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ABSTRACT

Carabids and spiders have potential as bioindicators, but may experience niche 

overlap with some ants. While some studies have uncovered mixed responses by these taxa 

to ants, negative associations are frequently found. We examined carabids and spiders in a 

British Columbia clearcut in zones colonized and non-colonized by Formica aserva ants. The 

number of carabids captured in colonized and non-colonized zones differed significantly 

from expected, and species-specific patterns were observed. While the activity-abundance of 

most spider species did not differ between zones, the activity-abundances of five species 

were significantly different in colonized and non-colonized zones. We also investigated 

behavioural responses by the carabid Pterostichus adstrictus to signals of ant presence, and 

observed that this carabid avoided crushed F. aserva gasters. Our results indicate that F. 

aserva may influence the activity-abundance of some carabid and spider species, and that 

some carabids may be able to detect F. aserva chemical signals.
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CHAPTER ONE 

Introduction

Increased anthropogenic impacts on natural ecosystems, such as global climate 

change, introduction of exotic species, urbanization, agricultural land use, and natural 

resource extraction, coupled with a growing awareness of the need to maintain biodiversity 

since the Earth Summit in Rio de Janeiro in 1992 (Vicente, 2010), have increased the need 

for developing methods to monitor changes in the ecology and biodiversity of affected areas 

(Work et al., 2002, Duelli & Obrist, 2003). Forestry practices, such as timber harvesting, 

represent a disturbance particularly relevant to central British Columbia. Timber harvesting 

can have many effects on ecosystem characteristics beyond vegetation structure. Overstory 

removal can lead to microclimate changes, including soil temperature and moisture, water 

balance, and airflow patterns (Keenan & Kimmins, 1993). Timber harvesting and other 

forestry practices can also impact soil properties, biological productivity, and above-ground 

cycling of organic material (Jurgensen et al., 1997).

The scale, prevalence, and potential ecological impacts of such disturbances have 

contributed to a high level of interest in development and use of biological indicators, which 

can aid in monitoring, detecting, or assessing changes in the environment (Langor & Spence, 

2006; Rainio & Niemela, 2003). There are many definitions that describe the functions or 

characteristics of biological indicators. As defined by McGeoch (1998), a biological indicator 

is a “species or group o f species that readily reflects: the abiotic or biotic state o f  an 

environment; represents the impact o f  environmental change on a habitat, community or 

ecosystem; or is indicative o f the diversity o f  a subset o f  torn, or o f  wholesale diversity, 

within an area”, while Andersen (1999) describes biological indicators more simply as
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“readily measured components o f the biota that are used to provide general information 

about the complex ecosystems in which they occur”. In short, the goal of using biological 

indicators is to describe environmental change without examining all ecosystem features 

(Rainio & Niemela, 2003).

Several criteria are usually discussed relative to potential biological indicators, 

including their distributions, richness, abundances, role in ecosystem processes and 

sensitivity to environmental changes, simplicity and cost effectiveness of sampling and 

identification, and how reliably their responses to environmental change can be interpreted 

(Andersen, 1999). As a group, invertebrates are highly speciose, greatly outnumber 

vertebrates in nearly all habitats of the world, and are critical to innumerable biotic processes 

(Wilson, 1987; Maleque et al., 2006). Thus invertebrates, particularly insects and other 

arthropods, are often discussed as biological indicators (Rainio & Niemela, 2003; 

Summerville et al., 2004; Maleque et al., 2006; Scott et al., 2006). Insects are abundant, 

ubiquitous, ecologically diverse, and involved in many ecosystem processes (Rosenberg et 

al., 1986); populations of these organisms can also usually be sampled with ease and 

relatively little expense (Langor & Spence, 2006). Carabids (Coleoptera: Carabidae) and 

spiders (Araneae) are two groups that have received attention as potential indicator taxa 

(Pearce & Venier, 2006).

The family Carabidae, commonly referred to as ground beetles or carabids, are widely 

distributed, species rich, and have a relatively accessible taxonomy (Beaudry et al., 1997; 

Larochelle & Lariviere, 2003). Most adult carabids are relatively easy to identify, can usually 

be sampled using simple standardized techniques (Beaudry et al., 1997), and are generally 

sensitive to environmental factors (Larochelle & Lariviere, 2003). Adults are typically



considered polyphagous generalist predators or omnivores (Lindroth, 1961-1969), and are 

often opportunistic in their prey selection (Lovei & Sunderland, 1996). The distribution of 

carabids is typically limited by abiotic factors such as extremes in temperature or humidity, 

as well as soil conditions (Lindroth, 1961-1969). Food availability, species-specific life 

histories, and the occurrence and distribution of competing organisms also influence species 

distributions (Lovei & Sunderland, 1996). These features, among others including their 

abundance, size, and often eye-catching appearance, have contributed to carabids becoming a 

commonly studied family (Lovei & Sunderland, 1996; Larochelle & Lariviere, 2003). 

Carabids have received attention as possible indicators of habitat change (Rainio & Niemela, 

2003), including changes related to forests and forestry practices (Niemela et al., 1993; 

Beaudry et al., 1997; Larochelle & Lariviere, 2003; Pearce & Venier, 2006).

Spiders have also received attention regarding their potential use as biological 

indicators (Marc et al., 1999; Pearce & Venier, 2006; Gillette et al., 2008; Cristofoli et al., 

2010). The spider fauna is very species-rich and has high functional diversity. Spatial 

distributions of spiders are typically defined by limiting physical conditions, such as wind, 

light intensity, temperature, humidity, as well as biological variables including food supply, 

vegetation types, natural enemies, and competitors (Foelix, 1996). Feeding habits vary 

among spiders, but most are obligate carnivores and insects constitute the majority of many 

species’ prey (Wise, 1993). Numerous studies have also addressed spider populations and 

communities across a range of habitats (Turnbull, 1973).

Spider taxonomy is complex (Turnbull, 1973) and roughly 20 different classification 

schemes have been proposed since 1900 (Foelix, 1996). Taxonomic challenges, however, 

have not deterred efforts to assess the potential of spiders as biological indicators, including in

3



a forestry context (Pearce & Venier, 2006; Gillette et al., 2008). A preliminary study in British 

Columbia reported that spider families displayed high habitat specificity (Lindgren et al., 

1999). Responses of spider assemblages also appear to vary relative to different types of 

ecological disturbance (Buddie et al., 2000; Larrivee et al., 2005).

The specific species composition of an area is influenced by many factors, and 

observed patterns arise from combinations of multiple variables and a hierarchy of intricate 

interacting processes (Morin, 1999). Interspecific interactions can affect the composition of 

assemblages and the species abundances within them (Morin, 1999). Detection of 

interspecific interactions, however, is often difficult despite its recognition as a fundamental 

ecological process (Parr & Gibb, 2010). Field manipulation of assemblages is often difficult 

to perform, and consequently much of the evidence supporting the existence of interspecific 

interactions is non-experimental and is based upon findings of non-overlapping distributions 

(Parr & Gibb, 2010).

Some carabids, spiders, and ants (Hymenoptera: Formicidae) may occupy similar 

guilds as surface-active generalist predators (Lovei & Sunderland, 1996), and these groups 

may experience some degree of niche overlap based on abundance, feeding habits, 

distribution, and similarity of activity patterns (Lovei & Sunderland, 1996; Hawes et al., 

2002; Reznikova & Dorosheva, 2004). Lovei and Sunderland (1996) suggest that failure to 

account for the presence of ants could result in some community studies forming incomplete 

or invalid conclusions. Humphrey et al. (1999) also acknowledged the need to identify biotic 

factors that may influence assemblage compositions, such as ants. Shedding light on the 

possible relationships between ants, carabids, and spiders may improve the accuracy of these
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groups as indicators, enhance our understanding of ground dwelling arthropod hierarchies in 

disturbed habitats, and increase our understanding of the basic ecologies of these groups.

Given the potential to utilize carabid and spider assemblages as indicators, additional 

research regarding potential interspecific interactions could help to refine interpretation of 

changes in their abundance and diversity. In many areas, including British Columbia, 

relatively little is known regarding the interspecific interactions between ant species and 

other ground dwelling arthropods. The ecology and diversity of ant species in central British 

Columbia is also relatively unknown, and little information is available on their specific 

ecosystem functions (Lindgren & Maclsaac, 2002). In this thesis, I have examined the effects 

of Formica aserva Forel ant colonies on carabids and spiders in a disturbed habitat in the 

central interior of British Columbia. I have also examined behavioural responses by carabids 

to possible signals of ant presence in an effort to help explain observed distributions of 

carabids. My objectives were to: (1) examine carabid assemblages relative to the occurrence 

of F. aserva nests (Chapter 2); (2) shed light on carabid behavioural responses to F. aserva 

glandular chemicals (Chapter 3); and (3) to assess spider assemblages relative to the 

occurrence of F. aserva nests (Chapter 4).

Ants are among the most widely distributed and abundant animal taxa (Holldobler & 

Wilson, 1990; Higgins & Lindgren, 2006). Involved in many diverse ecosystem processes, 

ants are important in shaping soil physical and chemical properties, predation of other 

invertebrates, facilitation of organic matter decomposition, serving as a food source for 

vertebrate species, dispersal of seeds, as well as a variety of other roles (Holldobler &

Wilson, 1990 and references therein; Lindgren and Maclsaac, 2002 and references therein).
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So called wood ants, specifically of the Formica rufa species group, often maintain 

territories where an area containing food, nest sites, or other resources are defended 

(Holldobler & Wilson, 1990). The territories of wood ants are often large (Reznikova & 

Dorosheva, 2004) and forager densities frequently correlate with forager aggression 

(Savolainen & Vepsalainen, 1988). Given this relationship, a relatively small number of 

dominant ant nests have the potential to appreciably impact local faunas through patrol and 

defense of extensive foraging areas around nests (Holldobler & Wilson, 1990).

Numerous studies have addressed the effects of ants on other arthropod fauna 

(Holldobler & Wilson, 1990; Niemela et al., 1992; Karhu, 1998; Laakso & Setala, 2000; 

Hawes et al., 2002). For example, Punttila et al. (2004) observed a strong effect o f wood ants 

on the majority of invertebrate groups in mountain birch trees (Betula pubescens Ehrh.) 

(Betulaceae). Gonsalves et al. (2005) also found that predatory ants had a negative effect on 

termite activity, while non-predatory ants did not, suggesting that predation by ants may be 

an important disturbance factor in some ecosystems. In some cases, direct interactions with 

ants may not be required for them to influence other arthropods (Offenberg et al., 2004;

Oliver et al., 2008). Artificially low Formica aquilonia Yarrow ant densities created by 

Laakso and Setala (2000) also resulted in increased activity of other predatory arthropods, 

which they described as a compensatory shift in the predatory invertebrate guild.

Several studies have also addressed potential interactions specifically between 

carabids and ants, and mostly negative relationships have been identified (Niemela et al., 

1992; Koivula et al., 1999). Areas of high Formica rufa L. densities in mature Scots pine 

(Pinus sylvestris L.) were associated with low carabid abundance and species richness, and 

this effect was described as the most important variable in determining small-scale carabid
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distributions (Hawes et al., 2002). A recent study in central British Columbia also found that 

the activity-abundance of F. aserva had a generally negative effect on the activity-abundance 

of many carabid species (McColl, 2010).

Ants and some spiders may also be competitors and/or mutual predators (Van der Aart 

& de Wit, 1971; Wise, 1993; Halaj et al., 1997; Heikkinen, 1999; Sanders & Platner, 2007). 

Activity of Formica obscuripes Forel on sagebrush, Artemisia tridentata Nutt. (Asteraceae), 

near ant nests was determined to have a negative influence on spider abundance (Heikkinen, 

1999). Additional studies have also found ants to have negative or mixed associations with 

spiders in other habitats (Howard & Oliver, 1978; Cherix & Bourne, 1980; Sudd & Lodhi, 

1981; Halaj et al., 1997; Punttila et al., 2004; Sanders & Platner, 2007), while other studies 

have concluded that the presence of ants is inconsequential to spider populations (Van der 

Aart & de Wit, 1971; Sterling etal., 1979; Briming, 1991; Neuvonen et al., 2012).

Formica aserva is an ecologically versatile and broadly distributed member of the 

Formica sanguinea species group (Naumann et al., 1999). Often a dominant ant in central 

British Columbia (McColl, 2010), F. aserva (formerly known by the junior synonym F. 

subnuda Emery) shares biological and ecological characteristics with the Formica rufa 

species group (Fisher & Cover, 2007). As a facultative slave taker (Francoeur, 1983), F. 

aserva likely requires suitable slave species to colonize a habitat prior to the establishment of 

their own colonies through nest parasitism (Higgins, 2010). Formica aserva is commonly 

associated with harvested areas where coarse woody debris is present and open canopy 

conditions result in increased thermal exposure of the forest floor (Higgins & Lindgren, 

2012a). Based on these habitat requirements, the presence of F. aserva in cool subboreal
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regions of central British Columbia varies with stand age (Higgins, 2010); indicating that in 

cool environments it is a disturbance specialist (Higgins & Lindgren, 2012a).

