels.
Using Net Radiation derived from the thermal band with its 120 x120 m pixel size along with
Landsat 30 m reflectance data oversampling occurred and accuracy became inflated. In this
research, Net Radiation was among the most important variables, however, the reference data
were comprised of single pixels relatively well-spaced apart, and as such, classification results

did not suffer from the oversampling issue identified by (Castilla, 2016).
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The contribution of PALSAR L-band HH and HV data to wetland classification has been
well documented (Souza-Filho et al., 2011; Clewley et al., 2015; Hess et al., 2015; Evans et al.,
2014). The SAR-based models evaluated in this study yielded overall OOB accuracy ranging
between 82.0% and 85.2% for single-year models and between 86.9% and 89.7% for multi-year
models; no significant differences were noted between wet and dry season model accuracies
(Table 5.1). The importance of the cross-polarization (HV) backscattering intensity variable was
consistently higher than HH for all RF models evaluated. In a review paper, Henderson and
Lewis (2008) also noted that in some studies HV provided better results than HH for wetland
mapping. In the present study, wet-season HV backscatter was an important predictor for all
land cover classes, whereas HH was generally more important in distinguishing wetlands classes
than terrestrial classes (Figure 5.13). The HV contribution to detecting upland Forest, a
characteristically strong ‘volume-scatterer’, was markedly higher than HH (wet-season data).
Papyrus Swamp had a higher backscatter in both HH and HV than all herbaceous and shrub
dominated wetlands but generally lower backscatter than forested wetland, upland forest and
woodland (Figure 5.16). Bourgeau-Chavez et al. (2013) reported similar backscatter responses
in multi-seasonal data for Phragmites, a tall reed exhibiting similar structural characteristics as
Papyrus. For this study, HV provided a clear separation between Papyrus Swamp, Forested
Wetland, and Shrub Marsh, whereas HH could only distinguish Papyrus Swamp from Shrub
Marsh albeit with significant confusion. Following from the above, errors in Papyrus Swamp
and Shrub Marsh were manifested as significantly larger spatial extents for both classes when
SAR data were used on their own, largely at the expanse of Wet Meadow but also herbaceous

marshes (Table 5.10). Although, SAR based models were less accurate than multi-source
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models, there is no clear explanation for this significant shift in spatial extent for these classes
in the different model predictions. Arguably, L-band data are good predictors for Papyrus
Swamp, yet the poor overall performance of the SAR models partly invalidated the results; the
estimates of Papyrus extent in the multi-source classifications are more likely closer to the

reality.

6.2 Wetland Classification

Wetlands are widely recognized for their global significance due to their ecosystem services and
functions in the hydrological cycle, carbon sequestration, water quality, and biodiversity
conservation (Batzer & Sharitz, 2014). There is a large body of remote sensing research
investigating freshwater tropical wetlands in Africa (Bwangoy et al., 2010; Teferi et al., 2010;
Adam et al., 2014a; Midekisa et al., 2014; e.g., Rebelo, 2009; Betbeder et al., 2014; Rebelo et
al., 2012; Mutanga et al., 2012), although the continent is not as well represented as other
parts of the world (Amler et al., 2015). Overall, the various RF classifications produced in this
research provided consistent results with respect to depicting the importance and spatial
distribution of significant wetlands across the Dabus Marsh area. Mapping of the dominant
wetlands from the upper and lower reaches presented a broad, yet representative picture of
the Dabus Marsh and helped characterize and better understand the nature of its main
wetlands. Examples include Papyrus Swamp dominating the upper reaches as well as small
parts of the lower Dabus Marsh, and the large extent of Wet Meadow dominating the lower

reaches and extending into the middle reaches.
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Variations in classification accuracy among wetlands were likely attributable to the
class-specific ecology of the dominant plant species, phenology and disturbance, which affected
their spectral and backscattering characteristics. Perennial wetlands with homogeneous plant
communities were generally easier to map, and were more accurate, compared to herbaceous
wetlands found in seasonally inundated areas. Forested Wetlands and Papyrus Swamp
consistently achieved higher accuracies, while large Wet Meadow areas were among the most
disturbed areas. The dominance of mixed Cs tall and short grasses, with C3 and aquatic
macrophytes, can be largely attributed to this high level of disturbance; grazing and fire are
generally associated with increased abundance of C, species (Heisler et al., 2003; Collins et al.,

1998).

For the most part, the main sources of classification error were among classes sharing
similar plant community types and inundation regimes and/or vegetation structure; these
classes displayed similar spectral and backscattering characteristics over similar landscape
configurations. The greatest confusion was among herbaceous classes (e.g., Marsh
Emergent/Grass Marsh/Wet Meadow) that were the most similar with respect to their
vegetation structure and flooding regimes, and in the case of Marsh Emergent and Grass
Marsh, were found adjacent to one another along a water depth gradient. Adjacent
successional classes such as Shrub Marsh and Papyrus Swamp were also a significant source of
confusion. In addition, Shrub Marsh was poorly classified in general and was commonly
confused with various herbaceous wetland types. Similar patterns of confusion among

herbaceous wetland classes have been reported in previously studies; e.g., in large area
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mapping of the Pantanal wetlands using PALSAR and RADARSAT (Evans et al. (2014), and in

mapping plant functional types in large freshwater lake in China (Dronova et al., 2012).

Shrub Marsh wetland formed sparsely scattered patches across the landscape and as
such was rarely encountered during the field surveys. However, RF classifications revealed it
was more common than perceived in the field; it ranked third or fourth in importance (areal
extent), in the RF models. Its spatial distribution was closely associated with Papyrus Swamp.
The map in Figure 5.25 shows narrow areas of Shrub Marsh stretching along the landward
margins of the Papyrus Swamp, mainly along its northern flank, but some of the largest patches
were situated south of the main Papyrus stand, which is an area that is not well known nor
understood by the author. The poor classification results obtained along this area are discussed

further below.

An attempt was made to assess the human impacts on the wetlands formed by the
narrow floodplains along the stream drainage channels, the so-called Meadow Gardens, also
referred to as valley-bottom wetland. These areas of wetlands have received special attention
due to their importance for sustaining livelihoods (Dixon & Wood, 2003; Dixon, 1997; Dixon,
2002). Meadow Gardens most closely resembled Wet Meadows and overall, RF models
successfully detected a large proportion of the most prominent areas where they had been
converted to agriculture. Differences in aerial extent between the dry and wet season, as
estimated by RF models, reflected expected seasonal changes in ecological conditions and
human activities; in the wet season, Meadow Garden occupied a significantly larger area

compared to during the dry season. There are many factors, including changes in plant vigor,
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levels of inundation, and agricultural practices that account for the differences between
classifications. Meadow Garden often extended well beyond its expected range. This was
particularly significant for the wet-season SAR based models. Although, the Meadow Garden
class represented a distinct type of wetland, its inclusion in the list of targeted wetlands did not
provide the expected results with respect to identifying human-made wetlands, and as a result,

its label definition should be broadened to include all narrow drainage channels.

Mapping the wetlands occupying the middle reaches of the Dabus Marsh presented a
number of challenges. This area is comprised of a rich diversity of wetland types and complex
ecosystems but it is remote and harboured a large population of the common hippopotamus
(Hippopotamus amphibius). The area was also used for safari hunting, which is indicative of how
important the wildlife diversity used to be but it is now protected. The RF classifications
highlighted well the complex nature of this area. The presence of numerous small channels
crisscrossing the Dabus floodplain, an area that experiences extensive changes in levels of
inundation, contributed to maintaining a rich mosaicked habitat comprising all wetland types
within a relatively small area. This in turn, tested the effectiveness of RF at the pixel size of the
study (30m) in detecting small changes within a highly dynamic environment and it helped gain
an understanding of the ecological processes shaping them. The presence of small and
fragmented stands of Papyrus contrasted with its usual dominance wherever else it occurred
(Figure 5.25). The apparent inability of Papyrus to colonize this area may be explained by
significant changes in the eco-hydrological characteristics of this area, in contrast to the upper

reaches where it is well established, as well as other ecological processes. The hippopotamus
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population often results (as observed) in overgrazing of grasses, as the diet of H. amphibius is
largely comprised of certain grass species with supplementary macrophytes (Field, 1970;
McCauley et al., 2015). The clearing of habitats by H. amphibius could have enabled the
colonization of Papyrus. The important role of hippos in enhancing wetland habitat diversity

and their ability in shaping their environment has been well documented (Dudgeon, 2008).

Findings from this study attracted attention to a particular area of wetlands flanking the
southern portion of the Dabus Marsh along its upper reaches. This area presented another set
of challenges for RF (see Figure 5.18, box C). As described in Section 5.3.1, the various RF
models generated highly variable classifications for this area, and in some cases class
assignments were suspected to be erroneous. The area shows a high degree of fragmentation
with three to five wetland classes distributed across the landscape without defined spatial
patterns. The area presents little relief or any discernable landform that could explain such
fragmentation. This area also had a high proportion of pixels classified with low probability
values, particularly for Papyrus Swamp. Such a high level of mapping uncertainty appears to be
limited to this region of the Dabus Marsh. The area could harbour some types of wetland
significantly distinct from those included in this study that may be variants of Shrub Marsh,
wetlands with a larger proportion of Papyrus and Shrub species, or other types of herbaceous
marshes altogether. Once again, this is a remote area, which appears to have been largely
spared from anthropogenic disturbance. Its access for grazing is limited, and hence less affected
by burning, which in turn allows for establishment of more diverse plant communities or for

plant communities to advance further along successional stages of wetlands. This may explain
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in part the confusion and difficulties encountered by RF to determine a wetland class among

the provided choices.

6.2.1 Temporal change and seasonality

Comparing classifications between RF model M4 (dry) and M9 (wet) showed relatively small
changes, about 5—6% absolute increase in areal extent of wetlands, in the wet season
compared to the dry season (Table 5.10). The overall difference between the classifications
was 25.8% from which 5.4% was due to quantity disagreement (QD), that is, the amount of
difference between the reference map (e.g., dry season) and the classified map (e.g., wet
season) resulting from an imperfect match in the overall proportions of the classes (Pontius &
Millones, 2011), see Section 5.3.1. This level of difference (QD) was within the range of
classification error; the overall accuracies were 92.9% and 94.4% for M9 and M4, respectively.
Overall, classification errors within each model and the classification difference between the
two models were largely confounded. As a result, change detections between the wet and dry
season were too small to be effectively detected by the models. There were a few localized
areas, however, where significant seasonal changes were detected. For example, the area
situated near the middle reach of the Dabus Marsh, as discussed in previous section, revealed
significant changes from Grass Marsh dominance during the dry season to dominance of sedges
in Emergent Marsh during the wet season (5.3.1). This demonstrates that RF models could
effectively detect relatively localized changes among closely related wetland types. In this case,
since both wetlands shared similar flora (plant community C1), it is highly likely that structural

differences between the plant functional types (PFT) played a more determining role in
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differentiating them. A number of studies have used PFTs for land cover mapping (Spasojevic et
al., 2010; Morandeira et al., 2016). However, in this study, there was too much noise due to
classification errors for these models to be used accurately to detect seasonal trends within

such a short timescale.

Seasonal variations in the Dabus Marsh were most pronounced among the herbaceous
wetland classes. The Wet Meadows shown on the Landsat image, see Figure 5.19, were
captured during the dry season (Jan 2010) in the early stages of senescence, as flood water
recedes. Most of the lower reaches exhibit bright spectral reflectance in both the visible and
NIR. It also displays lower NDVI values compared to adjacent wetland areas. By the end of
March-April, most of the herbaceous plants have dried out. Papyrus Swamps and associated
Shrub Marshes as well as Forested Wetlands are perennial by comparison and experience
relatively slow changes within their floristic composition. The observed variations in the
spectral reflectance of Papyrus shown on Figure 5.19 were likely associated with the plant
flowering phenology. The Papyrus large terminal umbels changed from a bright green to
yellowish brown between the wet and dry season. Further discussion on the significance of

Papyrus Swamp is presented in Section 6.3 below.

6.3 Ecological Significance of the Dabus Wetlands and Anthropogenic Pressures

A descriptive analysis of wetland ecosystems found in the Dabus Marsh identified four main
plant communities (Section 5.4.1). These communities were defined based on their floristic
compositions, plant functional structures, physical habitat characteristics (hydro-

geomorphology, drainage, slope, etc.), and level of disturbance (Dikaso, 2013). In addition to
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the Dabus Marsh, Dikaso (2013) investigated three other important wetlands, the Fincha’a-
Chomen (western Ethiopia) and Chamo and Abaya Lakes (southern Ethiopia), and found that
the Dabus was the richest wetland at all levels of taxonomic diversity. Its relatively high number
of endemic plant species and rich fauna warrant intensive monitoring. Dikaso (2013) recognized
the Dabus Marsh site as a strong candidate for the establishment of a biodiversity conservation
area. The four plant communities closely described the main wetland classes characterizing the
Dabus Marsh, i.e., the grass dominated Wet Meadow (C2), the floristically rich community (C1)
describing Marsh Emergent and Grass Marsh, Papyrus Swamp (C4), and Forested Wetland (C3).
This analysis provided a basis for an understanding of how natural factors and anthropogenic
pressures affected those wetlands. Fire and grazing were among the most important agents of
environmental change that contributed to the current ecological conditions shaping these
wetlands. Fire is widely used for land management in Africa (Hudak et al., 2004; Barasa et al.,

2011; Cassidy, 2007).

The Dabus Marsh presents three distinct ecological zones (Figure 5.19), the upper
reaches are largely represented by areas of pristine and impenetrable Papyrus Swamps, the
middle reaches have mosaics of wetlands found in a section of the Dabus Marsh which has
been relatively spared from human encroachment, and the lower reaches are a vast expanse of
grass and sedge meadows punctuated by marshes. Wet Meadows along the lower reaches
represent the largest areas of wetlands. This portion of the Dabus Marsh is of high importance
to local farmers as it provides water and pasture. This is particularly significant during the dry

season when the area experiences extended periods of water shortages.
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The large Papyrus Swamps found along the upper reaches play an important role in
maintaining the water balance; the slow release of water contributes to extending the
hydroperiod for the downstream wetlands. These headwater wetlands are known to contribute
significantly to food security while being under increasing threats from unsustainable use
(Wood, 2006). Cyperus papyrus forms well established herbaceous swamps (Hughes & Hughes,
1992) largely occurring in shallow depressions experiencing medium to low flood intensity (3-4
m in amplitude) (Thompson, 1985). The main impact from anthropogenic disturbances
affecting the Dabus Papyrus Swamps appeared to be limited to seasonal burning as well as
marginal encroachment along the drier parts of its habitat where conversion to vegetable
gardens had been observed. During the dry season, the characteristically large reproductive
umbel that topped the tall stalk/culm, (Figure 5.26) showed signs of drying out (browning).
These phenological changes generally occur during the time of the year when areas of Papyrus
are either deliberately set on fire or more often when fires drift from adjacent burning
wetlands such as Wet Meadows. These fires leave large burn patches/scars that can be
detected using satellite imagery. The highly dynamic and unpredictable nature of fires pose

significant challenges to monitoring wetlands using remote sensing techniques.
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6.4 Limitations and Recommendations for Future Mapping of Wetlands

A more systematic selection of reference samples would have been preferable, however,
compromises had to be made, which may have had significant impact on the classification
outputs. Access to remote wetland areas is challenging especially during peak flood season.
This is particularly true for most parts of the Dabus wetlands. As a result, the selection of
ground reference data and subsequent collection of plant species have been largely limited to
the wetland fringes, areas readily accessible on foot. Moreover, successful survey of wetlands
and their plant species was dependent on the collection of samples that were generally difficult
to reach without boats. Despite the generally high classification accuracies achieved, the RF
classifications may not have performed as well as anticipated. Classification algorithms are only
as good as the data used to train and validate them. Knowledge of how well the training set
represents the distribution of wetlands was not readily available, thus limiting the confidence in
the classifications in areas that were never accessed or that were difficult to conclusively

interpret from the high-resolution imagery.

