
1

(C) 2013 Jonathan Levin, Technologeeks.com http://isites.harvard.edu/icb/icb.do?keyword=k92820

2

Table of Contents

I. MVC: The Model

II. Mobile Frameworks & APIs

III. Mobile Frameworks – A Tour – I: Common Tasks

IV. Mobile Frameworks – A Tour – II: Media Playba ck & Recording

3

So far, we’ve given a lot of attention to the “VC” part of the MVC paradigm – The
View/Controllers of Android, iOS, and Windows Mobile. In practice, however, the
View/Controllers present and control the data model, and no app can be complete without a
robust data model.

4

MVC: Model

WinRT is the most innovative in its separation of settings (and, in fact, all application data) to
“Local” (on-device) and “Roaming” (across device) data. Roaming is a concept Windows had
for generations in the enterprise environment, when users logging on to a Windows Domain
had their “policy” applied, and their desktops synced, no matter which physical computer they
logged on from.

Note, roaming storage is subject to a (really tiny) RoamingStorageQuota
(http://msdn.microsoft.com/en-
us/library/windows/apps/windows.storage.applicationdata.roamingstoragequota.aspx).

5

MVC: Model

Settings are an often very limited form of storage for applications – they’re great for keys and
values, but are not suitable for larger amounts of data, or specific types of data, such as images
– for this, we need files.

6

MVC: Model

Android relies exclusively on Java’s IO package for file access. It is (for the most part)
compliant with the Java specification, and there is nothing new here.

7

MVC: Model

In iOS you can use underlying C calls to open files, or you can use Objective-C wrappers like
NSDocument and friends.

8

MVC: Model

Another feature of iOS is using the cloud (not just any cloud, Apple’s own iCloud), to store
files (“Documents”) and settings in a way which enables syncing across iOS devices – with
the same Apple ID.

9

MVC: Model

Windows allows you to read and write data to files in one of three folders – the Local folder
(default choice), the temporary folder (Which is not guaranteed persistency between reboots or
app restarts) and the Roaming folder (Which may be synced with other WinRT or Win8
devices).

You can listen on changes in the roaming folder (i.e. changes to data shared between devices)
using addEventListener("datachanged", datachangeHandler); on

Windows.Storage.ApplicationData.

The preferred method of file creation in WinRT is asynchronous. This involves two things:

1) Using “Async” suffixed functions to create, read or write from a file
2) Implementing callback functions and passing them as an argument to the “then” method
3) Implementing completion functions (if you need them) and passing them as an argument to
the “done” method.

Note this is often done in a fluent manner (remember we discussed the fluency pattern as
shown in Android code in a previous lecture). The result is similar to the code shown above.

10

MVC: Model

Android and WinRT both allow an app to access shared directories and repositories, such as
the user’s documents, photos, and media files. iOS provides similar functionality with the
Assets.framework, but does not support the notion of any external storage.

Let’s explore each of these in detail.

11

MVC: Model

In Android, a handle to an external directory call to
Environment.getExternalStoragePublicDirectory(), with one of the directory
constants:

field public static java.lang.String DIRECTORY_ALARMS;
field public static java.lang.String DIRECTORY_DCIM;
field public static java.lang.String DIRECTORY_DOWNLOADS;
field public static java.lang.String DIRECTORY_MOVIES;
field public static java.lang.String DIRECTORY_MUSIC;
field public static java.lang.String DIRECTORY_NOTIFICATIONS;
field public static java.lang.String DIRECTORY_PICTURES;
field public static java.lang.String DIRECTORY_PODCASTS;
field public static java.lang.String DIRECTORY_RINGTONES;

Note that KitKat now requires permissions for the particular directory constants. If you do not
have permissions, you will have to handle a runtime exception. A safer API is to use
getExternalFilesDir(), which provides a handle to your application’s private storage directory
(usually on the SD Card) but does not tell you where it is. You won’t need permissions – but
you’ll have less control over the location of your files.

12

MVC: Model

In iOS, sharing is far more restricted than Android. Each application has its own document set
(in its sandbox), and there is no direct API to share documents between applications or use a
common shared storage like in Android. Instead, you have limited sharing of the user’s photos
and/or videos, using the AssetsLibrary. Basically, this limited form of sharing allows you to
see whichever documents the Photos application can see – provided you’ve the user’s
permission – like in the illustration:

13

The code to enable this functionality is a
fairly straightforward sequence of steps:

1) Instantiate an ALAssetsLibrary

ALAssetsLibrary *library = [[ALAssetsLibrary alloc] init];

2) Call the enumerateGroupsWithTypes library enumerator function to iterate through the
assets, or call assetForURL in order to find a particular asset by its URL. The enumeration
function is asynchronous, and requires two blocks – one called on enumeration, and one
called on failure (which usually implies the user has denied permission – but note you can
query [ALAssetsLibrary authorizationStatus] to preempt failure).

MVC: Model

Code to enumerate would look something like this:

14

// Instantiate the assets library
ALAssetsLibrary *library = [[ALAssetsLibrary alloc] init];

// Assets will be added to an array
NSMutableArray *assets = [[NSMutableArray alloc] init];

// Internal enumerator which we will call for each asset in a
// given group
ALAssetsGroupEnumerationResultsBlock assetEnumerator =

^(ALAsset *result, NSUInteger index, BOOL *stop) {
if (result != NULL) {

// NSLog(@“Asset result: %@", result);
[assets addObject:result];

}
};

// This is the enumerator called from the ALAssetsLibrary
ALAssetsLibraryGroupsEnumerationResultsBlock
assetGroupEnumerator = ^(ALAssetsGroup *group, BOOL *stop) {

if(group != nil) { // NSLog(@“Asset class: ");
// Call internal enumerator
[group enumerateAssetsUsingBlock:assetEnumerator];

}
};

[library enumerateGroupsWithTypes:ALAssetsGroupAlbum
usingBlock:assetGroupEnumerator
failureBlock: ^(NSError *error) {

NSLog(@“Dang!");
}

];

Note that we use two blocks (and an anonymous error block) here:

1) Called from enumerateGroupsWithTypes:usingBlock: This block is an
ALAssetsLibraryGroupsEnumerationResultsBlock, and will be
called once per group. The parameters of the block:

ALAssetsGroup *group: A pointer to the group object being enumerated
BOOL *stop: Enabling you to block further enumeration.

2) Called from within the first, will enumerate each asset within the group. It
is an ALAssetsGroupEnumerationResultsBlock (Note, Group, not Groups).
The parameters of the block are:

ALAsset *result: A pointer to the result
NSUInteger index: Index of the result inside the result set
BOOL *stop: Enabling you to block further enumeration

MVC: Model

http://lunarfrog.com/blog/2012/05/21/winrt-folders-access/

15

MVC: Model

The following sample code can be used to get the user’s contact list, using the
ContactsContract API:

16

MVC: Model

public StringBuffer dumpContacts() {
StringBuffer output = new StringBuffer();
ContentResolver contentResolver = getContentResolver();
Cursor cursor=contentResolver.query(ContactsContract.Contacts.CONTENT_URI, // URI

null, // projection
null, // selection
null, // selectionArgs
null); // sortOrder

// The query returns a “cursor”, and you may query it for the count of records returned
if (cursor.getCount() == 0) { /* No records… Do something? Return null? You decide.. */ }

while (cursor.moveToNext()) {
// Save contact unique ID for later use
String contact_id = cursor.getString(cursor.getColumnIndex(ContactsContract.Contacts._ID));

if (cursor.getInt (cursor.getColumnIndex(ContactsContract.Contacts.HAS_PHONE_NUMBER))> 0)
{

output.append("\n First Name:" +
cursor.getString(cursor.getColumnIndex(ContactsContract.Contacts.DISPLAY_NAME)));

output.append (doPhoneNumbers(contact_id));
}

output.append(doEmailAddresses(contact_id));
return (output);

} // end fetchContacts

What about the phone numbers and email addresses? You might want to think about this
before turning to the next page..