In the following chapters I will present the findings of my examination of the effects 

of F. aserva colonies on carabids (Chapter 2) and spiders (Chapter 4) in a disturbed habitat in 

the central interior of British Columbia, and my observations of the behavioural responses of 

carabids to F. aserva glandular chemicals (Chapter 3). These chapters have been formatted 

for publication in refereed journals, and are hence written to acknowledge the input, support, 

and advice of others that have influenced and informed this research.
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CHAPTER TWO

Interspecific Interactions of Carabidae (Coleoptera) species and Formica aserva Forel 

ants (Hymenoptera: Formicidae)

Abstract

Carabid beetles have attracted attention as potential bioindicators of forest habitat 

changes, but relatively few studies have investigated interactions between carabids and other 

fauna. Some studies have found negative associations between certain ant species and 

carabids, which may be the result of predation or competitive interactions. This could alter or 

mask the responses of carabids to habitat features, and consequently influence the 

interpretation of carabid responses to disturbance. We examined the activity-abundance of 

carabids in a central British Columbia clearcut in zones colonized and non-colonized by 

Formica aserva, hypothesizing that the activity-abundance of carabid species would vary 

between these zones. Calathus ingratus and Pterostichus adstrictus were captured more 

frequently in non-colonized zones than in colonized zones. The opposite pattern was found 

for Pterostichus ecarinatus, Pterostichus herculaneus, and Syntomus americanus. Our results 

supported our hypothesis that the activity-abundance of some carabid species was different 

between areas colonized and non-colonized by F. aserva. Direct observations of carabid 

responses to aggressive ants and their signals are necessary before specific conclusions can 

be drawn regarding the nature of effects by ants on carabids.

Keywords: competition, bioindicator, species interaction, Formicidae, ants, Carabidae, 

ground beetles
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Introduction

As a taxonomically and ecologically well-studied insect family, carabids (Coleoptera: 

Carabidae) have received attention as possible bioindicators of habitat changes (Rainio & 

Niemela, 2003), including those associated with forest harvesting practices (Niemela et al., 

1993; Beaudry et al., 1997; Pearce & Venier, 2006) and environmental quality (Eyre et al., 

1996). Given the potential to utilize carabid assemblages as indicators of habitat change, it is 

important to understand the variables that may influence carabid behaviour and distributions. 

For example, ants (Hymenoptera: Formicidae) may be a complicating factor that could 

confound other correlations with habitat characteristics (Lovei & Sunderland, 1996; 

Humphrey et al., 1999). Some carabids and ants appear to experience niche overlap in terms 

of feeding habits, distributions, and seasonal activity patterns (Lovei & Sunderland, 1996; 

Hawes et al., 2002). Ants are known to significantly affect other insect fauna (Holldobler & 

Wilson, 1990; Karhu, 1998; Laakso & Setala, 2000; Punttila et al., 2004), and negative 

interactions observed between some ants and carabids may be the result of competition or 

predation (Howard & Oliver, 1978; Hawes et al., 2002; McColl, 2010).

Areas of high Formica rufa L. densities in mature Scots pine (Pinus sylvestris L.) in 

the United Kingdom were associated with low carabid abundance and species richness 

(Hawes et al., 2002). It was suggested that the effect of F. rufa on the abundance and 

distribution of most carabid species could override or mask the influence of other habitat 

characteristics in determining small-scale carabid distributions (Hawes et al., 2002). Other 

studies have also identified mostly negative relationships between carabids and ants 

(Niemela et al., 1992; Koivula et al., 1999; McColl, 2010). The response of carabids to the
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presence of ants is not, however, always consistent among species (Niemela et al., 1992; 

Koivula et al., 1999; Hawes et al., 2002; McColl, 2010).

Formica aserva Forel, a member of the Formica sanguinea species group, is 

ecologically versatile and widely distributed (Naumann et al., 1999). Formica aserva are 

aggressive and omnivorous (Phillips & Willis, 2005; Higgins, 2010) with nests that may 

include several hundred (Naumann et al., 1999) to a few thousand individuals (Savolainen & 

Deslippe, 1996). This species is commonly found in British Columbia and frequently nests 

within coarse woody debris (Lindgren & Maclsaac, 2002; Higgins, 2010). A facultative slave 

taker (Francoeur, 1983), F. aserva colonies usually establish through nest parasitism, which 

requires that suitable slave species colonize a habitat prior to F. aserva (Higgins, 2010). In a 

cool, sub-boreal region of central British Columbia, F. aserva was absent in pine stands that 

were mature or recently (2-3 years) harvested. It was common in stands 8-10 years post­

harvest with populations peaking at 13-15 years before decreasing in 23-25 year old stands 

(Higgins, 2010). This indicated that in cool environments, while not a pioneer species, it is a 

disturbance specialist dependent on high solar radiation heating available prior to canopy 

closure in regenerating stands (Higgins & Lindgren, 2012a).

In the same area of British Columbia, McColl (2010) found a decrease in carabid 

activity-abundance in areas with high (>150 workers/pitfall trap) F. aserva activity- 

abundance, compared to areas with no or low (0-50 workers) F. aserva activity-abundance. 

Interestingly, carabid activity-abundance was not significantly different between areas with 

no F. aserva, low (1-50 workers), or moderate (51-150 workers) F. aserva activity- 

abundances. Significant species-specific responses to F. aserva activity-abundance were not 

identified (McColl, 2010).
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To expand upon McColl’s (2010) correlative studies, we selected a recently disturbed 

habitat that appeared to be in a period of F. aserva population establishment and growth 

based on nest density and distribution. This characteristic allowed us to examine the potential 

effects of F. aserva on carabid beetles by directly comparing catches in areas with similar 

habitat characteristics but different F. aserva presence. We hypothesized that the activity- 

abundance of carabid species in a central British Columbia clearcut would be different between 

areas colonized and not colonized by F. aserva.

Materials and Methods

Study Area and Field Data Collection

Five replicates were established in the wet cool subzone o f the sub-boreal spruce 

biogeoclimatic zone (SBSwkl) (Meidinger et al., 1991; Government of British Columbia, 

2008) approximately 40km east of Prince George, British Columbia (elevation 740m, located 

approximately 53.901° N, 122.219° W). The replicates were within a five year post-harvest 

block (Government of British Columbia, 2011). We selected this area based on a preliminary 

survey that indicated patchy colonization by F. aserva. The harvest block had a maximum 

length and width of approximately 2400m and 650m, respectively. The long axis of the block 

had a generally north-south orientation. Replicates were spaced at least 100m apart along the 

long axis of the block, and selected based on apparent habitat homogeneity.

Two zones, with (colonized) or without (non-colonized) F. aserva nests, were 

delineated within each replicate. Colonized and non-colonized zones were determined by a 

100% survey of the replicates to detect and mark visibly active F. aserva nests (based on the 

presence of workers and/or thatching material). Due to the highly unpredictable activity- 

abundance of Formica obscuripes Forel workers relative to nest location (Higgins &
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Lindgren, 2012b), F. aserva worker activity-abundance was not used to delineate colonized 

and non-colonized zones, only to verify the accuracy of our selection criteria. Colonized 

zones were parallel to the long axis of the harvested area along a forestry road that bounded 

the west side of the harvest area. Non-colonized zones were located east of the colonized 

zones, and farther into the harvest area away from the road. Within each replicate, two pitfall 

trap lines were established, one in each zone. Trap lines in colonized zones were oriented to 

maximize exposure to nests, i.e., foraging worker ants, and trap lines in non-colonized zones 

were positioned at least 25m from any F. aserva nest. Trap lines had approximately north- 

south orientations, were at least 50m apart, and at least 25m from roads or habitat edges.

Each trap line consisted of six modified Nordlander pitfall traps (Nordlander, 1987; 

Lemieux & Lindgren, 1999; Higgins & Lindgren, 2012b) spaced at 10m intervals. Pitfall 

traps measure the activity-abundance of ground active invertebrate species because their 

capture is dependent both on the species density and the rate at which individuals travel 

(Greenslade, 1964). Pitfall traps were constructed as described by McColl (2010) using 8oz 

translucent multipurpose plastic containers with lid (VWR International) 7.5cm deep and 

8cm in diameter with 12mm by 6mm entrance holes punched below the container rim using a 

standard paper hole punch. A second cup served as a sleeve to enable trap servicing with 

minimal soil and organic litter disturbance. Each pitfall trap was filled to a depth of 

approximately 2-4cm with 25:75 propylene glycol:water solution (Pearce et al., 2005;

McColl, 2010). Pitfall traps in the colonized zones were set May 26,2010 with closed inner 

cups to prevent collection. Pitfall traps in non-colonized zones were set May 27, 2010. All 

pitfall traps were active May 27,2010 to September 2, 2010; contents were collected and 

propylene glycolrwater solution refilled every 14 days.
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Site Assessment

On July 14, 2010 the number of active F. aserva nests within 5m of each pitfall trap 

was measured. On August 9, 2010 two relative soil moisture and two soil pH measurements 

were taken at each pitfall trap using a moisture and pH meter (Gardena Canada, Ltd., model 

#RLM4444 RMOTE) inserted approximately eight centimeters into the ground on opposite 

sides of each pitfall trap. On August 14, 2010 a Canon Powershot A640 ten megapixel digital 

camera was used to take a photograph from approximately 1.75m above of each pitfall trap to 

assess ground cover within a lm2 frame.

Using methodology adapted from Daubenmire (1959), plots were assessed for ten 

types of ground cover: in-ground stumps with an approximate diameter greater than 10cm; 

coarse woody debris (CWD); fine woody debris (FWD); wood in advanced decay (WAD); 

surface litter; mineral soil or sand; grass; shrubs; forbs; and conifers. Pieces of solid dead 

wood greater than 10cm mean diameter estimated from the photo plot were classified as 

CWD, pieces less than 10cm diameter were identified as FWD, and fragments o f broken or 

rotting wood were considered WAD (McColl, 2010). Ground cover such as fallen needles, 

moss, dead vegetation or leaves, and other decomposing organic matter on the soil surface 

were categorized as surface litter. Shrubs and forbs were differentiated based on stem 

characteristics, overall growth form, and personal knowledge. Photographs of each plot were 

imported into Microsoft® Office PowerPoint® 2007 and divided into a grid of 16 cells. The 

percent cover was estimated for each cell. Estimates were based on 0%, 25%, 50%, 75%, or 

100% cover of up to four cover types. The 16 cover estimates of each photo plot were 

averaged to create a mean estimated percent cover for each pitfall trap.
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Specimen Identification

Pitfall trap contents were sorted into general taxonomic categories and stored in 70% 

ethanol. Initial carabid species identifications were made at the University o f Northern 

British Columbia using Lindroth (1961-1969) and Noonan (1991). Identifications were 

verified with the assistance of D. Shpeley1. Voucher specimens will be deposited at the E.H. 

Strickland Entomological Museum, University of Alberta.

Analysis

Data from pitfall traps that were disturbed by adverse weather conditions (flooding), 

animal interference, or trap malfunction (trap entrance holes not at ground level) were not 

included in analyses. Data were standardized to total trapping effort (98 trapping days) to 

adjust for trap disturbance. Captures of individual pitfall traps within each replicate zone 

were summed. The two measurements of soil moisture and soil pH, respectively, were 

averaged for each pitfall trap and then averaged within replicate zone. The soil moisture and 

soil pH of the colonized and non-colonized zones were compared using a Mann-Whitney U 

test. Mean estimates of cover types for each pitfall trap were averaged within replicate zone, 

and differences in estimated cover percentages between colonized and non-colonized zones 

were evaluated with Mann-Whitney U tests. Formica aserva activity-abundance and the 

number of F. aserva nests were summed within replicate zone, and colonized and non- 

colonized zones were each compared using Mann-Whitney U tests. All Mann-Whitney U 

tests were calculated using SYSTAT 11(©2005 SYSTAT Software, Inc.).

Relatively rare carabid species (defined as those with fewer than five specimens

captured in either zone) were not analyzed. Differences in the activity-abundance of

1 Assistant curator, E.H. Strickland Entomological Museum, Department o f  Biological Sciences, University o f  
Alberta, Edmonton, AB T6G 2E9, Canada



relatively common carabid species (five or more specimens captured in either zone) were 

assessed by a Log likelihood test using a 1:1 expected ratio (Zar, 1984).

Results

Neither mean relative soil moisture (Mann-Whitney U test statistic=16, N - 5, 5, 

P=0.465) nor mean soil pH (Mann-Whitney U test statistic=l 1.5, JV=5, 5, P=0.834) differed 

significantly when comparing the colonized and non-colonized zones (i.e., with and without 

Formica aserva nests) (Figure 2.1). Similarly, the estimated mean percent cover of the ten 

cover types did not differ significantly between colonized and non-colonized zones (Table

2.1). Significantly more F. aserva workers, however, were captured in the colonized zones 

than in the non-colonized zones (Mann-Whitney U test statistic=25, N= 5, 5, P=0.009). 

Significantly more F. aserva nests were also found in the colonized zones compared to the 

non-colonized zones (Mann-Whitney U test statistic=22.5, N= 5, 5, P=0.018) (Figure 2.2).

