Homework 10 Solution

Math 461: Probability Theory, Spring 2022

Daesung Kim
Due date: Apr 22, 2022

1. If X and Y are independent and identically distributed with mean μ and variance σ^{2}, find $\mathbb{E}\left[(X-Y)^{2}\right]$.

Solution: We have $\mathbb{E}[X-Y]=0$ and thus $\mathbb{E}\left[(X-Y)^{2}\right]=\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(-Y)=2 \sigma^{2}$.
2. If $\mathbb{E}[X]=1$ and $\operatorname{Var}(X)=4$, find (a) $\mathbb{E}\left[(2+X)^{2}\right]$ and (b) $\operatorname{Var}(4+2 X)$.

Solution: (a) $\mathbb{E}\left[(2+X)^{2}\right]=\mathbb{E}\left[4+4 X+X^{2}\right]=4+4 \cdot \mathbb{E}[X]+\left(\mathbb{E}[X]^{2}+\operatorname{Var}(X)\right)=13$ and (b) $\operatorname{Var}(4+2 X)=4 \operatorname{Var}(X)=16$.
3. The random variables X and Y have a joint density function given by

$$
f(x, y)= \begin{cases}2 e^{-2 x} / x & \text { if } 0<x<\infty, 0<y<x \\ 0 & \text { otherwise }\end{cases}
$$

Compute $\operatorname{Cov}(X, Y)$.

Solution: We have

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{\infty} \int_{0}^{x} x \cdot 2 e^{-2 x} / x d y d x=\int_{0}^{\infty} x \cdot 2 e^{-2 x} d x=1 / 2 \\
\mathbb{E}[Y] & =\int_{0}^{\infty} \int_{0}^{x} y \cdot 2 e^{-2 x} / x d y d x=\int_{0}^{\infty} x \cdot e^{-2 x} d x=1 / 4 \\
\mathbb{E}[X Y] & =\int_{0}^{\infty} \int_{0}^{x} x y \cdot 2 e^{-2 x} / x d y d x=\int_{0}^{\infty} x^{2} \cdot e^{-2 x} d x=1 / 4 .
\end{aligned}
$$

Thus $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]=1 / 4-1 / 2 \cdot 1 / 4=1 / 8$.
4. A total of n balls, numbered 1 through n, are put into n urns, also numbered 1 through n in such a way that ball i is equally likely to go into any of the urns $1,2, \ldots, i$. Find
(a) the expected number of urns that are empty;
(b) the probability that none of the urns is empty.

Solution: Let X_{j} equal 1 if urn j is empty and 0 otherwise. Then

$$
\mathbb{E}\left[X_{j}\right]=\mathbb{P}(\text { ball } i \text { is not in urn } j, i \geqslant j)=\prod_{i=j}^{n}(1-1 / i)=\frac{j-1}{n} .
$$

Hence,
(a) $\mathbb{E}[$ Number of empty bins $]=\sum_{j=1}^{n} \frac{j-1}{n}=\frac{n-1}{2}$.
(b) $\quad \mathbb{P}($ None are empty $)=\mathbb{P}($ ball j is in urn j, for all $j)=\prod_{j=1}^{n} \frac{1}{j}=\frac{1}{n!}$.
5. Consider n independent flips of a coin having probability p of landing on heads. Say that a changeover occurs whenever an outcome differs from the one preceding it. For instance, if $n=5$ and the outcome is $H H T H T$, then there are 3 changeovers. Find the expected number of changeovers.

Solution: Let X_{i} equal 1 if a changeover occurs on the i-th flip and 0 otherwise. Then

$$
\mathrm{E}\left[X_{i}\right]=\mathbb{P}((i-1) \text { is } \mathrm{H}, i \text { is } \mathrm{T})+\mathbb{P}((i-1) \text { is } \mathrm{T}, i \text { is } \mathrm{H})=2 p(1-p), i \geqslant 2 .
$$

Thus, expected number of changeovers is $(n-1) \cdot 2 p(1-p)$.
6. A group of 20 people consisting of 10 married couples is randomly arranged into 10 pairs of 2 each. Compute the mean and variance of the number of married couples that are paired together.

