
Chapter 2

DIFFUSION

2.1 The Diffusion Equation

Formulation

As we saw in the previous chapter, the flux of a substance consists of an
advective component, due to the mean motion of the carrying fluid, and of a
so-called diffusive component, caused by the unresolved random motions of the
fluid (molecular agitation and/or turbulence). In this chapter, we explore some
consequences of the existence of a diffusive flux by concentrating on cases in
which there is no mean flow in the system and thus investigating the effects
caused by concentration variations across the system.

The mass balance on an infinitesimal stretch of a one-dimensional system
(Figure 2-1 – a river, for example) yields:

V
dc

dt
= Import − Export = q(x, t) A − q(x+∆x, t) A,

where the volume of the element is V = A∆x, and the Import and Export are
simply the flux times the cross-sectional area. The preceding equation can be
rewritten as:

Figure 2-1. Infinitesimal control volume in one dimension.
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dc

dt
= − q(x+∆x, t) − q(x, t)

∆x
,

and in the limit of an infinitesimally small stretch ∆x,

∂c

∂t
= − ∂q

∂x
. (2.1)

(A switch from total to partial derivatives was necessary since at this stage
there is more than one independent variables.)

It is important to note that the above equation, being a simple mass bal-
ance, is valid regardless of whether the flux q is purely diffusive or contains
an advective component. In the absence of a transporting flow (u = 0), the
substance flux given by (1.4), with j given by (1.5), reduces to:

q = − D
∂c

∂x
, (2.2)

which is the diffusive flux caused by the unresolved fluctuating motions such
as those caused by turbulence. We suppose that the diffusion coefficient D is
known. After elimination of q, Equation (2.1) contains the single unknown c:

∂c

∂t
=

∂

∂x

(

D
∂c

∂x

)

. (2.3)

This equation is called the one-dimensional diffusion equation or Fick’s second
law. It can be solved for the spatially and temporally varying concentration
c(x, t) with sufficient initial and boundary conditions.

In general, the diffusion coefficient D may vary with the local condition of
turbulence, but an interesting case is, of course, that of a constant D:

∂c

∂t
= D

∂2c

∂x2
. (2.4)

Initial and boundary conditions

The above diffusion equation is hardly solved in any general way. Each
solution depends critically on boundary and initial conditions specific to the
problem at hand.

First and foremost, we need to know how many initial and boundary con-
ditions are necessary so that the problem is neither underspecified or overspec-
ified. For this, we determine the order of the problem’s governing equation.
The time derivative (∂c/∂t) is of first order and thus calls for a single initial
condition (at all x values); typically, the initial concentration distribution is
given

c = c0(x) at t = 0. (2.5)
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The spatial derivative (∂2c/∂x2) is of second order and thus calls for two bound-
ary conditions; typically, any problem will include one boundary condition at
each end of the domain (say x = x1 and x = x2). While it would be easier
from a mathematical perspective to have the end concentrations imposed, for
example,

c = c1(t) at x = x1 (2.6)

c = c2(t) at x = x2, (2.7)

it is much more typical to encounter flux boundary conditions

− D
∂c

∂x
= q1 at x = x1 (2.8)

− D
∂c

∂x
= q2 at x = x2. (2.9)

An impermeable boundary implies no flux and thus no concentration gradient
at that boundary. Of course, mixed conditions (e.g., concentration given at
one end of the domain and flux specified at the other) are possible.

As a first example showing how a diffusion problem may be solved analyti-
cally, we shall now derive the solution to an ideal but most important problem.

Prototypical solution

The diffusion equation is a linear one, and a solution can, therefore, be
obtained by adding several other solutions. An elementary solution (‘building
block’) that is particularly useful is the solution to an instantaneous, localized
release in an infinite domain initially free of the substance.

Mathematically, the problem is stated as follows:
• Infinite domain: −∞ < x < +∞,
• D = constant,
• No initial concentration, except for the localized release: c0(x) = Mδ(x) at
t = 0.
• Since the substance will take an infinite time to reach the infinitely far ends
of the domain, we impose:

lim
x→+∞

c = lim
x→−∞

c = 0

at finite times (t < ∞).
In the above, M is the total mass of the substance released per unit cross-

sectional area, and δ(x) is the Dirac function [δ(x) = 0 for x 6= 0, δ(x) = +∞
at x = 0, and area under the infinitely tall and infinitely narrow peak is unity].

Physically, we anticipate a behavior as displayed in Figure 2-2. The pol-
lutant patch gradually spreads on both sides of the release location, with a
commensurate decrease in the maximum center value. Curves at later times
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Figure 2-2. Diffusion in time of an initially localized pollutant distribution.
While the pollution patch spreads, the maximum concentration decreases, pre-
serving the area under the curve.

appear similar to those at earlier times, only being flatter and wider. Antici-
pating such similarity in the solution, we write:

c(x, t) = t−αF (η) with η =
x2

4Dt
, (2.10)

where t−α (with the dimensionless exponent α expected to be positive) is a ‘size
factor’ to represent the temporal decay of the maximum concentration value
(at x = 0), and where the function F (η) is the ‘shape factor’ giving the similar
curve profile. This function has a ‘stretched coordinate’ so that the same value
F (η) is obtained for increasing values of x as time goes on (constant x2/t). This
is to take into account the spreading of the pollutant patch. The exponent 2 of
x is an educated guess, to render the functional dependency compatible with
the equation at hand. [The choice is rooted in the fact that t appears in the
equation as a first-order derivative, while x enters the equation as a second-
order derivative.] The factor D in the denominator of η is there to make the
ratio dimensionless; η therefore has no units, and its function F (η) takes on a
universal character. Finally, the factor 4 is introduced for pure mathematical
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convenience.
From (2.10), we calculate the derivatives of c needed to solve Equation (2.4):

∂c

∂t
= − αt−α−1 F (η) + t−α dF

dη

∂η

∂t
= − αt−α−1 F (η) − ηt−α−1 dF

dη

∂c

∂x
= t−α dF

dη

∂η

∂x
=

xt−α−1

2D

dF

dη

∂2c

∂x2
=

t−α−1

2D

dF

dη
+

xt−α−1

2D

d2F

dη2
∂η

∂x
=

t−α−1

2D

dF

dη
+

t−α−1

D
η
d2F

dη2
.

Then, substitution of ∂c/∂t and ∂2c/∂x2 in the diffusion equation yields:

− αt−α−1 F (η) − ηt−α−1 dF

dη
=

1

2
t−α−1 dF

dη
+ ηt−α−1 d2F

dη2
.

The time factors cancel out (thanks to the careful definition of η), and the
partial-differential equation is reduced to an ordinary differential equation, with
variable η:

η
d

dη

(

dF

dη
+ F

)

+
1

2

(

dF

dη
+ 2αF

)

= 0. (2.11)

Since the exponent α is still free, we will now choose it so that the two groups
in the parentheses are identical, i.e. α = 1/2. A solution is one that obeys

dF

dη
+ F (η) = 0,

which is:

F (η) = Ae−η,

where A is an arbitrary constant of integration.
Putting all the pieces together, we arrive at the following solution:

c(x, t) = At−1/2 exp

(

− x2

4Dt

)

.

We note that this solution already meets the boundary conditions (vanishing
concentrations far away on both sides). The remaining, initial condition de-
termines the constant of integration. Conservation of the total amount of the
substance requires that

∫ +∞

−∞
c(x, t) dx =

∫ +∞

−∞
c0(x) dx = M

at all times. Calculations yield A = M/
√
4πD, and the final solution is there-

fore:
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c(x, t) =
M√
4πDt

exp

(

− x2

4Dt

)

. (2.12)

Let us now verify not only that the amount of substance is right but also that
the initial profile is the peak distribution with c = 0 for x 6= 0 and c = ∞ for
x = 0. For x 6= 0 and fixed, the ratio x2/4Dt increases toward infinity as t goes
to zero, and the exponential goes to zero. Since the exponential function goes
to zero faster than t−1/2 goes to infinity, the limit is c → 0 for t → 0. At x = 0,
however, x2/4Dt = 0, and the exponential is unity; c(0, t) behaves as t−1/2 and
goes to infinity as t goes to zero. Thus, expression (2.12) satisfies the original
equation, (2.4), meets the boundary and initial conditions, and is therefore the
correct solution to the stated problem. A graphical representation is shown in
Figure 2-2.

We shall now demystify this solution by deriving it from a totally different
angle, the random-walk process.

2.2 Random-Walk Model

Random-walk process

In one of his celebrated papers of 1905, Albert Einstein showed that a
random-walk process representing Brownian motion in a gas was mathemati-
cally equivalent to Fickian diffusion1. Here, we present a very simplified form
of this analogy between diffusion and random walk.

Take a one-dimensional domain (1D axis), divide it in a series of boxes of
identical lengths (‘bins’), and place one particle in one of the bins (Figure 2-3).
Imagine now that this particle is endowed with a mechanism that makes it
jump randomly every time interval, ∆t, according to the following rules:

• there is a 25% chance that the particle will hop one bin to the left,
• there is a 25% chance that it will hop one bin to the right, and
• there is a 50% chance that it will remain in the same bin.

[This is the 1D version of the more general 2D random walk, commonly referred
to as the drunkard’s path: Late into the night, an inebriated fellow leaves a bar
and has no recollection of where he is and where he is going; every second or so,
he makes a step forward, backward (he turns completely around), leftward or
rightward, making a random path that may look like that displayed on Figure
2-4. The question is: Where is this drunkard expected to be after m steps?]

Because of the random nature of the problem, the answer can only be in
terms of probabilities. We thus define

p(n∆x,m∆t)

1The 1905 paper in German was later translated into English in book form: Einstein, A.,
Investigations on the Theory of Brownian Movement, Dover Publications, 1956, 122 pages.
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Figure 2-3. One-dimensional random walk. Percentages refer to the prob-
abilities that the particle will move as depicted by the corresponding arrows.
The repetition of this process obeys the same law as one-dimensional diffusion
but in a discretized way.