One hundred and thirty nine carabids representing seven genera and eleven species 

were captured. Five species were categorized as relatively rare (Agonum retractum LeConte 

(1 captured in colonized zone, 0 captured in non-colonized zone), Harpalus laticeps LeConte 

(0,1), Harpalus solitaris Dejean (2,3), Pterostichus riparius (Dejean) (2,0), and Trechus 

chalybeus Dejean(2,0)). Six species were categorized as relatively common, including 

Calathus ingratus Dejean, Pterostichus adstrictus Eschscholtz, Pterostichus ecarinatus 

Hatch, Pterostichus herculaneus Mannerheim, Syntomus americanus (Dejean), and Synuchus 

impunctatus (Say) (Table 2.2).

The number of relatively common carabids captured in colonized and non-colonized 

zones differed significantly from expected (Log-Likelihood: G=59.33, df= 5, P<0.001) (Table

2.2). Calathus ingratus and P. adstrictus were captured more frequently than expected in
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non-colonized zones compared to colonized zones. The opposite was found for P. ecarinatus, 

P. herculaneus, and S. americanus. Synuchus impunctatus was caught in similar numbers in 

both colonized and non-colonized zones and did not differ from expected ratios.

Discussion

Our results support our hypothesis that the activity-abundance of carabid species 

would differ between areas colonized and not colonized by Formica aserva. Four species, 

Pterostichus ecarinatus, Pterostichus herculaneus, Syntomus americanus, and Synuchus 

impunctatus did not appear to be negatively affected in habitats where F. aserva colonies 

were present, and all but S. impunctatus had higher activity-abundance in areas with F. 

aserva nests compared to areas without nests (Table 2.2). The significant differences in F. 

aserva activity-abundance and nest number between the colonized and non-colonized zones 

confirm that our selection criteria for these zones were valid. The lack of differences between 

colonized and non-colonized zones for any other factor measured (soil moisture, pH, and 

ground cover) indicate that the presence of F. aserva is a possible explanatory variable for 

our results.

The different responses found among carabid species in our study was in agreement 

with variation among other species responses recorded in earlier studies. Other studies have 

found some carabid species, including Calathus micropterus (Duftschmid) (Niemela et al., 

1992), Amara brunnea Gyllenhal (Koivula et al., 1999), Notiophilus biguttatus (Fabricius) 

(Koivula et al., 1999; Hawes et al., 2002), and Carabus regalis Fischer von Waldheim 

(Reznikova & Dorosheva, 2004) in close proximity to areas populated by Formica spp. ants, 

generating hypotheses that such species may be able to coexist with ants by avoiding direct 

encounters or even by utilizing dead ants as a resource (e.g., for food).
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Knowledge gaps in the life histories of the species identified in this study make it 

difficult to explain specific mechanisms responsible for the observed species distributions. At 

a coarser scale, however, general hypotheses about the causes of species distributions may be 

possible. For example, Hengeveld (1981) found the remains of Formicidae (mainly Myrmica) 

in guts of four out of five Pterostichus species examined. Dorosheva and Reznikova (2006) 

observed that Pterostichus magus (Mannerheim) and C. regalis consumed dead ants in a 

laboratory. Pterostichus magus was also captured more often in pitfall traps containing either 

dead Formica aquilonia ants or F. aquilonia nest material compared to pitfall traps 

containing forest litter (Dorosheva & Reznikova, 2006). These findings suggest P. magus 

may be attracted to cues associated with ants, or that they may utilize dead ants removed 

from their nest by nest mates (Dorosheva & Reznikova, 2006). Many ant species exhibit 

necrophoresis, either disposing of corpses in distinct piles, or distributing their dead more or 

less randomly away from the nest site (Holldobler & Wilson, 1990). It may be that P. 

ecarinatus, P. herculaneus, and S. americanus were able to utilize such resources.

The differences in the autecology of P. ecarinatus, P. herculaneus, and S. 

americanus, however, suggest that these species should interact with F. aserva in different 

ways. Pterostichus ecarinatus and P. herculaneus are moderate runners incapable of flight; 

both are also nocturnal species that shelter under or within woody debris during the day 

(Larochelle & Lariviere, 2003). Syntomus americanus on the other hand is a mostly diurnal, 

swift-running carabid, but also typically lacks the ability to fly (Larochelle & Lariviere,

2003). It is possible that some species utilize dead F. aserva directly as a resource (e.g., the 

nocturnal P. ecarinatus and P. herculaneus), while other species that have similar foraging 

patterns to F. aserva may benefit indirectly (i.e., overlap of foraging periods and locations
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may benefit some carabids if they are able to take advantage of prey flushed from their cover 

by F. aserva activity).

Our finding that the activity-abundance of S. impunctatus did not differ from 

expected ratios (i.e. ,1:1) between F. aserva zones (Table 2.2) raises interesting questions 

about the life history and behaviour of this species. Synuchus impuncatus is primarily 

nocturnal, and is described as a moderate runner with omnivorous feeding habits (Larochelle 

& Lariviere, 2003). It is also a habitat generalist (Pearce & Venier, 2006) and may be able to 

adapt to the presence of ants, e.g., by effectively avoiding negative encounters with 

individual ants, which would be consistent with our results.

Formica aserva workers are reported to consistently attack intruders within their 

territory, including foreign ants and non-ant aphid predators (Phillips & Willis, 2005). They 

do, however, distinguish between different threats and are not equally aggressive to all 

perceived intruders (Phillips & Willis, 2005). Given this, it is possible that F. aserva may not 

respond equally to all carabid species. Savolainen and Vepsalainen (1988) commented that 

forager density is positively correlated with forager aggression. In west-central British 

Columbia the occurrence of F. aserva is greatest in areas 13 to 15 years post harvest and 

relatively uncommon 2-3 years post harvest (Higgins, 2010). Thus it is possible that the F. 

aserva colonies in our study (five years post-harvest) were not yet of sufficient size to defend 

their territories as aggressively as would have been expected based on findings of other 

studies which included more established ant populations (Niemela et al., 1992; Hawes et al., 

2002; McColl, 2010). Dorosheva and Reznikova (2006) also proposed that the 

aggressiveness of an ant encountering a carabid may influence the behaviour of the carabid. 

Relationships between the behaviour of colony workers, which may change over time as a
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result of colony growth, and the behaviour of different carabid species may be important 

variables in determining the effect of F. aserva nests on overall carabid assemblages.

Conversely, the similar activity-abundances of S. impunctatus in colonized and non- 

colonized zones could indicate that this species had a lower abundance in the former but was 

captured more frequently due to a behavioural response to F. aserva presence (McColl,

2010). Reznikova and Dorosheva (2000) proposed that some carabids present in what they 

termed “ant-controlled territory” were more likely to be observed running quickly, making 

turns, and were less likely to pause than carabids in areas with reduced ant activity. They also 

proposed that these behavioural trends were species-specific because other species spent 

more time motionless (with legs and antennae held underneath their bodies). If the activity of 

S. impunctatus was influenced by F. aserva presence or disturbance, then it is plausible that 

captures of P. ecarinatus, P. herculaneus, and S. americanus were similarly affected. If this 

were the case, our sampling methods could have masked negative effects associated with F. 

aserva presence experienced by the species we captured more frequently in colonized areas.

Two species, Calathus ingratus and Pterostichus adstrictus, had lower activity- 

abundance in zones with F. aserva colonies compared to non-colonized zones (Table 2.2). 

Both C. ingratus and P. adstrictus are nocturnal and can be found in a wide variety of 

habitats (Larochelle & Lariviere, 2003). Given that both species had lower than expected 

activity-abundances in zones with F. aserva nests, it is possible they may be more negatively 

affected by the presence of F. aserva than the four other common species in our study. 

Possible explanations could include greater niche overlap or lower behavioural plasticity in 

interactions with F. aserva. It is also possible, however, that the activity-abundance patterns

20



of C. ingratus and P. adstrictus were the result of reduced activity, rather than abundance, in 

response to the presence of F. aserva (Reznikova & Dorosheva, 2000).

Hawes et al. (2002) found that carabids of different size classes responded differently 

to various F. rufa density levels. The activity-abundances of the carabid species in our study 

did not show clear differences based on body size. Pterostichus ecarinatus, S. impunctatus,

C. ingratus, and P. adstrictus are moderately sized beetles 7-13mm in length (Lindroth, 

1961-1969) and had different activity-abundance patterns relative to the presence of F. 

aserva. The smallest (S. americanus) and largest (P. herculaneus) of the common carabid 

species, 2.7-3.5mm and 13.5-17mm respectively (Lindroth, 1961-1969), were both captured 

more than expected (i.e., > 1:1) in colonized zones. Given the low number o f carabids 

captured, and apparent inconsistency in body length and activity-abundance patterns of 

common species, we are unable to determine whether body size is related to the activity- 

abundance patterns we observed. It should also be noted that the ant densities of Hawes et al. 

(2002) were much greater than those of our study.

The attention carabids have received as potential bioindicators increases the need for 

continued research into their relationships with abiotic and biotic habitat components. There 

is a growing body of literature supporting the value of addressing possible interactions 

between carabids and ants (Niemela et al., 1992; Lovei & Sunderland, 1996; Oliver &

Beattie, 1996; Humphrey et al., 1999; Koivula et al., 1999; Hawes et al., 2002; McColl, 

2010). Ant presence and species composition within a habitat change over time (Higgins, 

2010) and different ant densities and species have unique effects on carabids (McColl, 2010). 

Complex interactions involving responses to habitat changes, interspecific pressures, and 

behavioural characteristics may all act in combination with species-specific seasonal patterns
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and niche requirements to create distribution patterns. Greater understanding of these 

variables may help to improve the reliability of carabids as bioindicators.

Our results indicate that F. aserva may affect the activity-abundance of some carabid 

species. The mechanisms of such effects, however, are not known. Aggressive behaviour, 

e.g., as shown for the negative effect of Lasius niger L. ants on cocinellid beetles (Adalia 

bipunctata L.) (Oliver et al., 2008), is one possible mechanism. Some insects may also have 

the ability to detect the chemical signals associated with ants. For example, A. bipunctata 

beetles are able to adjust their behaviour in response to L. niger semiochemicals (Oliver et 

al., 2008), and Offenberg et al. (2004) found that chrysomelid beetles (Rhyparida wallacei 

Baly) preferentially fed on leaves collected from trees absent of Oecophylla smaragdina 

(Fabricius) ants compared to the leaves of trees with O. smaragdina. Direct observations of 

how different carabid species respond to aggressive ants or their semiochemicals would be 

valuable in improving our understanding of the effect of ants on carabid assemblage structure 

and species abundance.
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Table 2.1. Mean and standard error of estimated percent ground cover surrounding pitfall 

traps in the colonized and non-colonized zones. The results of estimated percent ground 

cover comparison between colonized and non-colonized zones are shown (Mann-Whitney U 

test, SYSTAT 11, ©2005 SYSTAT Software, Inc.).

Formica
aserva
zone

Cover Type

Stumps CWD FWD WAD Litter Mineral
Soil Grass Shrubs Forbs Conifers

Colonized 1.146 9.635 33.073 7.188 18.698 1.042 0.729 16.771 10.104 1.615
Mean (± SE) (0.827) (1.733) (3.027) (1.193) (1.871) (0.577) (0.333) (3.225) (1.825) (0.611)

Non-colonized 1.667 7.656 34.896 6.979 22.240 0.469 1.719 14.010 7.865 2.500
Mean (± SE) (0.974) (1.602) (2.656) (1.576) (1.996) (0.250) (0.852) (2.486) (1.241) (0.898)

P  value 0.435 0.295 0.602 0.917 0.249 0.519 0.461 0.754 0.402 0.600

Table 2.2. Activity-abundance (standardized to 98 trap-days) of carabid species for which at 

least five individuals were captured in zones colonized or non-colonized by Formica aserva. 

Data in table rounded to nearest whole number.

Formica
aserva
zone

Number of Carabids Captured

Calathus
ingratus

Pterostichus
adstrictus

Pterostichus
ecarinatus

Pterostichus Syntomus 
herculaneus americanus

Synuchus
impunctatus

Colonized 1 7 16 24 19 13

Non-colonized 6 26 1 2 3 10
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Figure 2.1. Mean measurements of relative soil moisture (Mann-Whitney U test statistic=16, 

N=5, 5, P=0.465) (a) and soil pH (Mann-Whitney U test statistic=l 1.5, N= 5, 5, / >=0.834) (b). 

Measurements were taken at each pitfall trap and averaged for each trap line in zones 

colonized and non-colonized by Formica aserva. Box boundaries indicate the 25th and 75th 

percentiles, the solid line within each box is the median, the dashed line represents the 

sample mean, and outer bars show the 5th and 95th percentiles (SigmaPlot® 11.2 © 2009- 

2010 SYSTAT Software, Inc.).
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Figure 2.2. Mean Formica aserva activity-abundance (Mann-Whitney U test statistic=25, 

N= 5, 5, P=0.009) (a) and mean number of F. aserva nests located within five meters of 

pitfall traps (Mann-Whitney U test statistic=22.5, N= 5, 5, P=0.018) (b) in zones colonized 

and non-colonized by Formica aserva. Box boundaries indicate the 25th and 75th percentiles, 

the solid line within each box is the median, the dashed line represents the sample mean, and 

outer bars show the 5th and 95th percentiles (SigmaPlot® 11.2 © 2009-2010 SYSTAT 

Software, Inc.).
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CHAPTER THREE

Response by Pterostichus adstrictus Eschscholtz (Coleoptera: Carabidae) to crushed 

gasters of Formica aserva Forel workers (Hymenoptera: Formicidae).

