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Abstract 

The thesis work concerns the multiseriate exodermis (MEX), an outermost cortical layer (two 

or more cell layers thick) characterized by Casparian bands and suberin lamellae. Diverse 

aspects of Iris germanica's MEX were examined including its maturation under differing 

growth conditions, and how this maturation affected water and solute permeability. Also, 

suberin metabolite profiles for the maturing MEX of I. germanica and the maturing 

uniseriate exodermis of Allium cepa were established. This multidisciplinary approach 

resulted in a comprehensive understanding of how anatomical and biochemical changes to 

the exodermis affect water and solute permeability of the MEX. 

Most previous studies of exodermal development have involved species with a uniseriate 

exodermis. To extend this work, the MEX in I. germanica roots was investigated. The 

outermost exodermal layer matured first with normal Casparian bands and suberin lamellae. 

But as subsequent layers matured, the Casparian band extended into the tangential and 

anticlinal walls of their cells. This atypical Casparian band was continuous around the root 

circumference. MEX maturation was influenced by the roots' growth medium. Plants were 

grown in soil or hydroponics (with and without a humid air gap), and their roots were 

sectioned and stained with various dyes to detect Casparian bands and suberin lamellae. In 

soil-grown roots, the exodermis started maturing (with concurrent deposition of Casparian 

bands and suberin lamellae) 10 mm from the root tip, and two layers had matured by 70 mm. 

In hydroponically grown roots, exodermal maturation was delayed. However, in basal 

regions exposed to an air gap in the hydroponic tank, maturation of the second exodermal 
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layer was accelerated. Therefore, changes in growth conditions have striking effects on 

exodermal maturation in I. germanica. 

With respect to radial water and solute transport, I. germanica roots with a mature MEX 

had lower permeability rates compared with uniseriate exodermal roots or roots in which the 

endodermis represents the major transport barrier. Transport studies were conducted on 

completely submerged roots and air gap-exposed root regions using a pressure chamber 

whereby water permeability (Lppc) was measured quantitatively across the entire root. This 

instrument proved to be preferable because in large diameter roots (up to 2.5 mm in I. 

germanica), root hydraulics were affected by the large water storage capacity of the central 

cortex. Compared with regions of roots with no mature exodermal layers, the mature MEX 

reduced Lppc from 8.5 x 10
-8

 to 3.9 x 10
-8

 m s
-1

 MPa
-1

. Puncturing the MEX increased Lppc to 

19 x 10
-8

 m s
-1

 MPa
-1

, indicating that the MEX is an important hydraulically resistant tissue. 

A root pressure probe was used to measure the permeability of roots to NaCl and ethanol; 

solute permeability was reduced in the presence of two mature MEX layers. The MEX of I. 

germanica should play an important role in survival under conditions of drought and salt 

stress. 

Suberin is a complex biopolymer with a poly(aliphatic) domain (SPAD) that, in the case 

of a suberin lamellae, is known to be located between the cell wall and plasma membrane. 

The location and lipophilic nature of the SPAD establishes it as a structure restrictive to 

radial water transport through the transcellular pathway. Synthesis of the SPAD in a maturing 

exodermis was not well understood. Hence, a suberin metabolite analysis during 

development was conducted on the maturing MEX of I. germanica grown in submerged and 
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air gap hydroponic conditions. Suberin monomers of the soluble (unpolymerized) and 

insoluble (polymerized) fractions were chemically isolated, then quantified and identified by 

GC-MS. Interestingly, in air gap-exposed regions, there was an increased synthesis and 

deposition of insoluble SPAD monomers in the first two exodermal layers, compared with 

submerged regions. The SPAD fraction included fatty acids, , -dioic acids, -OH fatty 

acids, and ferulic acid, with C18:1 , -dioic acid and -OH fatty acid being the two most 

abundant monomers. Also, in tissue that matured in the air gap, the composition of the 

soluble fraction changed significantly among exodermal maturation stages and between 

growth conditions. Of particular significance, increased amounts of alkanes, the major 

component of waxes, accumulated in the first exodermal layer. Other monomers of the 

soluble fraction included fatty acids, fatty alcohols, and ferulic acid, that were SPAD 

biosynthetic precursors. It was postulated that the localized and abundant deposition of C18:1 

, -dioic acid and -OH fatty acid, along with high accumulation of intercalated waxes in 

the first mature exodermal layer, were more important than the overall number of suberized 

exodermal layers for reducing water loss from the root during drought.  

Lastly, hydroponically grown Allium cepa roots were used as models to analyze SPAD 

synthesis in a maturing uniseriate exodermis. Roots were divided into four maturation zones 

based on the growth rate and the deposition of suberin lamellae in maturing exodermal cells 

as determined by histochemical analyses. The chemical composition of the soluble fraction 

was essentially unchanged as the exodermis matured. In contrast, the SPAD composition 

differed during maturation, mainly due to significant increases in the deposition of C18:1 

, -dioic acids and C18:1 -OH fatty acids. It is proposed that the exodermal maturation 



 vi 

zones with corresponding suberin metabolite profiles be used as targets for the functional 

enzymatic characterization of suberin biosynthetic pathways. 
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Chapter 1 

General introduction 

1.1 Introduction 

Investigations of root structure, root function, and suberin biochemistry were conducted for 

the current thesis work. Much of this diverse, multidisciplinary study focused on the 

maturation and function of the root exodermis, a specialized cortical layer adjacent to the 

epidermis. An exodermis often acts as the outermost root layer, following sloughing off of 

the epidermis (Shishkoff 1986; McCully 1999), making first contact with soil particles, 

water, and dissolved minerals. The exodermis is an important “physiological sheath” (von 

Guttenberg 1968; Enstone et al. 2003) containing Casparian bands and suberin lamellae. 

These two cell wall-modifying structures are important for regulating radial solute and water 

transport across the root, and for tolerating abiotic stresses such as soil drought and high salt 

concentrations. Hence, the maturation of the exodermis, its permeability to water and solutes, 

and the chemistry and synthesis of the suberin monomers that comprise the Casparian bands 

and suberin lamellae were studied to better understand the role of the exodermis as a 

physiological sheath. Iris germanica was selected as the model species for most of this work 

because its exodermis is multiseriate (i.e., multi-layered); an exodermal type not thoroughly 

studied to date. Allium cepa was also used in the latter stages of this work as a model for 

suberin synthesis in a uniseriate (i.e., single-layered) exodermis. 
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1.2 Root anatomy 

1.2.1 Primary root tissue development and anatomy 

Primary roots are derived from sequential cell divisions in primary meristems followed by 

differentiation of primary tissues. The typical root apical meristem contains initials that 

produce three primary meristems. Each of these meristems gives rise to a primary tissue 

system, which later differentiates into the specific tissue types that comprise mature primary 

roots (Raven et al. 1999). 1) The protoderm gives rise to dermal tissue which differentiates 

into the epidermis. 2) The ground meristem gives rise to tissue that differentiates into 

parenchyma and sclerenchyma. All cells of the cortex originate from the ground tissue 

system. 3) The procambium gives rise to the pericycle, and vascular tissue which 

differentiates into the xylem and phloem within the stele. When mature primary roots are 

observed in transverse section, the tissue composition or anatomy becomes evident. For 

example, in Allium cepa roots (Fig. 1.1), the outermost layer of cells is the epidermis. Interior 

to the epidermis is the cortex, consisting normally of an exodermal layer (outermost), a 

multi-layered central cortex, and an endodermal layer (innermost). Intercellular air spaces are 

lacking in the exodermis and endodermis, but are present in the central cortex. Interior to the 

endodermis is the region of the stele which includes the pericycle (from which lateral roots 

originate), and the xylem and phloem (Fig. 1.1). In most monocot species, not including A. 

cepa, the stele has a central pith. The development and maturation of the exodermis and 

endodermis has been the focus of much research as these two tissue layers are of paramount 

importance to root physiology (see Enstone et al. 2003, and references therein). 
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1.2.2 Exodermal and endodermal cell ontogeny 

Development of the exodermis and endodermis in primary roots is complex and involves the 

deposition of characteristic cell wall-modifying structures. The cells of these highly 

specialized tissue layers pass through two or sometimes three states of maturity as described 

by Van Fleet (1961), Esau (1965) and Robards et al. (1973). Usually, the endodermis starts to 

mature before the exodermis, but the sequence of development is roughly the same in both 

layers. The primary developmental state (State I) is reached when Casparian bands are 

deposited in the intermicrofibrillar spaces of radial and transverse cell walls (Fig. 1.2A,B). At 

this stage, a tight connection exists between the modified wall and the adjacent plasma 

membrane (Bonnett 1968; Karahara and Shibaoka 1992; Enstone and Peterson 1997; Ma and 

Peterson 2001a). Essentially, the exodermis is a hypodermis with Casparian bands (Peterson 

and Perumalla 1990); this definition corrected an earlier one by von Guttenberg (1968) who 

referred to the exodermis as a hypodermis with suberin lamellae. The Casparian band in the 

exodermis typically fills the majority of the anticlinal wall space, whereas in the endodermis 

the band can be dot-like in cross-sectional view and situated close to the inner tangential 

wall. Next, the secondary developmental state (State II) is marked by the deposition of a 

suberin lamella between the cell wall and plasma membrane (Fig. 1.2C,D). This lamella 

severs the tight connection between the Casparian band and plasma membrane (Robards et 

al. 1973; Haas and Carothers 1975; Ma and Peterson 2001a). Often, mature suberin lamellae 

are perforated at primary pit fields where plasmodesmata are located. The perforations are 

important because they leave the plasmodesmata intact and the cells remain alive. Such 

perforations have been observed in the exodermal cells of Zea mays (Clarkson et  



 4 

Figure 1.1 Cross section of an Allium cepa (onion) root stained with Toluidine Blue O, 100 

mm from the root tip. Abbreviations: ep = epidermis; ex = exodermis; cc = central cortex; en 

= endodermis; pe = pericycle; ph = phloem; xy = xylem; ixy = immature xylem. Scale bar = 

100 μm. 
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Figure 1.2 Illustrations of endodermal cells (not to scale) displaying the states of maturity in 

cross section (A,C,E) and in three-dimensions (B,D,F). (A,B) State I, Casparian bands in 

anticlinal walls. (A) Band plasmolysis is evident. (C,D) State II, suberin lamellae between 

the cell wall and plasma membrane. (E,F) State III, tertiary wall thickenings between the 

suberin lamellae and plasma membrane. Black lines = cell wall borders; dark grey lines = 

plasma membranes; light grey lines = tonoplasts; yellow shading = Casparian bands; red 

shading = suberin lamellae; blue shading = tertiary wall thickenings. Images (B,D,F) 

modified from Raven et al. (1999).  
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al. 1987; Wang et al. 1995) and in the endodermal cells of all species so far investigated (see 

Ma and Peterson 2000, and references therein). Conversely, in the long exodermal cells of A. 

cepa, suberin lamellae sever the plasmodesmata and these cells soon die (Ma and Peterson 

2000). Lastly, in the tertiary developmental state (State III), tertiary cellulosic wall 

thickenings that are often embedded with lignin are deposited along the radial, tangential, 

and transverse walls (Fig. 1.2E,F). These tertiary walls are often U-shaped and thick enough 

to mask the Casparian bands and suberin lamellae (Van Fleet 1961; Esau 1965; Clarkson et 

al. 1987; Zeier and Schreiber 1998). Furthermore, the tertiary walls can be pitted, hence 

leaving plasmodesmata intact in the primary pit fields (Clarkson 1996; Ma and Peterson 

2001a).  

The rate of maturation through States I-III can vary in individual exodermal and 

endodermal cells. Often, a few cells located in older regions of roots will have only matured 

to State I whereas the others have matured to State III. While these State I cells have 

Casparian bands, they lack suberin lamellae and tertiary walls, and are referred to as passage 

cells (Esau 1965; von Guttenberg 1968; Peterson and Enstone 1996). Other variations in the 

development of the exodermis at the root apical meristem can lead to anatomical differences 

in the mature tissue, as described in the next section. 

1.2.3 Exodermal types, sub-types, and a variation 

The exodermis of roots is widespread and is structurally variable among species (Kroemer 

1903; Perumalla et al. 1990; Peterson and Perumalla 1990; Hose et al. 2001; Enstone et al. 

2003). In the more than 90% of tested angiosperm species that develop an exodermis, the 

majority have a single-layered (uniseriate) exodermis. This majority of species includes A. 
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cepa, Oryza sativa, and Z. mays (Perumalla et al. 1990; see Enstone et al. 2003, and 

references therein). Within the uniseriate type of exodermis there are two sub-types as 

originally described by Kroemer (1903). 1) A 'uniform exodermis' (Einheitliche Interkutis; 

after Kroemer [1903]) contains cells that are all of similar length, such as in Z. mays (Fig. 

1.3A). In this case, exodermal cell maturation can be irregular resulting in regions containing 

a combination of immature cells and cells that have reached State II. The immature cells lack 

Casparian bands and, therefore, do not fit the definition of passage cells (Enstone and 

Peterson 1997). 2) A 'dimorphic exodermis' (Kurzzellen-Interkutis; after Kroemer [1903]) 

contains cells of two distinct lengths that are termed short and long cells, such as in A. cepa 

(Fig. 1.3B). In this case, the short cells can be passage cells because in mature root regions 

they contain Casparian bands but have delayed suberin lamella deposition compared with the 

long cells (von Guttenberg 1968; Kamula et al. 1994; Ma and Peterson 2001a). 

A less common type of exodermis is the multi-layered (multiseriate) exodermis (MEX), 

which refers to an exodermis consisting of two or more layers. Species with a MEX include 

Iris germanica (Kroemer 1903; Shishkoff 1986; Peterson and Perumalla 1990; Zeier and 

Schreiber 1998), Typha spp. (Seago and Marsh 1989; Seago et al. 1999) and Phragmites 

australis (Armstrong et al. 2000; Soukup et al. 2002). Within the multiseriate type of 

exodermis there are two sub-types as originally classified by Kroemer (1903). 1) A 'uniform 

MEX' (Einheitliche mehrschichtigen Interkutis; after Kroemer [1903]) in which the cells in 

all layers have similar lengths (Fig. 1.3C). Examples of species that develop a uniform MEX 

are Typha spp. and P. australis. 2) A 'mixed MEX' (Gemischte mehrschichtigen Interkutis; 

after Kroemer [1903]) in which the outermost exodermal layer is dimorphic, but all  
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Figure 1.3 Illustrations of four exodermal sub-types and one exodermal variation, shown in 

cross and longitudinal section. (A) Uniseriate, uniform. (B) Uniseriate, dimorphic. (C) 

Multiseriate, uniform. (D) Multiseriate, dimorphic (or mixed). (E) Reinforced exodermal 

variation, with sclerenchyma (blue cells). Red shading = suberin lamellae in cells of the first 

exodermal layer; brownish-red shading = suberin lamellae in cells of the second exodermal 

layer; deep red shading = tertiary walls. (Images from Peterson 1997; reproduced with 

permission from the Copyright Clearance Center as the authorized agent for the American 

Society of Plant Biologists.) 
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underlying layers are uniform (Fig. 1.3D). To date, the mixed MEX has been observed in 14 

species of various genera, but all within the order Asparagales. One such species is I. 

germanica (Kroemer 1903; Shishkoff 1986). Although several species are known to have a 

MEX, details of its development are not well known.  

One notable variation to the exodermal types listed above is the 'reinforced exodermis' 

(verstärkte Interkutis), as described by Kroemer (1903). A reinforced exodermis refers to a 

uni- or multiseriate exodermis with an underlying layer of sclerenchyma (Fig. 1.3E). Such a 

variation has been observed for the uniseriate exodermis of O. sativa roots (Ranathunge et al. 

2003). It is more appropriate to define the reinforced exodermis as a variation rather than a 

type or sub-type because the sclerenchyma layer lacks Casparian bands; hence this layer is 

not a true part of the exodermis. Instead the sclerenchyma layer can be considered a part of 

the hypodermis, which includes the exodermis. 

1.2.4 Multiseriate exodermal development 

Most studies of exodermal development have focussed on species with a uniseriate 

exodermis, with its typical Casparian band located only in the anticlinal walls (Perumalla et 

al. 1990; Enstone et al. 2003, and references therein). On the other hand, fewer studies have 

addressed MEX development with its unusual Casparian band. In an excellent set of 

examples, Seago and Marsh (1989) and Seago et al. (1999) followed MEX development in 

Typha glauca and T. angustifolia. From this work it was clear that the MEX developed 

centripetally from periclinal cell divisions of the outermost ground meristem layer. (Peterson 

and Perumalla [1990] also observed a centripetal development of the MEX in 21 other 

species.) This type of division results in exodermal cells that are arranged in radial files, and 
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consequently have an H-shaped cell wall continuum. The exodermal wall continuum acts as a 

scaffold for the subsequent deposition of the Casparian bands, which appear H-shaped when 

viewed in cross section. Additionally, this specialized Casparian band is continuous or 

unbroken around the root circumference, i.e. it forms a continuous circumferential Casparian 

band. Such an in-depth analysis of MEX development on other species was lacking. For the 

current thesis work, I. germanica roots were selected because, while brief descriptions of this 

species' root structure can be found in the literature, a detailed understanding of the 

development of its MEX and other tissues was unknown (Kroemer 1903; Shishkoff 1986; 

Peterson and Perumalla 1990; Zeier and Schreiber 1998). Furthermore, to the best of the 

author's current knowledge, the response of MEX maturation to different growth substrates 

has never been tested. 

1.2.5 Growth conditions influence exodermal development 

Although exodermal development is constitutive in many angiosperms, the timing and rate of 

development can be altered when plants are grown in different environmental conditions. In 

particular, alterations occur in the regulation of when and how quickly the exodermis and its 

wall-modifying structures are synthesized or modified. In one set of examples, Clarkson et al. 

(1987) and Enstone and Peterson (1998) exposed the basal parts of Z. mays roots to humid air 

inside hydroponic chambers. Within the region of humid air, a combination of the lower 

water potential and increased capacity for gas exchange, compared with completely 

submerged roots, led to an acceleration in exodermal suberin lamellae deposition. This was 

also observed when Z. mays was grown in aeroponics, vermiculite, or in a stagnant (oxygen-

deficient) solution, compared with aerated nutrient solution (Zimmermann and Steudle 1998; 
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Enstone and Peterson 2005). When conducting experiments of this nature, it is necessary to 

measure root growth rates; what could be perceived as an acceleration in maturation may 

instead be a reduction in the root growth rate causing the exodermis to mature closer to the 

tip (Wilcox 1962; Perumalla and Peterson 1986). For instance, when roots are exposed to 

drought or salt-stress, their growth rates decline but the rate of exodermal maturation could 

remain steady. This would result in a greater exodermal surface area being suberized (see 

Enstone et al. 2003). The effect of different growth conditions on the maturation of I. 

germanica's MEX had not been investigated prior to the present study.  

1.2.6 Research aims I 

For the first phase of the current thesis work, the origin of I. germanica's MEX was 

investigated (hypothesis: the exodermis originates from the division of the outermost layer of 

the ground meristem). Secondly, maturation of the MEX was observed when roots were 

grown in differing substrate conditions (hypotheses: exodermal maturation is delayed in 

hydroponically grown roots compared with soil-grown roots; exodermal maturation is 

accelerated when basal regions are exposed to a humid air gap). Furthermore, because 

members of the Iris genus occupy diverse substrates, roots from seven additional species 

were obtained to determine if correlations could be made between root anatomy and habitat 

(hypothesis: Iris spp. root anatomy is specific to its habitat).  
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1.3 Root physiology 

1.3.1 Root structure determines radial transport pathways 

Roots have been referred to as composite structures with several types of cell layers that all 

contribute to the radial transport properties of the organ (Steudle and Peterson 1998). There 

are three parallel, radial transport pathways (Fig. 1.4); 1) the apoplast – cell walls 

(intermicrofibrillar space diameter ranging from 5-30 nm [Nobel 2005]) and lumens of dead 

cells, 2) the symplast – cytoplasms of neighbouring cells connected by plasmodesmata 

(ranging from 60-90 nm in diameter [Ma and Peterson 2000]), and 3) the transcellular path – 

cell walls, cytoplasms and vacuoles. In the absence of wall-modifying structures, radial 

transport of dissolved solutes occurs mainly through the apoplast while the flow of water is 

through all three paths (Steudle and Peterson 1998). (The symplastic and transcellular 

pathways are often collectively referred to as the cell-to-cell pathway because, for water 

flow, it is not possible to differentiate the extent to which each pathway is being used.) 

Exodermal and endodermal cell layers (the outermost and innermost layers of the root cortex, 

respectively) have a pronounced ability to limit radial solute and water transport due to their 

characteristic wall-modifying structures. These structures are the Casparian bands which 

limit the apoplastic flow of solutes (de Rufz de Lavison 1910; Baker 1971; Peterson 1987; 

Enstone et al. 2003), and the poly(aliphatic) domain of suberin lamellae which may limit the 

transcellular flow of water and solutes (Evert et al. 1985; Zimmermann et al. 2000; Hose et 

al. 2001). Thus, development of the exodermis and endodermis has been studied in great 

detail for the purpose of understanding these layers' influence on radial water and solute 

transport. 
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Figure 1.4 Illustration of the three parallel, radial transport pathways across unmodified 

parenchyma cells. Green shaded regions = cell walls; white regions internal to the walls = 

cytoplasms; grey-shaded regions = vacuoles. Red line = apoplastic transport in cell walls. 

Orange line = symplastic transport in cytoplasms of neighbouring cells connected by 

plasmodesmata. Blue line = transcellular transport across cell walls, cytoplasms and 

vacuoles. Image modified from Steudle and Peterson (1998). 
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1.3.2 Water transport 

Water is drawn into roots radially and then conducted axially as a bulk flow through the 

xylem in transpiring plants. The flow of water is mainly due to hydrostatic gradients created 

by tensional forces within tracheary elements (i.e., xylem vessels or tracheids) and less so by 

gradients in water potential (Steudle and Peterson 1998; see section 1.3.5 for more details).  

To begin the process of radial transport, water enters the apoplast in the outer tangential 

walls of the epidermis. In the absence of an exodermis, the water can continue to flow nearly 

unrestricted inward through the apoplastic and cell-to-cell pathways of the central cortex to 

the endodermis. On the other hand, if a mature exodermis is present, presumably water enters 

the symplast and bypasses the exodermal Casparian bands and suberin lamellae (Fig. 1.5). 

(Water may still be able to flow through these structures – they may not be completely 

impermeable – but the path of least resistance is the symplast so it can be assumed that most 

water will flow through this pathway.) Entry into the symplast occurs across the plasma 

membrane of epidermal cells. Water will primarily flow through aquaporins to cross the 

plasma membrane, but it may also diffuse across. After traversing the exodermis, water will 

continue to flow radially inward through the central cortex mainly via the cell-to-cell 

pathway. 

Upon reaching the mature endodermis, with Casparian bands in all cells and suberin 

lamellae in all but passage cells, the water will flow mainly through the cell-to-cell path of 

passage cells. Alternatively, some of the water may flow through the symplast of mature 

endodermal cells since the suberin lamellae does not sever their plasmodesmata (see Ma and 

Peterson 2000, and references therein). Once the water has reached the passage cell's inner 
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tangential wall, it will continue into the stele through a cell-to-cell path, but it must end up in 

the apoplast in order to enter the lumen of a tracheary element. Frequently, the endodermal 

passage cells are located adjacent to xylem poles so the water can flow efficiently into a 

tracheary element (Enstone et al. 2003). 

Upon the entry of water into a mature tracheary element through the non-thickened pit 

membranes in its secondary walls, the water is conducted axially, with little resistance, 

according to the cohesion-tension theory. This theory was first proposed by Dixon and Joly 

(1894), and is widely accepted by the scientific community (Angeles et al. 2004). Briefly, the 

theory refers to the cohesion of water molecules and the tension within tracheary elements. 

Water molecules are bound together by hydrogen bonds forming an unbroken column of 

water in the lumens of tracheary elements. With the opening of leaf stomata, water vapour 

escapes into the atmosphere consequently creating a tension first in the walls of mesophyll 

cells and eventually in tracheary elements. The water column is drawn upward due to 

gradients of progressively decreasing hydrostatic pressure and decreasing water potential 

from the soil, into the plant, and out into the atmosphere (often referred to as the soil-plant-

atmosphere continuum; Nobel 2005). 

1.3.3 Ion transport 

Under conditions of high transpiration, the radial transport of ions is influenced by the bulk 

flow of water, except in the presence of the exodermis and endodermis. Ion flow through the 

nearly non-restrictive apoplast of the central cortex may occur by solvent-drag, meaning that 

water moving by bulk flow 'drags' or pulls the dissolved ions through the intermicrofibrillar 

wall spaces (Aloni et al. 1998; Steudle and Peterson 1998). But, when a mature exodermis or 



 20 

Figure 1.5 Drawing of the outer part of a root, with a uniseriate exodermis, in cross section. 

Thicknesses of cell walls, cytoplasms, and plasmodesmata are exaggerated. Black lines = cell 

wall borders; dark grey lines = plasma membranes; light grey lines = tonoplasts; red lines = 

suberin lamellae; yellow lines = Casparian bands; blue line = symplastic transport through 

plasmodesmata; green line = apoplastic transport blocked by a Casparian band. 

Abbreviations: ep = epidermis; ex = exodermis; cc = central cortex; is = intercellular space. 
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endodermis is present, the ions must bypass the Casparian bands and suberin lamellae by 

way of the symplast (Fig. 1.5). Ions enter the symplast via transmembrane transporters 

located in the plasma membranes of epidermal cells or in the membranes on the outer 

tangential walls of exodermal or endodermal passage cells. While in the symplast, ions will 

diffuse radially inward through plasmodesmata that connect living cells. Alternatively, if a 

transporter for a particular ion is not present in a plasma membrane, then the ion will be 

confined to the apoplast and its flow will be restricted by the Casparian band (Baker 1971; 

Peterson 1987; see Fig. 1.5). The radial flow of a solute toward future endodermal passage 

cells was observed using berberine as a fluorescent apoplastic tracer (Aloni et al. 1998). This 

method showed directly that tensional forces of the tracheary elements drew most of the 

dissolved solute (in this case berberine) toward the passage cells via solvent-drag. Since 

berberine is restricted to the apoplast and cannot permeate Casparian bands, it was prevented 

from crossing the endodermis. On the other hand, water can flow through the cell-to-cell 

pathway so it would have entered the stele. But, unlike berberine, water could not be 

visualized so the use of apoplastic tracers does not directly represent water transport (Steudle 

and Peterson 1998). 

1.3.4 Apoplastic tracers 

Apoplastic tracers are useful for providing clues about the efficacy of cell wall-modifying 

structures with regard to the potential limitation of the radial transport of water and ions. 

Qualitative apoplastic permeability tests have been conducted on the multiseriate exodermis 

(MEX) of I. germanica (Peterson and Perumalla 1990), Typha spp. (Seago et al. 1999) and P. 

australis (Soukup et al. 2002, 2007) using a suite of tracers (i.e., Cellufluor, berberine, 
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FeSO4, and periodic acid). (To date, berberine is the best apoplastic tracer due to its high 

contrast as a fluorochrome and its reduced risk of toxicity when used within its concentration 

and exposure time limits [see Enstone and Peterson 1992].) For all species listed above, when 

the MEX was intact, and contained Casparian bands and suberin lamellae, there was little or 

no permeation of the tracers. From these results, it is proposed that a MEX can effectively 

restrict apoplastic solute permeability. But, can the thick MEX in I. germanica roots still 

allow water to permeate while preventing the influx of non-essential ions? To answer this 

question, direct and quantitative measurements of water and solute flow are necessary, as 

described below. 

1.3.5 Hydrostatic and osmotic pressure gradients 

There are two pressure gradients that are naturally-occurring in plants and function as the 

driving force for water flow. 1) A hydrostatic pressure gradient across the apoplast is the 

dominant driving force for radial water flow in transpiring plants (Steudle and Peterson 

1998). Hydrostatic gradients result in a hydraulic water flow or conductivity; the hydrostatic 

gradients can be simulated and the hydraulic conductivity measured with quantitative devices 

such as a pressure chamber and a root pressure probe (see below). Water flows through the 

apoplast rapidly in the absence of wall-modifying structures. Furthermore, dissolved solutes 

are transported – nearly uninhibited – in the apoplast either by diffusion or solvent-drag due 

to the lack of selectively permeable membranes. 2) An osmotic potential gradient is the 

dominant driving force for water flow only when transpiration rates are reduced (Steudle and 

Peterson 1998). Specifically, the flow of water follows osmotic gradients along the cell-to-

cell path, moving into regions where solutes have been either passively or actively 
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transported across plasma membranes. Osmotic gradients can be simulated and the osmotic 

hydraulic conductivity measured with a root pressure probe (see below). Osmotic hydraulic 

conductivity values are usually significantly lower than hydraulic conductivity values 

because the nature of the driving force results in flows across the cell-to-cell and apoplastic 

pathways, respectively (Steudle and Frensch 1989; Cruz et al. 1992; Steudle et al. 1993; 

Rüdinger et al. 1994; Steudle and Meshcheryakov 1996; Steudle and Peterson 1998). 

1.3.6 Pressure chamber 

The pressure chamber is a device that can be used to establish steady-state hydrostatic 

pressure gradients through roots in order to measure hydraulic water flow or conductivity 

(Lppc) (Fig. 1.6). When a root is excised from the rest of the plant, the solution within its 

tracheary elements will withdraw from the cut surface because the solution is under tension. 

If this excised root is attached to a pressure chamber filled with water, the pressure inside the 

chamber can be increased hydrostatically to force solution radially and axially through the 

root and toward the cut surface (Fig. 1.6). By gradually increasing the pressure of the 

external solution ( P in MPa), the volume that flows out of the cut end can be measured and 

plotted against time (Fig. 1.7A). The slopes from the linear parts of these volume/time graphs 

(Qv in m
3
·s

-1
), along with the root surface area (Ar in m

2
), are used to calculate the rate of 

water flow per unit root surface area (Jv in m
3
·m

-2
·s

-1
) 

 Jv =
Qv

Ar

    (Eq 1). 

When Jv is plotted against P, the slope from the linear part of the Jv/ P graph gives Lppc in 

m·s
-1

·MPa
-1

 (Fig. 1.7B). Root Lppc (i.e., radial hydraulic water flow) is expected to be 
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reduced following the deposition of Casparian bands and suberin lamellae in endodermal and 

exodermal cells. 

1.3.7 Root pressure probe 

The root pressure probe is an instrument that can be used to establish transient changes in 

hydrostatic pressure across roots in order to measure radial hydraulic conductivity (Lpr) (Fig. 

1.8; Steudle et al. 1987; Steudle and Frensch 1989). Using the pressure probe, gradients in 

hydrostatic pressure between the root and its external solution are initiated by performing 

pressure-relaxations (Fig. 1.9A). A pressure-relaxation is started when the metal rod of the 

probe is quickly moved toward the attached root. This creates a pulse of increased pressure in 

the stele region due to water being forced into tracheary elements. Following a pulse in 

pressure, a relaxation occurs during which water flows radially out of the stele, across the 

cortex and out of the root, bringing the pressure back near to its original state (Fig. 1.9A). 

Pressure-relaxations can also be induced in the opposite direction by quickly moving the 

metal rod away from the root. This creates a pulse of tension on the tracheary elements, 

thereby drawing water from the outer bathing solution into the root (Fig. 1.9A). A transducer 

detects the pressure changes over time; these changes are directly related to the rate of 

hydraulic water flow through the root. From the recorded pressure/time graphs, a rate  

constant (kwr) of water flow across the root, or the half-time of a relaxation (T
w

1/2), are used 

to calculate the root’s hydraulic conductivity (Lpr in m·s
-1

·MPa
-1

)  

 kwr =
ln 2( )
T1/ 2
w

= Ar

Pr
VS

 

 
 

 

 
 Lpr   (Eq 2). 
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Figure 1.6 Illustration of the pressure chamber used in the current work. Image modified 

from Zimmermann and Steudle (1998). 
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Figure 1.7 Typical data obtained from pressure chamber experiments. (A) Pressure within 

the chamber is gradually increased. At each step in pressure, the volume of water that flows 

through the root is recorded and plotted against time. The slopes of each graph are divided by 

the root surface area, to calculate the rate of water flow. (B) Water flow rates are plotted 

against their corresponding pressures. The slope of the linear part of this graph equals 

hydraulic conductivity (Lppc in m s
-1

 MPa
-1

). 
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Here, Ar refers to the surface area of the root (in m
2
), and Pr/ VS is the elastic coefficient 

(in MPa·m
-3

) which measures the rigidity of the pressure probe. Values of Lpr are virtually 

the same when pressure-relaxations are induced in the forward or reverse direction. Root Lpr 

is typically reduced with the deposition of suberin lamellae in the endodermis and exodermis 

(Melchior and Steudle 1993; Zimmermann et al. 2000; Enstone et al. 2003). 

The root pressure probe can also be used to establish osmotic pressure gradients across 

root tissues in order to measure osmotic hydraulic conductivity (Lpro) and solute 

permeabilities (Psr). Such gradients are created by introducing a test solute into the root's 

external bathing solution, thereby decreasing this solution's water potential (Fig. 1.9B). 

Consequently, a net efflux of water from the root occurs and is detected by the probe as a 

pressure decrease (i.e., the water phase). The net water efflux is followed by a net solute flow 

into the root which increases the root pressure back to its original state (i.e., the solute phase) 

(Fig. 1.9B). These reactions can be reversed by replacing the external bathing solute with 

water (Fig. 1.9B; Steudle and Tyerman 1983). The T
w

1/2 of the water phase is used to 

calculate Lpro (as in Eq 2). The T
s
1/2 of the solute phase is used to calculate Psr (in m·s

-1
) 

according to 

 ksr =
ln 2( )
T1/ 2
s
= Ar

Psr
Vx

 

 
 

 

 
    (Eq 3), 

where ksr is the rate constant of solute permeability, and Vx is the volume of the tracheary 

element lumens. 
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In addition to measuring Psr, a reflection coefficient ( sr) can be calculated from the 

pressure/time curves (Steudle and Tyerman 1983). The sr refers to the selectivity of a 

membrane or tissue to a solute, and is calculated according to 

 sr =
Pro Prmin( )

s

exp ks tmin( )  (Eq 4), 

where Pro and Prmin are the original and minimum root pressures of pressure/time curves, 

respectively, s is the change of external osmotic pressure caused by the solute, and tmin is 

the time required to reach Prmin following a step change in the external concentration at t = 0. 

Values of sr range from 0-1, where 0 means that there is no resistance or no selectivity to 

solute flow and 1 means there is a total blockage of solute flow. 

1.3.8 Quantitative measurements of water and solute permeability across the 

exodermis 

Quantitative instruments such as the pressure chamber and root pressure probe have yielded 

gross measurements of water and solute permeability across the exodermis. But, the majority 

of tests have been made with species with a uniseriate (single-layered) exodermis, such as Z. 

mays and Oryza sativa, and on roots with young regions that lack exodermal Casparian bands 

and suberin lamellae (Steudle and Peterson 1998; Zimmermann and Steudle 1998; Miyamoto 

et al. 2001; Ranathunge et al. 2005a, b). Although these model species are of agricultural and 

molecular genetic importance, their practicality for the precise testing of apoplastic barriers 

in roots is questionable. For example, in a typical uniseriate exodermis, Casparian bands are  

located in only the anticlinal walls, and suberin lamellae deposition can be “patchy” or 

irregular (von Guttenberg 1968; Enstone and Peterson 1997). 
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Figure 1.8 Illustration of the root pressure probe used in the current work. Image modified 

from Meyer et al. (2007).  
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Figure 1.9 Typical data obtained from root pressure probe experiments. (A) Hydrostatic 

experiments. Internal root pressure is rapidly increased (+ pressure) by moving the metal rod 

of the probe toward the root. The subsequent relaxation in pressure is directly related to the 

efflux of water through the root. By measuring the half-time of this relaxation (Tw ), 

hydraulic conductivity (Lpr) can be calculated. The pressure-relaxation event is reversible; 

root pressure can be rapidly reduced by moving the rod away from the root (- pressure), and 

the Tw  of water influx is measured. (B) Osmotic experiments. A test solute is introduced to 

the root's bathing solution (+ solute). In the first phase, a decrease in pressure occurs due to 

water efflux. Tw  is measured to calculate osmotic hydraulic conductivity (Lpro). In the 

second phase, an increase in pressure is caused by solute influx. Ts  is measured to calculate 

solute permeability (Psr). This biphasic reaction is reversible. When the test solute is replaced 

with water (- solute), water flows into the root and the solute flows out.  
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The irregularity in the formation of suberin lamellae means that it is not deposited in all 

exodermal cells at the same time or same distance from the root tip. Exodermal cells that lack 

suberin lamellae can provide low-resistance bypasses through the exodermis for water and 

solutes moving via the transcellular and symplastic pathways. Therefore I. germanica roots, 

with their MEX, lack of passage cells and unusual Casparian bands, offer the possibility of 

testing definitively the water and solute permeabilities of cell wall-modifying structures. 

Furthermore, permeability measurements are less variable with roots that develop few 

laterals, such as those of I. germanica, because the outgrowth of laterals temporarily disrupts 

the exodermis and endodermis (Peterson and Lefcourt 1990; Peterson and Moon 1993). 

1.3.9 Research aims II 

For this phase of the current thesis work, the water and solute permeability of I. germanica's 

MEX was quantified for the first time. A pressure chamber was used to measure water 

permeability of root segments with exodermal Casparian bands and suberin lamellae. A root 

pressure probe was used to measure the water, NaCl, and ethanol permeability. The first 

hypothesis is that the permeability of I. germanica roots with a mature MEX is considerably 

lower than roots with an immature MEX. The second hypothesis is that the permeability of I. 

germanica roots with a mature MEX is lower than values obtained previously from other 

species with a uniseriate exodermis. 
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1.4 Suberin chemistry and biosynthesis 

1.4.1 What is suberin? 

Plants growing in natural habitats are able to tolerate desiccating conditions and resist 

pathogen attack, both above- and below-ground, due to the constitutive deposition of 

protective chemical compounds in specialized tissue layers. Suberin is one of these 

protective chemicals that functions, in part, to reduce the desiccation of organs. The cell wall 

localization and chemical composition of suberin has been well documented, providing clues 

as to its physiological properties (reviewed in Kolattukudy 1980, 1984; Bernards 2002). 

Examples of suberin-containing cells include the phellem of periderm in the skin of Solanum 

tuberosum (potato) tubers, the phellem of periderm in the bark of Quercus suber (cork oak) 

stem, the bundle sheath that surrounds vascular bundles in some grass leaves, and, of course, 

the exodermis and endodermis in the primary roots of angiosperms (see Esau 1965; 

Kolattukudy 1980, and references therein). Specifically, it is the wall modifying structures 

(i.e., the Casparian bands and/or suberin lamellae) of the cells listed above that are composed 

primarily of particular fatty acids and phenolics, the constituents of suberin. 

Suberin is a complex biopolymer with a known morphology and monomeric profile that 

has been used to derive a model of its chemical structure (reviewed in Kolattukudy 1980, 

1984; Bernards 2002) (Fig. 1.10). (The following descriptions were made possible primarily 

by analyses of suberin lamellae from S. tuberosum periderm.) Suberin is composed of two 

spatially distinct but covalently-linked domains; the poly(phenolic) domain (SPPD; after 

Bernards 2002) embedded in the primary cell wall, and the poly(aliphatic) domain (SPAD; 

after Bernards 2002) located between the cellulosic cell wall and plasma membrane (Fig.  



 38 

Figure 1.10 Chemical model of suberin lamellae. The poly(phenolic) domain is embedded in 

the cell wall. The poly(aliphatic) domain is located between the cell wall and plasma 

membrane. Grey-shading = regions rich in phenolics and/or ester-linkages. Modified from 

Bernards (2002). 
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1.10). This two-domain model was previously inferred from histochemical (Lulai and 

Morgan 1992) and nuclear magnetic resonance studies (Stark and Garbow 1992; Lopes et al. 

2000a, b), and more recently from differential scanning calorimeter measurements (Mattinen 

et al. 2009; see Chapter 6). When observing the SPAD with a transmission electron 

microscope, its lamellar structure is revealed as alternating bands of translucent, electron-

light (aliphatic-rich) and opaque, electron-dense (aromatic or ester linkage-rich) compounds. 

The typical monomeric composition of the two domains has been determined through 

analysis of depolymerized compounds isolated from mature tissues (Kolattukudy 1980, 

1984; Graça and Pereira 2000a, b; Bernards 2002). To depolymerize the SPAD, 

transesterification is required using methanolic HCl (Fig. 1.11; Browse et al. 1986) or boron 

trifluoride in methanol (Riederer and Schönherr 1986). Depolymerization of the SPPD 

requires hydrolysis by alkaline nitrobenzene oxidation (Fig. 1.12; Meyer et al. 1998) or 

derivatization followed by reductive cleavage (Lu and Ralph 1997). Monomers are 

traditionally quantified and identified using gas chromatography coupled with mass 

spectrometry. Then the monomer profiles can be used, in conjunction with other information 

such as genetic and functional enzymatic processes, to predict how suberin lamellae are 

synthesized.  

1.4.2 SPAD biosynthesis 

The SPAD is hypothesized to be a glycerol-bridged, three dimensional polymer that is rich in 

fatty acid derivatives including -hydroxy fatty acids, , -dicarboxylic acids, mid-chain 

oxidized fatty acids, and long-chain fatty acids (Fig. 1.13). Esterified hydroxycinnamic acids 

are also commonly found in the SPAD (Kolattukudy and Dean 1974; Kolattukudy 1980, 
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1984; Holloway 1983; Zeier and Schreiber 1998, 1999; Zeier et al. 1999a, b; Graça and 

Pereira 2000a, b; Bernards 2002, and references therein). The -hydroxy fatty acids and , -

dicarboxylic acids are typically deposited in abundance, but the overall composition and 

relative amounts of monomers can vary between different species (Holloway 1983; Matzke 

and Riederer 1991; Zeier and Schreiber 1998, 1999; Zeier et al. 1999a, b). Briefly, SPAD 

production begins with the plastidic synthesis of saturated C18 fatty acids driven by fatty 

acid synthases. Then these fatty acids are partitioned into two pools for further processing 

(Kolattukudy 1980, 1984; Yang and Bernards 2006). In one pool, the fatty acids are 

desaturated and -hydroxylated into 18:1 -hydroxy fatty acids (Fig. 1.14). Fatty acid -

hydroxylation is catalyzed by NADPH-dependent cytochrome P450 monooxygenases (P450) 

from the CYP86 and CYP94 families (Duan and Schuler 2005). The -hydroxy fatty acids 

can then be oxidized into 18:1 , -dicarboxylic acids by an -hydroxy fatty acid 

dehydrogenase (Fig. 1.14; Agrawal and Kolattukudy 1978a, b; Kurdyukov et al. 2006). In the 

second pool, the C18 fatty acids are first elongated to C20-C28 by means of a microsomal 

malonyl-CoA dependent pathway (Fig. 1.15; Schreiber et al. 2005b). This pathway is 

catalyzed by a fatty acid elongation complex (FAE) located on the endoplasmic reticulum. 

The FAE is composed of four enzymes in series. 1) The 3-ketoacyl CoA synthetase (KCS) 

which condenses a 2-carbon unit from malonyl-CoA to a long-chain acyl-CoA, producing 3-

ketoacyl CoA. 2) The 3-ketoacyl CoA reductase (KCR) which reduces 3-ketoacyl CoA, 

resulting in 3-hydroxyacyl CoA. 3) The 3-hydroxyacyl CoA dehydratase which dehydrates 

3-hydroxyacyl CoA, giving rise to trans-2,3-enoyl CoA. 4) The trans-2-enoyl CoA reductase 

which reduces trans-2,3-enoyl CoA, and generates a reduced and saturated long-chain acyl- 
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Figure 1.11 Transesterification of the poly(aliphatic) domain using MeOH/HCl. The 

polymeric structure is hypothetical and is based on the typical products that are released. 

Aliphatic monomers are analyzed as methyl ester or trimethylsilyl ether derivatives.  
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Figure 1.12 Depolymerization of the poly(phenolic) domain using alkaline nitrobenzene 

oxidation. The polymeric structure is hypothetical and is based on typical products that are 

released. Phenolic monomers are analyzed as trimethylsilyl ether derivatives. 
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Figure 1.13 Aliphatic monomers of suberin lamellae. Modified from Bernards (2002).
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Figure 1.14 Synthesis of two key aliphatic monomers. A C18 primary fatty acid is 

desaturated, then -hydroxylated into C18:1 -hydroxy fatty acid, and oxidized into C18:1 , -

dioic acid. Abbreviations: FAD = fatty acid desaturase; P450 = cytochrome P450 

monooxygenase; hDH = -hydroxyacid dehydrogenase; oDH = -oxoacid dehydrogenase. 

Modified from Kolattukudy (1980), Bernards (2002), and Franke and Schreiber (2007). 
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CoA that is two carbons longer than when it entered the FAE (Fig. 1.15; Kunst and Samuels 

2003; Franke and Schreiber 2007; Samuels et al. 2008; Franke et al. 2009; Lee et al. 2009). 

Then the derivatives are either reduced into primary alcohols, decarboxylated into n-alkanes, 

or oxidized into -hydroxy and 2-hydroxy fatty acids (Yang and Bernards 2006).  

1.4.3 SPPD biosynthesis 

The SPPD is rich in mainly hydroxycinnamic acid derivatives with less relative amounts of 

monolignols and tyramine (Fig. 1.16; Borg-Olivier and Monties 1993; Bernards et al. 1995; 

Negrel et al. 1996). It is known that the synthesis of phenolic compounds is initiated within 

the shikimate pathway, which yields phenylalanine (Fig. 1.17). Phenylalanine is the 

precursor for most phenylpropanoids including hydroxycinnamic acids. The processing of 

hydroxycinnamic acids involves hydroxylation at the hydroxycinnamoyl-CoA derivative 

level (see Dixon et al. 2001) and methylation by a suberin-specific O-methyltransferase 

(Held et al. 1993), giving rise to key SPPD monomers including p-coumaric acid, caffeic 

acid, ferulic acid, and their amide derivatives (Fig. 1.17; see Bernards 2002).  