Potential future steps include carrying out a more thorough evaluation of the RF
algorithm parameters as well as testing larger attribute sets. Testing multiple machine learning
algorithms at once should also be considered, as well as combining different classifiers using
model stacking or model ensembling methods. Rather than choosing a single model, stacking
combines them with estimated optimal weights. This often leads to better prediction but comes

at the cost of interpretability (Hastie et al., 2009).
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Efforts for improving classification accuracy may be better directed to obtaining larger
training and validation sample sets, and more importantly, to the approach used for defining
the class boundaries and defining the classes themselves, (i.e., should reference points be
collected from the class centroid or from a range of class manifestations?) The reference
samples should represent the diversity of wetlands classified. Following a purposive sampling
protocol appears to be a more effective strategy than attempting to use a sampling design that
is probability based, although the latter is strongly recommended so that statistical parameters
can be more accurately estimated (Olofsson et al., 2014; Millard & Richardson, 2015).
However, the inclusion probability of any given pixel (as being part of the validation sample) is
largely unknown (Castilla, 2016). In light of that uncertainty, using a purposive selection of

reference data for training the classifier appears more appropriate.

As wetland species exhibit, to a certain extent, similar spectral characteristics, their
overlapping spatial distribution increases the chance of mixed pixels in transitions between
class patches. The relative poor classification performance provided by SAR data alone,
compared to optical data, was partly due to the use of only some of the information provided
by the PALSAR sensor, that is, HH and HV backscatter intensity (sigma-naught) data. Phase
information can also be used to improve wetlands delineation (Koch et al., 2012; Touzi et al.,
2007). However, fully polarimetric data allow an array of polarimetric decomposition
techniques that have been widely successful for characterization and classification of wetlands

(Brisco et al., 2011b; Brisco et al., 2013), and interferometric data may provide improved
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topographic information or vegetation surface model data that could improve classifications.

Such in-depth SAR analysis was beyond the scope of this study.

For future work, the use of higher-resolution images would help minimize this source of
confusion. The freely available Sentinel satellite data is a promising avenue to improve mapping
results. However, digital elevation models would have to be made available with matching pixel
size. To date, the SRTM derived DEM remains the source of choice, and there is an abundance
of open source software and models that allow the generation of topographic derived indices

that are of significance for mapping wetlands.

Ensemble-learning classifiers present promising results for mapping wetland ecosystems
in tropical environments. High accuracy results confirm the effectiveness of RF for classifying
wetlands. However, a number of questions still remain as to the impact of using a small and
‘unrepresentative’ set of training data on classification accuracy. In situations where low levels
of accuracy were obtained, the causes may be attributed to both the poor performance of the

RF classifier as well as the training data. These are questions that require further investigation.
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7. Conclusion

This study demonstrated the potential of using readily available geo-spatial multi-source data
with the ensemble-learning classifier Random Forests in mapping and characterizing tropical
wetlands found in the highlands of Ethiopia. Spectral (Landsat-5 TM) and SAR (PALSAR L-band)
data used in combination with topographic indices derived from an SRTM 30 m DEM provided
the best classification performance, 94.4% and 92.9% for the dry (Jan-2010) and wet (Nov-
2009) season, respectively. Spectral with topographic data performed nearly as well without
SAR data, while accuracies using only SAR with topographic data were overall 6-8% lower. SAR
performance remained acceptable (82-89% accuracy), particularly given it can be acquired any
time in cloudy tropical regions. It could be useful with a smaller set of aggregated/broader
wetland classes, e.g., herbaceous, Papyrus, and Forested wetlands, and using higher resolution

sensor data such as those from the recently launched Sentinel satellites.

While the focus of this research was to map and characterize a single large wetland
complex found in the highlands of Ethiopia, nonetheless, this study contributes to development
of understanding of the dynamics of wetland functioning in tropical ecosystems and their
response and adaptation to natural factors and anthropogenic disturbances such as fire and
grazing. Papyrus Swamps comprise nearly a quarter of the Dabus Marsh area and harbour a rich
diversity of species (e.g., the rare Shoebill stork Balaeniceps rex and the wattled crane
Bugeranus carunculatus). The Dabus Marsh also holds one of the few remaining large
populations of Hippos (H. amphibius) left in Ethiopia. There is a need to understand biophysical

processes in wetlands for the sustainable use of key vulnerable and important ecosystems.
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Wetlands provide water and pastures, and this has a particular significance for Ethiopia where
local farmers often experience chronic or acute water shortage during the dry season, from

year to year.

RF classification provided maps showing the extent and location of wetlands divided
into eight broad classes characterizing the Dabus Marsh. The main wetland classes were largely
dominated by seasonally inundated grass dominated meadows mixed with patches of
floristically rich sedge marsh areas found within broad depressions and associated with the
various steam channels. The Papyrus Swamps formed the second largest area of wetlands
extending across a wide expanse on the upper reaches/headwater of the Dabus Marsh. The
Papyrus Swamps play an important role in the water balance for the Dabus Marsh as it acts as a

reservoir slowly releasing water that benefits downstream areas used by farmers.

Mapping has often proved difficult in many parts of the developing world due to the
lack of temporally and spatially consistent data sets (Davidson & Finlayson, 2007). The limited
knowledge about the ecological integrity of wetlands and the well-being of the communities
that rely upon them requires the ability to map and monitor these remote ecosystems. Remote
sensing can play a primary role in these. The approach followed in this research demonstrated
the potential of using multi-sensor and topographic data with the Random Forests machine-
learning classification algorithm to improve the classification of wetlands and the production of
accurate maps in a ‘timely’ fashion, with the aim of facilitating the monitoring and management
tasks for researchers and decision makers. Further development of monitoring tools should

provide detailed temporal characterization of the inundation dynamics of the wetlands.
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Appendices

Appendix A: Random Forests—R Scripts

A.1: Work Flow

The work flow main codes section is divided into five parts, (i) Preliminary — Training and
Validation, (ii) Running Random Forest models based on various selections of predictor
variables, (iii) Predicting class response for image classification and class membership
probabilities, (iv) Running k-fold cross-validation, and (v) Generating variable importance

values.

i.  Training and Validation data were read from Shapefiles using rgdal :: readOGR;
Shapefiles were created in ArcGIS and MS Access; ‘GRID_CODE’ and ‘gridcode’ attributes
were used to store class data for training and validation, respectively, and additional

attributes were used to control the selection of reference data;

The establishment of predictor variables was performed separately using PCl Geomatica
(2014) for creating multi-channel input raster files. Individual ‘pix’ files were created for
each Landsat images and their derived indices; a DEM ‘pix’ file was created, which
contained 18 topographic variables (including elevation and derivatives); two ‘pix’ files
containing PALSAR data were create, one contained variables derived from processing

L1.1. and 1.5 data, and the other contained data derived from the 25 m mosaics (JAXA).

“inraster” comprises a ‘stack’ of 113 predictive variable layers named ‘V01’ to ‘V113’; S1
to S18 objects were used to fit the RF models with various combinations of predictors
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’,u

using the object ‘selection’; “training_data” were extracted from ‘inraster’ using
‘TrainPts’. Similar steps were used for “validating_data”. “final_training_response” data

were extracted from ‘TrainPts’ and converted to ‘factor’ data.

In part ii, for each model configuration (selection), RF runs 5,000 trees (ntree is under
user’s control) and the number of variables tried at each split is equal to sqrt(p), where
p is the number of variables (RF’s control, or m, can be set by user); Importance and

proximity are set to ‘TRUE’, and replace is set to ‘FALSE’;

Draw niree (= 5,000) bootstrap samples from original data;

For each bootstrap sample, grow an unpruned class-tree; at each node, randomly
sample muy of the predictors and choose the best split among those variables;

Predict new data by aggregating the predictions of the n:.e trees (i.e., majority votes for

classification);

The print command generates an output summary including, number of trees, number
of variables tried at each split, and the “out-of-bag” (OOB) estimate of error rate,

followed by the confusion matrix table.

For each RF models, class ‘response’ and class membership probability values, ‘prob’,
were generated using raster::predict; results were saved as ‘pix’ files.
K-fold cross-validation was performed using caret::train; method was set to “rf”;

‘trainControl’ method was set to “repeatedcv”, the number of repetitions was set to 25,
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and the fold size was set to 5; ‘rfGrid” was used to test various ‘my,” sizes, the selection
of levels was adjusted up or down depending on the number of variables used.

V. Variable importance (raw measure) was extracted from each RF model using
‘rf_modelSimportance’ object, importance standard deviation was obtained from
...SimportanceSD; scaled importance measure can be calculated as follow: scaled_imp =
importance/importanceSD; importance measures were extracted from each variable

and from the model overall ‘MeanDecreaselmportance’ and ‘MeanDecreaseGini’.

Supplement codes include component of a script that can be used for the extraction and
assembly of predictions from various RF models, see ‘Extracting Predictions’, and a script to
generate a Multi-Dimensional Scaling plot from proximity matrices obtained from various RF
models. Confusion matrices can be extracted directly from RF model: ‘rf_modelSconfusion’ or

recreated using ‘confusionMatrix’ in caret.
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A.2: R Scripts

July 17,2016
R Script — Main Codes
setwd("C:\\_RaF\\subset") # Set Working Directory

Libraries

library(raster); library(randomForest);

library(caret); library(kenlab);

library(lattice); library(ggplot2);

library(rgdal); library(tcltk)

require(doParallel); registerDoParallel(makeCluster(detectCores() - 1))

Preliminary — Training and Validation

Read training and validation data from Shapefiles (requires rgdal):

AllPts <- readOGR(dsn="C:\\_RaF\\shp\\trainv8 .shp", layer="trainv8 ")
## OGR data source with driver: ESRI Shapefile

## Source: "C:\_RaF\shp\trainv8_.shp", layer: "trainv8_
## with 1125 features

## It has 37 fields

ValPts <- readOGR(dsn="C:\\_RaF\\shp\\Valid v2.shp", layer="Valid v2")
## Source: "C:\_RaF\shp\valid_v2.shp", layer: "Valid_v2"

## with 1003 features

## It has 17 fields

Subset Training Point (TP) data:

AllPts <- subset(AllPts, Al1Pts$GRID CODE != 12) # Exclude TP = Burn Patch)
AllPts <- subset(AllPts, AllPts$SAR diag == 1) # Select TP inside mid-diag.

index <- 1:nrow(AllPts)
TrainPts <- AllPts[index, ]

Check number of TPs and VPs per class:

table(TrainPts$GRID CODE)

# 1 2 3 4 5 6 7 8 9 106 11 12 Classes

## 78 90 55 76 64 99 87 98 152 121 156 49 [1125] <- All TPs/Classes

## 78 90 44 76 64 99 87 90 152 121 156 44 [1101] <- Inside Diagonal

## 78 90 55 76 64 99 87 98 152 121 156 [1676] <- AOI & No Burn Patch (12)

## 78 90 44 76 64 99 87 90 152 121 156 [1657] <- Inside Diagonal No Burn_P (12)

Subset Validation Point (VP) data:

ValPts <- subset(ValPts, ValPts$test
table(ValPts$gridcode)

1) # Select VP inside diagonal (740)

268



#tt 1 2 3 4 5 6 7 8 9 10 11 12 Classes
## 33 136 62 64 78 68 49 75 166 73 198 [1e03] <- All VPs/Classes
## 26 119 45 53 48 68 41 57 112 35 135 1 [740] <- Inside Diagonal

extract 'new' data at ref. 'valid' locations, to make predictions
Load predictor variables and create large RasterStack object 'inraster":

Landsat Jan-2016
Landsat Nov-2009
Landsat Oct-2011
DEM derivatives
PALSAR L1.1 & L1.5
PALSAR 25m Mosaics

infile <- "2@10jan_final x.pix"

infill <- "2009nov_final x.pix"

infil2 <- "2@1loct_final_x.pix"

infil3 <- "DEM_deriv_final_ x.pix"

infil4 <- "palsarl final x.pix"

infil5 <- "2010 09 mosaic_final x.pix"

inraster <- stack(infile,infill,infil2,
infil3,infil4,infil5) # Stack variables/Layers

HOH OB OB OB W

Set column/Variable names: "V01, V02, VO..."

numbands <- as.numeric(length(names(inraster)))

names(inraster) <- c(paste("V", c(l:numbands), sep=""))

names(inraster)[1:9] <- c("ve1", "ve2", "ve3", "ve4", "ves", "vee", "vo7",
"vesg", "Ve9")

Extract training data from 'inraster' using 'TrainPts; and
save 'training_data' object for later use:

training_data <- extract(inraster, TrainPts)
save(training data, file = "train_dat_1076.RData")
load("train_dat_1057.RData")

Create 'training_response' object from TrainPts, using 'GRID_CODE'; convert to 'factor":

final_training response <- as.factor(TrainPts$GRID_CODE)
training_response <- (TrainPts$GRID_CODE) # alternate version of ‘y’

Create 'valid_response' object from ValPts, using 'gridcode’; convert to 'factor':

validating data <- extract(inraster, ValPts)
valid response <- as.factor(ValPts$gridcode)

Create objects 'S1 to S18' for model selection:

S1 <- c(1:103)

S2 <- ¢(1:83)

S3 <- ¢(66:95,97:113)

S4 <- ¢(1:21,66:83,97,98)

S5 <- ¢(22:83,84:88,99:103)

S6 <- c(22:83)

S7 <- c(66:83,104:113)

S8 <- ¢(1:21,66:83,89,90,97,98)
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S9 <- ¢(22:43,66:83,109:113)
S10 <- c(22:43,66:83)

S11 <- c(44:65,66:83)

S12 <- ¢(1:21,66:83)

S13 <- ¢(22:43,66:83,104:108)
S14 <- c(44:65,66:83,104:108)
S15 <- c(66:83,89,90,97,98)
S16 <- c(66:83,109:113)

S17 <- c(66:83,104:108)

S18 <- C(66:83)

Model-1: ALL but SAR 'mosaics' (2009 & 2010)

Model-2: msi+dem* --> multi-temp & DEM

Model -3: msi+Topo+sar (all SAR but v96)

Model-4: msi+dem+sar --> 2010-Jan & DEM & 2010 Jan_hh variables
Model-5: msi+dem+sar* --> MSI-wet+Topo & SAR-wet (L1.1 & L1.5)
Model-6: msi+dem --> MSI-wet+Topo 2009 & 2011

Model-7: dem+sar? --> SAR-wet+Topo 2009-2016 (Mosaics)