Abstract

Pheromones are used in the intraspecific communication of ants, and some other 

insects also have the ability to detect these chemical signals. Our study examined responses 

of the carabid Pterostichus adstrictus to chemicals associated with Formica aserva ants. We 

hypothesized that if carabids could detect the presence of F. aserva prior to direct encounters, 

then their behaviour would be different in the presence of crushed F. aserva gasters. Using 

live P. adstrictus we conducted choice bioassays in plastic rectangular arenas. For each 

beetle two bioassays were conducted, a treatment and control. Treatment bioassays examined 

possible behavioural responses to the crushed F. aserva gasters. Control bioassays were 

conducted to assess for side bias associated with the experimental setup or other 

unaccounted-for variation. In treatment bioassays P. adstrictus spent less time near the 

crushed gasters compared to an area without crushed gasters. By comparison, beetles 

displayed no side bias in the control bioassays. Our results support the hypothesis that some 

carabid species may be able to detect the presence of F. aserva prior to direct encounters.

The potential for P. adstrictus to detect chemical signals associated with ants may help 

explain activity-abundance patterns of this species in habitats were F. aserva are present. 

Keywords: behaviour, species interaction, semiochemicals, Formicidae, ants, Carabidae, 

ground beetles
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Introduction

In ants (Hymenoptera: Formicidae), communication is conducted through the use of 

pheromones, a type of semiochemical used specifically in an intraspecific context (Parry & 

Morgan, 1979 and references therein). Most ant species use pheromone trails (Offenberg et 

al., 2004), which they typically detect and follow when they’re in a gaseous state, creating 

what Holldobler and Wilson (1990) described as “vapor tunnels”. In the sub-family 

Formicinae these trails are emitted from the hind gut of workers (Parry & Morgan, 1979) and 

in red wood ants these signals can persist for long periods (Rosengren & Fortelius, 1987 and 

references therein). In Formica polyctena Forster, these trails are used to recruit and direct 

conspecifics to a food source (Rosengren & Fortelius, 1987 and references therein).

Chemical communication is also used among ants in defensive or alarm situations 

(Blum & Brand, 1972). Formic acid has been described as an alarm signal in the genus 

Formica, and is a common secretion of venom glands in formicine species (Ayre & Blum, 

1971; Blum & Brand, 1972; Parry & Morgan, 1979). A second alarm pheromone common in 

formicine species is w-undecane, which is produced in the Dufour’s gland (Ayre & Blum,

1971; Blum & Brand, 1972), and is a large component of Formica sanguinea Latreille 

Dufour’s gland secretions (Parry & Morgan, 1979; Ali et al., 1988). For three Camponotus 

species, Ayre and Blum (1971) stated that activity stimulated by formic acid and «-undecane 

declined after eight minutes and was generally absent after 32 minutes. The hind gut, venom 

gland, and Dufour’s gland are located in the gaster of ants (Holldobler & Wilson, 1990).

Some other insects also have the ability to detect the chemical signals associated with 

ants. The leaf beetle Rhyparida wallacei Baly (Coleoptera: Chrysomelidae) feeds 

preferentially on leaves collected from trees not occupied by Oecophylla smaragdina
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(Fabricius) weaver ants compared to the leaves of occupied trees (Offenberg et al., 2004).

The ladybird beetle Adalia bipunctata L. (Coleoptera: Coccinellidae) also adjust their 

behaviour in response to Lasius niger L. ant semiochemicals, and the spatial distribution of 

ants may influence the distribution of predatory cocinellids (Oliver et al., 2008). Similarly, 

Van Mele et al. (2009) found that for Ceratitis cosyra (Walker) and Bactrocera invadens 

Drew-Tsurata & White (Diptera: Tephritidae) fruit flies, the number of landings and the time 

spent on fruits that had been exposed to Oecophylla longinoda (Latreille) ants was lower than 

the number of landings and time spent on fruits with no previous ant exposure. In their study, 

fewer attempts to oviposit in fruits exposed to O. longinoda were also recorded compared to 

non-exposed fruits, and fewer puparia emerged from O. longinoda exposed fruits (Van Mele 

et al., 2009). Van Mele et al. (2009) proposed that the behavioural changes of C. cosyra and 

B. invadens indicated that these species were possibly responding to predator avoidance cues 

associated with O. longinoda presence.

Given the ability of some beetles to perceive and respond to ant pheromones or other 

signals of ant presence, it is possible that carabids (Coleoptera: Carabidae) that occur with or 

near aggressive ant species may perceive and respond to similar signals. Several studies have 

identified mostly negative relationships between carabids and ants (Niemela et al., 1992; 

Koivula et al., 1999; Reznikova & Dorosheva, 2004; McColl, 2010), and it has been 

proposed that negative interactions observed between some ants and carabids may be the 

result of competition or predation (Howard & Oliver, 1978; Hawes et al., 2002). Where such 

interactions occur, selective pressures may favour carabids with the ability to detect and 

respond to ant semiochemicals.
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The responses of different carabid species to ants vary, however (Niemela et al.,

1992; Hawes et al., 2002; McColl, 2010), and the precise nature of interactions between ants 

and carabids are largely unknown. This type of information is of particular value if carabids 

are to be used as bioindicators (Niemela et al., 1993; Eyre et al., 1996; Beaudry et al., 1997; 

Rainio & Niemela, 2003; Pearce & Venier, 2006). Lovei and Sunderland (1996) suggested 

that carabid community studies should account for the presence of ants in order to avoid 

forming invalid conclusions, because the apparent response of some carabids to habitat 

changes may differ depending on whether or not dominant ants are present.

Our study was designed to examine whether carabids respond to chemicals associated 

with the common ant species, Formica aserva Forel in central British Columbia. A member 

of the Formica sanguinea species group (Naumann et al., 1999), F. aserva are aggressive 

omnivores (Phillips & Willis, 2005; Higgins, 2010) with nests that may include several 

hundred (Naumann et al., 1999) to a few thousand individuals (Savolainen & Deslippe,

1996). To our knowledge, nothing is known about the chemical composition of F. aserva 

semiochemicals. We hypothesized that if the carabid species in central British Columbia are 

affected by F. aserva colonization, then these carabids may be able to detect the presence of 

F. aserva prior to direct encounters, and that we would be able to assess this ability through 

changes in the behaviour of carabids in the presence o f crushed F. aserva gasters.

Materials and Methods

Ant Nest Collection and Maintenance

Two Formica aserva ant nests in coarse woody debris were collected from the Prince 

George Forest District east of Prince George, British Columbia, Canada. This species was 

selected due to the dominance of F. aserva in many open or disturbed habitats in central
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British Columbia (McColl, 2010), and because the coarse woody debris in which this species 

often nests is relatively easy to collect for laboratory bioassays (Lindgren & Maclssac, 2002). 

Both nests were taken from an area nine years post-harvest (Government o f British 

Columbia, 2011) in the wet cool subzone of the sub-boreal spruce biogeoclimatic zone 

(SBSwkl) (Meidinger et al., 1991) approximately 40km east of Prince George, British 

Columbia (located approximately 53.881° N, 122.240° W). One nest was collected June 8, 

2010 and a second nest was collected August 14, 2011 due to the collapse o f the first colony. 

Both colonies were kept indoors at the University of Northern British Columbia campus.

Each colony was contained in large plastic bin approximately 94cm long by 54cm 

wide, depth varied depending on the size of the nest material. The upper rim of each large 

plastic bin was painted with fluoropolymer resin (DuPont, Product Type TE3893) to prevent 

ants from escaping. Through clear plastic tubing (1.27cm diameter) ants were able to access 

two feeding areas made of smaller plastic containers (204cm2 floor area) outside of the main 

nest container. Ants were fed a mixture of canned tuna (Solid White Tuna in Water, Low 

Sodium, Western Family), raw egg, honey (Liquid Organic Honey Grade No.l Amber, 

Western Natural) and multivitamin (Adult Chewable Multi Vitamin & Mineral, Swiss 

Natural Sources) (adapted from Bhatkar & Whitcomb, 1970 and Fellers, 1987) and a 20% 

honey-water solution. A lOOwatt light bulb (EcoVantage Natural Light, Philips Lighting) on 

a 12hr timer was mounted above the main nest container to provide light and a small amount 

of heat to the nest.

Carabid Beetle Collection

Carabids were collected from three disturbed habitats on the outskirts o f Prince 

George, British Columbia (53.959° N, 122.815° W, 53.968° N, 122.897° W, and 53.924° N,
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122.887° W). Live carabids were captured using clusters of shallow pitfall traps made of 

round plastic containers (11cm diameter, 4cm height) (GenPak), Clusters were created by 

arranging pitfall traps in an X-pattem and installing plastic fences (Lawn Edging 10.16cm, 

Canadian Tire Corporation, Limited) between each trap to increase capture rates. Pitfall traps 

were covered with bent pieces of sheet metal to shelter traps from direct sun and rain (Figure 

3.1a). The upper inside rim of pitall traps were also painted with fluoropolymer resin to 

prevent escape of specimens. A small amount of surface litter material from the surrounding 

area was added to each pitfall trap to help increase the survivorship of captured specimens 

(Figure 3.1b). Pitfall traps were checked for carabids every two to three days.

Trapped live carabids were placed in small plastic containers with mesh-vented lids 

along with a small amount of litter material from where the beetles were collected. Captured 

carabids were brought back to the University of Northern British Columbia campus and kept 

in a room separate but adjacent to the room where the F. aserva nests were located. Carabids 

were under a low-heat light (13w Daylight Mini Twister Compact Fluorescent, Philips 

Lighting) to provide a 12hr light cycle. Containers holding carabids were misted with water 

and provided a piece of pre-cooked ham (Western Family, Overwaitea Food Group LP.) 

every 24-48hrs, following Tomlin (1975). Carabids were kept in captivity for eight to 12 

months prior to experimentation, during which they had no direct interactions with ants. 

Bioassay Materials

Bioassays were conducted in the room where the carabids were maintained. 

Experiments were recorded using a Canon FS20 Digital Video Camcorder mounted to a 

tripod and positioned above the experimental arena. A 900 lumens fluorescent light (13w, 

Daylight Mini Twister Compact Fluorescent, Philips Lighting) located behind the tripod and
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directed at a shelf above provided indirect lighting for the recorded video (Figure 3.2). 

Rectangular arenas with a 218cm2 floor area, and partitioned by interior partial walls (Figure 

3.3) were constructed out of white corrugated plastic sheet material (Plaskolite, Inc.) and 

assembled using hot glue sticks (Adhesive Technologies, Inc., Multi Temp). Glue was 

allowed to fully dry after arena construction, and each arena was then washed by hand with 

soap (Ultra Concentrated Dish Soap, Great Value), towel dried, and heavily rinsed with 70% 

ethanol:water solution and allowed to air dry (at minimum overnight).

For each carabid beetle two behavioural choice bioassays were conducted, a treatment 

and control. Treatment bioassays examined possible behaviour responses of carabids to 

crushed F. aserva gasters. Control bioassays were conducted to assess for side bias 

associated with the experimental setup or other unaccounted-for variation. Each type of 

bioassay was conducted in separate, but identical arenas. All bioassays included the use of 

three filter papers (Whatman 2 Qualitative Circles, 90mm), one in each compartment of the 

arena. All filter papers were initially stored in the room where bioassays were conducted. 

Filter papers were designated as either neutral (placed in the center compartment, untreated), 

treatment (assigned to one of the outer compartments -  see below), or control (placed in 

either both of the outer compartments, or in one outer compartment opposite from the 

treatment filter paper). Treatment bioassays included one neutral filter paper, one control 

filter paper, and one treatment filter paper (Figure 3.4a). Control bioassays, conducted in a 

dedicated control arena, included one neutral filter paper and two control filter papers (Figure 

3.4b).

Neutral filter papers were not altered. Treatment filter papers were created in a 

separate but adjacent room by pressing five F. aserva gasters onto a filter paper using a
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gloved finger (Textured Nitrile Medical Examination Gloves, Fisherbrand) in an 

approximately X-shaped pattern (Figure 3.4a). Ants were collected from the feeding areas a 

laboratory nest and refrigerated at close to 0°C for approximately 20 minutes in order to 

reduce their activity. Ants were removed from the refrigerator 4-5 minutes prior to the 

beginning of a treatment bioassay. This time was used to cut the gasters off the ants with a 

scalpel, place the gasters onto a filter paper, and crush them by pressing them onto the filter 

paper. Treatment filter papers were then immediately transferred back into the room where 

behavioural experiments were conducted and placed in a treatment arena. Control filter 

papers remained in the bioassay room at all times, and a gloved finger was used to mimic the 

motion and pressing pattern applied to treatment filter papers.

Bioassay Protocol

To account for possible asymmetrical influence of the room where the bioassays were 

conducted, the position of the treatment filter paper in treatment bioassay was alternated from 

the left to the right side between tested beetles. The sequential order of control and treatment 

bioassays was also alternated between tested beetles in an attempt to account for variation 

bioassay order might have on beetle behaviour. The duration of the different bioassays were 

not exactly equal due to slight variations in transitional times (approximately one minute) 

between the sequential steps of each bioassay.