1.4.4 The role of glycerol 

Glycerol is hypothesized to act as the primary linker between the SPAD and SPPD, and also 

between monomers in the SPAD. The bonds are ester-linkages formed by a dehydration 

reaction between a hydroxyl group on glycerol and a carboxyl group on either , -dioic acid, 

-hydroxy fatty acid, or ferulic acid (Graça and Pereira 2000a, b; Kolattukudy 2001; 

Bernards 2002). The presence of glycerol gives the domains a three-dimensional structure 

and indicates that glycerol-based compounds are substrates for oxidation and polymerization 

reactions (Beisson et al. 2007; Li et al. 2007).  
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1.4.5 Physiological significance of suberin 

By coupling what is known about suberin chemistry with the location of suberin in the cell 

wall, one can further understand the physiological significance of suberin. In exodermal and 

endodermal cells, the suberin lamellae and Casparian bands both contain suberin monomers. 

In suberin lamellae, the SPAD, with its lipophilic nature and intercalated waxes, is located 

between the cell wall and plasma membrane. These features make the SPAD important for 

restricting radial water and solute transport (Kolattukudy and Dean 1974; Soliday et al. 1979; 

Vogt et al. 1983; Evert et al. 1985; Zimmermann et al. 2000; Hose et al. 2001; Schreiber et 

al. 2005a). The specific pathway that will be influenced by suberin lamellae is the 

transcellular pathway (Fig. 1.4) because of the location of the lamellae is between the cell 

walls and plasma membranes (Fig. 1.5). The SPPD consists of aromatic compounds that are 

linked covalently to primary cell wall carbohydrates. Such features make the SPPD 

important for limiting the penetration of pathogenic bacteria, fungi, and oomycetes 

(Kolattukudy 1980, 1984; Lulai and Corsini 1998). (Although resistance to microbe infection 

is an important function of suberin, the water and solute permeability properties of the 

suberin lamellae remain the focus of this thesis work.) Casparian bands are composed of 

mainly poly(phenolics) with less relative amounts of aliphatics, and are embedded within the 

intermicrofibrillar spaces of targeted cell walls (Schreiber et al. 1994; Schreiber 1996; see 

Steudle and Peterson 1998). These features allow Casparian bands to restrict the apoplastic 

flow of solutes (de Rufz de Lavison 1910; Baker 1971; Peterson 1987; Cholewa and Peterson 

2004). The fundamental importance of suberin in root physiology has led to in-depth 

research on the dynamic metabolic processes involved in suberin synthesis. 
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Figure 1.15 Pathway of the fatty acid elongation complex (see text for details). (1) 

Condensation by 3-ketoacyl CoA synthetase. (2) Reduction by 3-ketoacyl CoA reductase. (3) 

Dehydration by 3-hydroxyacyl CoA dehydratase. (4) Reduction by trans-2-enoyl CoA 

reductase. Modified from Bernards (2002) and Franke and Schreiber (2007). 
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Figure 1.16 Phenolic monomers of suberin lamellae. Modified from Bernards (2002).
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Figure 1.17 Synthesis of three key phenolic monomers (see text for details). (1) Deamination 

by phenylalanine ammonia-lyase. (2) Hydroxylation by cinnamate-4-hydroxylase. (3) 

Hydroxylation by p-coumaric acid 3-hydroxylase. (4) Methylation by caffeic acid 3-O-

methyltransferase. Modified from Bernards (2002). 
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1.4.6 Suberin deposition in maturing tissues 

Analysis of suberin monomeric composition and abundance during tissue maturation is 

necessary for understanding suberin biosynthesis. Early suberin research was directed toward 

'end point-analyses', meaning the identification and quantification of monomers that were 

isolated as depolymerization products from suberin in mature tissues (see Bernards 2002; 

Yang and Bernards 2006, and references therein). With little or no turnover of the suberin 

polymer, and by using mature tissues that undoubtedly contained an abundance of suberin, 

much progress was made.  

Fewer studies have been conducted where suberin composition and abundance during 

tissue maturation were analysed – but this approach is valuable in terms of understanding the 

dynamic metabolic processes of suberin biosynthesis. In an excellent example, Yang and 

Bernards (2006), inspired by Kolattukudy and Dean (1974) and Dean and Kolattukudy 

(1977), sampled wound-induced periderm in S. tuberosum tuber (as it developed over seven 

days) to identify and quantify polymerized (insoluble) and unpolymerized (soluble) SPAD 

monomers. The insoluble fraction consisted of -hydroxy fatty acids, , -dioic acids, and 

primary fatty acids (>C20). These polymerized fatty acid derivatives were first detected three 

days after the initiation of wound-induced periderm development, and their abundances 

increased over three more days. The soluble fraction contained only trace amounts of -

hydroxy fatty acids and , -dioic acids, but >C20 fatty acids were detected in greater 

amounts. These results from Yang and Bernards (2006) could not have been predicted from 

an end point-analysis. In a second example, Höfer et al. (2008) identified and quantified 

insoluble SPAD monomers at three locations along the length of Arabidopsis thaliana roots. 
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They measured, from root tip to base, an increase in C18:1 -hydroxy fatty acid abundance, 

a steady quantity of C18:1 , -dioic acids, and a decrease in the amount of primary fatty 

acids. While these authors had a good experimental approach, they unfortunately measured 

different tissue types – in the first zone closest to the root tip they measured endodermal 

suberin (primary growth), but in the two more basal locations they also measured peridermal 

suberin (secondary growth). In a third set of examples, Zeier et al. (1999a), Thomas et al. 

(2007), and Krishnamurthy et al. (2009) each measured increasing amounts of insoluble 

exodermal SPAD monomers (including -hydroxy fatty acids) along the length of Z. mays, 

Glycine max, and O. sativa roots, respectively (see Chapters 5 and 6 for further details). Such 

analyses of suberin composition and abundance in tissues undergoing maturation are 

valuable for determining the timing and regulation of suberin synthesis. 

1.4.7 Suberin deposition in the exodermis of Iris germanica and Allium cepa 

End point-analyses of the suberin from mature root tissues of Iris germanica and Allium cepa 

have been conducted previously. Zeier and Schreiber (1998) performed analyses of the 

exodermal and endodermal suberin content in a single mature region for roots of five species 

including I. germanica and A. cepa. While the authors presented the total yield of exodermal 

aliphatic suberin for I. germanica (approximately 40 μg mg
-1

) and A. cepa (approximately 23 

μg mg
-1

), they did not report the number of mature exodermal layers nor the distance from 

the root tip of the analysed tissue. For I. germanica, the roots were soil-grown and the 

endodermis had matured to State III (meaning most cells contained Casparian bands, suberin 

lamellae and tertiary wall thickenings, as described by Van Fleet [1961], Esau [1965] and 

Robards et al. [1973]). Based on endodermal and MEX maturation patterns for soil-grown I. 
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germanica roots (Meyer et al. 2009; see Fig. 2.5, Chapter 2), it is currently assumed that 

Zeier and Schreiber (1998) tested tissue specimens were at least 100 mm from the root tip, 

and had contained at least three (but perhaps four) exodermal layers. For A. cepa, the roots 

were hydroponically grown and were at least 300 mm in length when harvested (Zeier and 

Schreiber 1998). Based on root growth rates and the sequence of exodermal maturation in A. 

cepa (Perumalla and Peterson 1986; Barrowclough and Peterson 1994; see Fig. 5.2, Chapter 

5), it is currently assumed that the measured monomer amounts by Zeier and Schreiber 

(1998) corresponded to an exodermis that had been fully mature for about 14 days. These 

previously measured amounts of aliphatic suberin represent a metabolic snapshot of only 

mature exodermal layers. To build on this previous work, the objectives for the current study 

were to analyze the insoluble and soluble suberin monomer content and abundance at several 

stages of exodermal maturation, as well as under different growth conditions. The goal was 

to address how suberin is synthesized in maturing uniseriate and multiseriate exodermal 

layers.  

1.4.8 Research aims III 

For the current work with I. germanica roots, insoluble and soluble SPAD monomers were 

identified and quantified at key stages of MEX maturation and compared between submerged 

and humid air gap hydroponic growth conditions. The tested hypothesis was that root areas 

exposed to the lower humidity air gap have an increased abundance of key SPAD monomers 

as a response to the dehydrating growth condition compared with submerged root areas. 

Suberin monomeric data was then correlated with I. germanica's structural (see Chapter 2) 

and functional data (see Chapter 3), to potentially reveal some of the traits that underlie a 
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coordinated response of the exodermis to drying growth conditions. In addition, the maturing 

uniseriate exodermis from hydroponically grown A. cepa roots was used as a model to 

analyse the insoluble and soluble monomer compositions and quantities for both the SPAD 

and SPPD. It was hypothesized that SPAD and SPPD monomer composition and quantities 

would increase gradually as the exodermis matured. Both I. germanica and A. cepa roots 

were amenable to such analyses because the sequence of exodermal maturation had been 

determined previously, and these roots generated very few or no lateral roots that could 

potentially alter the chemical analyses (Peterson and Perumalla 1984; Perumalla and 

Peterson 1986; Barrowclough and Peterson 1994; Ma and Peterson 2001a). The findings will 

lead to a more complete understanding of SPAD and SPPD biosynthesis during the 

maturation of uniseriate and multiseriate exodermal layers.  
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Chapter 2 

Environmental effects on the maturation of the endodermis and 

multiseriate exodermis of Iris germanica roots 

[Published in Annals of Botany 103: 687–702, 2009. Winner of the Canadian 

Botanical Association's 2009 Taylor Steeves Award - for the best plant development 

paper by a student.] 

2.1 Overview 

Most studies of exodermal structure and function have involved species with a uniseriate 

exodermis. To extend this work, the development and apoplastic permeability of Iris 

germanica roots with a multiseriate exodermis (MEX) were investigated. The effects of 

different growth conditions on MEX maturation was also tested. In addition, the exodermises 

of eight Iris species were observed to determine if their mature anatomy correlated with 

habitat. Plants were grown in soil, hydroponics (with and without a humid air gap), or 

aeroponics. Roots were sectioned and stained with various dyes to detect MEX development 

from the root apical meristem, Casparian bands, suberin lamellae, and tertiary wall 

thickenings. Apoplastic permeability was tested using dye (berberine) and ionic (ferric) 

tracers. The root apical meristem was open and MEX development non-uniform. In soil-

grown roots, the exodermis started maturing (i.e., Casparian bands and suberin lamellae were 

deposited) 10 mm from the tip, and two layers had matured by 70 mm. In both hydro- and 

aeroponically grown roots, exodermal maturation was delayed. However, in areas of roots 

exposed to an air gap in the hydroponic system, MEX maturation was accelerated. In 

contrast, maturation of the endodermis was not influenced by the growth conditions. The 
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mature MEX had an atypical Casparian band that was continuous around the root 

circumference. The MEX prevented the influx and efflux of berberine, but had variable 

resistance to ferric ions due to their toxic effects. Iris species living in well-drained soils 

developed a MEX, but species in water-saturated substrates had a uniseriate exodermis and 

aerenchyma. MEX maturation was influenced by the roots' growth medium. The MEX 

matures very close to the root tip in soil, but much further from the tip in hydro- and 

aeroponic culture. The air gap accelerated maturation of the second exodermal layer. In Iris, 

the type of exodermis was correlated with natural habitat suggesting that a MEX may be 

advantageous for drought tolerance. 

 

2.2 Introduction 

An exodermis is present in the majority of angiosperm roots tested (Perumalla et al. 1990; 

Peterson and Perumalla 1990) and an endodermis is present in all roots so far tested except 

for some members of the Lycopodiaceae (see Clarkson 1996; Damus et al. 1997; DE 

Enstone, University of Waterloo, Canada, 'pers. comm.'). The development of the highly 

specialized cells of these two layers progresses through as many as three states as described 

by Van Fleet (1961), Esau (1965), and Robards et al. (1973). In roots of most species, the 

endodermis starts to mature before the exodermis, but the sequence of development is 

roughly the same in cells of both layers. The first developmental state (State I) is reached 

when Casparian bands are formed in the anticlinal walls. At this time, there is a tight 

connection between the modified wall and the adjacent plasmalemmas of the cells (Bonnett 

1968; Enstone and Peterson 1997; Karahara and Shibaoka 1992; Ma and Peterson 2001a). 
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Isolated Casparian bands are composed predominantly of lignin phenolics, along with 

aliphatic suberin, cell wall carbohydrates and proteins (Zeier and Schreiber 1998). Next, 

during the second developmental state (State II), a suberin lamella is deposited around the 

protoplast (i.e., between plasmalemma and wall). This lamella severs the connection between 

the Casparian band and plasmalemma (Robards et al. 1973; Haas and Carothers 1975; Ma 

and Peterson 2001a). According to Kolattukudy (1980), Zeier and Schreiber (1998) and 

Bernards (2002), suberin lamellae consist mainly of poly(aliphatic) and poly(phenolic) 

suberin monomers, as well as glycerol and associated waxes; cell wall proteins and 

polysaccharides were also detected in their isolates of the lamellae. Lastly, in the third 

developmental state (State III), tertiary cellulosic walls that are often lignified (Zeier and 

Schreiber 1998) are laid down along the suberin lamellae. These depositions can be U-shaped 

and thick enough to mask the identification of Casparian bands and suberin lamellae (Van 

Fleet 1961; Esau 1965; Clarkson et al. 1987). In the endodermis, there is typically a gap 

between the development of the Casparian bands, suberin lamellae and tertiary walls, 

whereas in the exodermis the situation is more variable. In the uniform exodermis, the 

Casparian bands and suberin lamellae are normally deposited simultaneously. But in the 

dimorphic exodermis, development of suberin lamellae and tertiary walls is delayed in the 

short cells (von Guttenberg 1968; Peterson and Enstone 1996; Enstone and Peterson 1997). 

The rate at which individual cells mature within the exodermis and endodermis can vary; it is 

common to observe some cells of the dimorphic exodermis and endodermis in older parts of 

roots that have only matured to State I. These cells have Casparian bands but lack suberin 

lamellae and tertiary walls, and are called passage cells (Esau 1965; von Guttenberg 1968). 
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In the uniform exodermis, concurrent deposition of Casparian bands and suberin lamellae can 

be patchy or variable along the root. Since immature cells in the uniform exodermis lack 

Casparian bands, they are not referred to as passage cells (Enstone and Peterson 1997). In a 

broader context, this variation in maturation rates, in addition to other modifications, can 

allow a plant species to become specialized in order to exploit specific environmental 

conditions.  

The exodermis is known to vary in structure among species (Kroemer 1903; Perumalla et 

al. 1990; Peterson and Perumalla 1990; Hose et al. 2001). To date, most root structure and 

function research has focussed on species with a single-layered (uniseriate) exodermis, 

including Zea mays, Oryza sativa, and Allium cepa (Perumalla et al. 1990; Miyamoto et al. 

2001; see Enstone et al. 2003 and references therein, Ranathunge et al. 2003, 2004, 2005a, 

b). A less common type of exodermis that has received little attention is the multi-layered or 

multiseriate exodermis (MEX) such as that found in Iris germanica (Kroemer 1903; 

Shishkoff 1986; Peterson and Perumalla 1990; Zeier and Schreiber 1998), Typha spp. (Seago 

and Marsh 1989; Seago et al. 1999) and Phragmites australis (Armstrong et al. 2000; Soukup 

et al. 2002). The exodermal Casparian band in these species is atypical because, instead of 

being confined to the anticlinal walls, it also extends into the tangential walls of the adjacent 

layers of the exodermis. Since this Casparian band deposition follows the exodermal wall 

continuum, the band often appears H- or Y-shaped in cross section. Roots of I. germanica, in 

particular, are of interest as they have been the subject of some basic anatomical studies 

(Kroemer 1903; Shishkoff 1986; Peterson and Perumalla 1990) and biochemical work (Zeier 

and Schreiber 1998, 1999). In these articles, brief descriptions of exodermal ontogeny and 
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structure were provided, but a thorough investigation that combined the development of all 

root tissues was lacking. Furthermore, the distribution of Iris is global with many species 

inhabiting diverse natural habitats such as wetlands and well-drained soils, allowing 

observation of potential correlations between root anatomy and habitat. 

The timing and rates at which exodermal and endodermal tissues mature depend on 

environmental cues and how these cues influence the regulation of expression of 

developmental genes (see Bray et al. 2000; Enstone et al. 2003). Plant species that are native 

to particular habitats have evolved constitutive resistances to local environmental stresses. 

However, if these stresses increase in severity or duration, or if a new stress is encountered, 

the species must acclimate or otherwise risk death (Bray et al. 2000). Acclimation occurs, in 

part, by regulation of the onset and rapidity of tissue development or its modification. In 

roots the exodermis, for example, is known to respond to changes in the substrate (see 

Enstone et al. 2003). Like Clarkson et al. (1987), Enstone and Peterson (1998) exposed basal 

parts of Z. mays roots to humid air inside hydroponic chambers. After 2 d, 92% of the 

exodermal cells in the exposed part of the root were in State II compared to 11% of the cells 

of the same age in submerged roots. Exodermal suberin lamellae formation was also 

accelerated in Z. mays grown in aeroponics, vermiculite, or in a stagnant (oxygen-deficient) 

solution compared to aerated hydroponics (Zimmermann and Steudle 1998; Enstone and 

Peterson 2005). In contrast, the developmental reactions of a MEX to various growth 

conditions have not been investigated.  

The origin and maturation of I. germanica's exodermis and endodermis, layers flanking 

the parenchymatous central cortex, were studied in the current work. The effects of varying 
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growth conditions on maturation of these layers were explored. Additionally, the apoplastic 

permeability of its MEX was tested using dye (berberine) and ionic (ferric) tracers. To 

establish a suitable treatment time and concentration for the latter, a toxicity test using Zea 

mays seedlings with rapid root growth was performed. I. germanica roots were amenable to 

permeability tests because they generated very few lateral roots leaving the exodermis intact, 

a trait not shared by Typha and Phragmites. Lastly, the mature root anatomy of seven other 

iris species was compared to that of I. germanica to determine if the root anatomy among 

species of this genus is correlated with their natural habitats. 

 

2.3 Materials and methods 

2.3.1 Plant material and growth conditions 

Vegetative plants (rhizomes, with their leaves and subtending roots) of 25 Iris germanica L. 

cultivars [Supplementary table 2.1] and five additional species (I. pumila L. [origin], I. 

pallida Lam. [cv. Argenteo Variegata], I. sibirica L. [cvs. Super Ego and Violet Flare], I. 

spuria L. [cvs. Amber Ripples and White Olinda] and I. versicolor L. [cv. Blue Flag]) were 

collected from outdoor plots at the Royal Botanical Gardens in Burlington, Ontario in early 

August 2005. They were transplanted in potting soil (Pro-Mix, Premier Horticulture Inc., 

Dorval, Quebec) and placed in a growth chamber (light 300 μmol m
-2

 s
-1

 PAR, 16 h day 

period, 25
o
C day, 23

o
C night, R.H. 65%). To obtain roots for testing, the rhizomes and 

attached roots were carefully lifted from the soil after 30-45 d. Then healthy looking 

adventitious roots, between 150-200 mm in length, were excised from the rhizome under 
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water with a razor blade and rinsed to remove most of the soil. Roots used for anatomical 

analysis were stored in 70% ethanol and kept in a refrigerator (4
o
C). Roots that were tested 

for apoplastic permeability were used immediately after excision from the rhizome. Roots 

from two additional species, I. hexagona and I. pseudacorus, were preserved in 70% ethanol 

and obtained for anatomical observation (courtesy of S. Mopper, University of Louisiana, 

Lafayette, USA).  

I. germanica plants were also collected from outdoor plots at the University of Bayreuth, 

Germany, in May 2006, transplanted into potting soil, and placed in a growth chamber. After 

30-45 d, some were gently unearthed and transferred to hydroponic or aeroponic culture. The 

nutrient solution was 0.09 mM (NH4)2SO4, 0.07 mM MgSO4, 0.06 mM Ca(NO3)2, 0.05 mM 

KH2PO4, 0.05 mM KNO3, 0.05 mM Fe(III)-EDTA, 0.03 mM K2SO4, 4.6 μM H3BO3, 1.8 μM 

MnSO4, 0.3 μM ZnSO4, 0.3 μM CuSO4; pH = 5.5-6.0. All the hydroponic tanks were 

completely filled with solution until new roots, produced subsequent to transfer, were longer 

than 65 mm. Some tanks remained full of nutrient solution (control, Fig. 2.1A) while others 

were only partially filled during the weekly nutrient exchange to create an air gap of 

approximately 60 mm between the base of the rhizome and solution surface (Fig. 2.1B). 

These rhizomes were wrapped in paper towel saturated with nutrient solution to prevent them 

from drying. The humidity in the air gap was measured with a digital 

hygrometer/thermometer (Control Company; Friendswood, Texas). The nutrient solution was 

constantly aerated using a single bubbling stone and was replaced with fresh solution weekly. 

The aeroponic chamber was a cylinder (1 m diameter, 1 m high) that could hold two 

rhizomes. A humidifier (‘Defensor’; Barth and Stöcklein, Garching, Germany) that  
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Figure 2.1 Drawings of the hydroponic (A), air gap (B), and aeroponic (C) systems used to 

expose iris roots to various conditions (not to scale). (A) Roots and rhizomes were 

completely submerged in hydroponic nutrient solution. (B) A partially filled hydroponic tank 

with an air gap between the base of the root (attached to the rhizome) and the surface of the 

solution. Nutrient solutions were constantly aerated with atmospheric air using bubbling 

stones (trapezoids). (C) Roots and rhizomes were completely saturated from continuous 

misting with a humidifier (grey cylinder) in an aeroponic tank.  
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continuously produced a mist of nutrient solution was placed in this chamber (Fig. 2.1C). A 

high humidity was thus obtained, and nutrient solution was observed dripping from the roots. 

2.3.2 Root anatomy 

To observe I. germanica's root apical meristem and origin of the MEX, 4-10 mm long roots 

were used. After excising these roots from the rhizome, they were vacuum infiltrated with 

4% formaldehyde in acetic acid (FAA), left submerged in FAA for 2-3 d, then rinsed and 

stored in 70% ethanol. The fixed root specimens were embedded in Paraplast Plus (Sherwood 

Medical Industries; DeLand, Florida) and cross-sectioned with a microtome at 8-10 μm 

increments from the root tip. Median longitudinal sections were also taken. Sections were 

stained with safranin/fast green and viewed with white light (Seago and Marsh 1989).  

Root structure, especially key exodermal and endodermal developmental stages, was 

observed in detail along the length (all areas from the tip to 20 mm, and then at intervals of 

10 mm up to 150-200 mm) of at least ten roots for I. germanica, grown in the different 

conditions described above. Additionally, the anatomy 150-200 mm from the tip was 

observed for at least three roots from each of the 25 I. germanica cultivars. For all other 

species, the anatomy of at least five roots each was observed at 90-120 mm from the tip. 

Roots were freehand sectioned transversely or longitudinally at various distances from the 

root tip and then subjected to several staining procedures. These were Sudan red 7B and 

Fluorol yellow 088 for lipids including suberin lamellae (Brundrett et al. 1991), berberine 

hemisulphate–aniline blue for Casparian bands (Brundrett et al. 1988), phloroglucinol-HCl 

for lignin (Jensen 1962), and TBO as a general polychromatic stain (O’Brien et al. 1964).  

The removal or clearing of cellular protoplasts can be advantageous when studying cell 



 73 

wall structure. Recently, Lux et al. (2005) reported new approaches for simultaneously 

clearing and staining tissue. Basically, the fluorochromes 0.1% berberine hemisulphate and 

0.01% Fluorol yellow were dissolved in a clearing mixture consisting of pure lactic acid 

saturated with chloral hydrate. In the present study, iris root sections were incubated in either 

of the two dye solutions at 70°C for 1 h. In the case of berberine hemisulphate, sections were 

counterstained with 0.5% aniline blue (dissolved in dH2O) at room temperature for 30 min. 

All specimens were viewed with ultraviolet (UV) light. In addition to the clearing, physical 

separation of the central region (endodermis and stele) from the rest of the root tissue was 

possible. To achieve this, root segments were cut longitudinally with a razor blade through 

the central cortex, and then the loosely adhering epidermal, exodermal and central cortical 

tissues were peeled off using fine-tipped forceps. This allowed a clear longitudinal view of 

the endodermal cells so that their passage cells and cell lengths could be observed.  

Results of all staining procedures were compared to control, unstained sections. These 

were viewed with either white or UV light as appropriate.  

Sulphuric acid digestion was also used which reportedly spares suberized and cutinized 

tissue (Johansen 1940). Sections of roots were bathed in a drop of concentrated sulphuric 

acid on a slide for 24 h at room temperature.  

Specimens were examined with Zeiss epifluorescence microscopes with either white or 

UV light (filter set: exciter filter G 365, dichroitic mirror FT 395, and barrier filter LP 420; 

Carl Zeiss, Inc.). Photographs were taken with a Q-Imaging digital camera (Retiga 2000R, 

Fast 1394, Cooled Mono, 12-bit; Quorum Technologies Inc., Guelph, ON) or a Cool Snap 

digital camera (Visitron Systems, Puchheim, Germany). 
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2.3.3 Iris germanica root growth rate measurements 

Growth rates were estimated for soil-grown roots (n = 9) and hydroponically grown roots that 

were completely submerged (n = 10) or exposed to the air gap (n = 10). An initial 

measurement of root length was made (length = 40-70 mm), and five or six days later a 

second measurement was taken. Root tips did not contact the sides or bottoms of either the 

pots or hydroponic chambers during the growth measurement period. Data were analyzed 

with a one-way Analysis of Variance (ANOVA) at p 0.05 (Statistix Student Ed., v. 2.0). The 

ages of root regions where key maturation processes occurred were calculated by assuming 

the roots grew uniformly during the period of measurement. 

2.3.4 Apoplastic permeability 

Soil-grown I. germanica roots were excised from the rhizome under water and then cut into 

30-40 mm long segments. The cut ends were blotted dry with tissue paper and then sealed 

with molten sticky wax (Kerr Manufacturing Canada, Mississauga, ON) prior to treatment. 

Two apoplastic tracers were employed to test the permeability of the exodermis. At least five 

roots were used for each tracer test. Several controls were run, 1) unstained sections (to 

observe native pigmentation or autofluorescence), 2) sections stained with the tracers (to 

confirm that cells exposed to the tracers would be stained), and 3) peripheral layers (i.e., 

epidermis, exodermis, and part of the central cortex) severed by a longitudinal cut prior to 

tracer application (to test the permeability of the central cortex). 

Berberine hemisulphate. As described by Enstone and Peterson (1992) excised, sealed 

roots were bathed in 0.05% berberine hemisulphate for 1 h followed by 0.05 M potassium 

thiocyanate for 1 h. In some cases, a short, longitudinal incision was made with a razor blade 
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through the peripheral layers so that the dye could bypass the exodermis and enter the central 

cortex. This allowed for exodermal permeability from the inside to be tested. Roots were 

freehand-sectioned and viewed with UV light as described above.  

Ferrous sulphate toxicity test. Thirty germinated kernels of Zea mays L. (cv. Seneca 

Horizon; Ontario Seed Co., Waterloo, ON) with root lengths of 30-40 mm and emerged 

coleoptiles were transferred to aerated hydroponic culture in a glasshouse under ambient 

lighting. The culture solution consisted of 0.7 mM K2SO4, 0.5 mM Ca(NO3)2, 0.5 mM 

MgSO4, 0.1 mM KCl, 0.1 mM KH2PO4, 0.01 mM Fe(III)-EDTA, 1.0 μM H3BO3, 0.5 μM 

MnSO4, 0.5 μM ZnSO4, and 0.2 μM CuSO4. The hydroponic system (with light-proof walls) 

was assembled as previously described (Enstone and Peterson 1998). Kernels were placed on 

a floating styrofoam sheet with holes to accommodate the roots. This was then covered with 

two sheets of cheesecloth that hung into the solution to keep the kernels hydrated. The top of 

each hydroponic tank was covered with two layers of shading cloth to reduce light transfer 

from above into the tank. After 2 d in the hydroponic solution, the root lengths of all 

seedlings were measured. The roots were then exposed to ferrous sulphate (FeSO4 ·7 H2O) at 

different concentrations. Six large, glass test tubes (60 mL) were jacketed with aluminium 

foil and completely filled with a desired concentration of FeSO4 (0.25 mM in 1 tube, 0.5 mM 

in 3 tubes, and 1.0 mM in 1 tube) or with nutrient solution (1 tube). The top of each tube was 

covered with flexible, laboratory film (Parafilm) in which small slits had been made to allow 

the roots to enter the solution while supporting the kernels above. Five seedlings were placed 

in each tube. Roots were exposed to the nutrient solution, 0.25 and 1 mM FeSO4 treatments 

for 2 h; the duration of the 0.5 mM FeSO4 treatment was 1, 2, or 3 h (hence the need for 3 
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tubes containing this concentration). Following the intended exposure time, the seedlings 

were transferred back to the original hydroponic tank and grown for three more days during 

which the root lengths were measured daily. This toxicity experiment was conducted twice. 

Growth rate data were analyzed using a one-way ANOVA with a Least Significant 

Differences (LSD) post-hoc test at p 0.05 (Statistix Student Ed., v. 2.0). 

Ferrous sulphate permeability. This method was modified from de Rufz de Lavison 

(1910), Soukup et al. (2002) and Armstrong and Armstrong (2005), considering the results 

from the toxicity test above. I. germanica roots were incubated in 0.5 mM FeSO4 for 1 h. To 

test exodermal permeability from the inside, the peripheral layers of some roots were cut 

open as described above, allowing the FeSO4 to enter the central cortex. After treatment, all 

roots were rinsed with running water for 30 min and then freehand-sectioned. The sections 

were placed in a drop of 1 mM potassium ferrocyanide (K4[Fe(CN)6]·3 H2O) dissolved in 

0.5% HCl on a slide for 2-3 min. During this time, a ‘Prussian blue’ precipitate of ferric 

ferrocyanide (Fe4[Fe(CN)6]3) formed in the areas where the ferric ions had entered (Pearse 

1968). (According to Guerinot and Yi [1994], in the eudicots and non-graminaceous 

monocots [such as I. germanica], ferric ions are restricted to the apoplast while ferrous ions 

can be transported across the plasmalemma.) Sections were observed using the microscope 

described above (with white light).  

The potential toxicity of FeSO4 and its effect on the apoplastic permeability of I. 

germanica roots were tested. Sealed root segments were incubated in 0.5 mM FeSO4 or water 

(i.e., control) for 1 h, followed by rinsing with running water for 30 min. These root 
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segments were then submerged in 0.05% berberine hemisulphate for 1 h, rinsed with water, 

cross sectioned, and viewed with UV light.  

 

2.4 Results 

2.4.1 Iris germanica root growth and anatomy 

Root growth rates (mean ± standard deviation) for soil-grown roots (14.7 ± 1.9 mm d
-1

), 

submerged hydroponically grown roots (14.7 ± 2.3 mm d
-1

), and air gap roots (14.8 ± 1.9 mm 

d
-1

), were the same statistically (ANOVA; p=0.99). With these data, it was possible to relate 

the age of specific root regions to their distances from the tip. 

Root anatomy was virtually identical among the 25 cultivars of Iris germanica observed 

[listed in Supplementary Table 2.1]. The following data is from the cultivar ‘Paradise’. 

Unless otherwise noted, data are from primary, adventitious roots originating in the rhizome.  

Root apical meristem. Close examination of I. germanica's root apical meristem revealed 

that it was an open type with multiple files of cortex cell precursors (Fig. 2.2A-C). There was 

no temporal regularity of increase in the number of immature exodermal cell files. After 

differentiation from the exodermal initial, subsequent immature exodermal cell divisions 

were irregular over time, forming files ranging from two to four near the root tip (Fig. 2.2A, 

C). Furthermore, there were no apparent radial cell alignments across the central cortex, i.e. 

between the immature exodermis and the endodermis (Fig. 2.2D, E); this was related to the 

open nature of the root apical meristem as well as to the non-uniform anticlinal and periclinal 

cell divisions within it. 
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Figure 2.2 Iris germanica adventitious root tips in longitudinal (A, B) and transverse (D, E) 

sections. (A) Tip of a 4-mm-long adventitious root. Arrowheads indicate the distal extremity 

of the root apical meristem. (B) Enlargement of the apical meristem area (arrowheads as in 

A). The epidermis is immature and the number of developing immature exodermal cell files 

varies (within brackets). (C) Tracing of the immature epidermal (grey) and exodermal 

(white) cells, located in the black rectangle in (A). Note the variable number of immature 

exodermal cell files in this region. (D) 50 μm from the tip of the root proper. Note the lack of 

regular radial alignments of cells across the young cortex. The root cap is thick at this 

distance. (E) 200 μm from the tip of the root proper. A boundary between the epidermis and 

immature exodermis is noticeable at this distance. There are 2-4 layers of cells in the 

immature exodermis, which are characterized by a lack of intercellular air spaces (within 

brackets). Abbreviations: rc = root cap; ep = epidermis; iex = immature exodermis; en = 

endodermis. Scale bars: (A, C) = 100 μm; (B, D, E) = 50 μm. 
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Soil-grown roots; outer layers. In the outermost layer of the exodermis, Casparian bands 

in the anticlinal walls and suberin lamellae formed concurrently and were first detected 10-15 

mm from the root tip (Fig. 2.3A, B). Initially, Casparian bands appeared in two separate 

locations in each radial and transverse wall, but they rapidly extended through these walls to 

form one continuous band. By 20 mm from the root tip, most of the exodermal cells 

contained typical Casparian bands and suberin lamellae. At 30 mm from the tip, a second 

exodermal layer started to differentiate centripetal to the first layer. The first indication of 

this was the extension of the Casparian band into the inner tangential walls of the first layer 

and the outer tangential walls of the second layer. As the root aged, the band extended into 

the anticlinal walls of the second layer. While the second exodermal layer continued to 

mature, very thin lignified tertiary walls formed in the first layer. It was not until 70 mm 

from the tip that the second exodermal layer had completed its maturation (Fig. 2.3C, D). At 

this bi-layered stage, the extension of the Casparian bands through adjoining tangential walls 

created a continuous circumferential Casparian band (ccCb). Depending on the arrangement 

of the exodermal cells, this Casparian band was either Y- or H-shaped when viewed in cross-

section (Fig. 2.3C). Maturation of the third exodermal layer was complete at 100 mm from 

the tip with continued extension of the Casparian band through the tangential and anticlinal 

walls of the adjacent cells (Fig. 2.3E), as well as suberin lamella deposition (Fig. 2.3F, G) 

and lignification of the thin tertiary walls (Fig. 2.3H) of this third cell layer. Proximal to this 

area, an ultimate fourth exodermal layer could mature in the sequence described above. 

When the tissue was digested with sulphuric acid, all walls of the mature exodermis were 
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retained (data not shown). To observe cell lengths, it was necessary to use longitudinal views 

because in transverse view long and short cells would be indistinguishable. In the MEX, an 

irregular dimorphy was observed in the first layer (i.e., short cells were present but did not 

regularly alternate with long cells), but not in the underlying layers (Fig. 2.3J). The shorter 

cells differed from the longer cells only in length; all cells had Casparian bands, suberin 

lamellae and thin tertiary wall thickenings.  

In the epidermis, the cells were tabular and uniform (data not shown). Their walls did not 

stain for lipids (Fig. 2.3G) but did stain positively for lignin (Fig. 2.3H) in addition to being 

faintly autofluorescent under UV light (Fig. 2.3I) at all distances from the root tip that were 

investigated. All epidermal walls were digested by sulphuric acid (not shown).  

Soil-grown roots; inner parts. In the endodermis, the initial Casparian bands formed 10-

15 mm from the root tip (i.e., the same distance as did the exodermis). These bands appeared 

as small dots in cross-section and were located very close to the pericycle. Also at this 

distance, lignin was detected in the outer tangential walls of all the endodermal cells and in 

the walls of protoxylem vessels. Suberin lamellae were first detected in the endodermis 20 

mm from the root tip. At 30 mm, cells with suberin lamellae possessed Casparian bands that 

had started to extend through the anticlinal walls (Fig. 2.4A, B). This extension did not occur 

in unsuberized passage cells that were usually located near the protoxylem poles. At 50 mm 

from the tip, U-shaped tertiary wall thickenings were first observed and were present only in 

suberized endodermal cells. Also at this distance, early metaxylem vessel walls and those in 

the pith region became lignified. The U-shaped wall thickenings continued to enlarge (Fig. 

2.4C, D) and by 100 mm from the tip, they had reached their maximum size; few passage  
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Figure 2.3 Photomicrographs of the outer part of I. germanica roots in cross (A-I) and 

longitudinal (J) section. Values in mm refer to distances from the root tips. (A) 15 mm. 

Stained with berberine hemisulphate–aniline blue. Casparian bands (white arrows) fluoresced 

yellow and occupied the anticlinal walls of the outermost exodermal layer. (B) 15 mm. 

Stained with Sudan red 7B. Suberin lamellae (black arrowheads) appeared as red rings in the 

walls of the outermost exodermal layer. (C) 70 mm. Stained with berberine hemisulphate–

aniline blue. The ccCb (white arrows) was Y-shaped (in cells labelled with †) or H-shaped 

(in cells labelled with ‡). (D) 70 mm. Stained with Sudan red 7B. Cells in the two mature 

exodermal layers contained suberin lamellae (black arrowheads). (E) 100 mm. Stained with 

berberine hemisulphate–aniline blue. The ccCb (white arrows) filled the anticlinal and 

tangential walls of cells in the multiseriate exodermis. (F) 100 mm. Stained with Sudan red 

7B. Cells in the multiseriate exodermis all contained suberin lamellae (black arrowheads). 

(G) 100 mm. Stained with Fluorol yellow 088. Suberin (white arrowheads) fluoresced yellow 

in exodermal cell walls. (H) 100 mm. Stained with phloroglucinol-HCl. Lignin (black 

arrows) appeared reddish-orange in the walls of epidermal and exodermal cells. (I) 70 mm. 

Autofluorescence with UV light. Walls of the epidermis and exodermis autofluoresced faint 

blue (light blue arrowheads). (J) 70 mm. Epidermal cells containing berberine thiocyanate 

crystals (yellow) and a dimorphic, biseriate exodermis with blue, autofluorescent walls. 

Asterisks = short cells. Abbreviations: epi = epidermis; ex = mature exodermis; iex = 

immature exodermis. Scale bars = 100 μm. 
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Figure 2.4 Photomicrographs of cross (A-F, H-J) and longitudinal (G) sections from I. 

germanica roots. Values in mm refer to distances from the root tips. (A) 30 mm. Stained with 

berberine hemisulphate–aniline blue. The endodermis had Casparian bands (white arrows) 

that either appeared dot-like or extended throughout the anticlinal walls. Autofluorescence 

(blue arrowheads) was observed in the outer tangential walls of the endodermal cells and in 

protoxylem vessel walls. (B) 30 mm. Stained with Sudan red 7B. Endodermal cells contained 

suberin lamellae (black arrowheads) when the Casparian band had extended through their 

anticlinal walls. (C) 90 mm. Stained with berberine hemisulphate–aniline blue. Mature 

endodermis with U-shaped wall thickenings (white arrowheads) and Casparian bands 

(between arrows). (D) 90 mm. Stained with Sudan red 7B. Mature endodermis with suberin 

lamellae (black arrowheads) that were exterior to the U-shaped wall thickenings. (E) 100 

mm. Stained with Fluorol yellow 088. Mature endodermis with suberin lamellae (yellow 

arrowheads) surrounding the wall thickenings (white arrowhead). (F) 100 mm. Stained with 

phloroglucinol-HCl. Lignin appeared reddish-orange in the wall thickenings (white 

arrowhead), the outer tangential cell walls of the endodermis (blue arrowhead), and in xylem 

vessel walls. (G) 100 mm. Stained with Fluorol yellow 088. Suberin lamellae (yellow 

arrowheads) were positioned in between wall thickenings (white arrowheads). A short 

passage cell (*) without suberin lamellae or wall thickenings was evident. (H) 90 mm. 

Unstained and viewed with UV light. Note autofluorescence of endodermal wall thickenings, 

and walls of xylem vessels and modified parenchyma in the pith. (I) Lateral root in cross 

section, stained with TBO. Lignified walls stained blue. (J) Same as (I), but the epidermis 

had been sloughed off. Asterisks = passage cells. Abbreviations: epi = epidermis; ex = 

exodermis; cc = central cortex; en = endodermis; pc = pericycle; px = protoxylem; mx = 

metaxylem; ph = phloem. Scale bars = 100 μm. 
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cells remained. These U-shaped thickenings stained positively for lignin (Fig. 2.4F) and 

autofluoresced with UV light (Fig. 2.4H). Although suberin was detected as a lamella in each 

of these cells, it was absent from the U-shaped thickenings (Fig. 2.4D, E, G). By this stage, 

the late metaxylem vessel walls had lignified. After digesting the tissue with sulphuric acid, 

the walls of the endodermis, mature xylem vessels, and modified parenchyma in the pith 

were retained. Dissolved structures included the U-shaped wall thickenings, pericycle, 

phloem and immature vessels (data not shown). Observing the inner part of the root 

longitudinally revealed its three-dimensional structure. Dimorphy was seen in the 

endodermis, where the shorter cells were without suberin lamellae and tertiary wall 

thickenings and, thus, were passage cells (Fig. 2.4G). Mature xylem vessels had reticulate 

wall thickenings and simple perforation plates (data not shown). 

Soil-grown lateral roots. Some observations of lateral root development and anatomy 

were also made. Lateral root primordia initiated from the pericycle grew through the central 

cortex in the wake of a digestive pocket. However, they physically broke through the 

exodermis. The area of the exodermis thus wounded was sealed shut with a collar of 

modified cells that were suberized and lignified (data not shown). In general, lateral root 

anatomy was similar to that of the adventitious roots, except that laterals were substantially 

thinner, and their late metaxylem vessels were located in the center of the root instead of a 

pith (Fig. 2.4I). The epidermis of lateral roots was not always present; it could be sloughed 

off (Fig. 2.4J). 

Hydroponically grown roots. When I. germanica plants were grown with their roots 

completely submerged in nutrient solution, the onset of exodermal maturation occurred 
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further from the root tip compared to soil-grown roots (Fig. 2.5). Exodermal Casparian bands 

and suberin lamellae were first detected in some cells of the outermost cortical cell layer of 

hydroponically grown roots 60 mm from the root tip compared to 10 mm in soil-grown roots. 

All cells of the first exodermal layer of hydroponically grown roots had formed typical 

Casparian bands and suberin lamellae at 80 mm (between 5 and 6 days old) compared to 20 

mm (between 1 and 2 days old) in soil-grown roots (Fig. 2.5; see Fig. 2.3A, B). In the 

maturing second exodermal layer of hydroponic roots, Casparian bands and suberin lamellae 

were found in some cells 170 mm from the root tip compared to 30 mm in soil (Fig. 2.5). All 

cells of the second exodermal layer of hydroponically grown roots matured to State II 200 

mm from the tip (about 14 days old) compared to 70 mm (between 4 and 5 days old) in soil-

grown roots (see Fig. 2.3C, D). In hydroponics, no cells of the third exodermal layer had 

begun to mature by 200 mm from the tip whereas in soil some cells of this layer had begun to 

mature at 70 mm. Unlike the exodermis, endodermal maturation occurred as close to the tip 

in hydroponic roots as in soil roots. 

Air gap-treated roots. The submerged part of air gap treated roots had an exodermal 

anatomy like that of completely submerged roots with maturation of the first exodermal layer 

finishing at 80 mm from the tip (between 5 and 6 days old; Fig. 2.5). In air gap treated roots, 

the second exodermal layer matured close to the air gap-solution interface, 100-120 mm from 

the tip. The second exodermal layer, with a ccCb and suberin lamellae, completed maturing 

by 120 mm (between 8 and 9 days old). Exodermal anatomy was nearly identical in the 

region of root exposed to the humid air gap (120-170 mm from the tip, between 9 and 12 

days old). This 50-mm long root zone had been exposed to humid air for 7 d (Fig. 2.5). The  
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Figure 2.5 Diagrams of key exodermal and endodermal developmental stages in I. 

germanica roots that were grown in different conditions. According to the growth rates, the 

proximal ends of the illustrated roots were 12 days old. The vertical scale refers to distance 

from the root tip. Green lines – concurrent exodermal Casparian band and suberin lamellae 

development. Yellow lines – endodermal Casparian bands. Red lines – endodermal suberin 

lamellae. Blue lines – endodermal tertiary wall thickenings. Dashed coloured lines – the 

structure had not yet completely developed in all cells. Solid coloured lines – the structure 

had completed developing in all exodermal cells or the majority of endodermal cells (i.e., 

few passage cells remained). The horizontal line across the air gap root marks the interface 

between the air gap and nutrient solution. Abbreviations: ex = exodermis; en = endodermis. 
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third layer had not begun to mature by 200 mm. The air gap treatment brought about a 

precocious maturation of the second exodermal layer, more resembling the soil-grown root 

than the control hydroponically grown root (Fig. 2.5). Since the endodermis had already 

reached State III of maturity 100 mm from the tip in the air gap growth condition, as well as 

in the other two growth conditions (Fig. 2.5), it was not surprising that endodermal anatomy 

in the part of the root exposed to the air gap was similar to roots grown in the other 

conditions. The average relative humidity in the air gap was 92%.  