The following sample code can be used to get the user’s contact list, using the
ContactsContract API:

17

MVC: Model

StringBuffer doPhoneNumbers (String ContactID)
{

StringBuffer Output = new StringBuffer();
// Sub query for every phone number this contact may have. Note new cursor..
Cursor phoneCursor = contentResolver.query(

ContactsContract.CommonDataKinds.Phone.CONTENT_URI, // URI
null, // projection
ContactsContract.CommonDataKinds.Phone.CONTACT_ID + " = ?", // selection
new String[] { ContactID }, // selectionArgs
null);

// Sub loop to iterate over phone numbers, in similar manner ..
while (phoneCursor.moveToNext()) {

phoneNumber = phoneCursor.getString
(phoneCursor.getColumnIndex(ContactsContract.CommonDataKinds.Phone.NUMBER));

output.append("\n Phone number:" + phoneNumber);
}

phoneCursor.close();
return (output);

}

StringBuffer doEmailAddresses (String ContactID)
{

StringBuffer Output = new StringBuffer();
// Note only parameters modified here are Email.CONTENT_URI and EMAIL_CONTACT_ID.
Cursor emailCursor = contentResolver.query(

ContactsContract.CommonDataKinds.Email.CONTENT_URI,
null,
ContactsContract.CommonDataKinds.Email.CONTACT_ID + " = ?",
new String[] { contact_id },
null);

while (emailCursor.moveToNext()) {
output.append (“\nEmail” + emailCursor.getString(emailCursor.getColumnIndex

(ContactsContract.CommonDataKinds.Email.DATA));
}
emailCursor.close();
return(output);

}

The same cursor idea can be used for phone numbers, as you can see above (note the
selection and selectionArgs are populated and tied to ContactID, the argument), and
– below – for emails (nearly identical code)

In iOS, There are two separate frameworks dealing with contacts: AddressBook – which
provides the programmatic access to the data, and AddressBookUI, which provides custom
view controllers for displaying that data. The sample code to use AddressBook (AB) is shown
below:

18

MVC: Model

- (void)getAddressBook
{

CFErrorRef error = NULL;
ABAddressBookRef addressBook = ABAddressBookCreateWithOptions(NULL, &error);

if (addressBook != nil)
{

NSArray *allContacts = (__bridge_transfer NSArray *)ABAddressBookCopyArrayOfAllPeople(addressBook);
NSUInteger i = 0;
for (i = 0; i < [allContacts count]; i++)
{

ABRecordRef contactPerson = (__bridge ABRecordRef)allContacts[i];

NSString *firstName = (__bridge_transfer NSString*)
ABRecordCopyValue(contactPerson, kABPersonFirstNameProperty);

NSString *lastName = (__bridge_transfer NSString *)
ABRecordCopyValue(contactPerson, kABPersonLastNameProperty);

ABMultiValueRef emails = ABRecordCopyValue(contactPerson, kABPersonEmailProperty);

NSUInteger j = 0;
for (j = 0; j < ABMultiValueGetCount(emails); j++)
{

NSString *email = (__bridge_transfer NSString *)ABMultiValueCopyValueAtIndex(emails, j);
}

}
CFRelease(addressBook);

}

http://msdn.microsoft.com/en-
us/library/windows/apps/windows.applicationmodel.contacts.aspx

Sample @ http://msdn.microsoft.com/en-US/library/windows/apps/jj153343

19

MVC: Model

Flat files and XML will only get you so far, and do not scale well for large amounts of data. In
those caes, a relational, table-based database is preferred. When it comes to relational database
support both major OSes utilitze SQLite3, a free open source library. This library is ubiquitous
in desktops as well, and is used by browsers as well (for example, to provide the “Web
Database” APIs, as well as store their own data, such as cookies and sites visited).

iOS also offers a proprietary wrapper called Core Data. This is a wrapper that binds directly to
SQLite, but does a good job at hiding the underlying implementation, and SQL in general.

20

MVC: Model

SQLite wouldn’t be used by both rival OSes unless it were exceptionally simple and
straightforward To create and maintain a database, for example, it takes only a few commands :

21

MVC: Model

morpheus@Erudite (~)$ sqlitesqlitesqlitesqlite3 3 3 3 ////tmptmptmptmp/test/test/test/test
SQLite version 3.7.12 2012-04-03 19:43:07
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> CREATE CREATE CREATE CREATE TABLE TABLE TABLE TABLE foo foo foo foo (id (id (id (id INTEGER INTEGER INTEGER INTEGER PRIMARY KEYPRIMARY KEYPRIMARY KEYPRIMARY KEY,,,,

...> name name name name VARCHAR(VARCHAR(VARCHAR(VARCHAR(20202020),),),),

...> descdescdescdesc TEXT);TEXT);TEXT);TEXT);
sqlite> INSERT INSERT INSERT INSERT INTO INTO INTO INTO foo foo foo foo (name, (name, (name, (name, description) description) description) description) VALUES VALUES VALUES VALUES (‘Me', ‘My description‘);(‘Me', ‘My description‘);(‘Me', ‘My description‘);(‘Me', ‘My description‘);
sqlite> select * from select * from select * from select * from foo;foo;foo;foo;
1|Me|My description
sqlite> .quit.quit.quit.quit
morpheus@Erudite (~)$ file file file file ////tmptmptmptmp/test/test/test/test
/tmp/test: SQLite 3.x database

morpheus@Erudite (~)$ sqlitesqlitesqlitesqlite3 3 3 3 ////tmptmptmptmp/test/test/test/test
sqlite> .dump.dump.dump.dump
PRAGMA foreign_keys=OFF;
BEGIN TRANSACTION;
CREATE TABLE foo (id INTEGER PRIMARY KEY, name varchar(20), desc TEXT);
INSERT INTO "xx" VALUES(1,‘Me',‘My description');
COMMIT;
sqlite>

Opening an existing database is just as simple. You can use “.dump” to get the commands
used to create it:

But just creating your own databases is boring an uninspiring. If you have a i-device, you can easily
investigate more interesting databases on it. In fact, you don’t need the device to be jailbroken – its
data files are backed up anyway. You can inspect the files in ~/Library/Application

Support/MobileSync/Backup/: You should be able to locate a hash directory for every device
you’ve synced. What you find in the directory will be a mix of property list and SQLite databases,
belonging to both your installed apps and the built-in apps. The names are also hashed (SHA-1,
apparently), though some (like ca3bc056d4da0bbf88b5fb3be254f… , a.k.anotes.db, for the
user notes) are well known.

22

MVC: Model

root@erudite (~)# cd ~/Library/Applicationcd ~/Library/Applicationcd ~/Library/Applicationcd ~/Library/Application\\\\ Support/Support/Support/Support/MobileSyncMobileSyncMobileSyncMobileSync/Backup/ /Backup/ /Backup/ /Backup/
root@erudite (..up)# ls
745c1b9302fc096b91b8a173a99ae1f0846dcf41
C87fa7d4895cabdacbe7b5e6996b4e6c8b0111d3
root@erudite (..up)# cd 745745745745cccc1111bbbb9302930293029302fcfcfcfc096096096096bbbb91919191bbbb8888aaaa173173173173aaaa99999999aeaeaeae1111ffff0846084608460846dcfdcfdcfdcf41414141
root@erudite (..41)# file * | grep SQL |more
0980c97ed02272065fe0462ef9c1c63dd59c7ed2: SQLite 3.x database
0a97fa1d8a196bc77a0dff0e35f374e8fbbdf704: SQLite 3.x database
..
af0a461cff85322d0c029fedc42e7841ecbd5b9f: SQLite 3.x database, user version 31
..

root@erudite (..41)# for f in `file * | for f in `file * | for f in `file * | for f in `file * | grepgrepgrepgrep SQL | cut SQL | cut SQL | cut SQL | cut ----d':' d':' d':' d':' ----ffff1111`; do echo `; do echo `; do echo `; do echo
".dump" | sqlite".dump" | sqlite".dump" | sqlite".dump" | sqlite3 3 3 3 $f; done $f; done $f; done $f; done | | | | grepgrepgrepgrep ____something_of_interestsomething_of_interestsomething_of_interestsomething_of_interest____

Using “sqlite3” on any of the files, followed by “.dump”, as shown above (in a script snippet
on all files) will dump both the database schema and the values. Using “grep” can then isolate
interesting tidbits of information. This technique is used very often by forensics analysts and law
enforcement officials (incidentally, without a need for a warrant) to get phone call records, chats,
texts, places where the phone has been , wi-fi you have connected to, music you’ve been listening
to, websites you’ve perused, and so much more: today’s mobile phones keep a plethora of
information. If the phone isn’t passcode locked, all they need to do is connect it to iTunes.
MobileSync will do the rest.