All bioassays began by placing a carabid beetle by hand on the neutral filter paper 

under a 5cm glass Petri dish (Pyrex®, Coming, Inc) for 10 minutes. Control, or treatment 

and control, filter papers were then placed in the outer compartments of the arena and the 

glass Petri dish was removed by hand, allowing the beetle access to the entire arena area for 

15 minutes. The carabid was then transferred by hand to the second arena where it was again
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isolated on the neutral filter paper under the same glass Petri dish for 10 minutes. Again 

control, or treatment and control, filter papers were placed in the outer compartments of the 

arena and the glass Petri dish was then removed by hand allowing the carabid access to the 

entire arena area for 15 minutes. The duration of the 15 minute access period was based on 

bioassays conducted by Ayre and Blum (1971).

After each bioassay was completed the carabid was killed and preserved in a 70% 

ethanol:water solution. Each beetle was identified to species using Lindroth (1961-1969) and 

compared to reference specimens previously verified by D. Shpeley2. Additionally, 

Pterostichus adstrictus Eschscholtz was distinguished from Pterostichus pennsylvanicus 

LeConte using Bousquet (1986). Voucher specimens will be deposited at the E.H. Strickland 

Entomological Museum, University of Alberta. Between each set of bioassays both arenas 

and the isolation Petri dish were washed by hand with soap (Ultra Concentrated Dish Soap, 

Great Value), towel dried, and heavily rinsed with 70% ethanol:water solution and allowed to 

air dry.

Analysis

Only trials using Pterostichus adstrictus beetles that showed a measurable response 

(i.e., moved out of the neutral zone) during at least one of the bioassays (either control or 

treatment) were included in the analysis. Based on these requirements, 11 out o f 16 P. 

adstrictus beetles were analyzed. The Observer XT 9.0 Software Package (Noldus 

Information Technologies) was used to quantify the amount of time a beetle spent in the 

compartments of each arena. Any time the beetle spent on the walls dividing the 

compartments was excluded from analysis.

2 Assistant curator, E.H. Strickland Entomological Museum, Department o f  Biological Sciences, University o f  
Alberta, Edmonton, AB T6G 2E9, Canada
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Three indices of movement within the arena were used to assess behavioural patterns. 

These indices were the total amount of time (seconds) a beetle spent in each of the outer 

compartments during the treatment and control bioassays, the latency (seconds) of each 

beetle to enter each of the outer compartments, and the time (seconds) spent in each of the 

outer compartments upon the beetle’s first entry into that compartment. Each of these indices 

were compared within the treatment and control bioassays, respectively, using Wilcoxon 

Signed-Ranks Tests (Statistica 6.0 StatSoft, Inc.). Due to our small sample size, T  values 

were compared directly against the critical values of the Wilcoxon T distribution as presented 

by Zar (1984), rather than using the normal approximation of the T  distribution (Z). This was 

due to the normal approximations being less robust at both small sample sizes and smaller 

alpha levels (Zar, 1984).

Results

Pterostichus adstrictus beetles spent significantly less total time in the compartment 

containing the treatment filter paper than in the compartment containing the control filter 

paper (T= 10, n= 11, P  = 0.05) during treatment bioassays (Figure 3.5a). There was also a 

non-significant tendency by beetles to enter the control compartment more quickly than the 

treatment compartment (T= 11, n=l 1, 0.10 > P > 0.05) (Figure 3.6a). Additionally, beetles 

spent significantly less time in the treatment compartment upon their initial entry than when 

they first entering the control compartment (T= 9, n=l 1, 0.05 > P > 0.02) (Figure 3.7a) o f the 

treatment bioassays.

By comparison, beetles displayed no significant side bias patterns in the control 

bioassays. Beetles spent similar total amounts of time in the outer compartments during 

control bioassays (both of which contained a control filter paper) (T= 22, n= 11, 0.50 > P >
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0.20) (Figure 3.5b). Likewise, no significant difference was detected in the amount of time it 

took for a beetle to enter either of the outer compartments (T= 20, «=11, 0.50 > P  > 0.20) 

(Figure 3.6b). The amount of time a beetle spent in the outer compartments upon its first 

entry into those compartments in control bioassays was also non-significant (T= 15, n= 11, 

0.20 >P>  0.10) (Figure 3.7b).

Discussion

Our results support the hypothesis that some carabid species may be able to detect the 

presence of Formica aserva prior to direct encounters. We were able to detect differences in 

how carabids utilized the outer compartments of our arenas when cmshed F. aserva gasters 

were present versus absent. It took longer for Pterostichus adstrictus to enter the treatment 

compartment, they spent less time in this compartment upon first entry, and less overall time 

in this compartment during trials, compared to the control compartment. These behavioural 

patterns may support the findings of other studies that have found negative associations 

between ants and some carabids (Niemela et al., 1992; Koivula et al., 1999; Reznikova & 

Dorosheva, 2004; McColl, 2010). Our findings are also in agreement with other studies that 

have found that some insects are able to perceive and respond to signals o f ant presence 

(Offenberg et al., 2004; Oliver et al., 2008; Van Mele et al., 2009).

That P. adstrictus spent significantly less total time near the crushed gasters may 

indicate that these beetles avoided this area, which is also supported by our finding that 

beetles spent significantly less time in these areas when they first entered them. Based on 

these results it would appear that P. adstrictus may not be completely deterred from 

approaching the crushed gasters, but does not remain near them. This may be supported by 

the non-significant trend of beetles taking more time to enter the compartment with crushed
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gasters. No side biases were found in bioassays in which both outer compartments contained 

control filter papers, suggesting that patterns detected in treatment bioassays were not the 

result of extraneous stimuli in the testing area and were the direct result of the crushed 

gasters.

As previously noted in Chapter 2, one possible explanation for the reduced activity- 

abundance o f P. adstrictus in areas colonized by F. aserva (compared to non-colonized 

areas) (Table 2.2) was reduced activity rather than abundance. Our present study, however, 

suggests that P. adstrictus may be able to actively select for habitats where F. aserva are 

absent. If such behavioural responses are present in naturally occurring P. adstrictus 

populations, it could be the result of a learned or innate response.

Based on laboratory experiments, Reznikova and Dorosheva (2000) stated that most 

carabids “learned” to avoid encounters with a tethered ant after one or two direct encounters. 

This was accomplished by changing their behaviour as they approached the ant (e.g., going 

around the tethered ant, remaining motionless in a protected posture, or turning away from 

the ant) or by avoiding the area with the ant altogether. Reznikova and Dorosheva (2000) 

also observed that the strategies used by the carabids in their experiment differed among 

species. Dorosheva and Reznikova (2006) later proposed that the behavioural patterns 

carabids used to avoid ants were “switched on” directly by proximity or contact with ants. In 

laboratory experiments, Gridina (1994) provided descriptive statistics of Pterostichus spp. 

behaviour in the presence of Formica polyctena Forster workers (e.g., percent time spent 

inactive for “long” periods in the presence or absence of F. polyctena workers), which they 

interpreted as changes in carabid behaviour resulting from the ant presence.
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It may also be possible that competitive pressures and/or mortality associated with 

interspecific interactions with F. aserva could have selected for P. adstrictus to avoid direct 

encounters with aggressive ants by detecting cues associated with their presence. Kolbe 

(1969) made field observations of F. polyctena workers attacking the extremities and 

antennae of Abax ater (Villers) and Pterostichus oblongopunctatus Fabricius placed on an 

active ant trail. Kolbe (1969) also found that F. polyctena attack on A. ater and P. 

oblongopunctatus increased beetle mortality compared to individuals not subjected to attack 

by F. polyctena, and that injury caused by these ants led to premature mortality o f some of 

the carabids studied.

For carabids in central British Columbia, injury frequency was higher in areas with 

moderate F. aserva activity-abundance (51-150 workers) compared to areas with no, low (1- 

50 workers), or high (more than 150 workers) F. aserva activity-abundance (McColl, 2010). 

McColl (2010) suggested that at moderate activity-abundance levels carabids were more 

likely to be captured with injuries that resulted from unsuccessful predatory attacks or 

interference interactions with F. aserva, while at high F. aserva activity-abundance level 

these attacks were more successful resulting in increased predation and fewer carabids 

escaping with injuries. If this interpretation is correct, it would seem that carabids able to 

avoid encounters with aggressive ants, rather than learning to avoid them post attack, would 

be most successful.

Different carabid species may respond in unique ways to aggressive ants (Niemela et 

al., 1992; Gridina, 1994; Reznikova & Dorosheva, 2000; Hawes et al., 2002; McColl, 2010), 

reinforcing the need for additional research regarding the detection and response abilities of 

carabids to F. aserva and other aggressive ant species. Research into the interactions between
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ants and carabids are also important to understanding the underlying cause of observed 

patterns such as those in Chapter 2. For example, we do not know what chemical or 

chemicals the P. adstrictus in our study may have responded to, nor do we know how the 

chemical signals they may have detected compare to semiochemicals they might encounter in 

a habitat colonized by F. aserva.

Our study examined the response of carabids to crushed F. aserva gasters and then- 

associated chemicals. To our knowledge this is the first study to examine the ability of 

carabids to perceive and respond to ant semiochemicals in British Columbia. We detected 

patterns that suggest at least one carabid species, P. adstrictus, may be able to detect and 

respond to F. aserva semiochemicals, which may help explain activity-abundance patterns of 

this species in habitats were F. aserva are present.
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Figure 3.1. Arrangement of pitfall traps with metal covers and plastic fences (a). Collection 

of specimens from pitfall traps, illustrating the fluoropolymer resin painted rims and surface 

litter material of each pitfall trap (b). Photos © Kendra G. Schotzko.

Figure 3.2. Behavioural bioassay setup with empty arena. Photo © Kendra G. Schotzko.
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Figure 3.3. Dimensions of arena used in behavioural bioassays. Diagram produced in 

Microsoft® Office PowerPoint® 2007.

Treatment Filter Neutral Filter Control Filter
Paper Compartment P aper Compartment P aper Compartment

a)

Control Filter Neutral Filter Control Filter
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Figure 3.4. Experimental layout of arenas used in behavioural bioassays. Arena (a) shows 

the arrangement of filter papers in treatment bioassays, and arena (b) illustrates the 

arrangement in control bioassays. Image produced in Microsoft® Office PowerPoint® 2007.
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Figure 3.5. Total time (seconds) that Pterostichus adstrictus beetles spent in each of the 

outer compartments of treatment (a) and control (b) bioassays. In the treatment bioassays, 

less total time was spent in the treatment compartment compared to the control compartment 

(T= 10, n=l 1, P -  0.05) relative to the control bioassays where greater similarity occurred 

between the total amount of time spent in the outer compartments (T= 22, n= 11, 0.50 > P > 

0.20). Box boundaries indicate the 25th and 75th percentiles, the solid line within each box is 

the median, the dashed line represents the sample mean, and outer bars show the 5 th and 95th

percentiles (SigmaPlot® 11.2 © 2009-2010 SYSTAT Software, Inc.).
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Figure 3.6. The amount of time it took Pterostichus adstrictus beetles to enter each of the 

outer compartments of the treatment (a) and control (b) bioassays. In the treatment trials, 

beetles trended to enter the control compartments more quickly than the treatment 

compartments (T= 11, n=l 1, 0.10 > P  > 0.05). In the control bioassays the latency of entry 

into the outer control compartments were more similar (T= 20, n=l 1, 0.50 > P>  0.20). Box 

boundaries indicate the 25th and 75* percentiles, the solid line within each box is the median, 

the dashed line represents the sample mean, and outer bars show the 5th and 95th percentiles 

(SigmaPlot® 11.2 © 2009-2010 SYSTAT Software, Inc.).
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Figure 3.7. The amount of time Pterostichus adstrictus beetles spent in an outer 

compartment upon its first entry into that compartment was less for the treatment 

compartment than the control compartment of the treatment bioassays (a) (T= 9, n=l 1, 0.05 > 

P > 0.02), and more similar between the control compartments of control bioassays (b) (T= 

15, n=l 1, 0.20 >P>  0.10). Box boundaries indicate the 25th and 75th percentiles, the solid 

line within each box is the median, the dashed line represents the sample mean, and outer 

bars show the 5th and 95th percentiles (SigmaPlot® 11.2 © 2009-2010 SYSTAT Software, 

Inc.).
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CHAPTER FOUR

Interspecific interactions of spiders (Araneae) and Formica aserva Forel ants 

(Hymenoptera: Formicidae)

Abstract

Some spiders and ants appear to experience some degree of niche overlap. If 

competitive or predatory interactions between these terrestrial generalist predators occur, the 

interpretation of spider responses to habitat disturbance may be influenced by the presence or 

absence of ants. We compared the activity-abundance of spiders in a central British Columbia 

clearcut between zones colonized and non-colonized by Formica aserva. We hypothesized that 

the activity-abundance of epigaeic spider species would be different between these zones. 

