
Biological and Water Quality Study of The Grand and Ashtabula River Basins including Arcola Creek, Cowles Creek and Conneaut Creek

Ashtabula, Geauga, Lake and Trumbull Counties

January 7, 1997

P.O. Box 1049, 1800 WaterMark Dr., Columbus, Ohio 43216-1049

Biological and Water Quality Study of the Grand and Ashtabula River Basins including Arcola Creek, Cowles Creek and Conneaut Creek

Ashtabula, Geauga, Lake and Trumbull Counties

January 7, 1997

OEPA Technical Report Number MAS/1996-11-5

prepared by

State of Ohio Environmental Protection Agency Division of Surface Waters Ecological Assessment Unit 1685 Westbelt Drive Columbus, Ohio 43228 and Water Quality Section Northeast District Office 2110 East Aurora Road Twinsburg, Ohio 44087

TABLE OF CONTENTS

NOTICE TO USERS	V
ACKNOWLEDGEMENTS	vii
FORWARD	vii

CHAPTER I

The Grand River Basin

INTRODUCTION	
SUMMARY	
RECOMMENDATIONS	
Grand River Mainstem	
Status of Aquatic Life Uses	
Status of Non-aquatic Life Uses	
Other Recommendations	
Future Monitoring Concerns 4	
Big Creek	
Status of Aquatic Life Uses	
Status of Non-aquatic Life Uses	
Other Recommendations	
Future Monitoring Concerns 4	
Cemetery Creek	
Status of Aquatic Life Uses	
Status of Non-aquatic Life Uses	
Other Recommendations	
Future Monitoring Concerns 5	
Other Tributaries	
Status of Aquatic Life Uses	
Status of Non-aquatic Life Uses	
Other Recommendations	
Future Monitoring Concerns 5	
STUDY AREA	
METHODS	0
RESULTS AND DISCUSSION	4
Pollutant Loadings: 1975 - 1995	
Spills, Overflows and Unauthorized Releases	5
F ish Kills	
Surface Water and Sediment Quality	6
Grand River	
<i>Big Creek</i>	
Other Tributaries	
Chemical Sediment Quality	6

Fish Tissue
Physical Habitat
Biological Assessment: Macroinvertebrate Community
Grand River
Big Creek
Other Tributaries
Biological Assessment: Fish Community
Grand River
Big Creek
Other Tributaries
Changes in Chemical Water Quality
Changes in Biological Community Performance - Macroinvertebrates
Changes in Biological Community Performance - Fish

CHAPTER II

The Ashtabula River Basin

INTRODUCTION	35
SUMMARY	35
RECOMMENDATIONS	37
Ashtabula River	
Status of Aquatic Life Uses	37
Status of Non-aquatic Life Uses	37
Other Recommendations	37
Future Monitoring Concerns	37
Cowles Creek	
Status of Aquatic Life Uses	37
Status of Non-aquatic Life Uses	38
Other Recommendations	
Future Monitoring Concerns	38
Arcola Creek	
Status of Aquatic Life Uses	38
Status of Non-aquatic Life Uses	38
Other Recommendations	39
Future Monitoring Concerns	39
Conneaut Creek	
Status of Aquatic Life Uses	39
Status of Non-aquatic Life Uses	39
Other Recommendations	39
Future Monitoring Concerns	39
STUDY AREA	92
RESULTS AND DISCUSSION 1	
Pollutant Loadings: 1975 - 1995 1	101

Spill, Overflows and Unauthorized Releases	110
Fish Kills	110
Surface Water and Sediment Quality	112
Ashtabula River	112
Cowles Creek	115
Arcola Creek	
Conneaut Creek	
Physical Habitat	
Biological Assessment: Macroinvertebrate Community	
Ashtabula River	
Cowles Creek	
Arcola Creek	
Conneaut Creek	
Biological Assessment: Fish Community	
Ashtabula River	
Cowles Creek	
Arcola Creek	
Conneaut Creek	
Changes in Chemical Water Quality	
Changes in Biological Community Performance - Macroinvertebrates	
Changes in Biological Community Performance - Fish	
EFERENCES	
APPENDIX TABLES	

Grand and Ashtabula River Basins TSD

MAS/1996-11-5

January 7, 1997

NOTICE TO USERS

Ohio EPA incorporated biological criteria into the Ohio Water Quality Standards (WQS; Ohio Administrative Code 3745-1) regulations in February 1990 (effective May 1990). These criteria consist of numeric values for the Index of Biotic Integrity (IBI) and Modified Index of Well-Being (MIwb), both of which are based on fish assemblage data, and the Invertebrate Community Index (ICI), which is based on macroinvertebrate assemblage data. Criteria for each index are specified for each of Ohio's five ecoregions (as described by Omernik 1987), and are further organized by organism group, index, site type, and aquatic life use designation. These criteria, along with the existing chemical and whole effluent toxicity evaluation methods and criteria figure prominently in the monitoring and assessment of Ohio's surface water resources.

The following documents support the use of biological criteria by outlining the rationale for using biological information, the methods by which the biocriteria were derived and calculated, the field methods by which sampling must be conducted, and the process for evaluating results:

- Ohio Environmental Protection Agency. 1987a. Biological criteria for the protection of aquatic life: Volume I. The role of biological data in water quality assessment. Div. Water Qual Monit. & Assess., Surface Water Section, Columbus, Ohio.
- Ohio Environmental Protection Agency. 1987b. Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters Div. Water Qual. Monit. & Assess., Surface Water Section, Columbus, Ohio.
- Ohio Environmental Protection Agency. 1989b. Addendum to Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters. Div. Water Qual. Plan. & Assess., Ecological Assessment Section, Columbus, Ohio.
- Ohio Environmental Protection Agency. 1989c. Biological criteria for the protection of aquatic life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Div. Water Quality Plan. & Assess., Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 1990. The use of biological criteria in the Ohio EPA surface water monitoring and assessment program. Div. Water Qual. Plan. & Assess, Ecol. Assess. Sect., Columbus, Ohio.
- Rankin, E.T. 1989. The qualitative habitat evaluation index (QHEI): rationale, methods, and application. Div. Water Qual. Plan. & Assess., Ecol. Assess. Sect., Columbus, Ohio.

Since the publication of the preceding guidance documents, the following new publications by

the Ohio EPA have become available. These publications should also be consulted as they represent the latest information and analyses used by the Ohio EPA to implement the biological criteria.

- DeShon, J.D. 1995. Development and application of the invertebrate community index (ICI), pp 217-243. in W.S. Davis and T. Simon (eds.). Biological Assessment and Criteria: Took for Risk-based Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Rankin, E. T. 1995. The use of habitat assessments in water resource management programs, pp. 181-208. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. and E.T. Rankin. 1995. Biological criteria program development and implementation in Ohio, pp. 109-144. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. and E.T. Rankin. 1995. Biological response signatures and the area of degradation value: new tools for interpreting multimetric data, pp. 263-286. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. 1995. Policy issues and management applications for biological criteria, pp. 327-344. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C.O. and E.T. Rankin. 1995. The role of biological criteria in water quality monitoring, assessment, and regulation. Environmental Regulation in Ohio: How to Cope With the Regulatory Jungle. Inst. of Business Law, Santa Monica, CA. 54 pp.

These documents and this report can be obtained by writing to:

Ohio EPA, Division of Surface Water Monitoring and Assessment Section 1685 Westbelt Drive Columbus, Ohio 43228-3809 (614) 728-3377

Acknowledgements

Paul Anderson - Arcola Creek and Cowles Creek surface water and sediment chemistry, pollutant loadings and facility descriptions.

Ken Frase - Ashtabula River surface water, sediment chemistry and chemical trends.

Steve Tuckerman - Grand River basin surface water and sediment chemistry, pollutant loadings, facility descriptions.

Jack Freda - Ashtabula River basin macroinvertebrate community assessments.

Martin Knapp - Grand River basin macroinvertebrate community assessments.

Robert Miltner - Ashtabula and Grand River basin fish community assessments, Grand River basin sediment chemistry, and TSD editor.

Jeff DeShon, Marc Smith and Chris Yoder - Reviewers.

Water chemistry analysis was provided by the Ohio EPA division of Environmental Services Numerous college interns and district office staff assisted in the collection of field samples Landowners who granted permission for site access are duly appreciated.

FOREWORD

What is a Biological and Water Quality Survey?

A biological and water quality survey, or "biosurvey", is an interdisciplinary monitoring effort coordinated on a waterbody specific or watershed scale. This effort may involve a relatively simple setting focusing on one or two small streams, one or two principal stressors, and a handful of sampling sites or a much more complex effort including entire drainage basins, multiple and overlapping stressors, and tens of sites. Each year Ohio EPA conducts biosurveys in 10-15 different study areas with an aggregate total of 250-300 sampling sites.

Ohio EPA employs biological, chemical, and physical monitoring and assessment techniques in biosurveys in order to meet three major objectives: 1) determine the extent to which use designations assigned in the Ohio Water Quality Standards (WQS) are either attained or not attained; 2) determine if use designations assigned to a given water body are appropriate and attainable; and 3) determine if any changes in key ambient biological, chemical, or physical indicators have taken place over time, particularly before and after the implementation of point source pollution controls or best management practices. The data gathered by a biosurvey is processed, evaluated, and synthesized in a biological and water quality report. Each biological and water quality study contains a summary of major findings and recommendations for revisions to WQS, future monitoring needs, or other actions which may be needed to resolve existing impairment of designated uses. While the principal focus of a biosurvey is on the status of aquatic life uses, the status of other uses such as recreation and water supply, as well as human health concerns, are also addressed.

The findings and conclusions of a biological and water quality study may factor into regulatory actions taken by Ohio EPA (*e.g.*, NPDES permits, Director's Orders, the Ohio Water Quality Standards [OAC 3745-1]), and are eventually incorporated into Water Quality Permit Support Documents (WQPSDs), State Water Quality Management Plans, the Ohio Nonpoint Source Assessment, and the Ohio Water Resource Inventory (305[b] report).

Hierarchy of Indicators

A carefully conceived ambient monitoring approach, using cost-effective indicators comprised of ecological, chemical, and toxicological measures, can ensure that all relevant pollution sources are judged objectively on the basis of environmental results. Ohio EPA relies on a tiered approach in attempting to link the results of administrative activities with true environmental measures. This integrated approach is outlined in Figure 1 and includes a hierarchical continuum from administrative to true environmental indicators. The six "levels" of indicators include: 1) actions taken by regulatory agencies (permitting, enforcement, grants); 2) responses by the regulated community (treatment works, pollution prevention); 3) changes in discharged quantities (pollutant loadings); 4) changes in ambient conditions (water quality, habitat); 5) changes in uptake and/or assimilation (tissue contamination, biomarkers, wasteload allocation); and, 6) changes in health, ecology, or other effects (ecological condition, pathogens). In this process the

results of administrative activities (levels 1 and 2) can be linked to efforts to improve water quality (levels 3, 4, and 5) which should translate into the environmental "results" (level 6). Thus, the aggregate effect of billions of dollars spent on water pollution control since the early 1970s can now be determined with quantifiable measures of environmental condition Superimposed on this hierarchy is the concept of stressor, exposure, and response indicators Stressor indicators generally include activities which have the potential to degrade the aquatic environment such as pollutant discharges (permitted and unpermitted), land use effects, and habitat modifications. Exposure indicators are those which measure the effects of stressors and can include whole effluent toxicity tests, tissue residues, and biomarkers, each of which provides evidence of biological exposure to a stressor or bioaccumulative agent. Response indicators are generally composite measures of the cumulative effects of stress and exposure and include the more direct measures of community and population response that are represented here by the biological indices which comprise Ohio's biological criteria. Other response indicators could include target assemblages, *i.e.*, rare, threatened, endangered, special status, and declining species or bacterial levels which serve as surrogates for the recreational uses. These indicators represent the essential technical elements for watershed-based management approaches. The key, however, is to use the different indicators within the roles which are most appropriate for each. Describing the causes and sources associated with observed impairments revealed by the biological criteria and linking this with pollution sources involves an interpretation of multiple lines of evidence including water chemistry data, sediment data, habitat data, effluent data, biomonitoring results, land use data, and biological response signatures within the biological data itself. Thus the assignment of principal causes and sources of impairment represents the association of impairments (defined by response indicators) with stressor and exposure indicators. The principal reporting venue for this process on a watershed or subbasin scale is a biological and water quality report. These reports then provide the foundation for aggregated assessments such as the Ohio Water Resource Inventory (305[b] report), the Ohio Nonpoint Source Assessment, and other technical bulletins.

Ohio Water Quality Standards: Designated Aquatic Life Use

The Ohio Water Quality Standards (WQS; Ohio Administrative Code 3745-1) consist of designated uses and chemical, physical, and biological criteria designed to represent measurable properties of the environment that are consistent with the goals specified by each use designation Use designations consist of two broad groups, aquatic life and non-aquatic life uses. In applications of the Ohio WQS to the management of water resource issues in Ohio's rivers and streams, the aquatic life use criteria frequently result in the most stringent protection and restoration requirements, hence their emphasis in biological and water quality reports. Also, an emphasis on protecting for aquatic life generally results in water quality suitable for all uses. The five different aquatic life uses currently defined in the Ohio WQS are described as follows:

1) Warmwater Habitat (WWH) - this use designation defines the "typical" warmwater assemblage of aquatic organisms for Ohio rivers and streams; this use represents the principal restoration target for the majority of water resource management efforts in Ohio.

January 7, 1997

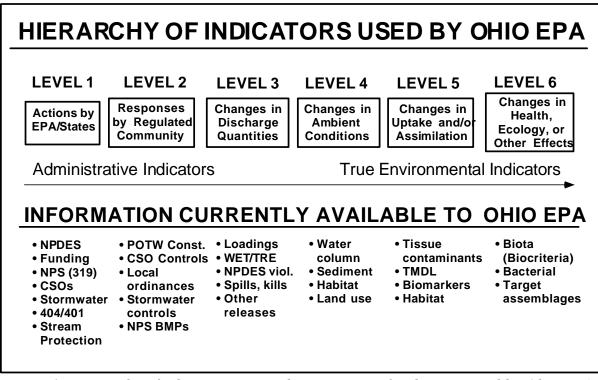


Figure 1. Hierarchy of administrative and environmental indicators used by Ohio EPA for monitoring, assessment, reporting and evaluating program effectiveness. This is patterned after a model developed by the U.S. EPA, Office of Water.

- 2) Exceptional Warmwater Habitat (EWH)- this use designation is reserved for waters which support "unusual and exceptional" assemblages of aquatic organisms which are characterized by a high diversity of species, particularly those which are highly intolerant and/or rare, threatened, endangered, or special status (*i.e.*, declining species); this designation represents a protection goal for water resource management efforts dealing with Ohio's best wate resources.
- 3) Cold-water Habitat (CWH)- this use is intended for waters which support assemblages of cold water organisms and/or those which are stocked with salmonids with the intent of providing a put-and-take fishery on a year round basis which is further sanctioned by the Ohio DNR, Division of Wildlife; this use should not be confused with the Seasonal Salmonid Habitat (SSH) use which applies to the Lake Erie tributaries which support periodic "runs" of salmonids during the spring, summer, and/or fall.
- 4) *Modified Warmwater Habitat (MWH)* this use applies to streams and rivers which have been subjected to extensive, maintained, and essentially permanent hydromodifications such that

the biocriteria for the WWH use are not attainable *and where the activities have been* sanctioned by state or federal law; the representative aquatic assemblages are generally composed of species which are tolerant to low dissolved oxygen, silt, nutrient enrichment, and poor quality habitat.

5) *Limited Resource Water (LRW)*- this use applies to small streams (usually <3 mi.² drainage area) and other water courses which have been irretrievably altered to the extent that m appreciable assemblage of aquatic life can be supported; such waterways generally include small streams in extensively urbanized areas, those which lie in watersheds with extensive drainage modifications, those which completely lack water on a recurring annual basis (*i.e.*, true ephemeral streams), or other irretrievably altered waterways.

Chemical, physical, and/or biological criteria are generally assigned to each use designation in accordance with the broad goals defined by each. As such the system of use designations employed in the Ohio WQS constitutes a "tiered" approach in that varying and graduated levels of protection are provided by each. This hierarchy is especially apparent for parameters such as dissolved oxygen, ammonia-nitrogen, temperature, and the biological criteria. For other parameters such as heavy metals, the technology to construct an equally graduated set of criteria has been lacking, thus the same water quality criteria may apply to two or three different use designations.

Ohio Water Quality Standards: Non-Aquatic Life Uses

In addition to assessing the appropriateness and status of aquatic life uses, each biological and water quality survey also addresses non-aquatic life uses such as recreation, water supply, and human health concerns as appropriate. The recreation uses most applicable to rivers and streams are the Primary Contact Recreation (PCR) and Secondary Contact Recreation (SCR) uses. The criterion for designating the PCR use is simply having a water depth of at least one meter over an area of at least 100 square feet or where canoeing is a feasible activity. If a water body is too small and shallow to meet either criterion the SCR use applies. The attainment status of PCR and SCR is determined using bacterial indicators (*e.g.*, fecal coliform, *E. coli*) and the criteria for each are specified in the Ohio WQS.

Water supply uses include Public Water Supply (PWS), Agricultural Water Supply (AWS), and Industrial Water Supply (IWS). Public Water Supplies are simply defined as segments within 500 yards of a potable water supply or food processing industry intake. The Agricultural Water Supply (AWS) and Industrial Water Supply (IWS) use designations generally apply to all wates unless it can be clearly shown that they are not applicable. An example of this would be an urban area where livestock watering or pasturing does not take place, thus the AWS use would not apply. Chemical criteria are specified in the Ohio WQS for each use and attainment status is based primarily on chemical-specific indicators. Human health concerns are additionally addressed with fish tissue data, but any consumption advisories are issued by the Ohio Department of Health and detailed in other documents.

Chapter I

Biological and Water Quality Study of the Grand River, Big Creek and Select Tributaries

Ashtabula, Geauga, Lake and Trumbull Counties

INTRODUCTION

The 1995 Grand River study area consisted of the Grand River mainstem from State Route 422 near Parkman in Geauga County at river mile (RM) 95.4 to Kiwanis Park in Painesville, Lake County at RM 6.1. The study area also included the following tributaries (river mile at confluence): Big Creek (9.32); Jenks Creek (Big Creek at RM 11.52); Paine Creek (14.31); Mill Creek (41.28); Cemetery Creek (Mill Creek at RM 8.42); Rock Creek (50.59); Phelps Creek (72.02); Swine Creek(75.17); and Baughman Creek (80.76). See Table x and Figures x fora complete list of sampling locations.

Specific objectives of this study were to:

- 1) evaluate the physical habitat, surface water and sediment quality, and the biological integrity of the Grand River study area,
- 2) assess impacts from municipal wastewater treatment plants, nonpoint sources of pollution, habitat alterations and suburban development,
- 3) determine attainment status of aquatic life and non-aquatic use designations, and recommend changes where appropriate, and
- 4) compare results of this survey with previous surveys to assesses changes in water quality and biological integrity.

The findings of this evaluation may factor into regulatory actions taken by the Ohio EPA (e.g., NPDES permits, Director's Orders, or the Ohio Water Quality Standards (OAC 3745-1)), and may eventually be incorporated into State Water Quality Management Plans, the Ohio Nonpoint Source Assessment, and the pentenial OhioWater Resources Inventory (305[b] report).

The Ohio EPA Division of Surface Water performed a study of the lower Grand River in 1994 at the request of the Ohio EPA Division of Emergency and Remedial Response. The report is entitled "Biological and Sediment Quality Study of the Grand River in the Vicinity of the Diamond Shamrock Waste Lagoons Area, 1994", Ohio EPA Report Number MAS/1995-8-11. Because this section of the river was evaluated in 1994, it was not included as part of the 1995 survey. The reader is referred to the 1994 report for information concerning the lower section of the Grand River.

SUMMARY

A biological and water quality survey of the Grand River basin was conducted 15 June - 10 October 1995. Most locations surveyed throughout the basin met assigned aquatic life uses as determined by the applicable biological criteria. Exceptions were the headwaters of Big Creek and Cemetary Creek where urban runoff and municipal wastewater impinged on water quality and the biotic communities. Exceptional biological communities were found in the Grand River

mainstem owing to the relatively undeveloped watershed. Despite these exceptional communities, the Grand River is considered fragile due to low summer flows; therefore, this condition must be considered before additional pollutant loads can be expanded or new loads (including nonpoint loads generated by development) added.

Grand River Mainstem

The Grand River was in full attainment of EWH criteria at all locations sampled in the 25.4 mile designated reach. In the reach designated WWH, all locations sampled fully met criteria except RM 65.9, which partially met WWH, yielding 47.1 miles in full attainment and 15.6 miles in partial attainment; no miles exhibited non-attainment. The partially attaining segment was influenced by extensive wetland areas upstream and low stream gradient. Excellent water quality, owing to wide forested riparian buffers, limited (but increasing) residential development within the watershed, minor agricultural impacts, and minimal point source loadings of pollutants, enabled outstanding biological communities to thrive in the Grand River. The rich aquatic insect base generally supported a diverse insectivorous community, including an abundance of redhorse, river chub, and in the riffles, madtoms and darters.

The benefits of minimal pollutant loadings from point sources, residential septic systems and storm-water runoff are manifest in the high relative abundance of species sensitive to pollution. Strong populations of several fish species that have declining populations throughout Ohio due to habitat loss and pollution are found in the Grand River. These species are river chub, rosyfaæ shiner, mimic shiner, black redhorse and river redhorse. Moreover, the Grand River supports muskellunge, a state endangered species.

Much of the Grand River is underlain by a shallow, low yielding, shale bedrock aquifer. Consequently it periodically experiences very low flows in late summer, and therefore, has a limited ability to assimilate pollutants.

Big Creek

Biotic communities upstream (RM 16.3) and immediately downstream (RM 15.9) from the Chardon WWTP did not meet WWH criteria (Table 1) producing 4.2 miles in Non attainment. The remaining 9.6 miles were in Full attainment. Sediments in the creek upstream from the plant were impacted by urban runoff and high density septic systems leading to an impaired bidogical community. Downstream from the plant, discharges exceeding the design flow of the WWTP have been occurring since 1989, indicating that episodic discharges of poorly treated sewage contribute substantially to the impaired communities. However, the fish and macroinvertebrate communities downstream from the Chardon WWTP improved significantly in 1995 compared to 1987. The improved communities reflect upgrades to the treatment plant, especially nitrification and dechlorination (see *Pollutant Loadings*section). The benefits of nitrification and dechlorination in the treatment process were demonstrated at RM 13.9, where in 1987 no darters were collected, but rainbow darters, a species sensitive to ammonia, were comparatively abundant in 1995. As the upgrades to the plant were implemented recently (dechlorination as late Jum 1995), the communities most likely were still recovering during the 1995 sampling period.

Cemetary Creek

The two sites bracketing the Jefferson WWTP did not meet the WWH criterion (Table xx) yielding 1.3 miles in non-attainment. The site upstream from the plant (RM 2.5) is heavily modified and degraded by sanitary sewer overflows. Downstream from the WWTP, the creek is effluent dominated. Though not meeting the WWH criterion, the fish community included elements of a balanced fauna, suggesting that the effluent was not acutely toxic, and the community is capable of recovering to WWH standards following completion of the plant upgrade.

Other Tributaries

All other tributaries sampled (Baughman Creek, Swine Creek, Phelps Creek, Rock Creek, Mill Creek, Paine Creek and Jenks Creek) fully met the applicable WWH criteria reflecting intact stream habitats afforded by the lack of channel modifications and minimal encroachment in riparian areas.

RECOMMENDATIONS

Grand River

Status of Aquatic Life Uses

The Grand River is currently designated Exceptional Warmwater Habitat (EWH) from the Harpersfield Dam (RM 30.9) to SR 2 (RM 5.5). Performance of the biological communities upstream from Harpersfield Dam warrant extension of the EWH use designation to Sweitzer Road (RM 42.4). Exceptional biological communities were also found in the headwaters of the Grand River; therefore, the EWH use designation should be applied upstream from SR 608 (RM 91.8) to US 422 (RM 95.5). The remaining segment, RM 91.7 to 42.5 should be designated WWH. The Seasonal Salmonid use designation currently in place should be retained.

Status of Non-aquatic Life Uses

All non-aquatic life uses should remain as presently designated in the Ohio Water Quality Standards.

Other Recommendations

The exceptional biological communities, including rare and endangered species, pristine habitat, and the unique recreational opportunities afforded by the Grand River warrants dose monitoring of developments within the watershed. Because the shallow bedrock and low yielding aquifers results in low summer flows, the river is especially sensitive to disturbances within the watershed, particulary increases in the ammount of impervious surface and loss of forrest cover. And as flow is critical to the biological integrity of the river, future development should be planned with minimal impact on the hydrologic budget of the basin. Also, riparian buffers, including a buffer on the highly erodible shale bluffs overlooking the river, being instrumental in maintaining water quality and aesthetic beauty, should be preserved and restored. The low summer flows also result in negligible assimilative capacity; therefore, any increases or additional pollutant loadings must address this issue. The lightly developed nature of the Grand River watershed enables highly aesthetic surroundings, including clear running streams with good water quality. Increasing

residential development threatens this character.

Future Monitoring Concerns

The exceptional biological communities in the Grand River must be monitored to assess threats from pollution loadings and suburban development.

Big Creek

Status of Aquatic Life Uses

Big Creek is currently designated WWH, and performance of the biological communities warrants this designation. As Big Creek supports seasonal runs of steelehead, it should have the Seasonal Salmonid Habitat use designation from the mouth to Girdled Road (RM 7.1).

Status of Non-aquatic Life Uses

All non-aquatic life uses should remain as presently designated in the Ohio Water Quality Standards.

Other Recommendations

Residential development is increasing rapidly in Chardon and Concord Townships. Riparian buffers and ground water flow, being integral to sustaining high quality biological communites, must be given consideration in plans for development.

Future Monitoring Concerns

Biological communities in Big Creek are improving following the recent upgrades to the Chardon WWTP, such that the macroinvertebrate community is now performing in the exceptional range. The exceptional performance of the macroinvertebrate community and the high quality of the instream and riparian habitat suggest that Big Creek has the capacity to harbor an exceptional fish community. With the proposed WWTP expansion, continued monitoring is needed to determine if the biological communities in Big Creek continue to improve, stay the same, or regress.

Cemetary Creek

Status of Aquatic Life Uses

Cemetary Creek is currently designated Limited Warmwater Habitat (LWH). The habitat quality downstream from the Jefferson WWTP indicates that a WWH use designation is reasonable and attainable and should replace the existing LWH designation in this reach.

Status of Non-aquatic Life Uses

All non-aquatic life uses should remain as presently designated in the Ohio Water Quality Standards.

Other Recommendations

A riparian corridor should be allowed to recover along the creek upstream from Market Street.

Future Monitoring Concerns

The upgrades to the Jefferson WWTP should result in improved biotic communities in Cemetary Creek. Monitoring is needed to ascertain this. The unsewered discharge entering the creek upstream from Market Street should also be investigated.

Cutts Creek

Though not sampled as part of the Grand River survey, Cutts Creek was qualitatively evaluated for fish and macroinvertebrates as part of a power line siting study. Nine coldwater macroinvertebrate taxa and one coldwater fish species (redside dace) were collected Additionally, the presence of fantial, rainbow and johnny darters, species requiring continuous flow, in a stream with 0.9 mi⁻² drainage area suggests continuous flows supported by groundwater. Therefore, Cutts Creek should be designated Coldwater Habitat.

Other Tributaries

Status of Aquatic Life Uses

All other tributaries sampled met applicable biological criteria for WWH aquatic life uæ designations. Performance of the biological communities in Paine Creek warrant an EWH use designation from the mouth to Paine Falls (RM 2.9). Also, Paine Creek should be assigned the Seasonal Salmonid Habitat use designation from the mouth to Paine Falls.

Status of Non-aquatic Life Uses

All non-aquatic life uses should remain as presently designated in the Ohio Water Quality Standards.

Other Recommendations

Baughman Creek supports a population of northern brook lamprey, a state endangered species. Efforts should be made to minimize the access of cattle to the stream, and prevent increases in livestock density in creek-side pastures.

Residential development is increasing rapidly in Leroy Township. Because Paine Creek is underlain by low-yielding shallow bedrock aquifers, it is susceptible to disturbances within its watershed. To insure continued existences of exceptional biological communities in the creek, the wide riparian buffers, high percent of forrest cover and low density development must be maintained.

Future Monitoring Concerns

The tributaries to the Grand River should be monitored to ascertain localized impacts, and cumulative impacts to the mainstem, from nonpoint sources, increases in residential developments, and pollutant loadings from WWTPs. Also, only a handful of tributaries within the watershed have been assessed. In order to monitor changes in water quality within the watershed, greater sampling coverage is needed.

