
UNIT 5

www.getmyuni.com



Presentation Outline

• Abstract Data Type

• Information Hiding

• Encapsulation

• Type Definition

• Static and Stack-Based Storage Management

• Fixed and Variable size heap Storage Management

• Garbage Collection

www.getmyuni.com



Abstract Data Types

An abstract data type is:

A set of data objects,

A set of abstract operations on those data

objects

Encapsulation of the whole in such a way that

the user of the data object cannot manipulate data

objects of the type except by the use of operation

defined.

www.getmyuni.com



Information Hiding

When information is encapsulated in an abstraction,

it means that the user of the abstraction

1. Does not need to know the hidden

information in order to use the abstraction

2. Is not permitted to directly use or

manipulate the hidden information even if

desiring to do so.

www.getmyuni.com



Mechanisms that support 
Encapsulation

Subprograms

Type definitions

www.getmyuni.com



Encapsulation  by Subprograms and 
Type Definitions

• Encapsulation by Subprograms

•Subprograms as abstract operations

•Subprogram definition and invocation

• Type Definitions

www.getmyuni.com



Subprograms as abstract operations

Subprogram:

A mathematical function that maps each particular set of

arguments into a particular set of results.

www.getmyuni.com



Specification of a subprogram

• the name of the subprogram

• the signature of the subprogram: arguments, results

• the action performed by the subprogram

www.getmyuni.com



Type checking for subprograms

Type checking: similar to type checking for primitive

operations.

Difference: types of operands and results are

explicitly stated in the program

www.getmyuni.com



Problems when describing the 
function computed by a subprogram

• Implicit arguments in the form of non-local variables

• Implicit results – changes in non-local variables

• History sensitiveness – results may depend on previous executions

www.getmyuni.com



Implementation of a subprogram

• Uses the data structures and operation provided by the language

• Defined by the subprogram body

•Local data declarations

•Statements defining the actions over the data

• Interface with the user: arguments and returned result

www.getmyuni.com



Implementation of subprogram 
definition and invocation

A simple (but not efficient) approach:

Each time the subprogram is invoked, a copy

of its executable statements, constants and

local variables is created.

A better approach:

The executable statements and constants are

invariant part of the subprogram - they do

not need to be copied for each execution of the

subprogram.

www.getmyuni.com



Subprogram Definition and Activation

Subprogram definition: the set of statements

constituting the body of the subprogram.

Static property; the only information available

during translation.

Subprogram activation: a data structure (record)

created upon invoking the subprogram.

It exists while the subprogram is being executed.

After that the activation record is destroyed.

www.getmyuni.com



The definition serves as a template to create the activation record

www.getmyuni.com



Static code and dynamic activation 
record 

A single copy is used for all activations of the subprogram.

This copy is called code segment. This is the static part.

The activation record contains only the parameters,

results and local data.

This is the dynamic part. It has same structure, but

different values for the variables.

www.getmyuni.com



Type Definitions

Type definitions are used for definition of a new type in

terms of already defined type.

They do not define a complete abstract data type, because the

definitions of the operations are not included.

Format: typedef definition name

Meaning: definition is already defined type.

name is substituted with definition.

www.getmyuni.com



Examples

typedef int key_type;

key_type key1, key2;

struct rational_number

{int numerator, denominator;} 

typedef rational_number rational;

rational r1, r2;

www.getmyuni.com



Type equivalence and equality of data 
objects

Two questions to be answered:

•When are two types the same?

•When do 2 objects have the same value?

www.getmyuni.com



Name equivalence

Two data types are considered equivalent only if

they have the same name.

Issues

Every object must have an assigned type, there can 

be no anonymous types.

A singe type definition must serve all or large parts 

of a program.

www.getmyuni.com



Structural equivalence

Two data types are considered equivalent if they define

data objects that have the same internal components.

Issues

 Do components need to be exact duplicates?

 Can field order be different in records?