While the activity-abundance of most spider species analyzed did not differ between 

colonized and non-colonized F. aserva zones, the activity-abundances of Pardosa 

mackenziana, Alopecosa aculeata (Lycosidae), Robertus vigerens (Theridiidae), and Xysticus 

ellipticus (Thomisidae) were higher in colonized zones, and the activity-abundance of Zelotes 

puritanus (Gnaphosidae) was higher in non-colonized zones. Our findings support our 

hypothesis and suggest that the presence of F. aserva can be associated with changes in the 

activity-abundance of some spider species. Additional long-term studies investigating 

possible interactions between individual spider species and aggressive ants are needed to 

clarify the temporal scale, intensity, and nature of possible interactions between these 

abundant predators.

Keywords', competition, species interaction, Gnaphosidae, Lycosidae, Theridiidae, 

Thomisidae, Formicidae
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Introduction

Ants (Hymenoptera: Formicidae) are known to significantly affect other arthropods 

(Holldobler & Wilson, 1990; Niemela et al., 1992; Karim, 1998; Laakso & Setala, 2000; 

Hawes et al., 2002; Punttila et al., 2004). Spiders (Araneae) are abundant in many habitats, 

and because many species potentially overlap with ants in terms of niche characteristics and 

seasonal activity patterns (Van der Aart & de Wit, 1971; Turnbull, 1973; Holldobler &

Wilson, 1990) it has been proposed that ants and some spiders may be competitors and/or 

mutual predators (Van der Aart & de Wit, 1971; Wise, 1993; Halaj et al., 1997; Heikkinen, 

1999; Sanders & Platner, 2007). The potential for interspecific interactions to occur between 

these groups is important given the attention spiders have received as possible bioindicators of 

environmental conditions (Marc et al., 1999; Cristofoli et al., 2010), including those associated 

with forest disturbances (Pearce & Venier, 2006; Gillette et al., 2008). In a preliminary study 

in British Columbia, spider families displayed high habitat specificity (Lindgren et al., 1999), 

and spider assemblages responded differently relative to different types of habitat 

disturbances in other areas (Buddie et al., 2000; Larrivee et al., 2005).

Laakso and Setala (2000) removed Formica aquilonia Yarrow ants from selected areas 

in a Finnish boreal forest, and observed a positive response by other predatory arthropods, 

indicating a compensatory shift in the arthropod predatory guild where ants were removed. 

Cherix and Bourne (1980) also found differences between arthropod predator assemblages 

within and outside an area occupied by a Formica lugubris Zetterstedt super-colony in the 

Swiss Jura. In their study, large spiders (especially Lycosidae) were less abundant in areas 

near the super-colony compared to outside the colony’s foraging boundary. Cherix and
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Bourne (1980) concluded that pressure from the aggressive super-colony limited populations 

of large spider species.

Fink (1987) made direct field observations of Formica sp. ants on the surface of, or 

within unguarded Peucetia spp. Thorell (Oxyopidae) egg sacs, and noted ants removing eggs 

or spiderlings through holes they had chewed in the sac. Group foraging behaviour o f the 

ants enabled them to completely empty discovered egg sacs in a relatively short period of 

time (Fink, 1987). The presence of Formica obscuripes Forel on sagebmsh, Artemisia 

tridentata Nutt. (Asteraceae) near ant nests also had a negative influence on spider abundance 

(Heikkinen, 1999). Abundance of arthropod prey also increased in the canopies o f Douglas- 

fir trees, Pseudotsuga menziesii (Mirbel) Franco (Pinaceae), where ants (primarily 

Camponotus spp.) were excluded (Halaj et al., 1997). Despite ants and some spiders 

consuming similar prey items, ants in their study did not strongly affect spider species 

diversity or richness, either through exploitative competition or predation pressure.

Aggressive behaviour of foraging Camponotus spp., however, did appear to disturb hunting 

spiders (Halaj et al., 1997). Both Heikkinen (1999) and Halaj et al. (1997) concluded that 

interference competition may be an important component of interactions between ants and 

spiders.

Sudd and Lodhi (1981) found that the number of spiders, beetles (Coleoptera), and 

springtails (Collembola: Arthropleona) were reduced in areas with relatively numerous F. 

lugubris. Their study also found indications of species-specific responses and year-to-year 

variation of those responses. Sanders & Platner (2007) found that ants had a negative effect on 

ground dwelling web building spiders in a German grassland habitat, particularly Linyphiidae. 

The abundance of wandering spiders (primarily Lycosidae) was not affected by the presence of
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ants, and the abundance of Formica spp. workers was greater in areas where spiders had been 

removed (Sanders & Platner, 2007). Variation among the responses of spider to ants has also 

been reported in other studies (Howard & Oliver, 1978; Cherix & Bourne, 1980; Sudd & 

Lodhi, 1981).

Other authors have argued that interactions between ants and spiders are 

inconsequential (Sterling et al., 1979). Bruning (1991) found no significant difference in 

overall spider species composition or density between areas within or outside of a Formica 

polyctena Foerster colony, despite observations of ants returning to their nest with a variety 

of dead spiders. Van der Aart and de Wit (1971) concluded that the presence of Formica rufa 

L. did not influence the species composition or abundance of hunting spiders (including 

Lycosidae, Pisauridae, Ctenidae, Gnaphosidae, and Clubionidae) in a meadow. While certain 

species were more (Aulonia albimana (Walckenaer), Pardosa nigriceps (Thorell), and 

Drassodes lapidosus (Walckenaer)) or less {Pardosa pullata (Clerck) and Pardosa monticola 

(Clerek)) numerous in areas with F. rufa, Van der Aart and de Wit (1971) proposed that these 

patterns were due to differences in vegetation structure and humidity between the sampling 

areas with and without F. rufa. As described above, several correlative and some 

experimental studies have been conducted; yet study of interactions between ants and spiders 

is still limited considering the ubiquity and wide diversity of these groups. As a result the 

importance of interactions between these groups remains unclear (Wise, 1993).

In Canada, some spiders may utilize coarse woody debris for foraging, overwintering or 

shelter, or as access points to direct sunlight for basking and/or accelerating egg development 

(Buddie, 2001). The diversity of spiders on dead wood in Alberta was also higher than that of 

the forest floor (Buddie, 2001), and in Quebec more spiders and spider species were found on
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the surface of downed dead wood than on the forest floor (Varady-Szabo & Buddie, 2006). 

These findings are relevant to central British Columbia where timber harvest areas (and their 

associated woody debris) are often dominated by Formica aserva Forel ants (Higgins, 2010).

Formica aserva, a member of the Formica sanguinea species group, is ecologically 

versatile and widely distributed (Naumann et al., 1999). Formica aserva workers are 

aggressive and omnivorous (Phillips & Willis, 2005; Higgins, 2010). Their nests are 

frequently in coarse woody debris (Lindgren & Maclsaac, 2002; Higgins, 2010), and may 

include hundreds or thousands of individuals (Savolainen & Deslippe, 1996; Naumann et al., 

1999). A facultative slave taker (Francoeur, 1983), F. aserva colonies likely establish 

through nest parasitism, and require that suitable slave species colonize a habitat before them 

(Higgins, 2010). In a cool, subboreal region of central British Columbia, F. aserva was 

absent in mature or recently harvested (2-3 years) pine stands, but common in stands 8-10 

years post harvest, with populations peaking 13-15 years post-harvest before decreasing in 

23-25 year old stands (Higgins, 2010). This indicated that in cool environments it is a 

disturbance specialist dependent on solar radiation heating and initial colonization by a 

suitable pioneer slave species (Higgins & Lindgren, 2012a).

We selected a recently disturbed habitat that appeared to be in a period of F. aserva 

population establishment and growth based on nest density and distribution. This 

characteristic allowed us to directly compare areas with similar habitat characteristics but 

differing in F. aserva presence. We hypothesized that the activity-abundance of ground active 

spider species in a central British Columbia clearcut would be different between areas 

colonized and not colonized by F. aserva.
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Materials and Methods

Study Area and Field Data Collection

Five replicates were established in a clearcut five years post-harvest (Government of 

British Columbia, 2011) east o f Prince George, British Columbia (elevation 740m, located 

approximately 53.901° N, 122.219° W) in the cool wet subzone of the sub-boreal spruce 

biogeoclimatic zone (SBSwkl) (Meidinger et al., 1991; Government of British Columbia, 

2008). The selected harvest block had a maximum length and width of approximately 2400m 

and 650m, respectively, and appeared to be under colonization by Formica aserva based on a 

preliminary survey of the abundance and distribution of nests (Chapter 2). The long axis of the 

harvest block had a generally north-south orientation. Replicates were established along the 

long axis of the harvest block, and selected based on apparent habitat homogeneity and 

spaced at least 100m apart. Two zones, with (colonized) or without (non-colonized) F. 

aserva nests, were delineated within each replicate as described in Chapter 2. Use of 

modified Nordlander pitfall traps (Nordlander, 1987; Lemieux & Lindgren, 1999; Higgins & 

Lindgren 2012b) and assessment of field site characteristics (F. aserva nests, soil moisture 

and pH, and ground cover) were also as described in Chapter 2.

Specimen Identification

Pitfall trap contents were sorted into general taxonomic categories at the University of 

Northern British Columbia, and stored in 70% ethanol. Identifications of adult spider 

specimens were made at the Royal British Columbia Museum, Victoria, BC, by R. G. 

Bennett3. As identification of spider species is largely dependent on unique reproductive 

structures only evident in adults, data for juvenile spider specimens were recorded, but not

3 Research Associate, Royal British Columbia Museum, Victoria, British Columbia, Canada
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included in analyses. Adult voucher specimens have been deposited at the Royal British 

Columbia Museum.

Analysis

As in Chapter 2, data from pitfall traps that were disturbed by adverse weather 

conditions, trap malfunction, or animal interference were not included in analyses. Data were 

standardized to total trapping effort (98 trapping days) to adjust for trap disturbance. Spider 

captures for individual pitfall traps were summed within each replicate zone. Soil moisture, 

soil pH, mean estimates of percent cover type, and F. aserva activity-abundance data were 

handled and analyzed as in Chapter 2.

Spider species data were analyzed by linear mixed effects ANOVA (a=0.05) using R 

(version 2.14, © 2011 The R Foundation for Statistical Computing). When necessary, data 

were transformed to satisfy model assumptions based on visual assessment of residual plots. 

When assumptions could not be met, a Mann-Whitney U test was used (SYSTAT 11, ©2005 

SYSTAT Software, Inc.). Only relatively common spider species (defined as species 

captured in four or more replicates and with five or more specimens captured in either ant- 

colonization zone) were analyzed. Zone (colonized and non-colonized) and the sex of adult 

spiders were modeled as fixed effects and replicate as a random effect. Sex by zone 

interaction was tested, and if non-significant sexes were pooled.

Results

As noted in Chapter 2, neither mean relative soil moisture (Mann-Whitney U test 

statistic=l 6, N= 5, 5, P=0.465) nor mean soil pH (Mann-Whitney U test statistic=l 1.5, N=5,

5, P=0.834) differed significantly when comparing the colonized and non-colonized zones 

(Figure 2.1). Additionally, the estimated mean percent cover of the ten cover types did not
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differ significantly between colonized and non-colonized zones (Table 2.1). Significantly 

more Formica aserva workers were captured in the colonized zones than in the non- 

colonized zones (Mann-Whitney U test statistic=25, N=5, 5, P=0.009), and significantly 

more F. aserva nests were also found in the colonized zones compared to the non-colonized 

zones (Mann-Whitney U test statistic=22.5, N=5, 5, P=0.018) (Figure 2.2).

In total, 1726 adult spiders comprising 64 species were collected (Table 4.1). All but 

29 specimens were identified to the species level, and all unidentified specimens fell into the 

genus Agyneta (Linyphiidae). Twenty-seven species (including the unidentified Agyneta 

species) were classified as common, ranging in capture frequency from six Robertas vigerens 

(Chamberlin & Ivie) (Theridiidae) to 331 Pardosa moesta Banks (Lycosidae). Significant 

differences between the numbers of male and female spiders were found for many species, 

but there were no significant sex by zone interactions.

The activity-abundance of most spider species analyzed did not differ significantly 

between F. aserva zones. For five species, however, significant differences were detected. 

Pardosa mackenziana (Keyserling) (Lycosidae) (Fi4=15.61653, .P=0.0168), Alopecosa 

aculeata (Clerck) (Lycosidae) {F\>4=13.93325, P=0.0202), R. vigerens (Theridiidae) (Mann- 

Whitney U test statistic=22.5, N= 5, 5, / >=0.018), and Xysticus ellipticus Turnbull et al. 

(Thomisidae) (Mann-Whitney U test statistic=24, N=5, 5, P=0.012) had significantly higher 

activity-abundance levels in colonized zones compared to non-colonized zones (Figure 4.1). 

The activity-abundance of Zelotes puritanus Chamberlin (Gnaphosidae) was significantly 

higher in non-colonized zones than in colonized zones (Fii4=29.35472, P=0.0056) (Figure 

4.1). One additional species, Gnaphosa parvula Banks (Gnaphosidae), showed a non-
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significant trend (Fi ,4=6.6089, F=0.0619) of higher activity-abundance in non-colonized 

zones.

