
Chapter 8

The Ekman Layer

(July 12, 2006)SUMMARY : Frictional forces, neglected in the previous chapter, arenow
investigated. Their main effect is to create horizontal boundary layers that support a flow
transverse to the main flow of the fluid. The numerical treatment of the velocity profiles
dominated by friction is illustrated with a spectral approach.

8.1 Shear turbulence

Because most geophysical fluid systems are much shallower than they are wide, their vertical
confinement forces the flow to be primarily horizontal. Unavoidable in such a situation is
friction between the main horizontal motion and the bottom boundary. Friction acts to reduce
the velocity in the vicinity of the bottom, thus creating a vertical shear. Mathematically, if
u is the velocity component in one of the horizontal directions andz the elevation above the
bottom, thenu is a function ofz, at least for smallz values. The functionu(z) is called the
velocity profileand its derivativedu/dz, thevelocity shear.

Geophysical flows are invariably turbulent (high Reynolds number) and this greatly com-
plicates the search for the velocity profile. As a consequence, much of what we know is
derived from observations of actual flows, either in the laboratory or in nature.

The turbulent nature of the shear flow along a flat or rough surface includes variability
at short time and length scales, and the best observational techniques for the detailed mea-
surements of these have been developed for the laboratory rather than outdoor situations.
Laboratory measurements of nonrotating turbulent flows along smooth straight surfaces have
led to the conclusion that the velocity varies solely with the stressτb exerted against the bot-
tom, the fluid molecular viscosityν, the fluid densityρ and, of course, the distancez above
the bottom. Thus,

u(z) = F (τb, ν, ρ, z).

Dimensional analysis permits the elimination of the mass dimension shared byτb andρ but
not present inu, ν andz, and we may write more simply:
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218 CHAPTER 8. EKMAN LAYER

u(z) = F

(

τb

ρ
, ν, z

)

.

The ratioτb/ρ has the same dimension as the square of a velocity, and for this reason it is
customary to define

u∗ =

√

τb

ρ
, (8.1)

which is called thefriction velocityor turbulent velocity. Physically, its value is related to
the orbital velocity of the vortices that create the cross-flow exchange of particles and the
momentum transfer.

The velocity structure thus obeys a relation of the formu(z) = F (u∗, ν, z) and further
use of dimensional analysis reduces it to a function of a single variable:

u(z)

u∗

= F
(u∗z

ν

)

. (8.2)

In the presence of rotation, the Coriolis parameter enters the formalism and the preceding
function depends on two variables:

u(z)

u∗

= F

(

u∗z

ν
,
fz

u∗

)

. (8.3)

8.1.1 Logarithmic profile

The observational determination of the functionF in the absence of rotation has been re-
peated countless times, yielding the same results every time, and it suffices here to provide
a single report (Figure8-1). When the velocity ratiou/u∗ is plotted versus the logarithm of
the dimensionless distanceu∗z/ν, not only do all the points coalesce onto a single curve,
confirming that there is indeed no other variable to be invoked, but the curve also behaves as
a straight line over a range of two orders of magnitude (fromu∗z/ν between101 and103).

If the velocity is linearly dependent on the logarithm of thedistance, then we can write
for this portion of the velocity profile:

u(z)

u∗

= A ln
u∗z

ν
+ B.

Numerous experimental determinations of the constantsA andB provideA = 2.44 and
B = 5.2 within a 5% error (Pope, 2000). Tradition has it to write the function as:

u(z) =
u∗

K ln
u∗z

ν
+ 5.2 u∗, (8.4)

whereK = 1/A = 0.41 is called thevon Kármán constant1

The portion of the curve closer to the wall, where the logarithmic law fails, may be ap-
proximated by the laminar solution. Constant laminar stress νdu/dz = τb/ρ = u2

∗
implies

u(z) = u2
∗
z/ν there. Ignoring the region of transition in which the velocity profile gradually