Aeroponically grown roots. As with completely submerged, hydroponically grown roots, 

the exodermal maturation of aeroponically grown roots occurred further from the root tip 

compared to soil-grown roots (Fig. 2.5). In fact, the maturation sequence was similar in 

aeroponically and hydroponically grown roots (data combined in Fig. 2.5). For example, two 

complete exodermal layers were not observed until 200 mm from the tip (about 14 days old). 

This anatomy resembled that of soil-grown roots at 70 mm from tip (between 4 and 5 days 

old; see Fig. 2.3C, D). Endodermal maturation in aeroponic roots occurred at a similar 

distance from the tip as in roots grown in all other conditions (Fig. 2.5). 

2.4.2 Ferrous sulphate toxicity in Z. mays roots 

Zea mays roots that were exposed to FeSO4 had reduced growth rates compared to the 

control (Fig. 2.6). For the 0.5 mM FeSO4 for 2 and 3 h and 1.0 mM FeSO4 for 2 h exposures, 

there were little or no measurable increases in root length. Roots exposed to 0.25 mM FeSO4 

for 2 h had growth rates that were initially minimal, but increased over the next two days. 

Roots exposed to 0.5 mM FeSO4 for 1 h had growth rates greater than roots exposed to any 
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of the other FeSO4 treatments, but still significantly lower than the control until day 3 (Fig. 

2.6). 

2.4.3 Root permeability to apoplastic tracers 

Using berberine as a tracer necessitated the observation of two controls. Firstly, unstained 

root sections were irradiated with UV light. Faint blue autofluorescence was observed in the 

walls of the exodermis, endodermis, lignified xylem vessels, and modified parenchyma in the 

stele (Fig. 2.7A, see Figs. 2.3I, 2.4H). Secondly, root sections were stained directly with 

berberine hemisulphate. Then all cell walls of the epidermis and cortex (including those of 

the exodermis and endodermis) took up the fluorochrome and fluoresced yellow (Fig. 2.7B). 

When an intact root was treated externally with berberine, the dye entered the cortex and 

stele close to the tip where the first exodermal layer had not yet matured (< 20 mm from the 

tip; Fig. 2.7C). Beyond 20 mm, the dye penetrated and stained the walls of the epidermis and 

the outer tangential walls of the first layer of exodermis, but its further entry was blocked by 

the Casparian band in the first exodermal cell layer (Fig. 2.7D). When berberine was applied 

simultaneously to the epidermis and central cortex, it moved freely in the epidermal cell 

walls, walls of cortical parenchyma, walls of immature exodermal layers, and the inner 

tangential walls of the innermost mature exodermal layer. However, the dye did not penetrate 

the anticlinal walls of a mature exodermis (Fig. 2.7E).  

When FeSO4 was used as a tracer, both unstained and stained controls were necessary. 

Unstained cross sections lacked blue pigmentation (data not shown). When cross sections 

were exposed to FeSO4 and mounted in K4[Fe(CN)6] many, but not all, contained blue 

Fe4[Fe(CN)6]3 in every cell wall (Fig. 2.7F). When intact roots were exposed to FeSO4,  



 92 

Figure 2.6 The effect of FeSO4 exposure on the growth rates of Z. mays roots. Values are 

averages (n=10) ± standard deviation that were pooled from two independent trials. Root 

growth per day refers to the time following the FeSO4 treatment. Different letters within each 

day indicate significant differences (ANOVA with LSD, p 0.05). Bracketed letters are 

shared by the 0.5 mM FeSO4 for 2 and 3 h exposures and 1.0 mM FeSO4 for 2 h exposure.  
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Figure 2.7 Apoplastic permeability tests on I. germanica roots with berberine or FeSO4. The 

photomicrographs show cross sections of the roots unless otherwise stated. Values in mm 

refer to distances from the root tips. (A) 90 mm. Unstained, UV autofluorescent control. All 

exodermal walls were faint blue. (B) 60 mm. Entire section stained with berberine. 

Epidermal, exodermal and central cortical cell walls fluoresced yellow (white arrowheads). 

(C) Longitudinal section of a root tip treated externally with berberine. The walls of all cells 

near the tip fluoresced yellow. (D) 70 mm. The outermost Casparian bands of an intact 

multiseriate exodermis prevented externally applied berberine (white arrowheads) from 

permeating the exodermis and central cortex. (E) 70 mm. A punctured multiseriate exodermis 

allowed berberine to stain the walls of epidermal, immature exodermal and central cortical 

cells (white arrowheads). (F) 80 mm. Entire section treated with FeSO4 followed by 

K4[Fe(CN)6]·3 H2O. Ferric ions precipitated in all epidermal and exodermal walls and 

appeared blue (black arrowheads). (G) 70 mm. Following an external treatment, ferric ions 

were detected in mature exodermal walls (black arrowheads). (H) Longitudinal section of a 

root tip treated externally with FeSO4 followed by K4[Fe(CN)6]·3 H2O. The ferric ions 

entered the cortex of the tip readily. (I) 90 mm. Ferric ions, as evidenced by blue precipitates 

(black arrowheads), were blocked from permeating the exodermal Casparian bands. (J) 90 

mm. A punctured multiseriate exodermis allowed the ferric ions limited entry to the central 

cortex (black arrowheads). (K) 70 mm. Intact root incubated in water and then berberine. 

Berberine (white arrowheads) did not permeate the Casparian bands in the first exodermal 

layer. (L) 100 mm. Intact root incubated in FeSO4 and then berberine. Berberine stained the 

walls of all mature and immature exodermal cells, and walls of cortical parenchyma (white 

arrowheads). Scale bars: cross sections = 50 μm; longitudinal sections = 500 μm. 
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Table 2.1 Rhizomatous Iris species’ natural habitats are correlated with the type of 

exodermis they develop and whether aerenchyma is present (+) or absent (–). 

Iris species Natural habitat Type of exodermis Aerenchyma 

1
I. germanica L. Well-drained soil Multiseriate – 

1
I. pumila L. Well-drained soil Multiseriate – 

1
I. pallida Lam. Well-drained soil Multiseriate – 

1
I. sambucina L.* Well-drained soil Multiseriate ? 

2
I. sibirica L. Water-saturated soil Uniseriate + 

2
I. spuria L. Water-saturated soil Uniseriate + 

2
I. versicolor L. Water-saturated soil Uniseriate + 

2
I. hexagona Walt. Water-saturated soil Uniseriate + 

2
I. pseudacorus L. Water-saturated soil Uniseriate + 

2
I. virginica L. † Water-saturated soil Uniseriate + 

 
1
 = ‘bearded irises’; 

2
 = ‘beardless irises’; * = observed by Kroemer (1903); † = observed by 

Stevens (2003). 

 

 



 97 

variable results were obtained. In areas of the root within 20 mm from the tip, the ferric ions 

entered the central cortex and stele (Fig. 2.7H). As the MEX matured, the outermost 

Casparian band did not always prevent the ions from permeating through the apoplast. For 

example, instances were seen where the ion penetrated through the anticlinal walls of the first 

and second mature exodermal layers (Fig. 2.7G). Ferric ions were not detected permeating 

deeper than two exodermal layers. Frequently, however, ferric ions were blocked at the 

location of the Casparian band in the first exodermal cell layer (Fig. 2.7I). When the root 

segments’ peripheral layers were cut, an unexpected result was observed. In the majority of 

cases, ferric ions were detected penetrating the walls of only two cortical cell layers. In the 

few instances where the ions were observed entering deeper into the central cortex, their 

transport was restricted to the cell walls subjacent to the mature exodermis. The ions did not 

penetrate the anticlinal walls of the innermost mature exodermal layer (Fig. 2.7J).  

To understand the reason for the variable FeSO4 permeability results, a third apoplastic 

tracer experiment was performed. When root segments were exposed to water and then 

berberine, the fluorochrome did not penetrate the first exodermal layer (Fig. 2.7K). However, 

exposing root segments initially to FeSO4 for 1 h followed by berberine altered the 

exodermis such that berberine was able to permeate through the exodermal walls and into the 

central cortex (Fig. 2.7L). 

2.4.4 Mature root anatomy of other soil-grown iris species 

Of the other species observed, I. pumila (Fig. 2.8A, B) and I. pallida (Fig. 2.8C, D) were 

very similar to I. germanica. On the other hand, the remaining five species each had a 

uniseriate exodermis and aerenchyma in the central cortex (Table 2.1). These species include 
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I. sibirica (Fig. 2.8E, F), I. spuria (Fig.2. 8G, H), I. versicolor (Fig. 2.8I, J), I. hexagona (Fig. 

2.8K, L), and I. pseudacorus (Fig. 2.8M, N).  

 

2.5 Discussion 

The current detailed investigation of I. germanica root structure, development, and apoplastic 

permeability extended the information contained in past reports (Kroemer 1903; Shishkoff 

1986; Peterson and Perumalla 1990; Zeier and Schreiber 1998). I. germanica’s multiseriate 

exodermis (MEX) was classified by Kroemer (1903) as a ‘Gemischte Interkutis’ (mixed 

exodermis) which referred to the outermost exodermal layer as being dimorphic (i.e., having 

long and short cells) while all underlying layers had uniform cell lengths. Both Kroemer 

(1903) and Shishkoff (1986) observed this mixed exodermis in 14 species of various genera, 

all of which are members of the Asparagales (Table 2.2). In species with a dimorphic 

uniseriate exodermis, such as Allium cepa (von Guttenberg 1968; Ma and Peterson 2001a), 

the shorter cells are typically passage cells with delayed suberin lamella deposition compared 

to the long cells. The lack of suberin lamellae allows passage cells to function as the least 

restrictive pathways for the radial transport of water and solutes across the exodermis. 

However, in the present study of I. germanica, suberin lamellae were deposited in the short 

cells as early as in the long cells. Thus, the short cells were not passage cells. This type of 

dimorphic layer may have evolved from the more common type with passage cells. I. 

germanica’s MEX began developing from the outermost cortical layer and each subsequent 

layer developed centripetal to the previous one, a feature also observed by Peterson and 

Perumalla (1990), to a maximum of four layers. 
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I. germanica’s specialized exodermal Casparian band, located in the anticlinal and 

tangential walls as illustrated earlier by Peterson and Perumalla (1990), was termed a 

continuous circumferential Casparian band (ccCb; see Results above). It is proposed that 

ccCb be used as the standard term when referring to this type of Casparian band, which was 

also detected in the roots of Typha spp. and P. australis (Seago et al. 1999; Soukup et al. 

2002). The shape of the ccCb is dependent on that of the exodermal wall continuum (i.e., 

apoplast) which is governed by the orientation of MEX cells. Their orientation is related to 

how they are generated at the root tip. For example, formation of the MEX of Typha glauca 

is initiated when the outermost layer of the ground meristem continues to divide periclinally 

to form multiple exodermal layers centripetally (Seago and Marsh 1989). When T. glauca 

root is viewed in transverse section, one can observe that the periclinal divisions gave rise to 

an H-shaped wall continuum; hence the ccCb is also H-shaped. However, in I. germanica 

roots, the ccCb can be both H- and Y-shaped. This means that in I. germanica, and 

presumably other species with a Y-shaped ccCb, generation of the MEX at the root apical 

meristem differs from that of Typha spp. which has a tiered apex (Seago and Marsh 1989; 

Heimsch and Seago 2008). In I. germanica, the immature exodermal layers were not derived 

by a unified set of periclinal and anticlinal divisions. This was shown in transverse sections 

where uniform radial files were not present in the 3-4 cell layers across much of the 

immature exodermis. These ambiguous patterns of MEX development are what led to the 

variable ccCb shapes found in the exodermal layers. In other words, the irregular sequences 

of cell files derived from the open root apical meristem are reflected in the cross sectional 

patterns of the later developing and mature exodermis.  
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Figure 2.8 Exodermis in transverse sections from soil-grown roots of various iris species. 

Tissue displayed in the left column was stained with Sudan Red 7B; tissue displayed in the 

right column was stained with phloroglucinol–HCl. Values in millimetres refer to distances 

from the root tips. (A, B) Iris pumila, 100 mm; multiseriate exodermis. (C, D) Iris pallida, 

100 mm; multiseriate exodermis. (E, F) Iris sibirica, 120 mm; uniseriate exodermis. (G, H) 

Iris spuria, 90 mm; uniseriate exodermis. (I, J) Iris versicolor, 100 mm; uniseriate 

exodermis. (K, L) Iris hexagona, 100 mm; uniseriate exodermis. (M, N) Iris pseudacorus, 

100 mm; uniseriate exodermis. Abbreviations: epi = epidermis; ex = exodermis; cc = central 

cortex. Red arrowheads = suberin lamellae (stained red); black arrowheads = wall 

thickenings; white arrowheads = lignified walls (stained reddish-orange). Scale bars = 50 

mm. 
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Table 2.2 List of monocot species (class Liliopsida) that have a multiseriate exodermis and 

inhabit well-drained or dry substrates. 

Order Family Genus and species 

Alismatales Araceae ^Philodendron wendlandii Schott 

Arecales Arecaceae *^Phoenix dactylifera L. 

  ^Phoenix roebelinii O’Brien 

  ^Trachycarpus fortunei (Hook.) 

H.Wendl. 

  ^Washingtonia filifera (Lindl.) 

H.Wendl. 

Asparagales Agavaceae *Yucca recurvifolia Salisb. [me] 

  *Yucca gloriosa L. [me] 

 Asparagaceae ^Asparagus asparagoides (L.) 

Druce 

  ^Asparagus densiflorus (Kunth) 

Jessop 

  *^†Asparagus officinalis L. [me] 

  *Asparagus setaceus (Kunth) 

Jessop 

  *†Asparagus sprengeri Regel. 

[me] 

  *†Asparagus verticillatus L. 

[me] 

 Asphodelaceae *†Asphodeline lutea (L.) 

Reichenb. [me] 

  ^Gasteria disticha (L.) Haw. 

 Hemerocallidaceae *^†Hemerocallis fulva L. [me] 

  *^Phormium tenax Forst. & 

Forst. f. 

 Iridaceae *^†Iris germanica L. [me] 

  *†Iris pallida Lam. [me] 

  *^†Iris pumila L. [me] 

  *†Iris sambucina L. [me] 

 Orchidaceae ^Brassavola subulifolia Lindl. 

  ^Cattleya aurantiaca (Bateman 

ex Lindl.) P.N.Don 

 Ruscaceae ^†Aspidistra elatior Blume [me] 

  *Dracaena cannifolia Hort. [me] 

  *†Dracaena draco L. [me] 

  ^Sansevieria cylindrica Bojer 

Commelinales Commelinaceae *Tradescantia virginiana L. 
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Pandanales Pandanaceae *Pandanus stenophyllus Kurz 

Poales Bromeliaceae *†Ananas macrodontes E.Morr. 

  *Aechmea longifolia (Rudge) L. 

B.Sm. & M.A.Spencer 

 Juncaceae *Luzula sylvatica (Huds.) Gaudin 

 Poaceae *Chrysopogon zizanioides (L.) 

Roberty 

Zingiberales Cannaceae *†Canna indica L. 

  *Canna tuerckheimii Kraenzl. 

 Marantaceae *Maranta arundinacea L. 

  ^Maranta leuconeura C.J.Morren 

 Strelitziaceae *Strelitzia augusta Thunb. 

 Zingiberaceae *†Curcuma longa L. 

  *†Globba marantina L. 

  *Hedychium coccineum Buch.-

Ham. ex Sm. 

  *†Hedychium gardnerianum 

Sheppard ex Ker Gawl. 

  *†Zingiber officinale Roscoe 

 

*Kroemer (1903); †Shishkoff (1986); ^Peterson and Perumalla (1990); [me] = mixed 

exodermis identified by Kroemer (1903) and Shishkoff (1986). 

Taxonomic information referenced from the Angiosperm Phylogeny Group’s website 

(Stevens 2001 onwards) and Tropicos.org.  
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Development of the endodermis in I. germanica was also observed progressing through 

States I, II and III. Casparian bands were offset toward the pericycle in cells lacking suberin 

lamellae, a feature also observed in Hordeum vulgare (barley, Robards et al. 1973), Z. mays 

(Haas and Carothers 1975), and Triticum aestivum (wheat, Grymaszewska and Golinowski 

1987). The presence of endodermal passage cells in mature regions far from the root tip is 

also common. Three striking characteristics of I. germanica’s endodermal cells were i) 

dimorphy, ii) their palisade-like shape when viewed in cross section, and iii) their thick, 

lignified tertiary walls that may function in mechanical stabilization of the stele. In the 

dimorphic endodermis, short cells were passage cells. To the best of our knowledge, this is 

the first report of dimorphy in the endodermis of any species. Features ii) and iii) were also 

noted by Zeier and Schreiber (1998) who observed I. germanica’s mature (i.e., State III) 

endodermis with white light, fluorescence and scanning electron microscopy, pointing out 

the presence of mature wall-modifying structures.  

It is well known that environmental conditions can influence plant organ growth and 

tissue maturation. In the current work, this was evident with regard to the timing of 

exodermal maturation in I. germanica roots that were grown in soil, hydroponics or 

aeroponics. Complete exodermal development, i.e., through States I-III, occurred closer to 

the root tip in soil-grown roots relative to hydroponically and aeroponically grown roots. 

Generally, the faster a root grows in length, the further from the tip its exodermis and 

endodermis will develop (Wilcox 1962; Perumalla and Peterson 1986). Mechanical 

impediment of Hordeum vulgare non-nodal root growth was shown to induce exodermal 

development (Lehmann et al. 2000) and limit root elongation resulting in accelerated 
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endodermal maturation (Wilson and Robards 1978). However, in the present study, growth 

rates were remarkably similar for I. germanica roots grown in the various environments, 

indicating that factors other than growth rate were responsible for the differences in the onset 

of exodermal maturation. In roots grown in hydroponic and aeroponic conditions, the 

exodermis matured at a similar distance from the tip, and the same was true for endodermal 

maturation. It could be argued that these two conditions were essentially the same since the 

roots were always saturated with solution. Also, having a thin (10-100 μm) unstirred layer of 

water on the root surface, sheltered between epidermal hairs, is possible even if roots are 

grown in an aerated solution (Nye and Tinker 1977; Clarkson 1996). Miyamoto et al. (2001) 

also observed no difference in tissue development in O. sativa roots grown in hydroponics 

and aeroponics. In contrast, Zimmermann and Steudle (1998) reported that exodermal 

development in Z. mays was promoted by aeroponic conditions. In the present study, 

exposing hydroponically grown I. germanica roots to an air gap for seven days accelerated 

the maturation of the second exodermal layer. Similarly, Clarkson et al. (1987) and Enstone 

and Peterson (1998) found that an air gap accelerated exodermal suberization in Z. mays 

roots within two days. The lower humidity levels and increased gas exchange capability 

within the air gap, similar to that of well-drained soil but in contrast to completely submerged 

conditions, may have played a role (Enstone and Peterson 1998). The essence of all these 

findings is that developmental responses by plants to environmental conditions can vary 

depending on the species and type of condition (see Enstone et al. 2003). The past and 

current work reveals that these responses are species-specific, making it necessary to test the 

reactions in each case; they cannot be assumed. 
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Apoplastic tracers were used to test the permeability of I. germanica’s exodermis. It is 

known that Casparian bands can limit the apoplastic flow of solutes (Enstone et al. 2003) and 

possibly also water (Hose et al. 2001). In the present study, berberine entered the root cortex 

and stele close to the tip where the exodermis and endodermis were immature. However, 

once the Casparian bands were deposited, the dye could not penetrate even a uniseriate 

exodermis. The current berberine tracer results are the same as those obtained with Typha 

spp. and P. australis (Seago et al. 1999; Soukup et al. 2002). Similar results were also 

observed by Peterson and Perumalla (1990) who used Cellufluor to test the apoplastic 

permeability of I. germanica’s mature exodermis; Cellufluor did not pass the outermost 

Casparian bands. 

The permeability of the exodermis was also tested with ferrous sulphate. In solution, 

some of the ferrous ions were oxidized to ferric ions that could be precipitated in place by a 

subsequent application of potassium ferrocyanide (Ranathunge et al. 2005a). This test has the 

advantage of using an ion of physiological interest that has a smaller molecular size than 

berberine. Others have used FeSO4 as an apoplastic tracer. Soukup et al. (2002) exposed P. 

australis roots to 1 or 10.75 mM FeSO4 for 1–24 h. Ferric ions permeated close to the tip 

(where the exodermis had not yet matured), but were blocked at the first mature exodermal 

layer (see Fig. 6 in Soukup et al. [2002]). Soukup et al. (2002) also observed toxicity in the 

form of leaky plasmalemmas when tracer exposure times exceeded 1 h. Armstrong and 

Armstrong (2005) exposed Oryza sativa roots to 2 mM FeSO4 for 1-2 h. The corresponding 

images display a young (5-25 mm from the tip) exodermis (situated between the epidermis 

and hypodermal sclerenchyma layer) that was permeated by ferric ions. In roots grown in 
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sulphide, permeation of ferric ions was reduced but not completely blocked by the exodermis 

as accumulation of the ions is noticeable in the sclerenchyma layer (see Fig. 8 in Armstrong 

and Armstrong [2005]). Unfortunately, they did not stain for Casparian bands or suberin 

lamellae and it is possible that the exodermis had not matured 5-25 mm from the root tip.  

In the present work, the toxicity of FeSO4 was investigated since Soukup et al. (2002) 

and Ranathunge et al. (2005a) had expressed concern in using it as an apoplastic tracer. 

Because of the necessity of forming crystals, a minimum concentration of 0.5 mM FeSO4 had 

to be used; preliminary tests showed that this was the lowest concentration that would form 

crystals when mixed with 1 mM K4[Fe(CN)6]·3 H2O (unpublished data). In the toxicity test 

consisting of monitoring the growth rate of Z. mays roots, the time of exposure to FeSO4 

proved to be very important. Times longer than 60 min were harmful to root vitality causing 

significant decreases in root growth and even the complete arrest of growth at concentrations 

above 0.25 mM. Thus, a one hour treatment with 0.5 mM FeSO4 was used with I. germanica 

roots. Even with these precautions, ferric ion entry into the central cortex was restricted but 

not always prevented by the intact exodermis, indicating a possible toxic reaction. Toxicity 

became evident when root segments were pretreated with FeSO4 followed by berberine, 

resulting in permeation of the latter tracer into all exodermal walls and the walls of cortical 

parenchyma. When introduced into the central cortex, ferric ions rarely permeated further 

than two cortical cell layers. This result was unexpected because the hydrated ionic radius of 

ferric (0.457 nm; Nightingale 1959) should be much smaller than the diameter of the cell 

wall intermicrofibrillar spaces (5-30 nm; Nobel 2005). It is possible that the concentration of 

ferric ions was diluted as they diffused into the free water in the cell walls, thus preventing 
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detection by precipitation in deeper cell layers. Alternatively, attraction of the positively 

charged ferric ions to the walls of the first two cortical cell layers may have been strong 

enough to prevent deeper permeation. The problems discussed above with using FeSO4 as an 

apoplastic tracer outweigh its benefits; hence, it is recommended that use of this tracer 

procedure be discontinued. 

After observing the mature root anatomy from other rhizomatous iris species, a 

correlation between exodermal anatomy and habitat was noted. Those species that formed a 

MEX and lacked aerenchyma (I. germanica, I. pumila and I. pallida) live in habitats with 

well-drained soils. On the other hand, species that had a uniseriate exodermis and 

aerenchyma (I. sibirica, I. spuria, I. versicolor, I. hexagona and I. pseudacorus) preferably 

inhabit water-saturated areas. Additionally, Stevens (2003) described the root anatomy of 

three wetland-living species, I. virginica, I. pseudacorus, and I. versicolor, all of which have 

a uniseriate exodermis and aerenchyma. This correlation between root anatomy and habitat, 

however, does not extend to other taxa. From a review of the current and published data, it 

became clear that the majority (83%) of species known to have a MEX are perennial 

monocots (eudicot exception: Codiaeum variegatum; Peterson and Perumalla 1990) that 

inhabit well-drained substrates, and are from diverse orders within the class Liliopsida 

(Tables 2.2, 2.4; Kroemer 1903; Peterson and Perumalla 1990). The remaining 17% of these 

species are aquatic, e.g., Typha spp. (Seago et al. 1999), P. australis (Soukup et al. 2002), 

and an additional 6 species listed by Kroemer (1903), Peterson and Perumalla (1990), and 

Soukup et al. (2007); all of these members are of the order Poales (Tables 2.3, 2.4). Within 

the Poales, the families Cyperaceae, Poaceae, Sparganiaceae, and Typhaceae are positioned  
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Table 2.3 List of monocot species (class Liliopsida) that have a multiseriate exodermis and 

inhabit water-saturated substrates. All of these representatives are from the order Poales. 

Family Genus and species 

*Carex hirta L. Cyperaceae 

*Schoenoplectus lacustris (L.) 

Palla 

»Glyceria maxima (Hartm.) 

Holmb. 

*»Phragmites australis (Cav.) 

Trin. ex Steud. 

Poaceae 

^Stenotaphrum secundatum 

(Walter) Kuntze 

Sparganiaceae *Sparganium emersum Rehmann 

‡Typha angustifolia L. 

‡Typha glauca Godr. 

Typhaceae 

*†Typha latifolia L. 

 

*Kroemer (1903); †Shishkoff (1986); ^Peterson and Perumalla (1990); ‡Seago et al. (1999); 

»Soukup et al. (2007). 

Taxonomic information referenced from the Angiosperm Phylogeny Group’s website 

(Stevens 2001 onwards) and Tropicos.org.  
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Table 2.4 Number of species with a multiseriate exodermis that inhabit wet or well-

drained/dry substrates.* 

Growth substrate Plant 

# wet (%) # well-drained or dry (%) 

Total (%) 

Monocots 9 (17) 43 (83) 52 (100) 

  

*See Tables 2.2 and 2.3 for species lists. 
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in three different major phylogenetic clades (see Stevens 2001 onwards) and have variable 

amounts of mixed-linkage (1 3),(1 4)- -glucans in their cell walls (see Trethewey et al. 

2005). Species with a uniseriate exodermis also occupy both wet and well-drained habitats. 

From the known cases, 23% of the monocots and 16% of the eudicots inhabit water-saturated 

soils while the remaining majority of monocots (77%) and eudicots (84%) inhabit well-

drained or dry soils (Table 2.5; Supplementary Tables 2.2 and 2.3). 

It is possible that the type of exodermis confers particular advantages to aquatic plants as 

well as those preferring well-drained habitats. In waterlogged soils, an exodermis can restrict 

radial oxygen loss from the root. Radial oxygen loss occurs readily where the exodermis has 

not matured, such as near the root tip and in ‘windows’ where lateral roots will emerge, but is 

reduced in regions with a mature exodermis. Decreases in radial oxygen loss were measured 

across the suberized uniseriate exodermis of O. sativa (Armstrong and Armstrong 2001) and 

Tabernaemontana juruana (De Simone et al. 2003), and the suberized MEX of P. australis 

(Armstrong et al. 2000; Armstrong and Armstrong 2001) and Glyceria maxima (Soukup et 

al. 2007). In well-drained or dry soils, the (poly)aliphatic domain of suberin lamellae in the 

exodermis may contribute variably to the apoplastic retention of water (Hose et al. 2001). 

Reductions, but not blockage, in radial water permeability have been measured in roots with 

a mature exodermis, including Agave deserti (North and Nobel 1991, 1995), Z. mays 

(Zimmermann and Steudle 1998; Zimmermann et al. 2000), A. cepa and Helianthus annuus 

(Taleisnik et al. 1999). While a uniseriate exodermis will restrict oxygen and water from 

being lost to the substrate to some degree, it is presumed that multiple exodermal layers 

containing Casparian bands and suberin lamellae, with the correct molecular arrangements  
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Table 2.5 Number of species with a uniseriate exodermis that inhabit wet or well-drained/dry 

substrates.*  

Growth substrate Plant 

# wet (%) # well-drained or dry (%) 

Total (%) 

Monocots 24 (23) 80 (77) 104 (100) 

Eudicots 21 (16) 108 (84) 129 (100) 

Sum 45 (19) 188 (81) 233 (100) 

  

*See Supplementary Tables 2.2 and 2.3 for species lists. 
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and precisely localized cell wall depositions (Bernards 2002; Schreiber et al. 2005a), should 

provide roots with a greater resistance to oxygen loss and drought. Drought stress would 

occur more often to plants growing in well-drained soils than in submerged conditions. 

Hence, in lieu of secondary growth, perennial monocots with roots that have a MEX should 

be able to effectively withstand periods of drought that may be common to their natural 

environments. This postulate is supported in part by quantiative measurements of water 

permeability (see section 3.5, Chapter 3) and suberin chemical modifications (see section 4.5, 

Chapter 4).  

In conclusion, a MEX, with a continuous ccCb and suberin lamellae in all cells, matured 

close to the root tip of soil-grown I. germanica roots. However, its maturation occurred much 

further from the tip when the roots were grown in hydroponic or aeroponic conditions. When 

roots were exposed to an air gap in the hydroponic chamber, maturation of the second 

exodermal layer was accelerated. The distance from the root tip in which the endodermis 

matured was not affected by the growth conditions. The root apical meristem was open and 

development of MEX cell files was irregular. Root growth rates were similar among the 

different growth conditions. Regions of the root with an intact MEX were impenetrable to 

berberine but slightly permeable to ferric ions, which was likely the result of a toxic reaction. 

Lastly, iris species that inhabit well-drained soils have roots with a MEX while those that 

inhabit water-saturated substrates have a uniseriate exodermis and cortical aerenchyma. 

Future investigations should focus on the direct influence that a MEX may have on water and 

solute permeabilities and radial oxygen loss using quantitative approaches. It would also be 
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instructive to test the mechanical strength of the lignified (and suberized) exodermis and 

endodermis, and to test their antimicrobial properties. 

 

2.6 Supplementary data 

See Appendix A for Supplementary Tables 2.1 – 2.3. Supplementary Table 2.1 - List of the 

25 Iris germanica cultivars observed for their root anatomy. All cultivars had identical root 

anatomy. Supplementary Table 2.2 - Monocot species with a uniseriate exodermis and 

various growth substrates. Supplementary Table 2.3 - Eudicot species with a uniseriate 

exodermis and various growth substrates. 
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Chapter 3 

Permeability of Iris germanica’s multiseriate exodermis to water, 

NaCl and ethanol 

3.1 Overview 

The exodermis of Iris germanica roots is multiseriate. The outermost layer matures first with 

normal Casparian bands and suberin lamellae. But as subsequent layers mature, the 

Casparian band extends into the tangential and anticlinal walls of the cells. With respect to 

water and solute transport, roots with a developed multiseriate exodermis (MEX) should 

have much lower permeability rates than those in which the endodermis represents the major 

transport barrier. Precocious maturation of the exodermis was induced with a humid air gap 

inside a hydroponic chamber. Epidermal cells were unusually robust; most remained alive 

during the 14 d air gap exposure. Transport studies were conducted on completely submerged 

roots with an immature exodermis and on air gap-exposed root regions where two exodermal 

layers had matured. Hydraulic conductivity (Lppc) results were obtained with a pressure 

chamber. This instrument was used because in thick roots (diameters up to 2.5 mm in I. 

germanica), root hydraulics were affected by the high storage capacity of the central cortex. 

Compared with regions of roots with no mature exodermal layers, the mature MEX reduced 

Lppc from 8.5 x 10
-8

 to 3.9 x 10
-8

 m s
-1

 MPa
-1

. Puncturing the MEX increased Lppc to 19 x 10
-

8
 m s

-1
 MPa

-1
, indicating that the MEX is an important hydraulically resistant tissue (75% of 

the total). Alternatively, a root pressure probe was used to measure hydraulic conductivity 

which tended to be related to the endodermis. The permeability of roots to NaCl and ethanol 
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was reduced in the presence of two mature MEX layers, as obtained from pressure probe 

measurements. The data are discussed in terms of the validity of current root models and in 

terms of a potential role of I. germanica's MEX in survival under conditions of drought and 

salt stress. 

 

3.2 Introduction 

Roots of Iris germanica have a number of unusual anatomical features that make them 

instructive for modelling and permeability and studies (Kroemer 1903; Peterson and 

Perumalla 1990; Zeier and Schreiber 1998; Meyer et al. 2009; see Chapter 2). 1) The root 

diameter is wide (up to 2.5 mm), as is the central cortex. 2) The endodermis is conspicuous 

with its palisade-like cells that have Casparian bands, suberin lamellae, and thick, lignified 

tertiary walls as close as 20-30 mm from the root tip in optimal growing conditions. 3) The 

multiseriate exodermis (MEX), composed of up to four centripetally maturing layers, has 

Casparian bands in the tangential walls of adjoining layers in addition to the anticlinal walls 

of the cells (Fig. 3.1). Meyer et al. (2009) (see Chapter 2) termed this structure a continuous 

circumferential Casparian band. 4) Immature areas (windows) in the exodermis through 

which lateral roots emerge are absent. Such windows occur in Phragmites australis and 

Oryza sativa (Soukup et al. 2002; Armstrong and Armstrong 2005). 5) Passage cells are 

absent from mature exodermal layers; thus, all cells have suberin lamellae (Fig. 3.1). These 

substantial wall modifications of the MEX can be expected to increase resistance to the radial 

movement of water and solutes through the transcellular and apoplastic pathways. (For a 

complete description of transport pathways, see section 1.3.1, Chapter 1.)  
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Roots have been referred to as composite structures since they have several types of cell 

layers that all contribute to the radial transport properties of these organs (Steudle and 

Peterson 1998). In spite of this, roots have been largely treated as osmometers with a 

membrane-equivalent barrier comparable to the membrane found in a cell; the ‘root 

membrane’ was assumed to be the endodermis (Dainty 1963; Steudle and Brinckmann 1989; 

Steudle and Jeschke 1983). This may be a reasonable approach for young, thin, non-

exodermal roots with a diameter of a millimetre or less, or to the fine roots of trees that 

contribute most of the surface area responsible for the uptake of water and nutrients (Steudle 

and Jeschke 1983; Rüdinger et al. 1994; Tyree et al. 1994, 1995; Steudle and Meshcheryakov 

1996). In thin roots, the storage of water in the central cortex may be negligible, allowing one 

to measure root hydraulics from transients in the flow of small volumes of water. Such 

transients are produced with a root pressure probe or a high pressure flow meter (HPFM) 

(Knipfer and Steudle 2008; Joshi et al. 2009). However, the situation may be different in 

thicker roots in which there is substantial water storage in the central cortex. The existence of 

an exodermis also complicates root models in that its hydraulic resistance in series to that of 

the endodermis would add to the overall resistance of the root. When roots are thin, this may 

reduce the water flow accordingly as derived from transient water flow (Zimmermann and 

Steudle 1998). However, a significant hydraulic capacity of the tissue between the 

endodermis and exodermis (i.e., a large central cortex) would tend to complicate the 

interpretation of transients in water flow as produced by the root pressure probe and HPFM.  
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Figure 3.1 Drawing of the outer part of an I. germanica root in cross section. Thicknesses of 

cell walls, cytoplasms, and plasmodesmata are exaggerated. Black lines = cell wall borders; 

dark grey lines = plasma membranes; light grey lines = tonoplasts; red lines = suberin 

lamellae; yellow lines = continuous circumferential Casparian band; blue line = symplastic 

transport through plasmodesmata; green line = apoplastic transport blocked by the 

continuous circumferential Casparian band. Abbreviations: ep = epidermis; ex = exodermis; 

iex = immature exodermis. 
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It may well be impossible to use these techniques to measure root hydraulic conductivity 

from pressure-relaxations or initial water flow. Instead, instruments that apply steady-state 

flows such as the pressure chamber may prove to be more suitable.  

Ion movement into the root is profoundly affected by the endodermis and exodermis. 

Passage of ions through the apoplast is essentially prevented by Casparian bands (de Rufz de 

Lavison 1910; Baker 1971; Peterson 1987; Enstone et al. 2003). Ions are also virtually 

blocked from contacting the plasma membranes by suberin lamellae (Evert et al. 1985). 

Thus, for ion uptake into the symplast to occur in regions of I. germanica roots with a mature 

exodermis, some epidermal cells must be alive. Subsequent inward symplastic transport of 

ions through the exodermis requires at least some of its cells to be alive and connected by 

plasmodesmata (Fig. 3.1). Ions unable to traverse cell membranes should be efficiently 

blocked by the cell wall-modifying structures of the multiseriate exodermis (Fig. 3.1).  

In the present study, the suitabilities of the root pressure probe and the pressure chamber 

were assessed for measuring the hydraulic conductivity of I. germanica roots. To ascertain 

the effect of the exodermis on hydraulic conductivity, a comparison was made between roots 

with an immature exodermis versus root segments in which two exodermal layers had 

matured. Similarly, the effect of the exodermis on Na
+
 (a membrane-impermeant ion) and 

ethanol (a membrane-permeant molecule) permeability were made. The extent to which a 

symplastic pathway across the exodermis might be present was determined by testing 

epidermal cell viability.  
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3.3 Materials and methods 

3.3.1 Plant material and growth conditions 

Soil-grown Iris germanica L. plants were carefully removed from outdoor plots at the 

University of Bayreuth, Germany, in early May 2006. Rhizomes and their subtending 

adventitious roots were rinsed clean of adhering soil and then transferred to a 10 L 

hydroponic tank completely filled with nutrient solution (macronutrients in mM: 0.09 

(NH4)2SO4, 0.07 MgSO4, 0.06 Ca(NO3)2, 0.05 KH2PO4, 0.05 KNO3, 0.05 Fe(III)-EDTA, 

0.03 K2SO4; micronutrients in M: 4.6 H3BO3, 1.8 MnSO4, 0.3 ZnSO4, 0.3 CuSO4; pH = 

5.5-6.0). The tank was placed inside a growth cabinet (25/23 °C [day/night]; 16 h 

photoperiod, 300 μmol m
-2

 s
-1

 PAR), and the solution was continuously aerated and 

exchanged with fresh solution weekly (Fig. 3.2A). During culturing, new adventitious roots 

emerged from each rhizome and grew into the nutrient solution.  

It was known from previous work that the maturation of I. germanica's second exodermal 

layer was delayed in fully submerged roots (up to 170 mm in length), but accelerated in 

regions exposed to an air gap (110-170 mm from tip; Meyer et al. 2009; see Chapter 2). In 

the current work, once several new adventitious roots (> 60 mm in length) had formed, some 

of the hydroponic tanks were only partially filled so that a 60-mm air gap was present 

between the solution surface and the base of the rhizome (Fig. 3.2F). The relative humidity in 

the air gap measured with a digital hygrometer/thermometer was 92% (Control Company; 

Friendswood, Texas). To prevent the rhizomes from dehydrating in this area, they were 

wrapped in paper towel saturated with nutrient solution. To ensure that two exodermal layers 

had matured, roots were exposed to the air gap condition for 14 d. Casparian bands and 



 122 

suberin lamellae in the exodermis and endodermis were detected by staining freehand cross 

sections of the roots with berberine hemisulphate followed by aniline blue for Casparian 

bands, or with Sudan red 7B for lipids (Brundrett et al. 1988, 1991). Cell vitality was 

assessed by placing intact roots in uranin (disodium fluorescein) or Evan’s blue (Stadelmann 

and Kinzel 1972; Taylor and West 1980; Barrowclough and Peterson 1994). For the former, 

specimens were viewed with ultraviolet light (UV filter set: excitation filter BP 365, 

dichroitic mirror FT 395, barrier filter LP 397) and for the latter, white light using an 

epifluorescence microscope (Carl Zeiss, Oberkochen, Germany). Photographs were taken 

with a digital camera (Cool Snap; Visitron Systems, Puchheim, Germany). 

For physiological tests, adventitious, primary roots that had grown either fully submerged 

(control; Fig. 3.2A) or with the air gap (Fig. 3.2F) were excised from the rhizome under 

water with a razor blade. Submerged roots were then mounted directly into either a root 

pressure chamber or onto a pressure probe. To test the permeability of just the part of the root 

that had been exposed to the air gap, this portion was cut away and its distal end sealed using 

a combination of polyacrylamide glue (UHU, Bühl, Germany) and beeswax:colophony (1:3, 

w/w; Ranathunge et al. 2003). To apply the seal, the cut end of the root was first dipped in a 

pool of glue, the glue was allowed to dry and then this process was repeated, followed by 

dipping the same end into molten beeswax:colophony once. During the sealing process, the 

remainder of the root segment was kept hydrated by gently wrapping it with water-saturated 

tissue paper. Once the wax mixture had cooled and hardened, the segment was mounted into 

either the pressure chamber or pressure probe. In the latter case, the effectiveness of the glue-

wax seal was confirmed when a positive internal root pressure was attained. 
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3.3.2 Root pressure probe experiments 

Measurements using the root pressure probe (see Fig. 1.8, Chapter 1) were conducted as 

described previously (Steudle et al. 1987; Steudle and Frensch 1989). The base of each 

excised root was tightly mounted into the probe with a custom-made silicone seal. To 

minimize effects due to unstirred layers along the root surface, roots were bathed in a 

turbulent nutrient solution (the same solution as in the hydroponic tank). For roots of I. 

germanica, stable root pressures were rather low (Pro = 0.05-0.08 MPa) and 8-10 h were 

required before this pressure developed. Once the pressure was stable, 4 - 6 hydrostatic 

pressure relaxations were conducted by increasing or decreasing the xylem pressure with the 

rod of the probe. Responses in pressure by the root were recorded; in accordance with 

previous studies, the fast phase was used, which occupied about 75% of the total change in 

pressure (Steudle and Frensch 1989; Knipfer et al. 2007; Joshi et al. 2009; see Fig. 1.9A, 

Chapter 1). The rate constants (kwr), or the half-times of the pressure relaxations (T
w

1/2), were 

determined and used to calculate the root’s hydraulic water conductivity (Lpr in m·s
-1

·MPa
-1

), 

referred to the surface area of the root, Ar (in m
2
) 

kwr =
ln 2( )
T1/ 2
w

= Ar

Pr
VS

 

 
 

 

 
 Lpr     (Eq 1). 

Here, ( Pr/ VS) is the elastic modulus of the system (in MPa·m
-3

). The elastic modulus was 

measured by inducing a rapid change in volume ( VS) with the rod of the probe and 

measuring the corresponding change in root pressure ( Pr).  

Osmotic hydraulic conductivity (Lpro ) and solute permeability (Psr in m·s
-1

) were 

measured using the root pressure probe, but the force was applied by changing the osmolarity 
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of the external medium with nutrient solution amended with either ~40 mOsmol of NaCl or 

~200 mOsmol of ethanol (EtOH). The precise osmolarities of these solutions were measured 

cryoscopically with an osmometer (Osmomat 030; Gonotec, Berlin, Germany). These solutes 

and concentrations have been used in the past, and are not toxic (Steudle and Frensch 1989; 

Ranathunge et al. 2003). External application of the test solute solutions created an osmotic 

pressure gradient between the outside and inside of the root. The reduced external water 

potential resulted in a net flow of water out of the root as measured by a decrease of the 

internal root pressure (see Fig. 1.9B, Chapter 1). The half-time of this recorded pressure 

change was used to calculate Lpro (as in Eq 1). In some cases, a net flow of the solute into the 

root occurred in response to a concentration gradient, causing transients in root pressure. 

From the second phase of transients, the permeability coefficients (Psr) of the solutes (NaCl 

or ethanol) were worked out assuming a membrane-equivalent barrier in the root (Steudle et 

al. 1987; see Fig. 1.9B, Chapter 1). Analogous to Eq 1, the rate constant of solute 

permeability (ksr) was related to Psr by 

ksr =
ln 2( )
T1/ 2
s
= Ar

Psr
Vx

 

 
 

 

 
     (Eq 2), 

where Vx is the volume of the vessel lumens (= 0.13-0.4% of total root volume, which was 

estimated from cross sections). The biphasic reaction described above was reversible, i.e., 

when the external solute solution was changed back to the original, there was a net flow of 

water into the root and of solute out (exosmotic) (see Fig. 1.9B, Chapter 1). Again, Lpro and 

Psr were calculated from the recorded changes in pressure. Reflection coefficients ( sr) of the 

two solutes were calculated from pressure/time curves using the following equation 



 125 

sr =
Pro Prmin( )

s

exp ks tmin( )   (Eq 3), 

where Pro and Prmin are the original and minimum root pressures of pressure/time curves, 

respectively, s = RT· Cs is the change of external osmotic pressure caused by the 

osmoticum (NaCl or ethanol), and tmin the time required to reach Prmin following a step 

change in the external concentration at t = 0. 

For experiments involving roots from the air gap growth condition, the complete 

hydrostatic and osmotic methods described above were conducted twice per root. The first 

series of measurements were done when the root was intact. The second series were taken 

after the multiseriate exodermis had been punctured so that its role in permeability could be 

determined (Steudle et al. 1993). Each root was punctured eight times using a glass 

microcapillary 100 μm in diameter. Since air gap-exposed root segments were relatively 

thick (average diameter of 2.5 mm), puncturing was easily accomplished with the 

endodermis remaining unscathed the majority of the time. Puncturing caused the root 

pressure to drop slightly, but it remained stable. Wounds were observed following the 

experiments by staining with Evan’s blue to detect dead cells (Taylor and West 1980) and 

making cross-sections to view the puncture depth. Additional cross-sections were stained 

with berberine-hemisulphate and aniline blue to detect the presence of the continuous 

circumferential Casparian band (Brundrett et al. 1988). These sections were viewed and 

photographed with the microscope and camera described above. 

For the submerged and air gap growth conditions, 5-6 roots were tested. Submerged roots 

used for permeability testing had an average length of 100 mm. Air gap-exposed root 
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segments used for permeability testing were, on average, 220-260 mm from the root tip. The 

exodermis of the latter segments was punctured using the method described above. In cases 

where the endodermis was accidentally wounded, root pressure dropped to zero, and no 

further permeability tests could be conducted. The effect of puncturing the biseriate 

exodermis on hydraulic and osmotic water flow was established by taking the ratio between 

the Lp of intact vs. punctured air gap-exposed root segments for each case. 

