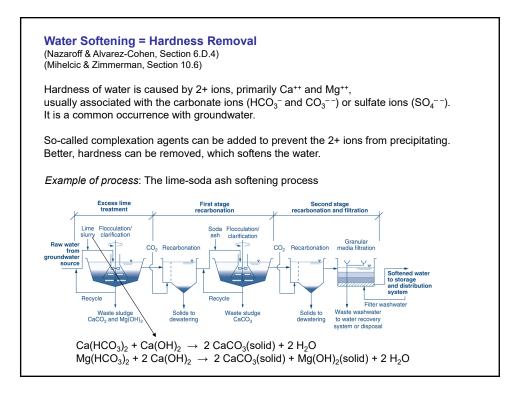
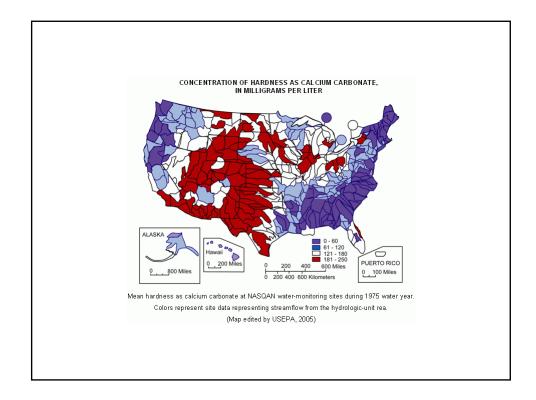
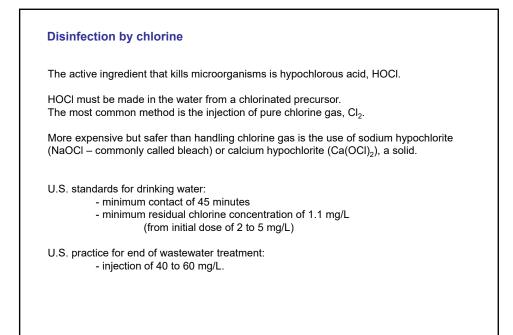

Arsenic


Naturally occurring **arsenic** is widespread, and in many places of the world, arsenic is present in the groundwater. The World Health Organization (WHO) has set a drinking-water guideline for arsenic of 10 μ g/L (= 10 ppb_m).


Long-term exposure to arsenic via drinking-water causes cancer of the skin, lungs, urinary bladder, and kidney, as well as other skin changes such as pigmentation changes and thickening (hyperkeratosis).

Increased risks of lung and bladder cancer and of arsenic-associated skin lesions have been observed at drinking-water arsenic concentrations of less than 0.05 mg/L.



	1 arez-Cohen, Section 6.D.1) merman, Section 10.9)		
Purpose:			
To reduce risl	of disease transmission as	sociated with either	drinking or waste water.
Objective:			
To kill or inac	ivate microorganisms.		
<u>Methods:</u>	Boiling of water	Very effective	Very energy intensive
	Irradiation with UV light	Limited efficacy	Cheap and convenient Requires clear water
			Requires clear water
	Chemical disinfection by chlorine or chlorinated compound	Very effective Leaves lasting residuals	Cheap to expensive May create harmful by-products

Chlorine chemistry in pure water

Let us consider the use of chlorine gas as the disinfection method.

First, Cl₂ in gas (from compressed bottle, handled with care!) penetrates the water, following Henry's Law:

$$Cl_{2(gas)} \leftrightarrow Cl_{2(water)}$$
 with $K_H = 0.062$ M/atm at 25°C

Aqueous Cl₂ reacts rapidly with water to form hypochlorous acid:

$$Cl_2 + H_2O \leftrightarrow HOCI + H^+ + CI^-$$

with constant

$$K = \frac{[\text{HOCI}][\text{H}^+][\text{CI}^-]}{[\text{CI}_2]} = 5 \times 10^{-4} \text{ M}^2$$

The preceding two reactions are highly tilted to the right, meaning that chlorine gas most easily goes into hypochlorous acid in the water.

However, hypochlorous acid HOCl is not only consumed in killing microorganisms; it also decays spontaneously into:

 $\mathsf{HOCI} \ \leftrightarrow \ \mathsf{H}^{\scriptscriptstyle +} \ + \ \mathsf{OCI}^{\scriptscriptstyle -}$

with constant

$$K_2 = \frac{[\text{H}^+][\text{OCl}^-]}{[\text{HOCl}]} = 2.6 \times 10^{-8} \text{ M}$$

The hypochlorite ion OCI- is much less potent as a disinfectant than HOCI.

1.0 [HOCI]/[[HOCI] + [OCI-]] 0.8 To keep the above reaction tilted to the left (in favor of HOCI and against 0.6 0.4 OCI[–]), the pH must be controlled. 0.2 05 5.5 6.5 7.5 8.5 6 pН Figure 6.D.1 The fraction of hypochlorous species (HOCl + OCl⁻) that is present as undissociated hypochlorous acid (HOCl), versus pH. (From Nazaroff & Alvarez-Cohen, 2001)