Threshold effects of altered shorelines on forage species: Baywide approach and subestuary approach

- Bay-wide approach PI Rochelle Seitz
- Subestuary approach PI Troy Tuckey
- Compare and contrast approaches

Part 1: Bay Wide: Threshold effects of altered shorelines and other stressors on forage species in Chesapeake Bay

PIs Rochelle Seitz & Rom Lipcius, Gabby Saluta (VIMS), Denise Breitburg, Tom Jordan, Don Weller (SERC), and Matt Kornis (USFWS)

Part 1: Bay-wide Approach

- Examine previously compiled Bay-wide data sets (Kornis et al. 2017, Seitz et al. 2018) for threshold shoreline condition effects on important forage species (identified in Ihde et al. 2015 report)
- Examine different species important as forage that were not examined in previous meta-analysis (e.g., weakfish)
- Examine new data sets (e.g., Bay-wide blue crab dredge survey and juvenile crab survey) for threshold shoreline condition effects for blue crabs

Hypotheses

- Shoreline impacts will interact with upland development impacts (fauna in heavily developed systems may not respond to shoreline development)
- Some forage species (e.g., those linked to shoreline: blue crabs, spot) will show threshold responses, declining with shoreline hardening
- Species not closely related to shoreline (free-swimming menhaden) may respond positively to developed shore
- Non-linear relationships will occur (sigmoidal, piecewise linear)

Fish Data: Meta-analysis of fisheries data spanning 39 subestuaries and 587 sites (Kornis *et al.* 2017) • > 600,000 individuals • Subset examining direct use of wetland, beach, bulkhead and riprap (64 sites each) Data Contributors Matt Kornis (SERC) Denise Breitburg (SERC) Rochelle Seitz (VIMS) Donna Bilkovic (VIMS) Richard Balouskus/Tim Targett (U-Delaware) Ryan King (Baylor U, formerly of SERC) Jim Uphoff (Maryland DNR) Steve Giordano & David Bruce (NOAA CBO) John Jacobs (NOAA Oxford Lab)

Subestuary-S Linear Regressions - Significant Positive Relationship		Scale Effe Predictors Ne Relat	ects 5 for 12 of 16 species gative tionship
% Cropland- 8	% Riparian Wetland-		% Hardened Shoreline-
Blue Crab	Blue Crab		9 Blue Crab
Spot	Atlantic Croaker		Atlantic Croaker
Silver Perch	Spot		Spot
Mummichog	Silver Perch		Silver Perch
Grass Shrimp	Bay Anchovy		Bay Anchovy
Atlantic Menhaden	Hogchoker		Hogchoker
Centrarchidae	Atlantic Menhaden		Atlantic Silverside
Negative for Benthivores Positive for Planktivores	Mummichog		Atlantic Menhaden
	Striped Killifish		Centrarchidae
	Striped Bass		Mostly Negative

Mostly Positive Kornis et al. 2017. E&C 40: 1464-1486

New analyses

Figure 1: Possible relationships between each response variable and % hardened shoreline include: (A) linear; (B) piecewise linear declining to a plateau (similar to exponential decay function); (C) piecewise liner declining from a plateau (similar to a negative logistic function); and (D) sigmoidal. Adapted from Samhouri et al. (2010).

New Data sets: Crab Winter Dredge Survey (1500 sites annually); examine shallow only

New data sets: Crab juvenile survey

• 0+ year class, fall sampling during crab recruitment period (43-61 suction samples annually, 2007 -present)

Sampling regions

Juvenile crab density

New curves: Crab, Spot, Croaker

Blue Crab Piecewise Regression

Spot Piecewise Regression

All improved over linear: -Crab $R^2 = 0.16$ -Spot $R^2 = 0.29$ -Croaker $R^2 = 0.29$

Threshold levels: -Crab 10% -Spot 10% -Croaker 10%

New curves: other fish

Hogchoker Sigmoidal 2.0 Mean Hogchoker Abundance (z-score units) 1.5 $R^2 = 0.29$ 1.0 0.5 0.0 -0.5 -1.0 20 80 0 40 60 100 Percent Hardened Shoreline in Subestuary

All improved over linear: -Menidia R²=0.16 -Anch. R²=0.13 -Menh. R²=0.18 -Hogch. R²=0.19

Threshold levels: -Menidia 20% -Anch. 10% -Menh. 30% -Hogch. 30%

Progress and Future Directions

- Adjusting blue crab data
- Continue analyses and explore curve-fitting
- Comparison of Bay-wide and Subestuary-scale approach
- Coordination with CBT

Ultimately,

 Propose a numerical threshold for shoreline hardening that could inform land-use decisions

Questions?

Bulkhead and riprap shorelines leave small-bodied fishes between a rock and a hard place Shoreline Within 16m From Shore 16m 1.5 Average Species Abundance (Z-score Units) Beach Native Wetland **Bulkhead** 1.0 Riprap 0.5 0.0 -0.5 Fish Figures by Matt Kornis -1.0 RICH BC SH SK AS CN HG NG MC BA SP WP SB