Figure 2-4. Two-dimensional random walk, also called the drunkard’s path.
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as the probability that the particle is in bin number n at time t = m∆t. We
can calculate the probability at one time step based on the previous time step:
At time (m+ 1)∆t, the probability that the particle is in bin n is equal to the
probability that it was already there times the probability that it stayed there,
plus the probability that it was one bin to the left times the probability that it
jumped to the right, plus the probability that it was one bin to the right times
the probability that it jumped to the left. Mathematically, we have:

p[n∆x, (m+ 1)∆t] =
1

2
p(n∆x,m∆t)

+
1

4
p[(n− 1)∆x,m∆t]

+
1

4
p[(n+ 1)∆x,m∆t]. (2.13)

Given the location of the particle at the initial time, say n = 0, the solution
can be found by iterations from

p(0, 0) = 1 , p(n∆x, 0) = 0 for n 6= 0.

Relation of random walk to diffusion equation

The connection with the diffusion equation is made when we take the limit
of the random-walk process to infinitesimally small bin sizes and time steps (∆x
and ∆t both vanishingly small). For small incremental values of its argument,
the probability function can be approximated using a Taylor expansion:

p[(n± 1)∆x,m∆t] = p(n∆x,m∆t) ± ∆x
∂p

∂x
+

1

2
∆x2 ∂2p

∂x2

± 1

6
∆x3 ∂3p

∂x3
+ O(∆x4)

p[n∆x, (m+ 1)∆t] = p(n∆x,m∆t) + ∆t
∂p

∂t
+ O(∆t2),

where all the derivatives are taken at (x = n∆x, t = m∆t), and equation (2.13)
becomes

p(x, t) + ∆t
∂p

∂t
+ O(∆t2) =

1

2
p(x, t)

+
1

4

[

p(x, t)−∆x
∂p

∂x
+

∆x2

2

∂2p

∂x2
− ∆x3

6

∂3p

∂x3
+O(∆x4)

]

+
1

4

[

p(x, t) + ∆x
∂p

∂x
+

∆x2

2

∂2p

∂x2
+

∆x3

6

∂3p

∂x3
+O(∆x4)

]

.

Mathematical simplifications then yield
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∆t
∂p

∂t
=

∆x2

4

∂2p

∂x2
+ O(∆t2,∆x4).

Finally, a division by ∆t makes the equation similar to a diffusion equation:

∂p

∂t
= D

∂2p

∂x2
+ O

(

∆t,
∆x4

∆t

)

,

where the ‘diffusivity’, D, is defined by

D =
∆x2

4∆t
. (2.14)

In order that this coefficient be finite in the limit of vanishing ∆x and ∆t it is
necessary that ∆t goes to zero at the same pace as ∆x2 (i.e. halving the bin
size requires dividing the time step by four). Now, if ∆x2/∆t remains finite,
the error on the order of ∆x4/∆t goes to zero in the limit, and the equation
for the continuous probability-distribution function p(x, t) obeys exactly the
diffusion equation, (2.4).

The conclusion is that diffusion and random walk (in the continuous limit)
are two processes that share the same mathematical representation. There-
fore, the solution or intuition obtained from one problem can be helpful in
understanding or predicting the behavior of the other.

Numerical verification of random walk

We now present a numerical example to have an idea of how well the discrete
random-walk process mimics continuous diffusion. Instead of performing a
larger number of realizations with random numbers, let us go directly for the
expected values by using (2.10) recursively. The result is shown in the table
below (where an empty space indicates a zero probability there).

n = –5 –4 –3 –2 –1 0 +1 +2 +3 +4 +5
m=0 1.000
m=1 0.250 0.500 0.250
m=2 0.063 0.250 0.375 0.250 0.063
m=3 0.016 0.094 0.234 0.313 0.234 0.094 0.016
m=4 0.004 0.031 0.109 0.219 0.273 0.219 0.109 0.031 0.004
m=5 0.0010 0.010 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.010 0.0010
m=6 0.0029 0.016 0.054 0.121 0.193 0.226 0.193 0.121 0.054 0.016 0.0029

To compare with the continuous solution (2.12), we map p onto c and write

p(n∆x,m∆t) = p(x, t) =
P√
4πDt

exp

(

− x2

4Dt

)

=
P

∆x
√
πm

exp

(

− n2

m

)

,

where x, t and D have been replaced respectively by n∆x, m∆t and ∆x2/4∆t.
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To set a value to the factor P/∆x, we choose to match the number of particles
in the central bin (n = 0) at the last time level (m = 5) and obtain

p(n,m) = 0.246

√

5

m
exp

(

− n2

m

)

.

The table constructed with these estimates from the continuous solution is:

n = –5 –4 –3 –2 –1 0 +1 +2 +3 +4 +5
m=0 ∞
m=1 0.010 0.202 0.550 0.202 0.010
m=2 0.004 0.053 0.236 0.389 0.236 0.053 0.004
m=3 0.002 0.016 0.084 0.228 0.318 0.228 0.084 0.016 0.002
m=4 0.0005 0.005 0.029 0.101 0.214 0.275 0.214 0.101 0.029 0.005 0.0005
m=5 0.0017 0.010 0.041 0.111 0.201 0.246 0.201 0.111 0.041 0.010 0.0017
m=6 0.0035 0.016 0.050 0.115 0.190 0.225 0.190 0.115 0.050 0.016 0.0035

The poor fit at the early time levels is naturally a consequence of the gross
mismatch between values in a few discrete places, on one hand, and a continuous
distribution, on the other. The quality of the fit improves as the distribution
spreads in time. Thus, the discrete, random-walk process provides an adequate
representation of the diffusive process if the spread is sufficiently wide (say,
over 10 or more bins).

Suggested exercises:

1.Verify the temporal decay of the maximum value at n = 0 as m increases
beyond 5.

2. Using a personal computer, generate a random number between 0 and 1
for each particle at every time level; if that number falls below 0.25 move the
particle to the left, above 0.75 move the particle to the right and, otherwise,
leave the particle where it is. Make a large number of runs and average the
results over all runs. Compare with the values presented in the first of the two
tables above.

2.3 A Graphical Iteration

Curve smoothing

The graphical method described below was actually used to solve the diffu-
sion equation before computers existed.

A curve c(x) is given graphically as a succession of points, ∆x apart, in the
(x,c) plane (heavy dots in Figure 2-5), and line segments connecting adjacent
points approximate the curve (solid line). The following graphical constructions
are then made:

1. Join the midpoints of adjacent line segments (dashed lines),
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Figure 2-5. A graphical smoothing operation. By joining centers of curve seg-
ments, a new and smoother curve is obtained. The repetition of this operation
mimics diffusion and forms a method to solve iteratively the one-dimensional
diffusion equation.

2. At each location, move the function value to the level of the dashed line
(crosses),

3. Repeat these steps again and again.
The obvious result of this manipulation is the cutting of spikes, filling of valleys,
and overall smoothing of the curve (Figure 2-5).

Mathematically, we have replaced the local value c(x) by a new value that is
halfway between the values at the segment midpoints, the values at the segment
midpoints being themselves halfway between adjacent values of c. Thus,

new c(x) =
1

2

[

c(x−∆x) + c(x)

2
+

c(x) + c(x+∆x)

2

]

=
1

4
[c(x−∆x) + 2c(x) + c(x+∆x)]. (2.15)

In other words, we have performed a running ( 14 ,
1
2 ,

1
4 ) average.

Comparison with diffusion and random walk

Since the values ( 14 ,
1
2 ,

1
4 ) are none other than (25%, 50%, 25%), we note the

immediate analogy between the preceding graphical iteration and the random-
walk process. Mathematically, Equations (2.13) and (2.15) are isomorphic, and
the graphical iteration accomplishes the same process as the one-dimensional
random walk. And, since the random walk is analogous to diffusion, so is the
graphical iteration.

What we gain by introducing the above graphical procedure is the intuition
that diffusion is essentially a smoothing process: No matter what the initial
concentration distribution might be, diffusion will always act to smooth it and
to make it ultimately uniform.
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To complete the analogy, it is noteworthy to discretize the continuous dif-
fusion equation, as it is done in preparation to being solved on the computer.
This is to do in reverse what we did to turn the discrete random walk into a
continuous process. Using Taylor expansions, we write

∂c

∂t
≃ c(x, t+∆t) − c(x, t)

∆t
∂2c

∂x2
≃ 1

∆x

[

c(x+∆x, t) − c(x, t)

∆x
− c(x, t) − c(x−∆x, t)

∆x

]

≃ c(x+∆x, t) − 2c(x, t) + c(x−∆x, t)

∆x2

and the diffusion equation ∂c/∂t = D∂2c/∂x2 is turned into

1

∆t
[c(x, t+∆t) − c(x, t)] =

D

∆x2
[c(x+∆x, t) − 2c(x, t) + c(x−∆x, t)].

Solving for the new value of c at position x, we have

c(x, t+∆t) =

(

1− 2D∆t

∆x2

)

c(x, t) +
D∆t

∆x2
[c(x+∆x, t)+c(x−∆x, t)]. (2.16)

Comparing this update with (2.15) resulting from the graphical iteration, we
note that both schemes are one and the same for D∆t/∆x2 = 1/4. In other
words, the graphical procedure accomplishes the numerical integration with
time step set to

∆t =
∆x2

4D
. (2.17)

Note that the time step provided by (2.17) is in the same relation to the
grid size and diffusivity as in (2.14).

To recapitulate, we conclude that the processes of diffusion, random walk
and graphical smoothing are analogous. All three represent a process that
is characterized by down-gradient propagation, spreading and smoothing over
time. Further, they share identical mathematical representations, either con-
tinuous or discrete.