On the device itself, most of the SQLite database carry the “.sqlite3db” extension. If your
device is jailbroken, you can try “find . –name “*.sqlite3db” on the device itself.

Android wraps the SQLite APIs with Java objects.

23

public class DictionaryOpenHelper extends SQLiteOpenHelper {

private static final int DATABASE_VERSION = 2;
private static final String DICTIONARY_TABLE_NAME = "dictionary";
private static final String DICTIONARY_TABLE_CREATE =

"CREATE TABLE " + DICTIONARY_TABLE_NAME + " (" +
KEY_WORD + " TEXT, " +
KEY_DEFINITION + " TEXT);";

DictionaryOpenHelper(Context context) {
super(context,

DATABASE_NAME,
null,

DATABASE_VERSION);
}

@Override
public void onCreate(SQLiteDatabase db) {

db.execSQL(DICTIONARY_TABLE_CREATE);
}

}

MVC: Model

In iOS access to SQLite from objective-C is actually performed through C bindings. You will
need to #import <sqlite3.h> , which is the standard open source header. The header is
exceedingly well documented, and the reader is encouraged to check it (it is included in
virtually every Linux or OS X with gcc installed). Its useful methods are shown below:

24

MVC: Model

SQLITE_API int sqlitesqlitesqlitesqlite3333_open_open_open_open(
const char *filename, /* Database filename (UTF-8) */
sqlite3 **ppDb); /* OUT: SQLite db handle */

SQLITE_API int sqlitesqlitesqlitesqlite3333_prepare_v_prepare_v_prepare_v_prepare_v2222(
sqlite3 *db, /* Database handle */
const char *zSql, /* SQL statement, UTF-8 encoded */
int nByte, /* Maximum length of zSql in bytes. */
sqlite3_stmt **ppStmt, /* OUT: Statement handle */
const char **pzTail); /* OUT: Pointer to unused portion of zSql */

SQLITE_API int sqlitesqlitesqlitesqlite3333_step_step_step_step(sqlite3_stmt*);

SQLITE_API int sqlitesqlitesqlitesqlite3333_column_int_column_int_column_int_column_int(sqlite3_stmt*, int iCol);

SQLITE_API const unsigned char *sqlitesqlitesqlitesqlite3333_column_text_column_text_column_text_column_text(sqlite3_stmt*, int iCol);

SQLITE_API int sqlitesqlitesqlitesqlite3333_finalize_finalize_finalize_finalize(sqlite3_stmt *pStmt);

SQLITE_API int sqlitesqlitesqlitesqlite3333_close_close_close_close(sqlite3 *);

-(int) readDatabase:NSString dbPath
{
// Setup the database object
sqlite3 *database;

// Open the database from the users filesystem
if(sqlite3_open([dbPath UTF8String], &database) == SQLITE_OK)
{
// Compiling SQL isn’t strictly mandatory, but helps performance
const char *sql = "select * from myTable";
sqlite3_stmt *compiledStatement;
if (sqlite3_prepare_v2(database,

sql,
-1,
&compiledStatement,
NULL) != SQLITE_OK) { /* error */ }

// iterate through results
while(sqlite3_step(compiledStatement) == SQLITE_ROW) {

// Read the data from the result rows
char *col1 = sqlite3_column_text(compiledStatement, 1);
char *col2 = sqlite3_column_text(compiledStatement, 2);

// The char * can be converted to NSString, for example:
NSString *col1NSstr = [NSString stringWithUTF8String:col1];

} // end while

// Release the compiled statement from memory
sqlite3_finalize(compiledStatement);
sqlite3_close(database);
return (0);

}

Aside from the minor overhead of wrapping the C datatypes in the objective-C wrappers,
working with SQLite directly is simple – and in fact portable to Android, if native code is used
in the latter.

25

MVC: Model

The following simple example demonstrates its usage to read rows from some database
(specified by dbPath), and some table (“myTable”). Note the example is in Objective-C, but
the bulk of the work is carried out by C statements:

For those developers not wishing to use C or be too closely coupled to the database
implementation, iOS provides a powerful abstraction layer called Core Data.

Good references on iOS CoreData can be found in:
• Apple’s Core Data Tutorial

• Dr. Dobbs’ Journal article on Core Data (http://www.drdobbs.com/database/understanding-
core-data-on-ios/240004648),

• Stackmob tutorial
(https://blog.stackmob.com/2012/11/iphone-database-tutorial-part-1-learning-core-data/).

26

MVC: Model

27

(C) 2013 Jonathan Levin, Technologeeks.com http://isites.harvard.edu/icb/icb.do?keyword=k92820

All modern operating systems promote rapid application development by providing useful

APIs for common programming tasks, and mobile OSes are no exception. In fact, since mobile

devices possess even more features than desktops (such as location, touch support and

sensors), mobile APIs are often far richer than those of their counterpart OSes.

Support for APIs in all MOSes comes in the form of packages or libraries, which may be linked

with the application code to expose various classes and objects.

28

Mobile Frameworks & APIs

29

Mobile Frameworks & APIs

30

Mobile Frameworks & APIs

31

Mobile Frameworks & APIs

iOS has myriad frameworks sporting a wide variety of features. Apple makes the distinction
between “Public” frameworks (in /System/Library/Frameworks), and “Private”
frameworks (/System/Library/PrivateFrameworks). You can see the supported
frameworks on any device, or – for lack of one – you can inspect the iPhone SDK. Doing so
will reveal the following:

32

Mobile Frameworks & APIs

morpheus@Erudite (..)# pwdpwdpwdpwd
/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS6.0.sdk/System/Library
bash-3.2# lslslsls FrameworksFrameworksFrameworksFrameworks
AVFoundation.framework CoreMIDI.framework MediaToolbox.framework
Accelerate.framework CoreMedia.framework MessageUI.framework
Accounts.framework CoreMotion.framework MobileCoreServices.framework
AdSupport.framework CoreTelephony.framework NewsstandKit.framework
AddressBook.framework CoreText.framework OpenAL.framework
AddressBookUI.framework CoreVideo.framework OpenGLES.framework
AssetsLibrary.framework EventKit.framework PassKit.framework
AudioToolbox.framework EventKitUI.framework QuartzCore.framework
AudioUnit.framework ExternalAccessory.framework QuickLook.framework
CFNetwork.framework Foundation.framework Security.framework
CoreAudio.framework GLKit.framework Social.framework
CoreBluetooth.framework GSS.framework StoreKit.framework
CoreData.framework GameKit.framework SystemConfiguration.framework
CoreFoundation.framework IOKit.framework Twitter.framework
CoreGraphics.framework ImageIO.framework UIKit.framework
CoreImage.framework MapKit.framework VideoToolbox.framework
CoreLocation.framework MediaPlayer.framework iAd.framework