1in honor of Theodore von Kármán (1881–1963), Hungarian-born physicist and engineer who made significant
contributions to fluid mechanics while working in Germany and who first introduced this notation.
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Figure 8-1 Mean velocity profiles in
fully developed turbulent channel flow
measured by Wei and Willmarth (1989)
at various Reynolds numbers: circles
Re = 2970, squaresRe = 14914, up-
right trianglesRe = 22776, and down-
right triangles Re = 39582. The
straight line on this log-linear plot cor-
responds to the logarithmic profile of
Equation (8.2). (From Pope, 2000)

changes from one solution to the other, we can attempt to connect the two. Doing so yields
u∗z/ν = 11. This sets the thickness of the laminar boundary layerδ as the value ofz for
whichu∗z/ν = 11, i.e.,

δ = 11
ν

u∗

. (8.5)

Most textbooks (e.g., Kundu, 1990) giveδ = 5ν/u∗, for the region in which the velocity
profile is strictly laminar, and label the region between5ν/u∗ and30ν/u∗ as thebuffer layer,
the transition zone between laminar and fully turbulent flow.

For water in ambient conditions, the molecular viscosityν is equal to 1.0× 10−6 m2/s,
while the friction velocity in the ocean rarely falls below 1mm/s. This implies thatδ hardly
exceeds a centimeter in the ocean and is almost always smaller than the height of the cobbles,
ripples and other asperities that typically line the bottomof the ocean basin. Similarly for the
atmosphere: the air viscosity at ambient temperature and pressure is about 1.5× 10−5 m2/s
andu∗ rarely falls below 1 cm/s, givingδ < 5 cm, smaller than most irregularities on land
and wave heights at sea.

When this is the case, the velocity profile above the bottom asperities no longer depends
on the molecular viscosity of the fluid but on the so-calledroughness heightz0, such that

u(z) =
u∗

K ln
z

z0
, (8.6)

as depicted in Figure8-2. It is important to note that the roughness height is not the average
height of bumps on the surface but is a small fraction of it, about one tenth (Garratt, 1992,
page 87).
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Figure 8-2 Velocity profile in the
vicinity of a rough wall. The rough-
ness heighz0 is smaller than the av-
eraged height of the surface asperities.
So, the velocityu falls to zero some-
where within the asperities, where local
flow degenerates into small vortices be-
tween the peaks, and the negative val-
ues predicted by the logarithmic profile
are not physically realized.

8.1.2 Eddy viscosity

We have already mentioned in Section5.2what an eddy diffusivity or viscosity is and how it
can be formulated in the case of a homogeneous turbulence field, i.e., away from boundaries.
Near a boundary, the turbulence ceases to be isotropic and analternate formulation needs to
be developed.

In analogy with Newton’s law for viscous fluids, which has thetangential stressτ propor-
tional to the velocity sheardu/dz with the coefficient of proportionality being the molecular
viscosityν, we write for turbulent flow:

τ = ρ0νE
du

dz
, (8.7)

where the turbulent viscosityνE supersedes the molecular viscosityν. For the logarithmic
profile (8.6) of a flow along a rough surface, the velocity shear isdu/dz = u∗/Kz and the
stressτ is uniform across the flow (at least in the vicinity of the boundary for lack of other
significant forces):τ = τb = ρu2

∗
, giving

ρ0u
2
∗

= ρ0νE
u∗

Kz

and thus

νE = Kzu∗. (8.8)

Note that unlike the molecular viscosity, the turbulent viscosity is not constant in space, for it
is not a property of the fluid but of the flow, including its geometry. From its dimension ([νE ]
= L2T−1), we verify that (8.8) is dimensionally correct and note that it can be expressed as
the product of a length by the friction velocity

νE = lmu∗, (8.9)

with themixing lengthlm defined as

lm = Kz. (8.10)

This parameterization is occasionally used for cases otherthan boundary layers (see Chapter
14).



8.2. FRICTION AND ROTATION 221

The preceding considerations ignored the effect of rotation. When rotation is present, the
character of the boundary layer changes dramatically.

8.2 Friction and rotation

After the development of the equations governing geophysical motions (Sections4.1to 4.4), a
scale analysis was performed to evaluate the relative importance of the various terms (Section
4.5). In the horizontal momentum equations [(4.21a) and (4.21b)], each term was compared to
the Coriolis term, and a corresponding dimensionless ratiowas defined. For vertical friction,
the dimensionless ratio was theEkman number:

Ek =
νE

ΩH2
, (8.11)

whereνE is the eddy viscosity,Ω the ambient rotation rate, andH the height (depth) scale of
the motion (the total thickness if the fluid is homogeneous).