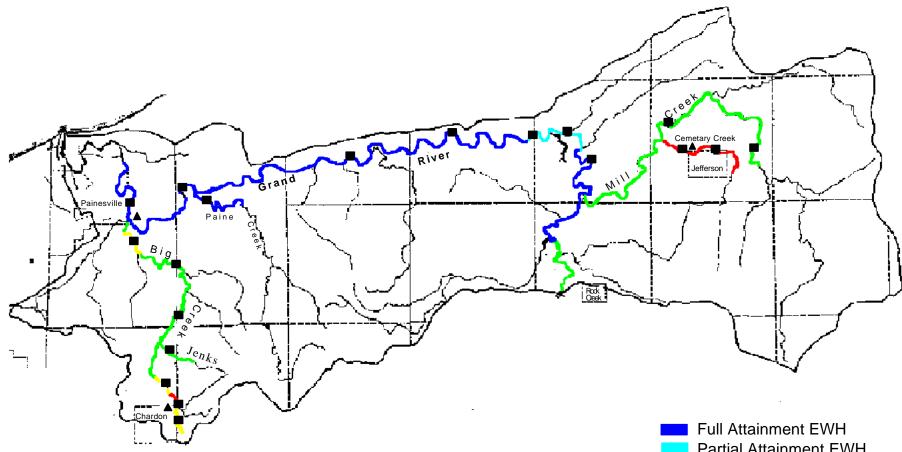
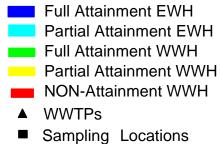



Figure 2. Attainment status for stream segments in the lower Grand River basin surveyed in 1995, based on performance of biological indicators. See Tables 1 and 2, respectively, for the use designation and attainment by segment or tributary, and specific sampling location.

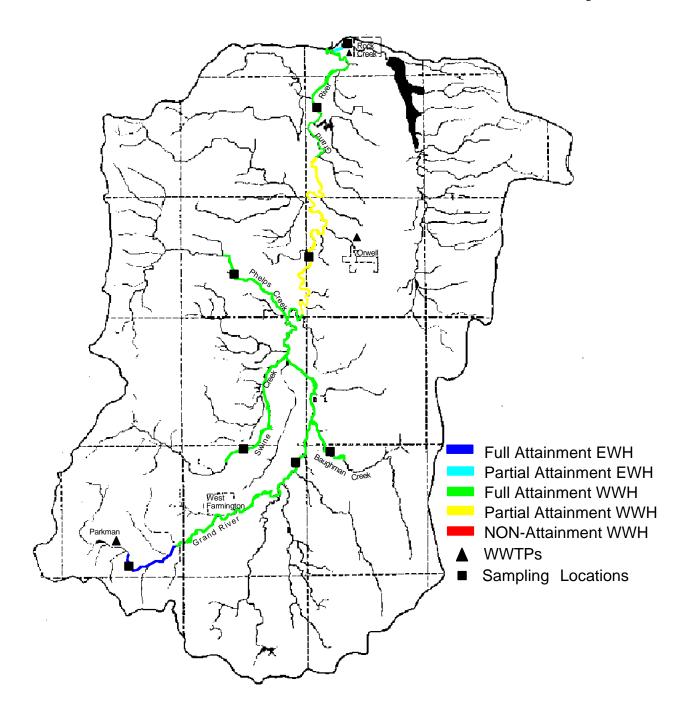


Figure 3. Attainment status for stream segments in the upper Grand River basin surveyed in 1995 based on performance of biological indicators. See Tables 1 and 2, respecitively, for the use designation and attainment by segment or tributary, and specific sampling locations.

Table 1. Aquatic life use attainment status for stations sampled in the Grand River basin based on data collected July-September, 1995. The Index of Biotic Integrity (IBI), Modified Index of well being (MIwb), and Invertebrate Community Index (ICI) are scores based on the performance of the biotic community. The Qualitative Habitat Evaluation Index (QHEI) is a measure of the ability of the physical habitat to support a biotic community.

River Mile	<i>j</i> 15 a mea		aomty 0	n uic piry	Attainment	pport a blotic community.						
Fish/Invertebrat	e IBI	MIwb ^a	ICI ^b	QHEI	Status ^c	Comment						
Grand River (1				$\frac{\sqrt{EWH}}{g/EWH}$								
94.3 ^H /95.5	51	NA	E ^b	71 71	FULL/FULL	dst Parkman WWTP, EWH						
WWH existing												
83.5 ^w /83.3	41	7.6	46	54	FULL	wetlands, WWH						
65.9 ^B /65.8	45	8.1^{*}	46	57	PARTIAL	lentic, WWH						
52.7 ^B /56.0	45	8.7	34	62	FULL	lentic, WWH						
	WWH existing / EWH proposed											
$40.9^{\text{B}}/44.7$	49	9.2 ^{ns}	42 ^{ns}	67	FULL/FULL	lentic/lotic, EWH						
36.3 ^B /NA	47 ^{ns}	8.5^*		57 F	ULL/PARTIAL	lentic, EWH						
34.0 ^B /32.9	50	8.6^{*}	E^{b}	60 F	ULL/PARTIAL	lentic, EWH						
			EWH	I existing	T							
28.4 ^B /	54	10.1		82	FULL	EWH						
$28.4^{\text{W}}/28.4$	48 ^{ns}	8.9 ^{ns}	54	82	FULL	EWH						
$22.1^{\text{W}}/22.6$	48 ^{ns}	9.5	50	88	FULL	EWH						
13.4 ^B /13.6	52	9.1 ^{ns}	52	91	FULL	EWH						
$8.0^{\mathrm{B}}/8.5$	52	9.2 ^{ns}	E^{b}	78	FULL	unsewered discharge,EWH						
$6.2^{\text{B}}/6.2$	47 ^{ns}	9.4 ^{ns}	44 ^{ns}	76	FULL	EWH						
Big Creek (199	95)		WWI	H existing	Z							
16.2 ^H /16.2	40	NA	\mathbf{F}^{b}	62	PARTIAL	urban impacts						
15.9 ^H /16.0	37 ^{ns}	NA	12^{*}	54	NON	dst Chardon WWTP impact						
13.9 ^H /14.2	32^{*}	NA	50	71	PARTIAL	impact/recovery						
9.5 ^H /9.4	38 ^{ns}	NA	E^{b}	73	FULL	recovery						
5.3 ^w /	40	7.8 ^{ns}		71	FULL	recovery, SSH						
$2.5^{W}/2.5$	36 ^{ns}	6.7^*	52	59	PARTIAL	marg. habitat, SSH						
Jenks Creek (1	995)		WWF	I existing	,							
0.1 ^H /0.1	42	NA	E ^b	70	FULL	Headwaters "control" site						
Baughman Cre	eek (1994	5)	WWF	H existing)							
$3.0^{H}/4.1$	38	NA	50	51 51	FULL	reference, livestock access						
Mill Creek (19	Mill Creek (1995) WWH existing											
18.1 ^W /18.1	40	8.0	E ^b	80	FULL	reference, low flow						

Table 1. Continued.

Table 1. Continue	eu.					
River Mile					Attainme	nt
Fish/Invertebrate	IBI	MIwb	ICI	QHEI	Status	Comment
Mill Creek - con	tinued.					
$10.0^{W}/12.1$	47	8.6	G^{b}	80	FULL	reference
Cemetary Creek				H existing	у)	
2.5 ^H /2.5	<u>26</u> *	NA	F^{b}	42	NON	unsewered, impacted
		LWH	0	WWH p	roposed	
1.3 ^H /1.25	27^{*}	NA	F^{b}	56	NON/NO	N dst Jefferson WWTP
Rock Creek (199	,			VWH exis	0	
$0.8^{W}/0.8$	48	8.1	46	72	FULL	reference, part. EWH
	~ ->					
Paine Creek (19				WH exist	0	
$0.2^{\rm W}/0.5$	51	8.7	E^{b}	75	FULL	ref., EWH, SSH
Dhalma Carala (1)	005)		T			
Phelps Creek (19		a cus		VWH exis	0	
$4.9^{W}/4.9$	40	7.5 ^{ns}	VG ^b	78	FULL	reference, nps, low flow
Sering Cuscle (10	05)		U		tin a	
Swine Creek (19 5.2 ^H /5.2	44	NA	56 V	VWH exis 59	FULL	reference and
5.2 / 5.2					_	reference, nps
	E	coregion 1	siocriier	iu: Erie-0	Ontario Lal	
]	BI			MIwb
Site Type		WWH E	WH MV	WH ^f	WWH	EWH MWH ^f
Headwaters		40	50 2	24		
Wading				24	7.9	9.4 5.6
Boat				24	8.7	9.6 5.7
2040					0.,	

H - Headwater site.

W - Wading site.

B - Boat site.

a - MIwb is not applicable to headwater streams with drainage areas $\leq 20 \text{ mi}^2$.

^b - A qualitative narrative evaluation based on best professional judgement and samplingattributes such as community composition, EPT taxa richness, and QCTV scores was used when quantitative data were not available or considered unreliable due to current velocities less than 0.3 fps flowing over the artificial substrates.

c - Attainment status is given for both existing and proposed use designations.

ns - Nonsignificant departure from biocriteria <u>(≤</u>4 IBI or ICI units, or <u><</u>0.5 MIwb units).

- * Indicates significant departure from applicable biocriteria (>4 IBI or ICI units, or >0.5 MIwb uits). Underlined scores are in the Poor or Very Poor range.
- d Limited Warmwater Habitat is an archaic use designation.
- e Low flows precluded use of boat method on the second pass.
- f Modified Warmwater Habitat criteria for channel modified habitats.

Table 2. Waterbody use designations for the Grand River basin. Changes to existing use designations appear in *bold italics*; designations based on the 1978 water quality standards for which results of biological field assessments are now available appear as plus signs to the right of existing markers.

	Use Designations												
Stream Segment	Aquatic Life Habitat							Water Supply			Recreation		
	S R W	W WH	E W H	M W W	S S H	C W H	L R W	P W S	A W S	I W S	B W	P C R	S C R
Marsh Creek		*							*	*		*	
Mentor Creek and Mentor Marsh	*	*							*	*		*	
Black Brook		*							*	*		*	
Heisley Creek		*							*	*		*	
Grand River - Rt. 322 in Ashtabula Co. to Norfolk and Western railroad trestle south of Painesville	*	*							*	*		*	
U.S. 422 (RM 95.5) to SR 608 (RM 91.8)	*	*							*	*		*	
SR 608 to Sweitzer Rd (RM 42.4)	*	*/+							*	*		*	
<i>Sweitzer Road (RM</i> 42.4) - to S.R. 2 (RM 5.5)	*	*							*	*		*	
Harpersfield Dam (RM 30.9) to S.R. 2			+		0				*	*		*	
- S.R. 2 to mouth		*			0				*	*		*	
- all other segments		*							*	*		*	
Pebble Branch		*							*	*		*	

	Use Designations													
Stream Segment		Aquatic Life Habitat							Water Supply			Recreation		
	S R W	W WH	E W H	M W W	S S H	C W H	L R W	P W S	A W S	I W S	B W	P C R	S C R	
Red Creek		*							*	*		*		
Kellogg Creek		*/+							*	*		*		
Ellison Creek		*							*	*		*		
Big Creek		*/+							*	*		*		
- from Girdled Rd (RM 7.1) to mouth		*/+							*	*		*		
Gordon Creek		*							*	*		*		
East Creek		*							*	*		*		
Aylworth Creek		*							*	*		*		
Jenks Creek		*/+							*	*		*		
Cutts Creek		*							*	*		*		
Paine Creek from Paine Falls (RM 2.9 to mouth		*							*	*		*		
all other segments		*							*	*		*		
Bates Creek		*							*	*		*		
Phelps Creek		*							*	*		*		
Talcott Creek		*							*	*		*		
Griswold Creek		*							*	*		*		
Mill Creek		*							*	*		*		
Coffee Creek		*							*	*		*		
Center Creek		*							*	*		*		

	Use Designations												
Stream Segment	Aquatic Life Habitat Water Supply Recr							eation	l				
	S R W	W WH	E W H	M W W	S S H	C W H	L R W	P W S	A W S	I W S	B W	P C R	S C R
Mill Creek		*/+							*	*		*	
Cemetery Creek - Jefferson STP to confluence with Mill Creek		*L/+							*	*		*	
- all other segments		*/+							*	*		*	
Griggs Creek		*							*	*		*	
Askue Run		*							*	*		*	
Peters Creek		*							*	*		*	
Bronson Creek		*							*	*		*	
Trumbull Creek		*							*	*		*	
Spring Creek		*							*	*		*	
Three Brothers Creek		*							*	*		*	
Badger Run		*							*	*		*	
Rock Creek		*/+							*	*		*	
Plum Creek		*							*	*		*	
Sugar Creek		*							*	*		*	
Whetstone Creek		*							*	*		*	
Lebanon Creek		*							*	*		*	
Shanty Creek		*							*	*		*	
Crooked Creek		*							*	*		*	
Mud Creek		*							*	*		*	

	Use Designations												
Stream Segment		Aquatic Life Habitat						Water Supply			Recreation		
	S R W	W WH	E W H	M W W	S S H	C W H	L R W	P W S	A W S	I W S	B W	P C R	S C R
Hoskins Creek		*							*	*		*	
Indian Creek		*							*	*		*	
Montville Ditch		*							*	*		*	
Phelps Creek		*/+							*	*		*	
North Branch		*							*	*		*	
South Branch		*							*	*		*	
Mill Creek		*							*	*		*	
Garden Creek		*							*	*		*	
Swine Creek		*/+							*	*		*	
Grapevine Creek		*							*	*		*	
Andrews Creek		*							*	*		*	
Plum Creek		*							*	*		*	
Coffee Creek		*							*	*		*	
Baughman Creek		*/+							*	*		*	
Center Creek		*							*	*		*	
Mud Run		*							*	*		*	
Dead Branch		*							*	*		*	
McKinley Creek		*							*	*		*	
Big Creek		*							*	*		*	

STUDY AREA

The Grand River watershed drains an area of 712.1 square miles or 455,744 square acres (Sæ Figures 2-A and 2-B). The Grand River mainstem, 98.5 river miles in length, originates in Parkman Township, and flows east into Trumbull County, then north into Ashtabula County, then west into Lake County, where it flows into Lake Erie. Theaverage gradient is 5.6 feet per mile (from an elevation of 1117 to 573 feet above mean sea level). Principal tributaries to the Grand River include Big Creek, Paine Creek, Mill Creek and Rock Creek. Impoundments within the Grand River watershed basin include Lake Roaming Rock, Armington Lake, Lake Cardinal and Cloverdale Lake; all are relatively small recreational waters. This watershed basin also includes Mentor Marsh, which is near the mouth of the river. Specific sampling locations are listed in Table 3.

The Grand River watershed is situated within the gently rolling dissected glacial plateau of the Erie-Ontario Lake Plain ecoregion. The majority of streams in this watershed are perennial During the Pleistocene era varying thicknesses of glacial drift were deposited over Pennsylvanian shales and Mississippian sandstones. The majority of this watershed exists in ground moraines and end moraines. Only the northern section of this watershed lies in beach ridge deposited sediments. The preglacial valleys within the underlying bedrock shale and sandstone were also buried by glacial clays, sands and gravels. This watershed exhibits a mosaic of urban development, cropland, pasture, livestock, woodland and forest. Some oil/gas extraction occurs within the watershed.

The Grand River is one of only two rivers in Ohio designated as a State wild and scenic river The scenic designation is 23 miles in length, from U.S. 322 downstream to the Harpersfield covered bridge in Ashtabula County. The riparian corridor consists primarily of elm, ash, maple, pine, pin oak and swamp white oak. The wild and scenic designation is 33 miles in length, from the Harpersfield covered bridge downstream to the Norfolk and Western railroad trestle in Lake County. This lower section is characterized by steeply-incised valley walls of chagrin shale. The Lake Metro Parks has acquired over 3,500 acres along the Grand River and conjoining tributaries Over 95% of this property is in a natural state and will remain as such through the stewardship program.

Ohio Water Quality Standards (WQS;OAC 3745-1-25) list the current use designations for the Grand River system as: agricultural and Industrial Water Supply and Primary Contact Recreation The mainstem in Geauga and Trumbull Counties, plus all tributaries to the Grand River have been designated Warmwater Habitat. The section of the mainstem identified as scenic has been designated Warmwater Habitat and State Resource Waters. The section of the mainstem identified as wild as been designated Exceptional Warmwater Habitat, State Resource Water and Seasonal Salmonid Habitat. Groundwater yields in the Grand River can range from less than 5 gallons per minute to 100 gallons per minute, depending on depth, thickness of aquifer and proximity to the source of recharge. In general, the groundwater yields are less than 5 gallons

per minute around most of the mainstem.

The upper watershed remains relatively undeveloped due to the extensive swamps bordering the river, and distance from large urban centers. The flood plain in the lower watershed has remained largely undeveloped due to steep walls of Chagrin shale. The major existing or potential environmental threats to the Grand River include the Diamond Shamrock waste lagoons near Painesville, the Old Mill superfund site in Rock Creek, the remediated New Lyme landfill superfund site currently in operation and maintenance, the Jefferson WWTP, and the Orwell WWTP. Population in the Grand River watershed has increased nearly 7% between 1980 and 1990, while the population in northeast Ohio as a whole has decreased. Changing land use patterns are altering the types and rates of nonpoint source pollutants impacting the Grand River.

Nonpoint Sources

The quality of surface waters in Ohio have generally improved over the past 25 years. Credit must go to private industries and government entities who have improved point source discharges and upgraded sewage treatment facilities. Now Ohio's major water pollutants primarily come from nonpoint sources; storm water run-off which transports contaminants from broad areas of a landscape. Specific nonpoint source pollution concerns within the Grand River watershed include:

Construction Sites

Construction of individual houses, residential developments, commercial properties and industrial sites are occurring throughout this watershed. Uncontrolled storm water runoff from construction sites can carry tons of soil into local streams, and devastate aquatic communities. If the excavated area is to exceed 5 acres an NPDES permit must be filed with the Ohio EPA and a storm water management plan developed.

Farms, Orchards and Nurseries

The Grand River basin includes numerous farms, orchards and nurseries. Plowing fields to the edge of waterways can cause significant soil loss into local streams. Sudden sediment loads can totally change stream bottom habitat, which directly impacts the entire aquatic community. Over application or untimely application of herbicides/pesticides can stress or eliminate aquatic organisms. Fertilizer run-off can cause aquatic plants and algae to grow at high rates, creating an imbalance in the ecosystem.

Local Soil and Water Conservation Districts have been working with farms and nurseries on conservation practices. The districts have encouraged practices such as no-till farming, animal waste storage structures, minimal usage of chemicals, filter stripping, livestockexclusion fencing, etc.. Many of these operators have discovered that new techniques may not only improve the environment, they often save time and money. Continuing education throughout the watershed is necessary.

Failing Septic Systems

A major portion of the Grand River watershed is not serviced by sanitary sewers. A high percentage of the septic systems in this watershed are well beyond 20 years in age (the expected life of a system). Additionally, high percentages of clay content in the local soils contribute to the high failure rates of septic systems. Inadequately treated sewage can impact the water quality of roadside ditches, wetlands, streams and lakes. This can cause health hazards in drinking and recreational waters, decreased oxygen levels, excessive aquatic plant growth and offensive odors Areas identified with large concentrations of failing septic systems include:

Lake County - Imperial Meadows Development (Painesville Township),

Trumbull County - Bristol,

Ashtabula County - Austinburg (Coffee Creek subwatershed); Driftwood Trailer Park and surrounding houses (Wheeler Creek subwatershed), and

Geauga County - Parkman.

Data indicating how many failing systems are within this watershed is currently not available.

Urban Runoff

Large and small communities have storm sewer systems which discharge to all of the watershed basins. Urbanized pollutants (*e.g.*, road salts, vehicle fluids, litter and debris, lawn chemicals, pet wastes) can be detrimental to local water quality. City ordinances and programs which help control these concerns are important. Educating the community at large about these effects is very important in establishing support for, and compliance with existing or proposed ordinances and programs. Furthermore, watersheds with greater than 25% of their area in impervious surfaces are not likely to support viable WWH biological communities (citation 1996).

Sanitary Landfills

Up to the mid 1970s it was common for every community and township to have at least one garbage dump. Many of these dumps closed when state regulations required licensing and daily cover. Some of these abandoned garbage dumps certainly continue to degrade surface waterand groundwater. The garbage dumps which survived the mid 1970s evolved into sanitary landfills. More stringent state regulations continue to upgrade all existing sanitary landfills. Leachate from closed and operating landfills can negatively impact local groundwater quality. Major sanitary landfills in this watershed are listed by county.

Lake County- Lake County Baler near Painesville

Ashtabula County - Daugherty Sanitary Landfill (Cowles Creek subwatershed) New Lyme Landfill (now in superfund operation and maintenance).

Trumbull County - None

Geauga County - None

Portage County - None

Timber Harvesting Operations

Heavy timbering activities are occurring in the Grand River watershed basin. Poor road layout and construction can contribute enormous volumes of sediment during active operations. If the timber has been over harvested, erosion will continue until a natural vegetative cover has been established. Professional foresters are available to monitor and educate timber harvesting operations.

Oil and Gas Extraction

Hundreds of oil and gas wells have been developed in this watershed basin. Oil and brine spills from a well or tank can devastate a local waterway. The Ohio Department of Natural Resources Division of Oil and Gas and the Ohio EPA Division of Emergency and Remedial Response have jurisdiction over spills.

Riparian Corridor Protection

Vegetation along the embankments of streams and lakes offers many benefits including stream bank stabilization, filtration of run-off waters, food source for fish and wildlife, cooler water temperatures, and habitat enhancement. Conservation easements, land trusts, education and responsible legislation are valuable tools for riparian corridor protection. Currently the Grand River Partners have a Section 319 grant and Nature Works money for obtaining conservation easements. These major nonpoint source activities all contribute to the water quality in this watershed basin. Educating public officials and local citizens abut nonpoint source issues is imperative. Developing watershed plans and implementing best management practices is equally important. By establishing committed partnerships improved, water quality in Ohio can be accomplished. Table 3. Sampling locaitons in the Grand River study area, 1995 (C - conventional water chemistry, C₀ - conventional plus organics; S - sediment metals, additional scans noted by the following subscripts: v = volatile organic compounds, b = base neutral acid extractable compounds, p = pesticide/polychlorinated biphenyls; B - benthic macroinvertebrates, F - fish, D - Datasonde[®]).

Stream/	Type of	, ,	,	USGS 7.5 Minute
River Mile	Sampling	Latitude/Longitude	Landmark	Quadrangle Map
Grand River	r			
95.4	B,C	41 21 10 / 81 02 21	UST U.S. 422	Garrettsville
94.3	F	41 21 24 / 81 01 23	Ust Hobart Rd.	Garretsville
83.5	B,F,C,S_{o}	41 24 52 / 80 54 58	Hyde Rd.	West Farmington
65.9	F,C,S	41 32 04 / 80 54 04	Ust US 322	Windsor
65.8	В	41 32 09 / 80 54 04	Dst US 322	Windsor
56.0	В	41 39 01 / 80 52 11	Schaffer Rd.	East Trumbull
52.7	B,F	41 38 12 / 80 53 24	Callender Rd.	East Trumbull
44.7	В	41 41 48 / 80 53 39	Fobes Rd.	East Trumbull
42.4	С	41 42 36 / 80 52 11	Sweitzer Road	East Trumbull
39.9	F	41 43 26 / 80 52 07	Cork Cold Springs Rd.	East Trumbull
36.3	F,C,S	41 45 19 / 80 52 07	Tote Road	Ashtabula South
34.0	F,C	41 45 30 / 80 54 30	Sexton Rd.	Geneva
32.9	В	41 45 14 / 80 55 07	Dst Mechanicsville	Geneva
28.4	B,F,C	41 45 27 / 80 58 14	Brandt Rd.	Geneva
22.6	В	41 44 27 / 81 02 49	Ust SR 528	Thompson
22.1	F,C	41 44 32 / 81 03 05	Dst SR 528	Thompson
13.6	B,C	41 43 32 / 81 11 09	Dst Vrooman Rd.	Painesville
13.4	F	41 43 47 / 81 11 06	Dst Vrooman Rd.	Painesville
8.5	B,C,D	41 43 09 / 81 13 39	Dst SR 84	Painesville
8.4	F	41 43 16 / 81 13 58	Dst SR 84	Painesville
6.2	B,C,F,S _o	41 44 03 / 81 14 09	@ Recreation Park	Painesville
Big Creek				
16.3	С	41 35 03 / 81 11 25	Ust Chardon WWTP	Chardon
16.2	B,F,D	41 35 20 / 81 11 30	Ust Chardon WWTP	Chardon
16.0	В	41 35 25 / 81 11 28	Dst Chardon WWTP	Chardon
15.9	F	41 35 24 / 81 11 30	Dst Chardon WWTP	Chardon
15.8	С	41 35 28 / 81 11 26	Dst Chardon WWTP	Chardon
15.1	D	41 35 59 / 81 11 48	Adj residential area	Chardon
14.2	B,C	41 36 19 / 81 11 59	Ust Woodin Road	Chardon

Table 3. Continued.

Table 5. Co				
Stream/	Type of			USGS 7.5 Minute
River Mile	Sampling	Latitude/Longitude	e Landmark	Quadrangle Map
Big Creek -	continued.			
13.9	F,D	41 36 26 / 81 12 02	Dst Woodin Road	Chardon
9.5	B,F,D	41 38 52 / 81 11 18	Ust SR 608	Chardon
5.2	F	41 40 40 / 81 11 38	Adj Cascade Rd	Painesville
5.0	F,C	41 40 49 / 81 11 58	Ust Williams Rd	Painesville
2.5	B,C,F,D	41 41 09 / 81 13 24	Ust Fry Rd	Painesville
Jenks Creek	k (trib. to Big	Creek)		
0.1	F,B _q , C	41 37 51 / 81 12 17	@ Robinson Rd	Painesville
Mill Creek				
18.2	F,B,C,S _o	41 44 16 / 80 43 54	Dst Netcher Rd	Dorset
12.1	B	41 46 54 / 80 45 50	Ust SR 46	Ashtabula South
10.0	F,C,S _o	41 45 44 / 80 47 25	Ust Doyle Rd	Ashtabula South
Cemetary C	reek			
2.5	F,B,C	41 44 38 / 80 45 48	Ust Market St	Jefferson
2.1	C	41 44 45 / 80 46 11	Dst Chestnut St	Jefferson
1.3	F	41 44 39 / 80 46 50	Ust Poplar St	Jefferson
1.25	B,C	41 44 40 / 80 46 55	Dst Poplar St	Jefferson
Baughman	Creek			
4 .1	В	41 24 37 / 80 52 07	Ust SR 45	Bristolville
3.3	C,S _o	41 25 10 / 80 52 38	Messic Rd	West Farmington
3.0	F	41 25 05 / 80 52 50	Messic Rd	West Farmington
Rock Creek				
0.8	F,B,C	41 39 38 / 80 51 56	Union Cemetary	Jefferson
Paine Creek	t			
0.5	B,C	41 43 01 / 81 10 14	Ust Seely Rd	Painesville
0.3	F	41 43 10 / 81 10 21	Dst Seely Rd	Painesville
Phelps Cree	k			
5.3	F,B,C	41 42 39 / 80 57 50	Adj Wiswell Rd	Windsor
Swine Creel	k			
5.2	F,B,C	41 25 20 / 80 57 20	Ust SR 534	West Farmington

METHODS

All chemical, physical, and biological field, laboratory, data processing, and data analysis methodologies and procedures adhere to those specified in the Manual of OhioEPA Surveillance Methods and Quality Assurance Practices (Ohio Environmental Protection Agency 1989a) and Biological Criteria for the Protection of Aquatic Life, Volumes I-III (Ohio Environmental Protection Agency 1987a, 1987b, 1989b, 1989c), and The Qualitative Habitat Evaluation Index (QHEI): Rationale, Methods, and Application (Rankin 1989, 1995) for aquatic habitat assessment. Chemical, physical and biological sampling locations are listed in Table xx.