3.3.3 Pressure chamber experiments 

A small custom-made pressure chamber (see Fig. 1.6, Chapter 1) was used as an alternate 

instrument for measuring the hydraulic conductivity of I. germanica's adventitious roots. 

This chamber had a volume of 6 x 10
-5

 m
3
 and was filled with nutrient solution (as above). It 

was equipped with a screw cap that had a small hole in the center (3.2 mm diameter) where a 

single root could be mounted using a silicone seal. At the same time, the excised end of the 

root was mounted by means of a silicone seal into a small chamber into which a narrow, 

graduated capillary had been sealed. Initially, water was injected into the chamber until the 

liquid entered the capillary. Roots from both the submerged and air gap treatments were 

mounted in this way. Pneumatic pressure was applied to the chamber and water flow (in m
3
 · 

s
-1

) was monitored. Pressure was increased in steps of 0.05 MPa up to a maximum of 0.30 

MPa. Measurements were taken at following pressures: 0.00, 0.10, 0.20 and 0.30 MPa. After 

reaching each of these pressures, the system equilibrated for 60 min during which readings 

were taken every 10 or 15 min. At each pressure, rates of water flow were plotted against 

time (see Fig. 1.7A, Chapter 1), and the slopes from the linear parts of the lines (Qv in m
3
·s

-1
) 

were used to calculate the rate of water flow (Jv in m
3
·m

-2
·s

-1
) 



 127 

  Jv =
Qv

Ar

     (Eq 4). 

By plotting Jv against P, the contribution of the osmotic component was observed as an 

initial slow phase. Once the solutes in the xylem were diluted, Jv/ P became linear. 

Hydraulic conductivity (Lppc in m·s
-1

·MPa
-1

) was determined from the slope of the linear part 

of the Jv/ P curve (see Fig. 1.7B, Chapter 1). In the pressure chamber experiments, effects of 

unstirred layers due to a concentration polarization of nutrient ions at the exodermis or 

endodermis could be neglected because of the low concentration of these solutes in the 

nutrient medium. 

Experiments involving puncturing of the biseriate exodermis of air gap-exposed roots 

were also conducted. Two series of increasing pneumatic pressures were conducted per root 

– first before puncturing the biseriate exodermis and then after puncturing. Following the 

first set of measurements, the pressure in the chamber was released through a valve. Then the 

chamber was separated from the screw cap and graduated capillary, which held the mounted 

root, by fixing the cap and capillary in a stationary position and unscrewing the chamber 

from the cap. The exodermis of the exposed root was punctured using the technique 

described above. Then the chamber was re-filled with nutrient solution and screwed back on 

to the cap so that water flow measurements could be repeated. Five or six roots were used for 

the submerged and air gap growth conditions. From the punctured air gap roots, a complete 

data set was obtained for repetitions that did not have a damaged endodermis. The effect of 

puncturing the biseriate exodermis on hydraulic water flow was established by taking the 

ratio between the Lp of intact vs. punctured, air gap-exposed root segments for each case. 
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3.3.4 Resistance of the exodermis to water and solute flows 

Hydraulic resistances (Rw) were calculated from Lpr, Lpro, Lppc, and the respective surface 

area (A). Likewise, resistances to solute flow (Rs) were obtained from Psr : 

 Rw =
1

Lp A
  and  Rs =

1

Psr A
   (Eq 5). 

Lp values were typically calculated with the root surface area. However, in some cases the 

Lp was calculated with the endodermal surface area (Eq 1 and 4; see Results). Resistance 

values were used to determine the fold change in the resistance of the root to hydraulic or 

solute flow between completely submerged roots with an immature exodermis and air gap-

exposed roots with a biseriate exodermis. Similarly, the fold change in resistance was 

determined between the intact biseriate exodermis and its punctured counterpart. 

3.3.5 Statistical analyses 

To test whether or not root water and solute permeabilities were significantly different with 

the maturation of the biseriate exodermis, two-tailed, unpaired t-tests (  = 0.05) were 

employed. Similar tests were conducted to test if the permeabilities were significantly 

different between roots with an immature exodermis and root segments with a punctured 

biseriate exodermis. On the other hand, one-tailed, paired t-tests (  = 0.05) were used to 

determine if the water and solute permeabilities of the intact root segment with a biseriate 

exodermis increased significantly after it was punctured. The t-tests described above were 

also used to determine differences in hydraulic and solute resistances. 
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3.4 Results 

3.4.1 Root anatomy 

Development of the exodermis in submerged and air gap-exposed roots was followed by 

staining for Casparian bands and suberin lamellae. Differences were evident when comparing 

roots of similar lengths that had been grown in these conditions. In completely submerged 

roots with lengths of 200 mm or less, the first exodermal layer usually matured 80 mm from 

the root tip. This layer had typical Casparian bands occupying its anticlinal walls (Figs. 

3.2A,E, 3.3A). Submerged roots 100 mm in length were used for both pressure chamber and 

pressure probe experiments. In the case of the pressure chamber, the proximal 30 mm of the 

root was sealed into the instrument so that the exposed part on which measurements were 

made had a uniformly immature exodermis (0EX). In the case of the pressure probe, 

approximately 15 mm were sealed into the instrument so that 94% of the exposed root had an 

immature exodermis (0EX). In contrast, the basal part of roots exposed to a humid air gap 

(average relative humidity = 92%) for 14 d had a uniformly developed biseriate exodermis 

with its characteristic continuous circumferential Casparian band (2EX) (Figs. 3.2C,F, 3.3B). 

(It was this region that was used to test radial water and solute permeability.) On these same 

roots, the part that remained submerged (i.e., below the air gap) exhibited a gradual 

exodermal maturation, similar to the completely submerged roots (see Fig. 3.2E). Exodermal 

cells that had Casparian bands also had suberin lamellae as the two structures were deposited 

concurrently (Fig. 3.3C). 

Epidermal cell viability was also examined in submerged and air gap-exposed roots using 

uranin. In the submerged epidermis, uranin accumulated in all cells; hence, they were all  
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Figure 3.2 Drawings of two hydroponic systems (not to scale) with photomicrographs that 

represent typical effects of the growth conditions on the roots' epidermal viability and 

exodermal maturation. (A) Control growth condition: rhizomes and roots were submerged in 

nutrient solution. (B) Surface view of the epidermis from a uranin-treated, air gap-exposed 

region of the root. Uranin was trapped in the cytoplasms and nuclei of living epidermal cells, 

but was absent from dead epidermal cells (*). (C) Cross section from an air gap-exposed 

region of a root, stained with berberine-aniline blue, showing a mature biseriate exodermis 

with continuous circumferential Casparian band (arrows). (D) Surface view of the epidermis 

from a uranin-treated, submerged region of the root. Uranin was observed in all epidermal 

cells. (E) Cross section from a submerged, basal region of a root, stained with berberine-

aniline blue, showing a mature uniseriate exodermis with typical Casparian bands (arrows). 

(F) Air gap growth condition: the hydroponic chamber was partially filled leaving a 60 mm 

gap between the solution surface and the rhizome base. These rhizomes were wrapped in 

paper towel saturated with nutrient solution. Scale bars = 100 μm. Abbreviations: ex = 

exodermis; grey rectangle = aeration stone. 
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Figure 3.3 Photomicrographs from I. germanica roots grown in submerged or air gap 

hydroponic conditions showing cross sections of the roots unless otherwise stated. Values in 

mm refer to distances from the root tips. (A) 100 mm. Stained with berberine-aniline blue. 

This specimen typifies the basal region of submerged roots, exhibiting a typical Casparian 

band in the endodermis (arrow) and in the outermost cells of the exodermis (arrow). (B) 100 

mm. Stained with berberine-aniline blue. This specimen typifies the air gap-exposed root 

region, exhibiting a continuous circumferential Casparian band in the multiseriate exodermis 

(yellow arrows) and a typical Casparian band in the endodermis (white arrow). (C) 120 mm. 

Stained with Sudan red 7B. The outer part of a root with two mature exodermal layers that 

contain suberin lamellae (arrowheads). (D) 80 mm. Stained with Sudan red 7B. Endodermis 

with suberin lamellae (black arrowheads) in all cells except the passage cells (*). Suberin 

was not deposited in the U-shaped wall thickenings (white arrowhead). (E) 255-247 mm. 

Treated with Evan's blue. Whole mount of an air gap-exposed root with a punctured 

exodermis (arrowheads). Scale bar = 1 mm. (F) 220 mm. Cross section treated with Evan's 

blue. This specimen demonstrates the depth of a puncture within the root (arrowheads). The 

wound penetrated the epidermis, exodermis, and half of the central cortex; the endodermis 

was unscathed. Scale bars [except for (E)] = 100 μm. Asterisks = passage cells. 

Abbreviations: ep = epidermis; ex = exodermis; iex = immature exodermis; en = endodermis; 

pe = pericycle; xy = xylem pole.  
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alive (Fig. 3.2D). On the other hand, in the air gap-exposed epidermis, uranin accumulated in 

approximately 50% of the cells indicating that half remained alive (Fig. 3.2B).  

Endodermal development was not noticeably affected by the growth conditions (Fig. 

3.3A,B). By 100 mm from the tip, the majority of endodermal cells had reached full maturity 

(State III), and some passage cells remained irrespective of growth conditions. Casparian 

bands in the endodermis were initially small and offset toward the pericycle. Later, in many 

endodermal cells the Casparian bands extended through the anticlinal walls, suberin lamellae 

were deposited, and U-shaped tertiary wall thickenings were formed (Fig. 3.3D). However, 

in the few passage cells of the endodermis where suberin lamellae were not deposited, 

Casparian bands were not elongated (Fig. 3.3D).  

To visualize the location and depth of the wounds after puncturing, air gap-exposed roots 

that had their two exodermal layers punctured (2EX-P) were stained with Evan’s blue (Fig. 

3.3E). The 40-mm-long root segments had a surface area that ranged from 2.1 x 10
-4

 to 3.2 x 

10
-4

 m
2
. The surface area of the punctured tissue was 6.3 x 10

-8
 m

2
, equalling 2 x 10

-2
 to 3 x 

10
-2

 % of the total root surface area. From the cross-sections of punctured tissue, one could 

observe that the wound penetrated only about half way through the central cortex, leaving the 

endodermis intact (Fig. 3.3F). 

3.4.2 Measurements of hydraulic conductivity 

Water flow, as measured with the pressure chamber, was established for three cases of 

interest: 1) roots with no mature exodermal layers (0EX), 2) root segments with two mature 

exodermal layers (2EX), and 3) roots with two mature exodermal layers that had been 

punctured (2EX-P). In all cases, at each step in chamber pressure, the cumulative volume of 
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solution that was transported across the root increased linearly with time (Fig. 3.4). To 

demonstrate steady-state water flow, the slopes from the cumulative water flow graphs were 

plotted against the changes in pressure (Fig. 3.5). Generally, as pressure increased, water 

flow through the roots also increased. A typical trend was observed for the 0EX roots; the 

flow rate was initially slow but accelerated at greater pressures, resulting in a curvilinear 

response previously explained by Fiscus (1975) as a dilution effect. This effect refers to a 

decrease in the concentration of xylem sap as the inflow of water increased, hence the 

osmotic contribution to the driving force becomes negligible (Sands et al. 1982; 

Zimmermann and Steudle 1998). However, for 2EX the rate of water flow increased only 

linearly with increasing pressures. Such a linear increase may be due to the fact that both 

xylem sap concentration and water inflow were low, tending to reduce the dilution effect. 

Even more unusual was the water flow for 2EX-P which was initially very rapid, but then 

began to plateau at 0.3 MPa. Such a trend suggested that water flow was reaching a 

maximum in the plateauing region, similar to the plateau in water flow measured for Picea 

mariana roots (see Colombo and Asselstine 1989). The slopes of the linear parts of each 

curve yielded the hydraulic conductivity (Lppc). 

 A comparison of the Lppc of roots with an immature exodermis versus those with a 

biseriate exodermis, and the latter roots versus those with a punctured exodermis indicated 

the effect of the exodermis on water flow. The average Lppc of 0EX roots was 8.5 x 10
-8 

m s
-1

 

MPa
-1

. Maturation of the 2EX significantly reduced Lppc to 3.9 x 10
-8 

m s
-1

 MPa
-1

 (Table 

3.1). Thus, the hydraulic resistance of roots with a biseriate exodermis was, on average, 3.1-

fold greater than that of 0EX roots (Tables 3.2, 3.3). In every case, puncturing the  
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Figure 3.4 Cumulative water flow through roots during the pressure chamber experiments. 

Each graph represents typical results. (A) 0EX roots. (B) 2EX roots. (C) 2EX-P roots. 

Legends inset in graphs. 
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Figure 3.5 Steady-state water flow per unit root surface area with an increasing driving force 

(i.e., induced hydrostatic pressure changes). This graph displays typical results. Legend inset 

in graph. 
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Table 3.1 Hydraulic conductivity values calculated from pressure chamber and pressure 

probe experiments. Conductivity data are means ± standard deviations, and the number of 

replicates are in parentheses. Different superscripted letters indicate a significant difference 

within each row (p  0.05). 0EX, roots with no mature exodermal layers; 2EX, root segments 

with 2 mature exodermal layers; 2EX-P, root segments with 2 mature exodermal layers that 

were punctured. 

 

Lp (10
-8 

m s
-1

 MPa
-1

) 
Instrument 

0EX 2EX 2EX-P 

Pressure 

chamber 

a
8.5 ± 0.9 (5)

1 b
3.9 ± 2.1 (5)

1 

 

a
18.6 ± 16.2 (5)

1 

a
92.8 ± 90.8 (5)

2 

Pressure 

probe
1 

a
39.1 ± 12.7 (6) 

b
23.3 ± 9.1 (6) a

40.6 ± 24.1 (6) 

Pressure 

probe
2 

a
242 ± 103 (6) 

b
127 ± 55.5 (6) 

a
219 ± 137 (6) 

 
1
Lp values calculated using root surface area. 

2
Lp values calculated using endodermal surface 

area. Lpr 2EX and Lppc 2EX-P are statistically similar (result not shown in Table).   
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exodermis of 2EX roots (2EX-P) increased Lppc. Individual ratios of values for 2EX:2EX-P 

varied from 1:1.9 to 1:7.9 (average = 1:4.7). These ratios indicated a 4.7-fold increase in 

Lppc, or a 4.1-fold loss of resistance, when the exodermis was punctured (Tables 3.3, 3.4). 

Since puncturing the exodermis essentially nullified its hydraulic resistance, it was assumed 

that the endodermis then became the most hydraulically resistant tissue. For this case, Lppc 

2EX-P data was re-calculated using the endodermal surface area instead of the surface area 

for the outer part of the root. This re-calculation dramatically increased Lppc 2EX-P (Table 

3.1) by on average 23-fold compared with Lppc 2EX (Table 3.4). Nonetheless, the percent 

loss of exodermal resistance was still 4.1-fold (the same as measured before Lppc 2EX-P re-

calculation) because when calculating resistance, Lp values are multiplied by the 

corresponding surface area (see Eq 5; Tables 3.2, 3.3). 

When the root pressure probe was used to measure hydraulic conductivity (Lpr), it was 

found that maturation of the biseriate exodermis reduced Lpr significantly (Table 3.1); this 

was equivalent to a 2.8-fold increase in resistance (Tables 3.2, 3.3), which may have also 

been due to differences in the maturation state of the endodermis. Puncturing the biseriate 

exodermis resulted in a ratio (2EX:2EX-P) ranging from only 1:1 to 1:2.5 (average = 1:1.7), 

indicating a rather small increase in Lpr, or a 1.4-fold loss of resistance (Tables 3.3, 3.4). 

Interestingly, the absolute values of Lpr were markedly greater than those of Lppc. This 

indicated that, because of the large storage capacity of the root's central cortex, the pressure 

probe measured the hydraulic resistance of mainly the endodermis rather than the entire root. 

For a proper comparison in this situation, Lpr was re-calculated on the basis of the surface 

area of the endodermis instead of the outer part of the root. Consequently, the Lpr values 
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increased tremendously (Table 3.1), but there was essentially no change in the ratio 

comparison of 2EX:2EX-P (Table 3.4) and no change in the fold change in resistance (Tables 

3.2, 3.3). 

The statistical comparison between the values of Lpr for 2EX and of Lppc for 2EX-P was 

based on the rationale that only the endodermal hydraulic conductivity was measured with 

the pressure probe and that the same was true when punctured root segments were tested with 

the pressure chamber. The compared Lp values were statistically similar (Table 3.1), further 

proving that only the endodermis was tested in these specific cases. 

The third method of measuring hydraulic conductivity (Lpro) was using osmotic gradients 

as the driving force. In this case, values of Lpro were lower by one to two orders of 

magnitude than those of Lpr and Lppc (compare Tables 3.1 and 3.5). This indicated that, in 

the presence of osmotic gradients, water flow was from cell-to-cell rather than apoplastic, 

which is in line with earlier results of root hydraulics (see Discussion). As expected, with the 

maturation of 2EX, the average Lpro for both NaCl- and EtOH-treated roots decreased, 

compared with 0EX (Table 3.5). Accordingly, when the 2EX was punctured, the NaCl-Lpro 

increased an average of 11-fold (or an 11-fold loss of resistance), while the EtOH-Lpro 

increased an average of 4.1-fold (or a 2.6-fold loss of resistance) (Tables 3.2, 3.3, 3.6). When 

the Lpro 2EX-P data was re-calculated with the endodermal surface area, the values increased 

as expected (Table 3.6). Now, in punctured root segments, NaCl-Lpro was an average of 58-

fold greater and EtOH-Lpro an average of 20-fold greater than their intact counterparts. 
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Table 3.2 Root hydraulic (above) and solute (below) resistances. Values of hydraulic 

resistance were calculated from Lp values obtained from pressure chamber and pressure 

probe experiments (Table 3.1; resistance = 1/[Lp*surface area]). Values of solute resistance 

were calculated from Psr values obtained from pressure probe experiments (Table 3.5; 

resistance = 1/[Psr*surface area]). Data are means ± standard deviations. Different 

superscripted letters indicate a significant difference within each row (p  0.05). PC, pressure 

chamber; RPP, root pressure probe; Psr, solute permeability; 0EX, roots with no mature 

exodermal layers; 2EX, roots with 2 mature exodermal layers; 2EX-P, roots with 2 

exodermal mature layers that had been punctured; n.m., not measurable. 

 

Hydraulic resistance (10
10

 MPa·s·m
-3

) Type of 

measurement 0EX 2EX 2EX-P 

PC 
a
2.2 ± 0.27 

b
6.9 ± 3.5 

a
1.7 ± 0.76 

RPP 
a
0.61±0.30  

b
1.7±0.92 

ab
1.2±0.57 

RPP (NaCl) 
a
29±5 

b
220±98 

a
19±10 

RPP (EtOH) 
a
47±12 

b
310±110 

a
118±99 

 Solute resistance (10
10

 s·m
-3

) 

RPP, Psr (NaCl) 
a
1050±230 

b
n.m. 

c
60±51 

RPP, Psr (EtOH) 
a
140±38 

b
1070±430 

a
160±140 
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Table 3.3 Fold change in resistance of the root to water and solute flows after maturation of 

the biseriate exodermis, or after puncturing the exodermis. These fold change values were 

calculated from the resistance values (see Table 3.2). PC, pressure chamber; RPP, root 

pressure probe; Psr, solute permeability; 0EX, roots with no mature exodermal layers; 2EX, 

roots with 2 mature exodermal layers; 2EX-P, roots with 2 exodermal mature layers that had 

been punctured; n.m., not measurable. 

 

Fold change in resistance Type of 

measurement 0EX vs 2EX 2EX vs 2EX-P 

 Hydraulic resistance 

PC +3.1 -4.1 

RPP +2.8 -1.4 

RPP (NaCl) +7.4 -11 

RPP (EtOH) +6.7 -2.6 

 Solute resistance 

RPP, Psr (NaCl) n.m. n.m. 

RPP, Psr (EtOH) +7.6 -6.8 
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Table 3.4 Effect of puncturing the biseriate exodermis on hydraulic conductivity. For all 

roots, Lp was calculated using the root surface area (values not within parentheses). It was 

assumed that after puncturing, the endodermis dominated the hydraulic resistance. Plus, the 

pressure probe primarily measured Lp of the endodermis. Therefore, the pressure chamber 

2EX-P values and all pressure probe values were also calculated using the surface area of the 

endodermis (values within parentheses). This calculation resulted in increased Lp and ratio 

values compared with the former calculated values. For paired experiments, different 

superscripted letters within each row indicate a significant difference between 2EX and 2EX-

P (p  0.05). 2EX Lp = conductivity before puncturing; 2EX-P Lp = conductivity after 

puncturing the same root segment. 

Lp (10
-8 

m s
-1

 MPa
-1

) 
Instrument Rep 

2EX 2EX-P 

Ratio comparison 

  2EX : 2EX-P 

1 4.1 10 (49) 1:2.5 (1:12) 

2 4.0 7.6 (38) 1:1.9 (1:9.5) 

3 1.9 9.3 (47) 1:5.0 (1:25) 

4 2.4 19 (78) 1:7.9 (1:32) 

5 7.3 47 (250) 1:6.4 (1:35) 

Pressure 

chamber 

Avg 

 

a
3.9±2.1 

 

b
19±16 

(
b
93±91) 

1:4.7 (1:23) 

 

1 11 (55) 11 (50) 1:1 (1:0.9) 

2 13 (59) 25 (113) 1:1.9 (1:1.9) 

3 23 (141) 28 (153) 1:1.2 (1:1.1) 

4 30 (165) 50 (258) 1:1.7 (1:1.6) 

5 30 (166) 52 (337) 1:1.7 (1:2.0) 

6 32 (175) 79 (406) 1:2.5 (1:2.3) 

Pressure 

probe
 

Avg 

 

a
23±9 

(
a
127±55) 

b
41±24 

(
b
219±137) 

1:1.7 (1:1.6) 
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Table 3.5 Osmotic data from root pressure probe experiments. Values are means ± standard 

deviations, with the number of replicates in parentheses. Different superscripted letters 

within each row indicate a significant difference between 0EX and 2EX (p  0.05). Lpro, 

osmotic hydraulic conductivity; Psr, solute permeability; sr, reflection coefficient. 0EX, roots 

with no mature exodermal layers; 2EX, roots with 2 mature exodermal layers. 

 

Lpro (10
-8

 m s
-1

 MPa
-1

) Psr (10
-8

 m s
-1

) sr 
Solute 

0EX 2EX 0EX 2EX 0EX 2EX 

NaCl 
a
0.62 ± 

0.08 (5) 

b
0.21 ± 

0.08 (5) 

a
0.0084 ± 

0.012 (5) 

 
b
0.00 (5) 

a
0.92 ± 

0.22 (5) 

b
1.0 ± 

0.00 (5) 

EtOH 
a
0.40 ± 

0.09 (5) 

b
0.12 ± 

0.05 (5) 

 
a
0.14 ± 

0.04 (5) 

b
0.027 ± 

0.027 (5) 

a
0.16 ± 

0.12 (5) 

b
0.69 ± 

0.39 (5) 
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Table 3.6 The effect of puncturing the biseriate exodermis on the roots’ osmotic hydraulic 

conductivity. Values not within parentheses were calculated using root surface area. Values 

within parentheses were calculated using endodermal surface area. Paired experiments where 

different superscripted letters within each row indicate a significant difference between 2EX 

and 2EX-P (p  0.05). 2EX Lpro = conductivity before puncturing; 2EX-P Lpro = 

conductivity after puncturing the same root segment. 

Lpro (10
-8 

m s
-1

 MPa
-1

) 
Solute Rep 

2EX 2EX-P 

Ratio comparison 

  2EX : 2EX-P 

1 0.11 1.2 (6.5) 1:11 (1:57) 

2 0.15 1.9 (8.6) 1:13 (1:57) 

3 0.19 2.4 (12) 1:12 (1:64) 

4 0.27 2.9 (15) 1:11 (1:57) 

5 0.30 3.1 (16) 1:11 (1:55) 

NaCl 

Avg 

 

a
0.21±0.08 

 

b
2.3±0.8 

(
b
12±4.3) 

1:11 (1:58) 

 

1 0.069 0.11 (0.58) 1:1.5 (1:8.4) 

2 0.080 0.18 (0.93) 1:2.2 (1:12) 

3 0.11 0.38 (1.9) 1:3.6 (1:18) 

4 0.14 0.83 (3.7) 1:6.0 (1:27) 

5 0.20 1.4 (7.1) 1:7.2 (1:36) 

EtOH 

Avg 

 

a
0.12±0.05 

 

a
0.58±0.54 

(
b
2.8±2.7) 

1:4.1 (1:20)
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3.4.3 Measurements of root permeability to solutes 

The root pressure probe was employed to measure the permeability (Psr) and reflection 

coefficient ( s) for NaCl and ethanol (Table 3.5) using the membrane-equivalent root model 

(see section 3.2). NaCl permeated extremely slowly through 0EX roots (8 x 10
-11 

m s
-1

) and 

for 2EX roots, NaCl permeation was reduced to an undetectable level (Fig. 3.6A). In 

contrast, for 2EX-P roots, NaCl permeated rapidly and variably (1.3 ± 0.6 x 10
-8 

m s
-1

; Fig. 

3.6B). These same trends were observed for the NaCl s values (Table 3.5). 

In contrast to NaCl, EtOH permeated all roots regardless of maturity or treatment. For 

0EX roots, EtOH Psr was 0.14 x 10
-8 

m s
-1

. This was reduced significantly to 0.027 x 10
-8 

m s
-

1
 in 2EX roots (Table 3.5), bringing about a 7.6-fold increase in resistance (Tables 3.2, 3.3; 

Fig. 3.6C). Puncturing the exodermis increased EtOH Psr to 0.64 x 10
-8 

m s
-1

, lowering the 

resistance by 6.8-fold (Tables 3.2, 3.3). The trends observed for the EtOH s values were 

similar to their corresponding Psr trends (Table 3.5). 

 

3.5 Discussion 

3.5.1 Root anatomy and cell viability 

Adventitious roots of Iris germanica were chosen for testing radial water and solute 

permeabilities because the multiseriate exodermis, with its continuous circumferential 

Casparian band and suberin lamellae, would form a complete structure restrictive to both 

apoplastic and transcellular flows (see Introduction; Fig. 3.1). As more exodermal cell layers 

became encrusted with Casparian bands and suberin lamellae, the apoplastic and transcellular 

paths would become more restricted. However, the symplastic path would still have been 
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open if plasmodesmata linked the epidermal, exodermal and central cortical cells. There were 

two indicators that these plasmodesmata did, in fact, remain intact. First, half of the 

epidermal cells remained alive, even after the 14 day air gap exposure. This means that the 

plasmodesmata were connected to living exodermal cells. Interestingly, even under drought 

stress, ions could still be transported across the plasma membrane of a living epidermal cell, 

entering the symplast to traverse the exodermis, and continue flowing through the 

plasmodesmata of other living cortical cells (see section 6.6, Chapter 6 for further details). 

Second, exodermal cells also remained alive as they could eventually develop to State III, in 

which they had deposited lignified tertiary cellulosic walls (Meyer et al. 2009; see Fig. 2.3, 

Chapter 2). Thus, in I. germanica roots the symplast would be available as a path for radial 

transport across the multiseriate exodermis (Fig. 3.1). 

Hydroponically grown roots of I. germanica had anatomies similar to those previously 

described in detail by Meyer et al. (2009) (see Chapter 2). Roots completely submerged in 

hydroponic solution had delayed exodermal maturation so that 94% of the tested root length 

lacked mature exodermal layers while the remaining 6% had one mature exodermal layer. 

Root regions exposed to a humid air gap had two uniformly matured exodermal layers. 

According to the anatomical data of Meyer et al. (2009) (see Chapter 2) and those of the 

present paper, endodermal maturation was not visibly affected by these growth conditions. 

(Specifically, tertiary wall deposition in the endodermis was not affected by the differing 

growth conditions. The endodermal Casparian bands and suberin lamellae had already been 

deposited prior to the air gap exposure.) The observed changes in the overall permeability of  
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Figure 3.6 Osmotic water and solute permeability graphs from air gap-exposed root 

segments with two mature exodermal layers. (A) 2EX root segment. Typical osmotic reaction 

when NaCl was added (+NaCl) and then removed (-NaCl) from the external solution. Since 

NaCl permeability was immeasurable, there was only a water phase in both the endosmotic 

and exosmotic tests. (B) 2EX-P root segment. After puncturing the biseriate exodermis, 

water (1
st
 phase) and NaCl (2

nd
 phase) permeated rapidly for both endosmotic and exosmotic 

tests. (C) 2EX root segment. Typical osmotic reaction when ethanol was added (+EtOH) and 

then removed (-EtOH) from the external solution. EtOH permeation is depicted in the 2
nd

 

phase of both the endosmotic and exosmotic tests, creating a biphasic reaction. T1/2
w
 = half-

time of the water phase; T1/2
s
 = half-time of the solute phase.



 151 



 152 

roots grown in the two hydroponic culture conditions allowed separation of exodermal from 

endodermal permeabilities. In experiments where the exodermis was punctured (without 

affecting the endodermis) the propensity of this structure to reduce both water and solute 

permeability were demonstrated. 

3.5.2 Measurements of radial water permeability 

The radial water permeability of I. germanica roots was measured using three different 

approaches. 1) With a pressure probe to measure osmotic hydraulic conductivity, 2) with a 

pressure probe to measure hydraulic conductivity, and 3) with a pressure chamber to measure 

hydraulic conductivity. Water permeability values varied amongst each of these approaches 

(see below). 

3.5.2.1 Osmotic hydraulic conductivity 

Osmotic hydraulic conductivity (Lpro) of 2EX roots, as measured with the pressure probe 

(NaCl: 0.21 x 10
-8

 m s
-1

 MPa
-1

; EtOH: 0.12 x 10
-8

 m s
-1

 MPa
-1

), was 19 or 33-fold lower than 

the hydraulic conductivity as measured with the pressure chamber (3.9 x 10
-8

 m s
-1

 MPa
-1

) 

(see Tables 3.1 and 3.5). This was expected since osmotic permeabilities for water have 

typically been reported as being lower than hydraulic values due to the nature of the forces 

driving flows (Steudle and Frensch 1989; Cruz et al. 1992; Steudle et al. 1993; Rüdinger et 

al. 1994; Steudle and Meshcheryakov 1996; Steudle and Peterson 1998; see section 1.3.5, 

Chapter 1). Osmotic water flow has to occur from cell layer to cell layer across all root tissue 

layers, including the exodermis, in order for a net equilibrium in water potential to be 

attained. When I. germanica roots were bathed in ethanol or NaCl, water traversed both 0EX 

and 2EX roots slowly. Water flow may have occurred primarily through the symplastic 
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pathway, bypassing the continuous circumferential Casparian band and suberin lamellae (see 

Fig. 3.1). When the exodermis was punctured, its selective properties were diminished and, 

as expected, Lpro increased dramatically. In transpiring plants, a hydrostatic gradient across 

the apoplast is the dominant driving force for radial water flow, but water can still flow 

through the parallel symplast and through aquaporins along the transcellular path (Maurel 

1997; Steudle and Peterson 1998; Tyerman et al. 1999; Steudle 2001; Javot and Maurel 

2002; Tyerman et al. 2002). When transpiration rates are reduced or even stopped, osmotic 

gradients across the symplastic and transcellular pathways become more important for radial 

water flow (Steudle and Peterson 1998). However, when EtOH or NaCl were applied 

externally to I. germanica roots, a hyperosmotic shock from the sharp increase in external 

solute concentration may have caused some of the aquaporins to close (Ye et al. 2004; 

Boursiac et al. 2005). Such an aquaporin closure may have contributed to the lower osmotic 

water conductivity measurements compared with the hydraulic conductivity measurements. 

3.5.2.2 Hydraulic conductivity 

Pressure probe. Pressure probe experiments yielded hydraulic conductivity values (Lpr: 

23.3-39.1 x 10
-8

 or 127-242 x 10
-8

 m s
-1

 MPa
-1

) that were markedly greater than data obtained 

with the pressure chamber (3.9-8.5 x 10
-8

 m s
-1

 MPa
-1

) (see Table 3.1). Measurements of Lpr 

depended on transient flows of relatively small volumes of water. When water was injected 

into the root xylem as a pulse in pressure probe experiments, it should not pass through the 

entire root, but should be stored in I. germanica's large central cortex with 12-18 cell layers. 

The storage capacity should also be increased by the existence of air-filled intercellular 
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spaces in the central cortex. Hence, in cases like the roots of I. germanica, it is concluded 

that the pressure probe largely measured the endodermal Lpr. 

Pressure chamber. The hydraulic conductivity of I. germanica roots was also measured 

with a pressure chamber (Lppc) whereby large volumes of water were induced to flow 

through the roots. Under these conditions, water storage areas in the stele and cortex should 

have been filled and a steady state accomplished. Problems with unstirred layers may have 

been relatively small because water flow was directed from outside the root to the xylem, 

tending to dilute the xylem sap (Zimmermann and Steudle 1998; Knipfer et al. 2007). Hence, 

the pressure chamber technique measured the Lppc across both the endodermis and 

exodermis. 

Which device is best for measuring the hydraulic conductivity of I. germanica roots? 

There are several indications from the results that the pressure chamber measured flow across 

the whole root (including the exodermis), while the pressure probe measured flow across 

primarily the endodermis. The volume flow of water is large and steady with the pressure 

chamber, but low and transient with the pressure probe. Also, puncturing I. germanica’s 

exodermis caused a 4.1-fold loss of hydraulic resistance as measured with the pressure 

chamber, whereas it caused only a 1.4-fold loss as measured with the pressure probe (see 

Table 3.3). Furthermore, pressure chamber Lp values for punctured 2EX segments (18.6 or 

92.8 x 10
-8

 m s
-1

 MPa
-1

) were statistically equivalent to pressure probe Lp values for intact 

2EX root segments (23.3 or 127 x 10
-8

 m s
-1

 MPa
-1

) (see Table 3.1). Clearly, use of the 

pressure chamber is necessary when one wishes to measure total root hydraulic conductivity 

in thick roots such as those of I. germanica. (The pressure probe is suited for measuring 
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hydraulic water flow across thinner roots.) It should be stated that a high-pressure flowmeter 

(HPFM) could not be used as an alternative to the pressure chamber since the HPFM 

measures transient changes rather than steady flow (see Discussion in Joshi et al. 2009). 

Also, the use of the HPFM should be affected by internal unstirred layers which are 

negligible when using the pressure chamber or even the pressure probe (Knipfer et al. 2007). 

3.5.2.3 Key hydraulic conductivity values from pressure chamber experiments 

According to the hydraulic conductivity values as measured with the pressure chamber 

(Lppc), the maturation of two exodermal layers significantly reduced the permeability of roots 

to water. Deposition of a continuous circumferential Casparian band and suberin lamellae 

resulted in a 3.1-fold average increase of the overall hydraulic resistance, corresponding to a 

reduction in Lppc from 8.5 x 10
-8

 to 3.9 x 10
-8

 m s
-1

 MPa
-1

 (see Tables 3.1 and 3.3). Although 

the multiseriate exodermis reduced radial water flow, it was not completely blocked. Some 

water would have moved through the symplast and possibly also through the continuous 

circumferential Casparian band or suberin lamellae if pores existed in these structures 

(Ranathunge et al. 2005a,b; Waduwara et al. 2008). Puncturing the biseriate exodermis, but 

not the endodermis, separated the direct contribution for both the exodermis and endodermis 

to hydraulic resistance. According to the results of these experiments, the exodermis 

accounted for an average of 75% of the root's resistance to water flow (Lppc increased from 

3.9 x 10
-8

 to 18.6 x 10
-8

 m s
-1

 MPa
-1

) (see Tables 3.1 and 3.3). In other words, the hydraulic 

resistance of the remaining undamaged tissues contributed 25% to the overall resistance. 

Assuming that the majority of this 25% refers to the endodermis, with an average diameter of 

0.5 mm (whereas the diameter of the exodermis was on average 2.5 mm), then the exodermal 
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hydraulic resistance was about 23-fold greater than that of the endodermis (see Table 3.4). 

These results highlight the importance of I. germanica's exodermis as a very hydraulically 

resistant structure.  

To the best of the author’s knowledge, there are, in the literature, only two quantitative 

comparisons of the overall vs. exodermal hydraulic resistances. 1) In young Zea mays roots, 

a comparison of the hydraulics of roots grown either in hydroponics or mist culture (similar 

to the conditions in the present study) led Zimmermann and Steudle (1998) to conclude that 

the development of the exodermis reduced hydraulic conductivity from 26 x 10
-8

 to 7.3 x 10
-8

 

m s
-1

 MPa
-1

. This decrease is equivalent to a 3.6-fold increase of the overall hydraulic 

resistance, which is within the range of the change in resistance measured for I. germanica 

(from 0EX to 2EX = 3.1-fold increase in resistance, see Table 3.3). In contrast, for Oryza 

sativa roots, Ranathunge et al. (2003) concluded that the endodermis was the major 

resistance to water flow; although the hydraulic conductivity for the whole root was low (4 x 

10
-8

 m s
-1

 MPa
-1

), the conductivity across only the outer part of root containing a uniseriate 

exodermis was 30-fold greater (or 120 x 10
-8

 m s
-1

 MPa
-1

). It was shown previously by 

Armstrong and Armstrong (2005) that O. sativa roots have “windows” in the exodermis, 

which are regions that lack suberin lamellae and where lateral roots emerge: these 

“windows” would be less resistant to water flow compared with suberized regions. Also, 

lateral root production in O. sativa is prolific and quite damaging to the exodermis. Lastly, 

since O. sativa roots were hydroponically grown, it is probable that there was reduced 

production of key suberin lamellae aliphatic monomers (particularly -OH fatty acids) in the 
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exodermis compared with growth in soil or in humid air (Krishnamurthy et al. 2009; see 

Chapter 4). 

Like I. germanica, Carex arenaria has a 3-4 layered multiseriate exodermis and Robards 

et al. (1979) measured its water permeability. The permeability of C. arenaria's isolated 

exodermis to water (7–15 x 10
-11

 m s
-1

 MPa
-1

) was lower by three orders of magnitude than 

that of I. germanica. Hence, while C. arenaria's water conductivity values differ from that of 

I. germanica and Z. mays, the exodermis appears to function similarly with regard to the 

increase in hydraulic resistance. In view of these results, the present findings demonstrate a 

dominating effect of I. germanica's multiseriate exodermis on hydraulic resistance, which is 

related to the deposition of a continuous circumferential Casparian band and suberin lamellae 

in all exodermal cells. In addition, this high hydraulic resistance may also be the result of an 

up-regulation in the production of suberin-associated fatty acids and waxes in the exodermal 

layers (see Chapter 4 for details).  

3.5.3 Solute permeability 

Solute permeability (Psr) of I. germanica roots was measured concurrently with 

measurements of osmotic hydraulic conductivity (see Fig. 3.6). The permeability of ethanol 

(a small, uncharged, lipophilic solute) was reduced by nearly an order of magnitude with 

maturation of the biseriate exodermis, compared with 0EX (see Table 3.5). Assuming that the 

symplastic pathway did not change with maturation of the exodermis, this reduction in 

permeability reflects the importance of the apoplastic and transcellular pathways for 

permeation of this solute. After some of the exodermal cells were punctured, ethanol 
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permeation increased 28-fold, indicating that the exodermis provided a major resistance to 

ethanol entry into the root.  

Reflection coefficients ( sr) refer to the selectivity of a membrane or tissue to a solute, and 

are used to express, in a quantitative way, the ability of membranes or cell wall-modifying 

structures to resist the flow of solutes. Values of sr range from 0-1, where 0 means that there 

is no resistance or no selectivity to solute flow and 1 means there is a total blockage of solute 

flow. In the present study, the ethanol sr was quite high for I. germanica's intact multiseriate 

exodermis ( sr  = 0.69; see Table 3.5). In contrast, Miyamoto et al. (2001) and Ranathunge et 

al. (2003) measured substantially lower ethanol sr across the outer part of O. sativa roots, a 

region that included the uniseriate exodermis ( sr  = 0.04 to 0.13). This is in line with the 

greater hydraulic resistance of I. germanica's exodermis compared with that of O. sativa. 

When I. germanica roots were exposed to NaCl, a small amount penetrated the 0EX roots 

but was effectively excluded from the 2EX region (see Table 3.5). These results explain the 

earlier findings of Wang (2002) for Iris hexagona, a species with a uniseriate exodermis 

(Meyer et al. 2009; see Fig. 2.8, Chapter 2). In this species, salt accumulated primarily in the 

roots but some was also transported to the leaves. Presumably in young root zones where the 

exodermis is immature, the majority of NaCl flow was blocked by the Casparian band in the 

endodermis. In older zones, however, based on the current puncturing experiments with the 

2EX region, it is predicted that apoplastic NaCl flow was prevented by the Casparian band in 

the exodermis (see Fig. 3.1). 

The NaCl sr in I. germanica was high regardless of the exodermal maturation stage (0EX 

= 0.92; 2EX = 1.0; see Table 3.5). Based on these results, it is unlikely that Na
+
 is being 
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transported across the epidermal plasma membranes; hence, the ions are isolated to the 

apoplast and come into direct contact with the Casparian bands (see section 6.7, Chapter 6 

for further details). The current NaCl sr values are much greater than those of other species. 

For example, in young Z. mays roots with an immature exodermis, NaCl sr was 0.64 and 

puncturing the endodermis reduced it to 0.41 (Steudle et al. 1993). Using O. sativa roots it 

was possible to measure the NaCl sr of the uniseriate exodermis ( sr = 0.10) as well as the 

entire root ( sr = 0.20-0.30) (Ranathunge et al. 2003). Interestingly, Arabidopsis thaliana, 

which has non-exodermal roots, had a NaCl s of 0.77 (Boursiac et al. 2005). Apparently in 

certain species, the endodermis itself can be quite effective at restricting NaCl flow. On top 

of this, the presence of exodermal Casparian bands may function as additional apoplastic 

solute filters that could be of interest when determining a species' tolerance to salt. 

3.5.4 Adaptive significance of the multiseriate exodermis in I. germanica 

The multiseriate exodermis in I. germanica's thick roots may be a special adaptation to 

drought conditions, and would tend to reduce water loss from the root to a relatively dry soil. 

This is achieved by having the highest resistance to radial water flow in the outer part of the 

root rather than at the endodermis, thus preserving the central cortex. According to Meyer et 

al. (2009) (see Chapter 2) the majority of species with a multiseriate exodermis (including I. 

germanica) inhabit well-drained soils suggesting that this type of exodermis may play a role 

in tolerating periodic drought stress. Under favourable growth conditions with abundant 

water, there will be exodermal developmental zones along the root length beginning with the 

outermost layer near the root tip and developing centripetally until four layers are mature 

(Meyer et al. 2009; see Chapter 2). Therefore, one would expect less resistance to radial 
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water flow closer to the root tip. In the event of a drought, root growth would slow but 

maturation of the multiseriate exodermis would continue (Perumalla and Peterson 1986), 

consequently increasing the number of exodermal layers and the resistance to water loss in 

younger root regions. This anatomical change could prevent excessive water loss from the 

root to the dry soil. As extreme examples, C. arenaria and A. deserti, two species that inhabit 

dry, sandy substrates and have roots with a multiseriate exodermis, are not very permeable to 

water (Robards et al. 1979; North and Nobel 1991, 1995). Hence, the capacity to produce a 

multiseriate exodermis is likely to be one of many important evolutionary specializations that 

allow some species to tolerate drought-prone habitats. 

 

3.6 Conclusions 

Hydraulic conductivity measured with the pressure chamber revealed a significant resistance 

of I. germanica's intact multiseriate exodermis to radial water flow which was, in fact, 

dominating when two layers of the exodermis were fully developed. Due to the large water 

storage capacity of the central cortex, the measurement of transients by the root pressure 

probe resulted in estimates of the endodermal rather than the overall radial hydraulic 

conductivity. In agreement with the composite transport model of the root, the osmotic 

permeability of water was much smaller than the hydrostatic. Osmotic water permeability 

was greatly reduced in the presence of a multiseriate exodermis, as were the permeabilities of 

the two test solutes ethanol and NaCl. When the multiseriate exodermis was punctured, its 

limiting influence on radial water and solute transport was lost. The multiseriate exodermis 
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should be considered as one possible trait within a suite of specializations that evolved to 

enable plants to tolerate drought-prone habitats. 
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Chapter 4 

Suberin monomer analysis of Iris germanica’s multiseriate 

exodermis during maturation and under differing growth 

conditions 

4.1 Overview 

More than 90% of tested angiosperm species have roots with an exodermis and 

approximately 18% of these, including Iris germanica, develop a multilayered exodermis 

(MEX). All of this species' mature MEX cells contain suberin lamellae with a poly(aliphatic) 

domain (SPAD) located between the wall and plasma membrane. The location and lipophilic 

nature of the SPAD establishes it as a biochemical structure restrictive to radial water and 

solute transport through the transcellular pathway. The objective of the current work was to 

analyze SPAD biosynthesis, by identifying and quantifying suberin-associated monomers, at 

particular stages of MEX maturation and under differing growth conditions. Roots were 

grown in hydroponic culture wherein MEX maturation was delayed in submerged root 

regions but accelerated in regions exposed to a humid air gap. Monomers of the soluble, 

unpolymerized fraction of suberin were soxhlet-extracted from maturing exodermal tissue 

with chloroform/methanol. Then the SPAD, still within the extractive-free exodermal tissue, 

was hydrolyzed and transesterified of ester-linked fatty acids using methanolic HCl. 

Monomers were quantified and identified by GC-MS. Resolving the monomer profiles at 

specific maturation stages revealed spatial and temporal patterns of SPAD synthesis. 