Typical geophysical flows, as well as laboratory experiments, are characterized by very
small Ekman numbers. For example, in the ocean at midlatitudes (Ω ≃ 10−4 s−1), motions
modeled with an eddy-intensified viscosityνE = 10−2 m2/s (much larger than the molecular
viscosity of water, equal to1.0 × 10−6 m2/s) and extending over a depth of about 1000 m
have an Ekman number of about 10−4.

The smallness of the Ekman number indicates that vertical friction plays a very minor
role in the balance of forces and may, consequently, be omitted from the equations. This is
usually done and with great success. However, something is then lost. The frictional terms
happen to be those with the highest order of derivatives among all terms of the momentum
equations. Thus, when friction is neglected, the order of the set of differential equations is
reduced, and not all boundary conditions can be applied simultaneously. Usually, slipping
along the bottom must be accepted.

Since Ludwig Prandtl2 and his general theory of boundary layers, we know that in such
a circumstance the fluid system exhibits two distinct behaviors: At some distance from the
boundaries, in what is called theinterior, friction is usually negligible, whereas, near a bound-
ary (wall) and across a short distance, called theboundary layer, friction acts to bring the
finite interior velocity to zero at the wall.

The thickness,d, of this thin layer is such that the Ekman number is on the order of one
at that scale, allowing friction to be a dominant force:

νE

Ωd2
∼ 1,

which leads to

d ∼
√

νE

Ω
. (8.12)

2See biography at the end of this chapter.
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Obviously,d is much less thanH , and the boundary layer occupies a very small portion of
the flow domain. For the oceanic values cited above (νE = 10−2 m2/s andΩ = 10−4 s−1),
d is about 10 m.

Because of the Coriolis effect, the frictional boundary layer of geophysical flows, called
theEkman layer, differs greatly from the boundary layer in nonrotating fluids. Although, the
traditional boundary layer has no particular thickness andgrows either downstream or with
time, the existence of the depth scaled in rotating fluids suggests that the Ekman layer can
be characterized by a fixed thickness. [Note that as the rotational effects disappear (Ω → 0),
d tends to infinity, exemplifying this essential difference between rotating and nonrotating
fluids.]

8.3 The bottom Ekman layer

Let us consider a uniform, geostrophic flow in a homogeneous fluid over a flat bottom (Figure
8-3). This bottom exerts a frictional stress against the flow, bringing the velocity gradually to
zero within a thin layer above the bottom. We now solve for thestructure of this layer.

u = 0

z

z = 0

Ekman
layer

Interior

u = ū

u(z) d

Figure 8-3 Frictional influence of a flat bottom on a uniform flow in a rotating framework.

In the absence of horizontal gradients (the interior flow is said to be uniform) and of
temporal variations, continuity equation (4.21d) yields∂w/∂z = 0 and thusw = 0 in the
thin layer near the bottom. The remaining equations are the following reduced forms of
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(4.21a) through (4.21c):

− fv = − 1

ρ0

∂p

∂x
+ νE

∂2u

∂z2
(8.13a)

+ fu = − 1

ρ0

∂p

∂y
+ νE

∂2v

∂z2
(8.13b)

0 = − 1

ρ0

∂p

∂z
, (8.13c)

wheref is the Coriolis parameter (taken as a constant here),ρ0 is the fluid density, andνE is
the eddy viscosity (taken as a constant for simplicity). Thehorizontal gradient of the pressure
p is retained because a uniform flow requires a uniformly varying pressure (Section7.1). For
convenience, we align thex–axis with the direction of the interior flow, which is of velocity
ū. The boundary conditions are then

Bottom(z = 0) : u = 0, v = 0, (8.14a)

Toward the interior(z ≫ d) : u = ū, v = 0, p = p̄(x, y). (8.14b)

By virtue of equation (8.13c), the dynamic pressurep is the same at all depths; thus,p =
p̄(x, y) in the outer flow as well as throughout the boundary layer. In the outer flow (z ≫ d,
mathematically equivalent toz → ∞), equations (8.13a) and (8.13b) relate the velocity to
the pressure gradient:

0 = − 1

ρ0

∂p̄

∂x
,

f ū = − 1

ρ0

∂p̄

∂y
= constant.