Determining Use Attainment Status

Use attainment status is a term describing the degree to which environmental indicators are either above or below criteria specified by the Ohio Water Quality Standards (WQS; Ohio Administrative Code 3745-1). Assessing aquatic use attainment status involves a primary reliance on the Ohio EPA biological criteria (OAC 3745-1-07; Table 7-17). These are confined to ambient assessments and apply to rivers and streams outside of mixing zones. Numerical biological criteria are based on multimetric biological indices including the Index of Biotic Integrity (IBI) and modified Index of Well-Being (MIwb), indices measuring the response of the fish community, and the Invertebrate Community Index (ICI), which indicates the response of the macroinvertebrate community. Numerical endpoints are stratified by ecoregion, use designation, and stream or river size. Three attainment status results are possible at each sampling location - Full, partial, or non-attainment. Full attainment means that all of the applicable indices meet the biocriteria. Partial attainment means that one or more of the applicable indices fails to meet the biocriteria. Non-attainment means that none of the applicable indices meet the biocriteria or one of the organism groups reflects poor or very poor performance. An aquatic life use attainment table (see Table 1) is constructed based on the sampling results and is arranged from upstream to downstream and includes the sampling locations indicated by river mile, the applicable biological indices, the use attainment status (*i.e.*, full, partial, or non), the Qualitative Habitat Evaluation Index (QHEI), and comments and observations for each sampling location.

The attainment status of aquatic life uses (*i.e.*, Full, partial, and non-attainment) is determined by using the biological criteria codified in the Ohio Water Quality Standards (WQS; Ohio Administrative Code [OAC] 3745-1-07, Table 7-17). The biological community performance measures used include the Index of Biotic Integrity (IBI) and Modified Index of Well-Being (MIwb), based on fish community characteristics, and the Invertebrate Community Index (ICI) which is based on macroinvertebrate community characteristics. The IBI and ICI are multimetric indices patterned after an original IBI described by Karr (1981) and Fausch*et al.* (1984). The ICI was developed by Ohio EPA (1987b) and further described by DeShon (1995). The MIwb is a measure of fish community abundance and diversity using numbers and weight information and is a modification of the original Index of Well-Being originally applied to fish community information from the Wabash River (Gammon 1976; Gammon*et al.* 1981).

Performance expectations for the principal aquatic life uses in the Ohio WQS (Warmwater Habitat [WWH], Exceptional Warmwater Habitat [EWH], and Modified Warmwater Habitat [MWH]) were developed using the regional reference site approach (Hughes *et al.* 1986; Omernik 1987). This fits the practical definition of biological integrity as the biological performance of the natural habitats within a region (Karr and Dudley 1981). Attainment of the aquatic life use is full if all three indices (or those available) meet the applicable biocriteria, partial if at least ore of the indices does not attain and performance is fair, and non-attainment if all indices fail to attain or any index indicates poor or very poor performance. Partial and non-attainment indicate that the receiving water is impaired and does not meet the designated use criteriaspecified by the Ohio WQS.

Habitat Assessment

Physical habitat was evaluated using the Qualitative Habitat Evaluation Index (QHEI) developed by the Ohio EPA for streams and rivers in Ohio (Rankin 1989, 1995). Various attributes of the habitat are scored based on the overall importance of each to the maintenance of viable, diverse, and functional aquatic faunas. The type(s) and quality of substrates, amount and quality of instream cover, channel morphology, extent and quality of riparian vegetation, pool, run, and riffle development and quality, and gradient are some of the habitat characteristics used to determine the QHEI score which generally ranges from 20 to less than 100. The QHEI is used to evaluate the characteristics of a stream segment, as opposed to the characteristics of a single sampling site. As such, individual sites may have poorer physical habitat due to a localized disturbance yet still support aquatic communities closely resembling those sampled at adjacent sites with better habitat, provided water quality conditions are similar. QHEI scores from hundreds of segments around the state have indicated that values greater than 60 are generally conducive to the existence of warmwater faunas whereas scores less than 45 generally cannot support a warmwater assemblage consistent with the WWH biological criteria. Scores greater than 75 frequently typify habitat conditions which have the ability to support exceptional warmwater faunas.

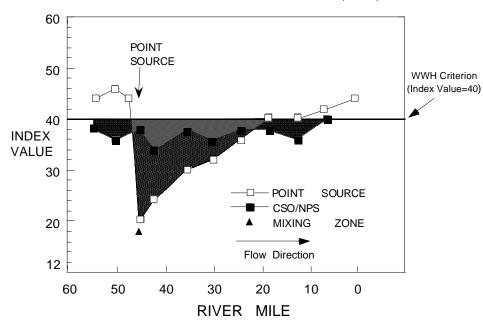
Macroinvertebrate Community Assessment

Macroinvertebrates were sampled quantitatively using multiple-plate, artificial substrate samplers (modified Hester/Dendy) in conjunction with a qualitative assessment of the available natural substrates. During the present study, macroinvertebrates collected from the natural substrates were also evaluated using an assessment tool currently in the testing and refinement phase. This method relies on tolerance values derived for each taxon, based upon the abundance datafor that taxon from artificial substrate (quantitative) samples collected throughout Ohio. To determine the tolerance value of a given taxon, ICI scores at all locations where the taxon has been collected are weighted by its abundance on the artificial substrates. The mean of the weighted ICI scores for the taxon results in a value which represents its relative level of tolerance on the 0 to 60 scabe of the ICI. For the qualitative collections in the Grand and Ashtabula River study areas, the median tolerance value of all organisms from a site resulted in a score termed the Qualitative Community Tolerance Value (QCTV). The QCTV shows potential as a method to supplement

existing assessment methods using the natural substrate collections. Use of the QCTV in evaluating sites in the Grand and Ashtabula study areas was restricted to relative comparisons between sites and was not unilaterally used to interpret quality of the sites or aquatic life use attainment status.

Fish Community Assessment

Fish were sampled using wading or boat method pulsed DC electrofishing gear. The wading method was used at a frequency of one or two samples at each site. The boat method was used at a frequency of two samples at each site except at RM 28.1 of the Grand River where the boat method was used on the first pass, and the wading method on the second pass due to low flows.


Area of Degradation Value (ADV)

An Area Of Degradation Value (ADV; Rankin and Yoder 1991; Yoder and Rankin 1995) was calculated for the study area based on the longitudinal performance of the biological community indices. The ADV portrays the length or "extent" of degradation to aquatic communities and is simply the distance that the biological index (IBI, MIwb, or ICI) departs from the applicable biocriterion or the upstream level of performance (Figure 3). The "magnitude" of impact refers to the vertical departure of each index below the biocriterion or the upstream level of performance. The total ADV is represented by the area beneath the biocriterion (or upstream level) when the results for each index are plotted against river mile. The results are expressed as ADV/mile to normalize comparisons between segments, sampling years, and other streams and rivers.

Causal Associations

Using the results, conclusions, and recommendations of this report requires an understanding of the methodology used to determine the use attainment status and assigning probable causes and sources of impairment. The identification of impairment in rivers and streams is straightforwardthe numerical biological criteria are used to judge aquatic life use attainment and impairment (partial and non-attainment). The rationale for using the biological criteria, within a weight of evidence framework, has been extensively discussed elsewhere (Karr et al. 1986; Karr 1991; Ohio EPA 1987a,b; Yoder 1989; Miner and Borton 1991; Yoder 1991; Yoder 1995). Describing the causes and sources associated with observed impairments relies on an interpretation of multiple lines of evidence including water chemistry data, sediment data, habitat data, effluent data, land use data, and biological results (Yoder and Rankin 1995). Thus the assignment of principal causes and sources of impairment in this report represent the association of impairments (based on response indicators) with stressor and exposure indicators. The reliability of the identification of probable causes and sources is increased where many such prior associations have been identified, or have been experimentally or statistically linked togather. The ultimate measure of success in water resource management is the restoration of lost or damaged ecosystem attributes including aquatic community structure and function. While there have been criticisms of misapplying the metaphor of ecosystem "health" compared to human patient "health" (Suter 1993), in this document we are referring to the process for evaluating biological integrity and

causes or sources associated with observed impairments, not whether human health and ecosystem health are analogous concepts.

AREA OF DEGRADATION VALUE (ADV)

Figure 4. Graphic illustration of the Area of Degradation Value (ADV) based on the ecoregion biocriterion (WWH in this example). the index value trend line indicated by the unfilled boxes and solid shading (area of departure) represents a typical response to a point source impact (mixing zone appears as a solid triangle); the filled boxes and dashed shading (area of departure) represent a typical response to a nonpoint source or combined sewer overflow impact. The blended shading represents the overlapping impact of the point and nonpoint sources.

RESULTS AND DISCUSSION

Pollutant Loadings: 1985 - 1995

Grand River - Vari-Seal (RM 100.5)

Vari-Seal is a rubber extruding operation using a liquid sodium nitrate-nitrite salt bath for rubber curing. The facility has both contact and non-contact cooling water discharges. Sanitary wastes are disposed in an on-lot dissipation system. The cooling water treatment system consists of an aerated lagoon discharging to an unnamed ditch to the Grand River. Sanitary wastes are disposed in an on-lot dissipation system.

In 1989, Ohio EPA sampling showed a noticible increase in nitrates (from 1.49 to 4.63) in the Grand River downstream from the Vari-Seal discharge while there were no significant in-stream BOD and TSS increases. High iron concentrations in the facility's source water were noted causing stains in the treatment lagoon and discharge ditch. High, naturally occuring iron concentrations are common in the area as evidenced by the iron stains along the bedrock outcroppings in the Grand River.

The facility has reduced TSS loadings since 1992 with no obvious trend in nitrate-nitrite σ other pollutant loadings. One oil & grease violation was reported in June 1994. The treatment lagoon was short circuited in 1995 which resulted in elevated TSS, chlorine and nitrate-nitrite concentrations. Per a consent agreement, the facility submitted a best management practices plan to reduce spills and impact from on-site storage and use of salts. Also, contact cooling water is to be changed to a closed loop system. Therefore, only non-contact cooling water will be discharged.

Bioassay tests between 1991 and 1996 of the Vari-Seal effluent were not acutely toxic to fathead minnows. One test indicated toxicity at the nearfield instream site for fathead minnows but 100% effluent was not toxic. Eight of 12 effluent tests were acutely toxic to *Ceriodaphnia*.

Grand River - Parkman unsewered area (RM-98)

This small community (3,300 in the township) is unsewered. Many of the residential and commercial properties have no treatment systems and are connected directly to storm sewers which discharge to the Grand River. A developer has proposed to construct a new WWTP for a proposed subdivision. The new plant will allow existing homes in the community to connect to the proposed WWTP and eliminate the untreated or poorly treated discharges to the river.

Unnamed Tributary to Grand River - Nelson Ledges Estates WWTP (RM 94.72/1.59/0.4) The Nelson Ledges WWTP currently consists of a trash trap, aeration, chlorination and sludge storage. This plant is hydraulically overloaded which results in frequent violations of their NPDES discharge permit for cBOD5, TSS and D.O.. Findings and Orders were issued in 1994 to upgrade the facility.

Unnamed tributary to the Grand River - Village of Orwell WWTP (RM 62.6/2.6)

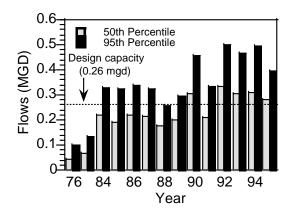
The Village of Orwell WWTP was built in 1968 and modified in 1981 and upgraded in 1992 to advanced secondary treatment. Design flow of the plant is 0.260 MGD (Figure 4). Current treatment processes include an aerated equilization basin, three oxidation ditches operated in parallel, settling, sludge storage tank and lagoon, and chlorination. The final effluent is discharged to an unamed tributary that enters the Grand River at RM 62.60. The WWTP has a long history of compliance problems with total suspended solids (TSS), five-day carbonaceous biochemical oxygen demand (cBOD₅), fecal coliform bacteria and ammonia-N (NH₅). Ohio EPA inspections and a citizen's complaint identified poor quality effluent (solids, gray discoloration, foam) from the facility.

Despite the compliance problems at the WWTP, average daily ammonia-N loadings reported by the Orwell WWTP have declined recently even though the average daily flows have increased (Figure 4). The ammonia-N reductions have resulted in dramatically lower reported ammonia-N concentrations in the unnamed tributary downstream from the facility's discharge. Average total phosphorus (Total P), total suspended solids (TSS) and five day carbonaceous biochemical oxygen demand (cBOD₅) loadings have remained fairly constant. However, the 95th percentile loadings for these parameters appear to be decreasing which indicates relatively better operation and maintenance of the WWTP (Figure 4).

The Village has a large volume industrial user, Kennametal, which discharges greater than one half of the wastewater flow (0.17 MGD) to the Orwell WWTP. Kennametal manufactures metal cutting inserts (e.g. drill bits) with tungsten carbide and titanium carbide coatings. The manufacturing process includes chemical vapor deposition, grinding and electropolishing. Their pretreatment permit includes limits for pH, fluoride, copper, molybdenum, and nickel.

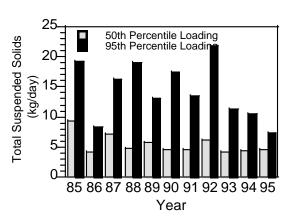
Increased flows may be attributed to acknowleged infiltration and inflow into the sanitary sewers or the Kennametal discharge. These low nutrient, high flow, discharges may be contributing to operating problems at the plant.

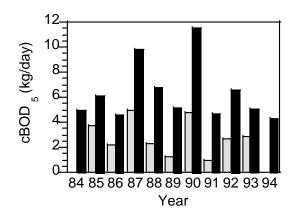
Rock Creek - New Lyme Landfill WWTP (RM 50.59/9.61/5.6)

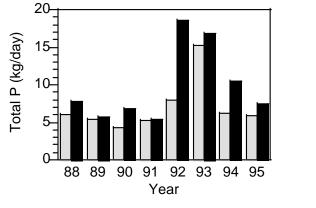

The New Lyme Landfill was a 42 acre disposal facility for residential, commercial and industrial wastes. The site is located at the headwaters of the Lebanon Creek (tributary to RockCreek) and Pymatuning Creek (tributary to the Shenango River) watersheds. The landfill wasclosed in 1979 by the Ashtabula County Health Department for inadequate disposal practices and for producing leachate that entered Lebanon Creek. A U.S. EPA remedial investigation was conducted in 1983-4 under CERCLA (aka. Superfund) and found various organic and inorganic contaminants as well as asbestos fibers at the site. As a result, remedial action was conducted to treat contaminated groundwater, prevent groundwater and rainfall from entering the wastes, and

100

1(


0.1


NH₃-N Loadings kg/day



50th Percentile

95th Percentile

848586878889909192939495

Year

Figure 5. Trends in 50th and 95th percentile flows and pollutant loadings by the Orwell WWTP to an unnamed tributary to the Grand River at RM 62.6. All graphs represent 3rd quarter data.

to minimize direct exposure to humans. A multilayer (synthetic liner, geotextile drainage net filter fabric, clay and soil) cap was constructed over the landfill. A new wetland was created on the site from a borrow pit of 700,000 CY of clay used for the cap. The Ohio Department of Natural Resources now manages the wetland. A groundwater extraction and treatmentsystem was installed as well as a gas collection and passive venting system .

Rock Creek - Old Mill Site WWTP (RM 50.59/1.82/0.3)

The Old Mill site covers a total of 13 acres in Rock Creek Village. This site was used for the storage of materials for the supposed manufacture of potting soil additives. Superfund monies were used for the Emergency Removal of 1200 drums of waste solvents, oils, resins and polychlorinated biphenyls (PCBs). Many of the drums were in poor condition and had leaked into the soil which required the excavation and off-site disposal of 80 yd² of contaminated soil. These removal activities occurred in 1981-2.

A Remedial Investigation was conducted in 1983–4. As a result, 1,1,1-trichloroethane (TCA) (6100 μ g/l), TCA degredation products, ethylbenzene, xylene, polynuclear aromatic hydrocarbons and heavy metals such as lead were found in soils and groundwater at the site. These findings resulted in the removal of an additional 12,100 yd⁶ of soils and the completion of a groundwater monitoring, extraction and treatment system in 1990. Additional trenches were constructed on site in 1992 to collect fugitive contaminants. Currently, groundwater at the site still exceeds drinking water maximum concentration limits.

The groundwater treatment system is an air stripping tower designed for a wastewater flow of 10 gpm and is expected to be needed for 30 years. The treated wastewater contains concentrations less than the laboratory method detection limit of $1.0 \,\mu g/l$ of dichloroethane, trichloroethane, trichloroethane and is discharged to an unnamed tributary to Rock Creek

Rock Creek - Village of Rock Creek WWTP (RM 50.59/1.1)

The Village of Rock Creek WWTP is a 0.07 MGD plant built in 1990. Treatment consists of extended aeration, activated sludge, settling, slow surface sand filters, aerated sludge holding chlorination, dechlorination and sludge drying beds. A 1992 inspection indicated problems with sludge handling at the facility.

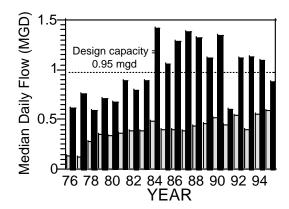
In June, July and August of 1993 there were permit violations for ammonia-N (9.3, 7.84, 1.83 -30 day average and 32, 5, 23.1 for 7day average). Fecal coliform bacteria permit violations occurred in August 1993. Dissolved oxygen violations occurred in June (21 of 30 days), July (19 of 31), August (16 of 31), September (9 of 30) and October (10 of 31) 1993.

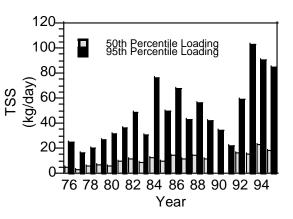
Rock Creek - Village of Roaming Shores WWTP (RM 50.59/2.6)

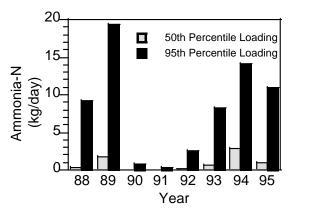
The Roaming Shores WWTP was built 1968 and upgraded in 1987. The facility has a design flow of 0.120 MGD. Treatment includes comminutors, bar screen, extended aeration/ activated sludge, settling, polishing pond, aerobic sludge digestion, chlorination and dechlorination.

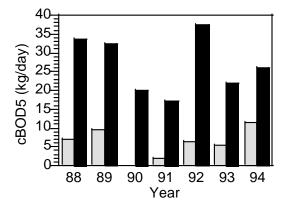
The plant usually produces a good quality effluent and is in general compliance with their NPDES permit.

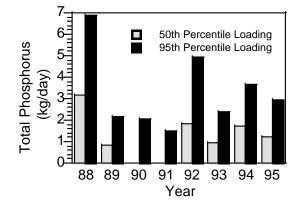
Cemetery Creek - Jefferson Village WWTP (RM 41.28/8.42/1.65)

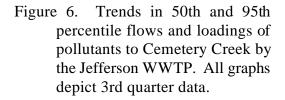

The Village of Jefferson WWTP was built in the 1950s as an activated sludge plant. It was improved and expanded to 0.95 MGD in 1974 (Figure 5). Treatment processes include comminutor and bar screens, flow equalization, primary settling, aeration, secondary settling chlorination, aerobic sludge digestion, belt filter press and sludge drying beds. Cemetery Creek is a zero low flow stream. During low flow conditions, the creek essentially begins at the WWTP discharge and any malfunctions at the plant can have an immediate adverse impacton the stream. Total suspended solids, $cBOD_5$, total phosphorus and ammonia-N loadings have increased at the Jefferson WWTP, especially in the last four years.


The facility has a long history of operation and maintenance problems that have resulted in bypasses of treatment processes, discharge of sludge to the stream and violation of their NPDES permit for ammonia-N, chlorine, TSS, $cBOD_5$ and phosphorus. Past MOR data is also suspect because of laboratory problems found during inspections. Ohio EPA offered, and the Village accepted, operation assistance at the WWTP in March 1993. The operation assistance team made several recommendations including: flow monitor calibration, better charting of current laboratory and process control data, investigate and correct inflow and infiltration (I&I) problems, redesigning secondary clarifiers, rerouting waste activated sludge, reconfiguring scumtrough, and an alternative chlorine delivery system.


Cemetery Creek - Poplar Oil Landfill WWTP (RM 41.28/8.42/1.25)


This site ia located downstream from the Jefferson WWTP adjacent to Cemetery Creek . The facility was originally the site for greenhouses used to grow tomatoes. The owner accepted waste oil for boiler fuel to heat the greenhouses. The waste oil contained solvents and PCBs and doxin was produced in the oil fired boilers. Wastes from treatment of the waste oils and runoff from the facility were treated in on–site ponds and discharged to Cemetery Creek. The operation resulted in Ohio EPA enforcement actions in the late 1970's for air and wastewater emisions Several emergency removal actions were conducted at the site to prevent oils from spilling into the creek. Waste oil generators removed 250,000 gallons of waste oil in 1986.


Final cleanup of the site resulted in the removal of an additional 6200 gallons of oil, the treatment and disposal of 164,360 gallons of wastewaster and the incineration of 280,000 gallons of waste and 3000 CY of contaminated soils and sludges. Remaining wastes (including dioxin wastes) and ashes were buried under a multilayer cap and the site was prepared to prevent groundwater infiltration into the site. The site is considered remediated and there is no curent on-site treatment.



Grand and Ashtabula River Basins TSD

January 7, 1997

A 1994 study by the Village revealed severe I&I inputs to the sanitary sewer system including storm water (roof drain) connections. Consent Orders were issued in 1987 and 1995 to address operation problems at the facility that resulted in violation of their NPDES permit limits. A schedule of compliance for the Findings and Orders were amended several times due to engineering problems encountered by the Village. New construction to comply with the 1995 Order was completed in January 1996.

Big Creek - Chardon Village WWTP (RM 9.32/16.1)

The Chardon Village Waste Water Treatment Plant was originally built in 1916 and the most recent upgrade to the facility was completed in 1989. The current treatment facility consists of: flow equalization basins, bar screens, grit chamber, comminutor, primary settling, trickling filters, intermediate settling, activated sludge-nitrification, phosphorus removal, final settling, sand filters, and chlorination. Sludge is processed in aerobic digestors, sludge drying beds and a belt filter press. The Village installed de-chlorination in June 1995 one year prior to requirements in their permit.

In 1988, Chardon was referred to the Attorney General's Office for not meeting the final effluent limits for ammonia-N established in the NPDES permit compliance schedule. The Village claimed there was insufficient time in the compliance schedule to meetthe final effluent numbers. A 1989 consent agreement established June 1, 1989 as the date to comply with the permit limits. In 1990 Ohio EPA requested a new General Plan citing expansion of the Chardon service area and anticipated increased flows. In 1991, the Village responded to Ohio EPA's recommendation and stated that the existing capacity at the plant should be sufficient for the next ten years Monthly average flows for some months in 1993 and 1994 exceeded the design flow of 1.1 MGD (Figure 6). Chardon submitted a General Plan to Ohio EPA in 1994 for expansion from 1.1 to 2.0 MGD.

A new General Plan for the Chardon WWTP was reviewed by Ohio EPA in 1995. The Agency is awaiting biological and water quality modeling information from the 1995 sampling prior to issuing a decision on the General Plan. The Plan calls for replacing the current treatment system with a new treatment design which includes an equalization basin, oxidation ditch, sand filters, chlorination and de-chlorination. Existing aeration tanks will be converted to sludge holding tanks.

Dramatic reductions in ammonia-N, $cBOD_5$ and TSS occurred after the new processes in 1989 were brought on line (Figure 6). Also, the plant has reduced nitrate-nitrite loadings following implementation of nitrification. Mercury, copper and zinc are elevated in the WWTP effluent. Chardon currently does not have metal limits in the permit. Bioassay tests performed by the facility indicate there is no acute toxicity in the Chardon WWTP discharge.

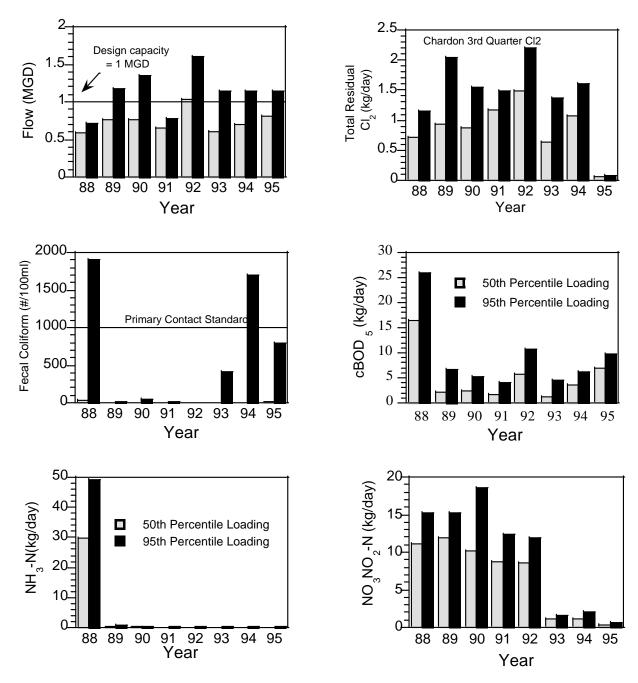


Figure 7. Trends in 50th and 95th percentile flows and pollutant loadings to Big Creek by the Chardon WWTP. All graphs depict 3rd quarter loadings.

Cutts Creek - Terrace Glen Estates WWTP (RM 9.32/15.72/2.3)

This treatment plant is located on Woodin Road in Hambden Township and has adesign flow of 0.02 MGD for 99 connections. Treatment systems include trash trap, extended aeration, settling, dosing chamber, surface sand filter and chlorination.

The WWTP has had a history of operational problems which has resulted in citizen's complaints and frequent violations of ammonia-N, TSS and fecal coliform bacteria. Severe infiltration and inflow causes plant bypasses during storm runoff events. Sludge handling has also been problematic and sludge deposits have been observed in the stream. The facility has also failed to submit required monthly operating reports.

Unnamed Tributary to East Creek - Lake County Sunshine Acres WWTP (RM 9.32/6.25/1.48/1.2)

This treatment facility is located at Lester Drive and S.R. 86 in Leroy Township. It was built in 1961 and has a design flow of 0.020 MGD. Treatment consists of a bar screen (changed from a comminutor in 1988), extended aeration, settling, chlorination, sand filters and a sludge holding tank. The sand filters were installed in 1988 in response to TSS and $cBOD_5$ violations. Diffused air was added in 1990 to raise the low dissolved oxygen in the effluent. The 1994 average annual flow for the WWTP was 0.007 MGD from 48 connections.

Big Creek - Lake County Rio Grande WWTP (RM 9.32/4.04/1.18/1.3)

This treatment plant was built in 1976 and is located on Leroy Center Road in Concord Township. Design flow for this plant is 0.0215 MGD. Treatment includes comminutoin, extended aeration, sludge holding, rapid sand filtration and chlorination. Additional diffused air was added in 1990 to raise DO. The 1994 average annual flow for the WWTP was 0.007 MGD for 33 connections. This facility discharge is in general compliance with their permit but failed to report some temperature and total phosphorus data in 1994 and 1995.

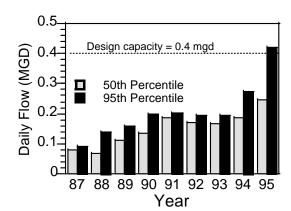
Big Creek - Lake County Far Hills WWTP (RM 9.32/2.85/1.25)

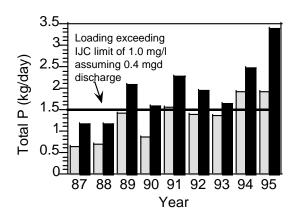
This treatment plant was built in 1975 and is located on Christian Drive in Concord Township. Design flow for this plant was 0.040 MGD. Treatment systems included bar screen, extended aeration, sludge holding tank, rapid sand filter, chlorination and surface sand filter (for rapid sand backwash). This plant was susceptible to upsets and had reported occasional violations of TSS, cBOD5, DO, NH3 and fecal coliform bacteria. The 1994 average annual flow for the WWTP was 0.0520 MGD. This plant was abandoned in January 1995 and converted to a pump station to the Mentor WWTP.

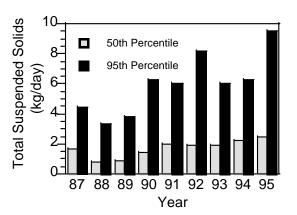
Kellogg Creek - Lake County Concord Kellogg WWTP (RM 9.32/0.17/1.2)

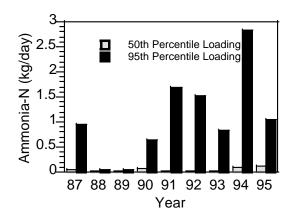
This activated sludge treatment plant is located on Cheryl Drive in Concord Township. The facility was built in 1978 and is designed for 0.037 MGD. Treatment consists offine and course screening, aeration, settling, sand filtration, chlorine contact and sludge holding. Thisplant has been susceptible to upsets and improvements in operation and maintenance in 1990 have reduced

problems at the plant. The 1994 average annual flow for the WWTP was 0.0230 MGD for & connections.