Model-8: msi+dem+sar* --> MSI-dry(2010) & SAR-dry(2010 + 2011)
Model-9: msi+dem+sar? --> MSI-wet(2009)+Topo+SAR-wet (mosaic 2009)
Model-10: msi+dem: MSI-wet(2009)

Model-11: msi+dem --> MSI-wet(2011)

Model-12: msi+dem: MSI-dry(2010)

Model-13: msi+sar?+dem: 2009-Nov & July 2016

Model-14: msi+sar?+dem: 2011-Oct & July 2010

Model-15: dem+sar? --> SAR-dry+Topo 2010-2011 (L1.1 & L1.5)
Model-15: dem+sar_mos: SAR 2009 mosaics

Model-16: dem+sar_mos: SAR 2010 mosaics

Model-18: dem (28 variables)

H R R H OH R R K OHE R R R BRI HRHR

Random Forest—Model Fitting

Set Selection and RF parameters 'ntree'; set seed value:

selection <- S1
ntree <- 5000
rseed <- 1234
set.seed(rseed)

Run Random Forest, create object 'rf_model'

rf_model <- randomForest(final_training_response ~ .,
data = training_data[,selection],
ntree = ntree, keep.forest=T,
importance=T, keep.inbag=T,
proximity=T, replace=F)
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Random Forest—Prediction
Set filename to objects 'namefilel and 2';

Create new data 'predictor_datal' object using subset of 'inraster’, based on object 'selection':

namefilel <- rf_model c.pix
namefile2 <- rf_model p.pix
predictor datal <- subset(inraster, selection)

Generate class and class membership probability maps:

rf _pred c <- predict(predictor datal, rf_model, type = "response", na.rm=T,
format="PCIDSK", filename = namefilel, overwrite = T,
progress = "window")

rf_pred_p <- predict(predictor_datal, rf_model, type = "prob", na.rm=T,
format="PCIDSK", filename = namefile2, overwrite = T,
progress = "window", index=1:length(rf_model$classes),
datatype="FLT4S")

K-Fold Cross-Validation

Set trainControl parameters; use repeated (N=25) and k-fold (K=5) Cross-validation; and
test 5 levels for ‘mtry’ (adjust according to the number of variables):

set.seed(rseed)

trainCtrl <- trainControl(method = "repeatedcv", number = 5, repeats = 25,
classProbs = F, allowParallel = T)

rfGrid <- expand.grid(mtry = c(4,6,8,10,12)) # adjust +/-

Run model:

modFit_RF1 <- train(final_training_response ~ .,
data = training data[,selection], method = “rf”,
prox = F, importance = F, replace = F, ntree = 2000,
metric = c(“oob”), tuneGrid = rfGrid,
trControl = trainCtrl)

Cross-check model prediction accuracy based on reference data ‘final_training_repsonse’:

training predictors <- training data[,selection] # compact predictor object
predictions <- predict(modFit RF1, training_predictors)
confusionMatrix(final_training_response, predictions)
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Variable Importance

Extract RF importance and Importance standard deviation values from each RF model, frequencies that variables
are used in the forest, ‘varUsed’, and mean decrease GINI; output to csv file.

rf_ip <- c()
k =1
no <- 13 # number of classes = 12 + 1 (mean Importance value)
for (k in 1:no){
rf_ip <- rbind(rf_ip, cbind(rf_model$importancel[,k],
rf_model$importanceSD[,k],
varUsed(rf_model, by.tree = F, count = T),
“class” = k)

}
rf_ip <- rbind(rf_ip, cbind(rf_model$importance[,k+1], 0, 9),

“class” = 14)) # add ‘MeanDecreaseGINI’ values
colnames(rf_ip) <- c(“imp”, “ipsd”, “vu”, “class”)

write.csv(rf_ip, file = “rf_imp_ml.csv”)

Supplement — Codes

Extracting Predictions
Compile Prediction vs. Reference, using cbind, and output to ‘csv’ for each model, using rbind:

predz <- c(); preds <- c()
predz <- cbind("ref"= rf_model$y, "pred" = rf_model$predicted, "model"” = 1)
preds <- rbind(preds, predz)

write.csv(preds, file = "predictions.csv")

MDSplot

Plot Multi-dimensional Scaling plot of proximity matrix:

mdsp <- MDSplot(rf_model, final_training_response, k=2,
pch=as.numeric(final_training_response)

mdspdf <- as.data.frame(cbind(mdsp$points, rf_model$y))

colnames(mdspdf) <- c("Diml", "Dim2", "clas")

cols <- c("1" = "MediumBlue", "2" = "yellow3", "3" = "red2",
"4" = "deepskyblue2", "5" = "seagreenl", "6" = "red4",
"7" = "turquoise4", "8" = "darkorchid2", "9" = "gold4",
"10" = "darkgreen", "11" = "peru", "12" = "midnightblue")
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ggplot(mdppdf, aes(x=Diml, y=Dim2)) +
geom _point(size = 2, aes(colour = factor(clas), shape = factor(clas))) +

ylab("Dimension 2") +

xlab("Dimension 1") +

scale _color _manual(name =
breaks

labels

values
scale_shape_manual(name =
breaks

labels

values

"Class",

(Bl , 52 , Bl o BEM BN, BT B2 o 63
"9","10","11","12"),

c("Aquatic Bed","Wet Meadow","Meadow Garden
"Marsh Emergent","Grass Marsh",
"Papyrus Swamp","Shurb Marsh",
"Forested Wetland", "Woodland",

"Forest","Agriculture","Burn Patch"),
cols) +

Class",

(el o B2 , Bl B B RGN B o B3
"g","10","11","12"),

c("Aquatic Bed","Wet Meadow","Meadow Garden
"Marsh Emergent","Grass Marsh",
"Papyrus Swamp","Shurb Marsh",
"Forested Wetland", "Woodland",

"Forest","Agriculture","Burn Patch"),
c(16,15,17,8,13,16,2,3,12,13,6,7))

"
)

(1]
J
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Appendix B: List of wetland attributes collected during field surveys

B.1: Wetland types recorded in the field

Table A-1: Wetland Types based on plant functional groups and species dominance.

‘ N ‘ ID_Catg Wetland Broad Type Dominant Plant Species/Community
1 P Papyrus Swamp Cyperus papyrus L.
2 S Marsh Emergent or Wet Meadow Sedge — Cyperus spp.
3 S1 Marsh Emergent or Wet Meadow Cyperus latifolius
4 S2 Marsh Emergent Cyperus dichrostachyus
5 S3 Marsh Emergent Sedge — Carex spp.
6 sS4 Marsh Emergent or Wet Meadow Sedge — Eleocharis acutangula
7 S5 Marsh Emergent Sedge — Shoenoplectus sp.
8 S6 Marsh Emergent Sedge — Xyris sp.
9 G Wet Meadow Graminoids
10 H Wet Meadow or Marsh Emergent Herbaceous
11 H1 Wet Meadow or Marsh Emergent Herb. — Polygonum spp.
12 H2 Wet Meadow or Marsh Emergent Herb. — Ranunculus multifidus
13 H3 Wet Meadow or Marsh Emergent Herb. — Ferns
14 H4 Wet Meadow or Marsh Emergent Herb. — Astaraceae spp.
15 H5 Wet Meadow or Marsh Emergent Herb. — Hygrophila schulli
16 R Scrub-Shrub Marsh Shrubs
17 R1 Scrub-Shrub Marsh Shrubs — Fabaceae: A. elaphrxylon or A. schimperi
18 F1 Forested Wetland Syzygium guineense
20 F2 Forested Wetland Ficus vasta
21 F3 Forested Wetland Ficus sur
22 F4 Forested Wetland Phoenix reclinata
23 F5 Woodland or Forest (terrestrial) Cordia africana
24 T1 Woodland or Forest (Terrestrial) Combretum collinum

See Appendix J: Wetland plant community types and List of wetland plant species recorded from Dabus Marsh

(Table A-28) for details.
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B.2: Hydro-geomorphology

Table A-2: Hydro geomorphological category.

‘ N ‘ ID_Catg Category ‘ Description
1 0_0OwB Open Waterbody Open waterbody, lake, reservoir, channel, etc.; sparse vegetation
may be present
2 1_PEF Perm_Flooded Permanently flooded wetland conditions, with or without moving
water (tbd)
3  2_WAL Waterlogged Permanently flooded (> 4 months), emergent or floating, otherwise,
waterlogged (< 3 months)
4 | 3_SF9 Season_Flood > 3mo. Seasonally flooded for more than 3 months but not permanently (2-
3 mo. 'dry') (open or waterlogged)
5 4.SF3 Season_Flood < 3mo. Seasonally flooded for less than 3 months (open, floating, or
waterlogged)
5_POD Poorly Drained Poorly drained area where water may accumulate but not 'flood'
6_WED Well Drained Low lying landscape with will drained soils (sandy); water from
recent rainfalls may be observed
8 7_WTE Wet_Terrestrial Terrestrial landscape with water retaining capacity (e.g., clay)
9 8 DTE Dry_Terrestrial Dry terrestrial landscape
10 9_BGD Bear_ground bear, barren landscape

Table A-3: Drainage category.

‘ N ‘ ID_Catg Category Description
1 0_NOD No Data Barren, bedrock, impervious
2 1 _EXD Excessively drained Very high & high hydraulic conductivity & low water holding
capacity; not suited for crop unless irrigated
3 | 2_SED Somewhat excessively High hydraulic conductivity & low water holding capacity; limited
drained range of crops can be grown and yields very low
4  3_WED Well drained Intermediate water holding capacity; retain optimum amounts of
moisture, but not wet close enough to surface or long enough
during growing season to adversely affect yields
5 4 MWD Moderately well drained = Wet close to surface long enough to affect some crop adversely;
needs artificial drainage
6 5 SPD Somewhat poorly Wet close to surface and long enough to markedly restrict crops;
drained needs irrigation
7 6_POD Poorly drained Wet at or near surface during considerable part of year; field crops
cannot be grown under natural conditions
8 7_VPD Very poorly drained Soils wet to the surface most of the time; wet enough to prevent
growth of important crops except rice
9 | 8_.STW Standing water (lentic Presence of standing water, permanently or most of the year (> 4
ecosystem) mo.)
10 9_FLW Flowing water (lotic Flowing water
ecosystem)
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Table A-4: Slope category.

‘ N ‘ ID_Catg | Category ‘ Description
1 0_NSF No Slope/Flat/Gradient null | Mainly flat at plot location and surrounding landscape
2 1_NFA Nearly flat Nearly flat with no distinct aspect, low undulating landscape
3 | 2_FSG Flat to slight gradient/slope = Detectable slope, low gradient
4 3 _SMO Slight to moderate slope Slight to moderate gradient
5 4_MOD Moderate Slope Moderate slope gradient
6 | 5_MST Moderate to steep slope Moderate to steep slope gradient
7 | 6_STE Steep slope Steep slope
8 | 7_VST Very steep slope Very steep slope
9 | 8 _EXT Extreme slope Vertical drop, cliff
10 9_NDA no data Default value set to 9, for 'no data’, or 'forgot to check’, then

see photos

B.3: Land Use / Land Cover category
Table A-5: Land Use category.

‘ N ‘ ID_Catg | Category Description |
1 0_BAR Barren Open, bear, barren landscape; no detectable land use activities
2 1 CLL Cropland > 3months Cropland more than 3 months per year
3 2_CLS Cropland Seasonal Cropland seasonal (may be wetland used after flood season)
4 | 3_PHG Pasture High grazing Pastoral land, high grazing activities
5 4_PLG Pasture Low grazing Pastoral land, low grazing activities
6 5_CPF Collect plant_fish Occasional use: grazing, or collecting plants, fish, others
7 | 6_NVG Natural Vegetation Natural or semi-natural vegetation
8 | 7_BIN Burning_Intense Area seasonally burnt every year, mainly used for livestock grazing
9 8 BOC Burning_Occasional Area seasonally burnt on occasions (livestock pasture area)
10 9_PTS Plantation_tree/shrub Plantations: orchards, tree farm, shrubs

Table A-6: Plant distribution category.

‘ N ‘ ID_Catg Category | Description |
1 1_BRN Barren Open, bear, barren land (e.g., agricultural soils, exposed after flood)
2 1_UNF Uniform Very low plant diversity, one or two species dominating the area
3  2_LDI Low_Diversity Low diversity with two or three species dominating the area
4 | 3_MDI Mid_Diversity Mid plant diversity throughout the area (plot)
5 | 4_HDI High_Diversity High plant diversity throughout the area (plot)
6 | 5_HET Heterogeneous Similar to high plant diversity (may need to be reclassified)
7 6_MIX Mixed_Unif_Hetero = Mixed plant distribution, areas with high dominance and high diversity
8 | 7_CHE Crop_Herbaceous Crop herbaceous, (e.g., Guizotia)
9 8 .CGR Crop_Graminoids Crop Graminoids such as Maize, Sorghum, Wheat?
10 9 _CTF Crop_Teff Crop teff or others
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Appendix C: Error Matrices

Table A-7. OOB error matrix! for RF classification model-12. User’s and Producer’s accuracy (UA and PA), Overall Accuracy (OA), and 95%
Confidence Intervals = (Cl).

Classified Aquatic Wet Meadow Marsh Grass  Papyrus Shrub Forested Wood- Mature Agri- Burnt PA
Bed Meadow Garden Emergent Marsh Swamp  Marsh Wetland land Forest  culture Patch  Total (%)
1_AB 2. WM  3_MG 4_ME 5_GM 6_PS 7_SM 8_FW 9_wdl  10_for 11_agr 12_brn
78 78 100.0

88 2 90 97.78
1 42 1 44 95.45
76 76 100.0
1 2 61 64 95.31
99 99 100.0
1 86 87 98.85
90 90 100.0
1 149 2 152 98.03
121 121 100.0
156 156 100.0
44 44 100.0
78 90 42 78 63 101 86 90 150 121 158 44 1101

100.0 97.78 100.0 97.44 96.83 98.02 100.0 100.0 99.33 100.0 98.73 100.0 OA(%) 99.00

Kappa coefficient: 0.9890 95% Cl:  (98.68-99.32)

The rows and columns represent reference and classified data respectively; see Table 3.1 for the key to wetland codes.
Repeated (N=25) k-fold cross-validation (k=5) method used to calculate 95% ClI for overall accuracy (2,000 trees).

2Multi-year, bi-seasonal, and multi-source RF Model-1: This model achieved the highest overall classification accuracy. The land-cover thematic
classification accuracy derived from this model was used as a ‘reference/baseline’ for comparison with other RF model predictions.
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Table A-8. Error matrix® for RF classification model-1%, using independent data. User’s and Producer’s accuracy (UA and PA), Overall Accuracy
(OA), and 95% Confidence Intervals = (Cl).