Substitution of these derivatives in the same equations, which are now taken at any depth,
yields

− fv = νE
d2u

dz2
(8.15a)

f (u − ū) = νE
d2v

dz2
. (8.15b)

Seeking a solution of the typeu = ū + A exp(λz) andv = B exp(λz), we find thatλ obeys
ν2λ4 + f2 = 0; that is,

λ = ± (1 ± i )
1

d

where the distanced is defined by

d =

√

2νE

f
. (8.16)
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Figure 8-4 The velocity spiral in the bottom Ekman layer. The figure is drawn for the Northern
Hemisphere (f > 0), and the deflection is to the left of the current above the layer. The reverse holds
for the Southern Hemisphere.

Here, we have restricted ourselves to cases with positivef (Northern Hemisphere). Note
the similarity to (8.12). Boundary conditions (8.14b) rule out the exponentially growing
solutions, leaving

u = ū + e−z/d
(

A cos
z

d
+ B sin

z

d

)

(8.17a)

v = e−z/d
(

B cos
z

d
− A sin

z

d

)

, (8.17b)

and the application of the remaining boundary conditions (8.14a) yieldsA = −ū, B = 0, or

u = ū
(

1 − e−z/d cos
z

d

)

(8.18a)

v = ū e−z/d sin
z

d
. (8.18b)

This solution has a number of important properties. First and foremost, we notice that the
distance over which it approaches the interior solution is on the order ofd. Thus, expression
(8.16) gives the thickness of the boundary layer. For this reason,d is called theEkman depth.
A comparison with (8.12) confirms the earlier argument that the boundary-layer thickness is
the one corresponding to a local Ekman number near unity.

The preceding solution also tells us that there is, in the boundary layer, a flow transverse
to the interior flow (v 6= 0). Very near the bottom (z → 0), this component is equal to the
downstream velocity (u ∼ v ∼ ūz/d), thus implying that the near-bottom velocity is at 45
degrees to the left of the interior velocity (Figure8-4). (The boundary flow is to the right of
the interior flow forf < 0.) Further up, whereu reaches a first maximum (z = 3πd/4), the
velocity in the direction of the flow is greater than in the interior (u = 1.07ū). (Viscosity can
occasionally fool us!)

It is instructive to calculate the net transport of fluid transverse to the main flow:

V =

∫

∞

0

v dz =
ūd

2
, (8.19)
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which is proportional to the interior velocity and the Ekmandepth.

8.4 Generalization to non-uniform currents

Let us now consider a more complex interior flow, namely, a spatially nonuniform flow that
is varying on a scale sufficiently large to be in geostrophic equilibrium (low Rossby number,
as in Section7.1). Thus,

− f v̄ = − 1

ρ0

∂p̄

∂x
, f ū = − 1

ρ0

∂p̄

∂y
,

where the pressurēp(x, y, t) is arbitrary. For a constant Coriolis parameter, this flow isnon-
divergent (∂ū/∂x + ∂v̄/∂y = 0). The boundary-layer equations are now

− f(v − v̄) = νE
∂2u

∂z2
(8.20a)

f(u − ū) = νE
∂2v

∂z2
, (8.20b)

and the solution that satisfies the boundary conditions aloft (u → ū andv → v̄ for z → ∞)
is

u = ū + e−z/d
(

A cos
z

d
+ B sin

z

d

)

(8.21)

v = v̄ + e−z/d
(

B cos
z

d
− A sin

z

d

)

. (8.22)

Here, the “constants” of integrationA andB are independent ofz but, in general, dependent
onx andy throughū andv̄. Imposingu = v = 0 along the bottom (z = 0) sets their values,
and the solution is:

u = ū
(

1 − e−z/d cos
z

d

)

− v̄ e−z/d sin
z

d
(8.23a)

v = ū e−z/d sin
z

d
+ v̄

(

1 − e−z/d cos
z

d

)

. (8.23b)

The transport attributed to the boundary-layer structure has components given by

U =

∫

∞

0

(u − ū) dz = − d

2
(ū + v̄) (8.24a)

V =

∫

∞

0

(v − v̄) dz =
d

2
(ū − v̄) . (8.24b)
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Figure 8-5 Divergence in the bottom Ekman layer and compensating downwelling in the interior.
Such a situation arises in the presence of an anticyclonic gyre in the interior, as depicted by the large
horizontal arrows. Similarly, interior cyclonic motion causes convergence in the Ekman layer and
upwelling in the interior.