Discussion

The significant difference in Formica aserva nest number and activity-abundance 

between the colonized and non-colonized zones, and the lack of differences between these 

zones for any other factor measured (soil moisture, pH, and ground cover), supports our 

selection criteria for these zones. Our findings support our hypothesis and suggest that the 

presence of F. aserva can be associated with changes in some spider species populations. The 

species-specific responses found among spiders in our study were also in agreement with the 

variation recorded in earlier studies (Howard & Oliver, 1978; Cherix & Bourne, 1980; Sudd 

& Lodhi, 1981). The majority of common spider species showed no significant difference in 

activity-abundance between colonized and non-colonized zones, which also agrees with the 

findings of other studies that recorded no difference in overall spider assemblage or 

abundance relative to the presence of ants (Van der Aart & de Wit, 1971; Sterling et al., 1979; 

Bruning, 1991). The species in our study that had significantly different activity-abundances 

between colonized and non-colonized zones may highlight the value of examining individual 

species rather than pooling all spiders together when investigating possible interactions with 

ants.

Pardosa mackenziana, Alopecosa aculeata, Robertus vigerens, and Xysticus ellipticus 

all had higher activity-abundance in colonized zones compared to non-colonized zones. This 

may indicate that these species were either able to benefit from the presence of low/moderate 

ant populations (McColl, 2010), or that the presence of ants increased the activity of these 

species and thus increased their propensity to be captured in pitfall traps. In some cases the
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anatomy and autecology of a species may help explain the differential captures. Pardosa 

mackenziana and A. aculeata are widely distributed lycosids, which are considered active 

predators of ground dwelling invertebrates (Dondale & Redner, 1990). Diurnal and usually 

dark-bodied, many lycosids are swift visual hunters and active runners (Dondale & Redner, 

1990). The genus Pardosa is characterized by species with long slender legs and high body 

carriage, a trait believed to help these species pursue prey. The genus A lopecosa differs in 

appearance from Pardosa most notably by thicker bodies and legs (Dondale & Redner,

1990). The Theridiidae Robertus vigerens is widely distributed in western North America 

and has been observed in vegetative litter and under stones; though little additional 

information is available (Dondale et al., 1997). Like lycosids, thomisids are also primarily 

diurnal, but differ from the former in hunting strategy (Bennett, 1999). Thomisids have 

laterigrade legs and dorso-ventrally flattened bodies (Dondale & Redner, 1978; Bennett, 

1999). Xysticus species are relatively slow moving sit-and-wait ambush predators (Bennett, 

1999), and their cryptic coloration and powerful forelegs enable them to capture prey at close 

range (Dondale & Redner, 1978).

Given the diurnal activity of some lycosids and thomisids, these species may have been 

able to utilize F. aserva either directly as a food resource or indirectly by capturing prey 

flushed from the litter by the foraging activity of F. aserva workers. In a list of ant predators, 

P^tal (1978) includes the order Araneae, and specifically Thomisidae. Holldobler (1976) 

reported Misumenops coloradensis Gertsch (Thomisidae) preying upon female harvester ants 

(Pogonomyrmex maricopa Wheeler and Pogonomyrmex desertorum Wheeler). Sanders and 

Platner (2007) also observed lycosids and thomisids preying on ants, and suggested that 

Formica cunicularia Latreille and Formica jusca L. workers were negatively affected by high
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densities of wandering spiders. Neuvonen et al. (2012) also found that lycosids were positively 

associated with ants (Formica rufa species group), and captured more lycosids near wood ant 

nests than at greater distances. Neuvonen et al. (2012) suggested that these patterns were not 

related to direct benefits associated with ant presence, however, but rather the result of habitat 

preferences or indirect effects related to other arthropod responses. This study did not specify 

how individual lycosid species may have been affected by wood ants.

Due to the relatively recent clearcutting of our study area (five years post-harvest), it is 

unlikely that the F. aserva colonies in our study had reached their peak density (Higgins,

2010). In ants, forager density can be positively correlated with forager aggression 

(Savolainen & Vepsalainen, 1988), and in west-central British Columbia F. aserva is 

relatively uncommon in areas 2-3 years post-harvest and greatest in areas 13-15 years post­

harvest (Higgins, 2010). This may have increased the vulnerability of foragers to predation by 

spiders in our study, and hence favoured some spider species.

While Bruning (1991) noted the presence of lycosids within their study area, Formica 

polyctena workers were never observed returning to their nest with lycosids, indicating that 

these spiders were not a regular prey item of the colony. Pardosa lugubris Walckenaer were 

frequently seen on the litter layer near the F. polyctena colony, and Bruning (1991) noted 

that these individuals avoided F. polyctena workers when they came too near with “a short 

jump,” apparently unnoticed by the worker ant. When spiders were detected by F. polyctena 

workers, Bruning (1991) observed that spiders had little difficulty escaping the ant unless the 

spider ran towards the ant. Based on these observations, F. polyctena workers seem 

ineffective in detecting agile prey, and may be more successful in capturing unsuspecting or 

injured prey that are more or less randomly encountered (Bruning, 1991). If P. mackenziana
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and A. aculeata were able to effectively avoid foraging workers with strategies similar to 

those described by Bruning (1991), they might not have been adversely affected by F. aserva 

and may in fact have benefited from the presence of the ants. Mature lycosid females carry 

their egg sac (and later spiderlings) on their abdomen (Bennett, 1999), which may also 

reduce the potential for ant predation of immature lycosid spiders.

The reduced activity-abundances of Zelotes puritanus in areas colonized by F. aserva 

suggest that this species may be negatively affected by F. aserva in our study. While the 

ecology of many gnaphosids is poorly understood, this group is generally described as 

“stealthy hunters”; members of Zelotes are also generally nocturnal and possess dark 

coloration (Platnick & Dondale, 1992). Many of these species live within the litter layer or 

under stones, coarse woody debris, and other debris, and utilize these microhabitats as 

refuges during the day (Platnick & Dondale, 1992).

Bruning (1991) observed F. polyctena workers returning to their nest with juvenile 

spiders, including a ghaphosid. Thus the lower activity-abundance of Z. puritanus may, at 

least in part, have been the result of local population reduction by ant predation of juveniles. 

In contrast to diumal spider species, nocturnal gnaphosids hiding in the litter may be less able 

to avoid ant disturbance (or even predation) if their daytime hideaways are encountered by 

foraging ants. Disturbance of hiding Z. puritanus by ants may lead to these spiders selecting 

for habitats away from ant activity. Halaj et al. (1997) found that aggressive behaviour of 

foraging ants disturbed hunting spiders, and displacement resulting from interference 

interactions may be another possible explanation for the activity-abundance pattern o f Z. 

puritanus.
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Species that had similar activity-abundance levels between colonized and non- 

colonized zones may not have been equally abundant in these areas. Varied behavioural 

responses to ant presence could have influenced capture rates between F. aserva zones 

regardless of abundance (Sudd & Lodhi, 1981), and it is plausible that captures of P. 

mackenziana, A. aculeata, R. vigerens, andX  ellipticus were higher in the colonized zones as 

a result of increased activity and not increased abundance. Likewise, it is possible that Z. 

puritanus were not less abundant in areas associated with F. aserva, but simply less active. If 

this was the case, our sampling methods could have mischaracterized the effects experienced 

by these species. Our methods also prevented us from separating negative effects associated 

with F. aserva from potential effects resulting from interactions among spider species. The 

lack of information on the ecology and behaviour of most Canadian spiders (Bennett, 1999) 

also limits our ability to explain the mechanisms behind our findings, and emphasizes the 

need for continued study of Canadian spider species biology and ecology, in addition to 

direct observations of how different species interact with aggressive ants.

Our study suggests that the presence of F. aserva can have favorable, detrimental, or 

negligible consequences depending on the spider species. Spider species responses may also 

vary from year-to-year (Sudd & Lodhi, 1981), possibly relating to fluctuations in ant presence, 

density, and assemblage composition over time (Higgins, 2010). Additional long-term 

studies investigating possible interactions between individual spider species and aggressive 

ants are needed to clarify the temporal scale, intensity, and nature of possible interactions 

between these abundant predators. Greater understanding of these variables will not only 

increase our knowledge of spider species, but may also improve the reliability of spiders as 

bioindicators.

57



Table 4.1. Spider species captured listed by family and total number captured in colonized

and non-colonized Formica aserva zones. Species in bold had significantly different activity-

abundance in colonized and non-colonized zones.

FAMILY SPECIES
TOTAL NUMBER CAPTURED

Colonized Non-colonized
AGELENIDAE Agelenopsis utahana (Chamberlin & Ivie) 0 1
CLUBIONIDAE Clubiona trivialis C.L. Koch 0 1
CYBAEIDAE Cybaeus morosus Simon 29 23
GNAPHOSIDAE Drassodes neglectus (Keyserling) 4 2

Gnaphosa muscorum (L. Koch) 26 23
Gnaphosa parvula Banks 57 102
Haplodrassus signifer (C.L. Koch) 1 1
Micaria aenea Thorell 2 1
Micaria pulicaria (Sundevall) 1 0
Micaria rossica Thorell 4 0
Zelotes puritanus Chamberlin 1 13
Zelotes fratris Chamberlin 32 16

HAHNIIDAE Cryphoeca exlineae Roth 16 13
Hahnia cinerea Emerton 0 1
Neoantistea agilis (Keyserling) 3 5

LINYPHIIDAE Agyneta sp. 20 9
Agyneta olivacea (Emerton) 34 33
Bathyphantes alascensis (Banks) 0 1
Bathyphantes pallidus (Banks) 1 0
Centromerus longibulbus (Emerton) 0 2
Ceraticelus fissiceps (0 . P.-Cambridge) 2 2
Ceraticeius laetabifis (0 . P.-Cambridge) 0 1
Ceratinella brunnea Emerton 23 21
Collinsia ksenia (Crosby & Bishop) 0 1
Diplocentria bidentata (Emerton) 2 1
Grammonota gigas (Banks) 0 12
Hypsetistes Horens (O. P.-Cambridge) 1 1
Lepthyphantes intricatus (Emerton) 7 5
Mermessus triiobatus (Emerton) 4 5
Oreonetides Meatus (Crosby) 1 0
Pelecopsis sculpta (Emerton) 58 101
Pocadicnemis pumila (Blackwall) 2 1
Scotinotyius sacer (Crosby) 4 3
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Table 4.1 (continued). Spider species captured listed by family and total number captured in

colonized and non-colonized Formica aserva zones. Species in bold had significantly

different activity-abundance in colonized and non-colonized zones.

FAMILY SPECIES
TOTAL NUMBER CAPTURED

Colonized Non-colonized
LINYPHIIDAE (cont.) Sisicottus nesides (Chamberlin) 2 0

Sisicus aperius (Holm) 2 1
Symmigma minimum (Emerton) 99 84
Tunagyna debilis (Banks) 1 0
Tachygyna vancouverana Chamberlin & Ivie 1 0
Walckenaeria atrotibialis (O. P.-Cambridge) 6
Walckenaeria directa (O. P.-Cambridge) 1 1
Walckenaeria exigua Millidge 11 3
Walckenaeria tricomis (Emerton) 5

LIOCRANI DAE Agroeca pratensis Banks 1
LYCOSIDAE Alopecosa aculeata (Clerck) 37 9

Arctosa alpigena (Doleschall) 1 0
Pardosa fuscuia (Thorell) 0 4
Pardosa groenlandica (Thorell) 0 2
Pardosa hyperborea (Thorell) 72 65
Pardosa mackenziana (Keyserling) 62 27
Pardosa moesta Banks 129 202
Pardosa wyuta Gertsch 4 5
Pardosa xerampelina (Keyserling) 19 12
Trochosa terricola Thorell 32 15

PH 1LODROMI DAE Thanatus coloradensis Keyserling 1 1
SALTICIDAE Neon reticulatus (Blackwall) 1 0

Pellenes montanus (Emerton) 2 1
Talavera minuta (Banks) 1 0

TELEMIDAE Usofila pacifica (Banks) 4 0
THERIDIIDAE Crustulina sticta (O. Pickard-Cambridge) 1 0

Robertus fuscus (Emerton) 0 1
Robertus vigerens (Chamberlin & Ivie) 6 0

THOMISIDAE Xysticus elllpticus Turnbull et al. 9 1
Xysticus emertoni Keyserling 5 7
Xysticus luctuosus (Blackwall) 0 1
Xysticus montanensis Keyserling 8 9

TOTAL 862 864
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Colonized

Zelotes puritanus 
Alopecosa aculeata 
Pardosa mackenziana 
Robertus vigerens 
Xysticus ellipticus

Formica aserva  zone

Non-colonized

Figure 4.1. Significant (a=0.05) differences in the activity-abundance (mean total number 

captured) of Zelotes puritanus, Alopecosa aculeata, Pardosa mackenziana, Robertus 

vigerens and Xysticus ellipticus (standardized to 98 trap-days) between zones colonized and 

non-colonized by the ant Formica aserva (SigmaPlot® 11.2 © 2009-2010 SYSTAT 

Software, Inc.).
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CHAPTER FIVE

Synthesis

Both carabids (Coleoptera: Carabidae) and spiders (Araneae) have received attention 

as potential indicator taxa (Niemela et al., 1993; Beaudry et al., 1997; Marc et al., 1999; 

Larochelle & Lariviere, 2003; Rainio & Niemela, 2003; Pearce & Venier, 2006; Gillette et al., 

2008; Cristofoli et al., 2010). Lovei and Sunderland (1996), however, have also suggested 

that failure to account for the presence of ants (Hymenoptera: Formicidae) in some 

community studies could result in the formation of incomplete or invalid conclusions. This 

suggestion is based on observations that these taxa may occupy similar guilds and experience 

niche overlap (Lovei & Sunderland, 1996; Hawes et al., 2002; Reznikova & Dorosheva, 

2004).