Solution: Let $X_{i}=\mathbf{1}_{\text {\{pair } i \text { consists of a married couple }\}}$. Thus $\mathbb{E}\left[X_{i}\right]=\mathbb{P}\left(X_{i}=1\right)=1 / 19, \operatorname{Var}\left(X_{i}\right)=$ $\frac{1}{19}\left(1-\frac{1}{19}\right), \operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathbb{P}\left(X_{i}=1, X_{j}=1\right)-\mathbb{P}\left(X_{i}=1\right) \mathbb{P}\left(X_{j}=1\right)=\frac{1}{19 \cdot 17}-\left(\frac{1}{19}\right)^{2}$ for $i \neq j$. Hence

$$
\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{10}\right)=10 \cdot \frac{1}{19}\left(1-\frac{1}{19}\right)+10 \cdot 9 \cdot\left[\frac{1}{19 \cdot 17}-\left(\frac{1}{19}\right)^{2}\right]=\frac{180 \cdot 18}{19^{2} \cdot 17}
$$

7. Let X_{1}, X_{2}, \ldots be independent random variables with common mean μ and common variance σ^{2}. Set $Y_{n}=$ $X_{n}+X_{n+1}+X_{n+2}, n \geqslant 1$. For $j \geqslant 0$, find $\operatorname{Cov}\left(Y_{n}, Y_{n+j}\right)$.

Solution:

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{n}, Y_{n}\right) & =\operatorname{Var}\left(Y_{n}\right)=3 \sigma^{2} \\
\operatorname{Cov}\left(Y_{n}, Y_{n+1}\right) & =\operatorname{Cov}\left(X_{n}+X_{n+1}+X_{n+2}, X_{n+1}+X_{n+2}+X_{n+3}\right) \\
& =\operatorname{Cov}\left(X_{n+1}+X_{n+2}, X_{n+1}+X_{n+2}\right)=2 \sigma^{2} \\
\operatorname{Cov}\left(Y_{n}, Y_{n+2}\right) & =\operatorname{Cov}\left(X_{n+2}, X_{n+2}\right)=\sigma^{2} \\
\operatorname{Cov}\left(Y_{n}, Y_{n+j}\right) & =0 \text { when } j \geqslant 3 .
\end{aligned}
$$

8. The joint density of X and Y is given by

$$
f(x, y)= \begin{cases}e^{-x / y-y} / y & \text { if } 0<x<\infty, 0<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Compute $\mathbb{E}\left(X^{2} \mid Y=y\right)$.
Solution: We have

$$
f_{Y}(y)=\int_{0}^{\infty} \frac{e^{-x / y-y}}{y} d x=e^{-y}
$$

for $y>0$, so that

$$
f_{X \mid Y}(x \mid y)= \begin{cases}\frac{1}{y} e^{-\frac{x}{y}} & x>0 \\ 0 & x \leqslant 0\end{cases}
$$

Now, we have

$$
\mathbb{E}\left(X^{2} \mid Y\right)=\int_{0}^{\infty} \frac{x^{2}}{y} e^{-\frac{x}{y}} d x=2 y^{2}
$$

9. The joint density of X and Y is given by

$$
f(x, y)= \begin{cases}e^{-y} / y & \text { if } 0<x<y, 0<y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Compute $\mathbb{E}\left(X^{3} \mid Y=y\right)$.

Solution: We have

$$
f_{Y}(y)=\int_{0}^{y} \frac{e^{-y}}{y} d x=e^{-y}
$$

so that

$$
f_{X \mid Y}(x \mid y)= \begin{cases}\frac{1}{y} & x \in(0, y) \\ 0 & \text { otherwise }\end{cases}
$$

We conclude that

$$
\mathbb{E}\left(X^{3} \mid Y=y\right)=\int_{0}^{y} \frac{x^{3}}{y} d x=\frac{y^{3}}{4}
$$

10. The number of people who enter an elevator on the ground floor is a Geometric random variable with mean 10. If there are N floors above the ground floor, and if each person is equally likely to get off at any one of the N floors, independently of where the others get off, compute the expected number of stops that the elevator will make before discharging all of its passengers.

Solution: Let Y_{i} be one if the elevator stops at the i-th floor, for $i=1, \ldots, N$. Let $Y=Y_{1}+\cdots+Y_{10}$. Let X be the number of passengers, i.e., X is Geometric with parameter $p=1 / 10$. We have $\mathbb{E}\left(Y_{i}=\right.$ $1 \mid X=k)=1-\left(\frac{N-1}{N}\right)^{k}$, so that

$$
\mathbb{E}(Y \mid X=k)=N\left(1-\left(\frac{N-1}{N}\right)^{k}\right)
$$

We have

$$
\begin{aligned}
\mathbb{E}(Y)=\mathbb{E}(\mathbb{E}(Y \mid X)) & =\mathbb{E}\left(N\left(1-\left(\frac{N-1}{N}\right)^{X}\right)\right) \\
& =N-N \sum_{k=1}^{\infty}\left(\frac{N-1}{N}\right)^{k} \frac{1}{10}\left(\frac{9}{10}\right)^{k-1} \\
& =N-\frac{N}{10} \cdot \frac{(N-1) / N}{1-9(N-1) /(10 N)}=N-\frac{N(N-1)}{N+9}=\frac{10 N}{N+9}
\end{aligned}
$$