Since this transport is not necessarily parallel to the interior flow, it is likely to have a non-zero
divergence. Indeed,

∂U
∂x

+
∂V
∂y

=

∫

∞

0

(

∂u

∂x
+

∂v

∂y

)

dz = − d

2

(

∂v̄

∂x
− ∂ū

∂y

)

= − d

2ρ0f
∇2p̄. (8.25)

The flow in the boundary layer converges or diverges if the interior flow has a relative
vorticity. The situation is depicted in Figure8-5. The question is: From where does the fluid
come, or where does it go, to meet this convergence or divergence? Because of the presence
of a solid bottom, the only possibility is that it be suppliedfrom the interior by means of a
vertical velocity. But, remember (Section7.1) that geostrophic flows must be characterized
by

∂w̄

∂z
= 0, (8.26)

that is, the vertical velocity must occur throughout the depth of the fluid. Of course, since
the divergence of the flow in the Ekman layer is proportional to the Ekman depth,d, which is
very small, this vertical velocity is weak.

The vertical velocity in the interior, calledEkman pumping, can be evaluated by a vertical
integration of the continuity equation (4.21d), usingw(z = 0) = 0 andw(z → ∞) = w̄:

w̄ = −
∫

∞

0

(

∂u

∂x
+

∂v

∂y

)

dz =
d

2

(

∂v̄

∂x
− ∂ū

∂y

)

=
d

2ρ0f
∇2p̄ =

1

ρ0

√

νE

2f3
∇2p̄. (8.27)
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So, the greater the vorticity of the mean flow, the greater theupwelling/downwelling. Also,
the effect increases toward the equator (decreasingf = 2Ω sinϕ and increasingd). The di-
rection of the vertical velocity is upward in a cyclonic flow (counterclockwise in the Northern
Hemisphere) and downward in an anticyclonic flow (clockwisein the Northern Hemisphere).

In the Southern Hemisphere, wheref < 0, the Ekman layer thicknessd must be redefined
with the absolute value off : d =

√

2νE/|f |, but the previous rule remains: the vertical
velocity is upward in a cyclonic flow and downward in an anticyclonic flow. The difference
is that cyclonic flow is clockwise and anticyclonic flow is counterclockwise.

8.5 The Ekman layer over uneven terrain

It is noteworthy to explore how an irregular topography may affect the structure of the Ekman
layer and, in particular, the magnitude of the vertical velocity in the interior. For this, consider
a horizontal geostrophic interior flow (ū, v̄), not necessarily spatially uniform, over an uneven
terrain of elevationz = b(x, y) above a horizontal reference level. To be faithful to our
restriction (Section4.3) to geophysical flows much wider than they are thick, we shallassume
that the bottom slope (∂b/∂x, ∂b/∂y) is everywhere small (≪ 1). This is hardly a restriction
in most atmospheric and oceanic situations.

Our governing equations are again (8.20), coupled to the continuity equation (4.21d), but
the boundary conditions are now

Bottom(z = b) : u = 0, v = 0, w = 0, (8.28)

Toward the interior(z ≫ d) : u = ū, v = v̄. (8.29)

The solution is the previous solution (8.23) with z replaced byz − b:

u = ū − e(b−z)/d

(

ū cos
z − b

d
+ v̄ sin

z − b

d

)

(8.30a)

v = v̄ + e(b−z)/d

(

ū sin
z − b

d
− v̄ cos

z − b

d

)

. (8.30b)

We note that the vertical thickness of the boundary layer is still measured byd =
√

2νE/f .
However, the boundary layer is now oblique, and its true thickness, measured perpendicularly
to the bottom, is slightly reduced by the cosine of the small bottom slope.