Using otool(1) or jtool with the –L switch will reveal the many dependencies the frameworks
have on private frameworks. One such framework, in particular, is UIKit:

33

Mobile Frameworks & APIs

morpheus@Erudite (…)$ jtooljtooljtooljtool ----L L L L AVFoundation.frameworkAVFoundation.frameworkAVFoundation.frameworkAVFoundation.framework////UIKitUIKitUIKitUIKit | | | | grepgrepgrepgrep PrivPrivPrivPriv
/System/Library/PrivateFrameworks/UIFoundation.framework/UIFoundation
/System/Library/PrivateFrameworks/IOSurface.framework/IOSurface
/System/Library/PrivateFrameworks/MobileKeyBag.framework/MobileKeyBag
/System/Library/PrivateFrameworks/MobileAsset.framework/MobileAsset
/System/Library/PrivateFrameworks/TelephonyUtilities.framework/TelephonyUtilities
/System/Library/PrivateFrameworks/WebBookmarks.framework/WebBookmarks
/System/Library/PrivateFrameworks/BackBoardServices.framework/BackBoardServices
/System/Library/PrivateFrameworks/XPCObjects.framework/XPCObjects
/System/Library/PrivateFrameworks/DictionaryServices.framework/DictionaryServices
/System/Library/PrivateFrameworks/GraphicsServices.framework/GraphicsServices
/System/Library/PrivateFrameworks/SpringBoardServices.framework/SpringBoardServices
/System/Library/PrivateFrameworks/AppSupport.framework/AppSupport
/System/Library/PrivateFrameworks/WebKit.framework/WebKit
/System/Library/PrivateFrameworks/WebCore.framework/WebCore
/System/Library/PrivateFrameworks/ProofReader.framework/ProofReader
/System/Library/PrivateFrameworks/PrintKit.framework/PrintKit
/System/Library/PrivateFrameworks/UIFoundation.framework/UIFoundation
/System/Library/PrivateFrameworks/IOSurface.framework/IOSurface
/System/Library/PrivateFrameworks/MobileKeyBag.framework/MobileKeyBag
/System/Library/PrivateFrameworks/MobileAsset.framework/MobileAsset
/System/Library/PrivateFrameworks/TelephonyUtilities.framework/TelephonyUtilities
/System/Library/PrivateFrameworks/WebBookmarks.framework/WebBookmarks
/System/Library/PrivateFrameworks/BackBoardServices.framework/BackBoardServices
/System/Library/PrivateFrameworks/XPCObjects.framework/XPCObjects
/System/Library/PrivateFrameworks/DictionaryServices.framework/DictionaryServices
/System/Library/PrivateFrameworks/GraphicsServices.framework/GraphicsServices
/System/Library/PrivateFrameworks/SpringBoardServices.framework/SpringBoardServices
/System/Library/PrivateFrameworks/AppSupport.framework/AppSupport
/System/Library/PrivateFrameworks/WebKit.framework/WebKit
/System/Library/PrivateFrameworks/WebCore.framework/WebCore
/System/Library/PrivateFrameworks/ProofReader.framework/ProofReader
/System/Library/PrivateFrameworks/PrintKit.framework/PrintKit

While on disk they are very neatly packaged and largely self-contained, from an API
perspective the iOS frameworks are not as neatly defined as Android’s packages. Because
Objective-C uses a flat namespace, framework functions are identified by a two letter
uppercased prefix.

The “Cocoa Touch” frameworks are primarily involved with View/Controllers, and as was
previously discussed most of those are pacakged in UIKit (The parallel of Mac OS X’s
AppKit).

34

Mobile Frameworks & APIs

The “Media Layer” frameworks deal with graphics, audio, and video.

35

Mobile Frameworks & APIs

The so called “Core Services” provide access to various support features, but do not provide
much UI (for the most part –AddressBook, EventKit and several others do have specific
UI component, as does QuickLook, though Apple separates those into “AddressBookUI”,
“EventKitUI” , etc, presenting them (somewhat inaccurately) as part of Cocoa Touch, even
though they have the same package prefix).

36

Mobile Frameworks & APIs

37

Mobile Frameworks & APIs

The “Core OS” frameworks are, per Apple, the “lowest level” of APIs provided by the
frameworks, though in practice it’s only one library (System) which holds this title rightfully.
The libSystem.dylib is, in addition to the C-runtime library, a wrapper over much additional
functionality:

38

Mobile Frameworks & APIs

(…)$ cdcdcdcd /Developer/Platforms//Developer/Platforms//Developer/Platforms//Developer/Platforms/iPhoneOS.platformiPhoneOS.platformiPhoneOS.platformiPhoneOS.platform/Developer/SDKs/iPhoneOS/Developer/SDKs/iPhoneOS/Developer/SDKs/iPhoneOS/Developer/SDKs/iPhoneOS6.06.06.06.0.sdk.sdk.sdk.sdk
(…)$ cd cd cd cd lslslsls usrusrusrusr/lib/system/lib/system/lib/system/lib/system////
libcache.dylib libkeymgr.dylib libsystem_kernel.dylib
libcommonCrypto.dylib liblaunch.dylib libsystem_m.dylib
libcompiler_rt.dylib libmacho.dylib libsystem_network.dylib
libcopyfile.dylib libremovefile.dylib libsystem_notify.dylib
libcorecrypto.dylib libsystem_blocks.dylib libsystem_sandbox.dylib
libdispatch.dylib libsystem_c.dylib libunwind.dylib
libdnsinfo.dylib libsystem_dnssd.dylib libxpc.dylib
libdyld.dylib libsystem_info.dylib

WinRT provides access to all of the runtime abilities by means of namespaces – somewhat
similar to Android. These namespaces are accessed through COM objects, which make them
available across several languages and development platforms –though Microsoft is
promoting the use of Javascript and .Net (i.e. C#) for WinRT development.

It should be noted that these namespaces are merely wrappers over the native Win32 (or
WoW64) APIs. As per the requirements of the Windows Store, however, only WinRT APIs
are allowed, meaning that using Win32/WoW64 will disqualify the app from the Windows
Store.

39

Mobile Frameworks & APIs

Listing of Windows namespaces can be found at http://msdn.microsoft.com/en-
us/library/windows/apps/br211377.aspx

40

Mobile Frameworks & APIs

41

http://developer.android.com/reference/android/location/LocationManager.html

Instantiated through system server: Context.getSystemService(Context.LOCATION_SERVICE).

Permissions: ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION

42

Mobile Frameworks: A Tour

The Apple Developer “Location Awareness Programming Guide” contains many more details
on location services.

43

Mobile Frameworks: A Tour

- (void) startLocationServices
{

if (nil == locationManager)
locationManager = [[CLLocationManager alloc] init];

locationManager.delegate = self;

if (wantSignificant)
[locationManager startMonitoringSignificantLocationChanges];

else // want Standard:
{
// Set accuracy and a filter
locationManager.desiredAccuracy = kCLLocationAccuracyKilometer;
locationManager.distanceFilter = 500;
[locationManager startUpdatingLocation];

}
}

Using the geolocation services in Windows is fairly straightforward. The example below is in

Javascript, but can be ported to C++ or C# easily:

44

Mobile Frameworks: A Tour

geolocator = new Windows.Devices.Geolocation.Geolocator();

geolocator.addEventListener("positionchanged", onPositionChanged);
geolocator.addEventListener("statuschanged", onStatusChanged);

function onPositionChanged(e) {
var coord = e.position.coordinate;
// coord.latitude,
// coord.longitude
// coord.accuracy;

}

Function onStatusChanged(e) {

switch (e.status) {
case Windows.Devices.Geolocation.PositionStatus.ready: /* … */
case Windows.Devices.Geolocation.PositionStatus.initializing: /* … */
case Windows.Devices.Geolocation.PositionStatus.noData: /* … */
case Windows.Devices.Geolocation.PositionStatus.disabled: /* … */

}
}

Once we have a user’s location, the next common task is to display it graphically, on a map.

