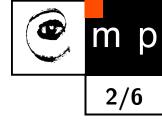
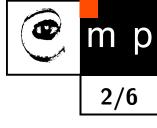
Bayes Decision Theory Cookbook

Karel Zimmermann

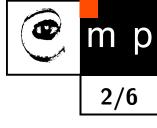
Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/~zimmerk, zimmerk@fel.cvut.cz

- $igstarrow \omega$ discrete states of the nature, categories, classes
- + $P(\omega|\mathbf{x})$ conditional probability of being in state ω

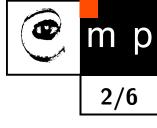




- $igstarrow \omega$ discrete states of the nature, categories, classes
- + $P(\omega|\mathbf{x})$ conditional probability of being in state ω
- $igstarrow \alpha$ discrete actions, decisions
- $\lambda(\alpha|\omega)$ loss-function (loss caused by doing action α while being in state ω)



- $igstarrow \omega$ discrete states of the nature, categories, classes
- + $P(\omega|\mathbf{x})$ conditional probability of being in state ω
- igstarrow lpha discrete actions, decisions
- $\lambda(\alpha|\omega)$ loss-function (loss caused by doing action α while being in state ω)
- $R(\alpha|\mathbf{x}) = \sum_{\omega} \lambda(\alpha|\omega) P(\omega|\mathbf{x})$ conditional risk.



- $igstarrow \omega$ discrete states of the nature, categories, classes
- + $P(\omega|\mathbf{x})$ conditional probability of being in state ω
- $igstarrow \alpha$ discrete actions, decisions
- $\lambda(\alpha|\omega)$ loss-function (loss caused by doing action α while being in state ω)
- $R(\alpha|\mathbf{x}) = \sum_{\omega} \lambda(\alpha|\omega) P(\omega|\mathbf{x})$ conditional risk.
- $\alpha^*(\mathbf{x}) = \arg \min_{\alpha} R(\alpha | \mathbf{x})$ optimal strategy.

Classification problem

- Actions α_1, α_2 corresponds to classes ω_1, ω_2 (e.g. α_1 means that we classify the object to class ω_1)
- Only two classes/actions.]pause

•
$$\lambda(\alpha_i|\omega_j) = \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix}$$
 loss-function is 2×2 table.

Classification problem

- Actions α_1, α_2 corresponds to classes ω_1, ω_2 (e.g. α_1 means that we classify the object to class ω_1)
- Only two classes/actions.]pause

•
$$\lambda(\alpha_i|\omega_j) = \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix}$$
 loss-function is 2×2 table.

- $R(\alpha_1|\mathbf{x}) = \lambda_{11}P(\omega_1|\mathbf{x}) + \lambda_{12}P(\omega_2|\mathbf{x}).$
- $R(\alpha_2|\mathbf{x}) = \lambda_{21}P(\omega_1|\mathbf{x}) + \lambda_{22}P(\omega_2|\mathbf{x}).$

Classification problem

- Actions α_1, α_2 corresponds to classes ω_1, ω_2 (e.g. α_1 means that we classify the object to class ω_1)
- Only two classes/actions.]pause

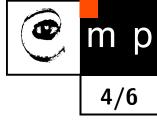
•
$$\lambda(\alpha_i|\omega_j) = \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix}$$
 loss-function is 2×2 table.

•
$$R(\alpha_1|\mathbf{x}) = \lambda_{11}P(\omega_1|\mathbf{x}) + \lambda_{12}P(\omega_2|\mathbf{x}).$$

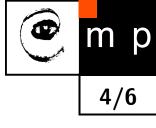
- $R(\alpha_2|\mathbf{x}) = \lambda_{21}P(\omega_1|\mathbf{x}) + \lambda_{22}P(\omega_2|\mathbf{x}).$
- Optimal strategy:

$$\alpha^*(\mathbf{x}) = \underset{\alpha \in \{\alpha_1, \alpha_2\}}{\operatorname{arg\,min}} R(\alpha | \mathbf{x}) = \begin{cases} \alpha_1 & \text{if } R(\alpha_1 | \mathbf{x}) < R(\alpha_2 | \mathbf{x}) \\ \alpha_2 & \text{otherwise} \end{cases}$$

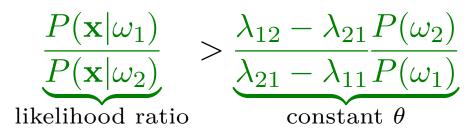
• Given observed feature \mathbf{x} , we decide for α_1 if:



• Given observed feature \mathbf{x} , we decide for α_1 if: $\lambda_{11}P(\omega_1|\mathbf{x}) + \lambda_{12}P(\omega_2|\mathbf{x}) < \lambda_{21}P(\omega_1|\mathbf{x}) + \lambda_{22}P(\omega_2|\mathbf{x})$