The vertical velocity is then determined from the continuity equation:
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∂w

∂z
= − ∂u

∂x
− ∂v

∂y

= e(b−z)/d

{(

∂v̄

∂x
− ∂ū

∂y

)

sin
z − b

d

+
1

d

∂b

∂x

[

(ū − v̄) cos
z − b

d
+ (ū + v̄) sin

z − b

d

]

+
1

d

∂b

∂y

[

(ū + v̄) cos
z − b

d
− (ū − v̄) sin

z − b

d

]}

,

where use has been made of the fact that the interior geostrophic flow has no divergence
(∂ū/∂x + ∂v̄/∂y = 0). A vertical integration from the bottom (z = b), where the vertical
velocity vanishes (w = 0 becauseu andv are also zero there) into the interior (z → +∞)
where the vertical velocity assumes a vertically uniform value (w = w̄), yields

w̄ =

(

ū
∂b

∂x
+ v̄

∂b

∂y

)

+
d

2

(

∂v̄

∂x
− ∂ū

∂y

)

. (8.31)

The interior vertical velocity thus consists of two parts: acomponent that ensures no normal
flow to the bottom [see (7.10)] and an Ekman-pumping contribution, as if the bottom were
horizontally flat [see (8.27)].

The vanishing of the flow component perpendicular to the bottom must be met by the
inviscid dynamics of the interior, giving rise to the first contribution tow̄. The role of the
boundary layer is to bring the tangential velocity to zero atthe bottom. This explains the
second contribution tōw. Note that the Ekman pumping is not affected by the bottom slope.

The preceding solution can also be applied to the lower portion of the atmospheric bound-
ary layer. This was first done by Akerblom (1908), and matching between the logarithmic
layer close to the ground (Section8.1.1) with the Ekman layer further aloft was performed
by Van Dyke (1975). Oftentimes, however, the lower atmosphere is in a stable (stratified)
or unstable (convecting) state, and the neutral state during which Ekman dynamics prevail is
more the exception than the rule.

8.6 The surface Ekman layer

An Ekman layer occurs not only along bottom surfaces but wherever there is a horizontal
frictional stress. This is the case, for example, along the ocean surface, where waters are
subject to a wind stress. In fact, this is precisely the situation first examined by Vagn Walfrid
Ekman3. Fridtjof Nansen4 had noticed during his cruises to northern latitudes that icebergs
drift not downwind but systematically at some angle to the right of the wind. Ekman, his
student at the time, reasoned that the cause of this bias was the earth’s rotation and subse-
quently developed the mathematical representation that now bears his name. The solution

3See biography at the end of this chapter.
4Fridtjof Nansen (1861–1930), Norwegian oceanographer famous for his Arctic expeditions and Nobel Peace

Prize laureate (1922).
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was originally published in his 1902 doctoral thesis and again, in a more complete article,
three years later (Ekman, 1905). In a subsequent article (Ekman, 1906), he mentioned the
relevance of his theory to the lower atmosphere, where the wind approaches a geostrophic
value with increasing height.

z

z = 0

Ekman
layer

Interior (u, v) = (ū, v̄)

d
(u, v)

Sea surface
Wind stress

Figure 8-6 The surface Ekman layer generated by a wind stress on the ocean.

Let us consider the situation depicted in Figure8-6, where an ocean region with interior
flow field (ū, v̄) is subjected to a wind stress (τx, τy) along its surface. Again, assuming
steady conditions, a homogeneous fluid, and a geostrophic interior, we obtain the following
equations and boundary conditions for the flow field (u, v) in the surface Ekman layer:

− f (v − v̄) = νE
∂2u

∂z2
(8.32a)

+ f (u − ū) = νE
∂2v

∂z2
(8.32b)

Surface(z = 0) : ρ0νE
∂u

∂z
= τx, ρ0νE

∂v

∂z
= τy (8.32c)

Toward interior(z → −∞) : u = ū, v = v̄. (8.32d)
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Figure 8-7 Structure of the surface Ekman layer. The figure is drawn for the Northern Hemisphere
(f > 0), and the deflection is to the right of the surface stress. Thereverse holds for the Southern
Hemisphere.