2.4 Spreading

Spreading induced by diffusion implies that the spatial extent of contamination
grows with time. For practical purposes, we wish therefore to quantify this
spreading, namely to have an answer to the question: How large is the zone
affected by the contaminant?

Patch width
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We easily conceive that the quantity that tells us how wide is a diffusing
patch of contamination should be a function of time. However, what should be
its precise definition is not trivial. Indeed, the prototypical solution

c(x, t) =
M√
4πDt

exp

(

− x2

4Dt

)

does exhibit spreading over time but does not yield a specific width: c is
nonzero all the way to infinity, starting immediately after the moment of re-
lease2. Therefore, looking for the edges of the concentration distribution does
not provide a value for the patch width.

To obtain a pratical value for the width of a pollutant patch, we then resort
to integral quantities. Let us explore a few of them. A first integral is

∫ +∞

−∞
c dx = M = constant,

giving the total amount of substance. This, obviously, tells nothing about the
width of the patch. A second integral is formed by inserting the coordinate x,
to inject the notion of distance,

∫ +∞

−∞
xc dx = 0,

which vanishes by symmetry. This tells us where the mean position, x̄, of the
patch is (x̄ = 0 for this solution) but still nothing about the width. A third
integral is

∫ +∞

−∞
(x− x̄)2c dx,

which is a function of time, positive and nonzero. Because (x− x̄)2 represents
the squared distance to the mean position, the above integral says something
about the average distance to the center of the patch and therefore holds infor-
mation about the patch width. The time evolution of this width should then
provide information about the rate of spreading.

For convenience, we define the normalized quantity

σ2 =
1

M

∫ +∞

−∞
(x− x̄)2 c dx, (2.18)

in which, in general, M and x̄ are defined as:

M =

∫ +∞

−∞
c dx , x̄ =

1

M

∫ +∞

−∞
xc dx.

By definition, σ has the dimension of a length, and this length can then be
interpreted as proportional to the patch width.

2This instantaneous infinitely wide effect is obviously unrealistic and is attributed to the
mathematical simplification of a continuum medium.



38 CHAPTER 2. DIFFUSION

For the prototypical solution recalled above, calculations yield

σ2 =
1

M

∫ +∞

−∞
x2 M√

4πDt
exp

(

− x2

4Dt

)

dx

=
4Dt√
π

∫ +∞

−∞

(

x√
4Dt

)2

exp

[

−
(

x√
4Dt

)2
]

d

(

x√
4Dt

)

=
4Dt√
π

∫ +∞

−∞
ζ2 exp(− ζ2) dζ,

noting ζ = x/
√
4Dt. The last integral contains no parameter and thus assumes

a universal value, found to be
√
π/2. The result is

σ2 = 2Dt

or

σ =
√
2Dt . (2.19)

We immediately note that the distance σ grows in time, but as the square
root of time rather than time itself. Thus, the spreading goes on with time,
never stopping but gradually slowing down. The curve σ-versus-t is displayed
in Figure 2-6.

The next question is by which numerical factor (such as 4, 1/2, or whatever)
should σ be multiplied to yield a practical definition of the patch width. The
c(x, t) distribution at any given time obeys the so-called Gaussian (or ‘bell’)
curve (Figure 2-7). Normalizing distance x by σ and concentration c by its
maximum, central value cmax = M/

√
4πDt, the function becomes

c

cmax
= exp

[

− 1

2

(x

σ

)2
]

,

which contains no parameter. Graphically, the curve is universal (Figure 2-7).
A property of this function3 is that 95% of the area under the curve lies in

the interval −1.96 < (x/σ) < +1.96, leaving 2.5% of the area under each tail.
Rounding the value 1.96 to 2.00, we conclude that the interval −2σ < x < +2σ
contains 95% of the pollutant. This appears to be a practical criterion, and we
adopt the length of this interval, 4σ, as the width of the patch:

Width = 4σ = 4
√
2Dt = 5.66

√
Dt. (2.20)

Important remark

In some rare instances, when the pollutant is very toxic and small doses
can be fatal, it is not as important to track the bulk of the pollutant as to

3See books on probability and statistics.
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Figure 2-6. Curve σ versus time, showing continuous growth but at a de-
creasing rate. The width of a diffusing patch of pollutant is proportional to
σ.

Figure 2-7. The universal ‘bell’ curve, also called Gaussian function. It
provides the 1D concentration distribution following an instantaneous and lo-
calized release, after proper scaling of both concentration and distance.
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pay attention to the edges of the patch. Discarding the 2.5% on each side
may not be acceptable. Precaution would dictate taking a more conservative
approach, such as choosing a width of 6σ (leaving 0.13% on each side). Better,
one should use a random-walk model and follow in time the precise edge of the
distribution.

Comparison with edge of random walk

In the random-walk process, nonzero probabilities invade new cells at the
rate of one new cell on each side at every time step. This implies a linear
growth in time: 1 cell at t = 0, 3 cells at t = ∆t, 5 cells at t = 2∆t, and so on,
with the result at time t = m∆t

width = width of (2m+ 1) cells

= (2m+ 1)∆x

≃ 2m∆x = 2
∆x

∆t
t,

for large values of m. This implies a widening of the patch as the first power of
time rather than the slower t1/2 rate derived above. How do we reconcile both
results?

The resolution lies in considering the values at the edges. Recalling the first
table in Section 2-2, we note that, yes, the width increases linearly with time,
but that the end values become gradually smaller. The bulk of the particles
remain around the center, spreading outward at a weaker rate, essentially be-
cause the random aspect of the motion returns some particles toward the center
as much as it sends others outward. There are thus two rates of spreading:

1. spreading of the bulk of the pollutant: width = 4σ = 4
√
2Dt,

2. propagation of the edge particles: width = (2∆x/∆t)t.
The former is slower, while the latter is faster.

When dealing with very toxic substances, the tracking of the edge particles
is what is important. One should then determine the appropriate value of the
coefficient 2∆x/∆t to place in front of t to determine the width. [Here, be
precise by noting that the distance from the release location is only half of
that, (∆x/∆t)t.] In reality, one does not have ∆x and ∆t values with which
to work, but a simple consideration shows that the ratio ∆x/∆t is a velocity,
which is none other than the exchange velocity u′ introduced in Section 1-2.
In a turbulent fluid, this velocity is the average eddy orbital velocity u∗, which
can generally be estimated from a knowledge of the intensity of the turbulence
in the fluid. More on this point will be found in later chapters.

Example

A tank aboard a barge traveling along the Chicago Ship Canal suddenly
collapses, releasing its benzene content (C6H6, density = 0.879 g/cm3), of which
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100 liters find their way quickly to the water. The rest of the benzene remains
contained on the barge. Assuming rapid mixing across the canal section (8.07
m deep and 48.8 m wide) and estimating the turbulent diffusion coefficient at
3.0 m2/s, what are the concentrations of benzene 2, 6, 12 and 24 hours after
the accident, at the site of the spill and 300 m away?

To solve this problem, we first determine the mass of benzene that was
spilled. Since the density of benzene is 0.879 g/cm3 = 0.879 kg/L, this mass
m is:

m = density × volume = 0.879 kg/L x 100 L = 87.9 kg.

Over the cross-section of the canal, we have

M =
m

cross-sectional area
=

87.9 kg

393.8 m2
= 0.2232 kg/m

2
.

The concentration over time is given by (2.12), which yields at the site of the
spill (x = 0):

c =
M√
4πDt

=
0.0364 kg/m

3

√

t(in sec)
=

0.606 mg/L
√

t(in hrs)
.

After 2, 6, 12 and 24 hours, the concentration values are, respectively, 0.428,
0.247, 0.175 and 0.124 mg/L. At the distance of 300 m (x = 300 m), we have:

x2

4Dt
=

7, 500

t(in sec)
=

2.083

t(in hrs)
,

and the concentrations are:

c(2 hours) = (0.428 mg/L) exp

(

−2.083

2

)

= 0.151 mg/L,

c(6 hours) = (0.247 mg/L) exp

(

−2.083

6

)

= 0.175 mg/L,

c(12 hours) = (0.175 mg/L) exp

(

−2.083

12

)

= 0.147 mg/L,

c(24 hours) = (0.124 mg/L) exp

(

−2.083

24

)

= 0.113 mg/L.

Note how the concentration at 300 m first increases (because it takes time
for the benzene to diffuse over that distance) and then decreases (because
further diffusion leads to dilution). We can actually calculate the exact time
at which the concentration reaches its maximum and what that maximum is.
Setting to zero the time derivative of solution (2.12), we obtain the time tmax

of the maximum concentration for any distance x from the release location:



42 CHAPTER 2. DIFFUSION

tmax =
x2

2D
. (2.21)

Substitution in the solution then yields the maximum concentration:

cmax =
M√
2πx

exp

(

−1

2

)

= 0.2420
M

x
. (2.22)

For M=0.2232 kg/m2 and x=300 m, the values are:

cmax = 0.180 mg/L at tmax = 4 hrs 10 min.

2.5 Problems with Other Conditions

Initial release over a finite area

This problem can be solved by superposition of many prototypical solutions.
If a localized release occurs not at x = 0 but at x = ξ, then the solution is
simply shifted by the distance ξ:

c(x, t) =
M(ξ)√
4πDt

exp

[

− (x − ξ)2

4Dt

]

.

The difference (x − ξ) represents the distance to the point of release. The
quantity M is also made a function of ξ because we shall now consider a series
of releases at various ξ locations and of various amounts.

If there are two releases, one of magnitudeM(ξ1) at ξ1 and one of magnitude
M(ξ2) at ξ2, both at time t = 0, then the concentration distribution is:

c(x, t) =
M(ξ1)√
4πDt

exp

[

− (x− ξ1)
2

4Dt

]

+
M(ξ2)√
4πDt

exp

[

− (x− ξ2)
2

4Dt

]

.