Grand River - Lake County Heatherstone WWTP (RM 8.8)


The Heatherstone WWTP was constructed in 1975 and discharges to the GrandRiver at RM 8.8. The discharge is near the downstream boundary (State Route 84 at RM 8.5) of the State Resource Water Use Designation for the Grand River. The treatment system consists of comminution, aeration, sludge holding and drying beds, rapid sand filters, and chlorination. Design flow for he WWTP is 0.400 MGD. The average annual flow is 0.196 MGD. There is no phosphorus removal.


The facility failed to meet deadlines for October 1995 dechlorination (sodium bisulfate) as stated in their General Plans. The facility generally meets effluent limits, but has had several monitoring frequency violations and several scattered ammonia-N, total suspended solids (TSS), fecal coliform bacteria and total residual chlorine violations from 1984 to 1991. Loadings of cBOD₅ have increased more than can be attributed to increased in flow. Also, 95th percentile ammonia N loadings show an exponential increase in ammonia-n loading to the Grand River (Figure 7) Inspection by Ohio EPA staff indicated improper sludge wasting as the cause of the ammonia-N and TSS violations, and the consequent additional cBOD₅ loadings. Treatment plant removal efficiencies have remained constant for TSS, and total phosphorus concentrations, resulting in increased loadings with increased flows. Lake County has stated that hey will probably request an expansion at Heatherstone in the near future for increased flow from the current 0.4 MGD design capacity to flows ranging from 2.0 to 4.0 MGD.


Red Creek - Lake County Park Estates WWTP (RM 4.82/2.78)

This plant was eliminated in August 1994 and is now a pump station to the Heatherstone WWTP. The plant design was for 0.055 MGD and was built in 1977. Treatment consisted of extended aeration, settling, chlorination, rapid sand filters and a sludge holding tank . In 1990, the sludge collection system was replaced and the filters were reconditioned and diffused air was added to raise low DO in the effluent. The 1994 average annual flow for the WWTP was 0.0820 MGD for 143 connections.

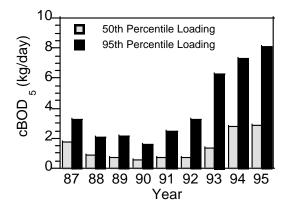


Figure 8. Trends in 50th and 95th percentile flows and pollutant loadings by the Heatherstone WWTP to the Grand River at RM 8.5. All graphs represent 3rd quarter data.

Spills, Overflows, and Unauthorized Releases

Pollutant discharges from spills are not a significant source of lethal and sublethal stresses for aquatic communities in the Grand River watershed. Only six incidents have been recorded in the Grand River Basin by the Ohio EPA Emergency Response Section during 1995. Petroleum related spills released 6240 gallons and accounted for 99.9% (5 events) of the spills. Crude oil was the most common petroleum contaminant spilled with one spill near West Farmington responsible for 6000 of the 6340 gallons of materials spilled in 1995. The only non-petroleum related "spill" reported in 1995 was 100 gallons of leachate from sawdust piles at a saw mill Overflows, permit violations, and other unauthorized releases to Cemetery Creek from the Jefferson WWTP and sewer system were chronic problems until the expansion at the facility was completed.

Fish Kills

A review of Water Pollution, Fish Kill and Stream Litter Investigation Reports from the Ohio Division of Wildlife covering the period 1985-1995 revealed no fish kills on the Grand River mainstem. Thirteen fish kills have been reported, however, in the upper Grand River basin in Ashtabula and Trumbull counties, all occurring on different tributaries. Six of the thirteen kills involved petroleum products (*e.g.*, gasoline, diesel fuel, fuel oil), likely the result of transfer spills. The remainder resulted from releases by commercial or agricultural enterprises.

Chemical Water Quality

Grand River

Water quality sampling (excluding fecal coliform) was conducted five times between July 12 and September 6, 1995 in the Grand River basin from 11 stations on the mainstem and 17 stations on tributary streams. All stations were sampled on the same day for each of the five sampling events. Samples were generally collected under low stream flow conditions ranging from 66 to 608 ft³/s as measured at the U.S.G.S. gaging station (# 04212100) at RM 8.5 on the Grand River (located on the west side of State Route 84 north of Painesville). The period of record for this gage is from 1974 to present. Minimum average daily discharge observed at the Painesville station was 5.1 ft³/s in 1991. Maximum average daily discharge was 15300 ft³/s in 1985. Annual mean flow at the Painesville station for the period of record is 663 ft³/s. Natural Q₇₋₁₀ for the period May to November is calculated by U.S.G.S. as 26.7 ft³/s (0.089 ft³/s/mi²).

Samples were collected under relatively low stream flow conditions, ranging from 66 to 608ft³/s (Figure 8). Low flow sampling was conducted to document possible exceedences of chronic (i.e 30-day average) water quality standards and to determine possible impacts from NPDES permitted wastewater treatment facilities.

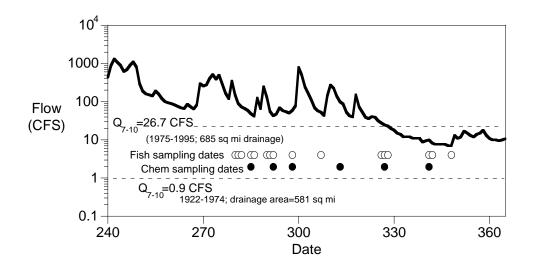


Figure 9. Flow hydrograph for the Grand River measured by the U.S.G.S. gage at SR 84 near Painesville. The Q_{7-10} value derived from the gage data is for a limited period of record and must be interpreted with caution. Low flows in four of the last seven years have been less than the calculated value. The Q_{7-10} from the defunct Madison gaging station is shown for comparison.

Grand and Ashtabula River Basins TSD

January 7, 1997

Fecal coliform bacteria samples were collected twice at most stations. Unlike the water quality sampling, bacteria sample collections had to be split into two separate daysbecause of laboratory constraints (07/25/95; 07/26/95 and 07/19/95; 08/23/95). These samples were also collected under low flow conditions. Rain event samples were not collected as a part of this survey. **I** water samples were collected during higher stream flows, the samples may have had higher concentrations of TSS, fecal coliform bacteria and heavy metals than the values recorded during this 1995 survey.

A steady decline in D.O. concentrations were noted in the upper, wetland portions of the river from U.S. 422 (RM 95.4) to Tote Road (RM 36.3) (Figure 9). Exceedences of the 24 hour criteria in chemical grab samples were documented at Sexton Road (RM 34.0), Tote Road (RM 36.3) Schweitzer Road (RM 42.4), U.S. 322 (RM 65.9), and near Hyde Road (RM 83.5) (Table 4). No other exceedence of the WWH D.O. criteria was documented on the mainstem. No exceedences of the EWH criteria of 6.0 mg/l were documented in grab samples collected from the Grand River in the designated reach downstream from Harpersfield Dam (RM 30.9). However, night-time DO concentrations at RM 28.4 measured by Datasonde® continuous recorders fellbelow 6.0 mg/l at night (Figure 10). The low dissolved oxygen levels recorded in the upper

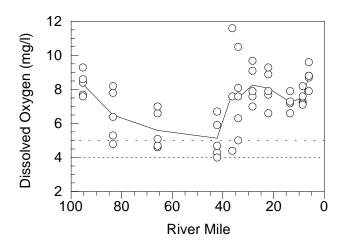


Figure 10. Dissolved oxygen concentrations measured in water quality grab samples collected from the Grand River, 1995. The stippled lines show the proposed EWH WQS minimum (5.0 mg/l) and the existing WWH WQS minimum (4.0 mg/l).

Grand River are not caused by anthropogenic loadings, but are caused by the deep, low gradient physical characteristics of the reach and decomposition of detritus. The low night time concentrations at RM 28.4 were likely due to low flows and possibly residual effects from upstream.

Levels of the primary macronutrients nitrogen and phosphorus were low at all stations sampled, and were below the median levels recorded for statewide wadeable and small river reference sites.

Nitrate-Nitrite (NO2-NO3), total Kjeldahl nitrogen (TKN) and phosphorus concentrations were higher at Tote Road (RM 36.3) and Sexton Road (RM 34.0) compared to adjacent sites (Figure 11). due to low flows and possibly residual effects from upstream. The river at these sites is deep (>3 m) and slow moving, and is at the downstream end of a long, low gradient, swamp and wetlands influenced reach. The increased concentration of nitrogen and phosphorus is likely due to a combination of remineralization from decomposing dissolved and particulate organic matter, and loadings from the Jefferson WWTP. Evidence for the decomposition of organic matter and remineralization of nutrients is given by a corresponding increase in chemical oxygen demand (COD - Figure 12) and decreased dissolved oxygen levels (Figures 9 and 10). The Jefferson

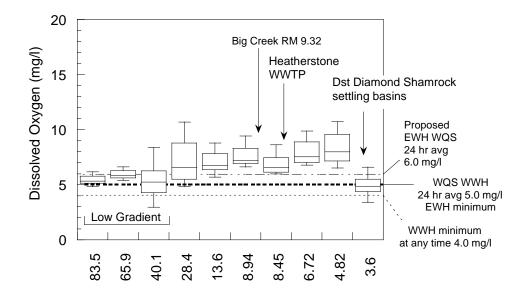


Figure 11. Distribution of dissolved oxygen concentrations by river mile in the Grand river, measured hourly with Datasonde® continuous recorders over a 48 h interval, July 25-27, 1995.

WWTP discharges relatively high levels of phosphorus and nitrogen to the Grand River via Mill Creek, which flows into the Grand River upstream from Tote Road and Sexton Road. A low (but increasing) density cluster of unsewered residential homes and vacation cottages in the Mechanicsville area may also contribute nutrients to this reach; however, evidence for inputs of raw sewage from failing or poorly sited septic systems was not apparent as ammonia-nitrogen (Figure 11) and fecal coliform (Figure 12) levels did not differ from adjacent sampling sites. Nitrate-nitrite concentrations were also noticeably elevated downstream of the Heatherstore WWTP plant.

Total dissolved solids (TDS) concentrations were generally low at all sampling sites, but were higher in the head waters and wetlands influenced reach than in the lower reach, and showed a

Grand and Ashtabula River Basins TSD

January 7, 1997

significant increase downstream of the Heatherstone WWTP compared to upstreamsites (Figure 12).

Table 4. Exceedences of Ohio EPA Warmwater Habitat criteria (OAC 3745-1) for chemical/physical water parameters measured in grab samples taken from the Grand River study area during 1995 (units are μ g/l for metals and organics, # colonies/100ml for fecal coliform μ mhos/cm for conductivity, °C for temperature, and mg/l for all other parameters).

StreamRiver MileParameter (value)	
Grand River	
83.5	Dissolved Oxygen (4.8 [†])
65.9	Dissolved Oxygen (4.7†; 4.6†)
42.4	Dissolved Oxygen (4.7†; 4.3†; 4.0†)
36.3	Dissolved Oxygen (4.4 ⁺)
Cemetery Creek	
41.28/8.42/2.1	Dissolved Oxygen (4.0 [†])
41.28/8.42/2.5	Dissolved Oxygen (3.45 [‡])
Swine Creek	
75.17/5.2	Fecal Coliform Bacteria $(1100^{\circ}; 11,000^{\circ\circ\circ})$
Mill Creek	
41.28/18.2	Fecal Coliform Bacteria (25,000 ⁶⁰⁶)
41.28/12.1	Fecal Coliform Bacteria (2400 [°])
Paine Creek	
14.31/0.5	Dissolved Oxygen (4.0 [‡])
Phelps Creek	
72.02/5.3	Dissolved Oxygen (4.9 [‡])
Big Creek	
9.32/16.3	Dissolved Oxygen (4.0†; 3.8‡; 3.4‡; 1.2‡);
	Total Dissolved Solids (1700*; 1750*)

* exceedence of numerical criteria for prevention of chronic toxicity (Chronic Aquatic Concentration [CAC]).

** exceedence of numerical criteria for prevention of acute toxicity (Acute Aquatic Concentration [AAC]).

exceedence of numerical criteria for human health 30-day average.

+ exceedence of the average warmwater habitat dissolved oxygen (D.O.) criterion (5.0 mg/l).

‡ exceedence of the minimum warmwater habitat dissolved oxygen (D.O.) criterion (4.0 mg/l).

 exceedence of the average Primary Contact Recreation criterion (fecal coliform 1000/100ml; E. coli 126/100ml).

- ◊◊ exceedence of the maximum Primary Contact Recreation criterion (fecal coliform 2000/100ml; E. coli 298/100ml).
- ◊◊◊ exceedence of the maximum Secondary Contact Recreation criterion (fecal coliform 5000/100ml; E. coli 576/100ml).

NOTE: There were no exceedances of the EWH criteria of 6.0 mg/l dissolved oxygen for the Grand River from RM 28.4 to 6.1.

The increase in TDS downstream of the WWTP was also noticed during a single sampling event conducted by the Ohio EPA modeling group. Fecal coliform bacteria counts were very low in the mainstem. The bacteria counts increased in the river near Painesville, but were still within the primary contact recreation criteria. All other water quality parameters measured in grab samples, including all metals except iron, were near background levels. Iron levels were high throughout the watershed due to its presence in the parent material. For a complete listing of water quality data from all grab samples, see Appendix A.

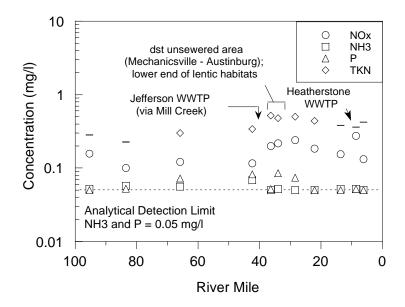
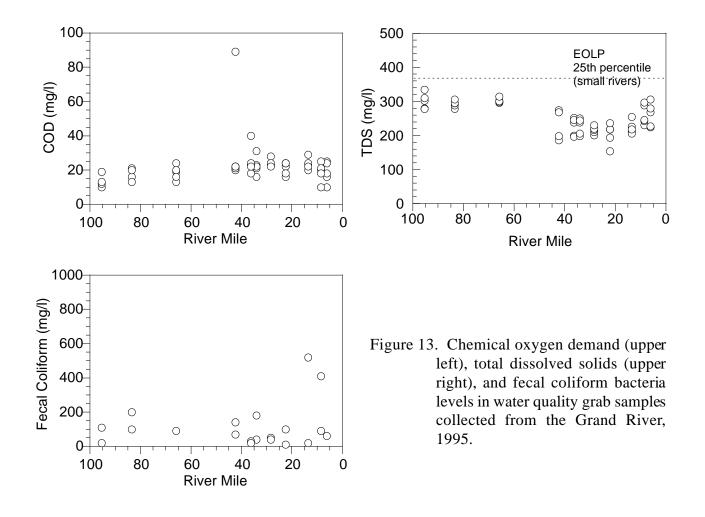



Figure 12. Concentrations of nitrate-nitrite-nitrogen, ammonia-nitrogen, phosphorus, and total Kjeldahl nitrogen (TKN) in water qualtiy grab samples collected from the Grand River, 1995, in relation to select point and nonpoint sources.

Big Creek

Dissolved oxygen concentrations in Big Creek (Figures 13 and 14) upsteam from the Village of Chardon WWTP at U.S Route 6 (RM 16.3) were low and variable due to low flow conditions and organic enrichment possibly originating from home septic systems. Immediately downstream from the WWTP (RM 15.9), D.O. concentrations met the WWH criteria, and were more stable due to the influence of the WWTP discharge. Further downstream (RM 15.6) concentrations, as measured by a Datasonde[®] continuous data logger were higher but more variable due to increased algal photosynthesis and respiration fueled by nutrient enrichment from the WWTP and unsewered inputs upstream of the plant. High gradient and current velocities provide good reaeration downstream of the plant, and help maintain D.O. concentrations.

Evidence for untreated sanitary waste entering the creek upstream of the plant was given by high ammonia-N, TKN, COD and P concentrations relative to downstream sites (Figures 15 and 16), and total dissolved solids (TDS) concentrations in excess of water quality standards (Figure 16). The source of the ammonia-N and P is is likely from septic systems in the area outside of the Village limits not served by sanitary sewers, and possibly lawn fertilizers. Nitrate-nitrite (NO_x) concentrations are high in the WWTP discharge and immediately downstream, and slowly decline towards the mouth as biological processes within the creek assimilate the wastes and additional dilution occurs. COD and total P follow a similar pattern, however, unlike NO_x, both are elevated upstream of the plant (*i.e.*, wide diurnal D.O. swing) is exacerbated by the organic enrichment upstream. Also, pH increased steadily downstream from the headwaters. The increase may represent removal of CO2 due to uptake by algal photosynthesis, and assimilation of nutrients.

Fecal coliform bacteria counts were elevated downstream of the ChardonVillage WWTP, but did not exceed the primary contact recreation criteria of 1000 colonies/100 ml. The counts then decline to very low levels. Only one fecal coliform sample was collected from the site upstream of the plant and did not contain an elevated count.

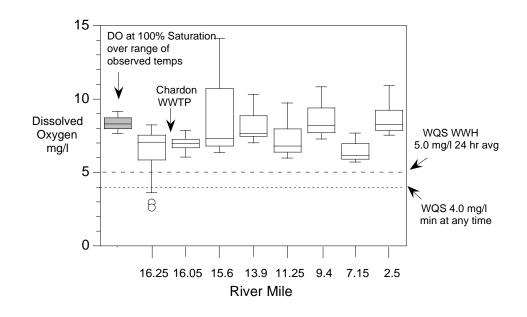


Figure 14. Box plot distributions of hourly dissolved oxygen measurements recorded over a 48 hr period August 22 - 24, 1995 in Big Creek.

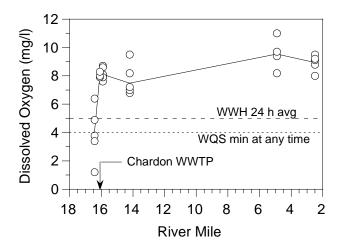


Figure 15. Concentrations of dissolved oxygen in water quality grab samples collected from Big Creek, 1995, in relation to the Chardon WWTP.

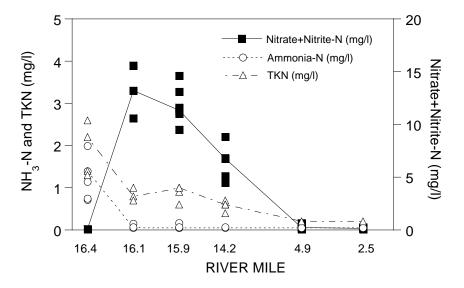


Figure 16. Concentrations of ammonia-nitrogen and total Kjeldahl nitrogen (left axis), and nitrite+nitrate-nitrogen (right axis) in water quality grab samples collected from Big Creek, 1995.

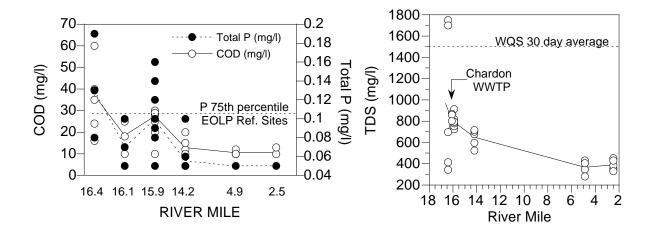


Figure 17. Scatter plots of chemical oxygen demand and phosphorus concentrations (left) and total dissolved solids concentrations (right) in water quality grab samples collected from Big Creek, 1995. Means are joined by lines.

Heavy metal concentrations do not appear to be of significant concern in Big Creek as arsenic, copper, cadmium and lead concentrations were generally below method detection limits. Zirc concentrations were also generally low, but one value of $152 \mu g/l$ was recorded at Woodin Road (RM 14.2). The reason for this higher value is unknown but may be related to an unauthorized discharge found in Chardon as a result of a citizen's complaint. Ohio EPA received complaints of suds in an unnamed tributary (RM 14.15) which enters Big Creek just upstream of Woodin Road and drains the western portion of Chardon. Some of the complaints reported suds as far down stream as Fay Road (RM 2.5) in Big Creek. After several investigations Ohio EPA traced the suds to Structural North America on Industrial Parkway in Chardon. This company discharged intermittent batches of soapy water which were used for hydrostatic testing of the fiberglass storage tanks they manufacture. Water quality samples collected from the area did not indicate elevated concentrations of "conventional" pollutants except for one high zinc concentration. Also discharging to this same Creek were floor drains from the Chardon Rubber Company. The discharges from these companies have stopped.

Jenks Creek (RM 9.32/11.52)

Five grab water samples were collected from Jenks Creek at RM 0.4 near Robinson Road. This small stream receives discharge from a small (25,000 gallons per day) sanitary WWTP. No departures from WQS were noted.

Paine Creek (RM 14.31)

Five grab water samples were collected from Paine Creek at RM 1.4 near Seely Road. One dissolved oxygen exceedence (4.0 mg/l) was documented, and is attributed to low stream flow. There were no other exceedences of the WWH criteria for Paine Creek.

Mill Creek (RM 41.28)

Five grab water samples were collected from Mill Creek at State Route 46 (RM 12.1) and five samples at Netcher Road (RM 18.2). Two fecal coliform bacteria exceedences were documented in Mill Creek. A count of 25,000 colonies/100 ml was found at Netcher Road (RM18.2) and 2400 colonies/100 ml at S.R. 46 (RM 12.1) on the same day. These samples were collected during higher flows after a localized rainstorm. There were no other exceedences of the WWH criteria for Mill Creek. However, the high fecal counts are likely derived from livestock (dairy cattle and horses). Nutrient enrichment was also evident in elevated ammonia-nitrogen levels (Figure 17) and supersaturation of D.O. at RM 12.2 (10.0 mg/l at 27.1°C). Other than the high fecal counts, there were no other exceedences of WWH criteria.

Cemetary Creek (RM 41.28/8.42)

Five grab water samples were collected from Cemetery Creek at RM 1.25 near Poplar Street, four samples at RM 2.1 just upstream from the Jefferson WWTP and one sample from RM 2.5 at Market Street. Ammonia-N, NO_3 -NO₂ and phosphorus concentrations in Cemetary Creek significantly increased downstream from the Jefferson WWTP (Figure 17). Phosphorus

concentrations were highly elevated, and exceeded the recommended effluent limit of 1.0mg/ for discharges on Great Lakes tributaries. Two dissolved oxygen exceedences (3.45 and 40 mg/l) were documented upstream from the WWTP. All D.O. concentrations met the WWH criteria downstream from the WWTP. However, supersaturated D.O. of 11.6 mg/l at 25°C reflects the increased algal photosynthesis spurred by nutrient enrichment.

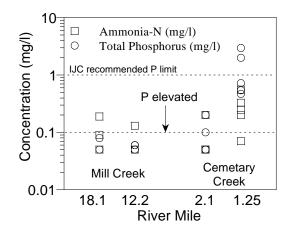


Figure 18. Concentrations of ammonianitrogen and phosphorus in grab samples collected from Mill Creek and Cemetery Creek, 1995.

Rock Creek (RM 50.59)

Five grab water samples were collected from Rock Creek at RM 0.8 near Union Cemetery. There were no exceedences of the WWH criteria for Rock Creek. One value above 1.0 mg/l for phosphorus (9/6/95) was documented. This high phosphorus value and slightly elevated NO2-NO3, TKN and ammonia-N concentrations may be attributed to hydroseding (sprayed slurry of seed mulch and fertilizer) of the stream banks at a highway construction project at the sampling site. There were no exceedences of the WWH criteria and the water quality of Rock Creek can be described as generally good.

Phelps Creek (RM 72.02)

Five grab water samples were collected from Phelps Creek at RM 5.3 near Wiswell Road. One dissolved oxygen exceedence (4.9 mg/l) was documented during low stream flow conditions There were no other exceedences of the WWH criteria for Phelps Creek.

Swine Creek (RM 75.17)

Five grab water samples were collected from Swine Creek at RM 5.2 nearState Route 534. Two

fecal coliform bacteria exceedences (1100 and 11,000 colonies/100 ml) were documented. These exceedences were probably a result of livestock from nearby farms. Also, livestock had unrestricted access to the stream in the pasture just downstream from the sampling site. There were no other exceedences of the WWH criteria for Swine Creek and the water quality was generally good.

Baughman Creek (RM 80.76)

Five grab water samples were collected from Baughman Creek at RM 3.3 near Messic Road There were no exceedences of the WWH criteria for Baughman Creek despite unrestricted access of livestock immediately upstream from the sampling site.

Chemical Sediment Quality

During the Fall of 1995, sediment samples were collected for analysis of heavy metal concentrations from five sites along the Grand River mainstem and four sites at selected Grand River tributaries. Sediment sample locations were selected to match biological sample stations as part of a synoptic survey and were not selected to specifically identify present or past effluents as potential sources. All sediment samples were a composite of surface grab samples and were collected near the stream margins using a stainless steel scoop.

Sediment contaminant levels were evaluated according to a statistical scheme developed by Kelly and Hite (1984), and guidelines established for Ontario, Canada (Persuad et al. 1993). The Kelly and Hite (1984) guidelines are based on standard deviations from background means of a large number of stream sediment samples collected in Illinois. Highly elevated values represent numbers that exceed four standard deviations of the mean. The Ontario guidelines are based upon a 95th percentile screening level concentration derived from field data on the occurrence in sediments of benthic infaunal species and different concentrations of contaminants. The criterion of "severe effect level" indicate levels of pollutants that would have a very high probability of being toxic to aquatic life at the concentrations measured. Ontario recommends that any sites with levels above "severe effect levels" be further tested using sediment bioassay protocols.

Sediment results for heavy metals from the Grand River mainstem the selected tributaries showed no sites with highly elevated concentrations of heavy metals based on Kellyand Hite (1984) and the Ontario guidelines (Table 5). No heavy metal concentrations exceeded the Ontario severe effects levels. Concentrations of lead and mercury (Figure 18) were near background levels given by Persaud et al. (1993) and Kelly and Hite (1984), reflecting the relatively undeveloped nature of the watershed. No specific longitudinal trends in sediment chemical quality were apparent for individual metals. Collectively, however, concentrations of trace metals were highest in samples collected from the upper watershed (Figure 19). This may be due to the higher degree of agricultural development in the upper watershed, juxtaposition of glacial deposits, or both *(i.e., farming exposes more of the parent material to erosion)*. The elevated mercury concentrations at RM 83.5 of the Grand River and in Baughman Creek and Mill Creek (Figure 18) are likely

related to their proximity to agriculture, as mercury residues are associated with agricultural chemicals (Budavari et al. 1989). Though elevated, the levels are below those associated with biological effects. Concentrations of lead, a contaminant strongly associated with urban runoff, were at or below background levels reported by Persaud et al. (1993) and Kelly and Hite (1984). A compilation of all sediment sample results are included in the Appendix of this report.

Table 5. Concentrations of heavy metals in sediments of the Grand River Basin study area, 1995. All parameter concentrations, excluding selenium and nickel, were ranked based on a stream sediment classification system described by Kelly and Hite (1984) and Persaud et al. (1993). The Kelly and Hite classification system addresses relative concentrations, but does not directly assess toxicity. The Ontario guidelines (Persaud et al. 1993) are based on field data relating 95th percentile concentrations of contaminants to the occurrence in sediments of benthic infaunal species.

Stream										
River	er Sediment Concentration (mg/kg dry weight)									
Mile	As	Cu	Cd	Cr	Fe	Pb	Ni	Zn	Se	Hg
Grand River										
83.50	°12.60 [†]	18.40^{\dagger}	0.169	^b <21.2	7790	<21.2	$<\!\!28.3^{\dagger}$	^b 98.2	<1.41	°0.1230
65.90	$^{b}10.80^{\dagger}$	9.17	0.259	^c 25.9	^b 19500	<16.2	<21.6 [†]	^b 82.0	<1.08	0.0726
36.30	5.58	8.13	0.179	^b <16.3	11600	<16.3	$<\!\!21.7^{\dagger}$	47.2	<1.08	0.0802
22.60	^b 10.30 [†]	13.00	0.149	^b <17.9	^c 23700 [†]	<17.9	$<\!\!23.8^{\dagger}$	66.0	<1.19	0.0635
6.10	5.77	15.70	0.299	^b <21.4	14600	22.1	$<\!\!28.5^{\dagger}$	74.9	<1.43	0.0545
Mill Creek										
18.20	6.32	10.00	0.200	^b <18.8	12300	<18.8	$<\!\!25.0^{\dagger}$	55.0	<1.25	°0.1320
12.10	4.67	8.46	0.348	^b <20.9	10600	<20.9	$<\!\!27.9^{\dagger}$	73.1	<1.39	^c 0.1380
Baughman Creek										
80.76	^b 9.61		0.182	^b <16.7	9460	<16.7	$<\!\!22.4^{\dagger}$	46.0	<1.11	^c 0.1040
Phelps Creek										
5.30	7.00	13.30	0.309	^c <22.1	^c 21900 [†]	<22.1	$<\!\!29.5^{\dagger}$	^c 100.0	1.47	0.0684

^a Non-elevated ^b Slightly elevated ^c Elevated ^d Highly elevated ^e Extremely elevated "<" - indicates the concentration is less than the stated detection limit for that sample. Evaluations based upon the Kelly and Hite (1984) criteria for the "<" samples assume the concentration of the sediment sample is at the stated detection limit.