Interestingly, in air gap-exposed root regions, there was an up-regulation in the synthesis and 
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deposition of SPAD monomers in the first two exodermal layers, compared with submerged 

regions. The SPAD fraction included fatty acids, , -dioic acids, -OH fatty acids, and 

ferulic acid, with C18:1 , -dioic acid and -OH fatty acid being the two most abundant 

monomers. Also in air gap tissue, the composition of the soluble fraction changed 

significantly between exodermal maturation stages and between growth conditions, 

exemplified by an increased alkane accumulation in the first exodermal layer of air gap-

exposed tissue. The soluble suberin fraction included alkanes, fatty acids, fatty alcohols, and 

ferulic acid. It is postulated that the localized and abundant deposition of C18:1 , -dioic 

acid and -OH fatty acid, along with high accumulation of intercalated alkanes in the first 

mature exodermal layer, are more important than the overall number of suberized exodermal 

layers for reducing water loss from the root during drought. 

 

4.2 Introduction 

Suberin is a complex biopolymer that is deposited constitutively in a subset of specialized 

plant tissues. The presence and chemical composition of suberin in specific cell types has 

been well documented. Suberin-containing cells include the phellem of periderm (such as in 

Solanum tuberosum tuber, Quercus suber stem, and secondary growth of eudicot roots), 

bundle sheath cells (such as in grass leaves), cells in the hilum/chalazal region of seed coats, 

and exodermal and endodermal cells (in roots of angiosperms) (Esau 1965). In much of the 

past work, the chemical composition of suberin was analyzed by isolating monomers from a 

complete polymer located in cells of mature tissues. In the cells of the exodermis tissue (as 

well as the endodermis) there are two key wall-modifying structures that contain suberin; 
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these structures are the Casparian bands and suberin lamellae. In general, Casparian bands 

are composed primarily of lignin-like monomers with some aliphatic suberin (Schreiber et al. 

1994; Schreiber 1996; Zeier and Schreiber 1997, 1998). Their location within 

intermicrofibrillar spaces of the cell wall allow them to restrict apoplastic flow of solutes (de 

Rufz de Lavison 1910; Baker 1971; Peterson 1987; Enstone et al. 2003). On the other hand, 

suberin lamellae are composed of two domains; the poly(aliphatic) (SPAD) and 

poly(phenolic) (SPPD) domains (after Bernards 2002; Mattinen et al. 2009; see Fig. 1.10, 

Chapter 1). The SPAD is rich in -hydroxy fatty acids, , -dicarboxylic acids and 

intercalated waxes, but the relative amounts of these compounds can vary between species 

(Kolattukudy and Dean 1974; Kolattukudy 1980, 1984; Holloway 1983; Matzke and 

Riederer 1991; Bernards and Lewis 1998, and references therein; Zeier and Schreiber 1998, 

1999; Zeier et al. 1999a, b; Graça and Pereira 2000a, b). The lipophilic nature of the SPAD, 

along with its location between the wall and plasma membrane, establishes it as a structure 

restrictive to radial water and solute transport through the transcellular pathway (Kolattukudy 

and Dean 1974; Soliday et al. 1979; Vogt et al. 1983; Evert et al. 1985; Zimmermann et al. 

2000; Hose et al. 2001; Schreiber et al. 2005a; see Chapter 3). Such fundamental information 

has provided a basis for continued research into understanding suberin biosynthesis. In 

particular, the dynamic metabolic processes involved in suberin synthesis are starting to be 

revealed.  

Analyzing suberin metabolite data at several key stages of tissue development is required 

to fully profile suberin biosynthesis. For example, like Kolattukudy and Dean (1974) and 

Dean and Kolattukudy (1977), Yang and Bernards (2006) used developing S. tuberosum 
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tuber periderm to identify and quantify polymerized (insoluble) and unpolymerized (soluble) 

SPAD monomers. In the insoluble fraction, -hydroxy fatty acids, , -dioic acids, and 

primary fatty acids (>C20) were detected three days after the start of wound-induced 

periderm development. Monomer abundances continued to increase for an additional three 

days. In the soluble fraction, -hydroxy fatty acids and , -dioic acids were detected in only 

trace amounts, whereas >C20 fatty acids were detected in considerable amounts. In another 

example, Höfer et al. (2008) measured the amount and composition of the insoluble SPAD at 

three developmental stages along the length of Arabidopsis thaliana roots. In the first zone 

closest to the root tip, endodermal suberin (primary growth) was measured. However, in the 

two more basal locations, peridermal suberin (secondary growth) was also measured. 

Monomer abundance – moving away from the root tip – increased for C18:1 -hydroxy fatty 

acids, was steady for C18:1 , -dioic acids, and decreased for primary fatty acids. Lastly, 

Zeier et al. (1999a), Thomas et al. (2007), and Krishnamurthy et al. (2009) each measured 

progressively increasing amounts of insoluble SPAD monomers along the length of Zea 

mays, Glycine max, and Oryza sativa roots, respectively; in all cases, the most abundant 

monomers were -hydroxy fatty acids. It is clear from the above results that achieving a 

complete understanding of suberin biosynthesis necessitates analyses of both polymerized 

and unpolymerized monomers from tissue that is in the process of developing and/or 

maturing. Data collected in this way can provide clues as to when the various suberin 

monomers are synthesized, and how rapidly these monomers are polymerized into the 

suberin complex. 
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More than 90% of examined angiosperm species have roots with an exodermis (Perumalla 

et al. 1990; Peterson and Perumalla 1990). Of these species, approximately 18% develop a 

multilayered exodermis (MEX), including roots of Iris germanica (Meyer et al. 2009; see 

Chapter 2). Although a considerable number of species have MEX roots, research into MEX 

development, function and biochemistry is limited. (For work on Typha spp. see Seago and 

Marsh [1989] and Seago et al. [1999]; for work on Phragmites australis see Armstrong et al. 

[2000] and Soukup et al. [2002, 2007].) But, such comprehensive research has been 

conducted recently on roots of I. germanica (Meyer et al. 2009; see Chapters 2 and 3). When 

I. germanica roots are grown in well-drained soil, MEX maturation (i.e., the concurrent 

deposition of Casparian bands and suberin lamellae) begins at 10 mm from the root tip. 

When roots are grown submerged in hydroponic culture, MEX maturation is delayed, 

beginning at 60 mm from the root tip. Conversely, if basal parts of roots are exposed to a 

humid air gap inside a hydroponic chamber, then MEX maturation in these parts is 

accelerated. Every cell of the mature MEX is encrusted with a suberin lamella – there are no 

passage cells. This thick and suberized MEX is able to retain water and prevent NaCl from 

entering the root. Previously, Zeier and Schreiber (1998) calculated the total yield of 

aliphatic suberin in I. germanica's MEX (approximately 40 μg mg
-1

). Based on the facts that 

the roots were soil-grown and the endodermis had matured to State III (meaning most cells 

contained Casparian bands, suberin lamellae and tertiary wall thickenings, as described by 

Van Fleet [1961], Esau [1965] and Robards et al. [1973]), it is currently assumed that roots 

were sampled at least 100 mm from the root tip, and contained at least three but perhaps four 

mature exodermal layers (Meyer et al. 2009; see Chapter 2). Hence, the measured amount of 
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exodermal aliphatic suberin represents a snapshot in developmental time. One question that 

arises from this previous work is: how does SPAD composition and quantity change during 

MEX maturation? For the current work, a developmental time-course analysis was conducted 

to test whether or not insoluble and soluble SPAD monomer compositions and quantities 

changed during MEX maturation and under differing growth conditions. 

The objectives of the current research were to identify and quantify the monomers that 

comprised the insoluble and soluble fractions of the SPAD in I. germanica's maturing MEX. 

In addition, SPAD composition was compared between roots either grown submerged or 

exposed to a humid air gap in hydroponic culture. It was hypothesized that root areas 

exposed to the humid air gap would have an increased abundance of key SPAD monomers 

compared with submerged root areas. The rationale for this hypothesis was based on the 

known acceleration of exodermal maturation in root tissue exposed to lower humidity (Meyer 

et al. 2009; see Chapter 2). Iris germanica roots were amenable to such tests because the 

sequence of MEX maturation was well-known from previous work (Meyer et al. 2009; see 

Chapter 2), and the roots generated very few or no lateral roots (unlike the prolific lateral 

root formation by Typha and Phragmites). The findings will lead to a more complete 

understanding of SPAD biosynthesis during MEX maturation.  
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4.3 Materials and methods 

4.3.1 Growth conditions and plant material 

Iris germanica plants were grown in hydroponic conditions as described previously (see 

Meyer et al. 2009; see Chapter 2). When several adventitious roots longer than 60 mm had 

developed, the volume of solution inside some of the hydroponic chambers was reduced, 

hence lowering the solution surface and creating a 60 mm humid air gap between the 

rhizome base and solution surface. This air gap condition is known to accelerate the 

maturation of I. germanica's multiseriate exodermis (Meyer et al. 2009; see Chapter 2). 

Maturation refers to the concurrent deposition of exodermal Casparian bands and suberin 

lamellae. 

Roots that were totally submerged (control) or exposed to the air gap for 7-21 d were cut 

individually from the base of the rhizome. To determine the number of exodermal layers that 

had matured in the segment of root exposed to the air gap and in the equivalent segment in 

submerged roots (30-50 mm in length), freehand cross sections were made at the proximal 

and distal ends of each segment. Sections were then stained with berberine hemisulphate–

aniline blue for Casparian bands (Brundrett et al. 1988), and Sudan Red 7B or Fluorol yellow 

088 for lipids including aliphatic suberin (Brundrett et al. 1991). Sections were observed 

using a Zeiss Axiophot epifluorescence microscope with either white or UV light (filter set: 

exciter filter G 365, dichroitic mirror FT 395, and barrier filter LP 420; Carl Zeiss Inc., 

Canada). Photomicrographs were taken with a Q-Imaging digital camera (Retiga 2000R, Fast 

1394, Cooled Mono, 12-bit; Quorum Technologies Inc., Canada).  
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Roots were grown in the submerged or air gap growth conditions long enough to produce 

1, 2, or 3 fully mature exodermal layers. Then the roots were cut individually from the base 

of the rhizome. For each submerged or air gap-exposed segment, the distance from the root 

tip was recorded and segment length and diameter were measured so the surface area could 

be calculated. Each segment was slit superficially with a razor blade along most of its length 

at 2 or 3 evenly spaced locations. Then 2 or 3 sheets containing the exodermal layers, with 

adhering epidermal and some central cortex cells, were physically peeled from the central 

cortex and all underlying layers using fine-tipped forceps. Peeled sheets were placed quickly 

into a 1.5 mL eppendorf tube and flash frozen with liquid nitrogen. Frozen tissue was stored 

at -20°C until needed for suberin monomer extraction. (Regions that remained unpeeled 

above and below the peeled root segment were freehand cross sectioned and stained (as 

above) to verify the number of mature exodermal layers.) The 2 or 3 pooled exodermal sheets 

from each root segment represented one replicate. Three to six replicates were collected for 

each exodermal maturation stage within each growth condition.  

4.3.2 Exodermal suberin extraction and analysis 

Soluble compound extraction. The soluble fraction was extracted from the isolated 

exodermis. (This fraction included primarily unpolymerized suberin monomers, waxes, and 

membrane components.) Frozen exodermal tissue was placed into a cellulose extraction 

thimble (Whatman Ltd., Maidstone, England) that was saturated with chloroform/methanol 

(2:1). Using a micro-soxhlet extractor, solubles were extracted from the tissue by treating it 

with chloroform/methanol (2:1) for 3.5 h. This extraction was repeated, and then followed by 

an overnight extraction with chloroform. Extracted exodermal tissue was washed with 
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acetone, air-dried at room temperature, and stored at 4°C to be used later for insoluble 

compound extraction. The soluble extracts were pooled and concentrated by evaporating off 

the solvent using a rotary evaporator (Buchi, Switzerland) under vacuum and at 50°C. The 

dried residue was re-dissolved in 2 M MeOH/HCl (Supelco/Sigma-Aldrich, USA) and heated 

at 80°C for 2 h to hydrolyze esters and methylate the free carboxylic acids. Next, vials were 

cooled and NaCl-saturated water added to stop the reaction. Triacontane (10 μL, 1 mg/mL) 

was added as the internal standard. To extract the compounds from the aqueous phase, 

hexane was added to each vial and the contents shaken vigorously. The upper hexane phase 

was pipetted off and placed into a clean vial. This hexane partitioning step was repeated two 

more times. Pooled hexane phases were dried down with N2 gas. The dried residue was re-

dissolved with 50 μL each of pyridine and 99% BSTFA + 1% TMS (Supelco/Sigma-Aldrich, 

USA), and was incubated at 70°C for 40 min to trimethylsilylate (TMS) the remaining free 

alcohols. 

Insoluble compound extraction. Next, the insoluble aliphatic suberin fraction was 

depolymerized and extracted from the dried exodermal tissue. (This fraction included 

primarily polymerized suberin monomers; the depolymerization technique employed was 

effective in degrading the SPAD, with little effect on the SPPD.) The exodermal tissue was 

weighed (1-4 mg), and then submerged in 0.5 mL of 2 M MeOH/HCl and incubated at 80°C 

for 2 h to allow hydrolysis and transesterification of ester-linked fatty acids (adapted from 

Browse et al. 1986). The remainder of the extraction method was identical to that used for the 

soluble fraction, including the organic partitioning and TMS derivatization steps (see above).  
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Gas chromatography-mass spectrometry. Soluble and insoluble monomer fractions that 

contained methyl ester/TMS ether derivatives were analyzed with a Varian CP-3800 Gas 

Chromatograph equipped with a flame ionization detector (GC-FID) and a Saturn 2000 ion 

trap Mass Spectrometer (GC-MS). The pair of columns installed in the GC were CP-Sil 5 CB 

low bleed MS columns (WCOT silica 30 m x 0.25 mm ID), with one directed to the FID and 

the other to the MS. Temperature for the injector oven was set to 250°C, and the FID oven 

was set to 300°C. After the injection of a sample (1 μL) into each column in splitless mode, 

compounds were eluted using the following program: 70°C held for 2 min, ramped up to 

200°C at 40°C min
-1 

and held for 2 min, ramped up to 300°C at 3°C min
-1 

and held for 9.42 

min, for a total run time of 50 min. The carrier gas was high purity helium flowing at a rate 

of 1 mL min
-1

.  

Data analysis. Compound identification was accomplished using a combination of 

retention time, retention index, and comparison of the obtained mass spectra to spectra from 

authentic standards. Compound abundance was quantified from the GC-FID chromatograms 

using the internal standard and standard calibration curves.  

Monomer quantities were calculated and reported in three ways. 1) Monomer amount per 

dry tissue weight (μmol mg
-1

). This calculation revealed information about monomer 

abundance as more exodermal layers matured, and was termed ‘monomer production’. 2) 

Monomer amount per root segment surface area (μmol mm
-2

). This second calculation 

provided information about the distribution of monomer deposition across multiple 

exodermal layers, and was termed ‘monomer deposition’. The surface area dimension was 

corrected by multiplying by the number of mature exodermal layers; compared to a uniseriate 
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exodermis, a biseriate exodermis had double the suberized surface area while a triseriate 

exodermis had triple the suberized surface area. For calculations 1) and 2), the accumulative 

monomer production and deposition was measured. For example, when two exodermal layers 

were mature (i.e., all cells of the two layers contained Casparian bands and suberin lamellae), 

monomer measurements included layers one and two. Nonetheless, it was assumed that at 

each maturation stage, most of the new monomer production and deposition occurred in the 

most recently matured layer. Histochemical tests verified that aliphatic suberin was present in 

all mature exodermal layers. (It was not possible to observe differences in suberin abundance 

from the histochemical tests.) Furthermore, it is known that all cells of an exodermal layer 

become fully mature prior to the visible start of the maturation of an underlying immature 

exodermal layer (Meyer et al. 2009; see Chapter 2). 3) A third calculation revealed 

information about the change in the deposition of monomers in each exodermal layer per root 

segment surface area (μmol mm
-2

), resolving the accumulative parameter. This calculation 

was termed ‘change in monomer deposition’. According to calculations 1) and 2), the 

measured monomer amounts are accumulative; this means the amount in 2EX is actually the 

sum total of 1EX + 2EX, and that the amount in 3EX is, in fact, the sum total of 1EX + 2EX 

+ 3EX. Hence, to determine how many more or fewer monomers were deposited in each 

newly matured exodermal layer relative to the previous layer(s), the difference between the 

2EX sum total and 1EX represented the change in monomer deposition between the first and 

second exodermal layers. Similarly, the difference between the 3EX sum total and the 2EX 

sum total constituted the change in monomer deposition between exodermal layers 1 + 2 and 

the third layer. These difference values could be positive or negative. For example, in most 
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cases the accumulative value of 2EX was greater than 1EX, so the difference was positive. 

On the other hand, if a particular monomer was deposited in the first layer but not the second 

layer and the root diameter continued to increase, the accumulative value of 2EX would be 

less than 1EX hence the difference would be negative. 

Differences in monomer amounts between the number of mature exodermal layers and 

between growth conditions were analyzed. Data were first analyzed by an Analysis of 

Variance. Where significance was noted, a Least Significant Difference post-hoc test was 

used with a significance value of P  0.05. Also calculated was the percent contribution of 

each monomer class to the total compound fraction within growth conditions and for each 

stage of exodermal maturity.  

 

4.4 Results 

4.4.1 I. germanica exodermal anatomy 

Exodermal structure and maturation was as expected according to Meyer et al. (2009) (see 

Chapters 2 and 3). Briefly, in submerged roots, maturation (i.e., concurrent deposition of 

Casparian bands and suberin lamellae) of the first exodermal layer was complete 80 mm 

from the root tip (5-6 d old; Fig. 4.1A,B). The second exodermal layer was fully mature by 

200 mm from the tip (14 d old; Fig. 4.1C,D). Then the third exodermal layer had matured by 

300 mm (21 d old; Fig. 4.1E,F). For air gap-exposed roots, the first exodermal layer had 

already matured in the submerged area (80 mm from the tip). As expected, in the 50-mm-

long root area exposed to the air gap, the second exodermal layer had matured uniformly 
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after only a 7 d exposure (120–170 mm from the tip, between 9 and 12 d old). Then the third 

exodermal layer matured following a 14 d air gap exposure (220–270 mm from the tip, 

between 16 and 19 d old). Both submerged and air gap-exposed roots grew at an average rate 

of 14.7 mm d
-1

 (data not shown). 

4.4.2 Suberin chemistry 

4.4.2.1 Insoluble fraction 

Total insoluble fraction. The total insoluble fraction is the sum of all the monomers that 

were released from the suberin polymer following depolymerization (transesterification) with 

MeOH/HCl. In both submerged and air gap-exposed tissue, insoluble monomer production 

increased steadily as more exodermal layers matured (Fig. 4.2A). This trend suggested a 

uniform monomer deposition in each exodermal layer. However, when monomer amounts 

were calculated on a unit surface area basis, the deposition appeared greater in the first two 

layers of air gap-exposed tissue compared with submerged tissue (Figs. 4.2B). Similar 

deposition trends were also observed for the changes in monomer deposition between 

exodermal maturation stages (Fig. 4.3). In submerged tissue, most monomers were deposited 

in the third layer, followed by the first layer and then the second layer. In air gap-exposed 

tissue, deposition was fairly consistent in each exodermal layer; but, deposition in the first 

two layers was greater than the deposition in counterpart layers of submerged tissue (Fig. 

4.3). The composition of the insoluble fraction was , -dioic acids (C18:1 - C28), -hydroxy 

fatty acids (C18:1, C24), fatty acids (C16 - C28), and ferulic acid (Table 4.1, Figs. 4.3-4.7).  

, -Dioic acids. The , -dioic acids were the most abundant insoluble monomers, 

accounting for an average of 53% of the total insoluble fraction (Table 4.1). Not surprisingly,  
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Figure 4.1 Photomicrographs of the outer part of Iris germanica adventitious roots in 

transverse section. (A) One mature exodermal layer. Stained with berberine hemisulfate–

aniline blue. Casparian bands (white arrows) located in the radial walls, fluoresced yellow. 

(B) One mature exodermal layer. Stained with Sudan red 7B. Suberin lamellae (black 

arrows) appeared as red outlines in the radial and tangential walls. (C) Two mature 

exodermal layers. Stained with berberine hemisulfate–aniline blue. A continuous 

circumferential Casparian band (white arrows) filled the radial and tangential walls. (D) Two 

mature exodermal layers. Stained with Sudan red 7B. Suberin lamellae (black arrows) were 

located in the walls of all exodermal cells of both layers. (E) Three mature exodermal layers. 

Stained with Fluorol yellow 088. Suberin lamellae fluoresced yellow, located in the walls of 

all exodermal cells. (F) Three mature exodermal layers. Stained with Sudan red 7B. Suberin 

lamellae were located in the walls of all exodermal cells. Abbreviations: epi = epidermis; ex 

= mature exodermis; iex = immature exodermis. Scale bars = 100 μm. 
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Figure 4.2 Total insoluble aliphatic suberin (SPAD) monomers in Iris germanica's 

exodermis. Data are displayed per unit of tissue mass (A, in μmol mg
-1

) and per unit of 

suberized surface area (B, in μmol mm
-2

) for each mature exodermal layer under different 

growth conditions (legends inset). Values are means ± standard deviation. Different 

lowercase letters within each graph indicate a significant difference (P  0.05) across all 

values. Abbreviations: Sub1EX = submerged tissue with one mature exodermal layer; 

Sub2EX = submerged tissue with two mature exodermal layers; Sub3EX = submerged tissue 

with three mature exodermal layers; AG1EX = air gap-exposed tissue with one mature 

exodermal layer; AG2EX = air gap-exposed tissue with two mature exodermal layers; 

AG3EX = air gap-exposed tissue with three mature exodermal layers. 
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Figure 4.3 Change in amounts of SPAD monomer classes in the maturing MEX of Iris 

germanica. Data are displayed per root segment surface area (μmol mm
-2

), and refer to the 

change in monomer amounts from one exodermal maturation stage to the next, under 

different growth conditions (legend inset). See materials and methods for data calculation 

details. Abbreviations: Sub 0EX-1EX = submerged tissue, monomer amounts in the first 

exodermal layer; Sub 1EX-2EX = submerged tissue, change in amounts between exodermal 

layers one and two; Sub 2EX-3EX = submerged tissue, change in amounts between 

exodermal layers two and three; AG 0EX-1EX = air gap-exposed tissue, monomer amounts 

in the first exodermal layer; AG 1EX-2EX = air gap-exposed tissue, change in amounts 

between exodermal layers one and two; AG 2EX-3EX = air gap-exposed, change in amounts 

between exodermal layers two and three. 
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Figure 4.4 Deposition of , -dioic acids in the aliphatic suberin (SPAD) of Iris germanica's 

exodermis. Data are displayed per unit of tissue mass (A & C, in μmol mg
-1

) and per unit of 

suberized surface area (B & D, in μmol mm
-2

) for each mature exodermal layer under 

different growth conditions (legends inset). (A,B) Total , -dioic acids. (C,D) Individual 

, -dioic acid monomers. Values are means ± standard deviation. Different lowercase letters 

within the total , -dioic acids (A,B) or within each monomer chain length (C,D) indicate a 

significant difference (P  0.05). Abbreviations: Sub1EX = submerged tissue with one 

mature exodermal layer; Sub2EX = submerged tissue with two mature exodermal layers; 

Sub3EX = submerged tissue with three mature exodermal layers; AG1EX = air gap-exposed 

tissue with one mature exodermal layer; AG2EX = air gap-exposed tissue with two mature 

exodermal layers; AG3EX = air gap-exposed tissue with three mature exodermal layers. 
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Table 4.1 Percent composition of Iris germanica's exodermal SPAD at different exodermal 

maturation zones. Sub 1EX = submerged tissue with 1 mature exodermal layer; Sub 2EX = 

submerged tissue with 2 mature exodermal layers; Sub 3EX = submerged tissue with 3 

mature exodermal layers; AG 1EX = air gap-exposed tissue with 1 mature exodermal layer; 

AG 2EX = air gap-exposed tissue with 2 mature exodermal layers; AG 3EX = air gap-

exposed tissue with 3 mature exodermal layers.  

Monomer class Sub 1EX  

(%) 

Sub 2EX  

(%) 

Sub 3EX  

(%) 

AG 1EX  

(%) 

AG 2EX  

(%)  

AG 3EX  

(%) 

Avg. 

(%) 

, -dioic acids 48.5 50 53 55 56 56 53 

-OH fatty acids 19.5 15 20 21 20 21 19 

Fatty acids 14.5 21 21 12 16 16 17 

Ferulic acid 17.5 14 6 12 8 7 11 

Sum 100 100 100 100 100 100 100 
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, -dioic acid production increased as more exodermal layers matured (Fig. 4.4A). 

Furthermore, the pattern of deposition for , -dioic acids resembled the pattern for the total 

insoluble fraction. In submerged and air gap-exposed tissue, , -dioic acids were deposited 

uniformly across three exodermal layers. Interestingly, deposition in the first two exodermal 

layers of air gap tissue was significantly greater than the deposition in the counterpart layers 

of submerged tissue (Fig. 4.4B). The change in , -dioic acid deposition between maturing 

exodermal layers in submerged tissue was greatest in the third layer, with reduced amounts 

deposited in the first and second layers. However, in air gap-exposed tissue, deposition 

amounts were similar in each exodermal layer. Interestingly, , -dioic acid deposition in the 

first two layers was greater than the deposition in counterpart layers of submerged tissue 

(Fig. 4.3).  

The most abundant , -dioic acid was the unsaturated C18:1. In submerged tissue, C18:1 

, -dioic acid production progressively increased (Fig. 4.4C) and its distribution across three 

exodermal layers was uniform (Fig. 4.4D). But, when root tissue was exposed to the air gap, 

significantly greater amounts of the C18:1 , -dioic acid were deposited in its first and 

second exodermal layers compared with the corresponding layers in submerged tissue. With 

maturation of the third exodermal layer, monomer abundance and deposition became 

equivalent between growth conditions (Fig. 4.4C,D). For all the less abundant , -dioic acids 

(C22-C28), the trend in monomer production and distribution across exodermal layers and 

between growth conditions were similar to that of C18:1, but at a reduced scale. (For the 

changes in deposition between maturing exodermal layers for the different , -dioic acid 

monomers, see Supplementary Fig. 4.1.) 
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-OH fatty acids. The -OH fatty acids accounted for an average of 19% of the insoluble 

fraction (Table 4.1). The trends in monomer production and distribution were similar to that 

measured for the total insoluble fraction and the , -dioic acids, except at a reduced scale 

(Fig. 4.5A,B). Importantly, the deposition of -OH fatty acids was significantly greater in the 

first two exodermal layers of air gap tissue compared with submerged tissue. These 

deposition trends resembled trends in the changes to -OH fatty acid deposition between 

maturing exodermal layers (Fig. 4.3).  

The most abundant -OH fatty acid was the unsaturated C18:1. In submerged tissue, 

C18:1 -OH fatty acid production increased as more exodermal layers matured (Fig. 4.5C) 

and its distribution was uniform across the layers (Fig. 4.5D). When root areas were exposed 

to an air gap, monomer distribution was steady across exodermal layers, but significantly 

greater in the first two layers compared with the equivalent layers in submerged tissue. Upon 

maturation of the third exodermal layer, C18:1 -OH fatty acid abundance and deposition 

were similar between roots exposed to either growth condition (Fig. 4.5C,D). For the less 

abundant C24 -OH fatty acid, the greatest production and deposition were measured in the 

first exodermal layer, with significant decreases as more exodermal layers matured. (For the 

changes in deposition between maturing exodermal layers for the different -OH fatty acid 

monomers, see Supplementary Fig. 4.2.) 

Fatty acids. Fatty acids comprised an average of 17% of the insoluble fraction (Table 4.1). 

Fatty acid abundance increased as more exodermal layers matured (Fig. 4.6A), and 

deposition was fairly uniform across exodermal layers (Fig. 4.6B). These deposition trends 
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were similar to trends in the changes to fatty acid deposition between maturing exodermal 

layers (Fig. 4.3). 

The fatty acid group contained eight different monomers, ranging from C16 to C28, with 

C28 being the most abundant. In submerged tissue, fatty acid abundance typically increased 

as more exodermal layers matured as observed for C17, C18:1, C22, and C28, but the 

abundance was steady for the other three (Fig. 4.6C). Fatty acid deposition was, in general, 

lower in the first exodermal layer but increased as the second and third layers matured (Fig. 

4.6D). When root tissue was exposed to an air gap, the abundance of C16, C26 and C28 fatty 

acids tended to increase slightly as more exodermal layers matured, while amounts of the 

other five monomers remained steady (Fig. 4.6C). Fatty acid deposition was uniform across 

the exodermal layers for all chain lengths but C18:1, the majority of which was deposited in 

the first exodermal layer (Fig. 4.6D). (For the changes in deposition between maturing 

exodermal layers for the different fatty acid monomers, see Supplementary Fig. 4.3.) 

The differences in monomer production and deposition between growth conditions were 

not as clear for the fatty acids as for the , -dioic acids and -OH fatty acids. Fatty acid 

abundance was, for the most part, similar between growth conditions within corresponding 

exodermal layers. However, in submerged tissue, the deposition of C24 fatty acids was 

greater in the second exodermal layer and the C17 and C18:1 fatty acids were greater in the 

third layer compared with air gap tissue (Fig. 4.6C). The deposition of C17, C18:2, C18:1, 

and C26 fatty acids was significantly greater in the second exodermal layer of air gap 

exposed tissue compared with the same layer in submerged tissue (Fig. 4.6D). On the other 

hand, deposition of C18:1 fatty acids was significantly greater in the third exodermal layer of  
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Figure 4.5 Deposition of -OH fatty acids in the aliphatic suberin (SPAD) of Iris 

germanica's exodermis. Data are displayed per unit of tissue mass (A & C, in μmol mg
-1

) and 

per unit of suberized surface area (B & D, in μmol mm
-2

) for each mature exodermal layer 

under different growth conditions (legends inset). (A,B) Total -OH fatty acids. (C,D) 

Individual -OH fatty acid monomers. Values are means ± standard deviation. Different 

lowercase letters within the total -OH fatty acids (A,B) or within each monomer chain 

length (C,D) indicate a significant difference (P  0.05). Abbreviations: Sub1EX = 

submerged tissue with one mature exodermal layer; Sub2EX = submerged tissue with two 

mature exodermal layers; Sub3EX = submerged tissue with three mature exodermal layers; 

AG1EX = air gap-exposed tissue with one mature exodermal layer; AG2EX = air gap-

exposed tissue with two mature exodermal layers; AG3EX = air gap-exposed tissue with 

three mature exodermal layers. 
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Figure 4.6 Deposition of fatty acids in the aliphatic suberin (SPAD) of Iris germanica's 

exodermis. Data are displayed per unit of tissue mass (A, in μmol mg
-1

) and per unit of 

suberized surface area (B, in μmol mm
-2

) for each mature exodermal layer under different 

growth conditions (legend insets). (A,B) Total fatty acids. Values are means ± standard 

deviation. Different lowercase letters within each graph indicate a significant difference (P  

0.05). Abbreviations: Sub1EX = submerged tissue with one mature exodermal layer; 

Sub2EX = submerged tissue with two mature exodermal layers; Sub3EX = submerged tissue 

with three mature exodermal layers; AG1EX = air gap-exposed tissue with one mature 

exodermal layer; AG2EX = air gap-exposed tissue with two mature exodermal layers; 

AG3EX = air gap-exposed tissue with three mature exodermal layers. 
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Figure 4.6 Deposition of fatty acids in the aliphatic suberin (SPAD) of Iris germanica's 

exodermis. Data are displayed per unit of tissue mass (C, in μmol mg
-1

) and per unit of 

suberized surface area (D, in μmol mm
-2

) for each mature exodermal layer under different 

growth conditions (legend insets). (C,D) Individual fatty acid monomers. Values are means ± 

standard deviation. Different lowercase letters within each monomer chain length indicate a 

significant difference (P  0.05). Abbreviations: Sub1EX = submerged tissue with one 

mature exodermal layer; Sub2EX = submerged tissue with two mature exodermal layers; 

Sub3EX = submerged tissue with three mature exodermal layers; AG1EX = air gap-exposed 

tissue with one mature exodermal layer; AG2EX = air gap-exposed tissue with two mature 

exodermal layers; AG3EX = air gap-exposed tissue with three mature exodermal layers. 
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Figure 4.7 Deposition of esterified ferulic acid in the aliphatic suberin (SPAD) of Iris 

germanica's exodermis. Data are displayed per unit of tissue mass (A, in μmol mg
-1

) and per 

unit of suberized surface area (B, in μmol mm
-2

) for each mature exodermal layer under 

different growth conditions (legend insets). Values are means ± standard deviation. Different 

lowercase letters within each graph indicate a significant difference (P  0.05). 

Abbreviations: Sub1EX = submerged tissue with one mature exodermal layer; Sub2EX = 

submerged tissue with two mature exodermal layers; Sub3EX = submerged tissue with three 

mature exodermal layers; AG1EX = air gap-exposed tissue with one mature exodermal layer; 

AG2EX = air gap-exposed tissue with two mature exodermal layers; AG3EX = air gap-

exposed tissue with three mature exodermal layers. 
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submerged tissue compared with the corresponding layer in air gap exposed tissue (Fig. 

4.6D). The only other notable differences in monomer amounts between growth conditions 

included samples where the monomer was undetectable. One striking example of this was for 

C18:2, which was only detected in the second and third exodermal layers of air gap-exposed 

tissue. 

Ferulic acid. Esterified ferulic acid comprised an average of 11% of the insoluble fraction 

(Table 4.1). The production of ferulic acid was steady as more exodermal layers matured, 

although there was a sharp decrease with maturation of the third layer in submerged tissue 

(Fig. 4.7A). Deposition was abundant in the outermost exodermal layer, regardless of growth 

condition, but was significantly reduced in the second and third layers (Fig. 4.7B). There 

were no statistical differences in production or deposition between exodermal layers of 

differing growth conditions. Similar trends were observed for the change in ferulic acid 

deposition between maturing exodermal layers. For both submerged and air gap-exposed 

tissue, the majority of the ferulic acid was deposited in the first layer with less amounts 

deposited in the second and third layers (Fig. 4.3; see Supplementary Fig. 4.4). 

4.4.2.2 Soluble fraction 

Total soluble fraction. The total soluble fraction is the sum of all monomers that were 

released by soxhlet extraction, and does not include monomers that were cross-linked to the 

suberin polymer. In submerged roots, soluble monomer amounts were steady as more 

exodermal layers matured. However, in air gap-exposed roots, soluble monomer amounts 

decreased with more exodermal layers (Fig. 4.8A).  Soluble monomer accumulation in 

submerged tissue was uniform across exodermal layers (Fig. 4.8B). In marked contrast, the 
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accumulation of soluble monomers in air gap-exposed tissue was heavy in the first 

exodermal layer but significantly reduced in the second and third layers (Fig. 4.8B). Similar 

accumulation trends were also observed for the changes in soluble monomer accumulation 

between maturing exodermal layers (Fig. 4.9). In submerged tissue, most monomers 

accumulated in the first and third exodermal layers. In air gap-exposed tissue, nearly all of 

the soluble monomers accumulated in the first exodermal layer, while vastly reduced 

amounts were measured in all underlying layers. Notably, monomer accumulation in the first 

exodermal layer was greater in air gap tissue compared with submerged tissue (Fig. 4.9). The 

composition of the soluble fraction included fatty acids (C14 - C30), alkanes (C23 - C28), 

ferulic acid, and fatty alcohols (C12 - C18) (Table 4.2; Figs. 4.9-4.13).  

Fatty acids. Fatty acids were the most abundant soluble monomers, accounting for an 

average of 68% of the total soluble fraction (Table 4.2). Hence, the pattern of fatty acid 

accumulation resembled the pattern for the total soluble fraction. Briefly, submerged tissue 

had a steady amount of fatty acids across exodermal layers (Fig. 4.10A). Conversely, in air 

gap-exposed tissue, fatty acid amounts were abundant in the first exodermal layer, but 

dwindled in the second and third layers (Fig. 4.10A). In submerged root tissue, fatty acid 

accumulation was uniform across the first and third exodermal layers, but was reduced in the 

second exodermal layer (Fig. 4.10B). In air gap-exposed root tissue, fatty acids were 

abundant in the first exodermal layer, with reduced accumulation in the second and third 

layers (Fig. 4.10B). The change in fatty acid accumulation between maturing exodermal 

layers was greatest in the first and third layers but vastly reduced in the second layer for both 

submerged and air gap-exposed tissue (Fig. 4.9). 
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Figure 4.8 Total soluble fraction of Iris germanica's exodermal suberin. Data are displayed 

per unit of tissue mass (A, in μmol mg
-1

) and per unit of suberized surface area (B, in μmol 

mm
-2

) for each mature exodermal layer under different growth conditions (legend insets). 

Values are means ± standard deviation. Different lowercase letters within each graph indicate 

a significant difference (P  0.05). Abbreviations: Sub1EX = submerged tissue with one 

mature exodermal layer; Sub2EX = submerged tissue with two mature exodermal layers; 

Sub3EX = submerged tissue with three mature exodermal layers; AG1EX = air gap-exposed 

tissue with one mature exodermal layer; AG2EX = air gap-exposed tissue with two mature 

exodermal layers; AG3EX = air gap-exposed tissue with three mature exodermal layers. 
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Figure 4.9 Change in amounts of soluble monomer classes in the maturing MEX of Iris 

germanica. Data are displayed per root segment surface area (μmol mm
-2

), and refer to the 

change in monomer amounts from one exodermal maturation stage to the next, under 

different growth conditions (legend inset). See materials and methods for data calculation 

details. (A) Total soluble fraction, total fatty acids, and total alkanes. (B) Total fatty alcohols 

and ferulic acid. Abbreviations: Sub 0EX-1EX = submerged tissue, monomer amounts in the 

first exodermal layer; Sub 1EX-2EX = submerged tissue, change in amounts between 

exodermal layers one and two; Sub 2EX-3EX = submerged tissue, change in amounts 

between exodermal layers two and three; AG 0EX-1EX = air gap-exposed tissue, monomer 

amounts in the first exodermal layer; AG 1EX-2EX = air gap-exposed tissue, change in 

amounts between exodermal layers one and two; AG 2EX-3EX = air gap-exposed, change in 

amounts between exodermal layers two and three. 
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Figure 4.10 Accumulation of fatty acids in the soluble fraction of Iris germanica's 

exodermal suberin. Data are displayed per unit of tissue mass (A, in μmol mg
-1

) and per unit 

of suberized surface area (B, in μmol mm
-2

) for each mature exodermal layer under different 

growth conditions (legend insets). (A,B) Total fatty acids. Values are means ± standard 

deviation. Different lowercase letters within each graph indicate a significant difference (P  

0.05). Abbreviations: Sub1EX = submerged tissue with one mature exodermal layer; 

Sub2EX = submerged tissue with two mature exodermal layers; Sub3EX = submerged tissue 

with three mature exodermal layers; AG1EX = air gap-exposed tissue with one mature 

exodermal layer; AG2EX = air gap-exposed tissue with two mature exodermal layers; 

AG3EX = air gap-exposed tissue with three mature exodermal layers. 
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Figure 4.10 Accumulation of fatty acids in the soluble fraction of Iris germanica's 

exodermal suberin. Data are displayed per unit of tissue mass (C, in μmol mg
-1

) and per unit 

of suberized surface area (D, in μmol mm
-2

) for each mature exodermal layer under different 

growth conditions (legend insets) (C,D) Individual fatty acid monomers. Values are means ± 

standard deviation. Different lowercase letters within each monomer chain length indicate a 

significant difference (P  0.05). Abbreviations: Sub1EX = submerged tissue with one 

mature exodermal layer; Sub2EX = submerged tissue with two mature exodermal layers; 

Sub3EX = submerged tissue with three mature exodermal layers; AG1EX = air gap-exposed 

tissue with one mature exodermal layer; AG2EX = air gap-exposed tissue with two mature 

exodermal layers; AG3EX = air gap-exposed tissue with three mature exodermal layers. 
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Table 4.2 Percent composition of the soluble fraction of Iris germanica's exodermal suberin 

at different maturation zones. Sub 1EX = submerged tissue with 1 mature exodermal layer; 

Sub 2EX = submerged tissue with 2 mature exodermal layers; Sub 3EX = submerged tissue 

with 3 mature exodermal layers; AG 1EX = air gap-exposed tissue with 1 mature exodermal 

layer; AG 2EX = air gap-exposed tissue with 2 mature exodermal layers; AG 3EX = air gap-

exposed tissue with 3 mature exodermal layers.  

Monomer class Sub 1EX  

(%) 

Sub 2EX  

(%) 

Sub 3EX  

(%) 

AG 1EX  

(%) 

AG 2EX  

(%)  

AG 3EX  

(%) 

Avg. 

(%) 

Fatty acids 81 67.5 66 61 56 76.5 68 

Alkanes 14 26.5 31 32 38 14.5 26 

Fatty alcohols 3 2 1 2 2 3 2 

Ferulic acid 2 4 2 5 4 6 4 

Sum 100 100 100 100 100 100 100 
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The fatty acid group was composed of thirteen different monomers, with the most 

abundant being C16 and C18. Amounts of the C16 and C18 fatty acids in submerged tissue 

were abundant with maturation of the first exodermal layer, but declined and leveled off in 

the second and third layers (Fig. 4.10C). In air gap tissue, C16 and C18 amounts were high 

with one mature exodermal layer, but tended to decline with the maturation of the second and 

third layers (Fig. 4.10C). Accumulation of C16 and C18 fatty acids in submerged tissue was 

high in the first exodermal layer, followed by a sharp decrease in the second layer, and a 

subsequent sharp increase in the third layer (Fig. 4.10D). In air gap tissue, C16 and C18 

accumulation was high in the first exodermal layer, but was reduced in the second and third 

layers (Fig. 4.10D). 

The next most abundant fatty acids were C18:1 and C22. Amounts of these two monomers 

in submerged tissue were low with the maturation of two exodermal layers, but increased 

when the third layer matured (Fig. 4.10C). In air gap tissue, abundance was high with the 

maturation of the first exodermal layer, but was scaled back as the second and third layers 

matured (Fig. 4.10C). In submerged tissue, accumulation was fairly low in the first and 

second exodermal layers, but was markedly increased in the third layer (Fig. 4.10D). 

Conversely, in air gap tissue, C18:1 and C22 had abundantly accumulated in the first 

exodermal layer followed by a reduction in the second and third layers (Fig. 4.10D).  

The trends in accumulation for the other, less abundant fatty acids were variable and not 

consistent. In general, monomer amounts were either steady across exodermal layers, or were 

high in the first layer followed by reductions in underlying layers. (For the changes in 
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accumulation between maturing exodermal layers for the different fatty acid monomers, see 

Supplementary Fig. 4.5.) 

Alkanes. Alkanes were relatively abundant, comprising an average of 26% of the soluble 

fraction (Table 4.2). The trends in alkane amounts across exodermal layers differed 

substantially between submerged and air gap-exposed root tissues. In submerged tissue, the 

amount of alkanes increased significantly with the maturation of each additional exodermal 

layer (Fig. 4.11A). Conversely, in air gap tissue, alkane amounts were abundant when only 

one exodermal layer was mature, but then decreased significantly as additional layers 

matured (Fig. 4.11A). Alkane accumulation in the first and second exodermal layers of 

submerged tissue was low and uniform, but tended to increase in the third layer (Fig. 4.11B). 

On the other hand, in air gap tissue, alkanes accumulated in abundance in the first exodermal 

layer, but were significantly and progressively reduced in the two underlying layers (Fig. 

4.11B). In fact, with only one mature exodermal layer, the amounts and accumulation of 

alkanes were on average 2.5-fold and 4-fold greater, respectively, in air gap tissue compared 

with submerged tissue. These accumulation trends were similar to trends in the changes to 

alkane accumulation between maturing exodermal layers (Fig. 4.9). 

The alkane group was composed of five different monomers, with the most abundant 

being C27. Trends in abundance and accumulation were virtually the same for each monomer 

(Fig. 4.11C,D), and hence, were similar to the overall alkane trends (as described above). 

(For the changes in accumulation between maturing exodermal layers for the different alkane 

monomers, see Supplementary Fig. 4.6.) 
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Fatty alcohols. The fatty alcohols were the least abundant of the soluble monomers, 

accounting for only an average of 2% of the soluble fraction (Table 4.2). Fatty alcohol 

abundance in submerged tissue was high when one exodermal layer was mature, but declined 

significantly with the maturation of the additional layers (Fig. 4.12A). Interestingly, in air 

gap tissue, fatty alcohol amounts were steady as more exodermal layers matured. 

Accumulation of fatty alcohols in submerged tissue was abundant in the first exodermal 

layer, and significantly reduced in the two underlying layers (Fig. 4.12B). The accumulation 

of fatty alcohols in air gap tissue was essentially the same as for submerged tissue (Fig. 

4.12B). The change in fatty alcohol accumulation between maturing exodermal layers was 

greatest in the first layer, slightly reduced in the third layer, but vastly reduced in the second 

layer for both submerged and air gap-exposed tissue (Fig. 4.9). 

The fatty alcohol group was composed of four different monomers, all of similar 

abundance except for C16 which was not detected in submerged tissue. The accumulation of 

C14, C16, and C18 fatty alcohols was similar to the overall fatty alcohol trends, as described 

above (Fig. 4.12C,D). (For the changes in accumulation between maturing exodermal layers 

for the different fatty alcohol monomers, see Supplementary Fig. 4.7.) 

Ferulic acid. Ferulic acid comprised an average of only 4% of the soluble fraction (Table 

4.2). The accumulation of ferulic acid across exodermal layers in submerged tissue was 

uniform (Fig. 4.13A,B). However, in air gap-exposed tissue, ferulic acid abundance was high 

in the first exodermal layer, but was later reduced as more layers matured (Fig. 4.13A). 

