- Unfiltered raw water can be used, no addition of artificial food
- Endobenthic and soil species can be used, as the recording principle works in **soil** and **sediment**, too.
- High ecological relevance, e.g. 3 different indicator species used simultaneously in high numbers of replication
- Different behaviours (e.g. ventilation, locomotion) with different times and thresholds of response to chemical stress.
- Separate alarms for each type of behaviour and test species allow for an environmentally relevant alarm gradient.
- Four mathematical alarm algorithms calculate safe alarms.
- Email alert in alarm case to your home-PC.
- Flexible, handy, mobile system for all aquatic/ terrestric species
- Wide field of applications in waste water purification plants, drinking water works, water authorities and industries.
- The MFB has the most scientific backup (ca. 25 articles)

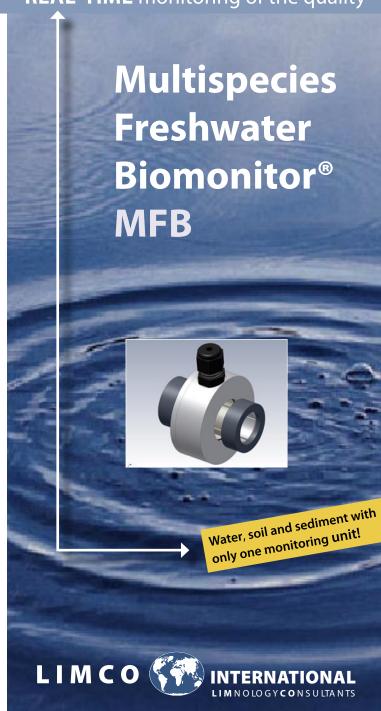
The MFB® replaces the use of several existing single-species biomonitors:

- effectively
- sensitively
- and cheaply

The MFB® has already been applied in the following countries in Europe:

Netherlands, Germany, United Kingdom, France, Portugal, Poland, Belgium, Sweden Also worldwide:

in Bolivia, China, South-Africa


EQUIPMENT

- The Multispecies Freshwater Biomonitor® (MFB) is available in different sizes, depending on the number of measurement channels: MFB-8, MFB-16, MFB-24, MFB-32 up to MFB-96. Each measurement channel is connected to one sensor.
- Sensors can be built in different sizes for different test species.
- We configure the MFB® according to your specific needs.
- We offer installation and training on site.
- On demand we offer also: Laptop, mobile energy supply solutions

More information and contact:

LIMCO International, Dr. Almut Gerhardt
An der Aa 5, D-49477 Ibbenbueren, Gemany
www.limco-int.com E-Mail: almutg@web.de
Phone / Fax: +49 5451 970390

Multispecies Freshwater Biomonitor® (MFB)

The MFB is a modern, all-in-one Biological Early Warning System (BEWS)/alert system for automated continuous, real-time monitoring of the quality of water (freshwater, marine), soil and sediment.

Components

The MFB consists of an automated measuring unit, the sensor test chambers for the test organisms and the software-application for windows.

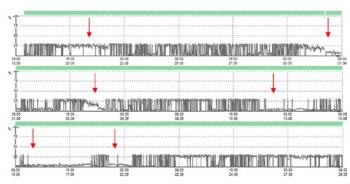
Measuring unit (e.g. 8 channels) and sensor test chamber, different sizes

Measurement principle

Basic recording principle: Quadropole impedance conversion in a flow-through test chamber of different sizes, forms and arrangements in rows (horizontal, vertical)

Recorded signals:

Stress behaviour and death: Typical behavioural patterns can be distinguished, e.g. locomotion and ventilation for many animals:



WATER / SEDIMENT

SOIL

AIR

Monitoring with G. pulex:
Arrows: warnings correlate with chemical irregularities (EU-SWIFT, 2006)

Applications

- Monitoring of rivers and small streams in remote areas of point pollution sources according to European laws (WFD, polluter pay principle, etc.): spills, floods, terrorism
- Whole-Effluent monitoring and toxicity testing WET
- Monitoring of purification steps in WWTPs
- Harbour control
- Remediation control
- Rapid Toxicity Testing of chemicals (Screening) REACH
- Eco/toxicological and ecological research
- (Neuro)Behavioural studies in laboratory and mesocosms e.g. diurnal rythms, vertical migration, etc.