[†] Exceeds the Lowest Effect Level given by Persaud et al. (1993).

None of the concentrations exceeded the Ontario Severe Effect Level (Persaud et al. 1993).

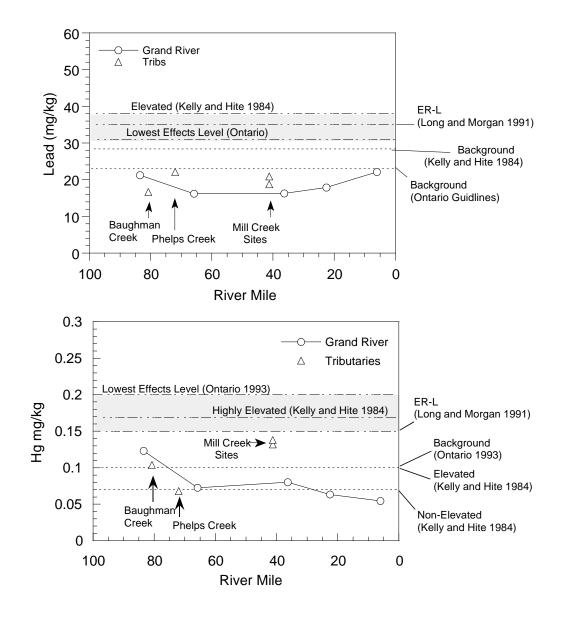


Figure 19. Concentrations of mercury (top) and lead (bottom) in sediment samples collected from the Grand River and several of its tributaries, 1995. Background levels are given by Persaud et al. (1993 - i.e., Ontario Guidelines) and Kelly and Hite (1984). The shaded area in each graph represents a range of concentrations where biological effects first become apparent (Persaud et al. 1993; Long and Morgan 1991), or that are considered "Elevated" by Kelly and Hite (1984). ER-L is the Effects Range-Low given by Long and Morgan (1991).

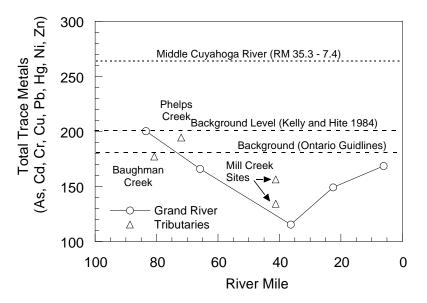
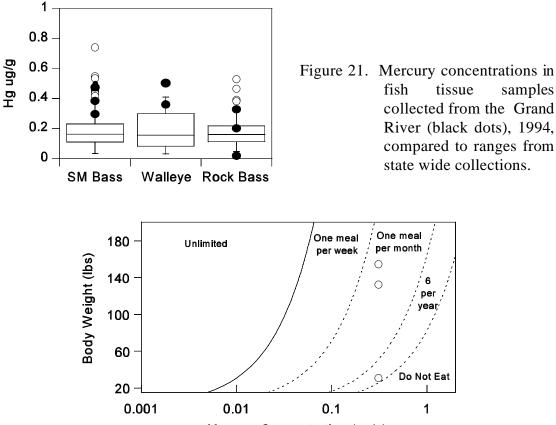



Figure 20. Concentrations of total trace metals (As, Cd, Cr, Cu, Pb, Hg, Ni and Zn) in sediments collected from the Grand River and several of its tributaries, 1995. Background levels for sediment metalsgiven by Persaud et al. (1993 - i.e., Ontario guidelines) and Kelly and Hite (1984), and average levels found in an urban influenced reach of the Cuyahoga River are given for comparison.

Fish Tissue

Concentrations of contaminants in fish tissue measured in fishes collected from the Grard River near Mechanicsville (RMs 36.4 - 31.0), 1994, are reported in Table x. Concentrations of nearly all measured contaminants, except mercury, were below method detection limits Mercury concentrations were elevated in all tissue samples, especially smallmouth bass and walleye, where concentrations exceeded the 75th percentile from statwide collections for both species (Figure x). Mercury concentrations for all samples also exceeded risk based consumption advisory limits recommended by the U.S. EPA (1994) (Figure x). No point source of contamination was identified. Mercury concentration in sediment collected from RM 36.3 were very low (see **Chemical Sediment Quality** section above), however, concentrations in the headwaters and several tributaries were elevated, suggesting a diffuse nonpoint origin.

Mercury Concentration (ug/g)

Figure 22. Mean mecury concentration in smallmouth bass tissue samples (open circles) collected from the Grand River, 1994, plotted for three body weights (repsenting average male, female and 0-6 year old child) in relation to suggested risk based consumption advisory groups.

Table 6.	Concentrations of contaminants in fishes collected from the Grand River near
	Mechanicsville (RM 31.0 - 36.4), 1994.

River I	Aile 36.4	36.4	36.4	34.4	34.4	31.0	31.0	31.0
Specie		White	Small-	Small-	Yellow	Small-	Rock	Rock
Speere		ye Crappie		mouth Bass			Bass	Bass
Parameter		2 11						
Metals ($\mu g \cdot g^{-1}$)								
Cadmium	ND	ND	ND	ND	ND	ND	ND	ND
Lead	ND	0.0635	ND	ND	ND	ND	ND	ND
Mercury	0.299	9 0.153	0.396	0.313	0.185	0.245	0.166	0.270
Pesticides (µg 4	(g^{-1})							
Aldrin	ND	ND	ND	ND	ND	ND	ND	ND
a-BHC	ND	ND	ND	ND	ND	ND	ND	ND
b-BHC	ND	ND	ND	ND	ND	ND	ND	ND
d-BHC	ND	ND	ND	ND	ND	ND	ND	ND
y-BHC	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDD	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDE	ND	ND	ND	ND	ND	17.51	ND	ND
4,4'-DDT	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	ND	ND	ND	ND	ND	ND	ND	ND
EndosulfanI	ND		ND	ND	ND	ND	ND	ND
EndosulfanII	ND		ND	ND	ND	ND	ND	ND
EndosulfanSulf	ate ND	ND	ND	ND	ND	ND	ND	ND
Endrin	ND		ND	ND	ND	ND	ND	ND
Heptachlor	ND		ND	ND	ND	ND	ND	ND
HeptachlorEpox			ND	ND	ND	ND	ND	ND
Hexachloroben			ND	ND	ND	ND	ND	ND
Methoxychlor	ND		ND	ND	ND	ND	ND	ND
Mirex	ND		ND	ND	ND	ND	ND	ND
Alpha-Chlordar			ND	ND	ND	ND	ND	ND
Gamma-Chlord			ND	ND	ND	ND	ND	ND
Oxychlordane	ND		ND	ND	ND	ND	ND	ND
Cis-Nonachlor	ND		ND	ND	ND	ND	ND	ND
Trans-Nonachlo			ND	ND	ND	ND	ND	ND
PCBs ($\mu g \cdot kg^{-1}$)								
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND		ND	ND	ND	ND	ND	ND
PCB-1232	ND		ND	ND	ND	ND	ND	ND
PCB-1242	ND		ND	ND	ND	ND	ND	ND
PCB-1248	ND		ND	ND	ND	ND	ND	ND
PCB-1254	ND		ND	ND	ND	ND	ND	ND
PCB-1260	ND		ND	ND	ND	ND	ND	ND
$\overline{\times}$ Length; numb		,	234; 1	246; 1	310; 1	259; 5	160; 6	240; 1
Percent lipid ND - Parameter	0.49		0.49	0.58	0.22	1.61	0.74	0.57

ND - Parameter not detected in sample.

Physical Habitat for Aquatic Life

Grand River

The majority of the Grand River is divided into two very distinct reaches. The quality of the habitat within each reach was assessed using the Qualitative Habitat Evaluation Index (QHEI - Table 6). The first reach, extending from West Farmington (RM 91.0) to Mechanicsville (RM 34.0) is a deep, low gradient (gradient ≈ 1.5 ft ·mi⁻¹) swamp stream meandering through a glacial lake bed. The 7 QHEI scores from this segment averaged 58.5 ± 4.7 sd, indicating fair to good habitat capable of supporting a Warmwater Habitat (WWH) fauna. Habitat attributes common to this reach that limit the diversity of aquatic life are slow current, no riffles, hardpan and lacustrine substrates, and sparse cover. Although the habitat is moderately limited by natural conditions, the channel had not been modified and meandered freely. Also wide, forested riparian buffers existed throughout the reach, and in many of the feeder streams throughout the basin Consequently, large woody debris were present, the substrates were not embedded by silt, and the water, though stained by tannins, was clear.

The second reach, extending from Mechanicsville (RM 34.0) to Painesville (RM 5.0) flows through a shale gorge and has an average gradient of ≈ 6.1 ft·mi⁻¹. The channel in this reach is sinuous and highly developed. High flows from snow melt scours the parent bedrock resulting in an alternating series of long bedrock glides, riffles, and deep pools. The pools and riffles are littered with glacial till and shale slabs, and the pools contain large woody debris supplied by the wide forested riparian. The erodible shale bluffs add silt to the channel, though thesilt is largely confined to depositional areas. Urban impacts on habitat quality were evident at RM 6.2, where the riffles were moderately embedded and silt was more prevalent. The excellence of the habitat within this reach was reflected in the mean QHEI of 82.8 ± 6.3 sd, n=5.

Big Creek and Jenks Creek

Instream macrohabitat quality was assessed at the six fish sampling locations in Big Creek using the QHEI (Table 6). QHEI scores averaged 64.9 ± 7.8 s.d. indicating the ability of the physical habitat to generally support a fish assemblage capable of meeting WWH criteria. However, marginal habitat conditions were found at the two sites adjacent to the Chardon WWTP (RMs 16.3, 15.9) owing to channelization at RM 16.3 and sandy-wetland substrate origin at RM 15.9. Consequently, marginal habitats were over represented and the average QHEI score does not necessarily reflect the true overall habitat quality in Big Creek. Large amounts of glacial till, though patchily distributed, were present in the middle reach (RMs 13.9 to 5.3) providing excellent habitat (QHEI averaged 71.7) able to support good to exceptional fish assemblages The QHEI score obtained at one site in the lower reach was 59.0, due to scouring of the channel by torrential flows from heavy snow melt and the resulting increased patchiness in distribution of glacial till. The flood plain and surrounding hillsides, though interspersed with residential units, was largely forested. Consequently, the stream was relatively free from silt and very clear.

Jenks Creek, a tributary to Big Creek, was assessed at RM 0.1. The macrohabitat was good to

MAS/1996

excellent (QHEI= 70) and capable of supporting a WWH fish assemblage. The channel was littered with glacial till and large woody debris providing a variety of substrate types and sizes. Although the physical habitat was excellent, flows were low, limiting the amount of available habitat.

Paine Creek

The substrate in the lower reach of Paine Creek is dominated by shale bedrock, as torrential flows from snow melt have depleted the channel of glacial till. The prevalence of shallow bedrock in the watershed also results in low summer flows limiting the availability of habitat Though bedrock and low summer flows pose limitations, fractured bedrock and patches of glacial till are present adding to habitat heterogeneity. Also, the channel is well developed and sinuous flowing through a forested valley. Consequently, the creek has sustained flow and is relatively free of silt and very clear. The QHEI score of 74.5 reflects those positive habitat attributes.

Mill Creek

Habitat quality at two reference sites on Mill Creek, RMs 10.0 and 18.1, was assessed using the QHEI (Table 6). The respective QHEI scores were 79.5 and 80.0, reflecting the excellent habitat quality present. Both sites have similar habitat attributes. The channels are sinuous and wel developed, and contain a variety of substrate types and sizes. Substrates at RM 18.1 are composed of fractured shale bedrock and glacial till. RM 10.0 flows through the transition zone from shale bedrock to glacial lake bed, so lacustrine substrates (sand and hardpan) are present there. Lizards tail (*Saururus cernuus*), an aquatic macrophyte, was abundant in the stream margins at both sites.

Cemetery Creek

The macrohabitats at two locations on Cemetery Creek, RMs 1.3 and 2.5 were evaluated with the QHEI. RM 2.5 flows through a cemetery in suburban Jefferson, and though not channelized, has 2.25 times more modified habitat attributes than warmwater habitat attributes. Lack of a riparian buffer combined with urban runoff resulted in little instream cover, and heavily embedded and homogenized substrates. The homogenized substrates togather with siltation resulted in no riffles and poor channel development. The QHEI score of 42.0 reflects the limited ability of this site to support a WWH fauna.

Habitat quality improved at RM 1.3, downstream from the Jefferson WWTP. The creek meanders through a wooded valley, and original substrates, though moderately embedded, are present. The channel is well developed, but limited flow renders the riffle habitatnonfunctional. Addition of three WWH attributes and loss of two MWH attributes resulted in a MWH:WWH attribute ratio of 1.17 and increased the QHEI score to 55.5, implying that the physical habitat is marginally able to support a WWH fauna.

WWH Attributes MWH Attributes						
	WWH Attributes	_				
		High Influence	Moderate Influence			
Key QHEI Components River Gradient Mile QHEI (ft/mile)	No channelization or Recovered Boulder/Cobble/Gravel Substrates Silt Free Substrates Good/Excellent Development Moderate/High Sinuosity Extensive/Moderate Cover Fast Current/Eddies Low/Normal Embeddedness Max. Depth > 40cm Low/No Riffle Embeddedness	Total WWH Attributes Channelizad or No Recovery Silt/Muck Substrates Low Sinuosity Sparse/No Cover Max. Depth < 40 cm (WD/HW) Total H.I. MWH Attributes	Recovering Channel Heavy/Moderate Silt Cover Sand Substrates (Boat) Hardpan Substrate Origin Fair/Poor Development Low/No Sinuosity Only 1-2 Cover Types Intermittent & Poor Pools No Fast Current High/Mod. Overall Embeddedness High/Mod. Riffle Embeddedness No Riffle	Total M.I. MWH Attributes MWH H.I./WWH Ratiof MWH M.I. WWH Ratiof		
(03 -001) GrandRiver						
94.3 71.0 21.28 83.5 54.0 2.74 83.5 53.5 2.74 65.9 56.5 1.39 52.7 62.0 1.08 40.9 66.5 0.82		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0 0.25 0.25 ▲ 6 0.40 1. 6 0 ▲ 4 0.60 1.40 ▲ 5 0.33 1.17 ▲ 4 0.17 0.83 3 0.22 0.56		
36.3 57.0 0.82 34.0 60.0 0.82 28.4 81.5 7.14 22.1 87.5 3.14 13.4 91.0 7.81 20.0 72.0 6.21		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		 ▲ 5 0.50 1.75 2 0.29 0.57 0 0.10 0.10 0 0.10 0.10 0 0.10 0.10 0 0.10 0.10 		
8.0 78.0 6.21 6.2 76.0 6.06		8 • 1 9 • 1		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
(03-022) Baughman Cree 3.0 50.5 7.35	ek • • • •	4 • • 2		▲ 5 0.60 1.60		
(03-100) Big Creek 16.3 61.5 31.25 15.9 54.0 66.67 13.9 71.0 34.48 9.5 73.0 20.83 5.3 71.0 35.71		6 0 5 • 1 6 0 8 0 8 0 8 0		 ▲ 6 0.14 1.00 ▲ 5 0.33 1.17 4 0.14 0.71 3 0.11 0.44 2 0.11 0.33 0 0.20 		
5.0 71.0 30.30 2.5 59.0 33.33		9 • 1 6 • 2		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
(03-104) Jenks Creek 0.1 70.0 111.10 (03-110) Paine Creek		8 0	A	1 0.11 0.22		
0.2 74.5 21.05		8 0	▲	1 0.11 0.22		

Table 7. QHEI matrix for sites sampled in the Grand River basin, 1995.

MAS/1996

Grand and Ashtabula River Basins TSD

Table7. Continued.

	WWH Attributes		MWH Attributes	
		High Influen	ce Moderate Influence	
Key QHEI Components	No channelization or Recovered Boulder/Cobble/Gravel Substrates Silf Free Substrates Good/Excellent Development Moderate/High Sinuosity Extensive/Moderate Cover Fast Current/Eddies Low/Normal Embeddedness Max. Depth > 40cm Low/No Rrifle Embeddedness	t ributes No Recovery rates T C cm (WD/HW)	Total H.I. MWH Attributes Recovering Channel Heavy/Moderate Silt Cover Sand Substrates (Boat) Hardpan Substrates (Boat) Hardpan Substrate Origin FairPoor Development Low/No Sinuosity Only 1-2 Cover Types Intermitent & Poor Pools No Fast Current High/Mod. Overall Embeddedness High/Mod. Riffle Embeddedness No Riffle	H Attributes /H Ratio [†] VH Ratio [†]
River Gradient Mile QHEI (ft/mile)	No channelization or Recover Boulder/Cobble/Gravel Subsu Silt Free Substrates Good/Excellent Development Moderate/High Sinuvosity Extensive/Moderate Cover Fast Curren/Eddies Low/Normal Embeddedness Max. Depth > 40cm Low/No Rtifth Embeddedness	Total WWH Attributes Channelized or No Recovery Silt/Muck Substrates Low Sinuosity Sparse/No Cover Max. Depth < 40 cm (WD/HW)	Total H.I. MWH Attributes Recovering Channel Recovering Channel Heavy.Moderate Silt Cover Sand Substrates (Boat) Hardpan Substrate Origin Fair/Poor Development Low/No Sinuosity Only 1-2 Cover Types Intermitent & Poor Pools No Fast Current High/Mod. Overall Embedded High/Mod. Riffle Embedded No Riffle Embedded	Tolal M.I. MWH Attributes MWH H.L/WWH Ratio MWH M.I. WWH Ratio
Mill Creek (03-120) 18.1 80.0 16.13 10.0 79.5 5.18		9		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(03-124) Cemetery Creek 2.5 42.0 16.39 1.3 55.5 14.29	:: .: .:	3 5 •		6 0.75 2.25 5 0.33 1.17
(03-130) Rock Creek 0.8 71.5 12.35		8	0	1 0.11 0.22
(03-150) Phelps Creek 5.3 78.0 43.48		8	0	1 0.11 0.22
(03-160) Swine Creek 5.2 58.5 18.52		6	0	6 0.14 1.00

† The ratio of high influence modifed habitat to warmwater habitat attributes is calculated as (high influence MWH attributes+1)/WWH attribute+1). The ratio of moderate influence to WWH is calculated as (high influence MWH attributes+1+number of moderate influence attributes)/(WWH attributes+1).

Rock Creek

The reference site at RM 0.8 in Rock Creek contained good to excellent habitat (QHEI = 71.5, Table 6). Fractured sandstone bedrock and glacial till provided a variety of particle sizes, and a mature riparian buffer contributed woody debris to the natural channel. The substrates were free of embedding silt and clay.

Phelps Creek

The physical habitat in Phelps Creek at RM 5.3 was excellent as reflected in the QHEI score of 78.0 (Table 6). The channel has a complex and sinuous morphology with fractured sandstore bedrock slabs strew throughout the channel providing excellent cover. Glacial till is also present

MAS/1996

adding to substrate size and complexity. The forested riparian buffer supplies woody debris to the channel.

Swine Creek

Poor riparian practices resulted in marginal habitat quality (QHEI = 58.5) at the site assessed (RM 5.2) in the lower reach of Swine Creek. Previous removal of riparian vegetation had resulted in bank destabilize and an ensuing attempt to restabilize it with rip-rap. Because the lower reach of Swine Creek flows through lacustrine deposits, the channel naturally contains a high proportion of fine grain sediment. However, the exposed banks, being especially susceptible to erosion, contribute sediment to the channel, embedding substrates and lessening habitat complexity.

Baughman Creek

Baughman Creek is a low gradient stream flowing through pasture land underlain by lacustrine deposits. Consequently, substrates are composed of silty-sand and gravel, and the creek harbors emergent and submergent vegetation. Reflected in the QHEI score of 50.5 was the lack of riparian habitat in the sampling zone due to pasturing, and the exacerbated homogeneous condition of the substrates. Although livestock have impinged on substrate quality, pastures are not overgrazed, maintaining water clarity and allowing aquatic vegetation to persist.

Biological Assessment - Macroinvertebrates

Grand River

Macroinvertebrate assemblages were sampled and evaluated at 11 sites on the Grand River from Parkman (RM 95.5) to Painesville (RM 6.2). Narrative evaluations of the assemblages ranged from very good to exceptional quality in the free flowing section and good to exceptional in the low gradient section of the river. Invertebrate Community Index (ICI) scores, excluding sites affected by slow current, ranged from a low of 42 (Fobes Road) to a high of 54 at Brandt Road (Figure 20).

A total of 238 macroinvertebrate taxa were collected from the Grand River mainstem in 1995 By sampling location, the highest cumulative total number of macroinvertebrate taxa (97) were collected at Brandt Road (RM 28.4), the highest cumulative number of EPT (Ephemeroptera Plecoptera, Trichoptera; *i.e.*, mayflies, stoneflies, and caddisflies) taxa (31) were collected at SR 528 (RM 22.6), and the highest cumulative number of unionid mussel taxa (9) were observed at Hyde-Oakfield Road (RM 83.3).

Many of the macroinvertebrate taxa collected in the Grand River are characteristic of high quality rivers and streams in Ohio. Sensitive taxa collected were the mayflies *Baetis armillatus* (one site), *Baetis dubius* (three sites), *Labiobaetis propinquus*(two sites), *Stenonema mediopunctatum* (four sites), and *Serratella deficiens*, and the caddisfly *Leucotrichia pictipes* (one site). Six taxa of stoneflies were collected including *Acroneuria abnormis* (three sites), *Acroneuria carolinensis*

(one site), Acroneuria evoluta(seven sites), Acroneuria internata(five sites), Agnetina capitata complex (six sites), and Neoperla clymene complex (two sites). Sensitive midge taxa collected were Synorthocladius semivirens(two sites) and Rheotanytarsusdistinctissimus group (five sites). Rare taxa collected included the mayfly genus Acentrella (one site), and the midges Demicryptochironomus (one site), Polypedilum (Polypedilum) Type 1 (two sites), and Stelechomyia perpulchra(two sites).

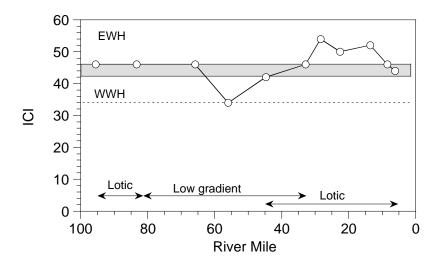


Figure 23. Longitudinal trends in the Invertebrate Community Index (ICI) from the Grand River, 1995, relative to gradient. The shaded box defines the region of non-significant departure from EWH, the horizontal dashed line is the lower boundary of WWH.

During qualitative macroinvertebrate sampling, Ohio EPA biologists observed 16 unionid mussel species at nine Grand River mainstem sites from Old Hyde-Oakfield Road (RM 83.3) to Painesville (RM 6.2). The most common mussels observed were *Actinonaias ligamentina carinata* (five sites) and *Lasmigona costata* (four sites). *Simpsonaias ambigua* listed as an Ohio Endangered Species and Federal Category 2 (*i.e.*, rare but not threatened or endangered), was observed at Schaffer Road (RM 56.0).

A unionid (freshwater mussel) survey was conducted during July 1995 by Zimmerman (1995) between RM 30.8 and RM 9.2. A total of 4,264 living and 1999 dead mussels comprising 23 species were found. *Actinonaias ligamentina carinata*was the most abundant (64% of the live mussels). Three of the species found, *Lampsilis fasciola, Liguma recta* and *Truncilla truncata* are listed as Ohio Special Interest. Two others collected, *Epioblasma triquera* and *Simpsonaias ambigua*, are also listed as Federal Category 2.

MAS/1996

The macroinvertebrate community in high gradient headwaters downstream from Parkman (21 ft./mi. at RM 94.3) was evaluated as exceptional. The number of qualitative EPT taxa (20), the total number of qualitative taxa (56), and the QCTV score (39.7) were similar to other headwater tributaries in the Grand River basin which were evaluated as exceptional. This was the only Grand River mainstem site where cool-water macroinvertebrate taxa were collected (the midges *Parametriocnemus* and *Polypedilum (Polypedilum) avicep)*. The drainage area at this site was less than 15 sq. mi.; cool-water macroinvertebrate taxa were only collected at sites in the Grand River basin with drainage areas less than 30 sq. mi.. Although this site was evaluated as exceptional, the field crew observed possible sewage bacteria in the riffle and abundant silt on top of most natural substrates indicating a possible enrichment effect from the Parkman unsewered area.

Macroinvertebrate communities sampled in the lentic upper Grand River mainstem from Old Hyde-Oakfield Road (RM 83.3) to upstream from Mechanicsville (RM 44.7) were evaluated as good to exceptional (Table 7, Figure 20). This section of the Grand River meanders sluggishly through an old lake bed in a south to north direction. The gradient ranged from 0.82 to 2.74 ft./mi., and drainage area from 85 to 405 sq. miles at these sites. Riffle development was absent or poor in this section, being limited to bridge crossings in most cases. The lowest ICI score (34) in this section was flow affected (less than 0.3 fps over the artificial substrates). A large population of the hydroid genus *Hydra* accounted for 48.3% of the organisms collected from the artificial substrates, which lowered several metric values resulting in the less than exceptional ICI score. ICI scores at the other sites in this section were between 42 and 46.

The middle to lower section of the Grand River flows east to west through a shale escarpment, with excellent pool-riffle-run development. Gradient in this section ranged from 3.14 to 7.14 ft./mile. Macroinvertebrate communities sampled in this section of the mainstem downstream from Mechanicsville (RM 32.9) to Painesville (RM 6.2) were evaluated as very good to exceptional. ICI values (range 44 to 54) attained or were within the nonsignificant departure range of the EWH criterion.

Big Creek

A total of 125 macroinvertebrate taxa were collected at five stations on Big Creek from Chardon to the mouth (Table 7). Three coldwater taxa, the caddisfly *Ceratopsyche slossonae*(RMs 14.2 and 9.4), and the midges *Parametriocnemus* (RMs 16.1, 16.0, and 14.2) and *Polypedilum* (*Polypedilum*)albicorne (RM 16.1) were collected at sites in the upper section of Big Creek from RM 16.1 to RM 9.4, but not in the lower section at RM 2.5. Three stonefly taxa, *Acroneuria carolinensis*, *Agnetina capitata* complex, and a species from the family Chloroperlidae, along with the sensitive midge *Sublettea coffmani* were collected downstream from Chardon between RMs 14.2 and 2.5. Two rare taxa, the mayfly genus *Acentrella* and the midge genus *Lopescladius*, were collected at RM 2.5.

Macroinvertebrates collected upstream and downstream from the Chardon WWTP were

indicative of fair (RM 16.1) to poor (RM 16.0) stream quality, respectively (Table 7, Figure 21). The ICI scores were 12 (poor) at both sites, but artificial substrates of the upstream site were affected by slow current which generally reduces ICI scoring. The qualitative sample collected from the natural substrates at the upstream station (RM 16.1) was dominated by themayfly *Baetis flavistriga*, caddisflies, and an assortment of midges, with a QCTV score (35.7) was in the good range. However, total taxa (36) and number of EPT taxa (4) were low and indicated a fair community at best. The macroinvertebrate community downstream from the Chardon WWTP at RM 16.0 were dominated by *Baetis flavistraga* and the midge *Cricotopus* (*Cricotopus*) *bicinctus*; the QCTV score (34.2) was below ecoregional expectations. Themidge *Cricotopus* (*Cricotopus*) *bicinctus* has been noted as the dominant midge species on natural and artificial substrates in areas of poor water quality by the Ohio EPA.

The sites located downstream at RMs 14.2, 9.4, and 2.5 were evaluated as exceptional. ICI scores of 50 (RM 14.2) and 52 (RM 2.5) were in the exceptional range (Figure 21). Natural substrates were dominated by caddisflies, mayflies, and an assortment of midges, with numbers of EPT taxa (17 to 21) and QCTV scores (39.9 to 41.5) in the range of the other exceptional sites in the area.