The solution to this problem is

u = ū +

√
2

ρ0fd
ez/d

[

τx cos
(z

d
− π

4

)

− τy sin
(z

d
− π

4

)]

(8.33a)

v = v̄ +

√
2

ρ0fd
ez/d

[

τx sin
(z

d
− π

4

)

+ τy cos
(z

d
− π

4

)]

, (8.33b)

in which we note that the departure from the interior flow (ū, v̄) is exclusively due to the wind
stress. In other words, it does not depend on the interior flow. Moreover, this wind-driven
flow component is inversely proportional to the Ekman-layerdepth,d, and may be very large.
Physically, if the fluid is almost inviscid (smallν, hence shortd), a moderate surface stress
can generate large drift velocities.

The wind-driven horizontal transport in the surface Ekman layer has components given
by

U =

∫ 0

−∞

(u − ū) dz =
1

ρ0f
τy (8.34a)

V =

∫ 0

−∞

(v − v̄) dz =
−1

ρ0f
τx. (8.34b)

Surprisingly, it is oriented perpendicular to the wind stress (Figure8-7), to the right in the
Northern Hemisphere and to the left in the Southern Hemisphere. This fact explains why
icebergs, which float mostly underwater, systematically drift to the right of the wind in the
North Atlantic, as observed by Fridtjof Nansen.
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Figure 8-8 Ekman pumping in an ocean subject to sheared winds (case of Northern Hemisphere).

As for the bottom Ekman layer, let us determine the divergence of the flow, integrated
over the boundary layer:

∫ 0

−∞

(

∂u

∂x
+

∂v

∂y

)

dz =
1

ρ0

[

∂

∂x

(

τy

f

)

− ∂

∂y

(

τx

f

)]

. (8.35)

At constantf , the contribution is entirely due to the wind stress since the interior geostrophic
flow is nondivergent. It is proportional to the wind-stress curl and, most importantly, it is
independent of the value of the viscosity. It can be shown furthermore that this property
continues to hold even when the turbulent eddy viscosity varies spatially (see Analytical
Problem 8-7).

If the wind stress has a non-zero curl, the divergence of the Ekman transport must be
provided by a vertical velocity throughout the interior. A vertical integration of the continuity
equation, (4.21d), across the Ekman layer withw(z = 0) andw(z → −∞) = w̄ yields

w̄ = +

∫ 0

−∞

(

∂u

∂x
+

∂v

∂y

)

dz

=
1

ρ0

[

∂

∂x

(

τy

f

)

− ∂

∂y

(

τx

f

)]

= wEk.

(8.36)

This vertical velocity is calledEkman pumping. In the Northern Hemisphere (f > 0), a
clockwise wind pattern (negative curl) generates a downwelling (Figure8-8a), whereas a
counterclockwise wind pattern causes upwelling (Figure8-8b). The directions are opposite
in the Southern Hemisphere. Ekman pumping is a very effective mechanism by which winds
drive subsurface ocean currents (Pedlosky, 1996; see also Chapter20).

8.7 The Ekman layer in real geophysical flows

The preceding models of bottom and surface Ekman layers are highly idealized, and we
do not expect their solutions to match actual atmospheric and oceanic observations closely
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Figure 8-9 Comparison between observed currents below a drifting ice floe at 84.3◦N and theoretical
predictions based on an eddy viscosityνE = 2.4 × 10−3 m2/s. (Reprinted fromDeep-Sea Research,
13, Kenneth Hunkins, Ekman drift currents in the Arctic Ocean, p. 614, ©1966, with kind permission
from Pergamon Press Ltd, Headington Hill Hall, Oxford 0X3 0BW, UK)

(except in some cases; see Figure8-9). Two factors, among others, account for substantial
differences: turbulence and stratification.

It was noted at the end of Chapter4 that geophysical flows have large Reynolds numbers
and are therefore in a state of turbulence. Replacing the molecular viscosity of the fluid by a
much greater eddy viscosity, as performed in Section4.2, is a first attempt to recognize the
enhanced transfer of momentum in a turbulent flow. However, in a shear flow such as in an
Ekman layer, the turbulence is not homogeneous, being more vigorous where the shear is
greater and also partially suppressed in the proximity of the boundary where the size of tur-
bulent eddies is restricted. In the absence of an exact theory of turbulence, several schemes
have been proposed. At a minimum, the eddy viscosity should be made to vary in the vertical
(Madsen, 1977) and should be a function of the bottom stress value (Cushman-Roisin and
Malačič, 1997). A number of schemes have been proposed (see Section4.2), with varying
degrees of success. Despite numerous disagreements among models and with field observa-
tions, two results nonetheless stand out as quite general. The first is that the angle between
the near-boundary velocity and that in the interior or that of the surface stress (depending on
the type of Ekman layer) is always substantially less than the theoretical value of 45◦ and is
found to range between 5◦ and 20◦ (Figure8-10). See also Staceyet al. (1986).