Each mobile OS is tied to a particular mapping service – and with Android, it’s only natural

that it be Google Maps.

Google constantly refines and updates its mapping APIs, and the current version (at the time

of writing, that is) is APIv2.

The basic usage of a map is straightforward, and shown in this example (Which is a variant of

the “Hello Map” shown in the API documentation:

45

Mobile Frameworks: A Tour

NOTE: To use maps, you will need to download the Google Play Services SDK, and to acquire a Google
Maps API key. You will also need to get a developer certificate from Google, so your app is recognized
and served. You then have to add the key to your application’s manifest, that is add a meta-data element:

<application>
...

<meta-data android:name="com.google.android.maps.v2.API_KEY"
android:value="API_KEY"/>

</application>

This assumes the XML layout has been specified like this:

46

Mobile Frameworks: A Tour

public class MapPane extends Activity {
@Override
protected void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.map_activity);
// Get a handle to the Map Fragment. This assumes you
// specified the map fragment in your resources, of course
GoogleMap map = ((MapFragment) getFragmentManager()

.findFragmentById(R.id.map)).getMap();
// Set type: can do NORMAL, TERRAIN, HYBRID, SATELLITE or NONE
map.setMapType(GoogleMap.MAP_TYPE_SATELLITE);
LatLng harvard = new LatLng(42.3744 //42.3744°N,

-71.1169); //71.1169°W
map.setMyLocationEnabled(true);
map.moveCamera(CameraUpdateFactory.newLatLngZoom(harvard, 12));
map.addMarker(new MarkerOptions().title(“Harvard").

.icon(BitmapDescriptorFactory.fromResource(R.drawable.harvard_crest))
.snippet(“Where this course is delivered")
.position(harvard));

} // end onCreate
} // end Activity

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/map"
android:name="com.google.android.gms.maps.MapFragment"
android:layout_width="match_parent"
android:layout_height="match_parent"

/>

A full reference for the map object can be found at the Google Map API for Android site -

https://developers.google.com/maps/documentation/android/reference/com/google/androi

d/gms/maps/GoogleMap, but the above makes for a quick reference of the methods you’re

likely to use.

47

Mobile Frameworks: A Tour

48

Mobile Frameworks: A Tour

49

Mobile Frameworks: A Tour

“CoreMotion”, one of the aptly titled “Core Frameworks” of iOS, can be used to convey
motion notifications, in an alternative manner to using UIEvents.

A good reference:
http://developer.apple.com/library/ios/#documentation/EventHandling/Conceptual/EventHandl
ingiPhoneOS/motion_event_basics/motion_event_basics.html#//apple_ref/doc/uid/TP4000954
1-CH6-SW14

50

Mobile Frameworks: A Tour

Android is suited not just for mobile devices, but also for embedded ones. The OS supports a
wide array of sensors, which are especially useful when Android is used in climate control
devices, or other embedded platform, like Arduino based ones. Not all devices support all
sensors, and some sensors (for example, GRAVITY and RORATION_VECTOR) may be
implemented in software (i.e. by resampling another sensor, such as (in this case)
ACCELEROMETER). Sensors are either binary (e.g. proximity) or continuous

51

public static final int TYPE_ACCELEROMETER = 1;
public static final int TYPE_MAGNETIC_FIELD = 2;
public static final int TYPE_ORIENTATION = 3;
public static final int TYPE_GYROSCOPE = 4;
public static final int TYPE_LIGHT = 5;
public static final int TYPE_PRESSURE = 6;
// TYPE_TEMPERATURE is deprecated in favor of AMBIENT
public static final int TYPE_PROXIMITY = 8;
public static final int TYPE_GRAVITY = 9;
public static final int TYPE_LINEAR_ACCELERATION = 10;
public static final int TYPE_ROTATION_VECTOR = 11;
public static final int TYPE_RELATIVE_HUMIDITY = 12;
public static final int TYPE_AMBIENT_TEMPERATURE = 13;
public static final int TYPE_ALL = -1;

Mobile Frameworks: A Tour

http://developer.android.com/guide/topics/sensors/sensors_overview.html contains detailed
information about sesnors and how to use them. The following provides a quick cheat sheet:

I) In AndroidManifest.xml:

declare the need for the sensor, by specifying

<uses-feature android:name="android.hardware.sensor.type"
android:required="true|false" />

Specifying one of the type constants, and optionally settingandroid:required to
true if you want your application to only be installable if the sensor is present.

II) In Activity or service:

• Declare the component as implements SensorEventListener, specifically:

• public final void onAccuracyChanged(Sensor s, int accuracy);

• public final void onSensorChanged(SensorEvent event);

• When implementing onSensorChanged() remember not to block.

• Declare private fields (names are, of course, only suggestions):

• private SensorManager mSensorMgr;

• private Sensor mSesnsor;

• In OnCreate, initialize those fields:

• mSensorMgr = getSystemService(Context.SENSOR_SERVICE);

• Either setmSensor = getDefaultSensor(SENSOR.TYPE_type)

or iterate through getSensorList(SENSOR.TYPE_type);

You can query the sensor properties from the Sensor object, using the
getResolution(), getMaximumRange() and similar methods.

52

Mobile Frameworks: A Tour

• In OnResume (for activities)

• mSensorMgr.registerListener(this, mSensor,
SensorManager.SENSOR_DELAY_[FASTEST|GAME|UI|NORMAL]);

Setting SENSOR_DELAY will control the flux of messages, and impact battery life.

• In OnPause (for activities)

• mSensorMgr.unRegisterListener (this);

It’s important to unregister listeners in order to conserve battery life, since paused
activities can’t handle any callback processing anyway.

• In onSensorChanged (SensorEvent e):

• e.accuracy returns an accuracy constant:
SENSOR_STATUS_ACCURACY_[HIGH|MEDIUM|LOW|UNRELIABLE]. Binary
sensors (or continuous sensors in need of calibration) return UNRELIABLE.

• e.sensor gives you an instance of the sensor which generated the event. This is
needed if you register for more than one sensor notification in the same activity or
service.

• e.timestamp is specified in milliseconds, and tells you when the event happened

• e.values is an array of e.value.length values – depending on the sensor type.
Accelerometer, for example, using three values (the x, y and z axis).

53

Mobile Frameworks: A Tour

Windows 8 is closer to Android than to iOS in its implementation of sensors. Sensors are
grouped in the Windows.Devices.Sensors namespace. Windows 8 exports 7 sensors as
classes, and a call to getDefault() will obtain an instance. That is, to get an instance of an
accelerometer, you would use:

54

accelerometer = Windows.Devices.Sensors.Accelerometer.getDefault();
if (accelerometer != null) { /* Habemus accelerometer */ }

Mobile Frameworks: A Tour

Sensors can be used in either polling mode, or asynchronous notification mode. In polling
mode, the app needs to specify the reportInterval property, taking care not to be smaller
than the sensor’s (read-only) minimumReportInterval. The application then needs to set an
interval polling function, (for example, by a dedicated thread or Javascript setInterval) and
call getCurrentReading(), to return a reading object. The reading itself is sensor
dependent – continuing the example of the accelerometer, it would provide the
acceleration[X|Y|Z] properties.

Alternatively, an application may opt for asynchronous notifications, by installing a
readingChanged handler. For the accelerometer, an “shaken” handler can be installed, though
the shake event delivers no meaningful information past the act of shaking itself.

55

(C) 2013 Jonathan Levin, Technologeeks.com http://isites.harvard.edu/icb/icb.do?keyword=k92820

56

Tips:

• Channels: Remember mono = 1 Stereo = 2

• Sample size: 16 bit is default per channel

• Sample rate: 16khz: FM quality 44.1: CD quality

http://developer.android.com/guide/appendix/media-formats.htmlcovers supported formats in
Android.