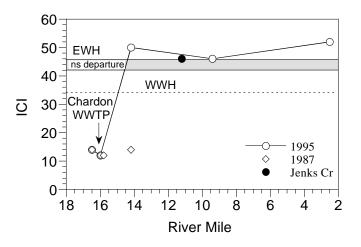


Figure 24. Longitudinal trends in Invertebrate Community Index (ICI) scores for Big Creek and Jenks Creek 1995, and Big Creek 1987.

Jenks Creek

The macroinvertebrate community in Jenks Creek at Pearl Road (RM 0.5) was evaluated as exceptional. The number of qualitative EPT taxa (17), the total number qualitative taxa(40), and the QCTV score (41.3) were in the range of similar tributaries in the Grand River basin with

exceptional water quality. The fauna included 5 cool-water macroinvertebrate taxa indicative of groundwater flow from springs: the caddisflies *Dolophilodes distinctus* and *Ceratopsyche slossonae*, and the midges *Trissopelopia*, *Zavrelmyai*, and *Paratanytarsus*n. sp. 1. Also collected were the stoneflies *Acroneuria carolinensis*, *Acroneuria evoluta* and *Agnetina capitata* complex, and two sensitive taxa, the caddisfly *Psychomyia flavida* and the midge *Rheotanytarsus distinctissimus*.

Baughman Creek

The ICI score (50) was exceptional on Baughman Creek downstream from SR 45 (RM 4.1). This station had a taxa rich caddisfly community (11 taxa) among the 75 total macroinvertebrate taxa collected from the artificial and natural substrates. Three cool-water midge taxa were found to inhabit this station, *Zavrelimyia*, *Parametriocnemus*, and *Polypedilum* (*Polypedilum*) aviceps

Mill Creek

The artificial substrates were affected by slow current at Netcher Road (RM 18.2) and m detectable current at SR 46 (RM 12.1). As a result, ICI values scored 36 and 26, respectively. The upper site was evaluated as exceptional and the lower site as good based on the assemblage of macroinvertebrates collected from both the artificial and natural substrates.

At Netcher Road, the number of qualitative EPT taxa (16), the total number qualitative taxa (61), and the QCTV score (38.2) were in the range of similar tributaries in the Grand River basin with exceptional water quality. This site had a higher number of total taxa (79) collected on both the artificial and natural substrates than any other Grand River tributary site sampled in 1995. The stonefly *Acroneuria evoluta* was collected and three unionid mussels, *Fusconaia flava, Lampsilis radiata luteola*, and *Lasmigona costata*, were also found.

At SR 46, the number of total taxa (73), number of total EPT taxa (13), and QCTV score (37.8) were similar to the sites in the low gradient section of the Grand River (RM 56.0 to RM 47.7) which were evaluated as good and very good. Two unionid mussels, *Anodonta grandis* and *Villosa iris*, were observed at this site.

Cemetery Creek

Macroinvertebrates assemblages collected from Cemetery Creek upstream and downstream from the Jefferson WWTP were rated as fair, indicating degraded resource conditions (Table 7). In late August 1995, the flow condition in Cemetery Creek upstream from Market Street was intermittent with no detectable current. Macroinvertebrates were collected at RM 2.5 in a pooled section. Riffles and runs were not present. Although only 2 EPT taxa were collected at this site, 35 total taxa were collected from the natural substrates. Predominant organisms collected were characteristic of stream margin habitats or intermittent streams and included the mayfly *Stenonema femoratum*, damselflies and dragonflies, the midge *Chironomus decorus*group, and the snail genus *Physella*.

Grand and Ashtabula River Basins TSD

January 7, 1997

In contrast, the site downstream from Poplar Street (RM 1.3) had pool, riffle, and run zones with moderate current velocity. Flow was augmented, or composed entirely, by effluent from the Jefferson WWTP. The impact by the Jefferson WWTP appeared to be primarily organic enrichment in nature. The macroinvertebrate assemblage was characteristic of enrichment, being predominated by flatworms, the caddisfly *Hydropsyche depravata* group, and the midges *Conchapelopia* and *Rheotanytarsus exiguus* Only 1 EPT taxon and 22 total taxa were collected from the natural substrates.

Rock Creek

The macroinvertebrate community sampled downstream from the Union Cemetery (RM0.8) was evaluated as exceptional (ICI = 46). A total of 64 macroinvertebrate taxa were collected at this station including the sensitive midge *Synorthocladius semivirens*.

Paine Creek

The macroinvertebrate community performance in Paine Creek (RM 0.5) upstream from Seeley Road was evaluated as exceptional. The number of qualitative EPT taxa (16) and the QCTV score (39.8) were in the range of similar tributaries in the Grand River basin which were evaluated as exceptional. The fauna included the cool-water midge taxon *Parametriocnemus*, two stonefly taxa, *Acroneuria evoluta* and *Acroneuria internata*, and the rare mayfly genus *Acentrella*.

Phelps Creek

The macroinvertebrate community in Phelps Creek upstream from the covered bridge (RM 4.9) was evaluated as exceptional. The number of qualitative EPT taxa (16), the total number of qualitative taxa (47), and the QCTV score (39.8) were in the range of similar tributaries in the Grand River basin which were evaluated as exceptional. The fauna included three cool-water midge taxa (*Zavrelimya, Parametriocnemus*, and *Polypedilum (Polypedilum) avicep*), two stonefly taxa (*Acroneuria evoluta* and *Neoperla clymene* complex), and the rare midge taxon *Polypedilum (Polypedilum)* Type 1. The unionid mussel *Strophitus undulatus undulatus* was observed at this site during qualitative sampling.

Swine Creek

The macroinvertebrate assemblage collected upstream from SR 544 (RM 5.2) was evaluated as exceptional (ICI=56). This station had a relatively taxa rich (16) mayfly community with 66 total taxa. Two sensitive mayfly taxa, *Acerpenna macdunnoughi* and *Labiobaetis propinquus*, and two cool-water taxa, the caddisfly *Ceratopsyche slossonae* and the midge *Parametriocnemus*, were collected from this station.

Table 8. Summary of macroinvertebrate data collected from artificial substrates (quantitative
evaluation) and from natural substrates (qualitative evaluation) in the Grand River basin,
1995.

			Qu	antitativ	e Evalua	tion		
Stream/River	Relative	Quant	Qual	Qual	Total			
Mile	Density	Taxa	Taxa	EPT ^a	Taxa	QCTV ^b	ICI	Evaluation ^c
Grand River	ž							
	Erie-C	Ontario I	Lake P	lain - W	WH Use	Designati	ion (Exi	sting)
95.5	-	-	56	20	-	39.7	-	Exceptional ^c
83.3	280	53	52	12	82	37.7	46	Exceptional
65.8	274	39	52	11	75	38.2	46	Exceptional
56.0	1382	40	55	7	75	35.3	34	Good
	Erie-O	ntario L	ake Pl	ain - E	WH Use	Designatic	on (Prop	posed)
44.7	962	49	41	8	72	37.2	42 ^{ns}	Very Good
32.9	-	-	74	19	-	39.1	-	Exceptional ^c
	Erie-C	Ontario I	Lake P	lain - E	WH Use	Designati	on (Exis	-
28.4	1570	53	78	23	97	41.3	54	Exceptional
22.6	601	56	65	22	94	40.5	50	Exceptional
13.6	1115	48	55	16	81	39.7	52	Exceptional
8.5	-	-	55	23	-	42.2	-	Exceptional ^c
6.2	3785	38	55	20	71	40.3	44 ^{ns}	Very Good
			- · ·					
Big Creek	176							ion (Existing)
16.1	176	21	25	4	36	35.8	12°	Fair ^c
16.0	225	20	27	3	36	34.2	12	Poor
14.2	242	38	51	17	63	41.3	50	Exceptional
9.4	207	34	53	25	70	39.9	32°	Exceptional ^c
2.5	269	45	51	21	73	40.5	52	Exceptional
Jenks Creek			40	17		41.2		
0.5	-	-	40	17	-	41.3	-	Exceptional ^c
Baughman C	reek							
4.1	238	55	41	17	75	39.7	50	Exceptional
Mill Creek								
18.2	584	45	61	16	79	38.2	36 ^c	Exceptional ^c
12.1	731	47	44	9	73	37.8	26°	Good ^c
Constant C	-1-							
Cemetery Cre	ек		25	2		20.2		Esin
2.5	-	-	35	2	-	30.3	-	Fair
1.3	-	-	22	1	-	34.2	-	Fair

Table 8. Continued.

Table 8. Con			Qu	antitativ	e Evalud	ition		
Stream/River	Relati	ve Quan	t Qual	Qual	Total			
Mile	Densi	ty Taxa	Taxa	EPT ^a	Taxa	QCTV ^b	ICI	Evaluation ^c
Rock Creek 0.8	296	41	46	14	64	38.9	46	Exceptional
010	_> 0				0.	000		p
Paine Creek								
0.5	-	-	37	16	-	39.8	-	Exceptional
Phelps Creek								
4.9	102	26	47	16	64	39.8	36 ^c	Exceptional ^c
Swine Creek								
5.2	692	48	45	18	66	40.3	56	Exceptional
								-
			~	ualitative				
Stream/River	-		•	Relative		minant		Narrative
Mile Grand River	Taxa	QCTV ^b	EPT ^a	Density	Orgar	nisms		Evaluation
95.5	56	39.7	20	Low-	Midg	es.		Exceptional
					e hydro	psychid ca	ddisflies,	-
					maeti	d mayflies		
32.9	74	39.1	19	High	River	snails,		Exceptional
				C	hydro odona	psychid ca ites	ddisflies,	
8.5	55	42.2	23	Moderat	e Caddi	sflies,		Exceptional
					mayfl	ies, midge	S	
Big Creek								
16.1	25	35.8	4	Low-	Caddi	sflies,		Fair
				Moderat		l mayflies,	midges	
9.4	53	39.9	25	Moderat	e Mavf	lies, midge	s.	Exceptional
2					•	psychid ca		····r

Table 8. Continued.

Qualitative Evaluation										
Stream/River	Qual		Qual	Relative	Predominant	Narrative				
Mile	Taxa	$QCTV^{b}$	EPT ^a	Density	Organisms	Evaluation				
Jenks Creek										
0.5	40	41.3	17	Moderate	Caddisflies, midges, water pennies	Exceptional				
Cemetery Cre	ek									
2.5 Fair	35	30.3	2	Low	Midges, odonates					
1.3	22	34.2	1	Low	Caddisflies, midges	Fair				
Paine Creek										

Paine Creek

37 39.8 Low Caddisflies, mayflies 0.5 16 Exceptional

EPT=total Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) taxarichness.

b Qualitative Community Tolerance Value (QCTV) calculated as the median of the tolerance values determined for each qualitative taxon collected.

The narrative evaluation using the qualitative sample is based on best professional judgement utilizing sample attributes such as taxa richness, EPT taxa richness, QCTV score, and community composition and is used in lieu of the ICI when artificial substrates are lost or deemed not useable.

Nonsignificant departure from ecoregional biocriterion (< 4 ICI units). ns

Biological Assessment: Fish Community

Grand River

Excellent water quality owing to wide forested riparian buffers, limited (but increasing) residential development within the watershed, minor agricultural impacts, and minimal point source loadings of pollutants enables an outstanding fish community to thrive in the Grand River (Table 8, Figure 22). The importance of each element contributing to high water quality is reflected in various components of the fish fauna. Riparian forests absorb nutrients originating from nonpoint sources and filter sediment borne by surface runoff. Also, conservative farming practices on small acreage farms export less nutrients and sediments to tributaries, and because the tributaries are not channelized, those pollutants are better assimilated. Consequently, the Grand River has unembedded substrates providing habitat for aquatic insects, and good water transparency allowing sight feeding insectivorous fishes to forage. Accordingly, strong populations of obligate sight feeders (mimic shiner, rosyface shiner and silver shiner) are present in the lotic reaches. Also, the rich aquatic insect base generally supports a diverse insectivorous community, including an abundance of redhorse, river chub, and in the riffles, madtoms and

darters.

The benefits of minimal pollutant loadings from point sources, residential septic systems and stormwater runoff are manifest in the high relative abundance of species sensitive to pollution. In the lotic reaches, sensitive species composed over 62% of the catch on average, with approximately half of those being considered highly intolerant (Figure 23). In the lentic reach, species sensitive to pollution numerically composed over 40% of the total catch (excluding the wetlands and headwater segments). Strong populations of several fish species that have declining populations throughout Ohio due to habitat loss and pollution are found in the Grand River. These species are river chub, rosyface shiner, mimic shiner, black redhorse and river redhorse. Moreover, the Grand River supports one of the strongest populations of black redhorse in the state (Figure 24). Also, muskellunge, a state endangered species, are present.

Differences between the lentic and lotic reaches are reflected in the IBI and MIwb scores (Figure 22). In the lotic reaches, both index scores either fully or marginally met Exceptional Warmwater Habitat (EWH) criterion, but in the lentic reaches, the MIwb did not meet the EWH criterion The lower MIwb scores in the lentic reaches are due, in part, to depth because electrofishing efficiency is reduced in deep water, and MIwb scores are a function of relative abundance. The natural constraints imposed by lentic conditions, primarily reduced habitat heterogeneity and low dissolved oxygen levels, and the attendant loss of species, also contributed to the lower scores in both indexes, especially at RM 83.5, where the river flowed through an extensive wetland.

None of the evaluated segments showed significant impairment due to identified sources of either point source or non-point source pollution (Table 8). An anomalous IBI score (IBI = 42) was obtained on the second pass at RM 6.2 due to an inexperienced netter, and does not reflect impaired water quality. Also, the nonsignificant departure of most MIwb scores from EWH criteria in the lotic reach does not signify water quality impairment, but ismore likely an artifact of the generally high water transparency, and comparatively low ambient nutrient levels (U.S.G.S. 1994).

Three component metrics of the IBI, the number of sunfish, round bodied sucker and darter species, consistently scored low in the lotic reach. The performance of these metrics in the Grand River was constrained by lack of representation of all habitat types in the electrofishing samples, and, for the number of darter species, unrealistic expectations. As noted in *Physical Habitat for Aquatic Life*, different habitat types occur in long stretches and are widely separated, leading to over or under sampling of one or two habitat types. The low numbers of sunfishspecies and deep pool sucker species (*i.e.*, silver redhorse and spotted sucker) reflect under-sampling of backwater and deep pool habitats. Because few darter species of the genus *Etheostoma* are indigenous to the Lake Erie drainage, expectations for the number of darter species present based on thoæ derived for the Ohio River drainage, are unrealistic. At most, six species of darter (blackside, logperch, greenside, johnny, rainbow and fantail) can be routinely expected frommoderate sized streams of the Lake Erie basin.

1	995, 198	7, 1984 ai	nd 1983.					
	Mean		Mean	Mean				
		Cumulativ		Rel. Wt.		Mean	Mean	Narrative
River Mile	Species	Species	(No./0.3 km)	(wt./0.3 km)	QHEI	Miwb ^a	IBI	Evaluation
Grand Ri	ver (199	5)						
94.3	20.5	25	804.0	4.7	71	NA	51	Except.
83.5	19.5	27	129.0	3.1	54	7.6 ^{ns}	41	M.Good/Good
65.9	17.5	22	212.0	48.7	57	8.1 ^{ns}	45	Fair/V.Good
52.7	21.0	29	177.0	84.8	62	8.7^{*}	45 ^{ns}	Good/V.Good
40.9	25.5	34	444.0	52.6	67	9.2 ^{ns}	49	V.Good/Except
36.3	19.5	25	233.0	48.8	57	8.5^*	47 ^{ns}	M.Good/V.Good
34.0	20.0	28	390.4	54.9	60	8.6^{*}	50	M.Good/Except
28.4	22.2	25	676.8	39.8	52	9.5 ^{ns}	51	V.Good/Except
22.1	21.0	23	730.8	20.6	88	9.5 ^{ns}	48	V.Good/Except
13.4	22.5	26	550.0	44.1	91	9.1 ^{ns}	52	V.Good/Except
8.0	22.5	32	362.0	74.6	78	9.2 ^{ns}	52	V.Good/Except
6.2	24.5	32	478.0	40.3	76	9.4 ^{ns}	47 ^{ns}	V.Good
Grand Ri	ver (198'	7)						
22.1	22.0	21	421.5	7.3	82	9.3 ^{ns}	50	V.Good/Excpt
13.4	23.5	24	562.0	32.9	91	9.5 ^{ns}	48	V.Good/Excpt
9.0	23.5	23	137.4	15.2	80	8.7^{*}	47 ^{ns}	Good/V.Good
6.1	24.5	20	326.0	64.6	77	9.4 ^{ns}	54	V.Good/Excpt
Grand Ri	ver (198	3)						1
83.5	24.0	,	220.0		53	8.3	40	Good
Big Creek	(1995)							
16.3	8.0	9	973.0	4.8	62	NA	40	Good
15.9	5.5	7	236.0	1.0	54	NA	37 ^{ns}	M.Good
13.9	8.0	9	560.5	6.8	71	NA	32^{*}	Fair
9.5	13.5	15	1502.3	6.8	73	NA	38 ^{ns}	M.Good
5.3	11.5	12	1377.2	7.2	71	7.8 ^{ns}	40	M.Good/Good
2.5	14.0	17	1179.4	4.9	59	6.7^{*}	36 ^{ns}	Fair/M.Good
			Big Creek)					
0.1	11.0	11	338.3	1.6	70	NA	42	Good
011	1110		00010	110				0000
Big Creek	x(1987)							
16.3	8.0	9	602.5	0.0	40	NA	40	Good
15.9	5.3	8	227.7	0.0	50	NA	<u>23</u> *	Poor
13.9	9.0	11	580.5	5.1	67	NA	$\overline{28}^{*}$	Fair
9.5	14.7	14	1963.5	20.4	83	NA	42	Good

Table 9. Fish community indices from samples collected in the Grand River study area 1995, 1987, 1984 and 1983.

Grand and Ashtabula River Basins TSD

January 7, 1997

Table 9. Continued.

NumberCumulativeRRiver MileSpeciesSpecies(NBaughmanCreek(1995)3.020.0221BaughmanCreek(1984)3.019.71Mill Creek(1995)		Mean Rel. Wt. wt./0.3 km) 25.6	<u>QНЕІ</u> 51	Miwb ^a	Mean IBI	Narrative Evaluation
River MileSpeciesSpecies(NoBaughmanCreek (1995)3.020.0221BaughmanCreek (1984)3.019.7Mill Creek (1995)Source (1995)Source (1995)Source (1995)	o./0.3 km) (wt./0.3 km)		Miwb ^a		
Baughman Creek (1995) 3.0 20.0 22 1 Baughman Creek (1984) 3.0 19.7 Mill Creek (1995) 19.7	1880.0				IBI	Evaluation
3.0 20.0 22 1 Baughman Creek (1984) 3.0 19.7 Mill Creek (1995)		25.6	51	NT 4		
Baughman Creek (1984) 3.0 19.7 Mill Creek (1995) 19.7		25.6	51	NT A		
3.0 19.7 Mill Creek (1995)	274.0			NA	38 ^{ns}	M.Good
Mill Creek (1995)	274.0					
. ,			72	NA	38 ^{ns}	M.Good
. ,						
18.1 16.0 18	732.3	3.3	80	8.0	40	Good
10.0 21.5 25	474.8	7.7	80	8.6	47	Good/V.Good
Mill Creek (1983-84)						
17.2 24.5	666.0		63	8.1	37 ^{ns}	Good/M. Good
10.0 21.3	414.0		90	7.5 ^{ns}	37 ^{ns}	Marg. Good
Cemetery Creek (1995)						
2.5 7.0 7	984.0	2.1	42	NA	26^{*}	Poor
1.3 8.0 11 2	2138.0	9.1	56	NA	<u>27</u> *	Poor
Cemetery Creek (1987)						
2.5 13.0 1	166.0			NA	32^{*}	Fair
2.1 6.0	238.0			NA	$\underline{24}^{*}$	Poor
1.2 9.0	648.0			NA	$\overline{24}^{*}$	Poor
Rock Creek (1995)						
0.8 26.5 30	495.8	14.0	72	8.1	48	Good/V.Good
Rock Creek (1987)						
. ,	191.0		74	8.9	48	Very Good
						5
Paine Creek (1995)						
0.2 23.0 27	598.8	6.1	75	8.7	51	Good/Excpt.
Phelps Creek (1995)						
5.3 15.5 18	645.0	4.0	78	7.5 ^{ns}	40	M.Good/Good
					-	
Swine Creek (1995)						
	236.3	13.0	59	NA	44	Good

dole 9. Continued.											
	Ecoregio	Ecoregion Biocriteria: Erie-Ontario Lake Plain									
		IBI			MIwb						
Site Type	WWH	EWH	MWH ^c	WWH	EWH	MWH ^c					
Headwaters	40	50	24	NA	NA	NA					
Wading	38	50	24	7.9	9.4	5.6					
Boat	40	48	24	8.7	9.6	5.7					

Table 9. Continued.

a - MIwb is not applicable to headwater streams with drainage areas $\leq 20 \text{ mi}^2$.

ns - Nonsignificant departure from biocriteria (≤4 IBI units or ≤0.5 MIwb units).

* - Indicates significant departure from applicable biocriteria (>4 IBI units or >0.5 MIwb units). Underlined scores are in the Poor or Very Poor range.

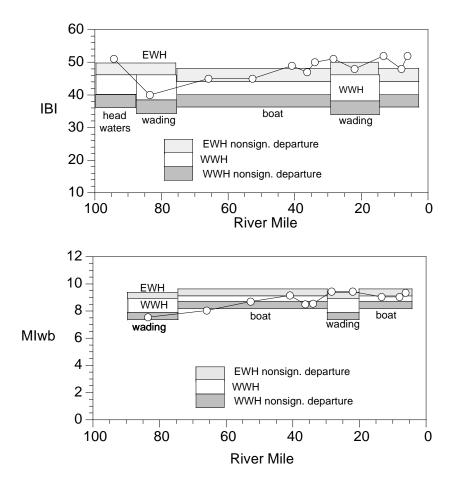


Figure 25. Longitudinal trend in mean Index of Biotic Integrity (IBI-top) and Modified Index of well-being (MIwb-bottom) scores for the Grand River, 1995.

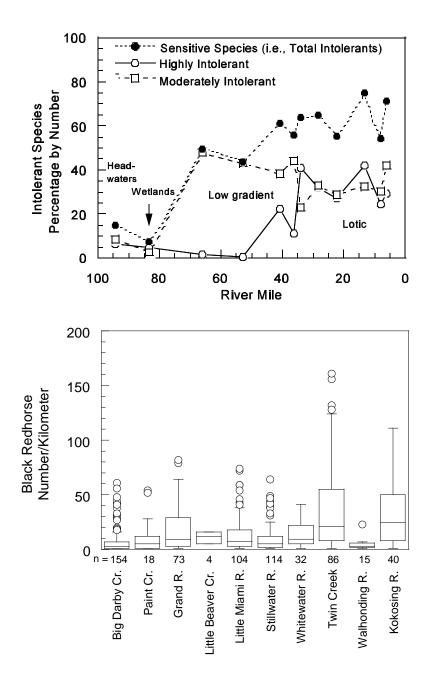
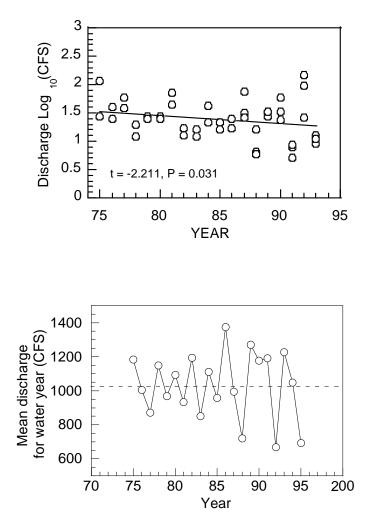



Figure 26. Relative number of pollution sensitive fishes by river mile in the Grand River (top) and the relative number of black redhorse in electrofishing catches in the Grand River compared to other EWH streams in Ohio (bottom).

Much of the Grand River is underlain by a shallow, low yielding, shale bedrock aquifer, consequently it periodically experiences very low flows in late summer (Figure 24), and is vulnerable to perturbations within the watershed. Because of the low summer flows, the Grand River cannot support unrestricted flow appropriations (*i.e.*, wells or irrigation) and has a limited ability to assimilate pollutants. Also, the shallow nature of the aquifer makes its ground water yield susceptible to increases in impervious surfaces within the watershed. Late summer low flows recorded at the USGS gaging station at SR 84 show a decreasing trend for the period of record. The trend is evident when the recent drought cycle(1988-1994) is removed, suggesting possible impingement by anthropogenic factors. The trend may, however, be solely attributable to climatic variability, as suggested by mean annual flows (Figure 24); still the decreasing summer flows demonstrate the vulnerability of the river to perturbations.

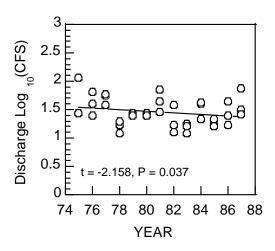


Figure 27. Minimum summer flows July, August and September 1974 - 1994 in the Grand River (upper left). The figure on the right has the recent drought period (1988 - 1994) removed. Increasingly variable mean annual discharge for the period of record (lower left) reflects the recent period of increased climatic variability.

Big Creek

Fish communities in Big Creek were evaluated at six locations to assess the impact of the Chardon WWTP (Table 8, Figure 25). The fish communities upstream (RM 16.3) and immediately downstream (RM 15.9) of the discharge met WWH criterion, though the score downstream only marginally attained. Pollution tolerant fishes composed more than 85% of the total individuals at each site (Figure 26), evidence for degraded water quality. While wading in the creek upstream of the plant, a strong petroleum smell and a sheen on the surface was evident when the bottom sediments were disturbed. These conditions were not observed downstream of the plant. The watershed immediately upsteam drains a construction company with heavy equipment and piles of concrete, a car dealership, and US 6, all potential sources of oil and grease.

The fish community in the far field zone (RM 13.9) was impacted and did not meet WWH criterion. Pollution tolerant fishes continued to be an unusually high percentage of individuals demonstrating impact from the plant. Also, pioneering fishes were most abundant at RM 13.9, suggesting a disturbed environment. This pattern is associated with delayed impacts from loadings of oxygen demanding pollutants. Results of Datasonde® 48 hr continuous hourly monitoring did not show an oxygen sag at RM 13.9 (Figure 13), suggesting routine pollutant loadings by the Chardon WWTP were being assimilated. However, median flows through the plant have been steadily increasing since 1993 and are now mear its design capacity of 1.1 MGD (Figure 6). Discharges over its design capacity have been occurring since 1989, indicating that episodic discharges of poorly treated sewage are responsible for impairment in the fish community downstream of the plant.

The percentage of pollution tolerant fishes decreased steadily downstream from RM 139 reflecting improved water quality. Recovery was noted at RM 9.5, although the mean IBI score departed nonsignificantly from the WWH criterion. Full recovery was not evident until RM 5.3. Although marginal habitat (extensive bedrock) limited the performance of the fish community at RM 2.5 (Figure 25), excellent water quality was evidenced by the small percentage of pollution tolerant fishes, the relatively high abundance of river chubs (8.25% of individuals), and natural reproduction of rainbow trout, a species requiring well oxygenated, clear and silt free water to reproduce.

The fish community in Jenks Creek was sampled to serve as an unimpacted, small drainage area comparison for the upstream site (RM 16.3) on Big Creek. Although the IBI scores weresimilar at both sites, component metrics differed widely between the two. Jenks creek had greater species richness and a more balanced community indicating less disturbance from urban impacts However, it scored similarly to Big Creek because of the high percentage of pollution tolerant and pioneering fishes, likely attributable to the small WWTP servicing a trail park upstream or possibly unsewered discharges.

Paine Creek

The Paine Creek watershed is presently relatively undeveloped. The clear, well oxygenated water and silt-free habitat characteristic of unperturbed watersheds was demonstrated by the presence of a naturally reproduced rainbow trout, and an exceptional fish community. However, residential development within the upper watershed in Leroy Township is increasing at a rapid pace, potentially threatening Paine Creek.

Mill Creek

Two sites were sampled in Mill Creek, RMs 18.1 and 10.0. The QHEI scores at both sites indicated that the physical habitat was capable of supporting an exceptional fauna. However, only the IBI at RM 10.0 marginally met EWH criterion, otherwise scores met WWH criteria. The performance of the biotic community was limited by low stream flows. Historical records from a now defunct USGS gauging station at RM 8.5 demonstrate that the creek typically becomes intermittent or has very low flows (≈ 0.1 cfs) in late summer. Low flows stress fish populations by limiting the amount of habitat available, increasing exposure to predation, and increasing diurnal oxygen swings. The moderately elevated abundance of tolerant and omnivorous fishes, and low number of intolerant species reflect these stresses to the fish community.