 Can field sizes vary?

www.getmyuni.com



Data object equality

Two objects are equal if each member in one object

is identical to the corresponding member of the

other object.

The compiler has no way to know how to compare data

values of user-defined type. It is the task of the

programmer that has defined that particular data type to

define also the operations with the objects of that type.

www.getmyuni.com



Type definition with parameters

Parameters allow for user to prescribe the size of

data types needed – array sizes.

Implementation

Type definition with parameters is used as a

template as any other type definition during

compilation.

www.getmyuni.com



Storage Management

Different features in a language causes different

storage management techniques to be used.

FORTRAN: no recursive calls, no dynamic

storage management.

Pascal: stack-based storage management.

LISP: garbage collection.

Language implementers decide about the

details.

Programmers don’t know about it.

www.getmyuni.com



Storage Management Phases

• Initial allocation

• Recovery

• Compaction and reuse

www.getmyuni.com



Static Storage Management

Static allocation :

Allocation during translation that remains fixed

throughout execution.

 Does not allow recursive subprograms

www.getmyuni.com



Static Storage Management

• Simplest

• static allocation

• no run-time storage management

• no concern for recovery and reuse

• efficient

• in COBOL and FORTRAN

www.getmyuni.com



Static Storage Management (Cont.)

• In FORTRAN
• each subprogram is compiled separately,

• the code segment includes an activation record
• compiled program,

• its data areas,

• return point location,

• miscellaneous items of system data.

www.getmyuni.com



Stack-Based Storage Management

• Simplest run-time storage management technique.

• Based on the nested last in first out structure in 
subprograms calls and returns.

• Automatic compaction.

• In Pascal : a  single central stack of activation records, 
and a statically allocated area  for subprogram code 
segments and system programs.

www.getmyuni.com



Dynamic Allocation:
Heap Storage Management

Memory used for dynamic allocation of data objects

in somewhat unstructured manner is called heap

storage.

OS

HEAP

STACK

www.getmyuni.com



Heap Storage Management

Tasks:

allocation, 

recovery, 

dangling references
garbage collection

compaction, 

reuse

Fixed size elements

Variable size elements

www.getmyuni.com



Heap Storage Management: Fixed-Size 
Elements

• A heap is a block of storage within which pieces are allocated and
freed in some relatively unstructured manner.

• Need for heap , when a language permits storage to be allocated and
freed at execution time.

• Fixed size elements allocated => no need for compaction.

www.getmyuni.com



Recovery

The problem: identification of reusable element, solutions:

• Explicit return by programmer or system.

•Natural, but cause garbage and dangling
reference.

• Reference counts.

•Cost of maintaining.

•popular with parallel processing systems.

• Garbage collection.

www.getmyuni.com



Garbage Collection

• Dangling references more dangerous

• Two stages

•Mark

•garbage collection bit, set off if it is active.

•Sweep

• links the “on” elements to the free list.

When is a heap element active?

•There is a pointer to it from

•outside the heap

• another active heap element

www.getmyuni.com



Garbage Collection (Cont.)

• Three critical assumptions

• any active element must be reachable by a chain
of pointers beginning outside the heap.

• It must be possible to identify every pointer
outside the heap that points to an element inside
the heap.

• It must be possible to identify within any active
heap element the fields that contain pointers to
other heap elements.

www.getmyuni.com



Heap Storage Management:
Variable-Size Elements

 More difficult

 if space for programmer defined data structures is sequential, like
arrays or activation records.

 Major difficulty : reuse of recovered space.

 Initial allocation and reuse.

 reuse directly  from a free-space list.
 First-fit method
 best-fit method
keeping free-space list in size order.

 Recovery with variable-size blocks.
 In first word of each block: a length indicator.

 Compaction and memory fragmentation problem.

www.getmyuni.com



Variable-Size Elements (Cont.)

• Compaction approaches:

•Partial compaction

•only adjacent free blocks

•Full compaction

• active blocks may be shifted

www.getmyuni.com



THANK YOU.. !! 

www.getmyuni.com