Furthermore, accumulation was greatest in the first exodermal layer, followed by significant 

reductions in the second and third layers (Fig. 4.13B). Similar trends were observed for the  



 210 

Figure 4.11 Accumulation of alkanes in the soluble wax fraction of Iris germanica's 

exodermal suberin. Data are displayed per unit of tissue mass (A & C, in μmol mg
-1

) and per 

unit of suberized surface area (B & D, in μmol mm
-2

) for each mature exodermal layer under 

different growth conditions (legend insets). (A,B) Total alkanes. (C,D) Individual alkane 

monomers. Values are means ± standard deviation. Different lowercase letters within the 

total alkanes (A,B) or within each monomer chain length (C,D) indicate a significant 

difference (P  0.05). Abbreviations: Sub1EX = submerged tissue with one mature 

exodermal layer; Sub2EX = submerged tissue with two mature exodermal layers; Sub3EX = 

submerged tissue with three mature exodermal layers; AG1EX = air gap-exposed tissue with 

one mature exodermal layer; AG2EX = air gap-exposed tissue with two mature exodermal 

layers; AG3EX = air gap-exposed tissue with three mature exodermal layers. 
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Figure 4.12 Accumulation of fatty alcohols in the soluble fraction of Iris germanica's 

exodermal suberin. Data are displayed per unit of tissue mass (A & C, in μmol mg
-1

) and per 

unit of suberized surface area (B & D, in μmol mm
-2

) for each mature exodermal layer under 

different growth conditions (legend insets). (A,B) Total fatty alcohols. (C,D) Individual fatty 

alcohol monomers. Values are means ± standard deviation. Different lowercase letters within 

the total fatty alcohols (A,B) or within each monomer chain length (C,D) indicate a 

significant difference (P  0.05). Abbreviations: Sub1EX = submerged tissue with one 

mature exodermal layer; Sub2EX = submerged tissue with two mature exodermal layers; 

Sub3EX = submerged tissue with three mature exodermal layers; AG1EX = air gap-exposed 

tissue with one mature exodermal layer; AG2EX = air gap-exposed tissue with two mature 

exodermal layers; AG3EX = air gap-exposed tissue with three mature exodermal layers. 
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Figure 4.13 Accumulation of ferulic acid in the soluble fraction of Iris germanica's 

exodermal suberin. Data are displayed per unit of tissue mass (A, in μmol mg
-1

) and per unit 

of suberized surface area (B, in μmol mm
-2

) for each mature exodermal layer under different 

growth conditions (legend insets). Values are means ± standard deviation. Different 

lowercase letters within each graph indicate a significant difference (P  0.05). 

Abbreviations: Sub1EX = submerged tissue with one mature exodermal layer; Sub2EX = 

submerged tissue with two mature exodermal layers; Sub3EX = submerged tissue with three 

mature exodermal layers; AG1EX = air gap-exposed tissue with one mature exodermal layer; 

AG2EX = air gap-exposed tissue with two mature exodermal layers; AG3EX = air gap-

exposed tissue with three mature exodermal layers. 
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change in ferulic acid accumulation between maturing exodermal layers. In submerged 

tissue, ferulic acid accumulation was similar in each exodermal layer. On the other hand, in 

air gap-exposed tissue, the majority of the ferulic acid was deposited in the first layer with 

less deposited in the second and third layers (Fig. 4.9; see Supplementary Fig. 4.8). 

 

4.5 Discussion 

The adventitious roots of Iris germanica proved to be excellent subjects for analyzing 

suberin composition, abundance and deposition in the Casparian bands and suberin lamellae 

of a maturing multiseriate exodermis (MEX). MEX maturation occurred as expected in 

submerged and humid air gap growth conditions (Meyer et al. 2009; see Chapters 2 and 3) 

and, therefore, root segments could be sampled one-at-a-time at specific maturation stages. 

Plus, due to the wide diameter of I. germanica roots and the large amounts of exodermal 

suberization, mechanical separation of the exodermis from the underlying tissues was 

feasible.  

The suberin poly(aliphatic) domain (SPAD) composition for the most abundant insoluble 

monomer classes of I. germanica's MEX includes , -dioic acids (53%) and -OH fatty 

acids (19%) (see Table 4.1). This composition was similar to the composition of S. 

tuberosum tuber periderm, where , -dioic acids and -OH fatty acids comprise 54% and 

25% of the insoluble aliphatics, respectively (not including glycerol or unidentified 

compounds; Graça and Pereira 2000b; Schreiber et al. 2005a). But, SPAD composition often 

varies between species. For example, A. thaliana roots included mainly -OH fatty acids 

(48%) and , -dioic acids (28%) in the insoluble fraction (not including unidentified 
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compounds; Franke et al. 2005). In another example, Q. suber stem periderm is composed 

mainly of -OH acids (41%) and epoxides (31%) (Holloway 1983). Nonetheless, for the 

majority of tested species, including those listed above, the , -dioic acids and -OH fatty 

acids are always detected and typically the C18:1 monomers are the most abundant 

(Holloway 1983; Matzke and Riederer 1991). 

Interestingly, for I. germanica's MEX, there was very little difference in the percent 

composition of the insoluble suberin fraction between exodermal maturation stages and 

between growth conditions (see Table 4.1). Such compositional data is relative, meaning 

each monomer class is a proportion of the sum of all monomer classes, and is not 

representative of the actual amount of monomer production and deposition. Hence, even 

though the percent composition of the insoluble fraction between exodermal maturation 

stages and between growth conditions did not change, the actual amounts of monomer 

production and deposition did change significantly (see below). 

Insoluble suberin monomer production and deposition were influenced by the exodermal 

maturation stage and the growth condition. Production of insoluble , -dioic acids, -OH 

fatty acids, and fatty acids increased steadily and significantly as more exodermal layers 

matured in both submerged and air gap-exposed root tissue. However, there was significantly 

greater production at the second exodermal layer of air gap-exposed tissue, compared with 

submerged tissue (see Figs. 4.4, 4.5). Deposition of these monomers was fairly uniform 

across exodermal layers, but was significantly greater in the first two layers of air gap-

exposed tissue compared with submerged tissue (see Figs. 4.3 - 4.5). From these results it 

was evident that a large and rapid induction of insoluble suberin monomer production and 
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deposition occurred in the first and second exodermal layers when roots were exposed to a 

dehydrating air gap. Increases in insoluble monomer amounts were also measured in S. 

tuberosum tuber periderms that were held in nearly 100% humid storage conditions for 7-30 

days (Kolattukudy and Dean 1974; Schreiber et al. 2005a).  

The two most abundant SPAD monomers in I. germanica's MEX were the C18:1 , -

dioic acid and the C18:1 -OH fatty acid; both are characteristic of suberin. Interestingly, 

these monomers were not detected in the soluble fraction. Yang and Bernards (2006) 

similarly measured these monomers in abundance in the insoluble fraction, and only in trace 

amounts in the soluble fraction of S. tuberosum tuber periderm – the authors provided two 

possible explanations. 1) Once -OH fatty acids and , -dioic acids are synthesized, they are 

rapidly transferred into the apoplast and then immediately incorporated into the SPAD. 2) 

Fatty acids may be transferred to the apoplast and incorporated into the SPAD, where they 

are then -hydroxylated into -OH fatty acid, and possibly oxidized into , -dioic acid. 

These explanations still need to be tested. Nevertheless, it is probable that the increased 

production of C18:1 , -dioic acid and -OH fatty acid, especially in dehydrating 

conditions, is the result of an up-regulation in the synthesis and/or activity of enzymes 

involved in SPAD monomer biosynthesis. Such enzymes include the units in the fatty acid 

elongation complex (including -ketoacyl-CoA synthase [KCS]), fatty acid desaturases, 

cytochrome P450 monooxygenases (P450), -hydroxyacid dehydrogenases, and possibly 

SPAD polymerizing enzymes such as polyester synthases (including glycerol-3-phosphate 

acyltransferase5 [GPAT5]) (Kolattukudy and Dean 1974; Kolattukudy 1980; Bernards 2002; 

Franke and Schreiber 2007; see section 1.4.2, Chapter 1 for more details). Functional 
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characterization of such enzymes is ongoing (KCS: Franke et al. 2009; Lee et al. 2009; Serra 

et al. 2009a; P450: Höfer et al. 2008; Compagnon et al. 2009; Serra et al. 2009b; GPAT5: 

Beisson et al. 2007; Li et al. 2007; see section 6.12, Chapter 6 for more details). The up-

regulation of SPAD monomer biosynthesis in dehydrating conditions may partially allow I. 

germanica's MEX to better retard water loss. However, one must take into account results 

from the soluble fraction before drawing physiological conclusions. 

Total soluble monomer accumulation varied between growth conditions and within the air 

gap growth condition. Specifically, in air gap-exposed tissue, production and accumulation of 

soluble monomers were very high in the first exodermal layer but were significantly lower in 

the second and third layers (see Figs. 4.8, 4.9). Such trends pointed to a targeted effect on the 

outermost exodermal layer of air gap tissue.  

The percent composition of the soluble fraction changed between exodermal maturation 

stages and between growth conditions. Particularly, the changes between the relative 

contributions of fatty acids and alkanes were notable (see Table 4.2). In submerged tissue, as 

more exodermal layers matured, the contribution of fatty acids declined while the alkane 

contribution increased. In air gap-exposed tissue, the fatty acid contribution decreased across 

the first two exodermal layers, while the alkane contribution increased. Then, in the third 

exodermal layer, fatty acid contribution increased as alkane contribution decreased (see Figs. 

4.9 - 4.11). Importantly, in the first exodermal layer of air gap-exposed tissue, the alkane 

contribution was more than double that of the corresponding layer in submerged tissue. 

Furthermore, the measured abundance and accumulation of alkanes in the outermost 

exodermal layer of air gap tissue were on average 2.5-fold and 4-fold greater, respectively, 
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than in the same layer of submerged tissue (see Figs. 4.9, 4.11). Therefore, in response to the 

dehydrating air gap, the rate of alkane synthesis was greatly increased and accumulation was 

diverted toward the outermost exodermal layer.  

  A combination of the high alkane/wax accumulation, and high , -dioic acid and -OH 

fatty acid deposition in the outermost exodermal layer of air gap-exposed tissue may be the 

key factor in restricting water loss from the underlying tissues. Previous work has shown that 

as I. germanica's MEX matures in a humid air gap, radial water permeability is reduced (see 

Chapter 3). However, the overall number of suberized exodermal layers may not necessarily 

enhance impermeability. This counter-intuitive statement is supported by the following three 

examples. 1) North and Nobel (1995) measured radial water permeability in Agave deserti 

root regions that had the same number of exodermal layers but were exposed to either well-

watered or drought conditions. The tissue exposed to drought was significantly less 

permeable than the well-watered subjects. 2) In another example, Vogt et al. (1983) 

measured water permeability across the multiseriate periderm of S. tuberosum tubers. 

Permeability across the periderm from freshly harvested tubers was greater by about one 

order of magnitude compared with periderm of tubers that were harvested and then stored in 

humid air for only 5 d. 3) Lastly, Schreiber et al. (2005a) added to Vogt et al.'s (1983) work 

by comparing the water permeability of old, 'native' periderm to newly-developed, 'wound-

induced' periderm. In native periderm, there were consistently 8 ± 2 phellem cell layers 

present during the 30 d of storage out of soil. Water permeability decreased significantly 

during the first 3 d of storage, but there was no change to the permeability between days 3-

28. In wound periderm, the number of cell layers increased to 6 during 30 d in storage, and 
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its water permeability progressively decreased during that time. However, the permeability of 

wound periderm at 30 d was more than two orders of magnitude greater than that of the 

native periderm. These differences in water permeability are known to be caused, in part, by 

the suberin-associated waxes within the periderm of S. tuberosum tubers (Soliday et al. 1979; 

Vogt et al. 1983; Schreiber et al. 2005a). Intriguingly, while there were no major differences 

in the suberin composition between native and wound periderm, the native periderm 

contained 40-50% more suberin and wax monomers than wound periderm (Schreiber et al. 

2005a). Then, after solvent extraction of the waxes, water permeability increased by a factor 

of 100 in native periderm and by a factor of 2 to 10 in wound periderm (Schreiber et al. 

2005a). It is not known if the waxes were evenly distributed through the periderm or if they 

were targeted to specific phellem layers. For the MEX of I. germanica, the up-regulation of 

wax synthesis and accumulation in the outermost layer of air gap-exposed tissue indicates 

that this layer is likely to be the most physiologically important factor for the retention of 

water inside the root. In addition, the concomitant induction of C18:1 , -dioic acid and -

OH fatty acid synthesis and deposition would increase the lipophilicity of the suberin and, 

perhaps more importantly, act as a scaffold for the prolific wax accumulation in the 

outermost exodermal layer. It is postulated that this localized and abundant monomer 

accumulation in the first mature exodermal layer is more important for radial water 

impermeability than the overall number of mature exodermal layers.  

Lastly, the accumulation of the soluble fatty acids is notable as this monomer class 

comprised the majority of the soluble fraction. The abundance of C16 and C18 primary fatty 

acids was more uniform across exodermal layers in submerged tissue compared with air gap 
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tissue in which monomers were targeted mainly to the first exodermal layer (see Fig. 4.10). 

Short-chained primary fatty acids, particularly C16, C18 and C18:1, are most likely 

components of membrane phospholipids (which would be liberated as methyl esters during 

MeOH/HCl treatment), but may also be biosynthetic precursors for SPAD monomers and 

waxes (including long chain fatty acids, alkanes and fatty alcohols) (Galliard 1973; Yang and 

Bernards 2006).  

In conclusion, acceleration in the maturation of I. germanica's MEX when exposed to a 

humid air gap was detected chemically as an up-regulation in the synthesis and deposition of 

fatty acids, , -dioic acids, -OH fatty acids, and ferulic acids in the SPAD, with the 

associated accumulation of soluble compounds (made up of alkanes, fatty acids, fatty 

alcohols, and ferulic acid), especially in the outermost exodermal layer. The percent 

monomer composition of the SPAD changed very little between exodermal maturation stages 

and between growth conditions. The two most abundant SPAD monomers were the C18:1 

, -dioic acid and the C18:1 -OH fatty acid. Interestingly, these monomers were produced 

and deposited in significantly greater amounts in the first two exodermal layers of air gap-

exposed tissue compared with the corresponding layers of submerged tissue. The 

composition of the SPAD of I. germanica is similar to that of S. tuberosum tuber periderm. 

The percent composition of soluble compounds from I. germanica suberin changed 

significantly between exodermal maturation stages and between growth conditions, 

exemplified by an increased alkane accumulation in the first exodermal layer of air gap-

exposed tissue. Targeted production and deposition of alkanes, , -dioic acids and -OH 

fatty acids in the outermost exodermal layer probably function synergistically to retain water 
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inside the root when it is exposed to dehydrating growth conditions. The abundance and 

deposition of these key lipophilic monomers in specific tissue locations is likely more 

important for enhancing water retention than the overall number of suberized exodermal 

layers. 

 

4.6 Supplementary data 

See Appendix B for Supplementary Figures 4.1 – 4.8. Supplementary Figure 4.1 - Change in 

amounts of , -dioic acids in the SPAD of the maturing MEX in Iris germanica roots. 

Supplementary Figure 4.2 - Change in amounts of -OH fatty acids in the SPAD of the 

maturing MEX in Iris germanica roots. Supplementary Figure 4.3 - Change in amounts of 

fatty acids in the SPAD of the maturing MEX in Iris germanica roots. Supplementary Figure 

4.4 - Change in amounts of ferulic acid in the SPAD of the maturing MEX in Iris germanica 

roots. Supplementary Figure 4.5 - Change in amounts of fatty acids in the soluble suberin 

fraction of the maturing MEX in Iris germanica roots. Supplementary Figure 4.6 - Change in 

amounts of alkanes in the soluble suberin fraction of the maturing MEX in Iris germanica 

roots. Supplementary Figure 4.7 - Change in amounts of fatty alcohols in the soluble suberin 

fraction of the maturing MEX in Iris germanica roots. Supplementary Figure 4.8 - Change in 

amounts of ferulic acid in the soluble suberin fraction of the maturing MEX in Iris 

germanica roots. 
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Chapter 5 

Suberin biosynthesis in Allium cepa’s maturing exodermis  

5.1 Overview 

Suberin is a complex biopolymer composed of a poly(aliphatic) domain (SPAD) and a 

poly(phenolic) domain (SPPD). These two domains are covalently linked but are also 

spatially distinct with the SPPD thought to be embedded in the cell wall and the SPAD 

located between the wall and plasma membrane. Suberin is typically confined to specialized 

cell types including root exodermal cells, but its synthesis in a maturing exodermis is still not 

well understood. For the current work, hydroponically grown Allium cepa roots were used as 

models to analyze SPAD and SPPD synthesis in a maturing uniseriate exodermis. Roots were 

divided into four maturation zones based on the growth rate and the deposition of suberin 

lamellae in maturing exodermal cells as determined by histochemical analyses. Exodermal 

and epidermal cell layers were separated from the underlying layers in each maturation zone, 

and then soxhlet-extracted with chloroform/methanol to remove the soluble monomer 

fraction of suberin. Then, the tissue was either transesterified with methanolic HCl to 

depolymerize the SPAD or hydrolyzed with alkaline nitrobenzene to depolymerize the SPPD. 

All monomers were quantified and identified by GC-MS. Temporal patterns for the synthesis 

of the SPAD, but not for the SPPD, were revealed upon resolution of the soluble and 

insoluble suberin metabolite profiles. The composition of the soluble fraction was essentially 

unchanged as the exodermis matured. In contrast, the SPAD composition differed during 

maturation, mainly due to significant increases in the deposition of two key SPAD monomers 



 226 

(C18:1 , -dioic acid and C18:1 -OH fatty acid). It is proposed that the exodermal 

maturation zones with corresponding suberin metabolite profiles be used as targets for the 

functional enzymatic characterization of suberin biosynthetic pathways. 

 

5.2 Introduction 

Suberin is a complex biopolymer that, in a suberin lamella, is composed of two spatially 

distinct but covalently-linked domains. 1) The poly(phenolic) domain (SPPD) is proposed to 

be embedded in the primary cell wall, and 2) the poly(aliphatic) domain (SPAD) is located 

between the cell wall and plasma membrane (after Bernards 2002; Mattinen et al. 2009). 

Typical monomeric compositions of the two domains have been determined through analyses 

of depolymerized compounds isolated from mature tissues, primarily from Solanum 

tuberosum tuber periderm (reviewed in Kolattukudy 1980, 1984; Bernards 2002). SPPD is 

rich in hydroxycinnamic acid derivatives with less relative amounts of amides and 

monolignols. Key derivatives released after hydrolysis of the SPPD include p-

hydroxybenzaldehyde, vanillin and syringin (Borg-Olivier and Monties 1993; Negrel et al. 

1996; see also Bernards and Lewis 1998). The location and chemical nature of the SPPD 

establishes it as a structure restrictive to microbial infection (Kolattukudy 1980, 1984; Lulai 

and Corsini 1998). SPAD is thought to be a glycerol-bridged, three dimensional polymer that 

is rich in fatty acid derivatives including -hydroxy fatty acids, , -dicarboxylic acids, mid-

chain oxidized fatty acids, and long-chain fatty acids. The -hydroxy fatty acids and , -

dicarboxylic acids are typically the two most abundant monomer classes that are deposited in 

the SPAD. Other commonly found monomer classes include intercalated alkanes and 
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esterified hydroxycinnamic acids. The location and chemical nature of the SPAD establishes 

it as a structure restrictive to radial water and solute transport (Kolattukudy and Dean 1974; 

Soliday et al. 1979; Vogt et al. 1983; Evert et al. 1985; Zimmermann et al. 2000; Hose et al. 

2001; Schreiber et al. 2005a; see Chapter 3). The amounts of all these monomers and the 

relative composition of the SPAD can vary between different species (Kolattukudy and Dean 

1974; Kolattukudy 1980, 1984; Holloway 1983; Matzke and Riederer 1991; Zeier and 

Schreiber 1998, 1999; Zeier et al. 1999a, b; Graça and Pereira 2000a, b; Bernards 2002, and 

references therein). These typical SPAD and SPPD monomer profiles have been used, in 

conjunction with genetic and functional enzymatic information, to predict how suberin 

lamellae are synthesized.    

Recent developmental time-course investigations into suberin biosynthesis have begun to 

reveal the dynamic nature of these metabolic processes. Previously, Yang and Bernards 

(2006) used developing wound-induced periderm from Solanum tuberosum tuber to measure 

the changes in composition and abundance for monomers that were organic solvent-

extractable (soluble fraction), and monomers polymerized in the SPAD (insoluble fractions). 

Three days after wound periderm formation was started, -OH fatty acids, , -dioic acids, 

and fatty acids (>C20) were detected in the insoluble fraction. The abundance of these 

monomers increased progressively for three more days. On the other hand, in the soluble 

fraction, the -OH fatty acids and , -dioic acids were detected in only trace amounts, but 

>C20 fatty acids and alkanes were present in increased amounts as the periderm developed. 

In another example, Thomas et al. (2007) measured the composition and abundance of the 

soluble fraction and insoluble SPAD and SPPD fractions in the maturing endodermis of 
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Glycine max roots. They measured marked increases of , -dioic acids, -OH fatty acids, 

primary fatty acids, alkanes, vanillin, and syringin as half of the endodermal cells became 

encrusted with suberin lamellae (160 mm from the root tip). The data obtained by Yang and 

Bernards (2006) and Thomas et al. (2007) could not have been determined without analyzing 

tissue specimens at multiple stages of maturation; in other words, developmental time-course 

analyses were necessary.  

Allium cepa root anatomy and physiology have been well studied (Moon et al. 1984; 

Peterson and Perumalla 1984; Perumalla and Peterson 1986; Barnabas and Peterson 1992; 

Melchior and Steudle 1993; Stasovski and Peterson 1993; Barrowclough and Peterson 1994; 

Kamula et al. 1994; Taleisnik et al. 1999; Barrowclough et al. 2000; Ma and Peterson 2000, 

2001a, b; Cholewa and Peterson 2001; Waduwara et al. 2008). In particular, the steps in the 

maturation (meaning concurrent deposition of Casparian bands and suberin lamellae) of the 

exodermis of A. cepa is known. The exodermis is single-layered (uniseriate) and dimorphic 

meaning there are two distinct cell lengths – referred to as short and long cells (von 

Guttenberg 1968; Shishkoff 1986; Perumalla et al. 1990; Kamula et al. 1994). Casparian 

bands are deposited in all exodermal cells regardless of cell length. In 100-mm-long, 

hydroponically grown A. cepa roots, exodermal Casparian bands are located 50-65 mm from 

the root tip (Perumalla and Peterson 1986; Barrowclough and Peterson 1994). Suberin 

lamellae, on the other hand, are first deposited in the long cells concurrent with or soon after 

Casparian band deposition (60-70 mm from the root tip; Perumalla and Peterson 1986; 

Barrowclough and Peterson 1994). The majority of short cells are not encrusted with suberin 

lamellae in early stages of development; those short cells that lack suberin lamellae function 
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as passage cells (Esau 1965; von Guttenberg 1968; Kamula et al. 1994; Peterson and Enstone 

1996). With the deposition of suberin lamellae, plasmodesmata are severed and the cells die 

shortly thereafter (Ma and Peterson 2000). The importance of the exodermis as a 

physiological sheath has often been overlooked, but more than 90% of tested angiosperms 

have roots with an exodermis (Peterson and Perumalla 1990; Perumalla et al. 1990; Meyer et 

al. 2009; see Chapter 2). For the current work, roots of A. cepa were used to study suberin 

monomer deposition in the peripheral cell layers, including the epidermis but mainly the 

Casparian bands and suberin lamellae of a uniseriate exodermis, at multiple stages of 

maturation.  

End point-analyses of the suberin from the mature exodermis of A. cepa roots have been 

conducted previously. Zeier and Schreiber (1998) calculated the total yield of exodermal 

aliphatic suberin (approximately 23 μg mg
-1

) and phenolic monomers (approximately 35 μg 

mg
-1

) at a single mature region in A. cepa roots. These roots were hydroponically grown and 

were at least 300 mm in length at harvest. It is assumed that the measured monomer amounts 

corresponded to an exodermis that had been fully mature for about 14 days. To extend this 

previous work, an objective for the current work was to analyze the suberin monomer 

composition at multiple stages of exodermal maturation in tissue between 0-5 days old.  

In the current work, hydroponically grown A. cepa adventitious roots were used as a 

model to analyze the insoluble and soluble monomer compositions and quantities for both the 

SPAD and SPPD in the maturing peripheral cell layers. These cell layers included the 

maturing uniseriate exodermis and the epidermis. Allium cepa roots were amenable to these 

tests because many roots are generated per bulb in hydroponic conditions, and the roots 
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produce very few or no lateral roots under ideal growing conditions. Furthermore, since A. 

cepa's exodermal maturation is similar between roots grown in vermiculite or hydroponics, 

maturation has been proposed to be under a stringent genetic regulation (Peterson and 

Perumalla 1984; Perumalla and Peterson 1986; Stasovski and Peterson 1993; Barrowclough 

and Peterson 1994; Kamula et al. 1994; Ma and Peterson 2000, 2001a). It was hypothesized 

that as the exodermis matured, the SPAD and SPPD compositions would change and that the 

incorporation of key SPAD and SPPD monomers into the polymer would increase. It was 

expected that the findings of this work would lead to a more complete understanding of the 

dynamics of suberin monomer synthesis during the maturation of a uniseriate exodermis. 

 

5.3 Materials and methods 

5.3.1 Growth conditions and plant material 

Adventitious root growth from Allium cepa (cv. Wolf) bulbs was initiated and maintained in 

aerated hydroponic culture. A 16 L hydroponic tank was partitioned in half and each 

compartment filled with nutrient solution (0.7 mM K2SO4, 0.5 mM Ca(NO3)2, 0.5 mM 

MgSO4, 0.1 mM KCl, 0.1 mM KH2PO4, 0.01 mM Fe(III)-EDTA, 1.0 μM H3BO3, 0.5 μM 

MnSO4, 0.5 μM ZnSO4, and 0.2 μM CuSO4). This solution was continuously aerated using 

bubbling stones connected to an aquarium pump. To reduce light intensity in the root zone, 

the tank walls were covered with opaque plastic wrap and the top was covered with two 

layers of shading cloth. The tank was located in a greenhouse with supplemental lighting (18 

hrs d
-1

). Allium cepa bulbs (approximately 80 mm in diameter) were peeled to remove the 
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outer dried epidermal scales, and then placed on two stacked styrofoam sheets that floated on 

the nutrient solution inside the filled hydroponic tank. Each styrofoam sheet (215 mm long x 

195 mm wide x 10 mm thick) had two holes (65 mm diameter) cut into them allowing only 

the basal part of two bulbs to be submerged in solution (Fig. 5.1). New roots began to emerge 

from the bulb after 5-7 d. 

5.3.2 Root growth rate measurements 

Root growth rates were measured during two separate periods, using six bulbs with 12 roots 

total in the first period and four bulbs with 11 roots total in the second period. The lengths of 

selected roots were measured initially (>20 mm) followed by a second measurement 2-3 d 

later. 

5.3.3 Exodermal maturation 

Exodermal maturation refers to the concurrent deposition of Casparian bands and suberin 

lamellae. To observe this process, roots that were 120 mm or slightly longer were freehand-

cross sectioned with razor blades at several measured distances from the root tip. Sections 

were stained with Sudan Red 7B for aliphatic suberin (Brundrett et al. 1991), or Toluidine 

blue O as a general polychromatic dye (O’Brien et al. 1964). Stained specimens were 

observed with a Zeiss Axiophot epifluorescence microscope using only white light (Carl 

Zeiss Inc., Canada). Photomicrographs were taken with a Q-Imaging digital camera (Retiga 

2000R, Fast 1394, Cooled Mono, 12-bit; Quorum Technologies Inc., Canada). 
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Figure 5.1 Illustration of the hydroponic system used to initiate and maintain Allium cepa 

root growth (not to scale). Nutrient solution was constantly aerated with atmospheric air 

using a bubbling stone (small grey rectangle). The bulb was placed on two stacked styrofoam 

sheets so it could float on the solution's surface. The basal end of the bulb, submerged in 

solution, was the location of root emergence. From each bulb, 12 roots (each 120 mm in 

length) were used for suberin monomer analyses; 6 roots pooled for the poly(aliphatic) 

insoluble fraction analysis (1 replicate) and 6 roots pooled for the poly(phenolic) insoluble 

fraction analysis (1 replicate). A total of 6 bulbs were cultured, hence there were 6 repetitions 

available for both the poly(aliphatic) and poly(phenolic) fractions.  
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5.3.4 Root tissue isolation 

When six or more roots per bulb had grown to lengths of 120 mm or slightly longer, they 

were individually excised from the base of the bulb for isolation of the peripheral cell layers 

(including the epidermis, exodermis, and some unmodified central cortex parenchyma) that 

comprised the outer part of the root (OPR). Each root was divided into four segments based 

on the mean growth rate per day and observations of exodermal maturation. Root segment 

diameters (1.0-1.5 mm) were measured with a digital caliper in order to calculate root surface 

area. Then, from each root segment, the OPR was stripped from the inner tissues using a wire 

stripping tool (AWG = 20-30; Mastercraft Canada). The stripped tissue was flash frozen by 

quickly placing it in a 1.5 mL eppendorf tube that was floating in liquid nitrogen. Frozen 

tissue was stored at -20°C prior to suberin monomer extraction. Root regions that were not 

stripped were freehand-cross sectioned and stained (as described above) to verify the stage of 

exodermal maturation. Stripped segments were stained with TBO or cross sectioned and 

stained to verify that the stripping method removed only the outermost root tissue layers.  

Stripped tissue was pooled with the equivalent segments of six roots that originated from 

the same bulb, hence comprising one replicate for each of the four maturation zones. This 

was repeated for an additional six roots from the same bulb; therefore, a total of two 

replicates for each zone were collected per bulb. Lastly, six bulbs were cultured totaling 12 

replicates: 6 replicates for each of the poly(aliphatic) and poly(phenolic) insoluble fraction 

analyses, as described below (see Fig. 5.1).  
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5.3.5 Suberin monomer extraction and analysis 

Soluble compound extraction. Frozen OPR tissue was quickly placed into 

chloroform/methanol (2:1) filled cellulose extraction thimbles (Whatman Ltd., Maidstone, 

England). Thimbles now containing the OPR tissue were placed into a micro-soxhlet 

extractor, which was used to extract soluble compounds (including unpolymerized suberin 

monomers, waxes, and membrane components). Extraction included two 3.5 h treatments 

with 2:1 CHCl3/CH3OH, followed by an overnight treatment with CHCl3. Following each 

treatment, the solvent containing the soluble extracts was pooled and concentrated by 

evaporating the solvent with a rotary evaporator (Buchi, Switzerland) under vacuum. With 

little volume remaining, the solvent was transferred to a 5 mL glass vial to complete the 

drying with a stream of N2. This dried soluble residue was then hydrolyzed in 2 M 

MeOH/HCl (Supelco/Sigma-Aldrich, USA) at 80°C for 2 h, yielding the methyl esters of free 

carboxylic acids. Vials were removed from the heat, and NaCl-saturated water was added to 

each to stop the reaction. Internal standard (10 μL of 1 mg/mL triacontane) was added and 

the aliphatics extracted with hexane (three times). Each time, after the solvents were allowed 

to separate, the upper hexane phase was pipetted into a clean vial. The pooled hexane phases 

containing the soluble extracts were dried down under a stream of N2 gas. Then the 

remaining free alcohols within the dried residue were trimethylsilylated (TMS) using 50 μL 

each of pyridine and 99% BSTFA + 1% TMS (Supelco/Sigma-Aldrich, USA), at 70°C for 40 

min. 

Insoluble poly(aliphatic) compound extraction. Soxhlet extracted-OPR tissue was 

recovered from the cellulose thimbles as it still contained the insoluble fraction (i.e., 
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polymerized suberin monomers). This tissue was rinsed with acetone, dried at room 

temperature, and stored at 4°C. Prior to further processing, the dried OPR tissue weight was 

recorded (1-2 mg). Then half of the samples, or six replicates per maturation zone, were 

selected for MeOH/HCl transesterification in order to depolymerize the SPAD. Tissue was 

submerged in 0.5 mL of 2 M MeOH/HCl and incubated at 80°C for 2 h to allow hydrolysis 

and transesterification of ester-linked fatty acids (adapted from Browse et al. 1986). Note that 

the subsequent steps for this method were identical to those used for working-up the soluble 

extracts, specifically hexane partitioning and TMS derivatization (see above).  

Gas chromatography-mass spectrometry. The methyl ester/TMS ether derivatives from 

the soluble and insoluble poly(aliphatic) monomer fractions were quantified with a Varian 

CP-3800 Gas Chromatograph equipped with a flame ionization detector (GC-FID). Monomer 

identification was accomplished with a Saturn 2000 ion trap Mass Spectrometer (GC-MS). A 

pair of CP-Sil 5 CB low bleed MS columns (WCOT silica 30 m x 0.25 mm ID) were 

installed in the GC, with one column directed to the FID and the other to the MS. The 

temperature of the injector oven was 250°C,  and the FID oven was set to 300°C. After a 1 

μL sample injection into each column (splitless mode), monomers were eluted using the 

following program: 70°C held for 2 min, ramped up to 200°C at 40°C min
-1 

and held for 2 

min, ramped up to 300°C at 3°C min
-1 

and held for 9.42 min, for a total run time of 50 min. 

High purity helium was used as the carrier gas with a flow rate of 1 mL min
-1

. 

Insoluble poly(phenolic) compound extraction. The remaining six repetitions per 

maturation zone of soxhlet extracted-OPR tissue were chemically treated using nitrobenzene 

oxidation (NBO) for the hydrolysis of the SPPD (adapted from Meyer et al. 1998). SPPD 
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was first saponified by incubating the tissue samples in 0.5 mL of 1 M sodium hydroxide at 

37°C for 24 h. Then the NaOH was pipetted off and the tissue rinsed three times with dH2O, 

followed by a single rinse with 80% methanol, and finished with a 30 min soak in 100% 

acetone. The acetone was pipetted off and the tissue allowed to air-dry overnight. Dried 

tissue was then transferred to 2 mL ampoules and submerged in 500 μL of 2 M NaOH and 30 

μL of nitrobenzene (Sigma-Aldrich, USA). Ampoules were sealed using an Ampulmatic 

sealer (Model 29001, Bioscience Inc., USA), and then placed in a 160°C oven for 3 h. After 

this incubation, ampoules were cooled to room temperature, opened, and 5 μL of 3-ethoxy-4-

hydroxybenzaldehyde (5 mg/mL) dissolved in pyridine was added to each sample as the 

internal standard. Samples were transferred to 4 mL collecting vials using two 1 mL volumes 

of dH2O. The NBO hydrolysate was partitioned twice with 1 mL volumes of 

dicholoromethane; the lower, organic phase was pipetted off and discarded. The remaining 

aqueous phase was acidified to pH 2 using concentrated hydrochloric acid. This phase was 

then partitioned twice with 900 μL volumes of ethyl ether. The ether phases were pipetted off 

and pooled into a clean, collecting vial for each sample. Anhydrous sodium sulphate was 

added, in small amounts, to each sample vial to capture residual water. Then the dried ether 

was transferred into small, clean vials and evaporated off under a stream of nitrogen. The 

dried residue was TMS derivatized using 50 μL each of pyridine and 99% BSTFA + 1% 

TMS (Supelco/Sigma-Aldrich, USA), at 70°C for 40 min. Samples were analysed on the 

same GC-MS equipment as above, but using the following parameters: initial oven 

temperature at 140°C for 1 min, then ramped up to 300°C at 12.5°C min
-1

, for a total time of 

16.4 min. 
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Data analysis. Soluble and insoluble monomers were identified using their retention time, 

retention index, and by matching the measured mass spectra to the spectra of authentic 

standards. These same monomers were then quantified from their peaks on the GC-FID 

chromatograms and with the internal standard and standard calibration curves. Then the 

monomer amounts were calculated per root segment surface area (μmol mm
-2

), in order to 

reveal trends in monomer deposition and accumulation in the maturing exodermis. Data were 

then statistically analyzed within monomer classes and between exodermal maturation zones 

by first using an Analysis of Variance (ANOVA). If significant differences were noted, then 

a Least Significant Difference post-hoc test (LSD) was used, where P  0.05. Also calculated 

was the percent contribution of each monomer class, within each exodermal maturation zone, 

to the total compound fraction.  

 

5.4 Results 

5.4.1 Allium cepa root growth, anatomy, and exodermal maturation 

Each A. cepa adventitious root was segmented into four zones based on the mean growth rate 

per day and the sequence of exodermal maturation. Root growth rate data from the two 

independent measurement periods were pooled to calculate a mean growth rate of 23.89 ± 

4.64 mm d
-1

 (mean ± standard deviation, n = 23, data not shown). Next, zones of exodermal 

maturation were mapped in relation to the distance from the root tip and tissue age (Fig. 5.2). 

Starting near the root tip, the length of the first zone equalled one and a half days of growth 

(0.5-2 d old tissue and 10-48 mm from the tip; Fig. 5.2A). This first zone was called the 
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'Immature zone' since there was no visible suberin lamellae deposition in the exodermis (Fig. 

5.3A). The lengths of the remaining three zones each corresponded to one day of growth. For 

the second zone, the tissue was 2-3 d old and 48-72 mm from the tip (Fig. 5.2B). This zone 

was termed 'Transition zone 1' because it corresponded to the position along the root where 

exodermal suberin lamellae deposition was first detected (Fig. 5.3B). For the third zone, the 

tissue was 3-4 d old and 72-96 mm from the tip (Fig. 5.2C). This zone was called 'Transition 

zone 2' because although suberin lamellae continued to be deposited in more exodermal cells, 

it was not deposited in all cells at the same age or distance from the root tip (Fig. 5.3C). In 

the fourth and final zone, the tissue was 4-5 d old and 96-120 mm from the tip (Fig. 5.2D). 

This oldest zone was termed the 'Mature zone' because the majority of exodermal cells were 

now encrusted with suberin lamellae, with the exception of very few passage cells (Fig. 

5.3D). Diffuse suberin was detected in epidermal cells between Transition zone 1 and the 

Mature zone (Fig. 5.3B-D).  

The root-stripping device (i.e., a wire stripping tool) worked well for separating the outer 

part of the root (OPR) from the underlying tissue layers. When comparing cross sections of 

unstripped and stripped roots, it was clear that the stripping device had removed the 

epidermis, exodermis, and some central cortex layers (Fig. 5.3E,F). Furthermore, when 

viewing the TBO-stained surface of a partially stripped root, the absence of the epidermis 

and exodermis from the stripped region was unmistakable due to the differential staining 

reaction of the exodermis and central cortex (Fig. 5.3G). 
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Figure 5.2 Diagram of the key exodermal maturation zones in Allium cepa adventitious 

roots. The scale on the left refers to distance from the root tip. The scale on the right refers to 

root tissue age from the tip, based on the mean growth rate. Horizontal dashed lines separate 

the key maturation zones. (A) Immature zone = 10-48 mm from the root tip, 0.5-2 d old. (B) 

Transition zone 1 = 48-72 mm from the tip, 2-3 d old. (C) Transition zone 2 = 72-96 mm 

from the tip, 3-4 d old. (D) Mature zone = 96-120 mm from the tip, 4-5 d old. Vertical 

dashed grey lines (in B and C) = exodermal suberin lamellae deposition in progress. Vertical 

solid grey lines (in D) = majority of exodermal cells have suberin lamellae (i.e., very few 

passage cells remained). 
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Figure 5.3 Photomicrographs of Allium cepa adventitious roots in cross section (A-F) and 

surface view (G). (A-D) Sections stained with Sudan red 7B; suberin lamellae appeared as 

red outlines in exodermal cells (arrowheads). (A) Immature zone, 30 mm from the root tip. 

(B) Transition zone 1, 60 mm from the root tip. (C) Transition zone 2, 80 mm from the root 

tip. (D) Mature zone, 110 mm from the root tip. (E-G) Specimens stained with TBO. (E) 

Unstripped root section with all tissue layers, 80 mm from the tip. (F) Stripped root section 

missing the epidermis, exodermis and some central cortex layers, 60 mm from the tip. (G) 

Root segment with an unstripped region (stained blue) and a stripped region (transparent and 

stained purple). The stele underlies the central cortex. Abbreviations: ep = epidermis; iex = 

immature exodermis; ex = exodermis; cc = central cortex; en = endodermis; ph = phloem; xy 

= xylem. Asterisks = exodermal cells without suberin lamellae. Scale bars for A-F = 100 μm; 

scale bar for G = 500 μm.  
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5.4.2 Suberin chemistry 

5.4.2.1 Poly(aliphatic) insoluble fraction 

Total poly(aliphatic) insoluble fraction. The total poly(aliphatic) insoluble fraction includes 

all the monomers that were released from the SPAD following its depolymerization 

(transesterification) with MeOH/HCl. In general, the deposition of insoluble monomers 

gradually increased as the exodermis matured (Fig. 5.4A). From the immature zone to 

transition zone 2, deposition of suberin monomers increased slightly, albeit not significantly. 

However, with complete maturation of the exodermis, monomer deposition increased sharply 

and significantly. This increased deposition was on average nearly 2-fold greater than the rate 

of deposition in transition zone 2 (Fig. 5.4A). The composition of the poly(aliphatic) 

insoluble fraction changed substantially as the exodermis matured (see the following sections 

for more details). The components of the poly(aliphatic) insoluble fraction included C18:1 

, -dioic acid, -OH fatty acids (C16, C18:1, and C22), fatty acids (C16, C18, and C24), 2-

OH fatty acids (C22 and C24), a C22 fatty alcohol, and ferulic acid (Table 5.1, Fig. 5.4B). 

C18:1 , -dioic acid. The C18:1 , -dioic acid was the only dioic acid detected in the 

poly(aliphatic) insoluble fraction. Nonetheless, its deposition in the exodermis was 

intriguing. The amount of C18:1 , -dioic acid was very low in the immature zone, but 

increased significantly into transition zone 2. Then, with the completed maturation of the 

exodermis (mature zone), the deposition of this monomer increased approximately 6-fold 

(Fig. 5.4B). The contribution of this monomer to the total poly(aliphatic) insoluble fraction 
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was only 2-4% from the immature zone to transition zone 1, but it increased radically to 

10.5% in transition zone 2 and then up to 31% in the mature zone (Table 5.1). 

-OH fatty acids. Three different -OH fatty acid monomers were detected (16:0, 18:1 

and 22:0), with deposition of the C18:1 monomer showing the most significant 

developmental changes. The amount of the C18:1 -OH fatty acid was very low in the 

immature zone through to transition zone 1 (Fig. 5.4B); thereafter the amount of this 

monomer deposited in the SPAD began to increase significantly, from transition zone 2 

through to the mature exodermal zone. In fact, the increase in deposition of this monomer 

from transition zone 2 to the mature zone was on average about 6-fold (Fig. 5.4B). As for the 

remaining two -OH fatty acids (C16 and C22), their deposition was fairly uniform across 

maturation zones (Fig. 5.4B). The total amount of -OH fatty acids accounted for an average 

of 12% of the poly(aliphatic) insoluble fraction in the immature zone, but increased to 21% 

in the mature zone (Table 5.1). 

Fatty acids. The fatty acid group was composed of three monomers. Deposition of C16 

and C18 fatty acids was low in the immature zone, but increased in transition zone 1 and then 

was unchanged through to the mature zone. However, the deposition of C24 was uniform 

across exodermal maturation zones but at lower amounts than C16 and C18 (Fig. 5.4B). The 

fatty acid group comprised an average of 32% of the poly(aliphatic) insoluble fraction in the 

immature zone, but decreased to 16.5% in the mature exodermal zone (Table 5.1).  

2-OH fatty acids. There were two 2-OH fatty acid monomers detected, both with similar 

patterns of deposition. Deposition of C22 and C24 2-OH fatty acids in the SPAD increased 

from the immature zone to transition zone 1, but then decreased into transition zone 2, and  
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Figure 5.4 Total and individual insoluble SPAD monomers in the OPR of Allium cepa. (A) 

Total insoluble monomers. (B) Deposition of the different insoluble monomers. Data are 

displayed per unit of root segment surface area (in μmol mm
-2

) for each maturation zone 

(legends inset). Values are means ± standard deviation. Different lowercase letters within the 

total insolubles (A) or within each monomer class (B) indicate a significant difference (P  

0.05). 
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Table 5.1 Percent composition of the OPR of Allium cepa's SPAD at the different exodermal 

maturation zones.  

Compounds Immature zone 

(%) 

Transition zone 1 

(%) 

Transition zone 2 

(%) 

Mature zone  

(%) 

C18:1 , -dioic acid 2 4 10.5 31 

-OH fatty acids 12 9 13.5 21 

Ferulic acid 35 34 24 22 

Fatty acids 32 35 38.5 16.5 

2-OH fatty acids 16 15 11 6.5 

C22 fatty alcohol 3 3 2.5 3 

Sum 100 100 100 100 
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then did not change through to the mature zone (Fig. 5.4B). The 2-OH fatty acids accounted 

for an average of 16% of the poly(aliphatic) insoluble fraction in the immature exodermal 

zone, but this was reduced to 6.5% in the mature zone as other monomers were incorporated 

into the SPAD (Table 5.1). 

C22 fatty alcohol. The C22 fatty alcohol monomer was the only fatty alcohol detected in 

the poly(aliphatic) insoluble fraction. Its deposition increased gradually from the immature 

zone to the mature zone (Fig. 5.4B). This fatty alcohol made up an average of just 3% of the 

poly(aliphatic) insoluble fraction across all exodermal maturation zones (Table 5.1). 