Cemetery Creek

The two sites bracketing the Jefferson WWTP were sampled in Cemetery Creek. Neither site met the WWH criterion (Table 8). The site upstream of the plant is heavily modified (QHEI = 42), and becomes intermittent in late summer. Besides a degraded physical habitat, the creek receives septic discharge from a tile line. Also, a grayish-green substance resembling fertilizer (α embalming fluid) had been dumped near the upstream end of the zone. Accordingly, a degraded fauna was present, composed mainly of tolerant fishes. Downstream of the WWTP plant, the creek is effluent dominated. Though not meeting WWH criterion because creek chub composed 80% of the biomass, the community contained elements of a balanced fauna, suggesting the effluent was not acutely toxic, and that the community is capable of recovering following the current plant upgrade.

Rock Creek

The site sampled in Rock Creek was located downstream from an instream impoundment. A cluster of residential and vacation homes are located on the shores of the impoundment, but do not appear to significantly impact the water quality in Rock Creek, as a balanced stream fish assemblage meeting WWH criteria was present. Nutrient inputs from septic discharge or lawn fertilizer are apparently either minimal or assimilated by the impoundment. The impoundment did influenced the composition of the fauna by adding species with a lacustrine affinity (*e.g.*, golden and spotfin shiner, largemouth bass, and yellow perch). The impoundment also helped to stabilize flows, essentially functioning as a larger drainage area. The drainage area at RM 0.8 of Rock Creek is approximately 57 mi², yet the fish community there performed more similarly to the community at RM 10.0 of Mill Creek, with a drainage area of 86 mi², than that at RM 18.1 with a drainage area of 69 mi² (See appendix Table A-4). Although the impoundment

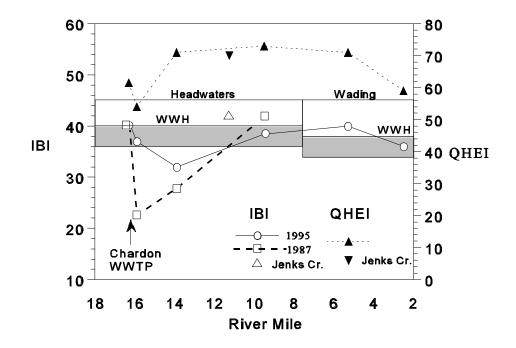


Figure 28. Longitudinal trends in Index of Biotic Integrity (IBI) scores for fish communities sampled in Big Creek, 1995 and 1987, in relation to the Chardon WWTP. The shaded box represents the area of insignificant departure from the applicable WWH criterion.

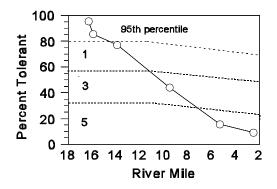


Figure 29. Mean percentage of pollution tolerant fishes in electrofishing samples collected in Big Creek, 1995. The dashed lines depict the boundarys for IBI metric scoring of the percent tollerant fishes. Values above the 95th percentile line deviate strongly from the sample population.

augmented several IBI metrics, in its absence, the community would likely still have attained WWH criteria.

Phelps Creek

Contrary to the excellent habitat, the fish community in Phelps Creek narrowly met WWH standards at RM 5.3 (Table 8). Like other streams in the area (e.g., Mill Creek and the Ashtabuk River), the performance of the fish community, in the elevated abundance of tolerant fishes (white sucker, blacknose dace and creek chub), reflected the recurrent low or intermittent summer flows, as opposed to poor water quality. The excellent habitat quality, especially the mature riparian buffer, enabled several cool water fish species to exist despite the low flow conditions.

Swine Creek

Despite marginal habitat, the fish community in Swine Creek fully met WWH criteria, owing in part to sustained flows in late summer. The lower reach of Swine Creek flows through lacustrine deposits, which tend to retain groundwater and release it slowly. American brook lamprey, a species requiring permanent water (Trautman 1981) were present. The relatively homogeneous sand and gravel substrates favored omnivorous and generalist feeders (i.e., white sucker, creek chub and bluntnose minnow) and silverjaw minnow.

Baughman Creek

A diverse fish fauna was sampled in Baughman Creek. Although the sampling location was located in a pasture, the land was not over grazed and aquatic vegetation was present. Sustained flows and clear water enabled the presence of northern brook lamprey, a state endangered species, and hornyhead chub, a species extirpated from much of its former range in Ohio. Nutrient enrichment from pasturing was evident, however, in the high relative abundance of all fishes, particularly tolerant ones, and the prevalence of homogenous fine substrates resulted in few lithophilic species. Consequently, the IBI marginally met the WWH criterion.

Changes in Chemical Water Quality

Grand River

In 1974 the U.S. EPA authored a report entitled "Northeast Ohio Tributaries to Lake Erie Waste Load Allocation Report". The report stated that the water quality within the Grand River Basin was generally "good" but did find exceedences of cadmium ($<8-12 \mu g/l$) and mercury (0.3-0.8 $\mu g/l$) throughout the basin which were attributed to non-point sources. Thereport also stated that they could not rule out "laboratory error" as the reason for the elevated cadmium and mercury concentrations. Bacterial contamination was most severe in urban areas and the lower Grand River near Painesville was the most severely polluted. Dissolved solids from the now closed Diamond Shamrock Corporation discharge into the Grand River had measurable impacts upon the Painesville, Ashtabula and Conneaut water supply intakes in Lake Erie.

In 1987, Ohio EPA conducted a study of the Grand River and Big Creek. The Grand River study area extended from Brandt Road (RM 28.4) to the mouth (RM 0.0). The results of that study were reported in "Biological and Water Quality Survey of the Grand River". The study reported that the Grand River met all water quality criteria upstream from the Diamond Shamrock lagoons near Painesville. Downstream from the lagoons, exceedences of the total dissolved solids criteria were documented in the Grand River.

Since 1975, monthly water quality monitoring, as part of the National Ambient Water Quality Monitoring Network (NAWQMN), has been conducted in the Grand Riverat State Route 84 (RM 8.5) south of Painesville. A NAWQMN station at S.R. 528 (RM 22.1) was established in 1973 and abandoned in 1974 and another station at S.R. 535 (RM 2.3) was established in 1972 and abandoned in 1994. Analysis of the data from these stations, as illustrated graphically from a plt of ammonia concentrations at S.R. 84 (Figure 27), reveal a strong improvement in ammonia-N concentrations in the watershed. The improvement is probably a result of connections of inadequate or failing sanitary systems to central treatment facilities, consolidation of smaller wastewater facilities and improved treatment at Lake County wastewater plants (despite recent increases in ammonia-N loadings from the Lake County Heatherstone WWTP) and improved treatment at the Chardon WWTP on Big Creek.

The trend in chemical oxygen demand concentrations varied from 1973 to present at S.R. 84. A slight improvement (lower concentrations) in COD is indicated in the early 1980's. The concentrations increased during the middle 1980's and improved again in the late 1980's and early 1990's (Figure 27). The trend in dissolved oxygen concentrations at Route 84 appear to be correlated to the COD trend. No appreciable trend in dissolved oxygen concentrations was noted over the period of record (Figure 27).

Zinc concentrations at SR 84 are at low levels but the concentration in the water appears to be increasing (Figure 27). This apparent trend should continue to be monitored. There is no known significant zinc point source discharge upstream from the SR 84 station. Other heavy metal concentrations do not appear to be of significant concern in the Grand River.

Ammonia-N concentrations at Kiwanis Park (RM 6.1) have improved from the average 0.5 mg/l (n=3) concentration reported in the 1987 study to concentrations that were all (n=5) less than method detection limit of 0.05 mg/l.

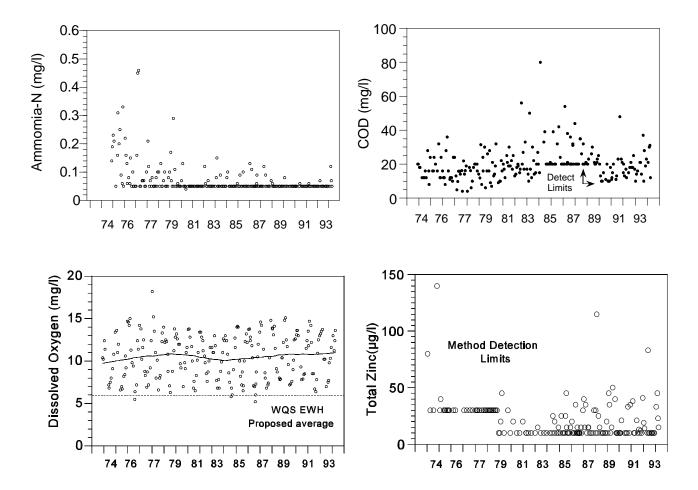


Figure 30. Trends in select chemical water quality parameters from the Grand River measured at the NAWQMN station at SR 84 (RM 8.5) south of Painesville 1974 - 1994.

Big Creek

In 1987, Ohio EPA conducted a study of the Grand River and Big Creek. The Big Creek study area extended from US Route 6 (RM 16.6) to Woodin Rd (RM 14.0). The results of that study were reported in "Biological and Water Quality Survey of the Grand River". The 1987 study indicates that the water quality in Big Creek upstream from the Chardon WWTP apparently has not changed. Exceedences of the minimum dissolved oxygen criteria as well as elevated phosphorus and nitrogen compounds at the Route 6 site were documented in both studies.

The addition of phosphorus removal at the Chardon WWTP appear to be benefitting the stream as total phosphorus concentrations downstream of the WWTP at Woodin Road have been reduced

from 1987 concentrations. The 1987 study reported a range of 0.84 to 2.7 mg/l, while the range in 1995 was 0.05-0.16 mg/l. Dissolved oxygen, COD, and ammonia-N during the 1995 study also appeared to improve from 1987 concentrations. (Figure 28). The reduced ammonia concentrations and the increased nitrate-nitrite concentrations (SATWQT-9) indicate improved treatment at the Chardon WWTP.

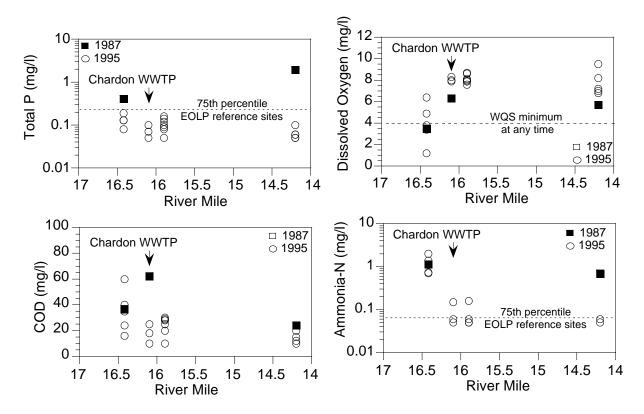


Figure 31. Trends in select chemical water quality parameters measured in water quality grab samples from Big Creek, 1987 (presented as means) and 1995 in relation to the Chardon WWTP.

Cemetery Creek

The 1974 U.S. EPA WLA reported low dissolved oxygen in Mill Creek which they attributed to the Jefferson WWTP discharge to Cemetery. Water quality samples collected from Cemetery Creek in 1986 indicated low dissolved oxygen and elevated concentrations of ammonia-N and TKN downstream from the Jefferson WWTP. Dissolved oxygen concentrations were not of concern during the 1995 study, but the ammonia-N and TKN concentrations continued to be elevated downstream from Jefferson WWTP.

Ecoregional reference sites

In 1985 Ohio EPA collected water quality information from several ecoregional reference sites including Mill Creek at Netcher Road, Mill Creek at Doyle Road, Grand River at Hyde Road and Baughman Creek at Mesic (Fenton) Road. The reference sites were selected to represent water resources that have been least impacted due to human influence in Ohio. The data were used to develop the ecoregional criteria concept that Ohio EPA currently uses to assess water resources. A review of the data indicate no apparent change in water quality from 1985 to 1995 at these reference sites.

Changes in Biological Community Performance - Macroinvertebrates

Grand River

Macroinvertebrate communities in the Grand River have consistently demonstrated very good to exceptional conditions from 1983 to 1995 (Table 9, Figure 29). ICI scores not in the exceptional range were usually a result of slow current conditions or other perturbations not related to water quality. One possible exception was an ICI score of 34 (good range) in 1988 at RM 8.4. This site was located below the influence of the Heatherstone WWTP. Also, 1988 wasa drought year. The combination of the WWTP discharge and less water available upstream for dilution may have resulted in the lower ICI score that year. Loadings data from the Heatherstone WWTP do not indicate anomalous plant operation in 1988, however an ammonia-nitrogen concentration approaching chronically acute levels (0.09 mg/l) was detected in a water quality grab sample collected 31 August 1988. Data from 1987 and 1995 at this station showed very good to exceptional communities.

During the 1995 study, there were many macroinvertebrate taxa collected characteristic of high quality waters that have also been collected in previous years: the mayflies *Baetis armillatus*, *Baetis dubius*, *Labiobaetis propinquus*, *Stenonema mediopunctatum*, and *Serratella deficien*; the stoneflies *Acroneuria carolinensis*, *Acroneuria evoluta*, *Acroneuria internata*, *Agnetina capitata* complex, and *Neoperla clymene* complex; and the midge taxa *Synorthocladius semivirens* and *Rheotanytarsus distinctissimus* group. One rare taxa, *Polypedilum* (*Polypedilum*)Type 1, was collected in 1995 and in 1987.

Big Creek

Macroinvertebrates collected upstream and downstream from the Chardon WWTP showed improvements between 1987 and 1995 (Table 9, Figure 21). Numbers of qualitative EPT taxa and QCTV scores were higher in 1995 at the three common sites. Communities upstream from the Chardon WWTP (RM 16.1) and immediately downstream (RM 16.0/15.8) appeared to be slightly improved, but were still evaluated as poor or fair and not meeting the WWH criterion. The most significant improvement occurred at Woodin Road (RM 14.2) which improved from fair in 1987 to exceptional (ICI = 50) in 1995.

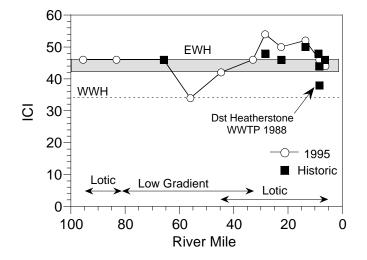


Figure 32. Longitudinal trends in Invertebrate Community Index (ICI) scores from the Grand River, 1995, compared to historical scores (1983-1991).

Baughman Creek

Macroinvertebrate communities were sampled in Baughman Creek in 1984 as an ecoregion reference site. In both 1984 and 1995 the ICI score was 50 (exceptional).

Mill Creek

Artificial substrates at Netcher Road (RM 18.2) and SR 46 (RM 12.0) were affected by slow or no detectable current over the samplers in 1983, 1984, and 1995. Qualitative samples were collected by different methods. The 1983 and 1984 samples were collected by kicking into a dipnet for a distance of 10 feet in a riffle zone. This was the protocol for the Ohio ecoregion project sampling conducted in 1983 and 1984. The qualitative sampling conducted in 1995 was performed in accordance Ohio EPA methods prefaced in the Methods section of this report. Even with these sampling differences, there were 9 to 16 qualitative EPT taxa and QCTV scores ranged from 35.9 to 38.2 during these years at both sites. No apparent change in the stream quality was discernible between 1983 and 1995.

Rock Creek

The ICI score of 46 in 1995 was in the exceptional range. A qualitative sample was collected in 1987 which had similar numbers of qualitative EPT taxa (13 vs. 14) and QCTV score (38.2 vs. 38.9).

Table	10.). Summary of macroinvertebrate trend data collected from ar	ctificial substrates
	(0	(quantitative evaluation) and from natural substrates (qualitative e	evaluation) in the
	G	Grand River basin, 1983-1995.	

Stream/River		Relative	Quant	Qual	Qual	Total	QCTV	7	
Comments/									
Mile	(Year)	Density	Taxa	Taxa	EPT ^a	Taxa	Score	ICI	Evaluation
Grand River	E_{I}	rie-Ontario	Lake P	lain -	WWH U	Jse Des	•	n (Exis	
83.3	(1995)	280	53	52	12	82	37.7	46	Exceptional
83.5	(1984)	174	40	25	4	55	37.2	[24]	No current
									over HDs
65.8	(1995)	274	39	52	11	75	38.2	46	Exceptional
65.9	(1983)	1136	43	30	7	57	39.7	[44]	Exceptional
	Erie-C	Ontario Lak	e Plain	- EWE	I Use D	esigna	tion (Ex	(xisting	
28.4	(1995)	1570	53	78	23	97	41.3	54	Exceptional
	(1987)	2180	35	68	24	76	40.5	48	Exceptional
							40 -		
22.6	(1995)	601	56	65	22	94	40.5	50	Exceptional
	(1987)	549	43	64	23	79	41.3	46	Exceptional
13.6	(1995)	1115	48	55	16	81	39.7	52	Exceptional
	(1987)	1247	44	66	23	83	40.5	50	Exceptional
0.5	(1005)				22		10.0		r di b
8.5	(1995)	-	-	55	23	-	42.2	-	Exceptional ^b
8.8	(1991)	1283	56	57	21	81	41.5	48	Exceptional
8.4	(1988)	1177	54	40	14	69	37.2	34	Good
8.6	(1987)	-	-	49	22	-	41.3	-	Good-Except.
8.4	(1979)	304	41	21	14	50	42.4	40 ^b	Pre-1980 data
6.2	(1995)	3785	38	55	20	71	40.3	44 ^{ns}	Very Good
6.4	(1994)	43	27	43	17	58	40.3	32 ^b	Samples disturbed
6.4	(1987)	1117	44	64	27	77	41.4	46	Exceptional
Big Creek	Erie-O	ntario Lako	e Plain	- WWF	H Use L	Designa	tion (E	xisting)
16.1		176							
	(1987)		-	28	2		32.3	-	Poor
16.0	(1995)	245	20	27	3	36	34.2	12	Poor
15.8	(1987)	-	-	20	0	_	25.1	-	Poor
14.2	(1995)	241	38	51	17	63	41.3	50	Exceptional
	(1987)	-	-	38	9	-	39.2	-	Fair

Table IU. (C	ontinucu).		T						
Stream/River Comments/	Relative	-	nd Eval Qual		Total	QCTV	T		
Mile	(Year)	Density	Taxa	Taxa	EPT ^a	Taxa	Score	ICI	Evaluation
Baughman (Creek	•							
4.1	(1995) (1984)	238 1200	41 57	55 49	17 14	75 76	39.7 40.0	50 50	Exceptional Exceptional
Mill Creek									
18.2	(1995) (1984)	584 391	45 41	61 28	16 9	79 54	38.2 35.9	36 ^b 26 ^b	Exceptional ^b Flow affected samplers
12.1	(1995) (1983)	731 412	47 27	44 46	9 10	73 59	37.8 39.3	26 ^b 22 ^b	Good ^b Flow affected samplers
Rock Creek									
0.8	(1995) (1987)	296 -	41 -	46 54	14 13	64 -	38.9 38.2	46 -	Exceptional

Table 10. (Continued)

^a EPT=total Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) taxa richness.

^b The narrative evaluation using the qualitative sample is based on best professional judgement utilizing sample attributes such as taxa richness, EPT taxa richness, QCTV score, and community composition and is used in lieu of the ICI when artificial substrates are lost or deemed not useable.

^{ns} Nonsignificant departure from ecoregional biocriterion (≤ 4 ICI units).

81

Changes in Biological Performance - Fish

Grand River

Index scores collected in 1987 and 1995 show similar community performance (Figure 30), indicating no appreciable degradation in water quality between survey years (Table 10). An increase from 4.4% in 1987 to 8.3% in 1995 in the percent composition of pollution tolerant fishes, mainly bluntnose minnows, was noticed. The difference does not appear to be related to impaired water quality as abundance of pollution intolerant fishes is unchanged. The difference may simply be an artifact, or it may reflect stress on the community from the recent period of recurrent drought. Also, relative abundance of smallmouth bass decreased from 5.6% in 1987 to 3.8% in 1995. Again, the difference may be an artifact, or it may represent stress due to drought and unstable flows as smallmouth bass recruitment and abundance is correlated with flow stability (Lukas and Orth 1995; Sowa and Rabeni 1995).

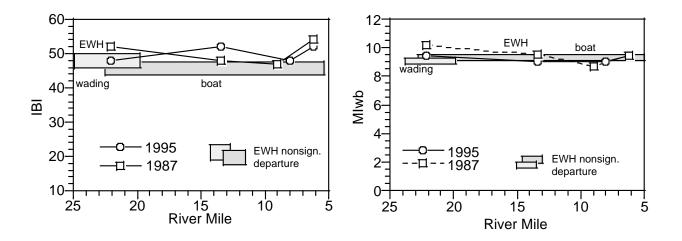


Figure 33. IBI (left) and MIwb (right) scores from similar locations sampled in the 1995 and 1987 surveys of the Grand River. The wading sampling method was used at RM 22.1 in 1995.

Big Creek

Fish community performance downstream of the Chardon WWTP improved significantly in 1995 compared with that found in 1987 (Figure 25). The improved fish communities reflect upgrades to the treatment plant, especially nitrification and dechlorination (see *Pollutant Loadings* section). Althought the stream remains impacted downstream of the plant, the area of degradation (ADV) was reduced and the severity of impact lessend. The ADV per mile was reduced in 1995 to 13.2 from 52.7 in 1987, a 25% decrease (Table 10). Additionally, stream miles in Full attainment

-	Biolo	gical Inc	dex Sco	ores		Area of I	Degradat	ion Values	Att	ainment	Status (1	Miles)
Year Index	Upper RM	Lower RM			Mean	ADV	ADV/ Neg. % ADV Mile of Criteria				NON POOR/VP	
Grand	River											
1995 IBI			47	54	50.6	0	0.0	0.0				
MIwb ICI	28.4	6.2	8.9 44	10.1 54	9.4 50.0	2 0	0.1 0.0	0.2 0.0	19.8	2.4	0.0	0.0
1987												
IBI	2 0 4	<i>c</i> 1	47	54	50.3	0	0.0	0.0	10 5	2.0	0.0	0.0
MIwb ICI	28.4	6.1	8.7 46	10.2 50	9.4 47.2	41 0	2.6 0.0	2.4 0.0	18.5	3.8	0.0	0.0
Big Cre	eek											
1995 IBI			32	40	37	90	13.2	8.3				
MIwb ICI	16.3	9.5							2.7	0.0	4.1	0.0
1987 IBI			23	42	33	358	52.7	30.1				
MIwb ICI	16.3	9.5							1.9	0.0	4.9	2.0
ICI												

Table 11. Area of Degradation (ADV) statistics for similar segments in the Grand River basin
sampled in 1987 and 1995.	

increased from 1.9 miles in 1987 to 2.7 miles in 1995, and the 2.0 miles of stream in Poor and Very Poor status documented in 1987 were eliminated in 1995. Although thespecies composition was similar between 1987 and 1995 in the near field zone (RM 15.9), white sucker and creck chub (both omnivorous) composed approximately 92% of the individuals in 1987, suggesting the presence of untreated sewage and nutrient enrichment. In 1995, they composed only 11%. The benefits of nitrification and dechlorination in the treatment process were demonstrated at RM 13.9, where in 1987 no darters were collected, but in 1995 rainbow darter, a species sensitive to ammonium ions (Weichert 1995, Karr et al. 1985), were comparatively abundant (8% by number). As the upgrades to the plant were implemented recently (dechlorination as late Jure 1995), the fish community may still have been recovering during the 1995 sampling period Decreased nutrient loadings between 1987 and 1995 resulted in lower relative abundance of fishes downstream of the treatment plant, especially at RM 9.5 where abundance decreased from 3,227 fish/0.3 km.

Published historical records documenting fish communities in Big Creek before 1987 donot exist.

Grand and Ashtabula River Basins TSD

January 7, 1997

Given the habitat quality in the middle reach, and the clear, silt free water, a better fish community was anticipated. Species expected, but not found, were mimic shiner, rosyface shiner and smallmouth bass. Sand shiner and stonecat were present only at RM 2.5, but were rare. The high relative abundance of pollution tolerant fishes in the upper stream reach, and the rarity of pollution intolerant species throughout, suggests that water quality in Big Creek may have been severely degraded in the past.

Mill Creek

Mill Creek was sampled at comparable locations in 1995 and 1983-84 (Table 9). Fish community performance was similar between years at both sampling locations. Although IBI scores at RM 10.0 were higher in 1995 than 1984, the difference was an artifact of how DELT anomalies were scored Wounds from recently detached parasites (leaches and anchor worm) were counted as lesions in 1984, whereas they were counted as parasites only in 1995.

Cemetery Creek

Condition of the fish community in Cemetery Creek was similarly bad in both the 1987 and 1995 surveys (Table 9), reflecting continued operation problems with the Jefferson WWTP (sæ *Pollutant Loading* section). Additionally, loss of riparian vegetation at RM 2.5 since 1987 resulted in further degradation to the community.

Rock Creek

The fish community at RM 0.8 in Rock Creek performed similarly well in both the 1987 and 1995 surveys, suggesting no appreciable change in water quality.

Baughman Creek

The mean IBI scores recorded for Baughman Creek in 1984 and 1995 were the same. However, the species composition had changed slightly, possibly reflecting an increase in riparian pasturing and the attendant nutrient loads. For example, species requiring relatively silt free conditions rainbow darter and hog sucker, were collected in 1984, but were absent in 1995, while relative abundance increased from 274.8 to 1880.0 fish/0.3 km. Northern brook lamprey, a state endangered species, were collected in both surveys.

Chapter 2

Biological and Water Quality Study of the Ashtabula River, Cowles Creek, Arcola Creek and Conneaut Creek

Ashtabula and Lake Counties

INTRODUCTION

The free flowing portion of the Ashtabula River including the East and West Branches, Arcola Creek, Cowles Creek and Conneaut Creek were the object of this survey. Specific objectives of this study were to:

- 1) Evaluate the physical habitat, surface water and sediment quality, and the biological integrity of the sites within the study area,
- 2) Assess impacts from municipal wastewater treatment plants, nonpoint sources of pollution, habitat alterations and suburban development,
- 3) Determine attainment status of aquatic life use and non-aquatic use designations, and recommend changes where appropriate, and
- 4) Compare results of this survey with previous surveys to assess changes in waterquality and biological integrity.

The findings of this evaluation may factor into regulatory actions taken by the Ohio EPA (e.g., NPDES permits, Director's Orders, or the Ohio Water Quality Standards (OAC 3745-1)), and eventually be incorporated into the State Water Quality Management Plans, the Ohio Nonpoint Source Assessment, and the pentenial Ohio Water Resources Inventory (305[b]) report.

SUMMARY

A biological and water quality survey of the Ashtabula River basin (including Cowles, Arcoh and Conneaut Creeks) was conducted 15 June - 10 October 1995. The Ashtabula River and Conneaut Creek generally met biological criteria standards for the WWH and EWH use designations, respectively. Cowles Creek and Arcola Creek had significant areas not meeting WWH biological criteria owing to nutrient enrichment from municipal WWTP plants α extensive habitat and flow alterations.

Ashtabula River

The Ashtabula River, including the East and West Branches, met the WWH biological criteria at 6 of 7 locations sampled giving 27.3 miles in full attainment. One location, RM 19.1, covering 0.3 miles was in partial attainment of WWH criteria due largely to effects from intermittent flows (Table 1 and Figure 1). However, low summer flows limit the ability of the river to assimilate pollutants, and high fecal coliform counts (>1000/100 ml) at several locations following a rain event suggested anthropogenic stresses, either on site sewage disposal or, in the upper watershed sporadic livestock access, were contributing to the partial attainment. The absence of high values in other water quality parameters indicitive of sewage enrichment (*e.g.*, TKN, TDS) and low nutrient levels, implies that organic enrichment was secondary to intermittent flows as the cause of patial attainment. Dissolved oxygen levels at or below the minimum criterion of 4.0 mg/l were

measured at two locations in the middle reach and in the East Brach while the river was intermittent. Conversely, the benefits of conservation farming practices paired with intact riparian vegetation and low density development were manifest, especially in the middle reaches, by the high relative abundance of mimic shiner and bigeye chub, species requiring clear, silt free habitats to thrive.