Classified Agquatic Wet Meadow Marsh Grass  Papyrus Shrub Forested Wood- Mature Agri- Burnt

TN Bed Meadow Garden Emergent Marsh  Swamp  Marsh  Wetland land Forest  culture Patch Total (F;/S
Validatio 1_AB 2_WM 3_MG 4_ME 5_GM 6_PS 7_SM 8_FwW 9_wdl 10_for 11 _agr 12_brn
1_AB 26 26 100.00
2_WM 118 1 119 99.16
3_GM 4 40 1 45 88.89
4 ME 51 2 53 96.23
5_GM 1 46 1 48 95.83
6_PS 68 68 100.00
7_SM 40 1 41 97.56
8_FW 57 57 100.00
9_wdl 1 110 1 112 98.21
10_for 35 35 100.00
11_agr 135 135 100.00
12_brn 1 1 n/a
Total 26 123 40 51 47 68 44 57 111 36 136 1 740
UA (%) 100.00 95.93 100.00 100.00 97.87 100.00 90.91 100.00 99.10 97.22 99.26 n/a OA (%) 98.24
Kappa coefficient: 0.9801 95% Cl: (97.0-99.06)

The rows and columns represent reference and classified data respectively; see Table 3.1 for the key to wetland codes;

Total validation number = 740 (not 1002) as only points inside diagonal were selected; Note that for Burn Patch, a dummy point was added as a
balanced number of factors was required to calculate the confusion matrix. Same predictor variables as previous classification; use
‘independent’ validation set to show how little difference in classification accuracy there is between out-of-bag vs. Independent data.
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Table A-9. OOB error matrix! for RF classification model-22. User’s and Producer’s accuracy (UA and PA), Overall Accuracy (OA), and 95%

Confidence Intervals = (Cl).

feferoncs Classified ) pg 2 WM 3.MG 4ME 5GM 6PS 75M 8FW 9wdl 10 for 11 agr 12 bm Total  PA
1_Aquatic Bed 78 78 100.00
2_Wet Meadow 87 1 2 90 96.67
3_Meadow Garden 2 49 1 1 2 55 89.09
4_Marsh Emergent 73 1 2 76 96.05
5_Grass Marsh 1 63 64 98.44
6_Papyrus Swamp 2 97 99 97.98
7_Shrub Marsh 3 84 87 96.55
8_Forested Wetland 98 98 100.00
9_Woodland 1 149 2 152 98.03
10_Forest (mature) 121 121 100.00
11_Agriculture 156 156 100.00
12_Burned Patch 49 49 100.00
Total 78 89 50 77 66 101 87 98 149 121 160 49 1125

User’s Accuracy 100.00 97.75 98.00 94.81 95.45 96.04 96.55 100.00 100.00 100.00 97.50 100.00 OA (%) 98.13
Kappa coefficient: 0.9794 95% Cl:  (97.38—-98.88)

The rows and columns represent reference and classified data respectively; see Table 3.1 for the key to wetland codes.

Repeated (N=25) k-fold cross-validation (k=5) method used to calculate 95% ClI for overall accuracy estimates (2,000 trees).

2Multi-year, bi-season, multispectral RF_Model-2: with 83 Variables and 1,125 Training Points, this model achieved the second highest

classification accuracy after model 1. 3overall classification accuracy for wetlands = 97% and terrestrial = 99%.

McNemar’s test: p = 0.400, accept Ho no significance difference between reference and predicted pixels when comparing error of confusion

among classes.
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Table A-10. OOB error matrix! for RF classification model-32. User’s and Producer’s accuracy (UA and PA), Overall Accuracy (OA), and 95%

Confidence Intervals = (Cl).

Classified

Reference 1AB 2WM 3MG 4ME 5GM 6PS 7SM 8FW 9 wd 10 for 11 _agr 12 _brn Total (l;g
1_Aquatic Bed 75 2 1 78 96.15
2_Wet Meadow 1 82 3 2 1 1 90 91.11
3_Meadow Garden 43 1 44 97.73
4_Marsh Emergent 2 1 67 5 1 76 88.16
5_Grass Marsh 5 7 46 2 4 64 71.88
6_Papyrus Swamp 1 2 2 92 1 1 99 92.93
7_Shrub Marsh 1 3 82 1 87 94.25
8_Forested Wetland 6 1 76 5 2 90 84.44
9_Woodland 3 130 12 7 152 85.53
10_Forest (mature) 8 8 105 121 86.78
11_Agriculture 5 1 150 156 96.15
12_Burned Patch 1 1 n/a
Total 78 90 44 81 55 107 91 85 148 120 158 1 1058

User’s Accuracy (UA)  96.15 91.11 97.73 82.72 83.64 85.98 90.11 89.41 87.84 87.50 94.94 n/a OA (%): 89.70
Kappa coefficient: 0.8853 95% Cl:  (87.85-91.35)

The rows and columns represent reference and classified data respectively; see Table 3.1 for the key to wetland codes.
Repeated (N=25) k-fold cross-validation (k=5) method used to calculate 95% Cl for overall accuracy estimates (2,000 trees).

2Multi-year, bi-seasonal, SAR RF Model-3 (2009—-2011): this model achieved the lowest classification accuracy among the three ‘complex’ RF
models with 43 Variables and 1058 training points; *Overall classification accuracy for wetlands=90% and terrestrial=90%; Note that the land
cover ‘Burn Patch’ (12_) includes only a single pixel, which was required for cross-tabulation and confusion matrix calculations.

McNemar’s test: p=0.5069, accept Ho, no significance difference between reference and predicted pixels when comparing error of confusion

among classes.
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Table A-11. OOB error matrix* for RF classification model-42%. User’s and Producer’s accuracy (UA and PA), Overall Accuracy (OA), and 95%
Confidence Intervals = (Cl).

Classified PA
Reference 1AB 2WM 3MG 4ME 5GM 6PS 7SM 8FW 9 wdl 10 for 11_agr 12 _brn Total (%)
1_Aquatic Bed 77 1 78 98.72
2_Wet Meadow 86 2 1 1 90 95.56
3_Meadow Garden 2 36 2 1 2 1 44 81.82
4_Marsh Emergent 68 1 5 2 76 89.47
5_Grass Marsh 1 1 1 59 2 64 92.19
6_Papyrus Swamp 3 1 92 3 99 92.93
7_Shrub Marsh 1 7 4 73 1 1 87 83.91
8_Forested Wetland 1 88 1 90 97.78
9_Woodland 1 146 1 4 152 96.05
10_Forest (mature) 2 119 121 98.35
11_Agriculture 5 151 156 96.79
12_Burned Patch 44 44 100.00
Total 77 89 39 74 71 102 83 90 153 122 156 45 1101

User’s Accuracy (UA) 100.00 96.63 92.31 91.89 83.10 90.20 87.95 97.78 95.42 97.54 96.79 97.78 OA(%)*: 94.37

Kappa coefficient: 0.9377 95% Cl:  (93.74-95.00)

The rows and columns represent reference and classified data respectively; see Table 3.1 for the key to wetland codes.
Repeated (N=25) k-fold cross-validation (k=5) method used to calculate 95% Cl for overall accuracy estimates (2,000 trees).

2Single-year, dry-season (Jan-2010), and multi-source RF Model-4: This model achieved classification accuracy comparable to other similar dry-
season models, such as M8 (95.0%), as well as the single source multispectral model 12 (93.8%).
30verall classification accuracy for wetlands = 93% and terrestrial land cover=97%.

McNemar’s test: p = 0. 6981, accept Ho, no significance difference between reference and predicted pixels when comparing error of confusion
among classes.
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Table A-12. OOB error matrix! for RF classification model-52. User’s and Producer’s accuracy (UA and PA), Overall Accuracy (OA), and 95%

Confidence Intervals = (Cl).

Classified

Reference 1AB 2WM 3MG 4ME 5GM 6PS 7SM 8FW 9 wd 10 for 11 _agr 12 _brn Total (l;g
1_Aquatic Bed 77 1 78 98.72
2_Wet Meadow 84 1 4 1 90 93.33
3_Meadow Garden 1 42 1 44 95.45
4_Marsh Emergent 1 74 1 76 97.37
5_Grass Marsh 5 12 47 64 73.44
6_Papyrus Swamp 1 96 1 1 99 96.97
7_Shrub Marsh 1 86 87 98.85
8_Forested Wetland 89 1 90 98.89
9_Woodland 3 144 1 4 152 94.74
10_Forest (mature) 1 1 4 114 1 121 94.21
11_Agriculture 1 1 3 151 156 96.79
12_Burned Patch 0 0 n/a
Total 77 93 43 92 48 101 89 90 153 115 156 0 1057

User’s Accuracy (UA) 100.00 90.32 97.67 80.43 97.92 95.05 96.63 98.89 94.12 99.13 96.79 n/a OA (%)*: 94.99
Kappa coefficient: 0.9442 95% Cl:  (94.37-95.60)

The rows and columns represent reference and classified data respectively; see Table 3.1 for the key to wetland codes.
Repeated (N=25) k-fold cross-validation (k=5) method used to calculate 95% ClI for overall accuracy estimates (2,000 trees).

2Multi-year, wet-season, SAR RF Model-5: This model achieved the highest classification accuracy among the wet season RF models. For Model
9, a similar wet-season model but fit using single-year data (2009), classification accuracy was about 2% lower.

30verall classification accuracy for wetlands = 95% and terrestrial = 95%.

McNemar’s test: p = 0.0002465, reject Ho *** (p <0.001), significant differences between reference and predicted pixels when comparing error
of confusion among classes (df = 11, chi?>-d = 35.0 > 19.675, p = 0.0002465, reject Ho no the same ‘confusion’).
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Table A-13. OOB error matrix* for RF classification model-62. User’s and Producer’s accuracy (UA and PA), Overall Accuracy (OA), and 95%

Confidence Intervals = (Cl).

Classified PA
Reference 1AB 2WM 3MG 4ME 5GM 6PS 7SM 8FW 9 wd 10 for 11 _agr 12 _brn Total (%)
1_Aquatic Bed 77 1 78 98.72
2_Wet Meadow 82 3 4 1 90 91.11
3_Meadow Garden 5 45 2 1 1 1 55 81.82
4_Marsh Emergent 1 69 2 1 3 76 90.79
5_Grass Marsh 4 11 49 64 76.56
6_Papyrus Swamp 3 93 2 1 99 93.94
7_Shrub Marsh 2 84 1 87 96.55
8_Forested Wetland 97 1 98 98.98
9_Woodland 3 145 1 3 152 95.39
10_Forest (mature) 1 1 3 114 2 121 94.21
11_Agriculture 1 1 7 147 156 94.23
12_Burned Patch 0 0 n/a
Total 77 94 48 89 53 101 91 98 157 115 153 0 1076
User’s Accuracy (UA) 100.00 87.23 93.75 77.53 92.45 92.08 92.31 98.98 92.36 99.13 96.08 n/a OA (%)*: 93.12
Kappa coefficient: 0.9235 95% Cl:  (92.51-93.74)

The rows and columns represent reference and classified data respectively; see Table 3.1 for the key to wetland codes.
Repeated (N=25) k-fold cross-validation (k=5) method used to calculate 95% Cl for overall accuracy estimates (2,000 trees).

2Multi-year, wet-season, multispectral RF model-6: This model is used to illustrate the effect of source parameters on RF predictions by
comparing classification between M5, M6, and M7, three multi-year/wet-season models.
30verall classification accuracy for wetlands = 92% and terrestrial = 95%.

McNemar’s test: p = 0.005476, reject Ho ** (p <0.01), significant differences between reference and predicted pixels when comparing error of
confusion among classes (df = 11, chi>-d = 26.5 > 19.675, reject Ho, but difference is ‘subtle’)
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Table A-14. OOB error matrix* for RF classification model-72. User’s and Producer’s accuracy (UA and PA), Overall Accuracy (OA), and 95%

Confidence Intervals = (Cl).

Classified PA
Reference 1AB 2WM 3MG 4ME 5GM 6PS 7SM 8FW 9 wd 10 for 11 _agr 12 _brn Total (%)
1_Aquatic Bed 74 2 2 78 94.87
2_Wet Meadow 1 76 3 5 2 3 90 84.44
3_Meadow Garden 46 5 4 55 83.64
4_Marsh Emergent 3 2 1 60 7 1 2 76 78.95
5_Grass Marsh 1 5 1 11 43 3 64 67.19
6_Papyrus Swamp 2 2 3 2 87 3 99 87.88
7_Shrub Marsh 1 1 1 3 79 2 87 90.80
8_Forested Wetland 5 1 86 5 1 98 87.76
9_Woodland 2 1 2 132 7 8 152 86.84
10_Forest (mature) 1 6 7 107 121 88.43
11_Agriculture 1 1 8 1 145 156 92.95
12_Burned Patch 0 0 n/a
Total 79 89 52 80 57 105 94 97 152 116 155 0 1076
User’s Accuracy (UA)  93.67 85.39 88.46 75.00 75.44 82.86 84.04 88.66 86.84 92.24 93.55 n/a OA (%)*: 86.90
Kappa coefficient: 0.8543 95% Cl:  (86.11-87.68)

The rows and columns represent reference and classified data respectively; see Table 3.1 for the key to wetland codes.
Repeated (N=25) k-fold cross-validation (k=5) method used to calculate 95% Cl for overall accuracy estimates (2,000 trees).

2Multi-year/wet-season, SAR RF Model-7: This model achieved the lowest classification accuracy among the ‘M5, 6, & 7’ group of wet-season

models (see description included with Table 5.1).

30verall classification accuracy for wetlands = 84.5% and terrestrial = 90.5%.

McNemar’s test: p = 0.7908, accept Ho no significant differences between reference and predicted pixels when comparing error of confusion

among classes (df = 11, chi>-d = 7.1).
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Table A-15. OOB error matrix* for RF classification model-82. User’s and Producer’s accuracy (UA and PA), Overall Accuracy (OA), and 95%
Confidence Intervals = (Cl).

Classified PA
Reference 1AB 2WM 3MG 4ME 5GM 6PS 7SM 8FW 9 wdl 10 for 11_agr 12 _brn Total (%)
1_Aquatic Bed 77 1 78 98.72
2_Wet Meadow 86 2 1 1 90 95.56
3_Meadow Garden 3 35 2 1 2 1 44 79.55
4_Marsh Emergent 71 3 2 76 93.42
5_Grass Marsh 2 1 1 57 3 64 89.06
6_Papyrus Swamp 1 1 95 2 99 95.96
7_Shrub Marsh 1 7 4 73 1 1 87 83.91
8_Forested Wetland 1 88 1 90 97.78
9_Woodland 1 148 1 2 152 97.37
10_Forest (mature) 2 119 121 98.35
11_Agriculture 3 153 156 98.08
12_Burned Patch 44 44 100.00
Total 77 91 38 75 68 103 83 90 153 122 156 45 1101

User’s Accuracy (UA) 100.00 94.51 92.11 94.67 83.82 92.23 87.95 97.78 96.73 97.54 98.08 97.78 OA(%)* 95.00

Kappa coefficient: 0.9448 95% Cl:  (94.33-95.68)

The rows and columns represent reference and classified data respectively; see Table 3.1 for the key to wetland codes.
Repeated (N=25) k-fold cross-validation (k=5) method used to calculate 95% Cl for overall accuracy estimates (2,000 trees).

2Multi-year, dry-season, multi-source RF Model-8: This model achieved the highest classification accuracy among the group of dry-season
models M4, 8, 12, and 15.
30verall classification accuracy for wetlands = 93% and terrestrial = 98%.

McNemar’s test: p = 0.75, accept Ho no significant differences between reference and predicted pixels when comparing classification errors
among classes across the diagonal (df = 11, chi®>-d = 8.4).
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Table A-16. OOB error matrix! for RF classification model-g%. User’s and Producer’s accuracy (UA and PA), Overall Accuracy (OA), and 95%

Confidence Intervals = (Cl).