Federal Environment Agency, Germany: MFB in mesocosms with different test chambers

in situ: cages with chambers, battery-operated MFB and laptop

Monitoring with G. pulex: Alarm situation

MFB-related publications (exerpt)

Gerhardt, A., et al (1994): Monitoring of behavioral patterns of aquatic organisms with impedance conversion technique. Environment International 20 (2), 209-219.

Gerhardt, A. (1996): Behavioural early warning responses to polluted surface water: Performance of G. pulex (Crust) and H. angustipennis Curtis (Insecta) to a complex industrial effluent. Envirnm. Sci. Pollut. Res. 3 (2), 63-70.

Gerhardt, A., et al (1998): A new online biomonitoring system for Gammarus pulex (L.) (Crustacea): in situ test below a copper effluent in South Sweden. Environmental Science & Technol. 32 (1), 150-156.

Gerhardt, A. (1999): Recent trends in online biomonitoring for water quality control. In: Gerhardt, A. (ed): Biomonitoring of Polluted Water. Revies on Actual Topics., Environmental Research Forum Vol 9, 95-118., TTP Switzerland, 301 pp.

Gerhardt, A. & K. Quindt (2000): Abwassertoxizität und -überwachung mit den Bachflohkrebsen Gammarus pulex (L.) u. Gammarus tigrinus (Sexton) (Crustacea). Wasser und Boden, 52/10, 19-26.

Gerhardt, A. (2000/1): A new Multispecies Freshwater Biomonitor for ecologically relevant surveillance of surface waters. In Butterworth, F. et al. (eds.) Biomonitors and biomarkers as indicators of environm. Change, II, Kluywer-Plenum, 301-317.

Gerhardt, A., et al (2003): Quality control of drinking water from the River Rhine (NI) with the Multispecies Freshwater Biomonitor. Aqu.Ecos.Health Man.Soc. 6 (2), 159-166.

Janssens de Bisthoven, L., et al (2004): Behavioural responses and survival to short-term Cr pollution in Chironomus sp. and tadpoles from Rio Rocha, Bolivia. Bull.Env.Cont.Tox.72, 422-28.

Gerhardt, A., et al (2004): Macroinvertebrate response to acid mine drainage:community metrics and on-line behavioural toxicity bioassay. Environmental Pollution 130, 263-274.

Gerhardt, A. et al (2005):Evidence for the Stepwise Stress Model: Gamb. holbrooki and Daphnia magna under AMD and ACID stress. Environmental Science & Technology 39/11, 4150-4158.

Kirkpatrick, A.J., et al (2006): Use of the Multispecies Freshw. Biomonitor to assess behavioural changes in Corophium volutator (Pallas, 1766) (Crustacea) in response to toxicant exposure in sediment. Ecotox., Envir. Saf., 64 (3), 298-303.

Gerhardt, A., et al (2006): In situ on-line toxicity biomonitoring in water: recent developments. Envir.Tox.and Chem., 25 (9), 2263-2272.

Sardo, A.M., Soares, A.M.V.M, Gerhardt, A. (2007). "Behavior, growth and reproduction of Lumbriculus variegatus (Oligochaetae) in different sediment types." Human and Ecological Risk Assessment, HERA 13 (3), 519-527.

Almut Gerhardt, Cornelia Kienle, Ian J. Allan, Richard Greenwood, Nathalie Guigues, Anne-Marie Fouillac, Graham A. Mills and Catherine Gonzalez, 2007. Biomonitoring with Gammarus pulex at the Meuse (NL), Aller (GER) and Rhine (F) rivers with the online Multispecies Freshwater Biomonitor®. Journal of Environmental Monitoring (JEM): DOI.10.1039/b706619h (17. Juli 2007), online.

downlowd full list of bibliographical references on www.limco-int.com