57

Media Playback and Recording

Sample code:

58

Media Playback and Recording

AudioManager am = mContext.getSystemService(Context.AUDIO_SERVICE);
...

// Focus types: GAIN_TRANSIENT (temporary request)
// GAIN_TRANSIENT_EXCLUSIVE (no other sounds)
// GAIN_TRANSIENT_MAY_DUCK (previous owner can “duck”
// GAIN (permanent)
int result = am.requestAudioFocus(afChangeListener,

AudioManager.STREAM_MUSIC,
AudioManager.AUDIOFOCUS_GAIN);

if (result == AudioManager.AUDIOFOCUS_REQUEST_GRANTED) {
am.unregisterMediaButtonEventReceiver(RemoteControlReceiver);
// Start playback.

}

// When done
Am.abandonAudioFocus(afChangeListener)

59

Media Playback and Recording

OnAudioFocusChangeListener afChangeListener = new
OnAudioFocusChangeListener() {

public void onAudioFocusChange(int focusChange) {
switch (focusChange)
{

case AudioManager.AUDIOFOCUS_LOSS_TRANSIENT:
// Pause playback

case AUDIOFOCUS_LOSS_TRANSIENT_CAN_DUCK:
// keep on playing, but lower volume
case AudioManager.AUDIOFOCUS_GAIN:
// We have focus - Resume playback
case AudioManager.AUDIOFOCUS_LOSS:
// abandon Audio Focus

} // switch
} // onAudioFocusChange

}; // OnAudioFocusChangeListener

Sample code:

60

Media Playback and Recording

byte[] audioData = // get data from some FileInputStream
int size = android.media.AudioTrack.getMinBufferSize(8000,

AudioFormat.CHANNEL_CONFIGURATION_MONO,
AudioFormat.ENCODING_PCM_8BIT);

AudioTrack at = new AudioTrack(AudioManager.STREAM_MUSIC,
8000,
AudioFormat.CHANNEL_CONFIGURATION_MONO,
AudioFormat.ENCODING_PCM_8BIT,
size,
AudioTrack.MODE_STATIC);

if (at!=null) {
// Write data to track
at.write(audioData, 0, audioData.length);
at.play();
at.release();
}

AudioTimestamp is a new addition in Android 4.4 (KitKat), though it has been present for a

while in iOS. The idea is to allow application creators to better sync audio and video, or to

provide support for “markers” in audio files.

The usage is fairly simply – you create a new AudioTimestamp object, and then call

getTimestamp with it, to populate the object with data from a playing audiotrack. The object

is a simple structure containing two fields – the index of the playing audio frame

(framePosition) and the time in nanoseconds (nanoTime).

Note that, while this is fairly accurate, Android makes no guarantees as to accuracy, as there

may be latency between submitting the PCM data to the driver and the actual playback of

the data.

61

Media Playback and Recording

The android.media.SoundPool class supports the playing of short sound files by

preloading them into the “pool” , and then playing them by ID. When constructing the pool,

the user should specify three parameters – how many streams are to be loaded, their type

(usually AudioManager.STREAM_MUSIC), and their quality (usually left as 0). Following

that, the streams are loaded, and can be played by ID. This is shown in the following simple

example:

62

Media Playback and Recording

private sp = new SoundPool(2, // maxStreams
type, // AudioManager.STREAM_MUSIC,
0); // srcQuality

soundPool.setOnLoadCompleteListener(new OnLoadCompleteListener() {
@Override
public void onLoadComplete(SoundPool sp, int sample, int status)
{ this.loaded = true; }
}
);

soundID = soundPool.load(this, R.raw.sound1, 1);

// To play sound
if (this.loaded) {

sp.play(soundID, volume, volume, 1, 0, 1f);
}

63

Media Playback and Recording

The VideoView is a wrapper over another class -MediaPlayer – which can handle both
audio and video. It is also fairly simple to use – Either construct it (or use the create()
factory method), set the DataSource, call prepare() for external resources, and start().

64

Media Playback and Recording

private SurfaceView surfaceView;
private SurfaceHolder surfaceHolder;
@Override public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
getWindow().setFormat(PixelFormat.UNKNOWN);
surfaceView = (SurfaceView) findViewById(R.id.surfaceview);
surfaceHolder = surfaceView.getHolder();
surfaceHolder.addCallback(this);
surfaceHolder.setFixedSize(x, y);
SurfaceHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
mediaPlayer = new MediaPlayer();

if (mediaPlayer.isPlaying()){ mediaPlayer.reset(); }
mediaPlayer.setAudioStreamType(AudioManager.STREAM_MUSIC);
mediaPlayer.setDisplay(surfaceHolder);
try {

mediaPlayer.setDataSource(“/path/to/media”);
mediaPlayer.prepare();
} catch (Exception e)}

mediaPlayer.start();
}

Note:

- Media preparation can take a significant amount of time, and risks blocking your UI thread,
especially for off-device (read: Internet) resources. Calling prepare() on these resources is a
bad idea, as the application must remain responsive. For this, MediaPlayer provides
prepareAsync(), but this requires you to call setOnPreparedListener(), and provide
a listener which implements onPrepared().

- MediaPlayer instances you create in your activity are constrained by your activity
lifecycle. This means that if your activity loses visibility, media playback will be interrupted.
Likewise, if the device orientation changes (which forces a call to onStop()). It’s important to
release and re-create the MediaPlayer instances.

- Most applications opt to perform the media playback through a service. This makes more
sense, because it enables the media playback (specifically, audio) to continue in the
background, even if the application is not visible. The service can and should run as a
foreground service, and should implement a wake lock while it is active, to avoid the device
shutting off the screen and/or wi-fi to conserve power while the stream is active. If using a
service, remember to release the MediaPlayer instance in the onDestroy().

Also, see http://developer.android.com/guide/topics/media/mediaplayer.htmlfor more tips.

65

Media Playback and Recording

The reference page on the MediaPlayer class has a comprehensive state diagram which shows
the media player class state transitions:

Sample code:

66

Media Playback and Recording

NSURL *url = [NSURL fileURLWithPath:[[NSBundle mainBundle]
pathForResource:introVideoFileName ofType:@""]];

MPMoviePlayerController *moviePlayer =
[[MPMoviePlayerController alloc] initWithContentURL:url];

// Can set notification on MPMoviePlayerPlaybackDidFinishNotification
[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(moviePlayBackDidFinish:)
name:MPMoviePlayerPlaybackDidFinishNotification
object:moviePlayer]; // can call [moviePlayer release]

moviePlayer.controlStyle = MPMovieControlStyleNone;
moviePlayer.shouldAutoplay = YES;
[self.view addSubview:moviePlayer.view];
[moviePlayer setFullscreen:YES animated:YES];

Sample code:

67

Media Playback and Recording

- (void)viewDidLoad {
[super viewDidLoad];
NSURL *url = [NSURL fileURLWithPath:[[NSBundle mainBundle]

pathForResource:@“URL PATH HERE"
ofType:@"mp3"] // Or whatever codec
];

NSError *error;
audioPlayer = [[AVAudioPlayer alloc]

initWithContentsOfURL:url error:&error];
if (error)
{

NSLog(@"Error in audioPlayer: %@",
[error localizedDescription]);

} else {
audioPlayer.delegate = self;
[audioPlayer prepareToPlay];

}
}
-(void)playAudio
{ [audioPlayer play]; }
-(void)stopAudio
{ [audioPlayer stop]; }
-(void)adjustVolume
{

if (audioPlayer != nil)
{

audioPlayer.volume = // Adjust volume value here
}

}

68

Media Playback and Recording

69

root@generic:/system/bin # screencap -h
usage: screencap [-hp] [-d display-id] [FILENAME]

-h: this message
-p: save the file as a png.
-d: specify the display id to capture, default 0.