Ferulic acid. Esterified ferulic acid deposition was substantial in the immature zone and 

gradually increased as the exodermis matured (Fig. 5.4B). Ferulic acid was detected in an 

average of 35% of the poly(aliphatic) insoluble fraction in the immature zone, but was 

reduced to 22% in the mature exodermal zone (Table 5.1). 

5.4.2.2 Soluble fraction 

Total soluble fraction. The total soluble fraction includes all the monomers that were not 

cross-linked to either the SPAD or SPPD. In general, the accumulation of soluble monomers 

showed no statistical differences along the developmental axis. However, there was a gradual 

decrease in accumulation from the immature zone to transition zone 2, followed by an 

increase in accumulation at the mature zone (Fig. 5.5). There was very little change in the 

percent composition of the soluble fraction as the exodermis matured (see the following 

sections for more details). The composition of the soluble fraction included fatty acids (C14 - 

C28), alkanes (C21 - C29), fatty alcohols (C14 - C28), -OH fatty acids (C20 - C24), and 2-

OH fatty acids (C22 – C26) (Table 5.2, Figs. 5.6-5.10). 
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Figure 5.5 Total soluble monomer fraction in the OPR of Allium cepa. Data are displayed 

per unit of root segment surface area (in μmol mm
-2

) for each maturation zone (legend inset). 

Values are means ± standard deviation. Different lowercase letters within each graph indicate 

a significant difference (P  0.05). 
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Table 5.2 Percent composition of the soluble monomer fraction in the OPR of Allium cepa at 

the different exodermal maturation zones.  

Compounds Immature zone 

(%) 

Transition zone 1 

(%) 

Transition zone 2 

(%) 

Mature zone  

(%) 

Fatty acids 52 45.5 44.5 47 

Alkanes 37 37.5 36 35 

Fatty alcohols 7 11 12 12 

-OH fatty acids 3 5 5 5 

2-OH fatty acids 1 1 1.5 1 

Sum 100 100 100 100 
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Fatty acids. Soluble fatty acids were the most abundant group of monomers, comprising 

an average of 52% of the total soluble fraction in the immature exodermal zone, and 

declining slightly to 47% in the mature zone (Table 5.2). Fatty acid accumulation was 

uniform across the exodermal maturation zones (Fig. 5.6A). 

The fatty acid group was composed of 13 different monomers, with the most abundant 

being the C16 and C18. Accumulation of C16 and C18 resembled the corresponding trends 

for the total fatty acid group. Briefly, for both C16 and C18 fatty acids, their accumulation 

was statistically uniform as the exodermis matured (Fig. 5.6B). Similarly, for the remaining, 

less abundant fatty acids, their accumulation was uniform across maturation zones. However, 

the C18:2 had a low accumulation in the immature zone followed by a sharply increased 

accumulation in transition zone 1 that then leveled off in the subsequent two maturation 

zones (Fig. 5.6B).  

Alkanes. Alkanes were relatively abundant, comprising an average of 36% of the soluble 

fraction across exodermal maturation zones (Table 5.2). Alkane accumulation was uniform in 

each exodermal maturation zone (Fig. 5.7A). 

The alkane group was composed of seven different monomers, with a fairly even 

abundance for each. Accumulation patterns were similar for all alkane monomers, as well as 

similar to the total alkane group trends (Fig. 5.7B).  

Fatty alcohols. Fatty alcohols accounted for an average of 7% of the soluble fraction in 

the immature zone, increasing slightly to 12% in the mature zone (Table 5.2). Although there 

were no statistical differences in fatty alcohol accumulation between exodermal maturation  
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Figure 5.6 Accumulation of fatty acids in the soluble fraction in the OPR of Allium cepa. (A) 

Total fatty acids. (B) Accumulation of the different fatty acid monomers. Data are displayed 

per unit of root segment surface area (in μmol mm
-2

) for each maturation zone (legends 

inset). Values are means ± standard deviation. Different lowercase letters within the total 

fatty acids (A) or within each monomer chain length (B) indicate a significant difference (P  

0.05). 
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Figure 5.7 Accumulation of alkanes in the soluble fraction in the OPR of Allium cepa. (A) 

Total alkanes. (B) Accumulation of the different alkane monomers. Data are displayed per 

unit of root segment surface area (in μmol mm
-2

) for each maturation zone (legends inset). 

Values are means ± standard deviation. Different lowercase letters within the total alkanes 

(A) or within each monomer chain length (B) indicate a significant difference (P  0.05). 
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 zones, the accumulation tended to increase only from the immature zone to transition zone 1 

(Fig. 5.8A).  

The fatty alcohol group was composed of 12 different monomers, with C22 and C28 as 

the most abundant. The accumulation of C22 and C28 fatty alcohols started in the immature 

zone and increased significantly in transition zone 1 to a level that was maintained as the 

exodermis finished maturing (Fig. 5.8B). Similar accumulation trends, at a reduced scale, 

were observed for C14, C16, C18, C20, C23, C24, and C26. Of the remaining three fatty 

alcohol monomers, C19 and C25 each had a uniform accumulation pattern across the 

maturation zones, whereas the C21 accumulation increased significantly in the mature zone 

(Fig. 5.8B).  

-OH fatty acids. The -OH fatty acids were detected in relatively low abundance and 

accounted for only an average of 5% of the soluble fraction across exodermal maturation 

zones (Table 5.2). Accumulation patterns for this group of monomers resembled that for fatty 

alcohols, but at a much lower scale. The accumulation of -OH fatty acids was statistically 

uniform as the exodermis matured. However, the trend was toward a slight increase in 

accumulation between the immature zone and transition zone 1, followed by a very gradual 

decline through to the mature zone (Fig. 5.9A).  

The -OH fatty acid group was composed of 4 different monomers, with C22 and C24 

being the most abundant. Similar trends in accumulation were observed between the 

individual monomers (Fig. 5.9B).  
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2-OH fatty acids. The 2-OH fatty acids were the least abundant monomers, comprising an 

average of only 1% of the soluble fraction across exodermal maturation zones (Table 5.2). 

Monomer accumulation was uniform across the exodermal maturation zones (Fig. 5.10A).  

The 2-OH fatty acid group was composed of 4 different monomers, with C24 being the 

most abundant. Monomer accumulation was mostly uniform across maturation zones (Fig. 

5.10B).  

5.4.2.3 Poly(phenolic) insoluble fraction 

Total poly(phenolic) insoluble fraction. The total poly(phenolic) insoluble fraction includes 

monomers that were released from the SPPD following its depolymerization with NBO. 

Poly(phenolic) monomer amounts increased by an average of nearly 2-fold from the 

immature zone to transition zone 1, and then remained steady through to the mature 

exodermal zone (Fig. 5.11A). The poly(phenolic) monomers that were detected in the 

insoluble fraction included syringin, vanillic acid, and vanillin (Table 5.3).  

Syringin. Syringin deposition was steady through the first three maturation zones, but 

then increased by an average of 2-fold in the mature zone (Fig. 5.11B). The contribution of 

syringin to the total poly(phenolic) fraction was 40% in the immature zone, lowered to 20 

and 28% in transition zones 1 and 2, but then increased to 47% in the mature zone (Table 

5.3). 

Vanillic acid. Deposition of vanillic acid was statistically uniform across exodermal 

maturation zones. However, it was clear from the mean trends that the deposition increased 

between the immature zone and transition zone 1 by an average of more than 2-fold, 

followed by a very gradual decline to the mature zone (Fig. 5.11C). The contribution of  
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Figure 5.8 Accumulation of fatty alcohols in the soluble fraction in the OPR of Allium cepa. 

(A) Total fatty alcohols. (B) Accumulation of the different fatty alcohol monomers. Data are 

displayed per unit of root segment surface area (in μmol mm
-2

) for each maturation zone 

(legends inset). Values are means ± standard deviation. Different lowercase letters within the 

total fatty alcohols (A) or within each monomer chain length (B) indicate a significant 

difference (P  0.05). 
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Figure 5.9 Accumulation of -OH fatty acids in the soluble fraction in the OPR of Allium 

cepa. (A) Total -OH fatty acids. (B) Accumulation of the different -OH fatty acid 

monomers. Data are displayed per unit of root segment surface area (in μmol mm
-2

) for each 

maturation zone (legends inset). Values are means ± standard deviation. Different lowercase 

letters within the total -OH fatty acids (A) or within each monomer chain length (B) 

indicate a significant difference (P  0.05).
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Figure 5.10 Accumulation of 2-OH fatty acids in the soluble fraction in the OPR of Allium 

cepa. (A) Total 2-OH fatty acids. (B) Accumulation of the different 2-OH fatty acid 

monomers. Data are displayed per unit of root segment surface area (in μmol mm
-2

) for each 

maturation zone (legends inset). Values are means ± standard deviation. Different lowercase 

letters within the total 2-OH fatty acids (A) or within each monomer chain length (B) 

indicate a significant difference (P  0.05).
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Figure 5.11 Total and individual insoluble SPPD monomer deposition in the OPR of Allium 

cepa. (A) Total SPPD fraction. (B) Syringin deposition. (C) Vanillic acid deposition. Data 

are displayed per unit of root segment surface area (in μmol mm
-2

) for each maturation zone 

(legends inset). Values are means ± standard deviation. Different lowercase letters within 

each graph indicate a significant difference (P  0.05). 
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Table 5.3 Percent composition in the OPR of Allium cepa's SPPD at the different exodermal 

maturation zones.  

Compounds Immature zone 

(%) 

Transition zone 1 

(%) 

Transition zone 2 

(%) 

Mature zone  

(%) 

Syringin 40 20 28 47 

Vanillic acid 60 80 72 53 

Vanillin trace trace trace trace 

Sum 100 100 100 100 
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vanillic acid to the total poly(phenolic) fraction increased from 60 to 80% between the 

immature zone and transition zone 1. But, as the amounts of syringin started to increase, 

vanillic acid contribution fell to 72% in transition zone 2, and then 53% in the mature zone 

(Table 5.3).  

Vanillin. Detection of vanillin was expected because it is a common product of the SPPD 

after NBO degradation. However, in the gas chromatograms, vanillin overlapped with other 

contaminating compounds, so its abundance and deposition could not be quantified. Hence, 

vanillin is reported as being detected in trace amounts (Table 5.3). 

 

5.5 Discussion 

Using Allium cepa roots as a model for suberin biosynthesis in the uniseriate, dimorphic 

exodermis was favourable for several reasons. Importantly, the sequence of exodermal 

maturation was well known from previous work, and these roots generated very few or no 

lateral roots that could potentially alter the chemical analyses (Peterson and Perumalla 1984; 

Perumalla and Peterson 1986; Stasovski and Peterson 1993; Barrowclough and Peterson 

1994; Kamula et al. 1994; Ma and Peterson 2000, 2001a). Furthermore, according to 

histochemical studies, exodermal maturation is consistent and may be controlled by a tight 

developmental program, regardless of the growth conditions thus far tested (Perumalla and 

Peterson 1986; Barrowclough and Peterson 1994). In the current work, A. cepa root growth 

in hydroponics and the exodermal maturation sequence occurred as expected based on the 

earlier work (cited above).  
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Suberin-associated compounds were isolated from the outer part of A. cepa roots (OPR). 

In other words, the measured suberin amounts included monomers deposited in exodermal 

Casparian bands and suberin lamellae. With the concurrent development of these two 

structures in exodermal cells, it is not possible to separate them for chemical analysis. 

However, such separation is possible with the endodermis, as demonstrated for Clivia 

miniata, Monstera deliciosa, and G. max (Schreiber et al. 1994; Schreiber 1996; Zeier and 

Schrieber 1997, 1998; Thomas et al. 2007; see section 6.10, Chapter 6 for more details). 

Furthermore, most suberin analyses of the exodermis also include diffuse suberin from 

epidermal cells because separation of the exodermis from the epidermis is very difficult, even 

after enzymatic digestion (Zeier et al. 1999a; reviewed in Ma and Peterson 2003). Diffuse or 

non-lamellar suberin was first described by Peterson et al. (1978), and has been detected in 

the epidermis of many species including A. cepa and G. max (Peterson et al. 1978; Wilson 

and Peterson 1983; Brundrett et al. 1988; Thomas et al. 2007; Ranathunge et al. 2008). In 

general, deposition of diffuse suberin occurs close to the root tip; the phenolic component 

(detected by ultra-violet autofluorescence) is deposited about 10-15 mm from the tip, and the 

aliphatic component (detected with Fluorol yellow 088 staining) is deposited 20 mm from the 

tip (Peterson et al. 1978; Thomas et al. 2007). The function of diffuse suberin is not to 

regulate water transport (Peterson et al. 1993; Steudle and Peterson 1998), but instead to 

potentially act as a first line of partial resistance to pathogen infection, especially in the 

absence of an exodermis (see Thomas et al. 2007; Ranathunge et al. 2008). Interestingly, the 

amount of diffuse suberin deposited in the epidermis is very low. For example, in G. max 

roots, the amounts of poly(aliphatic) and poly(phenolic) suberin monomers in a relatively 
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well-developed epidermis (90-160 mm from the tip) were about 2-fold lower than the 

monomer amounts in only endodermal Casparian bands (0-70 mm from the tip). Then, the 

amount of epidermal diffuse suberin became about 3.5-fold lower following the deposition of 

suberin lamellae in only half of the endodermal cells (90-160 mm from the tip) (Thomas et 

al. 2007). Presumably, the density of suberin monomers is much greater when deposited in 

cell wall-modifying structures compared with diffuse accumulation. Therefore, in the current 

work, it was assumed that the measured amounts of deposited suberin monomers in the OPR 

of A. cepa roots were mainly the result of deposition in the Casparian bands and suberin 

lamellae of the maturing exodermis. 

Using developmental time-course analyses to study suberin biosynthesis are necessary for 

detecting marked changes, or lack thereof, in the abundances of key suberin monomers as 

tissues mature. By employing a time course-based study, important changes to the 

composition of A. cepa's exodermal SPAD were measured (as discussed in the next section). 

Also, Yang and Bernards (2006) were able to pin-point the times when SPAD monomers 

were deposited in newly-developing S. tuberosum tuber periderm (see Introduction). 

Similarly, Krishnamurthy et al. (2009) measured increased amounts of SPAD compounds as 

the exodermis matured in hydroponically grown Oryza sativa roots. This increase was 

mostly caused by the increase in fatty acid and -OH fatty acid amounts; there was little to 

no change in , -dioic acid amounts. In contrast, Zeier et al. (1999b) measured very little 

change in the SPAD composition of Zea mays' maturing exodermis. Specifically, they 

detected slight increases (of approximately 10%) in -OH fatty acid amounts and 

corresponding decreases in fatty acid amounts as the exodermis matured. However, 
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according to Zeier et al. (1999b), the basal regions of their hydroponically grown Z. mays 

roots were “located above the surface of the nutrient solution and therefore exposed to an 

appreciably lower water potential than the submerged parts”. It is known that a humid air gap 

growth condition accelerates exodermal suberization in Z. mays (Enstone and Peterson 1998) 

and I. germanica (Meyer et al. 2009; see Chapters 2-4), hence maturation becomes less 

patchy or more uniform along the length of the root. This may partially explain why there 

was little change to the SPAD composition in the maturing exodermis of Z. mays. 

The suberin poly(aliphatic) domain (SPAD) composition changed significantly as the 

exodermis of A. cepa matured. These changes were mainly due to increases in the amounts of 

both the C18:1 , -dioic acid and C18:1 -OH fatty acid, which are characteristic SPAD 

monomers in the most mature tissue (see Table 5.1). The deposition of these two monomers 

increased by an average of 6-fold when the exodermis was completing its maturation (i.e., in 

tissue regions at least 4 d old or 96 mm from the root tip) (see Fig. 5.4). Such changes would 

have been impossible to detect using only histochemical tests or chemical analyses on only 

fully mature tissues. In addition, fatty acids were detected in the SPAD in relatively abundant 

amounts in zones where the exodermis was still immature and had just started maturing. 

Then, fatty acid abundance declined or remained steady as -OH fatty acid and , -dioic 

acid abundances increased (see Fig. 5.4). It is likely that these fatty acids acted as the 

biosynthetic precursors for the production of -OH fatty acids and , -dioic acids. 

Furthermore, it is possible that an up-regulation in the synthesis and/or activity of 

cytochrome P450 monooxygenases, -hydroxyacid dehydrogenases, and -oxoacid 

dehydrogenases occurred when the exodermis was completing its maturation (see section 
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1.4.2, Chapter 1 for more details). These enzymatic factors could have been the driving force 

behind the significant increases in the synthesis of C18:1 -OH fatty acids and C18:1 , -

dioic acids. The functional characterization of such enzymes is still required to assess the 

legitimacy of the previous statement, but some candidates are starting to be revealed (see 

Höfer et al. 2008; Compagnon et al. 2009; Serra et al. 2009b; see section 6.12, Chapter 6 for 

more details). It is recommended that the exodermal maturation zones, with corresponding 

suberin metabolite profiles, described here for A. cepa roots, may be used as targets for future 

work on the functional enzymatic characterization of suberin biosynthetic pathways in the 

exodermis. 

Intriguingly, C18:1 , -dioic acids and C18:1 -OH fatty acids were absent from the 

soluble fraction. Thomas et al. (2007) also did not detect these monomers in the soluble 

fraction from G. max endodermis, while Yang and Bernards (2006) detected only trace 

amounts of these monomers in S. tuberosum periderm. All of the above results, including the 

results discussed in the previous section, support the possibility that C18:1 fatty acids are 

first transported across the plasma membrane, which is hypothesized to occur via vesicle 

exocytosis or through an ATP-binding cassette transporter (see Franke and Schreiber 2007), 

and then polymerized into the SPAD. It is following polymerization when the fatty acids may 

be hydroxylated into -OH fatty acids and subsequently oxidized into , -dioic acids (Yang 

and Bernards 2006). This hypothesis would require that specific fatty acid -hydroxylases be 

associated with the plasma membrane instead of the endoplasmic reticulum. It is also 

noteworthy that -hydroxyacid dehydrogenase and -oxoacid dehydrogenase (required for 

-OH fatty acids to be oxidized to , -dioic acids; see Fig. 1.14, Chapter 1) were previously 
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detected in the soluble enzyme fractions from the wound-induced periderm of S. tuberosum 

tubers (Agrawal and Kolattukudy 1977). However, fatty acid -hydroxylases are known 

traditionally to be endoplasmic reticulum-associated (see Kolattukudy 1980, 1984; Franke 

and Schreiber 2007), and in the current work, there were examples of -OH and 2-OH fatty 

acids being present in both the soluble and insoluble fractions (see below). Therefore, an 

alternative hypothesis is that the -hydroxylases associated with the endoplasmic reticulum 

are in close proximity to the plasma membrane, allowing efficient transport of fatty acid 

derivatives into the cell wall. More functional enzymatic evidence is required in order to 

judge these hypotheses. 

The relative composition of the most abundant insoluble monomer classes in the SPAD 

varies between species and tissue types, but such variation is common (Holloway 1983; 

Matzke and Riederer 1991; Zeier and Schreiber 1998, 1999; Zeier et al. 1999a, b). In the 

present work, the main composition of the SPAD in the mature exodermis of A. cepa 

includes , -dioic acids (31%), -OH fatty acids (21%), and fatty acids (16.5%) (see Table 

5.1). For the multiseriate exodermis of I. germanica, the SPAD composition included mainly 

, -dioic acids (53%), -OH fatty acids (19%), and fatty acids (17%) (see Table 4.1, 

Chapter 4). Similar to I. germanica, the SPAD composition of tuber periderm from S. 

tuberosum included mainly , -dioic acids (54%) and -OH fatty acids (25%) (not including 

glycerol or unidentified compounds; Graça and Pereira 2000b; Schreiber et al. 2005a). In 

contrast, the SPAD composition measured in the mature endodermis of G. max included -

OH fatty acids (51-62%), fatty acids (31-46%), and , -dioic acids (3-6%) (Thomas et al. 

2007). Nevertheless, in most species so far tested, , -dioic acids and -OH fatty acids are 
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usually present in the SPAD, with the most abundant monomer often being the C18:1 for 

both classes (Holloway 1983; Matzke and Riederer 1991). 

The soluble monomer fraction of the exodermal suberin of A. cepa had a chemical 

composition that changed very little as the exodermis matured. The main compound classes 

in the soluble monomer fraction of the mature exodermis included fatty acids (47%) and 

alkanes (36%) (see Table 5.2). In contrast, the composition of I. germanica's exodermal 

soluble fraction differed as the multiseriate exodermis matured (see Table 4.2, Chapter 4). 

Nonetheless, the most abundant monomer classes that were detected were fatty acids and 

alkanes. 

Soluble fatty acid accumulation was uniform across exodermal maturation zones in A. 

cepa. This trend was especially evident for C16 and C18:0, which were the two most 

abundant fatty acids (see Fig. 5.6). The accumulation trends for short-chained fatty acids 

(especially C16 and C18) were as expected based on the assumption that they are derived 

from both membrane phospholipids as well a being biosynthetic precursors for SPAD 

monomers and waxes (including long chain fatty acids, alkanes and fatty alcohols) (Galliard 

1973; Yang and Bernards 2006). 

The remaining soluble fraction was composed of alkanes, fatty alcohols, and lower 

amounts of long chain -OH fatty acids and 2-OH fatty acids. Alkanes accumulated 

uniformly from immature zones (i.e., before the start of SPAD polymerization) into the 

mature exodermal zone, but were detected in only in the soluble fraction; this is consistent 

with their being part of the suberin-associated wax component (see Fig. 5.7; Soliday et al. 

1979; Schreiber et al. 2005a; Yang and Bernards 2006). As a part of the waxes, alkanes may 
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function with the SPAD to enhance water retention synergistically (Soliday et al. 1979; Vogt 

et al. 1983; Schreiber et al. 2005a; see Chapters 3-4). For the fatty alcohols, soluble -OH 

fatty acids, and soluble 2-OH fatty acids, the accumulation trends were similar (see Figs. 5.8-

5.10). In general, the accumulation of these monomers was highest in the first two maturation 

zones, and then less so as the exodermis matured. Some of the monomers within these three 

classes could be a part of the wax component, or were potentially biosynthetic precursors for 

the SPAD. Specifically, the C22 fatty alcohol, C22 -OH fatty acid, and C22 and C24 2-OH 

fatty acids were likely precursors as they were detected in both the soluble and insoluble 

fractions. The presence of these monomers in both suberin fractions indicate that reduction 

and oxidation reactions were catalyzed by endoplasmic reticulum-associated enzymes. 

Following reduction or oxidation, these suberin monomer derivatives would have been 

transported across the plasma membrane and incorporated into the SPAD. 

The suberin poly(phenolic) domain (SPPD) composition changed as the exodermis of A. 

cepa matured. In zones where the exodermis was just starting to mature, deposition of 

vanillic acid increased but syringin levels remained constant. As the exodermis matured, 

syringin deposition increased while vanillic acid decreased. Nonetheless, the amount of 

vanillic acid was always greater than the amount of syringin (see Fig. 5.11). These changes to 

the SPPD composition may be the result of alterations to the rate of enzyme synthesis and/or 

activity involved in monomer synthesis or polymerization. Phenolic monomer synthesis is 

initiated when the shikimate pathway yields phenylalanine. Phenylalanine is the biosynthetic 

precursor for hydroxycinnamic acids that are then hydroxylated and methylated into SPPD 

monomers (Held et al. 1993; Dixon et al. 2001; see Fig. 1.17, Chapter 1). In S. tuberosum, 
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polymerization of these monomers into the SPPD is hypothesized to be driven by a suberin-

associated peroxidase that requires a source of hydrogen peroxide from a plasma membrane-

bound oxidase. It is believed that the monomers may first activate the membrane oxidase 

leading to the production of hydrogen peroxide. The hydrogen peroxide then activates a 

peroxidase in the cell wall, which catalyzes the monomer polymerization (Kolattukudy 1980, 

1984; Bernards et al. 1999; Razem and Bernards 2003; see Bernards et al. 2004). 

To estimate the total SPPD monomer composition, alkaline nitrobenzene oxidation (NBO) 

was used to hydrolyze the robust ether and C–C bonds that cross-link the SPPD (see 

Bernards 2002; Thomas et al. 2007). In using NBO, the structural identity of the SPPD is 

lost, meaning that the released phenolics simply provide clues about the actual SPPD 

compounds. For example, vanillic acid is a proxy for guaiacyl-substituted compounds and 

syringin is a proxy for syringyl-substituted units that were polymerized in the SPPD. 

However, due to the limited amount of syringin and vanillic acid in the exodermis of A. cepa, 

the current data set probably does not represent the whole SPPD. Perhaps the amount of 

exodermal tissue used per sample (1-2 mg) was too low for the detection of other monomers 

that were expected to be released by NBO, such as p-hydroxybenzaldehyde or syringic acid. 

Previously, SPPD deposition in the cell wall was shown to begin prior to the start of 

SPAD deposition, helping to anchor the SPAD in place. This sequence of domain deposition 

was demonstrated using histochemical and chemical analyses of S. tuberosum tuber periderm 

(Lulai and Corsini 1998; Yang and Bernards 2007). In the present work, syringin and vanillic 

acid were detected in early maturation zones prior to the visible start of exodermal SPAD 

formation. The origin of these phenolics in young zones could have been from the walls of 
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the epidermis or immature exodermis. However, due to the limited monomer yields from the 

SPPD, it is not possible to state conclusively whether or not SPPD deposition started before 

SPAD deposition. 

In conclusion, by analyzing the suberin monomer composition and abundance during the 

maturation of the uniseriate exodermis of A. cepa, it was possible to determine the 

approximate locations where key biosynthetic steps occurred, especially for the SPAD 

fraction. The SPAD monomer composition changed as the exodermis matured. Interestingly, 

the marked increases in the deposition of C18:1 , -dioic acid and C18:1 -OH fatty acid 

(two key SPAD monomers) were targeted to the later stages of exodermal maturation. Fatty 

acid deposition in the SPAD increased during early exodermal maturation, but decreased or 

remained steady in the later stages. One interesting observation, that C18:1 , -dioic acids 

and C18:1 -OH fatty acids were detected in only the insoluble fraction, supports the idea 

that C18:1 fatty acids are polymerized into the SPAD prior to their -hydroxylation and 

oxidation into -OH fatty acids and , -dioic acids, respectively. On the other hand, -

hydroxylases are known to be endoplasmic reticulum-associated and may be located very 

close to the plasma membrane, allowing efficient and rapid transport of C18:1 , -dioic 

acids and -OH fatty acids into the cell wall. The composition of the soluble monomer 

fraction did not change significantly as the exodermis matured. This soluble fraction was 

composed of suberin-associated alkanes (which may function in enhancing water retention), 

long-chained fatty acids (>C18), fatty alcohols, long chain (C22, C24) -OH fatty acids and 

2-OH fatty acids (as SPAD biosynthetic precursors), and short-chained fatty acids (C14 - 

C18), some of which were probably derived from membrane phospholipids. The SPPD 
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monomer composition changed as the exodermis matured. However, due to the low yield of 

monomers, this data set may not be a reliable indicator of the total SPPD composition. 

Ultimately, the exodermal maturation zones described here, with their corresponding suberin 

metabolite profiles, can be used as targets for future work on the functional characterization 

of enzymes found in suberin biosynthetic pathways. Additional future work could involve 

testing whether or not tolerance to various abiotic stresses, such as a humid air gap, salt 

stress, or osmotic stress, is enhanced by changes in exodermal SPAD composition and 

abundance. 
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Chapter 6 

General discussion 

 

The thesis work has focused on the maturation of Iris germanica roots, particularly the 

multiseriate exodermis (MEX), under differing growth conditions, and how its maturation 

affected radial water and solute permeability. Also, suberin metabolite profiles were 

established for the maturing MEX of I. germanica and the maturing uniseriate exodermis of 

Allium cepa. The uniqueness of the present work is in its multidisciplinary approach, 

combining exodermal development with physiological and suberin biochemical studies. This 

comprehensive research is the first of its kind on a maturing MEX. 

 

6.1 Exodermal development 

Development of an exodermis has been observed in more than 90% of the angiosperm 

species so far examined (Perumalla et al. 1990; Peterson and Perumalla 1990). The majority 

of these species have a uniseriate or single-layered exodermis, including A. cepa, Zea mays, 

and Oryza sativa. Within the uniseriate exodermal layer, typical Casparian bands are 

deposited in only the anticlinal walls while the suberin lamellae are encrusted on the inner 

surface of all the walls. The exodermis in A. cepa adventitious roots is dimorphic meaning 

that it is composed of cells with two distinct lengths. Suberin lamella deposition typically 

occurs in the long exodermal cells first, but is delayed in the short passage cells (von 

Guttenberg 1968; Shishkoff 1986; Perumalla et al. 1990; Kamula et al. 1994). 
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In contrast to uniseriate exodermal development, the development of a multiseriate 

exodermis (MEX) occurs in approximately 18% of tested angiosperms with an exodermis 

(Meyer et al. 2009; see Chapter 2). In the detailed investigation of I. germanica root 

structure, the constitutive development of an unusual Casparian band was observed in the 

both the anticlinal and tangential cell walls of the MEX (Meyer et al. 2009; Chapter 2). This 

atypical structure was unbroken around the root circumference and was termed a “continuous 

circumferential Casparian band” (ccCb). A ccCb has also been observed in the MEX of 

Typha spp. (Seago and Marsh 1989; Seago et al. 1999) and Phragmites australis (Soukup et 

al. 2002, 2007). Furthermore, all of I. germanica's MEX cells possessed suberin lamellae. 

There was no sign of exodermal passage cells even though I. germanica had a characteristic 

'mixed MEX', meaning the outermost layer was dimorphic and all underlying layers were 

uniform (after Kroemer 1903).  

Development of the immature MEX near the root apical meristem determines how the 

cells are oriented relative to each other. This is important because the shape of the exodermal 

wall continuum defines the shape of the ccCb. For example, in the roots of Typha glauca and 

T. angustifolia with tiered root apical meristems, the MEX was formed by successive, orderly 

and centripetal periclinal cell divisions. In transverse section, the wall continuum was H-

shaped and consequently acted as a scaffold for its H-shaped ccCb (Seago and Marsh 1989; 

Seago et al. 1999; Heimsch and Seago 2008). However, not all species with a MEX have 

only an H-shaped ccCb. In particular, because I. germanica had an open root apical 

meristem, its immature MEX cell divisions were ambiguous and caused the shape of the wall 

continuum to be variable. Hence, I. germanica's MEX was only partially arranged radially so 
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that its ccCb appeared both H and Y-shaped in cross section (Meyer et al. 2009; see Chapter 

2). Similarly, P. australis also has a combination of an H and Y-shaped ccCb in its MEX 

(Soukup et al. 2002, 2007) indicative of ambiguous cell divisions in the immature MEX. 

Recent studies of root radial patterning have begun to reveal the mechanisms behind the 

development of a single-layered endodermis in the roots of nearly all plant species. The 

results of such work may be analogous to uniseriate and multiseriate exodermal development 

as discussed below. Interestingly, Cui et al. (2007) have demonstrated the importance of a 

direct interaction between scarecrow (SCR) and short-root (SHR) proteins for the 

development of a uniseriate endodermis in Arabidopsis thaliana roots. SHR was previously 

shown to induce an asymmetric cell division of cortical initials and was necessary for 

endodermal specification (Helariutta et al. 2000). In subsequent work, Cui et al. (2007) 

reported that SCR sequestered SHR in an endodermal cell nucleus, preventing SHR from 

flowing into the central cortex. Furthermore, the SHR-SCR protein complex drives the 

transcription of SCR genes to ensure a steady and large supply of SCR for the interaction 

with and sequestration of SHR (i.e., a positive feedback loop). When SCR production was 

reduced in RNA interference mutants, SHR was not sequestered and supernumerary 

endodermal layers were formed. Therefore, the interaction of these proteins prevented the 

differentiation of additional endodermal layers (Cui et al. 2007). Based on these results, it is 

speculated that similar mechanisms are involved in the development of uniseriate and 

multiseriate exodermal layers. Perhaps an SHR-like protein is generated in the protoderm 

cells (that later form the epidermis), which then interacts with an SCR-like protein in 

immature exodermal cells. Species with roots that have a uniseriate exodermis may have an 
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SCR-SHR developmental mechanism similar to that observed for the endodermis. For roots 

with a MEX, either a lack of SCR-like protein or an excess of SHR-like protein could induce 

additional periclinal cell divisions in underlying ground meristem cells. In roots that lack an 

exodermis, such as A. thaliana and Glycine max, the genes expressing SCR-like and SHR-

like proteins may be absent or repressed. In the future, it would be interesting to elucidate the 

molecular mechanisms that regulate exodermal development.  

 

6.2 Lateral root emergence 

Lateral root emergence from the primary root and the subsequent sealing of the damaged 

exodermis are interesting phenomena. Lateral roots function in maximizing water and 

nutrient uptake from substrates by increasing the surface area of the whole root system. In the 

current work with I. germanica, lateral root emergence was minimal but it still occurred 

(Meyer et al. 2009; see Chapter 2). Lateral root primordia were initiated at the pericycle and 

grew through the central cortex in the wake of a digestive pocket. But upon reaching the 

MEX, the lateral root physically broke though in order to emerge. Wounded exodermal 

regions around the lateral root were sealed with a collar of suberized and lignified cells. (This 

type of wound reaction is typical for monocots; specifically the deposition of aliphatic and 

phenolic compounds into pre-existing walls [Esau 1965; Lipetz 1970].) This collar prevented 

both ferric ions and berberine from permeating into the root (data not shown). The formation 

of a sealing collar around the emerged lateral root and the collar's impermeability to 

apoplastic tracers was similarly noted for A. cepa (Peterson and Moon 1993), Z. mays 

(McCully and Mallett 1993), and P. australis (Soukup et al. 2002). A fascinating trait in the 
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primary roots of some species is the presence of so-called “windows” in the mature 

exodermis. Exodermal windows are essentially groups of cells in mature zones of the root 

that do not contain suberin lamellae and are located where lateral roots will emerge; it is 

unknown whether or not these cells contain Casparian bands. The ubiquitousness of these 

windows in the angiosperms is not known, but they have been observed in the roots of 

species that live at least part of their life cycle in submerged conditions, including P. 

australis and O. sativa (Soukup et al. 2002; Armstrong and Armstrong 2005). The exodermal 

windows in aquatic roots provide low resistance pathways for radial water influx, but are also 

susceptible to radial oxygen loss which is detrimental for survival in submerged, oxygen-

deficient conditions (Armstrong et al. 2000). Such windows were absent from I. germanica 

(Meyer et al. 2009; see Chapter 2), but may not be necessary since this species naturally 

inhabits well-drained, drought-prone soils and produces far fewer lateral roots than P. 

australis and O. sativa. 

 

6.3 Hydraulic conductivity measurements 

Direct measurements of hydraulic water permeability (Lp) in roots is achieved using root 

pressure probes and/or pressure chambers. When testing narrow roots, Lp values are often 

similar between the pressure probe and pressure chamber (Rüdinger et al. 1994; 

Zimmermann and Steudle 1998) because the water storage capacity of the central cortex is 

low (Z. mays has 8-9 central cortex layers and A. cepa has 7-12 layers, pers. obs.). On the 

other hand, in I. germanica roots, Lp values as measured with the pressure probe were 

significantly greater than the values measured with the pressure chamber (see Chapter 3). 
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This was due to the substantial storage capacity of I. germanica's thick central cortex of 12-

18 cell layers. It was this storage capacity that dampened the pressure pulses induced with the 

pressure probe; consequently, the measured Lp values pertained to only the innermost tissues 

including the endodermis. Conversely, the pressure chamber moved water across all root 

tissues under steady-state conditions. Hence, the true contribution of I. germanica's 

exodermis to water permeability was resolved only with the pressure chamber (see below).  

 

6.4 Exodermal suberin lamellae deposition reduces water 

permeability 

According to the composite transport model, all cell layers work in series contributing to the 

resistance to radial water flow (Steudle and Peterson 1998). Most of the resistance is 

typically caused by the suberin lamellae in mature exodermal and endodermal cell layers 

(Zimmermann et al. 2000; Hose et al. 2001; Enstone et al. 2003). In the current work, the 

high hydraulic resistance of I. germanica's MEX was measured by conducting experiments 

with the pressure chamber (see Chapter 3). As the MEX matured, its permeability to water 

decreased by more than 2-fold. In terms of the composite transport model, the contribution of 

the MEX and endodermis to hydraulic resistance were 75% and 25%, respectively. 

Radial water permeability across roots typically decreases following the deposition of 

exodermal suberin lamellae. For example, as the MEX of I. germanica matured, the radial 

water permeability fell from 0.9 x 10
-7

 to 0.4 x 10
-7

 m s
-1

 MPa
-1

, emphasizing the importance 

of the MEX as a highly hydraulically resistant tissue (see Chapter 3). Similar reductions to 

water permeability were noted for the exodermis of Z. mays (Clarkson et al. 1987; 
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Zimmermann and Steudle 1998), Agave deserti (North and Nobel 1991), and Sorghum 

bicolor (Cruz et al. 1992). Furthermore, as the exodermis of hydroponically grown A. cepa 

roots matured, their radial water permeability decreased from 2.8 x 10
-7

 to 0.7 x 10
-7

 m s
-1

 

MPa
-1 

(Melchior and Steudle 1993). (These water permeability values are greater than those 

measured for I. germanica.) A dimorphic uniseriate exodermis, like A. cepa's, has long cells 

with suberin lamellae that may function in water retention, and short passage cells that 

function in water absorption (von Guttenberg 1968; Kamula et al. 1994). In contrast, even 

though I. germanica's outermost exodermal layer is dimorphic, it lacks passage cells and is 

better suited for water retention rather than water absorption.  

The development of multiple files of exodermal or phellem cell layers does not 

necessarily enhance the water retention properties of the whole exodermis or periderm, 

respectively. This counter-intuitive statement is supported by experimental data with 

Solanum tuberosum and A. deserti (Vogt et al. 1983; North and Nobel 1995; Schreiber et al. 

2005a; see Chapter 4 for more details). Instead, suberin-associated wax accumulation is 

known to have a marked influence on water impermeability as measured in S. tuberosum 

tuber periderm (Soliday et al. 1979; Vogt et al. 1983; Schreiber et al. 2005a). Intriguingly, in 

the current work, alkane waxes accumulated in abundance in I. germanica's outermost 

exodermal layer when it was exposed to a humid air gap. This increase in alkane 

accumulation, in unison with the increased deposition of key suberin aliphatic monomers, 

probably functioned synergistically in I. germanica's MEX to restrict radial water and solute 

flow (see Chapters 3 and 4). 
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6.5 The role of aquaporins 

Aquaporin abundance and activity are also important for regulating radial water permeability 

in roots. Aquaporins are water channels, located in the plasma membrane and tonoplast, that 

facilitate radial water flow through the root via the transcellular pathway (Maurel et al. 

2008). These channels are known to close in reaction to abiotic stress, consequently reducing 

radial water flow. Such reactions have been measured in Chara corallina internodes (osmotic 

stress) and A. thaliana roots (salt stress) (Ye et al. 2004; Boursiac et al. 2005). In fact, 

hyperosmolarity may be more important than ion toxicity for causing aquaporins to close in 

the early stages of a response to salinity (see Boursiac et al. 2005). Although aquaporin 

activity was not directly measured in I. germanica, it would probably have been affected by 

the variable growth conditions and by the NaCl osmotic permeability tests (see Chapter 3). 

 

6.6 Cell viability and the symplastic pathway with respect to ion 

transport 

Root cell viability is supported by an intact symplast between neighbouring cells, connected 

by plasmodesmata. In A. cepa's dimorphic exodermis, suberin lamellae deposition in the long 

cells severs their plasmodesmata (Ma and Peterson 2000). (Suberin lamella deposition is 

delayed in the short exodermal cells so their plasmodesmata remain intact.) The severing of 

plasmodesmata interrupts the symplastic path, and those exodermal cells soon die. However, 

suberin lamellae do not always sever the plasmodesmata and can be deposited around these 

channels, as is the case for Z. mays' uniform exodermis (Clarkson et al. 1987; Wang et al. 

1995) and in general for the endodermis of all species examined to date (Ma and Peterson 
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2000, and references therein). Although I. germanica's outermost exodermal layer is 

dimorphic, deposition of suberin lamellae was not delayed in the short cells (i.e., there were 

no exodermal passage cells). Nonetheless, the presence of living epidermal cells and the 

continued development of all the MEX cells, indicates the presence of plasmodesmata 

linking the epidermis to the central cortex (see below). 

Cell viability in root tissues must be considered when interpreting physiological data 

because it can have significant effects on radial ion transport. In exodermal roots, an ion 

would initially enter the apoplast at the outer tangential wall of a living epidermal cell (see 

Fig. 1.5, Chapter 1). If the ion is then paired with an appropriate transmembrane transporter 

in the plasma membrane of this cell, the ion is shunted into the symplast compartment 

through which it flows radially into the root, moving through the cytoplasms of neighbouring 

cells connected by plasmodesmata. However, in the absence of an appropriate transporter, 

the ion will be prevented from crossing the plasma membrane and thus it is confined to the 

apoplast. The inward movement of such an ion would be blocked by the exodermal 

Casparian bands (see Fig. 1.5, Chapter 1). But, if the epidermal cells die, their plasma 

membranes deteriorate and no longer mediate ion transport into the symplast. In roots with a 

dimorphic exodermis (A. cepa) or with patchy exodermal development (Z. mays), the living 

exodermal cells that lack suberin lamellae have an accessible plasma membrane along the 

outer tangential walls for ion transport into the symplast (Kamula et al. 1994). These 

unsuberized exodermal cells are important for ion transport because epidermal death is 

common in A. cepa and Z. mays roots (Barrowclough and Peterson 1994; Enstone and 

Peterson 1998). On the other hand, in the roots of I. germanica, the epidermal cells must be 
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alive for symplastic ion flow to occur because all the MEX cells contain a ccCb and suberin 

lamellae. (The ccCb blocks apoplastic ion flow, and the poly(aliphatic) domain of suberin 

lamellae restricts access to the exodermal plasma membrane [see Fig. 3.1, Chapter 3].) 

Perhaps this is why in I. germanica approximately half of the epidermal cells retained their 

viability after a 14 day exposure to a humid air gap, whereas epidermal cells of A. cepa and 

Z. mays died within two days under similar conditions (Barrowclough and Peterson 1994; 

Enstone and Peterson 1998). It is currently unknown if the robustness of the epidermal cells 

of I. germanica represents a special case or if it is a common feature among species with a 

MEX. In summary, radial ion flow through roots is regulated by a combination of four main 

factors: 1) the presence or absence of appropriate transmembrane transporters, 2) the 

impermeability of the plasma membrane itself to ions, 3) the impermeability of the Casparian 

band to ions, and 4) the presence of suberin lamellae controlling access to the symplast by 

preventing ions from contacting the plasma membrane. 

 

6.7 How do roots tolerate salt stress? 

Understanding the role of roots in salt exclusion is essential for determining a species' 

tolerance to salt stress. This is important because high NaCl concentrations (100-200 mM) in 

a growth substrate can be toxic for many plants, including some staple agricultural cereals 

such as O. sativa (rice), Triticum turgidum ssp durum (durum wheat), T. aestivum (bread 

wheat), and Hordeum vulgare (barley) (see Munns and Tester 2008). Some of the more 

recent work on salt tolerance has focused on Na
+
 transport across the plasma membrane and 

the tonoplast. Briefly, Na
+
 can cross the plasma membrane passively through non-selective 
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cation channels, entering the cytoplasm. In response, the cell can use Na
+
/H

+
 antiporters to 

pump the Na
+
 either back into the apoplast or into the vacuole. While sequestered in the 

vacuole, the Na
+
 may, in fact, return to the cytoplasm passively through non-selective cation 

channels, but it is then pumped back into the vacuole. Vacuolar sequestration of Na
+
 is 

known to improve salt tolerance by reducing the concentration of Na
+
 in the cytoplasm 

(reviewed in Munns and Tester 2008). 

The current work shows that root tolerance to salt stress could also be facilitated by the 

presence of exodermal Casparian bands and suberin lamellae. For example, in I. germanica 

roots, the blockage of Na
+
 flow across the MEX was achieved through a combination of three 

factors. First, it is hypothesized that in living epidermal cells, Na
+
 was either unable to 

traverse the plasma membrane or was sequestered in the vacuole. Secondly, the infiltration of 

the anticlinal and tangential cell walls with the ccCb prevented apoplastic Na
+
 flow past the 

MEX. Lastly, the deposition of the poly(aliphatic) domain of suberin lamellae (SPAD) 

between the wall and plasma membrane of all MEX cells prevented Na
+
 from contacting the 

exodermal plasma membrane (see Fig. 3.1, Chapter 3). Based on these three factors and the 

quantitative results, it is concluded that the MEX of I. germanica is highly restrictive to Na
+
 

flow. 

The abundance of SPAD monomers in roots typically increases after exposure to saline-

stressed conditions compared with salt-free substrates. For example, when soil-grown A. 

thaliana roots were exposed to 100 mM of NaCl for 24 days, the abundance of SPAD 

monomers was doubled compared with roots that were not exposed to NaCl (Franke et al. 

2009). In another example, Krishnamurthy et al. (2009) detected significantly greater 
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amounts of -hydroxy fatty acids in the exodermis of a salt-tolerant cultivar of O. sativa 

when exposed to salt stress (50-100 mM NaCl) for 7 days, compared with non-stressed 

plants. Lastly, Schreiber et al. (2005c), using Ricinus communis roots, measured increased 

SPAD deposition in the exodermis of NaCl-stressed roots (100 mM, 30 days) compared with 

non-stressed counterparts. In all the above examples, SPAD composition and chain length 

distribution did not differ between control and NaCl-exposed roots. The increased density of 

monomers in the Casparian bands and suberin lamellae could enhance the restriction of Na
+
 

flow by clogging more of the intermicrofibrillar spaces, by blocking access to plasma 

membranes, or possibly severing plasmodesmata. This enhanced restriction to Na
+
 flow 

would be beneficial for roots of Z. mays or O. sativa because the uniseriate exodermis of 

these species are not nearly as resistant to Na
+
 flow as the MEX of I. germanica (Steudle et 

al. 1993; Ranathunge et al. 2003; see Chapter 3). 