The generalization to three and more punctual releases is straightforward. For
a continuous release, we add an infinite number of tiny releases collectively
covering a finite interval. If the release in the [ξ,ξ + dξ] interval is dM(ξ) =
c0(ξ)dξ, then

c(x, t) =

∫ +∞

−∞

c0(ξ)√
4πDt

exp

[

− (x− ξ)2

4Dt

]

dξ. (2.23)

The function c0(ξ) is none other than the initial concentration4. It is taken as
zero wherever there is no release.

The preceding form of superposition is called convolution. In short, convo-
lution accomplishes a transformation on a function using another intermediary

4The reader can verify this assertion by considering its dimensions or by returning to the
definition of the quantity M .
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Figure 2-8. Diagram illustrating the convolution process: A tool function,
called kernel, is used to transform an original function into another one. In the
case of diffusion, the input function is the initial concentration distribution,
and the output is the concentration distribution at any later time.

Figure 2-9. Initial condition corresponding to a uniform release over one side
of an infinite domain.

function, called a kernel or Green’s function (Figure 2-8). In our present case,
the kernel is:

1√
4πDt

exp

[

− (x− ξ)2

4Dt

]

,

representing the unit prototypical solution in a shifted form.

Consider now the problem corresponding to the initial condition shown on
Figure 2-9. The release is nil for negative values of the coordinate and uniform
of concentration c0, for positive values of the coordinate. From (2.23), the
solution follows:

c(x, t) =

∫ ∞

0

c0√
4πDt

exp

[

− (x − ξ)2

4Dt

]

dξ.

Using the variable ζ = (x − ξ)/
√
4Dt with dζ = −dξ/

√
4Dt, the preceding

integral takes a more universal form:
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c(x, t) =
c0√
π

∫ x/
√
4Dt

−∞
exp(− ζ2) dζ.

The remaining integral cannot be expressed in terms of elementary functions
and must be tabulated. Because a number of problems in statistics involve a
similar integral, it has become traditional to define the function

erf(z) =
2√
π

∫ z

0

exp(−ζ2) dζ, (2.24)

which represents twice the area under the bell curve, starting at the middle. It
is called the error function. Some properties of this function are:

erf(0) = 0, erf(+ ∞) = + 1.

erf(−z) = − erf(z).

Other numerical values are tabulated below (Table 2-1).

x

σ
erf x

σ

0.0 0.0
0.1 0.1129
0.2 0.2227
0.3 0.3286
0.4 0.4284
0.5 0.5205
0.6 0.6309
0.7 0.6778
0.8 0.7421
0.9 0.7969
1.0 0.8427
1.2 0.9103
1.4 0.9523
1.6 0.9763
1.8 0.9891
2.0 0.9953
2.5 0.9996
3.0 1-2.32 10−5

3.5 1-7.71 10−7

4.0 1-1.59 10−8

5.0 1-1.57 10−12

6.0 1-2.18 10−17

7.0 1-2.10 10−45

∞ 1.0000

Table 2-1. Values of the error function.

Using (2.24), our solution finally takes the form

c(x, t) =
c0
2

[

1 + erf

(

x√
4Dt

)]

, (2.25)
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Figure 2-10. Gradual spreading of an initially one-sided release (depicted in
Figure 2-9). The curves are obtained from solution (2.25).

in the case of a semi-infinite, uniform release. Graphically, concentration pro-
files take the aspect of a step that is gradually eroded (Figure 2-10). Physically,
the pollutant spreads over the initially clean area, while on the dirty side its
concentration falls gradually. After an infinitely long time, a uniform concen-
tration equal to the average c0/2 is reached.

Constant concentration specified at a fixed location

As a second application, consider the case where the concentration at a
fixed location is maintained constant over time, starting at some initial time
t = 0. Our initial and boundary conditions are then:

c = 0 at t = 0

c = c0 at x = 0,

and we need to consider only half of the space (x > 0), the other half being
symmetric.

Recalling our similar solution in section 2-1, we write

c(x, t) = t−α F (η) with η =
x2

4Dt
.

At x = 0, η vanishes, and the function F takes the value F (0), a constant.
Since c must be a constant there, we must now choose α = 0. The F equation
(2.8) then becomes

η
d2F

dη2
+

(

η +
1

2

)

dF

dη
= 0.

This can be integrated once to yield
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Figure 2-11. Gradual spreading away from a point where the concentration
is maintained constant over time, according to solution (2.26).

dF

dη
=

A
√
η
e−η,

where A is a constant of integration. A second integration involves the error
function:

F (η) = A
√
π erf (

√
η) + B,

where B is another constant of integration. Imposing the initial and boundary
conditions stated above yields the values of the constants, and the solution
becomes:

c(x, t) = c0

[

1 − erf

(

x√
4Dt

)]

. (2.26)

[Exercise: Check the limits x → 0, x → ∞, t → 0, t → ∞.]
Physically, the concentration rises in the vicinity of the dirty spot, gradually

contaminating the entire domain (Figure 2-11). The concentration, however,
never exceeds the value specified at the boundary.

Example

As an example, consider again the Chicago Ship Canal in the following
situation. A side pipeline has suddenly developed a leak of benzene, which
locally maintains the concentration of benzene in water at 0.020 mg/L. What
is the extent of the patch over which the benzene concentration exceeds the
drinking-water standard of 0.005 mg/L? Assume again thorough mixing across
the canal cross-section and neglect benzene decay under bacterial action.

The solution to this problem proceeds by application of (2.26) in reverse:
Given the concentration value c=0.020 mg/L, we determine the distance x at
which it is reached by writing:
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erf

(

x√
4Dt

)

= 1 − c

c0
= 0.75,

and we find by interpolating tabulated values of the error function:

x√
4Dt

= 0.8144 .

With D=3.0 m2/s, we have:

x(in m) = 2.821
√

t(in sec) = 169.3
√

t(in hrs) .

Some values of the patch width 2x are: 339 m after 1 hour, 479 m after 2 hours,
829 m after 6 hours, 1.17 km after 12 hours, and 1.66 km after 24 hours.

Initial punctual release at some distance from a boundary

Because physical boundaries are generally impermeable (such as the bank
of a river), problems with domain boundaries require the implementation of a
no-flux condition. If x = 0 designates the location of a boundary, we impose

− D
∂c

∂x
= 0 at x = 0. (2.27)

The prototypical solution (2.9) spreads to infinity on both sides and exhibits a
gradient everywhere. It thus cannot meet the above boundary condition, and
using it would be tantamount to accepting an unphysical leak of the substance
through the boundary. This flux across the boundary, however, can be cancelled
by an equal and opposite flux from a hypothetical and symmetric release on
the other side of the boundary. In other words, the situation with one release
and a boundary is equivalent to another with two releases and no boundary.
The solution is thus

c(x, t) =
M√
4πDt

[

exp

(

− (x− L)2

4Dt

)

+ exp

(

− (x+ L)2

4Dt

)]

. (2.28)

Because of the addition of another solution, the concentration c is everywhere
higher in the presence of the boundary than in its absence. Physically, the
boundary prevents leakage to one side, and the substance is confined to less
space. In other words, what would have gone beyond the boundary is “folded
back” onto the real domain, increasing the concentration there. There is a
resulting “piling-up” along the boundary (Figure 2-12).

As time goes on, the piling up along the boundary (x = 0) starts to over-
take the decreasing peak at the release location (x = L), and thereafter the
concentration is maximal at the boundary and decreasing inward. [Exercise:
Can you determine the time at which this reversal occurs? How does it depend
on the distance of the release to the boundary?]
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Figure 2-12. Diffusion in the vicinity of an impermeable boundary. The
“piling up” along the boundary can be interpreted as a folding of the tail of
the curve onto itself.

Initial punctual release between two boundaries

For a 1D interval of finite length L and the origin of the x−axis placed at
the left end, the boundary conditions become:

− D
∂c

∂x
= 0 at both x = 0 and x = L.

If the release takes place at the arbitrary position x = a (0 ≤ a ≤ L), we
take into account each wall by introducing virtual releases at x = −a and
x = +2L− a. But, this is not enough because the virtual release on the right
(at x = +2L− a) will leak through the left wall (x = 0) unless another virtual
release is placed at x = −2L + a, which in turn needs to have its own image
across the right wall, at x = +4L − a, et cetera ad infinitum. Likewise, the
left image (at x = −a) must be compensated by an image on the right at
x = +2L+a, which needs its own image on the left at x = −2L−a, etc. All in
all, we must add the solutions due to a doubly infinite set of source and images
at x = ±a, x = ±2L ± a, ±4L ± a, ±6L ± a, and so on (Figure 2-13). The
solution can be succintly written as:

c(x, t) =
M√
4πDt

m=+∞
∑

m=−∞

[

exp

(

−(x− 2mL− a)2

4Dt

)

+ exp

(

−(x− 2mL+ a)2

4Dt

)]

.

(2.29)

Note: Because of the steep exponential decay of each function, only the first
few (typically five or seven) terms of the infinite sum need to be retained in
practice.
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Figure 2-13. Diffusion from a localized release between two impermeable
boundaries.

Exercises:

1) For a release at the center of the domain (a = L/2), study the temporal
variation of the concentration at one of the boundaries. Does it first increase
and then decrease as in the one-boundary situation?

2) What is the ultimate steady state? Derive its value from physical prin-
ciples and verify it numerically for a particular value of a.

Example

We illustrate the solution in this case by returning to our example with the
Chicago Ship Canal. This time, however, we shall be concerned with the earlier-
time evolution of the benzene spill, namely when diffusion proceeds vertically in
the canal, from the actual time of the accident to the time of nearly completed
vertical homogenization of the benzene concentration. This problem requires
information beyond that provided earlier: The horizontal extent of the spill is
2 m2, and the vertical diffusion coefficient is 0.010 m2/s.