Classified PA
Reference 1AB 2WM 3MG 4ME 5GM 6PS 7SM 8FW 9 wd 10 for 11 _agr 12 _brn Total (%)
1_Aquatic Bed 77 1 78 98.72
2_Wet Meadow 84 2 3 1 90 93.33
3_Meadow Garden 50 1 1 2 1 55 90.91
4_Marsh Emergent 1 68 1 3 3 76 89.47
5_Grass Marsh 6 9 41 2 6 64 64.06
6_Papyrus Swamp 4 94 1 99 94.95
7_Shrub Marsh 1 1 1 83 1 87 95.40
8_Forested Wetland 2 95 1 98 96.94
9 _Woodland 2 1 141 1 7 152 92.76
10_Forest (mature) 1 4 116 121 95.87
11_Agriculture 1 1 3 151 156 96.79
12_Burned Patch 0 0 n/a
Total 77 93 50 86 47 106 96 95 151 117 158 0 1076
User’s Accuracy (UA) 100.00 90.32 100.0 79.07 87.23 88.68 86.46 100.00 93.38 99.15 95.57 n/a  OA(%)>: 92.94
Kappa coefficient: 0.9215 95% Cl:  (92.30-93.57)

The rows and columns represent reference and classified data respectively; see Table 3.1 for the key to wetland codes.
Repeated (N=25) k-fold cross-validation (k=5) method used to calculate 95% Cl for overall accuracy estimates (2,000 trees).

2Single-year, wet-season, multi-source RF Model-9: This model is paired with the dry-season model 4 for seasonal change analysis.

30verall classification accuracy for wetlands = 91% and terrestrial = 95.5%.

McNemar’s test: p = 0.0003, reject Ho, significant differences (***p <0.001) between reference and predicted pixels when comparing error of

confusion among classes.
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Table A-17. OOB error matrix* for RF classification model-102. User’s and Producer’s accuracy (UA and PA), Overall Accuracy (OA), and 95%
Confidence Intervals = (Cl).

Classified PA
Reference 1AB 2WM 3MG 4ME 5GM 6PS 7SM 8FW 9 wd 10 for 11 _agr 12 _brn Total (%)
1_Aquatic Bed 77 1 78 98.72
2_Wet Meadow 80 3 3 1 2 1 90 88.89
3_Meadow Garden 4 43 2 2 1 3 55 78.18
4_Marsh Emergent 1 67 2 4 2 76 88.16
5_Grass Marsh 5 1 12 39 1 6 64 60.94
6_Papyrus Swamp 4 89 4 2 99 89.90
7_Shrub Marsh 1 3 81 1 1 87 93.10
8_Forested Wetland 2 95 1 98 96.94
9_Woodland 2 1 140 1 8 152 92.11
10_Forest (mature) 1 4 116 121 95.87
11_Agriculture 1 1 7 147 156 94.23
12_Burned Patch 0 0 n/a
Total 77 92 47 89 45 104 99 95 155 118 155 0 1076
User’s Accuracy (UA) 100.00 86.96 9149 75.28 86.67 8558 81.82 100.00 90.32 9831 94.34 n/fa  OA(%)*: 90.52
Kappa coefficient: 0.8946 95% Cl:  (89.87-91.17)

The rows and columns represent reference and classified data respectively; see Table 3.1 for the key to wetland codes.

Repeated (N=25) k-fold cross-validation (k=5) method used to calculate 95% ClI for overall accuracy estimates (2,000 trees).

2Single-year, wet-season (Nov-2009), multispectral RF Model-10: This model achieved accuracy results 3.3% lower than the dry-season (Jan-
2010) multispectral Model 12 (93.8%). Confusion between Grass Marsh (PA = 60.94) and Marsh Emergent (UA = 75.28) accounted for most of

the confusion between reference and predicted pixels. *Overall classification accuracy for wetlands = 88% and terrestrial = 94%.

McNemar’s test: p = 0.0003677, reject Hy, significant differences (***p <0.001) between reference and predicted pixels when comparing error of
confusion among classes
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Appendix D: Random Forest Variable Importance

Table A-18. Permuted variable importance measures expressed as percentile rank scores for 18 RF models. For multi-year models, average
percentile rank scores were calculated from multispectral and SAR images; the top ranking 25% variables are highlighted in bold red colour.

Variable Multi-Year Dry Multi-Year Wet Dry Single-Year Wet Dry Wet Wet Dry Wet Wet Topo
2009/2010/2011 2010 2009/2011 2009/10 2010/11 2009 2011 2010 2009/10 2010/11 2010/11 2009 2010 2000
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 Mi14 M15 M16 M17 M18
Landsat TM-5
b1-Blue 0.57 0.52 0.43 0.65 0.64 0.40 0.61 0.62 0.59 0.42 0.59 0.61
b2-Green 0.60 0.57 0.33 0.79 0.80 0.33 0.82 0.87 0.79 0.32 0.80 0.75
b3-Red 0.77 0.77 0.93 0.78 0.78 0.93 0.70 0.72 0.82 0.92 0.68 0.77
b4-NIR 0.45 0.39 0.35 0.33 0.28 0.36 0.43 0.44 0.31 0.37 0.43 0.27
b5-SWIR-1 0.75 0.72 0.98 0.82 0.80 0.98 0.93 0.95 0.85 0.97 0.95 0.82
b7-SWIR-2 0.75 0.72 1.00 0.89 0.88 1.00 0.98 0.97 0.92 1.00 0.98 0.91
b6-Sensible heat 0.49 0.47 0.58 0.46 0.48 0.60 0.57 0.64 0.62 0.61 0.55 0.45
b6-Net radiation 0.74 0.68 0.83 0.71 0.70 0.79 1.00 1.00 0.69 0.87 1.00 0.66
TC-Brightness 0.63 0.58 0.50 0.60 0.58 0.52 0.77 0.74 0.64 0.50 0.73 0.64
TC-Greenness 0.52 0.46 0.60 0.38 0.33 0.62 0.39 0.33 0.38 0.58 0.41 0.50
TC-Wetness 0.49 0.44 0.95 0.44 0.43 0.95 0.64 0.59 0.46 0.95 0.61 0.23
TC-Wet-greenness 0.61 0.57 0.53 0.54 0.52 0.55 0.59 0.54 0.67 0.55 0.64 0.68
PC-1 0.55 0.48 0.78 0.57 0.50 0.81 0.80 0.79 0.41 0.76 0.77 0.48
PC-2 0.41 0.30 0.45 0.40 0.34 0.48 0.30 0.26 0.56 0.45 0.30 0.59
PC-3 0.32 0.22 0.30 0.23 0.19 0.31 0.20 0.18 0.13 0.29 0.20 0.18
NDVI 0.77 0.72 0.80 0.70 0.65 0.83 0.55 0.56 0.72 0.89 0.57 0.73
EVI 0.48 0.42 0.45 0.42 0.52 0.51 0.54 0.52 0.57
SAVI 0.48 0.43 0.88 0.31 0.28 0.88 0.41 0.41 0.15 0.82 0.39 0.14
NBR-2 0.38 0.27 0.55 0.25 0.20 0.57 0.27 0.28 0.36 0.53 0.27 0.32
MNDWI 0.64 0.62 0.48 0.68 0.69 0.50 0.66 0.67 0.74 0.47 0.66 0.70
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Variable Multi-Year Dry Multi-Year Wet Dry Single-Year Wet Dry Wet Wet Dry Wet Wet Topo
2009/2010/2011 2010 2009/2011 2009/10 2010/11 2009 2011 2010 2009/10 2010/11 2010/11 2009 2010 2000
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 Mi6 M17 M18

SARVI 0.63 0.56 0.63 0.49 0.43 0.64 0.50 0.49 0.51 0.63 0.50 0.52
GEMI 0.47 041 0.40 0.37 0.30 0.43 0.45 0.46 0.28 0.39 0.45 0.43

PALSAR

HH Gamma fil. 0.52 0.75 0.68 0.61 0.81 0.57 0.68 0.82 0.98 0.95 0.91 0.95

HV Gamma fil. 0.81 0.87 0.85 0.98 0.95 0.91 1.00 1.00 1.00

HV/HH Ratio 0.03 0.09 0.02 0.04 0.00 0.02 0.00 0.14 0.00

HH-texture 0.05 0.24 0.00 0.06 0.39 0.01 0.05 0.05 0.05 0.17 0.59 0.41

HV-texture 0.01 0.14 0.02 0.28 0.02 0.00 0.02 0.32 0.45

2010-11 Ratio 0.12 0.52

2010-11 Coeff. of var. 0.10 0.41

2010-11 Gradient 0.09 0.20

2010-11 Max Ratio 0.11 0.39

2010-11 Mean 0.59 0.70

Topographic

Elevation 0.87 0.84 0.96 0.85 0.83 0.85 0.93 0.86 0.73 0.77 1.00 0.79 0.70 0.89 0.95 0.95 0.91 1.00

Slope 0.72 0.62 0.67 0.38 063 061 048 0.38 0.48 0.38 0.49 0.34 0.48 0.55 0.48 0.41 0.36 0.29

Catchment slope 0.27 0.20 0.54 0.20 0.31 0.26 0.56 0.24 0.25 0.21 0.21 0.21 0.23 0.25 0.57 0.50 0.55 0.53

Slope height 090 0.88 0.93 0.75 0.94 0.93 0.78 0.74 0.86 0.85 0.90 0.71 0.86 0.84 0.71 0.77 0.73 0.76

Length slope factor 0.58 043 0.50 0.25 0.52 0.43 0.26 0.26 0.32 0.23 0.23 0.24 0.32 0.39 0.29 0.23 0.23 0.06

Standardized height 0.24 0.10 0.48 0.10 0.27 0.21 0.37 0.14 0.18 0.10 0.18 0.08 0.18 0.34 0.38 0.36 0.32 0.35

Mid-slope position 0.15 0.04 0.43 0.08 0.08 0.02 0.30 0.10 0.07 0.05 0.08 0.03 0.07 0.16 0.33 0.27 0.27 0.41

Relative slope pos. 094 090 0.87 0.73 0.97 0.97 0.81 0.71 0.91 0.92 0.95 0.74 0.93 0.95 0.81 0.82 0.77 0.88

Saga Topo. Wet. index 0.88 0.85 0.83 0.70 0.87 0.87 0.70 0.76 0.75 0.69 0.77 0.68 0.75 0.80 0.76 0.73 0.82 0.82

Topo. Wetness index 0.35 0.24 0.22 0.15 0.21 0.15 0.04 0.17 0.11 0.03 0.00 0.16 0.14 0.11 0.05 0.00 0.05 0.00

Terrain class. index 095 093 091 0.90 096 095 0.85 0.90 0.89 0.90 0.97 0.84 0.89 0.93 0.86 0.86 0.86 0.94
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Variable Multi-Year Dry Multi-Year Wet Dry Single-Year Wet Dry Wet Wet Dry Wet Wet Topo
2009/2010/2011 2010 2009/2011 2009/10 2010/11 2009 2011 2010 2009/10 2010/11 2010/11 2009 2010 2000
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 Mi6 M17 M18
Topo. position index 0.13 0.01 0.28 0.03 0.10 0.00 0.11 0.05 0.09 0.00 0.05 0.00 0.09 0.07 0.00 0.05 0.09 0.18
Morpho. protect. index 0.19 0.06 0.30 0.05 0.11  0.05 0.19 0.07 0.14 0.08 0.03 0.05 0.11 0.09 0.10 0.09 0.14 0.12
Terrain ruggedness index 0.39 0.29 0.46 0.18 0.48 0.38 0.22 0.21 0.23 0.15 0.10 0.13 0.25 0.20 0.24 0.18 0.18 0.24
Terrain surface texture 0.44 032 0.63 0.23 0.45 0.44 0.52 0.19 0.34 0.31 0.26 0.18 0.36 0.41 0.43 0.45 0.50 0.47
Valley depth 034 035 0.61 0.28 0.37 0.48 0.63 0.29 0.36 0.36 0.44 0.26 0.34 0.30 0.62 0.64 0.64 0.65
Valley depth rel. height 0.18 0.05 0.57 0.13 0.17 0.11 0.59 0.12 0.16 0.13 0.33 0.11 0.16 0.36 0.52 0.55 0.59 0.59
Vert. dist. to channel net. 0.89 0.87 0.78 0.65 0.92 0.90 0.67 0.67 0.84 0.82 0.87 0.66 0.84 0.86 0.67 0.68 0.68 0.71
Total No. of Variables 103 83 a7 41 72 62 28 43 45 40 40 39 45 45 22 23 23 18

For multi-year models, M1 and M2 include three Landsat scenes, and M5 and M6 include two Landsat scenes. These variables are accounted in

the total number of variables
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Table A-19. Difference between RF unscaled and scaled importance measures for selected variables
exhibiting high and low variance, i.e., negative and positive differences.

. Importance .
Variable Season Unscaled—Scaled Difference
Landsat TM-5
SWIR-2 Wet* 0.67-0.35 -31%
Sensible heat Wet 0.46-0.76 +30%
EVI Dry & Wet 0.48-0.23 —-25%
SAVI Dry 0.96-0.73 —-24%
SARVI Wet 0.51-0.26 -25%
TC-Greenness Dry 0.83-0.55 —-28%
TC-Greenness Wet 0.36-0.23 -14%
PCA-2 Dry 0.75-0.41 -34%
PCA-3 Dry 0.45-0.15 -30%
PALSAR
HH Wet 0.50-0.76 +26%
HV Wet 0.81-0.95 +14%
HH Dry 0.55-0.75 +20%
Topographic
Elevation 0.87-1.00 +13%
Valley depth 0.34-0.75 +41%
Valley depth relative height 0.18-0.45 +27%
Catchment slope 0.27-0.54 +26%
Morphometric Protection Index 0.19-0.36 +18%
Topographic wetness Index 0.35-0.19 -17%

* Applied only to Nov-2009.
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Appendix E: Spearman’s Rank Correlation Matrix

Table A-20. Spearman’s Rank Correlation Coefficient matrix of the spectral variables derived from the
dry season Landsat image (Jan-2010).

VIR NI U R IW N R

N N R R R R R R R R R R
B O W 0 N &Ou A W N R O

Variable 1 2 3
Blue 91 .94
Green .93
Red

NIR

SWIR-1

SWIR-2

Sensible heat

Net radiation

TC-Brightness

. TC-Greenness
. TC-Wetness

. TC-Wet-Green
. PC-1

. PC-2

. PC-3

. NDVI

. SAVI

. NBR-2

. MNDWI

. SARVI

. GEMI

4

.14
.02

21

5

.53
48
.57
.09

6

.52
46
.58
.03
.98

7

A7
.38
.53
17
.75
.80

8

.53
A8 | .
.55
.20 .
.90
.88 .
77

9

.54

.62
.51
.69
.82
31
40 .
A7
21
.03

11

.46
.38
.52
12
.96

.79
.84
75
A4

12

33
.34
.36
A1
.87
.79
.53
.80
.89
.04
.76

13

.55
.50
.59
12

.99
.98
.75
91
Ll
.29
.95
.86

14

.52
42
.61
.87
.28
.38
44
.16
.03
.98
43
.06
.26

15

.04 .
.06 | .
13
43
.65
.70 .
.62
A48 .
30 .
43
.79
46 .
.61
.49

17

A4 .
34 .
.51
34 .
.87
.92
78 |.
74 .
.60 .
.59
.96 | .
.61
.85
.60 | .
.85
.62

19

.16
.01
.23
12
.78
.79
.61
.63
.54
.26
.84
74
.75
31
.84
.28
.81
49

20

.69
.61
.79
72

.39
47
.52

30 .