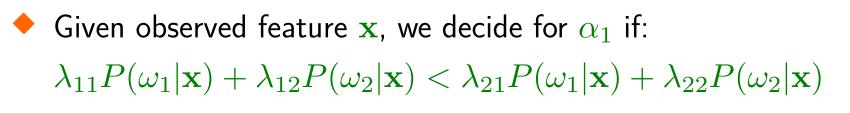


- Given observed feature \mathbf{x} , we decide for α_1 if: $\lambda_{11}P(\omega_1|\mathbf{x}) + \lambda_{12}P(\omega_2|\mathbf{x}) < \lambda_{21}P(\omega_1|\mathbf{x}) + \lambda_{22}P(\omega_2|\mathbf{x})$
- if $\lambda_{11} < \lambda_{12}$ and $\lambda_{22} < \lambda_{21}$ then the condition is rewritten as follows:

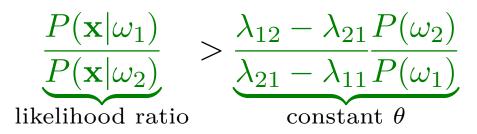


• θ is hard to define explicitly \Rightarrow function $f(\mathbf{x})$ converging to the likelihood ratio is trained:

$$f(\mathbf{x}) = \frac{P(\mathbf{x}|\omega_1)}{P(\mathbf{x}|\omega_2)}$$



• if $\lambda_{11} < \lambda_{12}$ and $\lambda_{22} < \lambda_{21}$ then the condition is rewritten as follows:

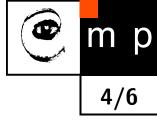


• θ is hard to define explicitly \Rightarrow function $f(\mathbf{x})$ converging to the likelihood ratio is trained:

$$f(\mathbf{x}) = \frac{P(\mathbf{x}|\omega_1)}{P(\mathbf{x}|\omega_2)}$$

Then the threshold θ parametrize the decision function (classifier)

$$\alpha^*(\mathbf{x}; \theta) = \begin{cases} \alpha_1 & \text{if } f(\mathbf{x}) > \theta \\ \alpha_2 & \text{otherwise} \end{cases}$$



Measuring classifier quality

• $\omega_1/\alpha_1 \dots$ unsafe class

(e.g. ill patient, power-plant explosion, human detected in security camera).

• $\omega_2/\alpha_2\ldots$ safe class

(e.g. healthy patient, power-plant safe state, no human in security camera)

• $X_i = \{\mathbf{x} \mid \alpha^*(\mathbf{x}; \theta) = \alpha_i\}$ set of all features which we classify to ω_i .

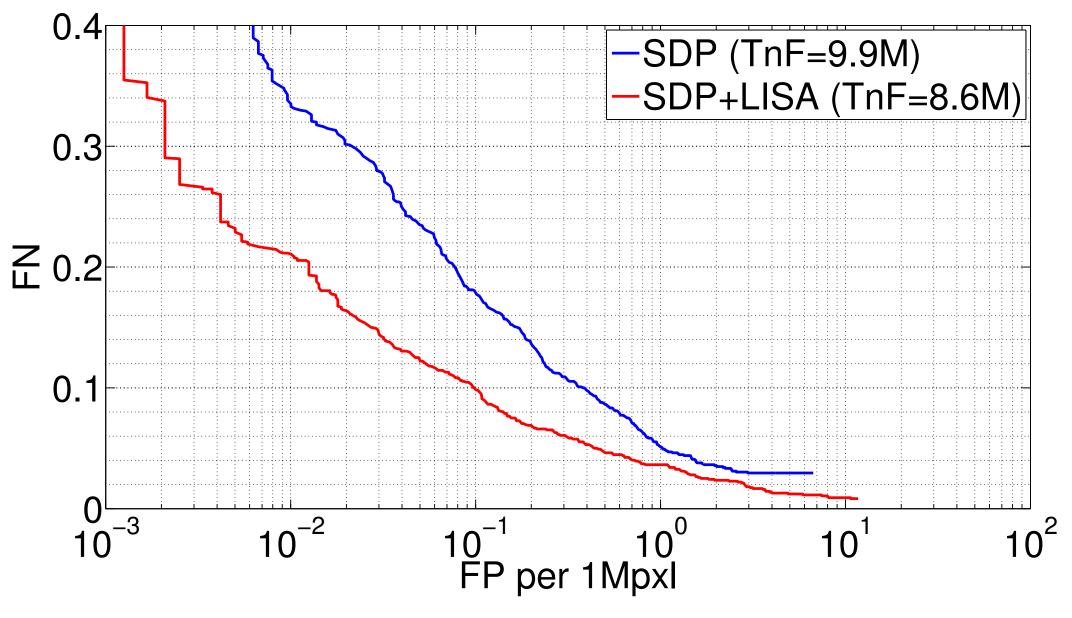
• False negative ratio: Probability of missing a dangerous situation (i.e the case where object is in unsafe class ω_1 and we report the safe class ω_2).

$$FN(\theta) = \sum_{\mathbf{x} \in X_2} p(\mathbf{x}|\omega_1) \approx \frac{\# \text{ of } \omega_1 \text{-objects classified to } \omega_2}{\# \text{ of } \omega_1 \text{-objects}}$$

• False positive ratio: Probability of false alarm (i.e the object is in safe class ω_2 and we report for unsafe class α_1 .

$$FP(\theta) = \sum_{\mathbf{x} \in X_1} p(\mathbf{x}|\omega_2) \approx \frac{\text{\# of } \omega_2\text{-objects classified to } \omega_1}{\text{\# of } \omega_2\text{-objects}}$$

Measuring classifier quality - ROC



• Which one is better?