Several studies have addressed potential interactions between carabids and ants 

(Niemela et al., 1992; Koivula et al., 1999; Hawes et al., 2002; McColl, 2010) and spiders 

and ants (Howard & Oliver, 1978; Cherix & Bourne, 1980; Sudd & Lodhi, 1981; Halaj et al., 

1997; Heikkinen, 1999; Punttila et al., 2004; Sanders & Platner, 2007). These studies have 

uncovered mixed responses to ants, and additional research regarding potential interactions 

between ants, carabids and spiders could help to refine their use as indicators. We examined 

the effects of Formica aserva Forel ant colonies on carabids (Chapter 2) and spiders (Chapter 

4) in a disturbed habitat in the central interior of British Columbia, and investigated 

behavioural responses by carabids to possible signals o f ant presence (Chapter 3).

The field components of our research were conducted in a disturbed habitat that was 

partially colonized by F. aserva. Our initial study area selection was based on the presence or 

absence of active F. aserva colonies in areas that were apparently otherwise homogeneous
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(Chapter 2). We hypothesized that the activity-abundance patterns of carabids and spiders 

would differ in these areas relative to the presence or absence of F. aserva colonies. When 

we compared habitat measurements between zones that were either colonized or non- 

colonized by F. aserva we found no significant differences in mean soil moisture (Figure 

2.1a), mean soil pH (Figure 2.1b), or the estimated mean percent of different ground cover 

types (Table 2.1). We did detect a significant difference in F. aserva activity-abundance 

between colonized and non-colonized zones (Figure 2.2a), which validated our initial 

selection criteria. These results indicate the presence of F. aserva could provide a plausible 

explanation for the differences in carabid and spider activity-abundance between colonized 

and non-colonized zones.

Of the 11 carabid species captured, six were examined in terms of their activity- 

abundance patterns in colonized and non-colonized zones (Chapter 2). We found that the 

activity-abundance of these carabids differed significantly from expected {i.e., 1:1) between 

colonized and non-colonized zones, and that individual species displayed unique patterns 

(Table 2.2). Calathus ingratus Dejean and Pterostichus adstrictus Eschscholtz were captured 

more frequently than expected in non-colonized zones compared to colonized zones. The 

opposite was found for Pterostichus ecarinatus Hatch, Pterostichus herculaneus 

Mannerheim, and Syntomus americanus (Dejean). Synuchus impunctatus (Say) was caught in 

similar numbers in both colonized and non-colonized zones, and was thus similar to expected 

ratios.

We also examined the carabid P. adstrictus in laboratory behavioural bioassays in an 

effort to determine if this species was able to detect glandular chemicals from crushed F. 

aserva gasters (Chapter 3). In the treatment bioassays P. adstrictus appeared to avoid the area
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of the experimental arena where the crushed F. aserva gasters were located (Figures 3.5a, 

3.6a, and 3.7a). By contrast, in control bioassays we detected no significant side-bias in the 

behaviour of P. adstrictus (Figures 3.5b, 3.6b, and 3.7b). These observations indicate that P. 

adstrictus may be able to detect F. aserva semiochemicals, and it follows that P. adstrictus 

may have the ability to detect the presence of F. aserva prior to direct encounters. The results 

of bioassays with P. adstrictus are consistent with the patterns we observed for this species in 

our field study, where P. adstrictus had lower activity-abundance in zones with F. aserva 

colonies compared to non-colonized zones (Table 2.2). Thus it may be possible for P. 

adstrictus to actively select for habitats where F. aserva are absent.

Compared to the carabid assemblage of our study, the spider assemblage was both 

more abundant and species rich. Sixty four species were collected, and all but 29 of the 1726 

adult specimens were identified to the species level. The activity-abundances of 27 species 

were compared between the colonized and non-colonized zones. While differences were 

found between the numbers of males and females captured, no significant sex by zone 

interactions were detected, indicating that the differences among sex were due to inherent 

differences in behaviour among males and females rather than differential effects by ants.

The activity-abundance of most spider species did not differ between zones, but for five 

species significant differences were detected (Figure 4.1). Pardosa mackenziana 

(Keyserling) (Lycosidae), Alopecosa aculeata (Clerck) (Lycosidae), Robertus vigerens 

(Chamberlin & Ivie) (Theridiidae), and Xysticus ellipticus Turnbull et al. (Thomisidae) had 

higher activity-abundance levels in colonized zones. Zelotes puritanus Chamberlin 

(Gnaphosidae), on the other hand, had lower activity-abundance in colonized zones.
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Variation among the responses of spider to ants has also been reported in earlier studies 

(Howard & Oliver, 1978; Cherix & Bourne, 1980; Sudd & Lodhi, 1981).

While many studies have examined possible interactions o f carabids and spiders with 

different ant species, the results have been mixed for this group o f generalist, surface-active 

predators. Most studies addressing ant-carabid interactions have found primarily negative 

relationships, but some carabid species occur in close proximity to areas populated by 

Formica spp. ants (Niemela et al., 1992; Koivula et al., 1999; Hawes et al., 2002; Reznikova 

& Dorosheva, 2004; McColl, 2010). It has been proposed that some carabid species may be 

able to coexist with ants by avoiding direct encounters with aggressive ants or utilizing dead 

ants as a resource.

Knowledge gaps in the life histories of the carabid species in our study limit our 

ability to explain the specific mechanisms responsible for our findings, and we can only 

speculate as to the causes of species distributions. For the species we identified with higher 

activity-abundance in areas colonized by F. aserva, it may be that these carabids were able to 

capitalize on the necrophoresis of the ant colonies (Hengeveld, 1981; Dorosheva & 

Reznikova, 2006) or benefited indirectly from the foraging activities of F. aserva {i.e., 

overlap in foraging periods/locations might allow some carabids to take advantage of prey 

flushed from their cover by F. aserva activity). Other explanations are also possible, e.g., F. 

aserva may not be equally aggressive to different carabid species. Some carabids may also be 

less susceptible to ant attack or disturbance, or the size o f the F. aserva colonies in our study 

may not have been sufficiently large to negatively influence some carabid species (McColl, 

2010).
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The lower activity-abundance of some carabid species in zones with F. aserva nests is 

equally open to interpretation. These species may have been negatively affected by the 

presence of F. aserva due to greater competitive and/or predation pressures. Our observations 

of carabid response to F. aserva crushed gasters indicates that some carabids may be able to 

detect the presence of ants prior to direct encounters, and could potentially select for habitats 

where aggressive ants are absent. While we have no information on the experiences o f the 

beetles in our study prior to their collection, their eight to 12 month captivity before 

experimentation may have lessened the likelihood of prior interactions with aggressive ants 

influencing their behaviour.

While the root cause o f the behaviours we observed is still unclear, other studies have 

suggested that direct encounters with ants may lead carabids to “learn” to avoid ants 

(Reznikova & Dorosheva, 2000). It may also be possible that competitive pressures and/or 

mortality associated with interspecific interactions with F. aserva could have resulted in 

some carabid species evolving the ability to avoid direct encounters with aggressive ants by 

detecting cues associated with their presence. Kolbe (1969) reported that Formica polyctena 

Forster workers readily attacked carabids and that such attacks increased beetle mortality.

For carabids in British Columbia, McColl (2010) suggested that at moderate ant activity- 

abundance levels carabids were more likely to be found with injuries, which may have 

resulted from unsuccessful predatory attacks or interference interactions with F. aserva. At 

high F. aserva activity-abundance levels these attacks were thought to be more effective and 

result in successful predation of carabids, and hence fewer carabids were observed with 

injuries.
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As with the carabid species captured more frequently in colonized zones, spider 

species that had higher activity-abundance in zones with F. aserva colonies may have also 

been able to benefit from the presence of these colonies. Lycosids and thomisids are 

predators of ground dwelling invertebrates (Dondale & Redner, 1990; Bennett, 1999), and 

these species may have been able to utilize F. aserva either directly as a food resource or 

indirectly by capturing prey flushed from the litter by foraging workers. Several studies have 

identified Thomisidae (Holldobler, 1976; P?tal, 1978; Sanders & Platner, 2007) and Lycosidae 

(Sanders & Platner, 2007) as ant predators. It is likely that the F. aserva colonies in our study 

were recently established (Higgins, 2010) and may have been vulnerable to predation by 

spiders. It is notable that three of the four species that had higher activity-abundance in 

colonized zones were either lycosids or thomisids. Other studies have offered descriptions of 

the ease with which lycosids are able to avoid direct encounters with ants (Bruning, 1991), and 

similar strategies may have been used by some of the lycosids in our study as well, allowing 

these spiders to avoid aggressive encounters with F. aserva workers.

The reduced activity-abundances of Z. puritanus relative to F. aserva suggest that this 

species may have been negatively affected by F. aserva colonies. Gnaphosids often live 

within the litter layer or under stones, coarse woody debris, and other debris (Platnick & 

Dondale, 1992). Nocturnal gnaphosids hiding in the litter may be less able to avoid ant 

disturbance (or even predation) if their daytime hideaways are discovered by foraging ants. 

Disturbance by ants may lead some spiders to select for habitats away from ant activity. 

Predation by ants is yet another possibility, as Bruning (1991) observed F. polyctena workers 

returning to their nest with a juvenile gnaphosid.
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Our study suggests that the presence of F. aserva may have favorable, detrimental, or 

negligible consequences depending on the carabid or spider species in question. The fact that 

we identified species (both among carabids and spiders) with different activity-abundance 

patterns relative to F. aserva presence highlights the value of examining individual species 

rather than pooling species together when investigating possible interactions with ants. While 

we have focused our attention on the species that appeared to respond to F. aserva presence, 

our results also raise interesting questions about the species for which no response was 

detected, and the significance of responsive species in terms of assemblage composition and 

ecological importance.

For species that were apparently not affected by F. aserva colonization, it is also 

important to note that activity-abundance patterns are the result o f both behaviour and 

abundance. Varied behavioural responses to F. aserva could have disproportionately affected 

a species’ activity-abundance (Sudd & Lodhi, 1981). Additionally, F. aserva may not have 

been equally aggressive to all species in our study, as they do distinguish between different 

threats and are not equally aggressive to all intruders (Phillips & Willis, 2005). Our methods 

also prevented us from separating negative effects associated with F. aserva from those 

potentially resulting from interactions within or between the carabid and spider assemblages.

The effects of competitive and predatory interactions can be difficult to separate, as 

they may occur simultaneously (Wissinger, 1989). Currie et al. (1996) suggested that food 

limitations could lead to higher predation pressures among carabids as a result o f more time 

spent foraging leading to increased frequency of interspecific encounters. Similarly, the 

limitation or abundance of resources could influence interactions between ants and other 

ground dwelling arthropods (e.g., carabids and spiders). Other authors have emphasized the
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role of behavioural responses in determining the relationships between carabids, spiders, and 

ants (Gridina, 1994; Dorosheva & Reznikova, 2006). Undoubtedly, interactions between 

these groups are not only complex, but also variable across different ecological conditions.

Habitat change, interspecific pressures, species-specific behavioural traits, biological 

requirements, and seasonal activity patterns may all contribute to the distribution patterns of 

these organisms. The species composition of ant assemblages and the relative dominance of 

specific species change over time within disturbed habitats (Higgins, 2010), and these 

fluctuations may have different effects on carabids and spiders. It is also possible that effects 

of F. aserva change as their populations build and they become more dominant in a habitat. 

Additional studies investigating potential interactions between carabid and spider species 

with aggressive ant populations of different densities could help to clarify possible 

interactions between these groups. The ability of a carabid species to detect ant 

semiochemicals may also indicate these signals have some connection to the survival and 

reproductive success of some carabids. Future studies addressing the ability of other carabid 

species to detect and respond to signals of ant presence could improve our understanding of 

the relationships between carabids and ants.

The attention carabids and spiders have received as potential bioindicators (Pearce & 

Venier, 2006) increases the need for continued research into their relationships with abiotic 

and biotic factors in various ecosystems. There is a growing body of literature supporting the 

value of addressing possible interactions between carabids and ants (Niemela et al., 1992; 

Lovei & Sunderland, 1996; Oliver & Beattie, 1996; Humphrey et al., 1999; Koivula et al., 

1999; Hawes et al., 2002; McColl, 2010) and spiders and ants (Howard & Oliver, 1978; 

Cherix & Bourne, 1980; Sudd & Lodhi, 1981; Halaj et al., 1997; Heikkinen, 1999; Punttila et
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al., 2004; Sanders & Platner, 2007). Greater understanding of these variables will not only 

increase our know ledge of carabid and spider species, but may also improve their reliability 

as bioindicators.
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