.15
.98
.49
.06
.38
5
.40
.98
.61

.84 .

.28

21
41
.30
.49
.94
13
.23
34

.20
.96
.30
22
A1
.97

.82
.49

21
.90
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Table A-21. Spearman’s Rank Correlation Coefficient matrix of the spectral variables derived from the

wet season Landsat image (Nov-2009).

W IR N & W IN P

N N N R R R R R R R R R R
N = O/ 00 N oo i1 & W N R O

Variable 1 2 3|4
Blue .86 .96 .02
Green .89 .26
Red .01
NIR

SWIR-1

SWIR-2

Sensible heat
Net radiation

TC-Brightness

.| TC-Greenness
. TC-Wetness

. TC-Wet-Green
. PC-1

.|PC-2

./PC-3

. EVI

./NDVI

.|SAVI

. NBR-2

. MNDWI
.|SARVI

. GEMI

5

.35

.49

.38

.56

6 7 8 9

41
.49
.45
.36
.94

.38
48
43
.36
.64
.69

.29
.52
32
.81
.85
.73
.66

.33
.55
.34
.87
.86
72
.61
.96

10

.32
.03
31
.94
.35
12
.15
.62
.66

11

14 .
.10 .
.16 .
.08 .
.68 .
.80 .
A5 .
32 .
.28 .
22 .

13

37
.51
41
.53

.91
71
.84
.83
31
.64
.68

14

.10 .
18 .
.09 .
91| .
A8 .
.29 .
30 .
73 .
.76 .
.88 .
.08 .
.80 .
49 .

16

.84
.60
.84
.48
.10
.26
.22
.09
.09
72
.23
43

51
.30

17

28 .
.01 .
31 .
91 .
37 .
A5 .
.16 .
.61/,
.67 .
96 .
A8 .
.80 .
33 .
.85/,
.05 .
71 .

19

.59
.45
.61
34 .
30 .
55 .
36 .
.08 .
.04 .
55 .
51 0.
.16 .
35 .
37 .
.03 .
72 .
52 .
.65 .

20

.55

.56

54 .

21

41

.13

22
.15
.14
.15
.99
47
.26
.27
73
.79
.98
.15
.86
44
.90
.08

.96
77
43
.18
.94
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Table A-22. Spearman’s Rank Correlation Coefficient matrix of the spectral variables derived from the

wet season Landsat image (Oct-2011).

| N[ (| jW N &

NNN R R R R R R R R R R
N P O VLI N OO W N -, O

Variable 1 2 3|4
Blue .89 .91 .06
Green .88 .23
Red .06 .
NIR

SWIR-1

SWIR-2

Sensible heat
Net radiation

TC-Brightness

. TC-Greenness
.| TC-Wetness

. TC-Wet-Green
.|PC-1

. PC-2

. PC-3

. EVI

. NDVI

. SAVI

.INBR-2

. MNDWI

. SARVI

GEMI

5

.30

37

.59

6 7 8 9

42
44 .
41 .
36 .
89 .

.18

.26
.40
.15
.88
.78
.62
.39

34 .
48
.24
91
81
.66
.25
.95

10

.01
.29
.96
A7
.20
.28
.78
.78

11

12
.19
.07
.25
47
.60
.20
.01
.01
.28

12

13
.02
.23
.88
72
46
34 .
.83
.82
.90
.06

13

17
.32
.05
.96
.75
.54

895
.96
.88
.07
.90

14

47
.39
.55
.30
A8
.68
.07
.02
.07
.46
74
.16
.08

15

.64
.54
.62
.26
.37
.22
43
.22
17
.39
48
.57
.27
.06

16

.66
.52
.79
.58
.08
17
33
.35
27
.76
14
.65
.46
.66
.64

17

.09 .
.03 .
29 .
94 .
A5 .
.20 .
.26 .
T7 .
77 .
97| .
28 .
.86 .
.86 .
A5 .
33 .
75 .

19

.53
.45
.63
.39
.10
A4
17
14
.10
.54
.28
37
.25
.64
.34
74
.52
.54

20

.70 .
72 .
TJ1 .
A3 .
23 .
.08 .
33 .
.08 .
.01 .
29 .
.50 .
A5 .
14 .
.08 .
.89 .
.64 .
25 .
.02 .
42 .

22
.04
12
.18
.99
.53
.28
.27
.84
.85
99
.26
.90
S
.38
.32
.68
.97
.87
.46
.21
.97
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Appendix F: Jeffries-Matusita Distance Measures

Jeffries-Matusita class separability was carried out among the Landsat spectral and thermal
infrared bands, and using a subset of important variables from each data source. This analysis
focused primarily on spectral data. However, the separability analysis was extended to eight
important topographic variables as well as five PALSAR variables per scene. For the latter, the
analysis was limited to wet season data as only two variables, HH and HH-Texture, were

available for the dry season.

Low JM values (<1.15) comprised about 6% of the total number of paired variable
comparisons (Table A-23). Class separability was low between Wet meadow and Grass Marsh,
and Grass Marsh and Emergent Marsh, conditions that were found during both the dry and wet
season. Marked seasonal differences in separability between Papyrus Swamp and Woodland,
and Marsh Emergent and Shrub Marsh were notable. JM average scores among the selection of
important (RF) variables were generally higher compared with the selection of the first 8
variables, although the difference was marginal. For the Nov-2011 image, spectral and thermal
variables (1 to 8) separability scores were on average lower compared to the other variable sets
evaluated. In this case, the important variables set performed better. When considering only
the set of important topographic variables, Woodland and Agriculture JM distance was only

0.673, a far distant outlier along the distribution of JM values.
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Table A-23. Land cover class separability among spectral and topographic variables using Jeffries-
Matusita distance measure; ‘+’, “++’, and ‘+++’ denote moderate (<1.25), low (<1.15), and very low
(<1.0) separability, respectively; average overall JM value by class pair (row) and by variable selection

(column).
Class-1 Class-2 Jan-2010 Nov-2009 Oct-2011 Topo. JM

(1-8) (Sel.) (1-8) (Sel.)  (1-8) (Sel.)  (Sel.) (avg.)
Aquatic Bed [AB] PS + 1.382
Wet Meadow (WM] MG + + + + 1.251
ME ++ + 1.277
GM ++ ++ ++ +++ + + 1.115
PS + ++ 1.317
Agr + + 1.277
Meadow Garden [MG] GM + + 1.302
Agr ++ + ++ + 1.239
Marsh Emergent [ME] GM + ++ ++ ++ ++ + 1.150
PS + + 1.286
SM ++ ++ 1.293
Grass Marsh [GM] PS + 1.314
SM + 1.330
Agr + 1.338
Papyrus Swamp SM + + + 1.246
wdl ++ ++ ++ + 1.220
Shrub Marsh [SM] Wdl + ++ 1.310
Forest Wetland  [FW] For +++ + 1.253
Woodland [Wdl] Agr + +++ 1223
Jeffries-Matusita dist. (avg.) 1.365 1.373 1.331 1.359 1.295 1.339 1.353 1.344

Maximum Jeffries-Matusita distance value obtained = 1.4142;
Spectral and Topographic Variable selection:

Landsat (1-8)

© Nk W

B1:
B2:
B3:
b4:
b5:
b7:
b6:
b6:

blue

green

red

NIR

SWIR-1
SWIR-2
Sensible heat
Net radiation

2010 (Sel.)
Red

SWIR-1 (b5)
SWIR-2 (b7)

Net Radiation (b6)

TC-Wetness
PCI-1

NDVI

SAVI

2009 and 2011 (Sel.)
Red

Green

SWIR-1 (b5)

Net Radiation (b6)
TC-Brightness
TC-Wet—Greenness
NDVI

MNDWI

Topographic (Sel.)
Elevation

Slope

Slope Height

Length Slope Factor
Relative Slope Position
Saga Topo. Wetness Index
Terrain Classification Index

Vertical Dist. to Channel Network
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Jeffries-Matusita class separability was carried out using SAR data collected during the

wet season, in 2009 and 2010, process level 1.5 and 1.1 respectively, and compared with their

25-m mosaics counterparts (Table A-24). The threshold criteria employed to determine

separability levels were significantly lowered compared to those previously used for spectral

and topographic data. This was required as the range of JM values were significantly lower with

SAR compared to spectral data, with an overall average of 1.172 (1.344 for spectral). Threshold

values were set as follows, moderate ‘+’ (<1.15), ‘++" low (<0.9), “+++” and very low (<0.6).

Values below ‘moderate’ (1.15) accounted for over 35% of the total SAR data. By comparison,

less than 15% were below 1.25 for the spectral and topographic data set.

Table A-24. Land cover class separability among SAR variables using Jeffries-Matusita Distance, ‘+’, ‘++,
and ‘+++" denote moderate (<1.15), low (<0.9), and very low (< 0.6) separability, respectively; average

overall J-M value by class pair (row) and by variable selection (column).

Class-1 Class-2 Jul-2010 Jul-2009 Jul-2010 Jul-2009 J-M
L1.1 L1.5 Mos. Mos. (avg.)
Wet Meadow Emergent Marsh ++ ++ ++ ++ 0.807
Grass Marsh + ++ ++ ++ 0.765
Shrub Marsh + + 1.126
Agriculture + ++ + ++ 0.874
Meadow Garden Papyrus Swamp ++ ++ ++ ++ 0.779
Shrub Marsh + + + + 0.980
Woodland ++ +++ ++ ++ 0.615
Forest + 1.157

Agriculture + ++ + 1.057
Emergent Marsh Grass Marsh ++ + ++ ++ 0.774
Shrub Marsh + 1.177
Agriculture ++ + ++ 0.974

Grass Marsh Shrub Marsh + 1.167
Agriculture + ++ + ++ 0.979
Papyrus Swamp Shrub Marsh + + 1.074
Forested Wetland + 1.009

Woodland +++ +++ ++ 0.713

Forest + + 1.076
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Agriculture + + + + 1.055
Shrub Marsh Woodland + + 1.106
Agriculture ++ ++ + 0.895
Forested Wetland Woodland + + + + 0.998
Forest ++ ++ ++ ++ 0.765
Woodland Forest ++ ++ + 0.926
Agriculture + 1.133
Forest Agriculture + 1.231
Jeffries-Matusita dist. (avg.) 1.168 1.137 1.197 1.179 1.172

PALSAR Variables
1. HH Gamma filter
4. HH Texture (5x5)

2. HV Gamma filter 3.

5. HV Texture (5x5)

HV/HH ratio

Low separability was found between many pairs among wetland classes, as well as

between wetland and terrestrial classes, i.e., Meadow Garden and Woodland, and Papyrus

Swamp and Woodland, and most characteristically between Forested Wetland and Forest.

Lower JM separability among the SAR data could be partly attributed to limitations with

applying the JM measure on highly skewed data sets.

Spectral variables:

variable
V06
V27
v16
v37
v08
V29
v19
v4l

coONOYUVTI D WN R

SAR variables:

variable
v84

V85

v100
v101l

V97

v89

aouvih WN R

N
1076
1076
1076
1076
1076
1076
1076
1076

1057
1057
1057
1057
1057
1057

value
7.598132
5.622279

4679.446097
7082.

199814
346.072491
378.729554

-4033.921004

-3965.

[eNeoNoNoNe Nl

.08652010
.01951250
.11172974
.05256997
.10797746
.07565460

787175

value

[cNeNoNeNoNe]

sd

.587607
.081943
1652.
2017.

77.

91.
2360.
2608.

446709
646687
938189
783569
425844
879411

sd

.05001978
.01424206
.06186084
.03772756
.06566624
.05318061

.0015385242
.0004380619
.0019027349
.0011604361
.0020197829
.0016357459

se
0.10937013
0.06346917
50.37572700
61.50904483
2.37598762
2.79807148
71.95885187
79.53309253

se

ci
0.2146031
0.1245375
98.8459011
120.6913989
4.6620992
5.4903009
141.1957301
156.0577021

ci

.0030189121
.0008595707
.0037335712
.0022770227
.0039632441
.0032096819

var
SWIR-1dry
SWIR-1wet
NDVI-dry
NDVI-wet
Net-Rad-dry
Net-Rad-wet
MNDWI-dry
MNDWI-wet

year

2010-wet
2010-wet
2009-wet
2009-wet
2010-dry
2011-dry
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Appendix G: Variable distribution among land-cover classes —Box-and-whisker diagrams

Terrain Classification Index for lowland SAGA Topographic Wetness Index
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Figure 7.1. Box-and-whiskers diagrams showing the distribution of topographic measures for thematic
classes obtained from training points; the variables were selected to represent a range of importance
value, most important topographic variables, top panels, to low importance, bottom panels.
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Appendix H: Class Probability Quantiles

Table A-25. Class probability quantiles by land cover class, first column, and for RF models 1 to 12, row header. Key to land cover classes are
included in table footnote, and key to the RF models are included in footnote next page.

Class
1AB
2WM
3MG
AME
5GM
6PS
7SM
8FW
9wdl
10for
1lagr
12BP

Avg.:

0.25
0.446
0.430
0.308
0.339
0.307
0.423
0.326
0.482
0.475
0.465
0.694
0.579

0.439

Model-1
0.50
0.696
0.561
0.377
0.427
0.379
0.623
0.412
0.629
0.624
0.628
0.869
0.782

0.584

0.75
0.943
0.726
0.475
0.559
0.463
0.798
0.542
0.794
0.820
0.810
0.947
0.902

0.731

0.25
0.475
0.435
0.340
0.349
0.323
0.441
0.332
0.487
0.484
0.469
0.701
0.613

0.454

Model-2
0.50
0.744
0.570
0.414
0.447
0.405
0.627
0.415
0.645
0.640
0.634
0.870
0.815

0.602

0.75
0.968
0.741
0.502
0.574
0.503
0.791
0.538
0.817
0.842
0.819
0.947
0.924

0.747

0.25
0.364
0.354
0.278
0.281
0.253
0.354
0.285
0.339
0.450
0.432
0.589

0.384

Class probability value in the lowest 20% are highlighted.