In this problem, there are two domain boundaries, the bottom (say x = 0)
and the surface (say x = H = 8.07 m, the canal depth). Since the benzene
spill occurred at the surface (x = H), the following virtual releases must be
considered: One at x = H (the image with respect to the surface, that is on
top of the spill itself, as if there were a double spill but no surface boundary),
two at x = −H (their images with respect to the bottom), two at x = +3H
(the images of these images with respect to the surface), two at x = −3H (the
images of these last images with respect to the bottom), etc. Thus, the solution
is:

c(x, t) =
2M√
4πDt

[

exp

(

− (x−H)2

4Dt

)

+ exp

(

− (x+H)2

4Dt

) ]

+
2M√
4πDt

[

exp

(

− (x− 3H)2

4Dt

)

+ exp

(

− (x+ 3H)2

4Dt

)

+ ...

]

where M is the amount of benzene released per horizontal area of spill, the 2
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Time c at surface c at bottom

1 min 32.01 g/L 0.000 g/L
10 min 10.12 g/L 1.342 g/L
20 min 7.221 g/L 3.686 g/L
30 min 6.158 g/L 4.734 g/L
1 hr 5.493 g/L 5.400 g/L

1.5 hrs 5.449 g/L 5.443 g/L
2 hrs 5.446 g/L 5.446 g/L

Table 2-2. Evolution of benzene concentration values. See example in text.

m2 area. So, M = 87.9 kg/ 2 m2 = 43.95 kg/m2. The concentrations at the
surface (x = H) and at the bottom (x = 0) are, respectively:

csurface(t) =
M√
πDt

[

1 + 2 exp

(

−H2

Dt

)

+ 2 exp

(

−4H2

Dt

)

+ ...

]

cbottom(t) =
M√
πDt

[

2 exp

(

− H2

4Dt

)

+ 2 exp

(

−9H2

4Dt

)

+ ...

]

.

With H= 8.07 m and D= 0.010 m2/s, we obtain the values listed in Table 2-2.
Thus, homogenization over the vertical takes place in about one hour. (This
justifies our assumption of complete vertical mixing in the earlier problems
dealing with diffusion along the canal over time spans of several hours.)

Time for nearly complete mixing

When a release occurs in a domain of finite length, the ultimate state is one
of complete homogenization, with uniform concentration equal to the amount
released divided by the extent of the domain, i.e.

cultimate = caverage =
M

L
. (2.30)

A pertinent question is: What is the time necessary to reach such state? Math-
ematically, the final state is only reached asymptotically and therefore this time
is theoretically equal to infinity, but using a subjective criterion we may derive
a practical criterion.

Let us consider the case of a release at the center of the domain (a = L/2)
and follow the concentration at that same location (x = L/2) as a function of
time, which is obviously the highest concentration in the domain and which
monotonically decreases over time:

cmax = c(x = L/2, t) =
M√
4πDt

[

1 + 2

+∞
∑

n=1

exp

(

− n2L2

4Dt

)

]

.
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Let us then ask how long it takes for this maximum value to become only
1% more than the ultimate average value M/L. Defining the dimensionless
variable τ by t = (L2/D)τ , the preceding expression can be written as

cmax(τ) =
M

L

[

1√
4πτ

(

1 + 2
+∞
∑

n=1

e−n2/4τ

)]

,

where the part within brackets is a parameter-free (universal) function of τ that
monotonically decreases toward unity. This function reaches the value 1.01 at
τ = 0.134. Thus, a practical criterion for the estimation of the time necessary
for nearly complete homogenization of the concentration in a one-dimensional
finite domain of length L following a punctual release at the center and in the
presence of a diffusivity D is:

T = 0.134
L2

D
. (2.31)

In the case of vertical mixing in the Chicago Ship Canal, the length L is to
be taken as H = 8.07 m, whereas the vertical diffusivity is D = 0.010 m2/s.
The result is a mixing time of 873 s, which is about 15 minutes. Considering the
previously tabulated values, we note that 20 minutes after the spill the surface
and bottom benzene concentrations still differ significantly. This is because
the preceding theory assumed an initial release at the center of the domain,
while in the example of the Chicago Ship Canal, the release was at one of the
boundaries. Naturally, it takes longer to spread something when it first comes
from one extremety than when it originates at the center. In the case of an
instantaneous punctual release at one of the extremities, a reasonable approach
is to replace L by 2L in the preceding formula, which increases the front factor
by a factor 4

T = 0.536
L2

D
. (2.32)

For the Chicago Ship Canal, the revised value is 3491 s, or about 58 minutes.
This compares favorably with the concentrations at the surface and bottom,
which are within 1% of their ultimate values 1 hour after the spill.

The rule to determine the time to complete mixing is then as follows: If
the release occurred in the middle, use (2.31); if the release occurred at one
boundary, use (2.32); and, if the release occurred at some off-center location,
construct an intermediate criterion or, at the risk of overestimating the time
taken, use (2.32).

2.6 Diffusion with Source and Decay

We now extends our analysis to include cases when the contaminant is not only
diffusing but also replenished and decaying over time.

Governing equation
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Recalling the mass budget (1.6) and applying it to an infinitesimal control
volume of length ∆x and cross-section A, we determine the import and export
fluxes:

qin Ain = q(x, t) A

qout Aout = q(x+∆x, t) A,

and state:

V
dc

dt
= − q(x+∆x, t) A − KV c + q(x, t) A + S,

where V = A∆x is the volume of the interval under consideration, K is the
decay rate, and S is the source. Division by V yields:

dc

dt
= − q(x+∆x, t)− q(x, t)

∆x
− Kc + s,

where s = S/V is the source per volume (of dimensions M/L3T). In the limit
of an infinitesimal control volume (∆x → 0), this budget becomes a partial-
differential equation:

∂c

∂t
= − ∂q

∂x
− Kc + s.

Finally, in the absence of advection, the flux is purely diffusive (q = −D∂c/∂x),
we obtain an equation governing the spatial and temporal variability of the
concentration distribution:

∂c

∂t
=

∂

∂x

(

D
∂c

∂x

)

− Kc + s. (2.33)

Whereas the diffusion coefficient D may vary with the local turbulence
intensity, an important case for which we can derive analytical solutions is that
of a constant D:

∂c

∂t
= D

∂2c

∂x2
− Kc + s. (2.34)

The solution to this equation corresponding to an instantaneous and local-
ized release in the absence of subsequent source is the prototypical solution
adjusted for temporal decay:

c(x, t) =
M√
4πDt

exp

(

− x2

4Dt
−Kt

)

. (2.35)

Continuous input at a fixed location

As an application, consider the case of a continuous release at a fixed loca-
tion, as is the case of a point source. Because the time-dependent problem is
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rather difficult to solve and also because the practical question in such situa-
tion may be limited to finding the ultimate state, we shall consider here only
the steady-state solution to the problem (by putting ∂c/∂t to zero). Since
the source is punctual (say, at x = 0), there is no source anywhere else, and
Equation (2.31) reduces to:

0 = D
∂2c

∂x2
− Kc.

The solution is made of two exponential functions,

c = A eλx + B e−λx,

where A and B are two constants of integration to be determined by application
of boundary conditions, and the exponent λ is given by

λ =

√

K

D
.

By virtue of left-right symmetry, we need only consider the half axis x > 0.
As we expect the decay process to limit the presence of the pollutant to the
vicinity of the source, we impose the condition c → 0 as x → ∞ and put the
coefficient A of the growing exponential to zero. The determination of the
remaining constant B requires specification of the source rate at x = 0. Since
this source is punctual, it must be expressed in mass per unit cross-area per
time (M/L2T). Let us denote it by Ṁ . Because half of the pollutant being
released goes to the left and half to the right, we impose at x → 0+:

− D
∂c

∂x
= q(0+, t) =

Ṁ

2
,

which leads to:

B =
Ṁ

2Dλ
=

Ṁ

2
√
DK

.

The final solution is (Figure 2-14):

c =
Ṁ

2
√
DK

exp

(

−
√

K

D
x

)

for x > 0 (2.36)

c =
Ṁ

2
√
DK

exp

(

+

√

K

D
x

)

for x < 0. (2.37)

Of interest is the maximum concentration at the site of the source:

cmax =
Ṁ

2
√
DK

. (2.38)
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Figure 2-14. Steady-state concentration distribution around a punctual and
continuous source and under decay, according to (2.36)–(2.37).

This value is naturally proportional to the rate of release, Ṁ . Increasing diffu-
sion implies greater spreading and thus a lower maximum concentration, while
increasing decay obviously leads also to a lower maximum concentration.

Finally, we seek a formula that provides a practical expression for the patch
width. As for the earlier case of a spreading concentration (Section 2-4), we
are faced with an exponential solution that yields non-zero values all the way
to infinity, and we need to apply a somewhat arbitrary cut-off criterion. If we
define the width of the patch as the interval containing 95% of the total amount
present, the width is defined as:

Width =
6.0

λ
= 6.0

√

D

K
, (2.39)

and 95% of the substance is contained in the interval [–Width/2, +Width/2].
Naturally, the patch is wider if diffusion is more vigorous, and is narrower if
decay is faster.

Example
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We again return to our example with the Chicago Ship Canal and now
take into account that benzene in water is subject to bacterial decay (aerobic
degradation) at the known rate of 0.11/day. If a stationary barge containing
benzene and parked along the side of the canal has been leaking over the last
few weeks at the estimated rate of 2.5 liters per day, what is the benzene
concentration in the canal water near the barge, and how far along the canal
is the concentration in excess of the drinking-water standard of 0.005 mg/L?
Assume steady state and uniformity of the benzene concentration across the
canal and in the vertical. (Recall: canal width= 48.8 m, depth= 8.07 m,
along-canal diffusivity= 3.0 m2/s, and benzene density= 0.879 g/cm3.)

To solve this problem, we first need to determine Ṁ , the rate of input per
cross-area:

Ṁ =
(2.5 L/day) × (879 g/L)

(48.8 m) × (8.07 m) × (86,400 s/day)
= 6.458 10−5 g

m2.s
.