It is also noteworthy that when plants are grown in high salinity substrates, root growth 

rates are often reduced. In this situation, if the rate of exodermal maturation remains steady 

or is accelerated, more of the root surface area would have a uniformly mature exodermis, 

hence younger regions close to the tip would be better able to block Na
+
 flow (Wilcox 1962; 

Perumalla and Peterson 1986; Enstone et al. 2003, and references therein). Clearly, exclusion 

of Na
+
 at the peripheral cell layers of the root in exodermal species is important for 

preventing the influx of salt into deeper tissue regions, including the stele; ergo, Casparian 

bands and suberin lamellae should always be observed when evaluating of a species' 

tolerance to salt.  
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6.8 Additional responses of roots to abiotic stress 

Root responses to stress are not limited to the exodermis. Other tissue processes that can be 

involved include accelerated endodermal maturation, dormancy of lateral root primordia, and 

die-back or sloughing off of outer tissue layers such as the epidermis and central cortex (see 

Enstone et al. 2003, and references therein). Also, the reduction in both activity and 

abundance of aquaporins would definitely play a role in lowering root water permeability 

under stress (Maurel et al. 2008). Therefore, reactions of roots to changes in substrate 

conditions are multi-structural and multi-functional, occurring at different temporal and 

spatial scales as required to optimize the survival of the plant in an adverse environment. It 

would be interesting to study in I. germanica the role of abscisic acid and other 

phytohormones in abiotic stress tolerance, as well as how small RNAs are involved in the 

regulation of expression of stress-related genes. Information from these additional factors 

would add to our understanding of the coordinated responses to particular abiotic stresses.  

 

6.9 The two-domain model of suberin lamellae 

A suberin lamella is a complex biopolymer with a poly(aliphatic) domain (SPAD) and a 

poly(phenolic) domain (SPPD) that are spatially distinct but covalently linked (reviewed in 

Bernards 2002; see Fig. 1.10, Chapter 1). This two-domain model was developed following 

the culmination of many independent analyses (see Bernards 2002, and references therein). 

Recently, Mattinen et al. (2009) supported this model using several approaches, but the most 

revealing evidence came from their differential scanning calorimeter (DSC) measurements. 

When samples containing the complete suberin polymer were analyzed with the DSC, two 
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distinct peaks at 45ºC and 59ºC were detected, suggesting that the polymer had two distinct 

domains. Then, when samples that contained isolated SPPD were analyzed, only one distinct 

peak at 59ºC was detected. Hence, the 45ºC peak from the former experiment corresponded 

to the SPAD (Mattinen et al. 2009). Small molecules such as water and glycerol can lower 

the temperature required for a phase transition in the DSC. Since glycerol acts as the primary 

linker between monomers in the SPAD (Graça and Pereira 2000a, b), it makes sense that the 

DSC detected the SPAD at a lower temperature than the SPPD.  

Each suberin lamella domain has a unique chemical composition and location in the cell 

wall, both of which are indicative of the domain's primary function. For instance, the SPAD 

and its associated waxes are hydrophobic and are located between the primary cell wall and 

plasma membrane. These features establish the SPAD as a structure that restricts water and 

solute flow through the transcellular pathway (Kolattukudy and Dean 1974; Soliday et al. 

1979; Vogt et al. 1983; Evert et al. 1985; Zimmermann et al. 2000; Hose et al. 2001; 

Schreiber et al. 2005a; see Fig. 1.5, Chapter 1 or Fig. 3.1, Chapter 3). Conversely, the SPPD 

is composed of phenolic compounds that are embedded in the cell wall, establishing this 

domain as a structure restrictive to apoplastic microbial penetration (Kolattukudy 1980, 

1984; Lulai and Corsini 1998). 

 

6.10 A revised chemical model for the Casparian band 

The chemical structure of the Casparian band is not considered within the chemical model 

for suberin lamellae, which was produced mainly from analyses of suberin in S. tuberosum 

tuber periderm. (To the best of this author's knowledge, the presence of a Casparian band in 
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the periderm has never been tested with berberine-aniline blue staining, so it is not possible 

to state whether or not the periderm lacks a Casparian band.) Nevertheless, in any analysis of 

exodermal or endodermal cells with suberin lamellae, the Casparian band will always be 

included, based on the strict sequence of developmental states (Van Fleet 1961; Esau 1965; 

and Robards et al. 1973; see Chapter 1). However, it is possible to obtain endodermal cells 

with only a Casparian band, which can be utilized to determine its chemical composition. For 

example, Zeier and Schreiber (1997, 1998), inspired by Schreiber et al. (1994) and Schreiber 

(1996), isolated the endodermal Casparian bands in two monocotyledonous species (Clivia 

miniata and Monstera deliciosa) and identified primarily phenolic compounds (5-6% w/w) 

with trace amounts of aliphatics (0.1-1% w/w). Interestingly, after the endodermis was 

exposed to an enzyme mixture of cellulase and pectinase for 14 days, only the Casparian 

band remained. In longitudinal view, the intact mass of endodermal Casparian bands had a 

net-like appearance (Schreiber et al. 1994; Schreiber 1996). Presumably, the only way for the 

Casparian bands of several cells to hold together in the net-like sheet following pectinase 

treatment would be if the Casparian bands of neighbouring cells were cross-linked across the 

pectic acid-rich middle lamellae. An alternative way to isolate at least part of the Casparian 

bands involves sulphuric acid digestion which reportedly destroys phenolics but spares 

aliphatics (Johansen 1940). Perumalla et al. (1990) exposed the uniseriate exodermis of 156 

different angiosperm species to concentrated sulphuric acid. The epidermis and exodermis 

remained attached to each other indicating that at least parts of the walls had been retained 

presumably including the Casparian bands and suberin lamellae of the exodermis and diffuse 
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suberin of the epidermis. For Casparian bands to remain intact following acid digestion, the 

aliphatic region would need to be located at least partially in the middle lamellae. 

Based on all of the above-mentioned work, a revised but tentative model for the Casparian 

band is presented here. It was reported previously that both the phenolic and aliphatic 

components of the Casparian band were embedded in the intermicrofibrillar spaces of 

anticlinal cell walls (Schreiber 1996; see Steudle and Peterson 1998). For the revised 

Casparian band model, it is predicted that only the phenolic component (comprising 5-6% 

w/w) infiltrates the intermicrofibrillar spaces and that the aliphatic component (comprising 

only 0.1-1% w/w) is located at the middle lamella where it is cross-linked to the aliphatic 

component of neighbouring Casparian bands. Furthermore, cell walls that are targeted for 

Casparian band deposition are limited to the anticlinal walls in the endodermis and a 

uniseriate exodermis, but include the anticlinal and some tangential walls in a multiseriate 

exodermis. The precise arrangement of the Casparian band's phenolic and aliphatic 

components described in the revised model requires experimental verification. Further, the 

interactions between the phenolic region of the Casparian bands and the poly(phenolic) 

domain of suberin lamellae are still unknown. 

 

6.11 Time course-based suberin metabolite analyses 

When using analytical targeted analyses, metabolite profiling is conducted in great detail 

because optimized methods are used for monomer extraction, identification and 

quantification (see Hall 2006). But, a targeted analysis alone is not enough to reveal the 

dynamic nature of suberin synthesis. By using time course-based targeted metabolite 
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analyses, monomer composition and abundance can be profiled in tissues at multiple stages 

of maturation. In the current work, time course-based suberin metabolite analyses were used 

successfully to determine whether or not the production of specific monomers changed 

during exodermal maturation and under differing growth conditions (see Chapters 4 and 5). It 

is recommended that the suberin metabolite profiles resolved for the maturing MEX of I. 

germanica and the maturing uniseriate exodermis of A. cepa be used in future studies when 

determining the functional properties of specific enzymes in the suberin biosynthetic 

pathway.  

 

6.12 Suberin biosynthetic enzymes 

Suberin biosynthetic pathways are composed of many hypothesized enzymatic steps 

(reviewed by Kolattukudy 1980, 1984; Bernards 2002; Franke and Schreiber 2007; see Figs. 

1.14, 1.15, Chapter 1). The identity and function of these enzymes are now beginning to be 

characterized. In the current work, after resolving the suberin metabolite profiles for the 

maturing exodermis in I. germanica and A. cepa, it was suggested that in order to increase 

the production of key SPAD monomers that the abundance and/or activity of some 

biosynthetic enzymes would have had to increase. This would have been especially important 

for the increase in production of C18:1 -OH fatty acids and C18:1 , -dioic acids when I. 

germanica's MEX was exposed to the humid air gap, and when A. cepa's exodermis was 

completing its maturation (see Chapters 4 and 5, respectively). The enzyme families of 

particular importance include 1) cytochrome P450 monooxygenases (P450s) for fatty acid -
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hydroxylation and perhaps 2) -ketoacyl-CoA synthase (KCS) for fatty acid elongation. Each 

of these enzyme families function in separate metabolism pools, as described below. 

For the synthesis of key SPAD derivatives, plastid-synthesized C18 fatty acids are 

desaturated, -hydroxylated into C18:1 -OH fatty acid, and then potentially oxidized into 

C18:1 , -dioic acid (Kolattukudy 1980, 1984; Yang and Bernards 2006; see Fig. 1.14, 

Chapter 1 for more details). Fatty acid -hydroxylation is catalyzed by NADPH-dependent 

P450s (Duan and Schuler 2005). Höfer et al. (2008) identified a root-specific P450 

(CYP86A1) in A. thaliana that proved to be necessary for -hydroxylation of fatty acids with 

chain lengths less than C20. Compagnon et al. (2009) identified another P450 (CYP86B1) 

that was required for -hydroxylation of fatty acids between C22 and C24. Lastly, Serra et 

al. (2009b) identified a P450 (CYP86A33) in S. tuberosum tuber periderm that, when down-

regulated, produced 60% less aliphatic suberin compared with the wildtype. In particular, 

C18:1 -OH fatty acid and , -dioic acid amounts were significantly lower in the mutant 

(70% and 90% lower, respectively). These above-mentioned results indicate that specific 

P450s target particular monomer chain lengths.  

The -hydroxylation and oxidation reactions that produce suberin fatty acid derivatives 

are known to occur on the endoplasmic reticulum (see Kolattukudy 1980, 1984; Franke and 

Schreiber 2007; Höfer et al. 2008; Compagnon et al. 2009), but it has been hypothesized 

recently that these reactions may also occur at the plasma membrane. In the current work, 

some -OH and 2-OH fatty acids were present in both the soluble and insoluble suberin 

fractions, demonstrating that the hydroxylation reactions occurred on the endoplasmic 

reticulum. Alternatively, the reactions to produce C18:1 -OH fatty acids and , -dioic acids 
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may occur after the polymerization of C18:1 primary fatty acids into the SPAD. The basis for 

this hypothesis was from the insoluble and soluble suberin monomer profiles for S. 

tuberosum tuber periderm (Yang and Bernards 2006), and for the exodermis of I. germanica 

and A. cepa (see Chapters 4 and 5). For the three tested species, C18:1 -OH fatty acids and 

C18:1 , -dioic acids were detected in abundance in the polymerized, insoluble fraction 

from mature tissue. However, these same two SPAD monomers were absent from the soluble 

fraction in I. germanica and A. cepa, and were detected in only trace amounts in the soluble 

fraction of S. tuberosum. For this hypothesis to be true, the specific -hydroxylases would 

have to be associated with the plasma membrane rather than the endoplasmic reticulum. On 

the other hand, it is possible that endoplasmic reticulum-associated -hydroxylases are in 

close proximity to the plasma membrane, allowing efficient and rapid transport of C18:1 -

OH fatty acids and , -dioic acids into the cell wall. Therefore, these specific fatty acid 

derivatives may have been transported across the plasma membrane rapidly and then 

polymerized quickly into the SPAD. Specific functional enzymatic evidence is required to 

test these hypotheses.  

In a different metabolism pool, SPAD fatty acid derivatives are elongated to C20 - C30, 

and either reduced into primary alcohols, decarboxylated into n-alkanes, or oxidized into -

OH and 2-OH fatty acids (Kolattukudy 1980, 1984; Yang and Bernards 2006; see Fig. 1.15, 

Chapter 1 for more details). Fatty acid elongation occurs through a microsomal malonyl-CoA 

dependent pathway, as demonstrated in the primary roots of Z. mays (Schreiber et al. 2005b). 

The first step in elongation is catalyzed by a KCS. Franke et al. (2009) identified a KCS 

(DAISY) in A. thaliana roots that was necessary for elongation of C20 fatty acid derivatives. 
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Serra et al. (2009a) identified a KCS (StKCS6) in S. tuberosum tuber periderm that was 

necessary for elongation of fatty acids with chain lengths of C28 and greater. Lastly, Lee et 

al. (2009) generated an A. thaliana kcs20 kcs2/daisy-1 double mutant and measured 

significantly lower abundances for only C22 and C24 fatty acid suberin precursors, with a 

concomitant accumulation of C20 compounds. The results listed above suggest that specific 

KCSs target particular fatty acid chain lengths. 

Information about the transport and polymerization of suberin-specific fatty acid 

derivatives is currently hypothetical. Following the synthesis of the derivatives, they may be 

transported in vesicles to the plasma membrane. The derivatives traverse the membrane 

potentially by exocytosis or through an ATP-binding cassette transporter. Lastly, 

polymerization of the derivatives into the SPAD is possibly catalyzed by polyester synthases 

including GPAT5 (Franke and Schreiber 2007; Beisson et al. 2007; Li et al. 2007). 

The functional characterization of suberin biosynthetic enzymes is underway, but there are 

still many enzymes to be investigated. As additional enzymes are characterized, the complete 

biosynthetic pathways will eventually be determined. According to the work mentioned 

above that demonstrates how specific P450s and KCS enzymes target particular monomer 

chain lengths, there will certainly be several members that comprise the suite of enzymes 

involved in suberin synthesis. Although enzyme characterization was not conducted in the 

current work, the resolved suberin metabolite profiles can guide researchers toward certain 

enzyme families to help search for specific members involved in the key reactions of 

exodermal suberin synthesis. In particular, it would be of great interest to characterize the 

specific P450s, -hydroxyacid dehydrogenases, and -oxoacid dehydrogenases involved in 
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the synthesis of C18:1 -OH fatty acids and C18:1 , -dioic acids. Additionally, the 

response of these enzymes to differing abiotic stresses would be valuable to better understand 

stress tolerance. 

 

6.13 Conclusions 

Changes in substrate conditions can have substantial effects on exodermal maturation, in turn 

affecting the radial water and solute permeability across the root. It was found that the 

maturation of I. germanica's MEX, with concurrent deposition of the ccCb and suberin 

lamellae, was delayed if the roots were grown completely submerged in hydroponic culture 

compared with soil-grown roots. However, MEX maturation was accelerated by exposing the 

basal part of the hydroponically grown root to a humid air gap (Meyer et al. 2009; see 

Chapter 2). The acceleration of MEX maturation in air gap-exposed tissue was also detected 

chemically. Specifically, the concomitant increase in 1) the deposition of two key suberin 

poly(aliphatic) domain (SPAD) monomers (C18:1 , -dioic acids and C18:1 -OH fatty 

acids) in the first two exodermal layers, and 2) the accumulation of alkane waxes in the 

outermost exodermal layer were detected (see Chapter 4). Consequently, in these air gap-

exposed root segments, radial water permeability rates were markedly reduced and radial 

NaCl flow was immeasurable (see Chapter 3). Thus, the MEX is responsive to differing 

substrate conditions, and it is a very hydraulically resistant tissue layer. The functional 

properties of I. germanica's MEX are compatible with a previously proposed function for the 

MEX of Carex arenaria roots; specifically that the MEX functions to protect the stele against 

unfavourable situations but concurrently reduces its permeability to water and ions (Robards 
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et al. 1979). The MEX is one of many important evolutionary specializations that some 

species have developed to tolerate both drought-prone and saline habitats. 

Occasionally, changes in substrate conditions do not noticeably affect root tissue 

maturation, as detected histochemically. This was the case for the maturation of A. cepa's 

exodermis, as detected previously (Perumalla and Peterson 1986; Barrowclough and Peterson 

1994; Kamula et al. 1994). The consistent exodermal maturation sequence for A. cepa makes 

it an excellent model for studying suberin biosynthesis in a uniseriate exodermis. In the 

present work, A. cepa's maturing exodermis had progressively increasing amounts of SPAD 

monomers. But, it was only when the exodermis was completing its maturation that the 

incorporation of two key SPAD monomers (C18:1 , -dioic acid and C18:1 -OH fatty 

acid) into the polymer increased significantly (see Chapter 5). It is recommended that the 

suberin metabolite profiles established for the maturing uniseriate exodermis of A. cepa, as 

well as the maturing MEX of I. germanica, be used in future work when determining the 

functional properties of specific suberin biosynthetic enzymes. 
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Appendices 

Appendix A – Supplementary Tables for Chapter 2 

Supplementary Table 2.1 List of the 25 Iris germanica cultivars observed for their root 

anatomy. All cultivars had identical root anatomy. 

Species Cultivar 

Florentina 

Paradise 

Renaissance fair 

Riot of dreams 

Rollercoaster 

Skyblaze 

Strawberry field 

Startler 

St. Louis blues 

Tropical night 

Titan’s glory 

Tigershark 

Thriller 

Theatre 

Temple spire 

Witching 

Winterscape 

Winter adventure 

Wild jasmine 

Westland gold 

Wedding candles 

Warrior King 

Wakeup call 

Wabash 

Iris germanica 

Vivien 
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Supplementary Table 2.2 Monocot species with a uniseriate exodermis and various growth 

substrates. 

Order Family Genus and species Soil type 

Alismatales Alismataceae *Sagittaria sagittifolia L.  Wet 

 Araceae *Amorphophallus konjac 

K. Koch 

Moist but well-drained 

  ^Anthurium andraeanum 

Linden 

Moist but well-drained 

  ^Anthurium scherzerianum 

Schott  

Moist but well-drained 

  ^Arisaema triphyllum (L.) 

Schott  

Moist but well-drained 

  *Arum italicum Mill. Well-drained 

  *Calla palustris L. Wet 

  ^Dieffenbachia amoena 

hort. ex Gentil  

Moist but well-drained 

  ^Dieffenbachia oerstedii 

Schott 

Well-drained 

  ^Dieffenbachia seguine 

(Jacq.) Schott  

Well-drained 

  ^Philodendron 

bipennifolium Schott  

Moist but well-drained 

  ^Philodendron scandens fo 

micans (Klotzsch ex K. 

Koch) Bunting 

Moist but well-drained 

  ^Syngonium podophyllum 

Schott  

Well-drained 

 Butomaceae *Butomus umbellatus L.  Wet 

 Cymodoceaceae *Cymodocea nodosa 

(Ucria) Asch. 

Wet 

 Hydrocharitaceae *Elodea canadensis Michx. Wet 

  *Najas marina L. Wet 

 Juncaginaceae *Triglochin palustris L. Wet 

 Potamogetonaceae *Potamogeton perfoliatus 

L.  

Wet 

 Zosteraceae *Zostera marina L. Wet 

Arecales Arecaceae ^Caryota mitis Lour. Moist but well-drained 

Asparagales Alliaceae ^Allium cernuum Roth Well-drained 

  †Allium cepa L. Moist but well-drained 

  ^Allium christophii Trautv. Moist but well-drained 

  ^Allium moly L. Well-drained 

  ^Allium neapolitanum Moist but well-drained 
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Cirillo 

  ^Allium porrum L.  Moist but well-drained 

  ^Allium schoenoprasum L.  Well-drained 

  ^Allium tricoccum Aiton Moist but well-drained 

 Agavaceae ^Agave americana L.  Dry 

  ^Cordyline indivisa Hook. 

f. 

Moist but well-drained 

 Amaryllidaceae ^Galanthus nivalis L. Moist but well-drained 

  ^Hippeastrum vittatum 

(L'Hér.) Herb.  

Moist but well-drained 

  ^Lycoris radiata (L'Hér.) 

Herb. 

Well-drained 

 Asphodelaceae ^Aloe jucunda G. Reyn.  Dry 

  ^Aloe vera (L.) Burm. f. Dry 

  *Asphodelus fistulosus L. Well-drained 

  ^Haworthia radula Haw. Dry 

  ^Haworthia truncata 

Schönland 

Dry 

 Hemerocallidaceae ^Dianella revoluta R. Br.  Well-drained 

 Hyacinthaceae *Hyacinthus orientalis L. Well-drained 

  *Lachenalia aloides hort. Moist but well-drained 

  ^Ornithogalum arabicum 

L. 

Moist but well-drained 

  ^Ornithogalum 

longibracteatum Jacq. 

Moist but well-drained 

  *Ornithogalum narbonense 

L. 

Well-drained 

 Iridaceae ^Crocus ancyrensis (Herb.) 

Maw 

Moist but well-drained 

  ^Crocus chrysanthus Herb. Well-drained 

  ^Crocus sativus L.  Well-drained 

  *Gladiolus communis L.  Well-drained 

  †Iris hexagona Walt. Wet 

  †Iris pseudacorus L. Wet 

  ^Iris reticulata M.Bieb. Well-drained 

  †Iris sibirica L. Wet 

  †Iris spuria L. Wet 

  †Iris versicolor L.  Wet 

  ‡Iris virginica L. Wet 

  ^Sisyrinchium montanum 

Greene 

Well-drained 

 Orchidaceae ^Epipactis helleborine (L.) 

Crantz  

Well-drained 
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 Ruscaceae ^Beaucarnea recurvata 

Lem. 

Dry 

  ^Maianthemum canadense 

Desf.  

Moist but well-drained 

  ^Maianthemum stellatum 

(L.) Link 

Moist but well-drained 

  ^Sanseviera grandis L. Dry 

  ^Sanseviera trifasciata 

Prain 

? 

 Themidaceae ^Milla bivalvis Baker ? 

Commelinales Commelinaceae ^Commelina erecta L. Moist but well-drained 

  ^Cyanotis somaliensis 

C.B.Clarke 

Well-drained 

  ^Tradescantia fluminensis 

Vell.  

Moist but well-drained 

Dioscoreales Dioscoreaceae *Dioscorea batatas Decne.  Well-drained 

Liliales Colchicaceae ^Uvularia grandiflora Sm. Moist but well-drained 

 Liliaceae ^Erythronium americanum 

Ker Gawl.  

Moist but well-drained 

  ^Fritillaria uva-vulpis 

Cornu ex Gérôme & 

Labroy 

Well-drained 

  *Gagea lutea (L.) Ker 

Gawl. 

Moist but well-drained 

  *Lilium longiflorum 

Thunb. 

Well-drained 

  *Lilium martagon L.  Well-drained 

  *Tricyrtis hirta (Thunb.) 

Hook. 

Moist but well-drained 

  *Tulipa gesneriana L.  Well-drained 

  *Tulipa silvestris L. Well-drained 

 Melanthiaceae ^Trillium erectum L. Moist but well-drained 

  ^Trillium grandiflorum 

(Michx.) Salisb.  

Moist but well-drained 

  ^Trillium luteum (Muhl.) 

Harb.  

Moist but well-drained 

 Smilacaceae *Smilax aspera L.  Moist but well-drained 

  *Smilax rotundifolia L.  Moist but well-drained 

Poales Anarthriaceae *Anarthria laevis R.Br.  Wet 

 Cyperaceae *Carex acutiformis Ehrh. Wet 

  *Carex disticha Huds. Wet 

  ^Cyperus alternifolius L. Wet 

 Poaceae  *Bambusa multiplex 

(Lour.) Schult. & Schult.f.  

Moist but well-drained 
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  *Bambusa vulgaris Schrad. 

ex J.C.Wendl.  

Moist but well-drained 

  *Echinochloa crus-galli 

(L.) P.Beauv. 

Well-drained 

  ^Fargesia nitida (Mitford) 

Keng f. ex T.P. Yi  

Moist but well-drained 

  ‡Glyceria grandis 

S.Watson   

Wet 

  ‡Glyceria maxima (Hartm.) 

Holmb.   

Wet 

  ‡Glyceria striata (Lam.) 

Hitchc.   

Wet 

  *Holcus mollis L. Well-drained 

  *Molinia caerulea (L.) 

Moench 

Wet 

  †Oryza sativa L. Wet 

  *Phyllostachys 

bambusoides Siebold & 

Zucc. 

Moist but well-drained 

  *Phyllostachys edulis 

(Carriere) J.Houz. 

Moist but well-drained 

  *Phyllostachys nigra 

(Lodd. ex Lindl.) Munro 

Moist but well-drained 

  *Pseudosasa japonica 

(Zucc. ex Steud.) Makino 

ex Nakai 

Moist but well-drained 

  *^Saccharum officinarum 

L. 

Varietal differences ? 

  *Secale cereale L. Well-drained 

  *Sorghum bicolor (L.) 

Moench.  

Well-drained 

  *†Zea mays L. Well-drained 

 Restionaceae *Chaetanthus 

leptocarpoides R. Br. 

? 

  *Elegia deusta (Rottb.) 

Kunth 

? 

  *Hypodiscus willdenowia 

(Nees) Mast.  

? 

  *Leptocarpus chilensis 

Mast. 

Wet? 

  *Leptocarpus ciliaris Nees ? 

  *Lepyrodia scariosa R.Br.  Wet? 

  *Lyginia barbata R. Br. ? 

  *Restio complanatus R.Br.  Wet? 
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  *Restio amblycoleus 

F.Muell. 

? 

  *Thamnochortus fruticosus 

P.J. Bergius  

? 

  *Willdenowia humilis Nees 

ex Mast.  

? 

Zingiberales Musaceae ^Musa X paradisiaca L. Moist but well-drained 

 Zingiberaceae ^Alpinia zerumbet (Pers.) 

B.L. Burtt & R.M. Sm. 

Well-drained 

  *Elettaria cardamomum 

(L.) Maton  

Moist but well-drained 

 

*Kroemer (1903); ^Perumalla et al. (1990); ‡Stevens (2003); †pers. obs.  

Taxonomic information referenced from the Angiosperm Phylogeny Group (Stevens 2001 

onwards) and Tropicos.org websites. 

Habitat information referenced from the Kemper Center PlantFinder and Plants for a Future 

websites.  
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Supplmentary Table 2.3 Eudicot species with a uniseriate exodermis and various growth 

substrates.  

Order Family Genus and species Soil type 

Asterales Asteraceae *Anaphalis margaritacea 

(L.) Benth. & Hook.f. 

Well-drained 

  *Anthemis nobilis L. Well-drained 

  *Artemisia absinthium L.  Well-drained 

  *Bellis perennis L. Well-drained 

  *Carlina vulgaris L. Well-drained 

  *Eupatorium cannabinum 

L. 

Wet 

  ^Eurybia macrophylla (L.) 

Cass. 

Well-drained 

  ^Helianthus annuus L.  Well-drained 

  *Lactuca sativa L.  Well-drained 

  *Petasites hybridus (L.) 

P.Gaertn., B.Mey. & 

Scherb. 

Wet 

  *Senecio articulatus (L.f.) 

Sch.Bip. 

Well-drained 

  *Senecio vulgaris L. Well-drained 

  ^Solidago flexicaulis L. Well-drained 

  ^Solidago rugosa Mill. Varietal differences ? 

  ^Symphyotrichum 

cordifolium (L.) G.L. 

Nesom 

Well-drained 

  ^Symphyotrichum 

dumosum (L.) G.L. Nesom 

Moist to wet 

  ^Symphyotrichum ericoides 

(L.) G.L. Nesom 

Well-drained 

  ^Symphyotrichum 

foliaceum (Lindl. ex DC.) 

G.L. Nesom 

Well-drained 

  ^Symphyotrichum 

lanceolatum (Willd.) G.L. 

Nesom 

Moist to wet 

  ^Symphyotrichum 

lateriflorum (L.) A|4. Löve 

& D. Löve 

Well-drained 

  ^Symphyotrichum novae-

angliae (L.) G.L. Nesom 

Moist to wet 

  ^Symphyotrichum Dry 
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oblongifolium (Nutt.) G.L. 

Nesom 

  ^Symphyotrichum patens 

(Aiton) G.L. Nesom 

Dry 

  ^Symphyotrichum pilosum 

(Willd.) G.L. Nesom 

Dry to wet 

  ^Symphyotrichum 

puniceum (L.) A|4. Löve & 

D. Löve 

Wet 

  ^Symphyotrichum 

spathulatum (Lindl.) G.L. 

Nesom 

Moist but well-drained 

  ^Symphyotrichum 

urophyllum (Lindl. ex DC.) 

G.L. Nesom 

Dry 

  *Tanacetum vulgare L.  Well-drained 

  *Taraxacum officinale 

Weber ex Wiggers 

Well-drained 

 Campanulaceae *Lobelia inflata L. Moist but well-drained 

Brassicales Brassicaceae ^Cardamine diphylla 

(Michx.) Alph. Wood 

Moist but well-drained 

  *Cardamine pratensis L. Wet 

Caryophyllales Cactaceae ^Brasilicactus graessneri 

(K. Schum.) Backeb. 

Dry 

  *Cereus napoleonis 

Graham 

Dry 

  *Cereus rostratus Lem.  Dry 

  ^Echinopsis ancistrophora 

Speg.  

Dry 

  ^Nopalxochia 

phyllanthoides (DC.) 

Britton & Rose  

Dry 

  ^Pereskia grandiflora 

Pfeiff.  

Dry 

 Caryophyllaceae ^Arenaria capillaris Poir.  Dry 

 Phytolaccaceae ^Rivina humilis L. Moist but well-drained 

Cornales Cornaceae *Cornus sanguinea L. Moist but well-drained 

Cucurbitales Begoniaceae ^Begonia albopicta W. 

Bull 

Moist but well-drained 

  ^Begonia maculata Raddi Moist but well-drained 

 Curcurbitaceae *Luffa aegyptiaca Mill.  Well-drained 

Dilleniales (or 

'unassigned') 

Dilleniaceae ^Hibbertia cuneiformis 

Labill. 

Moist but well-drained 

Ericales Balsaminaceae ^†Impatiens capensis Wet 
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Meerb.  

  †Impatiens glandulifera 

Royle 

Moist but well-drained 

  †Impatiens pallida Nutt. Wet 

  ^Impatiens walleriana 

Hook. f. 

Moist but well-drained 

 Primulaceae ^Primula japonica A. Gray Moist but well-drained 

 Theaceae *Camellia japonica L. Moist but well-drained 

Fagales Fagaceae *Fagus sylvatica L. Well-drained 

  *Quercus cerris L. Moist but well-drained 

Gentianales Apocynaceae ^Carissa macrocarpa 

(Eckl.) A. DC. 

Moist but well-drained 

  ^Catharanthus roseus (L.) 

G. Don 

Well-drained 

  ^Hoya australis R. Br. ex J. 

Traill 

?? 

  ^Hoya bella Hook.  ?? 

  ^Hoya carnosa R. Br. Well-drained 

  ^Hoya cinnamomifolia 

Hook. 

?? 

  ^Hoya globulosa Hook. f.  ?? 

  ^Hoya longifolia Wall. ex 

Wight 

?? 

  ^Nerium oleander L.  Well-drained 

  ^Stapelia gigantea N.E. Br.  Well-drained 

  ^Vinca minor L. Well-drained 

 Rubiaceae ^Apomuria punctata 

(Vatke) Bremek. 

Well-drained 

Geraniales Geraniaceae ^Pelargonium peltatum 

(L.) L'Hér.  

Well-drained 

Lamiales Acanthaceae  ^Aphelandra aurantiaca 

(Scheidw.) Lindl.  

?? 

  ^Aphelandra squarrosa 

Nees 

Well-drained 

  ^Justicia fulvicoma Schltdl. 

& Cham. 

Well-drained 

 Bignoniaceae *Campsis radicans (L.) 

Bureau 

Moist but well-drained 

  ^Pithecoctenium 

crucigerum (L.) A.H. 

Gentry 

?? 

 Lamiaceae *Galeopsis segetum Neck.  Moist but well-drained 

  ^Mentha aquatica L. Wet 

  ^Mentha x dumetorum H. ?? 
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Perrier 

  ^Mentha x gracilis Sole Moist but well-drained 

  ^Mentha spicata L. Wet 

  *Satureja hortensis L.  Well-drained 

  ^Solenostemon repens 

(Gürke) J.K. Morton 

?? 

  ^Solenostemon 

scutellarioides (L.) Codd 

Moist but well-drained 

 Oleaceae ^Jasminum magnificum 

Lingelsh.  

Well-drained 

 Scrophulariaceae *Antirrhinum majus L. Well-drained 

Laurales Lauraceae *Laurus nobilis L. Well-drained 

Malpighiales Euphorbiaceae  ^Euphorbia pulcherrima 

Willd. ex Klotzsch 

Well-drained 

  *Mercurialis perennis L. Moist but well-drained 

  *Ricinus communis L.  Moist but well-drained 

 Linaceae *Linum usitatissimum L. Well-drained 

 Passifloraceae *Passiflora gracilis J. Jacq. 

ex Link 

Well-drained 

  ^Passiflora quadrangularis 

L. 

Moist but well-drained 

 Phyllanthaceae ^Phyllanthus grandifolius 

L.  

?? 

 Violaceae *Viola canina L. Well-drained 

  *Viola odorata L. Moist but well-drained 

Malvales Malvaceae  *Malva alcea L.  Moist but well-drained 

Myrtales Lythraceae *Cuphea lanceolata 

W.T.Aiton 

Moist but well-drained 

  †Decodon verticillatus (L.) 

Elliott 

Wet 

  †Lythrum alatum Pursh Wet 

  †Lythrum hyssopifolia L. Wet 

  †Lythrum salicaria L. Wet 

 Myrtaceae  ^Callistemon rigidus R.Br  Moist but well-drained 

  ^Myrtus communis L.  Well-drained 

 Onagraceae †Chamerion angustifolium 

(L.) Holub   

Well-drained 

  †Epilobium ciliatum Raf.   Well-drained 

  †Epilobium hirsutum L.   Moist but well-drained 

  †Epilobium parviflorum 

Schreb.   

Wet 

 Trapaceae *Trapa natans L. Wet 

Nymphaeales Nymphaeaceae ‡Nymphaea odorata Aiton Wet 

  *Victoria amazonica ?? 
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(Poepp.) Sowerby 

Oxalidales Oxalidaceae *Oxalis acetosella L.  Moist but well-drained 
  ^Oxalis adenophylla Gillies 

ex Hook. & Arn.  

Well-drained 

  ^Oxalis purpurea L. Well-drained 

Piperales Aristolochiaceae ^Aristolochia littoralis D. 

Parodi  

Moist but well-drained 

 Piperaceae ^Peperomia obtusifolia (L.) 

A. Dietr. 

Moist but well-drained 

  ^Piper nigrum L. Moist but well-drained 

Ranunculales Berberidaceae *Berberis vulgaris L. Well-drained 

  ^Podophyllum peltatum L. Well-drained 

 Fumariaceae *Corydalis cava (L.) 

Schweig. & Köerte.  

Well-drained 

 Ranunculaceae ^Anemonoides blanda 

Holub 

Well-drained 

  ^‡Caltha palustris L.  Wet 

Rosales Moraceae ^Ficus altissima Blume Well-drained 

  *Ficus barbata Warb. Well-drained 

  ^Ficus benjamina L. Well-drained 

 Rosaceae *Filipendula ulmaria (L.) 

Maxim.  

Wet 

  ^Fragaria virginiana 

Duchesne  

Well-drained 

  ^Malus pumila Mill. Well-drained 

  *Potentilla palustris (L.) 

Scop. 

Wet 

  ^Rosa gallica L. Well-drained 

  ^Waldsteinia fragarioides 

Tratt. 

Well-drained 

 Urticaceae ^Pilea cadierei Gagnep. & 

Guillaumin 

Well-drained 

Sapindales Rutaceae ^Citrus maxima (Burm. ex 

Rumph.) Merr. 

Moist but well-drained 

  ^Citrus paradisi Macfad. Moist but well-drained 

  *Ruta graveolens L.  Well-drained 

Solanales Convolvulaceae ^Calystegia sepium (L.) R. 

Br.  

Well-drained 

  *Cuscuta epilinum Weihe Well-drained 

 Solanaceae ^Atropa belladonna L. Well-drained 

  *Datura stramonium L.  Well-drained 

  *^Hyoscyamus niger L.  Well-drained 

  ^Solanum betaceum Cav.  Moist but well-drained 

  ^Solanum lycopersicum L. Moist but well-drained 
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  *Solanum nigrum L. Well-drained 

Vitales Vitaceae *Cissus discolor Blume Moist but well-drained 
  *Cissus sulcicaulis (Baker) 

Planch. 

Well-drained 

  *Parthenocissus 

quinquefolia (L.) Planch. 

Moist but well-drained 

  ^Vitis riparia Michx. Well-drained 

 

*Kroemer (1903); ^Perumalla et al. (1990); ‡Seago et al. (2000); †Stevens (2003). 

Taxonomic information referenced from the Angiosperm Phylogeny Group (Stevens 2001 

onwards) and Tropicos.org websites. 

Habitat information referenced from the Kemper Center PlantFinder and Plants for a Future 

websites.  
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Appendix B – Supplementary Figures for Chapter 4 

Supplementary Figure 4.1 Change in amounts of , -dioic acids in the SPAD of the 

maturing MEX in Iris germanica roots. Data are displayed per root segment surface area 

(μmol mm
-2

), and refer to the change in monomer amounts from one exodermal maturation 

stage to the next, under different growth conditions (legend inset). See section 4.3.2, Chapter 

4, for data calculation details. Abbreviations: Sub 0EX-1EX = submerged tissue, monomer 

amounts in the first exodermal layer; Sub 1EX-2EX = submerged tissue, change in amounts 

between exodermal layers one and two; Sub 2EX-3EX = submerged tissue, change in 

amounts between exodermal layers two and three; AG 0EX-1EX = air gap-exposed tissue, 

monomer amounts in the first exodermal layer; AG 1EX-2EX = air gap-exposed tissue, 

change in amounts between exodermal layers one and two; AG 2EX-3EX = air gap-exposed, 

change in amounts between exodermal layers two and three. 
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Supplementary Figure 4.2 Change in amounts of -OH fatty acids in the SPAD of the 

maturing MEX in Iris germanica roots. Data are displayed per root segment surface area 

(μmol mm
-2

), and refer to the change in monomer amounts from one exodermal maturation 

stage to the next, under different growth conditions (legend inset). See section 4.3.2, Chapter 

4, for data calculation details. Abbreviations: Sub 0EX-1EX = submerged tissue, monomer 

amounts in the first exodermal layer; Sub 1EX-2EX = submerged tissue, change in amounts 

between exodermal layers one and two; Sub 2EX-3EX = submerged tissue, change in 

amounts between exodermal layers two and three; AG 0EX-1EX = air gap-exposed tissue, 

monomer amounts in the first exodermal layer; AG 1EX-2EX = air gap-exposed tissue, 

change in amounts between exodermal layers one and two; AG 2EX-3EX = air gap-exposed, 

change in amounts between exodermal layers two and three. 
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Supplementary Figure 4.3 Change in amounts of fatty acids in the SPAD of the maturing 

MEX in Iris germanica roots. Data are displayed per root segment surface area (μmol mm
-2

), 

and refer to the change in monomer amounts from one exodermal maturation stage to the 

next, under different growth conditions (legend inset). See section 4.3.2, Chapter 4, for data 

calculation details. Abbreviations: Sub 0EX-1EX = submerged tissue, monomer amounts in 

the first exodermal layer; Sub 1EX-2EX = submerged tissue, change in amounts between 

exodermal layers one and two; Sub 2EX-3EX = submerged tissue, change in amounts 

between exodermal layers two and three; AG 0EX-1EX = air gap-exposed tissue, monomer 

amounts in the first exodermal layer; AG 1EX-2EX = air gap-exposed tissue, change in 

amounts between exodermal layers one and two; AG 2EX-3EX = air gap-exposed, change in 

amounts between exodermal layers two and three. 
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Supplementary Figure 4.4 Change in amounts of ferulic acid in the SPAD of the maturing 

MEX in Iris germanica roots. Data are displayed per root segment surface area (μmol mm
-2

), 

and refer to the change in monomer amounts from one exodermal maturation stage to the 

next, under different growth conditions (legend inset). See section 4.3.2, Chapter 4, for data 

calculation details. Abbreviations: Sub 0EX-1EX = submerged tissue, monomer amounts in 

the first exodermal layer; Sub 1EX-2EX = submerged tissue, change in amounts between 

exodermal layers one and two; Sub 2EX-3EX = submerged tissue, change in amounts 

between exodermal layers two and three; AG 0EX-1EX = air gap-exposed tissue, monomer 

amounts in the first exodermal layer; AG 1EX-2EX = air gap-exposed tissue, change in 

amounts between exodermal layers one and two; AG 2EX-3EX = air gap-exposed, change in 

amounts between exodermal layers two and three. 
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Supplementary Figure 4.5 Change in amounts of fatty acids in the soluble suberin fraction 

of the maturing MEX in Iris germanica roots. Data are displayed per root segment surface 

area (μmol mm
-2

), and refer to the change in monomer amounts from one exodermal 

maturation stage to the next, under different growth conditions (legend inset). See section 

4.3.2, Chapter 4, for data calculation details. Abbreviations: Sub 0EX-1EX = submerged 

tissue, monomer amounts in the first exodermal layer; Sub 1EX-2EX = submerged tissue, 

change in amounts between exodermal layers one and two; Sub 2EX-3EX = submerged 

tissue, change in amounts between exodermal layers two and three; AG 0EX-1EX = air gap-

exposed tissue, monomer amounts in the first exodermal layer; AG 1EX-2EX = air gap-

exposed tissue, change in amounts between exodermal layers one and two; AG 2EX-3EX = 

air gap-exposed, change in amounts between exodermal layers two and three.
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Supplementary Figure 4.6 Change in amounts of alkanes in the soluble suberin fraction of 

the maturing MEX in Iris germanica roots. Data are displayed per root segment surface area 

(μmol mm
-2

), and refer to the change in monomer amounts from one exodermal maturation 

stage to the next, under different growth conditions (legend inset). See section 4.3.2, Chapter 

4, for data calculation details. Abbreviations: Sub 0EX-1EX = submerged tissue, monomer 

amounts in the first exodermal layer; Sub 1EX-2EX = submerged tissue, change in amounts 

between exodermal layers one and two; Sub 2EX-3EX = submerged tissue, change in 

amounts between exodermal layers two and three; AG 0EX-1EX = air gap-exposed tissue, 

monomer amounts in the first exodermal layer; AG 1EX-2EX = air gap-exposed tissue, 

change in amounts between exodermal layers one and two; AG 2EX-3EX = air gap-exposed, 

change in amounts between exodermal layers two and three.
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Supplementary Figure 4.7 Change in amounts of fatty alcohols in the soluble suberin 

fraction of the maturing MEX in Iris germanica roots. Data are displayed per root segment 

surface area (μmol mm
-2

), and refer to the change in monomer amounts from one exodermal 

maturation stage to the next, under different growth conditions (legend inset). See section 

4.3.2, Chapter 4, for data calculation details. Abbreviations: Sub 0EX-1EX = submerged 

tissue, monomer amounts in the first exodermal layer; Sub 1EX-2EX = submerged tissue, 

change in amounts between exodermal layers one and two; Sub 2EX-3EX = submerged 

tissue, change in amounts between exodermal layers two and three; AG 0EX-1EX = air gap-

exposed tissue, monomer amounts in the first exodermal layer; AG 1EX-2EX = air gap-

exposed tissue, change in amounts between exodermal layers one and two; AG 2EX-3EX = 

air gap-exposed, change in amounts between exodermal layers two and three. 
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Supplementary Figure 4.8 Change in amounts of ferulic acid in the soluble suberin fraction 

of the maturing MEX in Iris germanica roots. Data are displayed per root segment surface 

area (μmol mm
-2

), and refer to the change in monomer amounts from one exodermal 

maturation stage to the next, under different growth conditions (legend inset). See section 

4.3.2, Chapter 4, for data calculation details. Abbreviations: Sub 0EX-1EX = submerged 

tissue, monomer amounts in the first exodermal layer; Sub 1EX-2EX = submerged tissue, 

change in amounts between exodermal layers one and two; Sub 2EX-3EX = submerged 

tissue, change in amounts between exodermal layers two and three; AG 0EX-1EX = air gap-

exposed tissue, monomer amounts in the first exodermal layer; AG 1EX-2EX = air gap-

exposed tissue, change in amounts between exodermal layers one and two; AG 2EX-3EX = 

air gap-exposed, change in amounts between exodermal layers two and three. 
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Appendix C – Declaration of research collaborations 

 

This thesis is a compilation of four articles, each of which include different research work. 

Most of the work was carried out by myself independently at the University of Waterloo 

(UW) with Dr. Carol A. Peterson, the University of Bayreuth (Bayreuth) with Dr. Ernst 

Steudle, and the University of Western Ontario (UWO) with Dr. Mark A. Bernards. 

The majority of experiments in Chapter 2 were conducted by myself at UW. The root 

apical meristem work was carried out and interpreted by Dr. James L. Seago at SUNY, 

Oswego. I wrote the manuscript with input from Drs. Peterson (UW) and Seago.  

All experimental work in Chapter 3 was conducted by myself at Bayreuth. Interpretation of 

the results was a collaborative effort with Drs. Steudle (Bayreuth) and Peterson. I wrote the 

manuscript with input from Drs. Steudle and Peterson.  

All experimental work in Chapters 4 and 5 was conducted by myself at UW and UWO. 

Interpretation of the results was a collaborative effort with Dr. Bernards (UWO). I wrote the 

manuscripts with input from Drs. Bernards and Peterson.
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