1AB
2WM
3MG
4ME

Aquatic Bed
Wet Meadow

Meadow Garden
Marsh Emergent

(n=78)
(n=90)
(n=44)
(n=76)

5GM

6PS

75M
8FW

Model-3
0.50
0.449
0.480
0.341
0.338
0.290
0.524
0.351
0.431
0.537
0.527
0.765

0.472

0.75
0.566
0.646
0.438
0.415
0.341
0.734
0.443
0.563
0.649
0.638
0.888

0.579

Grass Marsh

Papyrus Swamp
Shrub Marsh

Forested Wetland

Model-4
0.25 0.50
0.600 @ 0.827
0.473 | 0.623
0.335 0.416
0.328 0.410
0.331 0.426
0.442  0.606
0.336  0.422
0.504 # 0.649
0.519 | 0.695
0.489 | 0.683
0.772 | 0.935
0.602 # 0.823

0.478 0.626

(n=64)
(n=99)
(n=87)
(n=90)

0.75
0.962
0.786
0.531
0.528
0.526
0.774
0.538
0.815
0.896
0.888
0.989
0.949

0.765

0.25
0.426
0.391
0.316
0.313
0.265
0.369
0.312
0.434
0.490
0.459
0.630

0.400

9wdl
10for
1lagr

Model-5
0.50
0.694
0.525
0.387
0.378
0.313
0.508
0.386
0.583
0.617
0.600
0.808

0.527

0.75
0.931
0.699
0.494
0.467
0.384
0.704
0.493
0.753
0.786
0.768
0.913

0.672

Woodland

Forest

Agriculture

0.25
0.433
0.387
0.336
0.328
0.269
0.371
0.310
0.430
0.490
0.461
0.636

0.405

Model-6
0.50
0.697
0.513
0.416
0.403
0.318
0.501
0.385
0.585
0.620
0.604
0.811

0.532

(n=152)
(n=121)
(n=156)

0.75
0.947
0.678
0.522
0.504
0.383
0.673
0.493
0.762
0.792
0.773
0.915

0.677

300



Table A-25 (Cont’d)

Class
1AB

2WM
3MG
AME
5GM
6PS
7SM
8FW
Swdl
10for
1lagr
12BP
Avg.:

0.25
0.337
0.354
0.318
0.301
0.253
0.406
0.302
0.325
0.459
0.454
0.599

0.373

Model-7

0.50
0.441
0.473
0.408
0.361
0.294
0.569
0.378
0.424
0.539
0.551
0.776

0.474

0.75
0.563
0.644
0.544
0.450
0.347
0.744
0.488
0.579
0.637
0.677
0.906

0.598

0.25
0.590
0.470
0.332
0.323
0.328
0.439
0.331
0.502
0.513
0.486
0.763
0.601
0.473

Model-8
0.50
0.814
0.621
0.413
0.403
0.419
0.598
0.415
0.648
0.684
0.678
0.932
0.822
0.621

0.75
0.953
0.784
0.527
0.519
0.516
0.765
0.528
0.815
0.883
0.884
0.987
0.947
0.759

0.25
0.500
0.422
0.342
0.318
0.272
0.376
0.310
0.441
0.514
0.480
0.679

0.423

Class probability value in the lowest 20% are highlighted.

Model
Type

Source
Season
Model
Type

Source

Season

M1

m-Year'
MSI/SAR
wet-dry

M5

m-Year?
MSI/SAR

wet

M2
m-Year'
MSI
wet-dry
M6
m-Year?
MSI
wet

M3

m-Year!

SAR
wet-d
M7

m-Year?

SAR
wet

M4

2010

M8
2010/11

MSI/SAR  MSI/SAR
ry dry
M9

2009

MSI/SAR
wet

dry

M10
2009
MSI

wet

Model-9
0.50
0.811
0.578
0.428
0.399
0.323
0.550
0.390
0.592
0.657
0.646
0.856

0.566

M12
2010
MSI
dry
Mi1
2011
MSI
wet

0.75
0.970
0.743
0.553
0.510
0.384
0.776
0.507
0.763
0.835
0.820
0.944

0.710

0.25
0.527
0.419
0.358
0.334
0.277
0.390
0.313
0.443
0.518
0.485
0.688

0.432

Model-10
0.50
0.851
0.570
0.451
0.421
0.326
0.559
0.396
0.596
0.668
0.658
0.871

0.579

0.75
0.982
0.728
0.569
0.538
0.385
0.752
0.518
0.773
0.845
0.834
0.953

0.716

"m-Year: 2009/10/11

2m-Year:2009/11 (MSI) &
2009/10 (SAR)

0.25
0.489
0.341
0.314
0.323
0.270
0.325
0.318
0.388
0.447
0.453
0.576

0.386

Model-11
0.50
0.805
0.439
0.401
0.402
0.321
0.412
0.400
0.532
0.529
0.581
0.752

0.507

0.75
0.975
0.565
0.520
0.510
0.395
0.539
0.507
0.723
0.648
0.733
0.882

0.636

0.25
0.603
0.481
0.366
0.341
0.340
0.426
0.342
0.508
0.526
0.489
0.780
0.639
0.487

Model-12
0.50
0.846
0.645
0.448
0.429
0.434
0.601
0.434
0.667
0.710
0.684
0.935
0.857
0.641

0.75
0.968
0.797
0.547
0.558
0.532
0.777
0.555
0.840
0.913
0.895
0.989
0.958
0.777
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Table A-26. Wetland and terrestrial class probability median (50'") and 75" percentiles for RF model 1 to 12, and classification accuracy using
out-of-bag (OOB) samples.

Model Median 75t Percentiles 0oB ooB ooB
Wetland Terrestrial Wetland Terrestrial Overall Wetland Terrestrial

Model-1 0.505 0.802 0.692 0.927 99.0 99 99
Model-2 0.504 0.812 0.683 0.930 98.1 97 99
Model-3 0.424 0.660 0.604 0.831 89.7 89 90
Model-4 0.537 0.877 0.719 0.976 94.4 93 97
Model-5 0.459 0.749 0.635 0.888 95.0 95 95
Model-6 0.456 0.754 0.614 0.891 93.1 92 95
Model-7 0.445 0.660 0.619 0.839 86.9 85 90
Model-8 0.532 0.869 0.714 0.973 95.0 93 98
Model-9 0.491 0.800 0.686 0.927 92.9 92 97
Model-10 0.498 0.814 0.680 0.936 90.5 88 94
Model-11 0.418 0.666 0.546 0.838 87.6 89 88
Model-12 0.540 0.885 0.727 0.977 93.8 93 96
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Appendix |: Land cover percentage area for Model 1 to 11

Table A-27. Land cover class percentage cover for wetland and terrestrial area, respectively; total area in ha. as estimated using RF Model-1.
Burn Patch class included in selected models, which involved dry season Landsat Image.

Land Cover areaha) M1 M-2 M-3 M-4 M-5 M-6 M-7 M-8 M9  M10 M1l
Class O %) ) G %6 G ) e %) (%) (%)
Aquatic Bed 601.65  0.55 0.50 0.86 0.35 0.73 0.72 1.36 0.35 0.64 0.63 0.64
Wet Meadow 39,301.02 3611 3339 3477 3655 3494 3265 2997 3637  37.06 3515  31.87
Meadow Garden 5806.98  5.34 9.70 7.84 5.70 7.71 1134  12.32 5.65 9.09 1040  11.72
Marsh Emergent 2317.05  2.13 2.72 3.71 3.63 4.64 5.17 4.30 3.57 5.77 5.29 2.65
Grass Marsh 937836  8.62 9.02 1.73 1098  3.03 3.63 2.63 1089  2.76 2.89 3.26
Papyrus Swamp 19,773.36 1817 1620 2596  17.44  22.69 2128 2538  17.66 2148 2257 2124
Shrub Marsh 15,862.05 1457 1438 1806 1091 2014 1913 1737  11.00 1735  17.07  22.05
\FA(/);E?ES 621522 571 5.57 7.06 5.85 6.11 6.09 6.66 5.87 5.85 6.00 6.56
TWO‘::'Ia"d Area 108,833.94 25.43  26.40 2653 2633 2653  27.02 2808 2622  27.40 2750  27.90
Woodland 79,643.43 2496 2441 2482 2616 2306 2268  27.08 2622 2316 2274  23.95
Forest 31,08834  9.74 9.76 11.80  9.32 9.27 9.35 1142 932 9.21 9.19 1113
Agriculture 20833542 6530 6583 6339 6452 6767 6797 6151 6447  67.63  68.06  64.92
Burn Patch 9,578.25 8.80 8.52 n/a 8.59 n/a n/a n/a 8.63 n/a n/a n/a

Terrestrial Area
Total

Total Area 427,901.13 100 100 100 100 100 100 100 100 100 100 100

319,067,19 74.57 73.60 73.47 73.67 73.47 72.98 71.92 73.78 72.60 72.50 72.10
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Appendix J: Wetland plant community types and List of wetland plant species recorded from Dabus Marsh

1. Cyperus dichrostachyus—Persicaria senegalensis community (C1: ME—Marsh Emergent and
GM-—Grass Marsh):

The plant community C1 was the most species rich. It was dominated by Cyperus dichrostachyus
(sedge), associated with Persicaria senegalensis, a robust perennial plant (Polygonaceae fam.
commonly referred to as ‘knotweed’). The sub-dominant species in this community included
Cynodon aethiopicus (grass), Solanum incanum, a species of nightshade that is native to Sub-
Saharan Africa (domesticated into the eggplant), Guizotia scabra (Asteraceae fam., common in
Ethiopia; important ‘famine-food’ plant), and Digitaria ciliaris (grass). Most plants in this
community type are emergent macrophytes with the exception of Nymphaea nouchali and
Pistia stratiotes (common names: blue lotus and Nile cabbage). The floristic composition was
dominated by sedges associated with forbs and grasses. During the dry season, the floristic
diversity was significantly reduced, mainly due to overgrazing and fires, and from the group of

remaining species the hardy grass, Cynodon aethiopicus, acquired dominance status.

Plant community type (C1) encompasses both Emergent Marshes and Grass Marshes.
These two types of wetlands were established to differentiate wetlands found in areas
permanently flooded from those that were found on seasonally inundated areas, but with
duration of inundation that was long enough for maintaining this community type. Emergent
and Grass marshes share strong similarity with respect to their floristic composition. Hydro-
geomorphology/drainage and disturbance are major environment gradients, which affect the

proportion of grasses and sedges. Emergent Marshes are generally found on permanently
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inundated soils and are mainly dominated by sedges, while Grass Marsh contains a larger

proportion of Grass species. Both marshes comprise a rich diversity of forb species.

2. Eriochloa fatmensis— Cyperus latifolius plant community (C2: WM—Wet Meadow):

The dominant species were Eriochloa fatmensis, a grass, and Cyperus latifolius, a sedge. C.
latifolius is a widespread perennial sedge found on ‘swampy’ ground, and E. fatmensis is a
species of grasses generally adapted to growing on damp and swampy grassland, lake shores,
heavy alluvial silts, black cotton soils, etc. It has low drought tolerance and can tolerate
seasonal flooding (Bogdan & Pratt, 1967). The list of sub-dominant species included two
widespread tropical species of grass, Echinochloa stagnina (common names: Burgu millet,
hippo grass) and Leersia hexandra (common names: southern cutgrass, swamp rice grass),
Persicaria decipiens, commonly known as slender knotweed, and the occasional presence of
Cyperus papyrus forming small patches (see community type 4). No floating, floating-leaf, or
submersed plants occur in this community type, which is usually found on medium drained
soils. The floristic composition is comprised of forbs, grasses, and sedges. This community
experiences high pressure from anthropogenic activity, especially from burning during the dry

season.

During the dry season, this community experiences significant changes, including
retreating spatially, a floristic shift, and fragmentation into less distinct community types. The
common grass Cynodon aethiopicus becomes one of the dominant species and in areas less
affected by grazing, forb species such as Echinops hispidus and Vernonia auriculifera gain

dominance in scattered areas.
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This community type corresponds generally to the class of wetland referred to in this
study as Wet Meadow. The dominance of graminoid species associated with C. latifolius is
characteristic of large areas of seasonally inundated meadows. Species composition varied
locally and sometimes sedges were nearly absent, while P. decipiens may dominate in certain
locations. Small patches of C. papyrus sometimes occurred when soil conditions were
favourable. While Papyrus Swamps were generally more permanent, Wet Meadow

communities were more widespread especially during the wet season.

3. Syzygium guineense subsp. macrocarpum—Vernonia auriculifera plant community (C3: FW—
Forested Wetland):

This plant community describes closely the Forested Wetlands. The dominant species were
Syzygium guineense and Vernonia auriculifera. Syzygium guineense is a leafy forest tree
(Myrtaceae fam.; common name: woodland waterberry), which generally occurs in lowland
forests, in areas close to swamps, along river banks associated with moist soils with a high
water table. The co-dominant species, Vernonia auriculifera. (Asteraceae fam.) occupies the
shrub layer. It is generally found in wet montane forest but also alongside streams. The sub-
dominant species include Ficus sur, a widespread Afrotropical species of fig tree (common
name: Cape fig), and Echinops amplexicaulis (Asteraceae fam.). Species composition of this
plant community included mostly wetland species, i.e., sedges, forbs, and grasses, and a few

upland species. No notable changes between the wet and dry season were observed.
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4. Cyperus papyrus plant community (PS—Papyrus Swamp):

Cyperus papyrus (C4) was among the most common and dominant hydrophytic plant
community types present in the Dabus Marsh. It had the lowest floristic diversity with high
dominance of C. papyrus, a large and towering plant more than 3-4 m tall, homogeneously
distributed throughout its habitat, and forming a dense and ‘impenetrable’ cover partly due to
its large umbrella shaped inflorescence found at the top of a thick stem. Papyrus swamps are
known for their exceptionally high productivity (Adam et al., 2014a; Perbangkhem &
Polprasert, 2010) - reported above-ground biomass of 36 t ha™ by Muthuri and Jones (1997).
The occurrence of Cyperus papyrus community in habitats inundated for most months of the
year, or at least on permanently waterlogged soils, contributes to maintaining its low floristic
diversity as well as its relatively pristine condition, which in turns provides a dense habitat
cover for a rich and diverse fauna, and especially for birds (Dumont, 2009; Hughes & Hughes,

1992).

The subdominant species included Thelypteris confluens, a fern, Persicaria decipiens,
(slender knotweed), and Bidens ternata (Asteraceae fam., a forb with conspicuous yellow
flowers). This community included only emergent macrophytes except for Nymphaea lotus, a
floating species. Its floristic composition was comprised mainly of forbs with sedges and few

species of grass.
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5. Shrub Marsh community (‘C5’ not included in the list of plant communities):

This community was not fully described due to the lack of available sampling locations.
However, based on the limited number of plots surveyed, Fabaceae shrubs formed a relatively
distinct community adapted to marsh conditions. These species and associated flora often
formed a scattered shrub and scrub layer on the landward margin of Papyrus Swamps.
Dominant species included Kotschya africana, Vernonia auriculifera, and Aeschynomene spp. (A.
elaphroxylon, A. schimperi) at a few locations. Efforts to map this wetland community using a

scant number of sampling plots has shown to be a difficult task.
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Table A-28. List of plant species recorded from Dabus Marsh with taxonomic information. Mean cover values within cluster for each plant

community type (C1 to C4), no data indicates that the species was not included in the list of plant communities (Dikaso, 2013).