We also establish the value of the decay constant:

K =
0.11 /day

86,400 s/day
= 1.273 10−6 /s.

Then, solution (2.38) provides the benzene concentration in the canal sec-
tion at the position of the leaky barge:

cmax =
Ṁ

2
√
DK

= 0.0165 g/m
3

= 0.0165 mg/L.

The concentration equals the drinking standard cstd= 0.005 g/m3 at a distance
x obtained by inverting (2.37):

x = −
√

D

K
ln

(

2cstd
√
DK

Ṁ

)

,

which yields x= 1,835 m. Thus, the benzene concentration exceeds the drinking
standard in a zone of 3.67 kilometers along the canal.

Continuous release over a finite distance

Let us now consider the case when the continuous release occupies a finite
interval, say from x = −L to x = +L (Figure 2-15). The governing equation
again during steady state is:

0 = D
d2c

dx2
− Kc + s,

where the rate of release per unit cross-area, per unit distance along the axis
of diffusion, and per unit time is: s = s0 in −L < x < +L and s = 0 elsewhere.
The solution is:
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Figure 2-15. Steady-state concentration distribution created by a continuous
release over a finite distance (−L < x < +L) and in the presence of decay,
according to (2.40)–(2.42).
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x < −L : c = A eλx

−L < x < +L : c = B eλx + C e−λx +
s0
K

+L < x : c = D e−λx.

Matching the concentration and flux values at x = ±L determines the four
constants of integration. The final solution is:

x < −L : c =
s0
K

sinhλL e+λx (2.40)

−L < x < +L : c =
s0
K

(

1 − e−λL coshλx
)

(2.41)

+L < x : c =
s0
K

sinhλL e−λx. (2.42)

The maximum concentration is at the center of the patch (x = 0) and equals

cmax =
s0
K

(

1 − e−λL
)

. (2.43)

For a narrow release area (λL ≪ 1), we can approximate exp(−λL) by
1 − λL, to find cmax ≃ s0λL/K. Then defining the total rate of release Ṁ =
2Ls0, we obtain cmax ≃ Ṁ/2

√
DK, which is identical to (2.38). This shows

that a release over a small but finite distance can be approximated by a punctual
release as long as λL =

√

KL2/D is much less than unity.
In the opposite limit of a very wide release (λL ≫ 1), we find cmax ≃ s0/K,

which is the value obtained by neglecting diffusion and stating that source and
decay locally cancel out. This occurs because diffusion is relegated to the edges
of the release interval and does not affect the concentration in the middle.

Continuous punctual release near a boundary

We now consider a continuous release, at x = 0 and of rate Ṁ , at a distance
L from a boundary (x = −L), as depicted on Figure 2-16. The solution pro-
ceeds as previously, with the boundary conditions: No flux (−Ddc/dx = 0) at
the boundary (x = −L), continuity of concentration [c(x = 0−) = c(x = 0+)]
and a balance of fluxes [q(x = 0+)−q(x = 0−) = Ṁ ] at the release point. This
solution is:

−L < x < 0 : c =
Ṁ√
DK

e−λL cosh[λ(x+ L)] (2.44)

0 < x : c =
Ṁ√
DK

coshλL e−λ(x+L). (2.45)

The concentrations of interest are those at the wall and at the point of release:
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Figure 2-16. Steady-state concentration distribution due to a continuous
punctual release in the proximity of a boundary and in the presence of decay,
according to (2.44)–(2.45).
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cwall =
Ṁ√
DK

e−λL

csource =
Ṁ√
DK

e−λL coshλL.

Naturally, the concentration at the source is the largest of the two. Note that
in the limit λL → ∞, we recover solution (2.36–2.37) of the punctual release
away from boundaries.

2.7 Generalization to Three Dimensions

Introduction

Although the analysis of one-dimensional problems can find applications
to spatially elongated systems that, in first approximation, may be modeled
as one-dimensional (such as a pipe or a river), it remains that most engineer-
ing problems are two- or three-dimensional. We therefore need to extend our
previous analysis to higher dimensions.

Formulation

For the time being, let us continue to assume that there is no mean fluid
velocity, namely there is no advective component and the flux of substance is
purely diffusive. The difference from the previous sections is that diffusion is
now regarded as proceeding in all three directions of space. The flux quantity
has three components (east-west, north-south and up-down − Figure 2-17)
and is a vector. Thus, ~q = (qx, qy, qz). Similar arguments as those outlined in
Section 1-2, to arrive at Equation (1.5), can be replayed here to obtain:

qx = − D
∂c

∂x
, qy = − D

∂c

∂y
, qz = − D

∂c

∂z
.

Putting it all together and using vectorial notation, we write:

~q = − D

(

∂c

∂x
,
∂c

∂y
,
∂c

∂z

)

= − D ~▽c, (2.46)

where ~▽ is the so-called gradient operator.
Equipped with an expression for the flux, we can establish the three-dimensional

mass budget. As before, we state that all mass of the substance must be ac-
counted for:
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Figure 2-17. Flux components in the three-dimensional space.

Figure 2-18. Mass budget for an infinitesimal 3D control volume.

Rate of accumulation =
∑

imports +
∑

exports.

For an infinitesimal 3D box of volume dxdydz (Figure 2-18), the statement
becomes

∂

∂t
(c dxdydz) = (qx at x) dydz − (qx at x+ dx) dydz

+ (qy at y) dxdz − (qy at y + dy) dxdz

+ (qz at z) dxdy − (qz at z + dz) dxdy,

or

dxdydz
∂c

∂t
= −

(

∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

)

dxdydz.
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Simplification yields

∂c

∂t
= − ~▽ · ~q, (2.47)

where ~▽· is the so-called divergence operator. With the flux ~q given by the
diffusion law (2.46), we can write a single equation for the concentration c:

∂c

∂t
= + ~▽ ·

(

D ~▽ c
)

. (2.48)

With D taken as a constant, this reduces to:

∂c

∂t
= D ▽2 c, (2.49)

where ▽2 is called the Laplace operator or laplacian. It is defined as

▽2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

[Exercise: Show that the 2D random-walk process described at the beginning
of Section 2-2 leads, in the continuous limit, to the 2D version of the above
diffusion equation.]

Instantaneous localized release

It is straightforward to verify that the product of three prototypical solu-
tions, with spatial variables x, y and z, respectively,

c(x, y, z, t) =
M

(
√
4πDt)3

exp

(

− x2 + y2 + z2

4Dt

)

(2.50)

is a solution to the 3D equation (2.41). Obviously, this is the solution to the
case of a localized and instantaneous release, at location (0,0,0) and at time
t = 0 of a quantity M of the substance. In contrast to the 1D situation, where
M was expressed in units of substance per unit cross-section, the quantity M
here is in units of substance (example: in grams).

Since r =
√

x2 + y2 + z2 is the distance to the point of release, the con-
centration c depends on that distance and time only. It does not depend on
the direction with respect to the coordinate axes. Physically, the spreading is
identical in all directions of space; diffusion is said to be isotropic. The size of
the 3D ‘cloud’ is measured by the diametrical span

4σ = 4
√
2Dt. (2.51)

Anisotropic medium

In most environmental systems (atmosphere, rivers, lakes and oceans), tur-
bulence in the vertical direction differs greatly from that in the two horizontal
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directions, chiefly because of gravity. As a result, diffusion does not proceed at
the same rates in the horizontal and vertical directions.

If we generalize and imagine that all three directions are different from one
another, then we are brought to define three distinct diffusion coefficients:

Dx for diffusion in the x-direction: qx = − Dx
∂c

∂x

Dy for diffusion in the y-direction: qy = − Dy
∂c

∂y

Dz for diffusion in the z-direction: qz = − Dz
∂c

∂z
,

the diffusion equation becomes

∂c

∂t
=

∂

∂x

(

Dx
∂c

∂x

)

+
∂

∂y

(

Dy
∂c

∂y

)

+
∂

∂z

(

Dz
∂c

∂z

)

, (2.52)

and the solution to an instantaneous (t = 0) and localized (x = y = z = 0)
release is:

c(x, y, z, t) =
M

(
√
4πt)3

√

DxDyDz

exp

(

− x2

4Dxt
− y2

4Dyt
− z2

4Dzt

)

.

(2.53)
The spatial dimensions of the corresponding 3D cloud are measured by

4σx = 4
√

2Dxt in the x-direction

4σy = 4
√

2Dyt in the y-direction

4σz = 4
√

2Dzt in the z-direction.

Solutions corresponding to releases over finite regions or near boundaries
can be constructed following the same principles as outlined in Section 2-5.

Presence of a horizontal boundary

As for 1D problems, the preceding solution can serve as a building block
for the construction of more realistic 3D applications. An important problem
is that of a 3D instantaneous and punctual release near a boundary, such as an
explosion in the air at some height (say z = H) above the ground (say z = 0).
The ground, which we take to be flat and horizontal for simplification, acts as
an impermeable horizontal boundary and requires that the vertical component
of the diffusive flux be zero at that level (qz = 0 at z = 0). This condition is
accommodated by introducing a virtual release of the same amount at the same
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time and at a symmetric position below the ground (z = −H). The solution
then consists in the sum of two prototypical solutions, one caused by the actual
release at (x = 0, y = 0, z = +H) and the other due to the image at (x = 0,
y = 0, z = −H):

c(x, y, z, t) =
M

(
√
4πt)3

√

DxDyDz

exp

(

− x2

4Dxt
− y2

4Dyt

)

×
[

exp

(

− (z −H)2

4Dzt

)

+ exp

(

− (z +H)2

4Dzt

)]

,

where M is the amount released (e.g., mass) at time t = 0. The horizontal
coordinates x and y are measured along the ground, with the origin at the
vertical below the point of release. Of interest is the ground concentration,
cground = c(x, y, z = 0, t), which is:

cground(x, y, t) =
2M

(
√
4πt)3

√

DxDyDz

exp

(

− x2

4Dxt
− y2

4Dyt
− H2

4Dzt

)

.