The second result is a formula for the vertical scale of the Ekman-layer thickness:

d ≃ 0.4
u∗

f
, (8.37)
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Figure 8-10 Wind vectors minus geostrophic wind as a function of height (in meters) in the maritime
friction layer near the Scilly Isles.Top diagram: Case of warm air over cold water.Bottom diagram:
Case of cold air over warm water. (Adapted from Roll, 1965)

whereu∗ is the turbulent friction velocity defined in (8.1). The numerical factor is derived
from observations (Garratt, 1992, Appendix 3). Whereas 0.4is the most commonly accepted
value, there is evidence that certain oceanic conditions call for a somewhat smaller value
(Mofjeld and Lavelle, 1984; Stigebrandt, 1985).

Takingu∗ as the turbulent velocity and the (unknown) Ekman-layer depth scale,d, as the
size of the largest turbulent eddies, we write

νE ∼ u∗d. (8.38)

Then, using rule8.12to determine the boundary-layer thickness, we obtain

1 ∼ νE

fd2
∼ u∗

fd
,

which immediately leads to (8.37).
The other major element missing from the Ekman-layer formulations of the previous sec-

tions is the presence of vertical density stratification. Although the effects of stratification
are not discussed in detail until Chapter11, it can be anticipated here that the gradual change
of density with height (lighter fluid above heavier fluid) hinders vertical movements, thereby
reducing vertical mixing of momentum by turbulence; it alsoallows the motions at separate
levels to act less coherently and to generate internal gravity waves. As a consequence, strat-
ification reduces the thickness of the Ekman layer and increases the veering of the velocity
vector with height (Garratt, 1992, Section 6.2). For a studyof the oceanic wind-driven Ekman
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layer in the presence of density stratification, the reader is referred to Price and Sundermeyer
(1999).

The surface atmospheric layer during daytime over land and above warm currents at sea
is frequently in a state of convection because of heating from below. In such situations,
the Ekman dynamics give way to convective motions, and a controlling factor, besides the
geostrophic wind aloft, is the intensity of the surface heatflux. An elementary model is
presented later (Section14.7). Because Ekman dynamics then play a secondary role, the
layer is simply called theatmospheric boundary layer. The interested reader is referred to
books on the subject by Stull (1988), Sorbjan (1989), Zilitinkevich (1991) or Garratt (1992).

8.8 Numerical simulation of shallow flows

The theory presented up to now largely relies on the assumption of a constant turbulent vis-
cosity. For real flows, however, turbulence is rarely uniform, and eddy-diffusion profiles must
be considered. Such complexity renders the analytical treatment tedious or even impossible,
and numerical methods need to be employed.
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νE(z) Figure 8-11 A vertically confined fluid
flow, with bottom and top Ekman lay-
ers bracketing a non-uniform velocity
profile. The vertical structure can be
calculated by a one-dimensional model
spanning the entire fluid column even-
though the turbulent viscosityνE(z)
may vary in the vertical.

To illustrate the approach, we reinstate non-stationary terms and assume a vertically vary-
ing eddy-viscosity (Figure8-11) but retain the hydrostatic approximation (8.13c) and con-
tinue to consider a fluid of homogeneous density. The governing equations foru andv are

∂u

∂t
− fv = − 1

ρ0

∂p

∂x
+

∂

∂z

(

νE(z)
∂u

∂z

)

(8.39a)

∂v

∂t
+ fu = − 1

ρ0

∂p

∂y
+

∂

∂z

(

νE(z)
∂v

∂z

)

(8.39b)

0 = − 1

ρ0

∂p

∂z
. (8.39c)

From the last equation it is clear that the horizontal pressure gradient is independent ofz.