No. | Species Authority Family Local name Cc1 Cc2 c3 (o}
1 Acacia abyssinica Hochst. ex Benth Fabaceae Laafto

2 Acacia montigena Brenan& Exell Fabaceae Laafto

3 Achyranthes aspera L. Amaranthaceae Samaxxee 0.000 | 0.000 | 0.880 | 0.000
4 | Achyrospermum schimperi (Hochst.ex Brig.) Perkins Lamiaceae Kussayyee 0.192 | 0.208 | 0.000 | 0.000
5 | Aeschynomene schimperi Hochst.ex A. Rich. Fabaceae Ena dima

6 Ajuga leucanthus (Guerke) Robyns Lamiaceae Ambachl

7 | Albizia malacophylla (A. Rich.) Walp. Fabaceae Arganboobee

8 Albizia schimperiana Oliv. Fabaceae Mukaarba

9 | Ascolepis eriocauloides* (Steud.) Steud. Cyperaceae 0.000 | 0.542 | 0.000 | 0.000
10 | Bidens pilosa L. Asteraceae Uffo 0.654 | 0.000 | 0.000 | 0.000
11 | Bidens ternata (Chiov.) Sherff Asteraceae 0.000 | 0.417 | 0.000 | 1.364
12 | Brachiaria brizantha (A. Rich.) Stapf Poaceae 0.192 | 0.000 | 0.000 | 0.000
13 | Brachiaria pubescence (Chiov.) S. M. Phillips Poaceae 0.346 | 0.000 | 0.000 | 0.000
14 | Buchnera capitata Benth. Scrophulariaceae 0.000 | 0.000 | 0.000 | 0.455
15 | Carex bequaertii De Wild. Cyperaceae 0.192 | 0.000 | 0.000 | 0.000
16 | Carex monostachya A. Rich. Cyperaceae 0.000 | 0.250 | 0.000 | 0.000
17 | Chenopodiuim schroderianum Schult. Chenopodiaceae Qoricha 0.192 | 0.000 | 0.240 | 0.000
18 | Coffea arabica L. Rubiaceae Buna

19 | Comberatum collinum Fresen. Comberetaceae Gomorii

20 | Commelina diffusa Burn.f. Commelinaceae garxobii 0.385 | 0.875 | 0.560 | 0.091
21 | Cordia africana Lam. Boraginaceae Waddessaa

22 | Costus afer Ker-Gawl Costaceae

23 | Crassocephalum rubens (Juss. ex Jacqg.) S. Moore Asteraceae 0.231 | 0.125 | 0.000 | 0.000
24 | Croton macrostachyus Del. Euphorbiaceae Bakkanniisa

25 | Cynodon aethiopicus Clayton & Harlan Poaceae Cogorsa 2.039 | 0.000 | 0.520 | 0.000
26 | Cyperus atroviridis C. B. Clarke Cyperaceae 0.231 | 0.000 | 0.000 | 0.000




Table A-28 (Cont’d)

No. | Species Authority Family Local name Cc1 c2 c3 ca
27 | Cyperus dichroostachyus A. Rich. Cyperaceae Caafee 2.154 | 0.000 | 0.280 | 0.000
28 | Cyperus digitatus Roxb. Cyperaceae Ashuufee 0.231 | 0.292 | 0.000 | 0.000
29 | Cyperus distans L.f. Cyperaceae Qunnii/Daggoo

30 | Cyperus dives Del. Cyperaceae Daaggoo 0.000 | 0.000 | 0.240 | 0.000
31 | Cyperus fischerianus A. Rich. Cyperaceae Dhalladuu 0.462 | 0.250 | 0.000 | 0.000
32 | Cyperus flavescens L. Cyperaceae Cheffe mana 0.000 | 0.208 | 0.000 | 0.000
33 | Cyperus latifolius Poir. Cyperaceae 0.231 | 1.375 | 0.000 | 0.000
34 | Cyperus papyrus L. Cyperaceae Yebeloo 0.000 | 1.250 | 0.000 | 8.091
35 | Cyperus sieberianus L. Cyperaceae Yebeloo 0.000 | 0.250 | 0.000 | 0.000
36 | Cyperus rigidifolius Steud. Cyperaceae Quunnii

37 | Cyperus triceps Endl. Cyperaceae 0.000 | 0.000 | 0.000 | 0.455
38 | Cyperus uniolodes R. Br. Cyperaceae 0.000 | 0.250 | 0.000 | 0.000
39 | Digitaria ciliaris (Retz.) Koel. Poaceae 1.692 | 0.000 | 0.000 | 0.727
40 | Dioscorea bulbifera L. Dioscreaceae Kooteharree

41 | Dracaena steudneri Engl. Dracenaeae Lankuso 0.000 | 0.000 | 0.520 | 0.000
42 | Echinochloa rotundiflora Clayton Poaceae 0.000 | 0.583 | 0.000 | 0.000
43 | Echinochloa stagnina (Retz.) P. Beauv Poaceae 0.269 | 1.333 | 0.000 | 0.000
44 | Echinops amplexicaulis Oliv. Asteraceae 0.423 | 0.000 | 1.240 | 0.000
45 | Echinops hispidus Fresen. Asteraceae Qoree Harree 0.000 | 0.208 | 1.480 | 0.000
46 | Eleocharis acutangula (Roxb.) Schult. Cyperaceae 0.885 | 0.250 | 0.000 | 0.000
47 | Eleusine coracana (L.) Gaertn. Poaceae Dagujjaa 0.269 | 0.000 | 0.000 | 0.000
48 | Eragrostis botryodes W.D. Clayton Poaceae 0.269 | 0.000 | 0.000 | 0.000
49 | Eriochloa fatmensis (Hochst. & Steud.) Clayton Poaceae 0.000 | 2.917 | 0.200 | 0.000
50 | Echinochloa pyramidalis (Lam.) Hitchc. & Chase Poaceae 0.000 | 0.000 | 0.240 | 0.000
51 | Erythrina brucei* Schweinf. Fabaceae Waleensu

52 | Euclea divinorum Hiern Ebenaceae M’eessaa 0.000 | 0.000 | 0.520 | 0.000
53 | Ficus sur Forssk. Moraceae Arbu 0.000 | 0.000 | 1.600 | 0.000
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Table A-28 (Cont’d)

No. | Species Authority Family Local name Cc1 c2 c3 ca
54 | Ficus sychomorus L. Moracaeae Odaa 0.231 | 0.000 | 0.240 | 0.000
55 | Ficus vasta Forssk. Moraceaea Qilxu 0.000 | 0.667 | 0.000 | 0.000
56 | Floscopa glomerata (Willd. exJ. A. Schult. & J.H. Cyperaceae 0.192 | 0.708 | 0.000 | 0.000
Schult.) Hassk.
57 | Galiniera coffeoides Del. Rubiaceae Adamo 0.000 | 0.292 | 0.000 | 0.000
58 | Galinsoga quadriradiata Ruiz. and Pavon Asteraceae Aramaa 0.000 | 0.000 | 0.280 | 0.000
59 | Grewia mollis Juss. Tiliacaea Aroresa, uffo 0.885 | 0.000 | 0.160 | 0.000
60 | Guizotia abyssinica (L. f) Cass. Asteraceae Nuugii
61 | Guizotia scabra (Vis) Chiov. Asteraceae Tuufoo 0.423 | 0.000 | 0.000 | 0.000
62 | Habenaria zambesiana Rchb.f. Orchidaceae 0.423 | 0.208 | 0.000 | 0.000
63 | Hyparrhenia hirta (L.) Stapf Poaceae Delan, Citaa 0.539 | 0.000 | 0.000 | 0.000
64 | Hyparrhenia rufa (Nees) Stapf Poaceae Daggala 0.192 | 0.000 | 0.000 | 0.000
65 | Impatiens aethiopica Grey-Wilson Balsaminaceae Maga cheffe 0.000 | 0.208 | 0.200 | 0.000
66 | Indigofera spicata Forssk. Fabaceae Heennaa 0.000 | 0.250 | 0.000 | 0.000
67 | Ipomea purpurea (L.) Roth. Convolvulaceae 0.000 | 0.250 | 0.000 | 0.000
68 | Isolepis costata A. Rich. Cyperaceae 0.000 | 0.625 | 0.000 | 0.000
69 | Keetia zanzibarica (Klotzsch) Bridson Rubiaceae 0.000 | 0.000 | 0.200 | 0.000
70 | Kohautia coccinea Royle Rubiaceae 0.000 | 0.000 | 0.320 | 0.000
71 | Kotschya africana Endl. Fabaceae Heenna
72 | Lannea fruitcosa (Hochst ex A. Rich) Engl. Anacardiaceae 0.000 | 0.000 | 0.000 | 0.182
73 | Leersia hexandra Sw. Poaceae Kemete 0.269 | 1.583 | 0.000 | 0.546
74 | Leucas deflexa Hook.f. Lamiaceae
75 | Liphocarpha chinensis (Osb.) Kern Cyperaceae
76 | Loudetia arundinacea (Hochst. ex A. Rich.) Steud. Poaceae 0.000 | 0.500 | 0.000 | 0.000
77 | Ludwigia abyssinica A. Rich. Onagraceae Muko cheffe 0.000 | 0.250 | 0.000 | 0.000
78 | Measa lanceolata Forssk. Myrsinaceae Abbayyii 0.000 | 0.375 | 0.000 | 0.000
79 | Millettia ferruginea* (Hochst.) Bak. Fabaceae Sootallo 0.000 | 0.000 | 0.400 | 0.000
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Table A-28 (Cont’d)

No. | Species Authority Family Local name Cc1 c2 c3 ca
80 | Nymphaea nouchali Burm. F. Nymphaeceae 0.000 | 0.000 | 1.080 | 0.000
81 | Nymphaea lotus L. Nymphaeceae 0.231 | 0.542 | 0.000 | 0.364
82 | Oryza barthii A. Chev. Poaceae

83 | Panicum maximum Jacq. Poaceae Buldarle 0.000 | 0.208 | 0.000 | 0.000
84 | Panicum pusillum Hook.f. Poaceae Sutto 0.539 | 0.000 | 0.000 | 0.909
85 | Paspalum scrobiculatum L. Poaceae Qortobi 0.192 | 0.000 | 0.000 | 0.000
86 | Pennisetum polystachion (L.) Schult. Poaceae 0.231 | 0.000 | 0.200 | 0.000
87 | Pennisetum trachyphyllum Pilg. Poaceae 0.000 | 0.792 | 0.000 | 0.000
88 | Pennisetum unisetum (Nees) Benth. Poaceae Migira 0.000 | 0.417 | 0.280 | 0.000
89 | Persicaria decipiens (R.BR.) KI. Wilson Polygonaceae Araba 0.423 | 1.667 | 0.200 | 2.273
S0 | Persicaria senegalensis (Meisn.) Sojdk Polygonaceae Dengego cheffe | 2.115 | 0.000 | 0.000 | 0.154
91 | Phoenix reclinata Jacg. Arecaeae Yeho, Meexxi 0.923 | 0.000 | 0.000 | 0.000
92 | Pistia stratiotes C. E. Hubb. & Snowden Araceae Mechaaraa 0.192 | 0.000 | 1.400 | 0.000
93 | Plantago lanceolata*** L. Plantaginaceae Qorxobi 0.000 | 0.125 | 0.000 | 0.000
94 | Plectranthus punctatus (L.) L Herit Lamiaceae Sigaagimee 0.231 | 0.000 | 0.000 | 0.000
95 | Polygonum amphibium L. Polygonaceae 0.385 | 0.250 | 0.280 | 0.120
96 | Polygonum salicifolium Brouss. ex Willd. Polygonaceae 0.000 | 0.250 | 0.000 | 0.000
87 | Polygonum senegalensis Meisn. Polygonaceae 0.423 | 0.000 | 0.000 | 0.000
98 | Potamogeton lucens L. Potamogetonnaceae 0.115 | 1.000 | 0.000 | 0.000
89 | Pseudognaphalium luteo-album (L.) Hilliard Asteraceae 0.115 | 0.042 | 0.040 | 0.000
100 | Psycnostachys coerulea Hook. Lamiaceae Mata bokkee

101 | Pycnocycla ledermmanii Wolff Apiaceae 0.000 | 0.208 | 0.000 | 0.000
102 | Ranunculus multifidus Forssk. Ranunculaceae 0.923 | 0.292 | 0.000 | 0.000
103 | Rhamphicarpa fistulosa (Hochst.) Benth. Scrophulariaceae

104 | Rubus stuedneri Schweinf. Rubiaceae Gora 0.269 | 0.000 | 0.455 | 0.000
105 | Sacciolepis africana C.E. Hubb. & Snowden Poaceae 0.000 | 0.167 | 0.440 | 0.000
106 | Satureja paradoxa* (Vatke) Engl. ex Seybold Lamiaceae Kefoo sa'aa 0.308 | 0.000 | 0.440 | 0.000
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Table A-28 (Cont’d)

No. | Species Authority Family Local name Cc1 c2 c3 ca
107 | Satyrium brachypetalum L. Orchidaceae 0.000 | 0.000 | 0.200 | 0.000
108 | Satyrium aethiopicum* Summerh. Orchidaceae
109 | Scleria hispidula Hochst. ex A. Rich. Cyperaceae 0.269 | 0.000 | 0.000 | 0.000
110 | Senna obtusifolia (L.) Irwin& Barneby Fabaceae Kishkishi 0.000 | 0.000 | 0.320 | 0.000
111 | Sesamum indicum L. Pedaliaceae
112 | Sesbania dummeri Phil. & Hutch. Fabaceae Harchaa 0.000 | 0.583 | 0.000 | 0.000
113 | Smithia elliotii Bak.f. Fabaceae 0.000 | 0.000 | 0.000 | 0.455
114 | Solanum incanum L. Solanaceae Hiddii loonii 0.231 | 0.000 | 0.000 | 0.000
115 | Sorghum purpureo-sericeum Hochst. ex A. Rich. Poaceae Ageda 0.192 | 0.167 | 0.200 | 0.000
116 | Sorghum vulgare Pers. Poaceae Bisinga
117 | Spathodea nilotica Seem. Bignoniaceae
118 | Stellaria media (L.) Vill. Caryophylaceae 0.000 | 0.000 | 0.280 | 0.000
119 | Steresphermum kunthianum Cham. Fabaceae Botoro 0.000 | 0.000 | 0.280 | 0.000
120 | Syzygium guineense subsp. subsp. macrocarpum (Engl.) F. Myrtaceae baddeessaa 0.000 | 0.250 | 2.440 | 1.091
macrocarpum White
121 | Terminalia brownii Fresen. Comberetaceae
122 | Thelypteris confluens L. Thelypteridaceae Geto chefe 0.000 | 0.917 | 0.240 | 2.455
123 | Trifolium rueppellianum Fresen. Fabaceae 0.769 | 0.000 | 0.280 | 0.000
124 | Tristemma mauritianum J.F. Gmel. Melastomaceae Mlean durba 0.385 | 0.000 | 0.400 | 0.000
125 | Truimfeta pilosa Roth Tiliacaea Debese 0.000 | 0.000 | 0.080 | 0.000
126 | Truimfeta rhomoidea Jacg. Tiliacaea 0.000 | 0.000 | 0.280 | 0.000
127 | Urtica simensis* Hochst. ex Steud. Urticaeae Gurgubbe 0.000 | 0.000 | 0.520 | 0.000
128 | Verbascum sinaiticum Benth. Scrophulariaceae Abmokana 0.077 | 0.208 | 0.280 | 0.000
129 | Vernonia abyssinica Fresen. Asteraceae Soyamaa 0.000 | 0.208 | 3.000 | 0.000
130 | Vernonia auriculifera Hiern Asteraceae Reejii 0.346 | 0.000 | 0.880 | 0.000
131 | Zea mays L. Poaceae Boqggolo

endemic = *, invasive = **, weeds = ***
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