If FILENAME ends with .png it will be saved as a png.
If FILENAME is not given, the results will be printed to stdout.

root@generic:/system/bin # screenshotscreenshotscreenshotscreenshot
usage: screenshot [-s soundfile] filename.png

-s: play a sound effect to signal success
-i: autoincrement to avoid overwriting filename.png

root@generic:/system/bin # screenrecord --help
Usage: screenrecord [options] <filename>

Records the device's display to a .mp4 file.

Options:
--size WIDTHxHEIGHT

Set the video size, e.g. "1280x720". Default is the device's main
display resolution (if supported), 1280x720 if not. For best results,
use a size supported by the AVC encoder.

--bit-rate RATE
Set the video bit rate, in megabits per second. Default 4Mbps.

--time-limit TIME
Set the maximum recording time, in seconds. Default / maximum is 180.

--rotate
Rotate the output 90 degrees.

--verbose

Media Playback and Recording

Sample code to generate a screenshot:

70

- (void) getScreenShot:(NSString *Output)
{
CGFloat scale = 1.0f;
if ([[UIScreen mainScreen] respondsToSelector:@selector(scale)])

scale = [UIScreen mainScreen].scale;

UIGraphicsBeginImageContextWithOptions
(self.window.bounds.size, NO, scale);

UIGraphicsBeginImageContext(self.window.bounds.size);
[self.window.layerrenderInContext:UIGraphicsGetCurrentContext()];
UIImage *image = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

NSData * data = UIImagePNGRepresentation(image);
// PNG is generally better, but if you want JPG:
// NSData * data = UIImageJPEGRepresentation(image, quality);
[data writeToFile:Output atomically:YES];

}

Media Playback and Recording

71

http://social.msdn.microsoft.com/Forums/windowsapps/en-US/63dd9596-bf94-440b-847a-

961cbf036e7b/how-to-capture-screen-in-metro-app?forum=winappswithcsharp

Media Playback and Recording

Usage example: Note the order, as well as all the method calls, are mandatory.

72

Media Playback and Recording

MediaRecorder recorder = new MediaRecorder();
// Select source (required(required(required(required)))) DEFAULT, MIC, VOICE_*, CAMCORDER, etc
recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
// Select recording format (required(required(required(required)))) AMR_NB/WB, AAC_ADTS, THREE_GPP., AAC_ADTS, THREE_GPP., AAC_ADTS, THREE_GPP., AAC_ADTS, THREE_GPP.
recorder.setOutputFormat(MediaRecorder.OutputFormat.DEFAULT);
// Select encoder (required(required(required(required)))) AAC, AAC_ELD, HE_AAC, AMR_NB/WB,..
recorder.setAudioEncoder(MediaRecorder.AudioEncoder.DEFAULT);
// Select output file (required)(required)(required)(required)
recorder.setOutputFile(PATH_NAME);

recorder.prepare();
// and record..
recorder.start();
...
recorder.stop();

For most applications, capturing a photo on video is better off delegated to the default camera
application. Android’s camera app (as well as user-installable camera apps) support the
ACTION_IMAGE_CAPTURE and ACTION_VIDEO_CAPTURE intents, for stills and videos,
respectively.

To pass more information with the intent, you can use MediaStore.EXTRA_OUTPUT. If set,
Android will save the capture data to the URI specified in it. Otherwise, if it is not specified
and the data is small enough, it will be passed with the resulting intent. For video, you can also
specify EXTRA_VIDEO_QUALITY, and EXTRA_SIZE_LIMIT/EXTRA_DURATION_LIMIT, to
indicate the maximum size of the capture data.

Once you have the intent ready, it’s a simple matter of calling startActivityForResult,
with some request code you define in your activity. Then, as is always the case, you need to
implement onActivityResult(), and look for the requestCode to match the one you
have specified.

This is shown in the following sample code

73

Media Playback and Recording

import android.provider.MediaStore;

private final int MY_ACTIVITY_CODE = 1;
private final String FILENAME = “...";
private File mFile;

private void launchCamera(){

// "android.media.action.IMAGE_CAPTURE"

Intent intent = new Intent(ACTION_IMAGE_CAPTURE);

mFile = new File(FILENAME);
Uri outputFileUri = Uri.fromFile(mFile);
intent.putExtra(MediaStore.EXTRA_OUTPUT, outputFileUri);
startActivityForResult(intent, PICTURE_ACTIVITY_CODE);

}

protected void onActivityResult(int requestCode,
int resultCode,
Intent data)

{
if (requestCode == MY_ACTIVITY_CODE)

{
if (resultCode != RESULT_OK) { /* Error */ return; }
// Otherwise, we have the output file in mFile

}

} // end onActivityResult

74

Media Playback and Recording

As with MediaPlayer – which supports both audio and video – so does MediaRecorder. Usage

for video is just like in the audio case. Once again, order of invocation is pretty rigid.

75

MediaRecorder recorder = new MediaRecorder();
// Select recording format –––– MPEG_MPEG_MPEG_MPEG_4 4 4 4
recorder.setOutputFormat(MediaRecorder.OutputFormat.DEFAULT);
// Select source (required(required(required(required) CAMERA or DEFAULT) CAMERA or DEFAULT) CAMERA or DEFAULT) CAMERA or DEFAULT
recorder.setVideoSource(MediaRecorder.VideoSource.DEFAULT);
// Select encoder (required(required(required(required)))) HHHH263263263263, H, H, H, H264264264264, MPEG_, MPEG_, MPEG_, MPEG_4444_SP or DEFAULT_SP or DEFAULT_SP or DEFAULT_SP or DEFAULT
recorder.setVideoEncoder(MediaRecorder.VideoEncoder.DEFAULT);
// Optionally Set Size
recorder.setVideoSize(height,width);
// Select output file (required)(required)(required)(required)
recorder.setOutputFile(PATH_NAME);
// Initialize, with all selected parameters..
recorder.prepare();
// and record..
recorder.start();
...
recorder.stop();

Media Playback and Recording

76

Media Playback and Recording

https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/AVFoundat

ionPG/AVFoundationPG.pdf

77

function initCaptureSettings() {
captureInitSettings = null;
captureInitSettings = new

Windows.Media.Capture.MediaCaptureInitializationSettings();
captureInitSettings.audioDeviceId = "";
captureInitSettings.videoDeviceId = "";
captureInitSettings.streamingCaptureMode =

Windows.Media.Capture.StreamingCaptureMode.audioAndVideo;
captureInitSettings.photoCaptureSource =

Windows.Media.Capture.PhotoCaptureSource.videoPreview;
captureInitSettings.realTimeModeEnabled = true;
if (deviceList.length > 0)

captureInitSettings.videoDeviceId = deviceList[0].id;
}

http://code.msdn.microsoft.com/Media-Capture-Sample-adf87622– Sample capture

http://msdn.microsoft.com/en-us/library/windows/apps/hh465152.aspx- capturing a photo or
video using the camera dialog. Requires Webcam and microphone (for video)

Media Playback and Recording

78

Media Playback and Recording

UIImagePickerController *ip =
[[UIImagePickerController alloc] init];

cameraUI.sourceType = UIImagePickerControllerSourceTypeCamera;

// Filter media type capture to video only
ip.mediaTypes =
[[NSArray alloc] initWithObjects: (NSString *) kUTTypeMovie, nil];

ip.showCameraControls =
ip.toolbarHidden =
ip.navigationBarHidden = NO;

ip.wantsFullScreenLayout = YES;

// can also use this:
ip.allowsEditing = NO;

ip.delegate = self; // Must implement delegate interface

// Might need to tweak cameraViewTransform using CGAffineTransformScale

Augmented Reality (AR) is an exciting and popular realm of applications which combine
video input with real-time details on items in the feed. This can be accomplished by getting the
video camera preview directly in the application/activity’s view, then overlaying additional
layers on it. Usually, one or two more layers are added, containing the “augmentation” (i.e.
details, images, etc), and optionally the application’s controls. Google has openly declared its
interest in AR with its “Google Glass” – Android-based glasses, which will let their wearer see
the world from the glasses’ camera, along with details overlaid by the system.