(2.54)
The ground concentration is highest at the vertical below the release loca-

tion (x = y = 0) and decreases away with distance from there. Only when Dx

and Dy are equal is this decrease 2D isotropic. At any time t, the maximum
ground concentration is thus:

ccenter ground(t) =
2M

(
√
4πt)3

√

DxDyDz

exp

(

− H2

4Dzt

)

. (2.55)

This maximum concentration evolves over time from zero at the initial time
(nothing has yet diffused from the level of the release down to the ground), to a
maximum (after vertical diffusion has brought some of the substance near the
ground), and back down to zero (because continuous lateral diffusion acts to
dilute the substance and thus to decrease concentrations everywhere). The time
of the maximum is obtained by setting the time derivative of ccenter ground(t)
to zero. The result is:

cmax center ground =
Dz

(
√

2π/3)3
√

DxDy

2M

H3
exp

(

− 3

2

)

= 0.1472
Dz

√

DxDy

M

H3
, (2.56)

which occurs at

tmax =
H2

6Dz
. (2.57)
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2.8 Combination of Advection and Diffusion

Oftentimes, the fluid within which diffusion takes place is also moving in a
preferential direction. The obvious cases are those of a flowing river and of a
smokestack plume being blown by the wind.

Formulation

We now retain the advective flux and combine it with the diffusive flux.
Recall that in one dimension we established the total flux as [see Equations
(1.4)–(1.5)]:

q = cu − D
∂c

∂x
, (2.58)

which we can immediately generalize to three dimensions:

~q = c~u − D ~▽ c. (2.59)

The vector ~u is the three-dimensional vector velocity of the fluid medium trans-
porting the substance. We here assume isotropy in diffusion (single D value)
but allow for anisotropy in advection. (The ~u vector introduces a preferential
direction, that of the transporting flow.)

The three-dimensional mass budget (2.47) is true regardless of the compo-
sition of the flux vector ~q and thus continues to hold. Replacement of ~q by use
of (2.59) yields the following equation for the concentration distribution:

∂c

∂t
= − ~▽ · (c~u) + ~▽ · (D~▽c).

In environmental problems, it is usual to make the assumption of an in-
compressible medium. This is easily justified for water. It is also accurate
for air, because the atmospheric motions responsible for advection (winds) and
diffusion (turbulence) occur at velocities much less than the speed of sound,
and compressibility effects are negligible. Writing the budget for the containing
fluid itself, we take c = ρ, the constant density of the fluid (mass per volume),
and the above equation reduces to

0 = − ρ ~▽ · ~u + 0,

or

~▽ · ~u = 0. (2.60)

In other words, the entraining motions must be non-divergent. What converges
in one direction must diverge in another. Together with the usual assumption
of uniform diffusion (constant value of diffusion coefficient D), the mass-budget
equation for the contaminant reduces to the so-called advection-diffusion equa-
tion:
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∂c

∂t
+ ~u · ~▽ c = D ▽2 c. (2.61)

This equation consists of three terms, representing respectively the local accu-
mulation or depletion, the movement by the carrying fluid, and the effect of
diffusion (movement by random motions in the fluid).

In one dimension, the advection-diffusion equation simplifies to:

∂c

∂t
+ u

∂c

∂x
= D

∂2c

∂x2
. (2.62)

The solution corresponding to an instantaneous and localized release, in the
absence of a continuous source and decay, is:

c(x, t) =
M√
4πDt

exp

(

− (x− ut)2

4Dt

)

.

Exercise: Show that an analogous random-walk process can be constructed by
the inclusion of a directional bias in a particular direction (asymmetric prob-
abilities). How does the entraining velocity relate to the various probabilities,
spacing and time step?

Since the above advection diffusion equation, in 3D or 1D, includes a com-
bination of two physical processes (advection and diffusion), we are prompted
to ask the following questions:

1. How do the processes of advection and diffusion differ?
2. Under which condition(s) is one more important than the other?
3. How could we easily tell which one dominates?
To answer these questions, it is simpler to work with the 1D formulation

and then generalize the conclusions. The advection process is represented in
(2.62) by the term u∂c/∂x, which has a first-order derivative, while diffusion
is represented by D∂2c/∂x2, which is of second-order. Upon replacing x by
−x, the former changes sign while the latter does not. Therefore, advection is
skewed (going one way, in the direction of the flow) while diffusion is symmetric
(going both ways). For an insightful illustration of this difference, see the
example at the end of the present section. The other two questions are answered
in the following subsection.

Relative importance of advection and diffusion

To facilitate the derivation of a practical criterion that would tell us which of
the two processes dominates, we introduce SCALES for the relevant quantities.
A scale is a quantity of dimension identical to the variable to which it refers and
the value of which gives a practical estimate of the magnitude of that variable.
Examples are: The scale for the width of the Mississippi River is L = 100
m, the scale for mid-ocean depths is H = 3000 m, the scale of the prevailing
winds in the atmosphere is U = 10 m/s, and the scale for the concentration
of a substance in a finite domain could be taken as the average or maximum
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concentration value. To make matters easy, scales are usually taken as pure
constants (independent of space and time), and their values are rounded to just
a few digits. See table 2-3.

VARIABLE SCALE CHOICE OF VALUE

c C Typical concentration value,
such as average, initial or
boundary value

u U Typical velocity value,
such as maximum value

x L Approximate domain length
or size of release location

Table 2-3. Scales and their choices.

Using the preceding scales, we can derive estimates of the sizes of the dif-
ferent terms. Since the derivative ∂c/∂x is expressing, after all, a difference
in concentration over a distance (in the infinitesimal limit), we can estimate it
to be approximately (within 100% or so, but certainly not completely out of
line with) C/L, and the advection term u∂c/∂x to be about UC/L. Similarly,
the second derivative ∂2c/∂x2 represents a difference of the gradient over a
distance and is estimated at (C/L)/L = C/L2. The diffusion term D∂2c/∂x2

thus scales as DC/L2.
Equipped with these estimates, we can then compare the two processes by

forming the ratio of their scales:

advection

diffusion
=

UC/L

DC/L2
=

UL

D
.

This ratio is obviously dimensionless; traditionally, it is called the Peclet num-
ber and is denoted by Pe:

Pe =
UL

D
. (2.63)

The Peclet number leads to an immediate criterion, as follows.
If Pe ≪ 1 (in practice, if Pe < 0.1): then the advection term is significantly

smaller than the diffusion term. Physically, diffusion dominates and advection
is negligible. Spreading occurs almost symmetrically despite the directional
bias of the (weak) flow. If we wish to simplify the problem, we may drop the
u∂c/∂x term, as if u were nil. The relative error committed in the solution by so
doing is expected to be on the order of the Peclet number, and the smaller Pe,
the smaller the error. The solutions established in the few preceding sections
were based on such simplification and are thus valid whenever Pe ≪ 1.

If Pe ≫ 1 (in practice, if Pe > 10): then the advection term is significantly
bigger than the diffusion term. Physically, advection dominates and diffusion is
negligible. Spreading is almost inexistent, and the patch of pollutant is simply
moved along by the flow. If we wish to simplify the problem, we may drop the
D∂2c/∂x2 term, as if D were nil. The relative error committed in the solution
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by so doing is expected to be on the order of the inverse of the Peclet number
(1/Pe), and the larger Pe, the smaller the error. [Note that the neglect of the
term with the highest-order derivative reduces the need of boundary conditions
by one. No boundary condition may be imposed at the downstream end of the
domain, and what happens there is whatever the flow brings.]

The prototypical solution of the 1D advection only equation is:

∂c

∂t
+ u

∂c

∂x
= 0 → c(x, t) = c0(x− ut),

since a divergence-free flow requires ∂u/∂x = 0 and thus u constant; c0(x) is the
initial concentration distribution. For non-uniform flows at 2D and 3D, there
is no prototypical solution of general interest and simultaneously expressible in
convenient mathematical terms. Physically, a three-dimensional flow can cause
not only translation but also rotation, strain and shear.

If Pe ≃ 1 (in practice, if 0.1 < Pe < 10): then the advection and diffusion
terms are not significantly different, and neither process dominates over the
other. No approximation to the equation can be justified, and the full equation
must be utilized.
Exercise: After adding decay and source terms in Equation (2.62) as done in
(2.35),

∂c

∂t
+ u

∂c

∂x
= D

∂2c

∂x2
− Kc + s, (2.64)

derive the relevant dimensionless ratios. Show that only three independent
ratios can exist. Discuss in the framework of these dimensionless ratios under
which conditions one or more processes are negligible. Finally, show that for
s = 0, the solution corresponding to an instantaneous and localized release is:

c(x, t) =
M√
4πDt

exp

(

− (x− ut)2

4Dt
− Kt

)

.

Steady state with advection and diffusion

Let us consider the steady release of a contaminant in a one-dimensional
stream, as depicted in Figure 2-19. The concentration is assumed to be verti-
cally and laterally homogenized, in order to justify the 1D simplification. It is
of sufficient interest to restrict our attention to the steady state (which does
exist) by setting ∂c/∂t = 0. The equation reduces to:

u
dc

dx
= D

d2c

dx2
.

(The steady-state assumption is equivalent to imagining that the source of
pollution has been there since ever. In practice, a long time compared to D/u2

suffices.)
Since the coefficients u and D are constant, we can rewrite the equation as
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Figure 2-19. Steady punctual release in a one-dimensional stream.

d

dx

(

uc − D
dc

dx

)

= 0,

which can be readily integrated to yield:

q = uc − D
dc

dx
= constant.

In retrospect, this equality is obvious: In a steady-state regime, there is no
local accumulation/depletion of pollutant anywhere and thus what arrives at
one location must also depart from it, and the flux is uniform all along the
stream, except of course for a discontinuity at the location of the source.