There are two different approaches to treating AR in applications: The first requires processing
each video frame, analyzing it for “markers” – patterns which are recognizable by the app: e.g.
faces, landmarks, fonts and letters, etc. Once those are detected, the second layer “kicks in”
and overlays information on or by the markers, potentially overwriting them with other pixels
(effectively “erasing” them from existence). This approach provides “true” AR in that it is
sensitive to the images the user would have seen through the camera.

The second approach is “cheating” in the sense that the camera view doesn’t even matter.
Instead, the device location and orientation (if accurate enough) provide the precise
coordinates to determine what the camera would have been presenting to the user. The
overlaid information can be stored well ahead of time and displayed without consideration for
the images (i.e. with no image processing) – in the hope that nothing substantial has changed
in the location since the details were input.

79

Media Playback and Recording

You can use the Android Camera class to capture photos and videos directly from the

camera, though in many cases MediaRecorder provides a simpler API. There is an advantage,

however, to using the camera directly – and that is for augmented reality. You can create a

Surface to display what the camera is viewing, and layer additional views on top of it.

Remember that using the camera directly, as any type of recoding, requires the appropriate

permissions, and possibly feature sets (that is, aside from android.hardware.camera you

might want autofocus, flash, and other specific features).

80

Media Playback and Recording

An iOS full screen video (as discussed previously) will be suitable for the “cheating” method,
as it doesn’t offer image processing capabilities. In order to also process the image input
stream, the AVFoundation can be used. While somewhat more complicated than the
UIImagePicker method described previously, it offers the main advantage of asynchronous
image capture and retention in a buffer (i.e. no filesystem access required) – which makes it
perfect for further processing.

Sample code to do so would look thus – assuming your controller is called
MyVideoViewController, this is the .h file:

81

Media Playback and Recording

#import <AVFoundation/AVFoundation.h> // for AV* stuff// for AV* stuff// for AV* stuff// for AV* stuff

@interface MyVideoViewController : UIViewController {

}
@property (strong, nonatomic) IBOutlet UIView *vpView;
@property (nonatomic, retain) AVCaptureStillImageOutput *siOutput;

@end

The implementation would initialize the AVCaptureSession, normally in the viewDidLoad
callback handler:

82

Media Playback and Recording

AVCaptureSession *avcSession = [[AVCaptureSession alloc] init];

avcSession.sessionPreset = AVCaptureSessionPresetHigh; // Medium, Low..

AVCaptureVideoPreviewLayer *vpLayer =
[[AVCaptureVideoPreviewLayer alloc] initWithSession:avcSession];

// Maximize preview layer over our view (i.e. match bounds)
vpLayer.frame = self.vpView.bounds;

// Add preview layer as sub-view
[self.vpView.layer addSublayer:vpLayer];

AVCaptureDevice *device =
[AVCaptureDevice defaultDeviceWithMediaType:AVMediaTypeVideo];

// Set up an AVCaptureDeviceInput. Warning - This may fail.
AVCaptureDeviceInput *input =

[AVCaptureDeviceInput deviceInputWithDevice:device error:nil];
if (!input) { /* some error .. Probably want to abort */ }

// Otherwise, assuming input is not nil
[avcSession addInput:input];

// Now add output: Sample stillImageOutput:
siOutput = [[AVCaptureStillImageOutput alloc] init];
NSDictionary *outputSettings = [[NSDictionary alloc]
initWithObjectsAndKeys: AVVideoCodecJPEG, AVVideoCodecKey, nil];

[siOutput setOutputSettings:outputSettings];
[avcSession addOutput:siOutput];

// Could also add VideoDataOutput: This will require a dispatch queue
// and would require a delegate implementing SampleBufferDelegate
AVCaptureVideoDataOutput *vOutput =
[[AVCaptureVideoDataOutput alloc] init];

dispatch_queue_t queue = dispatch_queue_create(“..", NULL);
[vOutput setSampleBufferDelegate:self queue:queue];
dispatch_release(queue);

// Can set vOutput.minFrameDuration and videoSettings Here.
// [avcSession setSessionPreset:AVCaptureSessionPreset640x480];

[avcSession addOutput:vOutput];

// Start session
[avcSession startRunning];

Implementing theOutputSampleDataBufferDelegate involves a single method –
didOutputSampleBuffer:

MUCH more detail on this can be found in:

a) @jrpowers, “Computer Vision and Augmented Reality on iOS” - VTM IphoneDev Con 2011
b) “Pro iOS 5 Augmented Reality” - APress

83

Media Playback and Recording

- (void) captureOutput:(AVCaptureOutpu *)captureOutput
didOutputSampleBuffer:(CMSampleBufferRef) sampleBuffer
fromConnection:(AVCaptureConnection *) connection

{

CVImageBufferRef img = CMSampleBufferGetImageBuffer(sampleBuffer);

if (CVPixelBufferLockBaseAddress(img, 0) == kCVReturnSuccess)
{

// Do image processing

CVPixelBufferUnlockBaseAddress(img, 0);
} // end if CVPixelBufferLockBaseAddress..

} // end didOutputSampleBuffer

Android’s Camera APIs are quite powerful, and constantly evolve. They are a combination of
the Android API version, and the vendor’s camera feature support. In order to figure out which
camera parameters are supported, the following code can be used:

Where the “Parameters” are an object which can be queried using one of its myriad getters.
The setters allow the enablement of a particular feature, and the actual usage varies with the
feature in question. For example., face detection:

84

Media Playback and Recording

// Create an instance of Camera
mCamera = getCameraInstance();

// get Camera parameters
Camera.Parameters params = mCamera.getParameters();

mCamera.setFaceDetectionListener(new MyFaceDetectionListener());

class MyFaceDetectionListener implements
Camera.FaceDetectionListener {
@Override
public void onFaceDetection(Face[] faces, Camera camera) {

// Handle array of faces.length faces, each found at
// faces[i].rect.centerX(), faces[i].rect.centerY()

}
}

“Quick Response” (or simply QR) codes have exploded in popularity over the past several
years, and now appear in ads, prompting the passer-by to “scan this code with your mobile
phone” to be redirected to a web-page or obtain other information, such as a vCard. QR Codes
are, in effect, two dimensional bar-codes, and operate in the same way: the data is encoded in a
clearly visible pattern, with is delimited by fixed markers. These markers (three of them) are
recognizable by any scanner due to their fairly large size, and enable software recognizers to
“home in” on the tag. Because there are three such markers, there is only one way to align
them – so the QR code can be read when the mobile scanner is at any orientation, portrait or
landscape.

The amount of data in a QR code is fairly limited – up to about 8k, depending on the data type.
The most common datatype (alphanumeric) only allows up to 2.8k, which is why it is
commonly used as a link or (in some cases) calendar or contact data. QR Codes also have
support for Kanji, since they were developed in Japan, though the limit there is even smaller,
about 1.5k or so.

Image data can often be blurry, which is why QR codes use built-in error correction with
Reed-Solomon error correcting codes. Error correcting codes imply a certain necessary
redundancy, which is part of the reason the amount of data is so limited. Nonetheless, using
error correction makes the codes very efficient, because it allows the correct decoding of the
QR code by low resolution cameras as well.

85

Media Playback and Recording

The following illustration (from WikiPedia, under Creative Commons), demonstrates the
format of a QR code:

The open source “Zebra Crossing” library (http://code.google.com/p/zxing/) is one of several
implementations of QR code parsing, and has become the de facto standard for developers
who want to plug-in a fairly simple API that hides all the rather complicated encoding details.

86

Media Playback and Recording