Far away on the upstream side, the concentration must vanish, and therefore
both c and dc/dx must tend toward zero as x → −∞. This implies q = 0 far
away upstream (no pollution, no transport thereof), and since q is constant for
all values of x upstream (x < 0) we have

uc − D
dc

dx
= 0 for x < 0,

with solution

c = c0 exp
(ux

D

)

,

where c0 is a constant of integration to be determined later.
On the downstream side, we must expect a non-zero transport (q 6= 0). The

value of this transport is obtained from a consideration of the vicinity of the
source: q(x = 0+) = Ṁ , where Ṁ is the amount of substance released per
unit time and cross-sectional area of the stream. [If S is the discharge rate, in
amount per time, and A is the cross-sectional area, then Ṁ = S/A.] We have

uc − D
dc

dx
= Ṁ for x > 0,

with solution
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Figure 2-20. Concentration distribution in a one-dimensional stream in the
vicinity of a steady and punctual release, according to (2.65)–(2.66).

c = c1 exp
(ux

D

)

+
Ṁ

u
,

where c1 is a new constant of integration.
Far downstream, we do not expect infinitely large concentrations, and thus

the limit of c for x → +∞ must be finite, which implies that c1 must be zero.
This leaves a uniform concentration all along the downstream portion of the
stream:

c =
Ṁ

u
for x > 0. (2.65)

Continuity of the concentration values near the source requires matching the
upstream and downstream solutions at x = 0, which yields c0 = Ṁ/u. The
concentration distribution on the upstream portion of the stream is thus:

c =
Ṁ

u
exp

(ux

D

)

for x ≤ 0. (2.66)

Graphically (Figure 2-20), the solution displays a wedge upstream and a plateau
downstream.

It is interesting to discuss the above solution in some details, especially
from the point of view of the separate processes of advection and diffusion. On
the downstream side, the concentration is uniform and thus has no gradient;
diffusion is nil, and the pollutant is simply transported with the flow. We could
qualify this as flushing. For increasing Ṁ values, c = Ṁ/u also increases, as a
greater input leads to a proportionally higher concentration. For increasing u
values, c decreases, because a faster current implies a greater dilution.

On the upstream side, the concentration decays exponentially away from
the source, and the gradient indicates active diffusion. Since diffusion proceeds
downgradient (from higher to lower values), the diffusive flux is upstream. Ad-
vection, by contrast, is directed downstream. The two processes act against
each other and, in fact, negate each other exactly leaving no net flux of con-
taminant.
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We may well ask: How far does the concentration tail extend upstream?
Since the exponential function has non-zero values all the way to infinity, we
need to set a practical criterion. Placing the arbitrary limit where the concen-
tration has dropped to 5% of its maximum value at the source, we obtain:

exp
(ux

D

)

= 0.05 → ux

D
= − 3.00, (2.67)

and a practical answer is: The concentration is less than 5% of its maximum
value beyond the distance 3D/u upstream of the source. Note how this distance
increases with D (and thus the level of turbulence) and decreases with u (and
thus the speed of the flow). Since the level of turbulence typically increases
with the speed of the flow, it is not immediately clear which way the tendency
is.
[Exercise: Taking the diffusion coefficient D as the product of a turbulent
velocity u∗ and an eddy diameter scale d – see end of Section 1-2 –, taking u∗

as one tenth of the mean speed u and d as the stream depth H, what is the
upstream extent of the pollution?]

Steady state with advection, diffusion and decay

Let us now consider the same situation but in the presence of decay. In this
case, the pollutant is continuously discharged at x = 0, is advected downstream
with speed u, is diffused in both upstream and downstream directions with
diffusivity D, and is continuously withdrawn from the carrying fluid at rate K.
The governing differential equation is:

u
dc

dx
= D

d2c

dx2
− Kc. (2.68)

Looking for a solution of the form exp(λx), we find that the coefficient λ
must be a root of the algebraic equation

Dλ2 − uλ − K = 0,

of which there are two solutions:

λ+ =
u +

√
u2 + 4DK

2D

λ− =
u −

√
u2 + 4DK

2D
.

The first root is positive while the second is negative. Since it would be
unrealistic if concentration values grew without bound at large distances from
the source, we must retain on each side of the source only the decaying expo-
nential, that is, λ+ on the upstream side (x < 0) and λ− on the downstream
side (x > 0). Since furthermore the concentration must have a unique value at
the x = 0, we have:
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Figure 2-21. Concentration distribution in a one-dimensional stream around
the vicinity of a steady and punctual discharge in the presence of diffusion and
decay.

c(x) = A eλ+x for x < 0

c(x) = A eλ−
x for x > 0,

where the constant of integration A is the same in both expressions.
The balance of fluxes in the vicinity of the source, which stipulates that

what comes from the upstream side plus what comes from the source is what
goes downstream [q(x = 0−) + Ṁ = q(x = 0+) where q = cu − D(dc/dx)],
yields:

(u − λ+D)A + Ṁ = (u − λ−D)A,

or

A =
Ṁ

(λ+ − λ−)D
=

Ṁ√
u2 + 4DK

.

The final solution is then (Figure 2-21):

c(x) =
Ṁ eλ+x

√
u2 + 4DK

for x ≤ 0 (2.69)

c(x) =
Ṁ eλ−

x

√
u2 + 4DK

for x ≥ 0. (2.70)

The concentration is naturally maximum at the source (x = 0), with value
equal to:

cmax =
Ṁ√

u2 + 4DK
. (2.71)
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We note that in the absence of advection (u = 0) this solution reduces to
(2.38), while in the absence of decay (K = 0) it reduces to (2.65).
Exercise: Explain physically why the peak concentration decreases with in-
creasing u, D and K.

2.9 Highly Advective Situations

Distance as time

Consider now a two-dimensional system in which the flow is uniform and
therefore unidirectional. Choosing the x-axis to point in that direction and
noting the flow speed u, we write the advection-diffusion equation, (2.61), as

∂c

∂t
+ u

∂c

∂x
= D

(

∂2c

∂x2
+

∂2c

∂y2

)

. (2.72)

Making the further assumptions of a steady state and of a very large Peclet
number (Pe = UL/D ≫ 1, as for a swift flow or a long patch), we can discard
the terms ∂c/∂t and D∂2c/∂x2, reducing the equation to:

u
∂c

∂x
= D

∂2c

∂y2
. (2.73)

In such a system, advection proceeds in one direction (downstream) while
diffusion proceeds in the transverse direction. An example is the confluence of
two streams, one being polluted, the other not. Downstream of the confluence
point, the two kinds of water flow side by side with approximately the same
speed but uneven transverse concentration. With downstream distance, cross-
flow diffusion acts to homogenize gradually the cross-section concentration dis-
tribution (Figure 2-22). The further downstream we go, the more spreading
and homogenization we observe, because the two fluid masses have been in
contact longer. Thus, downstream distance plays the role of time.

Let us exploit this remark and define the travel time

τ =
x

u
, (2.74)

which is the time taken by the fluid to cover the distance x at the speed u.
Then, the x-derivative can be transformed as follows:

∂c

∂x
=

∂c

∂τ

∂τ

∂x
,

which yields

u
∂c

∂x
=

∂c

∂τ
.

Equation (2.73) then becomes
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Figure 2-22. Gradual homogenization of the concentration in a river dowmn-
stream of a confluence. Downstream distance acts as time.

∂c

∂τ
= D

∂2c

∂y2
,

which is morphologically identical to (2.4), with the travel time τ replacing the
true time t and the transverse coordinate y replacing the canonical coordinate
x. The ‘initial’ condition is now the specification of the concentration c0(y) at
the upstream end (say x = 0), while the two boundary conditions are to be
applied at the edges of the y-interval.

As an example, let us return to the prototypical solution derived in Section
2-1, that corresponding to an instantaneous and localized release. Translated
to the case of a wind blowing at speed u, it corresponds to the cross-wind
diffusion that proceeds downwind of a release point (e.g., a smokestack) at
location x = 0 and cross-wind position y = 0 . Solution (2.12) becomes

c(x, y) = M

√

u

4πDx
exp

(

− uy2

4Dx

)

. (2.75)

The quantity M is here to be interpreted as the amount of the contaminant
released per unit height and per unit downwind length of fluid (i.e., per unit
cross-section perpendicular to the direction in which the diffusion occurs –
dimensions M/L2). Because in such problem the release would typically be
expressed in amount per unit height and per unit time, we define the input
rate S = Mu (dimensions M/LT), and rewrite the preceding solution:

c(x, y) =
S√

4πDux
exp

(

− uy2

4Dx

)

. (2.76)

The patch width, a function of the downwind distance, can de defined as

Width = 4σ = 5.66
√
Dτ = 5.66

√

Dx

u
. (2.77)

As a second example, let us consider the case described above of transverse
river diffusion downstream of a confluence. The upstream condition (at x = 0)
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corresponding to a polluted stream (concentration c = c0 for y > 0) coming
into contact with a clean river (concentration c = 0 for y < 0) is the step
function pictured in Figure 2-9, and the solution is given by (2.25) with time
being x/u and the diffusion coordinate being y:

c(x, y) =
c0
2

[

1 + erf

(

y

√

u

4Dx

)]

. (2.78)

Note that this solution ignores the presence of boundaries at the river banks,
and its validity is thus limited to the immediate downstream vicinity of the
confluence point. The generalization of the solution to include boundary effects
is left as an exercise for the reader.

Remarks

In closing this section, we recall that the substitution of time for distance
is justified only if two conditions are satisfied:
1. The fluid velocity is uniform across the flow (to avoid ambiguity in the
distance-time relationship), and
2. The Peclet number is very large (to permit the neglect of diffusion in the
stream direction).
When the fluid velocity is not uniform across the flow, diffusion can be greatly
enhanced by a special effect called ‘shear dispersion’. This is the object of the
following chapter.
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