Cowles Creek

Fish and macroinvertebrate communities in Cowles Creek were impacted by nutrient loadings from municipal wastewater, urban runoff, and possibly stream dewatering. Urban runoff and apparently unsewered discharges impacted biological communites upstream from the Geneva WWTP resulting in 0.5 miles of partial attainment (Table 1 and Figure 1). A further drop in community performance downstream of the Geneva WWTP relative to that found upstream resulted in 1.7 miles in non-attainment. Periodic toxicity was indicated by the loss of rainbow darters, a species sensitive to ammonia toxicity, downstream from the WWTP. Organic enrichment from the WWTP effluent was evident in it effects on the composition of the fish and macroinvertebrate fauna. The relative number of fish, especially creek chubs and stonerollers, increased by nearly two orders of magnitude downstream of the plant, and the macroinvertebrate assemblage was composed primarily of groups positively affected by enrichment (e.g., oligochaetes, snails and midges). Impacts to the biotic community may be linked to a combination of periodic upsets in the plant due to inflow and infiltration problems and polluted storm water runoff from the city of Geneva. Maximum flows to the Geneva WWTP as high as 6.47 MGD have been reported, and bypasses have resulted from these excessive hydraulicloads. Limited recovery of the aquatic community was observed at RM 1.1, giving 1.4 miles of partial attainment. Also, intermittent stream flows at RM 7.2, possibly derived from stream dewatering, impacted the fish community, resulting in an additional 1.0 mile of partial attainment.

Arcola Creek

The fish communities at all five locations sampled, and the macroinvertebrate communities at four of the five locations in Arcola Creek did not meet WWH criteria resulting in 7.0 miles in non- attainment (Table 1 and Figure 1). Biological impairment was due to habitat modifications, water withdrawals, and nutrient loadings from the Madison WWTP (particularly phosphorus) and an unidentified source of enrichment from upstream of the WWTP. The creek had recently been channelized at the three upper locations (RMs 7.3, 7.1 and 5.0), and had severely degraded physical habitats. The channelization at RM 5.0 was not sanctioned under 404 or 401permits Water withdrawals by local nurseries for irrigation captured all of the stream flow in late summer rendering extremely low or no flows from RM 5.0 to the mouth, and severely limiting the amount of habitat available to aquatic life. Evidence for habitat degradation being a contributor to the aquatic life use impairment in the channelized reach is given by attainment of the WWH criterion by the macroinvertebrate community, but non-attainment by the fish community, as fish tend to be more sensitive to overall habitat quality than macroinvertebrates. Channelization likely aggravated the effects of high nutrient loads from the Madison WWTP by reducing the ability of the stream to assimilate and sequester nutrients. Oxygen depletion in the middle reach of

Grand and Ashtabula River Basins TSD

January 7, 1997

Arcola Creek was evident throughout the 1995 survey, a by-product of enriched conditions Additionally, the pesticide dieldrin was present at RM 7.3 in concentrations chronicly toxic to aquatic life, and may have contributed to the impairment at that site.

Conneaut Creek

Fish and macroinvertebrate communities sampled in Conneaut Creek met EWH criteria at al sampling locations. Bigeye chub constituted nearly 10% of the total catch by number at both locations, and black redhorse, river chub, mimic shiner and rosyface shiner were also abundant. These species are highly intolerant and have declining populations or a shrinking range across the state.

RECOMMENDATIONS

Ashtabula River

Status of Aquatic Life Uses

The Ashtabula River, including the East and West Branches, is designated WWH. Performance of the biological indicators and habitat limitations imposed by intermittent summer flows demonstrate that this use is appropriate and should be maintained.

Status of Non-aquatic Life Uses

All non-aquatic life uses should remain as presently designated in the Ohio Water Quality Standards.

Other Recommendations

Because the Ashtabula River regularly becomes intermittent in late summer, it has a limited capacity to assimilate oxygen demanding pollutants originating from poorly maintained septic beds and livestock wastes. Consequently, poorly maintained septic discharges need to be identified and remedied, and owners of livestock operations should be encouraged to participate in the ongoing programs offering technical assistance for implementing best management practices.

Future Monitoring Concerns

The Ashtabula River is one of the few streams left in the state harboring a strong population of bigeye chub, and Ohio declining species. The population needs to be monitored, and developments within the watershed need to be tracked to identify threats to its continued existence.

Cowles Creek

Status of Aquatic Life Uses

Cowles Creek is designated WWH. Performance of the biological indicators demonstrate that this use is appropriate and should be maintained. The Seasonal Salmonid use designation for the lower 1.0 mile of Cowles Creek is appropriate and should be continued.

Status of Non-aquatic Life Uses

All non-aquatic life uses should remain as presently designated in the Ohio Water Quality Standards.

Other Recommendations

Daily flows to the Geneva WWTP plant fluctuate widely during rain events as reflected by monthly operating data submitted to the Ohio EPA. Maximum flows to the Geneva WWTP as high as 6.47 MGD have been reported, and bypasses have resulted from these excessive hydraulic loads. Marked differences between the median (50th percentile) and maximum (95th percentile) concentration and loading values for phosphorus and suspended solids are indicative of the stress placed upon the treatment system during high flow events. These events have also resulted in permit violations for phosphorus and total suspended solids loadings in the past. The installation of equalization basins to mitigate the effects of these storm events should be considered as a protective measure for stream water quality. Fecal colliform bacteria contamination in Cowles Creek upstream from the WWTP suggests possible breaches in the collection system.

Cowles Creek is presently highly enriched with nitrogen and phosphorus via loadings from the Geneva WWTP. Reductions in total loadings would likely have a positive effect on the biota in Cowles Creek downstream from the WWTP. Therefore, options to reduce loadings of nitrogen and phosphorus should be examined.

Future Monitoring Concerns

The source(s) of fecal coliform contamination upstream from the WWTP must be identified and corrected in order to restore water quality within the City of Geneva. Random sampling of the storm water system with flow meters during several rain events may help trace illegal tie-ins Flow appropriation for irrigation of nursery stock needs to be investigated to determine if withdrawals are impinging on summer flows and causing intermittence.

Arcola Creek

Status of Aquatic Life Uses

Arcola Creek is designated WWH. The habitat downstream from US 20 is capable of supporting a WWH fauna, and the fish community could easily recover in the lower reach if flows are maintained. The WWH aquatic life use designation is warranted for this reach. Although the habitats in the reach upstream of US 20 are severely degraded and the fish community in the reach performed near expectations for a Modified Warmwater Habitat (MWH) community, a redesignation to MWH is not warranted for this reach as the channel modifications are not sanctioned by 404 or 401 permits. The Seasonal Salmonid use designation for the lake influenced portion of Arcola Creek is appropriate, but should be expanded to include the lower 3.0 river miles of the free flowing portion of the creek.

Status of Non-aquatic Life Uses

All non-aquatic life uses should remain as presently designated in the Ohio Water Quality

Standards.

Other Recommendations

A water management plan for the nurseries withdrawing water from the creek is needed to maintain minimum stream flows in the summer. Oxygen depletion in the middle reaches of Arcola Creek was evident throughout the 1995 survey. Additional removalof oxygen demanding compounds and reaeration of the Madison Village WWTP effluent to provide D.O. in excess of the current minimum concentration of 5.0 mg/l specified in the NPDES permit should be strongly considered as a mechanism for improving instream D.O. concentrations in Arcola Creek.

Future Monitoring Concerns

Channel maintenance activities in Arcola Creek need to be monitored and unpermitted activities need to be identified.

The Madison Village WWTP is currently undergoing an expansion to 0.5 MGD. Because Arcola Creek is presently over enriched with phosphorus, and loadings of phosphorus from the WWTP have been increasing over time, incorporation of phosphorus removal in the treatment process was aggreed to as necessary to improve water quality in the stream by the Ohio EPA and the Village of Madison. An average effluent phosphorus concentration of 0.73 mg/l was proposed by the Ohio EPA and subsequently accepted by the Village of Madison. This limit should be considered the maximum acceptable loading, with a goal of reducing instream phosphorus concentrations as much as possible. Improvements in dissolved oxygen and biological communities are anticipated as a result of the reduced phosphorus loadings, and should be verified by monitoring.

Because the mouth of Arcola Creek harbors an outstanding natural wetland area, the biotic communities need to be assessed, including the nursery function it holds for Lake Erie fishes Impacts to the wetlands from flow appropriations, and bypasses of sewage from the Lake County Madison WWTP holding basins need to be investigated.

Conneaut Creek

Status of Aquatic Life Uses

Conneaut Creek is designated Coldwater Habitat. Biological indicator performance demonstrate that this use is inappropriate; however, the performance does indicate that Exceptional Warmwater Habitat (EWH) is the appropriate designation. The seasonal salmonid use designation for Conneaut Creek is appropriate and should be continued.

Status of Non-aquatic Life Uses

All non-aquatic life uses should remain as presently designated in the Ohio Water Quality Standards.

Other Recommendations

The exceptional biological communities found in Conneaut Creek, including strong populations

Grand and Ashtabula River Basins TSD

January 7, 1997

of several species with declining ranges in Ohio, in conjunction with the unique recreational opportunities afforded by the creek and the highly aesthetic pristine natural qualities of its surroundings, warrants protection. Riparian buffers, including those on the shale bluffs overlooking the creek, need to be maintained to protect the integrity of the aquatic communities. Comprehensive land use plans and zoning laws within the watershed should be drafted to protect the resource.

Future Monitoring Concerns

Because Conneaut Creek is an outstanding natural resource, developments and changes in land use practices within the watershed need to be monitored to identify potential threats to the quality of the resource.

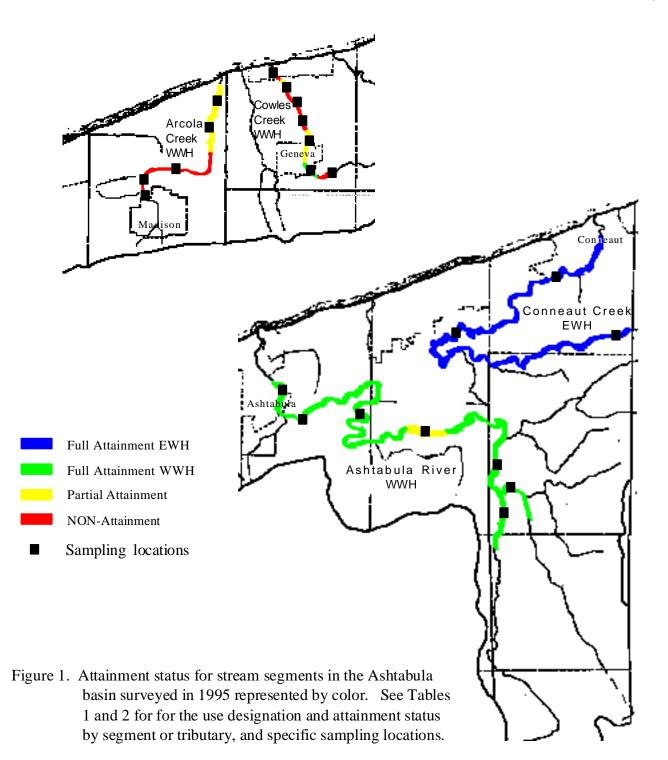


Table 1. Aquatic life use attainment status for stations sampled in the Ashtabula River basin based on data collected July-September, 1995. The Index of Biotic Integrity (IBI), Modified Index of well being (MIwb), and Invertebrate Community Index (ICI) are scores base on the performance of the biotic community. The Qualitative Habitat Evaluation Index (QHEI) is a measure of the ability of the physical habitat to support a biotic community.

River Mile					Attainment	
Fish/Invertebrate	IBI	MIwb ^a	ICI ^b	QHEI	Status ^c	Comment
Ashtabula River (1	1995)		WWH	H - existi	ng	
27.2/26.6	42	8.6	32 ^{ns}	85	FULL	reference, low flows
19.1	47	7.1^{*}	32 ^{ns}	76	PARTIAL	low flows
12.1/11.9	41	7.9	MG^{b}	78	FULL	low flows
6.3/	42	8.1		73	FULL	suburban
3.5/3.6	36^{ns}	7.6 ^{ns}	46	64	FULL	urban
West Branch Ash	ntabula	River	WWH	I - existi	ng	
2.7/1.8	44	7.7 ^{ns}	32 ^{ns}	66	FULL	reference, low flows
East Branch Ash	tabula	River	WWH	I - existi	ng	
1.4	44	8.2	MG^{b}	73	FULL	nps livestock, low flows
Cowles Creek			WWH	I - existi	ng	
7.2/7.1	29^*	NA	MG^{b}	63	Partial	reference, nonpoint
6.2/5.6	36 ^{ns}	NA	MG^{b}	63	FULL	upstream conditions
5.0/4.8	36 ^{ns}	NA	14^{*}	58	Partial	urban, unsewered
4.3	30^{*}	NA	14^{*}	63	NON	dst Geneva WWTP
3.3/3.6	31*	NA	16^{*}	60	NON	impact/New London Rd.
1.1/1.4	36^{ns}	NA	28^*	56	Partial	partial recovery/Maple St.
0.3	<u>26</u> *	NA	18^{*}	56	NON	impact/lake influenced
Arcola Creek			WWH	H - existi	ng	
7.3/7.5	<u>23</u> *	NA	<u>12</u> *	44	NON	upstream WWTP/ channelized
7.0	<u>23</u> *	NA	26^{*}	43	NON	dst Madison WWTP
5.0	18^{*}	NA	34	34	NON	impact, channelized, adj US 20
2.0/2.1	28^*	NA	26^*	68	NON	recov./dewatering, Cunningham
Rd						
0.5/0.7	28^*	NA	24^{*}	60	NON	recovery/dewatering/Vrooman
Rd.			CUU	.		7
onneaut Creek	~ ~	O Ons			ng/EWH prope	
23.1/23.3	55	9.3 ^{ns}	46	88	/FULL	Furnace Road
<i>C</i> 12.1/12.6	48 ^{ns}	9.5	46	86	/FULL	Dst Kingsville
/5.4			4 0 50		/(FULL)	unassessed/Grant Road
/ J.+			50		= /(1 ULL)	unassesseu/Orant Koau

able 1. Commude	•					
	Ecoregion	n Biocr	iteria: Erie	e-Ontario La	ike Plai	n
		IBI			MIwb	
Site Type	WWH	WWH EWH MWH ^d			EWH MWH ^d	
Headwaters	40	50	20	NA	AN	NA
Wading	38	50	22	7.9	9.4	5.6
Boat	40	48	24	8.7	9.6	5.7

Table 1. Continued

a - MIwb is not applicable to headwater streams with drainage areas $\leq 20 \text{ mi}^2$.

 A qualitative narrative evaluation based on best professional judgement and sample attributes such as community composition, EPT taxa richness, and QCTV scores was used when quantitative data were not available or considered unreliable due to current velocities less than 0.3 fps flowing over the artificial substrates.

c - Attainment status is given for both existing and proposed use designations.

d - Modified Warmwater Habitat criteria for channel modified habitats.

ns - Nonsignificant departure from biocriteria <u>(</u>4 IBI units or <u><0.5</u> MIwb units).

 * - Indicates significan departure from applicable biocriteria (>4 IBI units or >0.5 MIwb units). Underlined scores are in the Poor or Very Poor range.

STUDY AREA

The Ashtabula River study area encompassed the Ashtabula River watershed basin, Conneau Creek (within Ohio), plus two Lake Erie tributaries, Arcola Creek, and Cowles Creek (Figure 1). Specific sampling locations are listed in Table 3. The Ashtabula River basin, (not including Conneaut Creek and Lake Erie tributaries), drains an area of 137.14 square miles or 87,770 square acres. The Ashtabula River mainstem originates in eastern Ashtabula County. In general the Ashtabula River flows in a northwesterly direction, to the City of Ashtabula, where it discharges to Lake Erie. The mainstem is 39.7 river miles in length (including West Branch). The Ashtabula River mainstem falls an average gradient of 11.6 feet per mile, (from an elevation of 1033 to 573 feet above mean sea level). Principal tributaries to the Ashtabula River include Ashtabula Creek, Hubbard Run, West Branch and East Branch. The Conneaut Creek basin drains an area of 37.7 square miles in Ohio (24,128 square acres). The Conneaut Creek mainstem originates south of Conneautville in Crawford County, Pennsylvania. In general Conneaut Creek flows in a northwesterly direction, to the town of Conneaut, where it enters Lake Erie. The mainstem is 56.8 river miles in length, (22.3 in miles in Ohio). Conneaut Creek mainstem falls an average gradient of 11.3 feet per mile, (from an elevation of 1215 to 573 feet above mean sea level). All the principal tributaries to Conneaut Creek are located in Pennsylvania. No significant surface water impoundments are located within the Conneaut Creek watershed or the Ashtabula River watershed.

Table 2. Waterbody use designations for the Ashtabula River Basin. Changes to existing use designations appear in *bold italics*, or designations based on the 1978 water quality standards for which results of biological field assessments are now available apear as plus signs to the right of existing markers. See Ohio Water Quality Standards for explanation of symbols.

Stream Segment	Use Designations												
		Aquatic Life Habitat					Water Supply			Recreation			
	S R W	W W H	E W H	M W W	S S H	C W H	L R W	P W S	A W S	I W S	B W	P C R	S C R
Arcola Creek - estuary zone		*			0			*	*			*	
- all other segments		*/+						*	*			*	
Wheeler Creek - estuary zone		*			0			*	*			*	
- all other segments		*						*	*			*	
Cowles Creek - estuary zone (RM 0.8 - 0.0)		+			+			+	+			+	
- all other segments		+						+	+			+	
Indian Creek		*						*	*			*	
Red Brook		*						*	*			*	
Ashtabula River - S.R. 11 (RM 5.8) to mouth		*/+							*			*	
- all other segments		*/+						*	*			*	
Strong Brook							+		*			*	

Stream Segment		Use Designations											
			Aqu	atic I	life Ha	abitat		Wa	ter Su	pply	R	ecreat	ion
	S R W	W W H	E W H	M W W	S S H	C W H	L R W	P W S	A W S	I W S	B W	P C R	S C R
Fields Brook - S.R. 11 (RM 1.34) to confluence with Ashtabula River		oL							*			*	
- all other segments		oL							*			*	
West Brook							+		+				+
Hubbard Run		*						*	*			*	
Ashtabula Creek		*						*	*			*	
West Branch		*/+						*	*			*	
East Branch		*/+						*	*			*	
Conneaut Creek					0	*		*	*			*	
Temple Creek		*						*	*			*	
Marsh Run		*						*	*			*	
West Branch		*						*	*			*	
East Branch		*						*	*			*	
Middle Branch		*						*	*			*	
Stone Run		*						*	*			*	
Fish Creek		*						*	*			*	
Turkey Creek					0	*		*	*			*	

The Ashtabula River and Conneaut Creek watersheds are situated within the gently rolling dissected glacial plateau of the Erie/Ontario Lake Plain ecoregion. During the Pleistocene era varying thickness of glacial drift were deposited over Devonian shales. The majority of these two watersheds exist in ground moraines and end moraines. Sediments deposited by former beach ridges, arranged parallel to the existing Lake Erie shoreline, are composed of sand, gravel and cobble. The preglacial valleys within the underlying bedrock shale were buried by glacial clays, sands and gravels down to depths of 200 feet from ground surface. Both watersheds are primarily woodland and agricultural in the upper basins. Both estuaries are impacted from urbanized municipal and industrial activities. Both estuaries have major coal handling operations which have resulted in extensive layers of coal dust in the substrates.

An industrialized area, located on Fields Brook, (tributary to the Ashtabula River), has heavily contaminated the bottom sediments of the Ashtabula estuary. A fish tissue consumption advisory exists for all species in the estuary and harbor area due to elevated levels of PCB, hexachlorobenzene, pentachlorobenzene and tetrachlorobenzene. The lowest 0.7 mile of the Ashtabula River has been modified for international freighter traffic by dredging and installation of vertical bulkheads. Marina development exists on about 50% of the river's shoreline between river mile 0.7 and 2.2, with some undisturbed shoreline still present along the east banks. In Conneaut Creek the lowest 0.5 mile, has also been channelized for freighter traffic. The waterway has been dredged to an approximate depth of 25 feet and the shcreline reinforced with concrete, steel an vertical railroad tie bulkheads. There are no marinas along Conneaut Creek, however, the west shore has been bulkheaded adjacent to the railroad tracks and embankment reshaping has occurred along the eastern embankment, between river mile 1.0 and 1.5. The harbor areas of Conneaut Creek and the Ashtabula River were not included in the present survey, but were sampled in a previous survey (Biological Community Status of the Lower Ashtabud *River and Harbor Within the Area of Concern (AoC)*. Undisturbed shorelines exist upstream from RM 2.0.

Ohio Water Quality Standards, (WQS; OAC 3745-1-25), list the current use designations for the Ashtabula River system as: agricultural and industrial water supply and primary contact recreation. The mainstem of the Ashtabula and conjoining tributaries have been designated warmwater habitat (WWH). Conneaut Creek use designations are: agricultural and industrial water supply and primary contact recreation. Conneaut Creek mainstem has been designated Coldwater Habitat (CWH) and Seasonal Salmonid. No municipal or public drinking waters come from the Ashtabula River, Conneaut Creek or their tributaries. Groundwater yields in the Ashtabula and Conneaut watershed basins are very low. The yields can range from less than 3 gallons per minute, up to 10 gallons per minute, this may not provide enough water during peak domestic usage.

The upper sections of both watersheds are primarily rural due to limited groundwater supplies. The major urban industrialized areas near the mouth of the Ashtabula River and Connœut Creek obtain their water from Lake Erie. The major environmental threats to the Ashtabula River include Detrex, SCM, Acme Scrap, Oxychem, RMI, a coal handling facility, numerous marinas and channelization/bulkheading for shipping. The majorthreats to Conneaut Creek include a coal handling facility and channelization/bulkheading of the mouth of this waterway.

NONPOINT SOURCES

The quality of surface waters in Ohio have generally improved over the past 25 years. Credit must go to private industries and government entities who have improved point source discharges and upgraded sewage treatment facilities. Now Ohio's major water pollutants primarily come from nonpoint sources; specifically agricultural and storm water run-off, and construction activities. Uncontrolled storm water discharge from construction activities such as individual houses, residential developments, commercial properties and industrial sites runoff can carry tors of soil into local streams leading to impairment of aquatic communities. If the excavated area is to exceed 5 acres an NPDES permit must be filed with the Ohio EPA and a storm water plan developed. Each of the local Soil and Water Conservation Districts are to work with the Ohio EPA and developer to minimize soil losses from these properties.

Farms/Orchards/Nurseries

The Ashtabula River is primarily agricultural. In the past year national grain reserves have become depleted, which has forced the price of grains up. The Ashtabula SWCD has noted an increase of hayfields being converted to row crops. Tilling can increase the amount of loss into local streams. Sudden sediment loads can totally change a stream bottom habitat, which drectly impacts on the entire aquatic community. Over application or untimely application of herbicides/pesticides can stress or eliminate aquatic organisms. Fertilizer run-off can cause aquatic plants to grow at uncontrollable rates, creating an imbalance in the ecosystem.

Local Soil and Water Conservation Districts have been working with these operations on conservation practices. The districts have encouraged practices such as no-till farming, animal waste storage structures, minimal usage of chemicals, filter stripping, livestockexclusion fencing, etc.. Many of these operators have discovered that new techniques may not only improve the environment, they often save time and money. Continuing education throughout the watershed is imperative.

Failing Septic Systems

The Ashtabula River watershed is primarily rural and most areas are not serviced by sanitary sewers. A high percentage of septic systems in the watershed are well beyond 20 years in age, (the expected life of a system). Additionally, high percentages of clay content in the local soils further contribute to high failure rates of septic systems. Inadequately treated sewage can impact on the water quality of roadside ditches, wetlands, streams and lakes. This can cause health hazards in drinking and recreational waters, decreased oxygen levels, excessive aquatic plant growth and offensive odors. Areas identified in AshtabulaCounty Ohio with large concentrations of failing septic systems include Kelloggsvile and North Kingsville Data indicating how many

failing systems are within this watershed is currently not available.

Urban Runoff

The city of Ashtabula is currently phasing out their combined sewer overflows in Ashtabula Harbor and plan to have a segregated system by 1998. Urbanized pollutants such as road salts, vehicle fluids, litter/debris, lawn chemical, pet wastes etc. can be detrimental to local water quality. City ordinances and programs which help control these concerns are important Education of the community is very important.

Sanitary Landfills

Up to the mid 1970's it was common for every community and township to have at least one garbage dump. Many of these dumps closed when state regulations required licensing and daily cover. Some of these abandoned garbage dumps presumably degrade surface or groundwater quality through leachate. The locations of these abandoned garbage dumps are not contained in this report.

Many industries have established operations in Ashtabula because of the close proximity to Lake Erie and major interstate highways. The following industries have major documented industrial releases to surface or groundwater:

Reserve Environmental Services

Neutralizes hazardous waste materials, stores in impoundments and discharges into a permitted deep well. The facility has documented the presence of trichloroethylene in groundwater and in Whitmans Creek, a treatment system has been installed.

RMI-Extrusion Services

Facility has closed, however, it is undergoing a long-term RCRA cleanup of trichloroethylene, uranium and technetium 99. The Nuclear Regulatory Commission is also involved due to the presence of low level radioactive materials.

Detrex

This facility has contaminated local groundwater with chlorinated organics, a treatment system to pump and treat the groundwater and surface water has been installed. This facility is adjacent to Fields Brook (tributary to the Ashtabula River).

SCM Facilities

These plants have released PCB's and are cleaning up under Superfund orders.

Acme Scrap

This scrap yard accepted old electrical capacitors and dumped PCB contaminated oils onto the ground. Fields Brook flows near this facility.

Oxychem

This facility had documented groundwater contamination. Several years ago they installed a slurry wall around the contamination plume.

RMI-Sodium

This facility is currently undergoing corrective actions for an on-site industrial landfill.

Timber Harvesting Operations

This watershed has numerous timber harvesting sites. Poor road layout and construction can contribute large volumes of sediment during active operations. If the timber has been over harvested, erosion will continue until a natural vegetative cover becomes reestablished Professional foresters are available to monitor and educate timber harvesting operations.

Oil and Gas Extraction

Many oil and gas wells have been developed within the watershed. Oil and brine spills from a well or tank can devastate a local waterway. The Ohio Department of Natural Resources has jurisdiction over spills and disposal.

Riparian Corridor Protection

Vegetation along the embankments of streams and lakes offers many benefits; stream bark stabilization, filtration of run-off waters, food source, cooler water temperatures and habitat enhancement. Protection of existing riparian corridors is as critical as areas that need vegetation established. Conservation easements, land trusts, education and responsible legislation are valuable tools for riparian corridor protection.

These major nonpoint source activities all contribute to the water quality in this watershed basin. Educating public officials and local citizens about nonpoint source issues is essential to maintaining and improving existing water quality. Developing watershed plans and implementing best management practices is equally important. By establishing committed partnerships, improved water quality in Ohio can be accomplished.

Table 3. Sampling locations in the Ashtabula River study area for the 1995 survey (C - conventional water chemistry, C_p - conventional plus pesticide scan; S - sediment metals, additional scans noted by the following subscripts: v = volatile organic compounds, b = base neutral acid extractable compounds, p=pesticide/polychlorinated biphenyls; B - benthic macroinvertebrates, F - fish, D - Datasonde[®], Fec - fecal coliform).

Stream/	Type of	USGS 7.5 Minute		
River Mile	Sampling	Latitude/Longitude	Landmark	Quadrangle Map
Ashtabula Ri		0		
27.2	F	41 49 03 / 83 37 20	ust Hilldom Rd	Pierpont
25.6	B,S_o,C	41 50 06 / 83 37 20	dst Root Rd	Pierpont
19.1	F,B,C	41 50 55 / 80 41 21	Benetka Rd	Gageville
12.1	F,B,C	41 51 48 / 80 43 43	ust Dewey Rd	Gageville
11.9	B,C	41 51 47 / 80 43 09	dst Dewey Rd	Gageville
6.3	F,C	41 51 29 / 80 45 42	State Rd	Ashtabula South
3.6	В	41 52 23 / 80 46 43	dst Prospect (US 20)	Ashtabula North
3.5	F	41 52 24 / 80 46 47	Tannery Hill Rd	Ashtabula North
2.5	C,S _o	41 51 57 / 80 47 42	ust East 24th Street	Ashtabula North
2.3	В	41 52 56 / 80 47 40	ust East 24th Street	Ashtabula North
West Branch	Ashtabula Ri	ver		
2.7	F	41 46 54 / 80 37 04	Graham Rd	Pierpont
1.8	B,C	41 47 24 / 80 37 01	dst Beckwith Rd	Pierpont
	Ashtabula Riv			D
1.4	F,B,C	41 48 40 / 80 35 49	Scribner Rd	Pierpont
Unnamed Tr	ibutary			
1.5	С	41 49 31 / 80 43 20	jct Carson and Beck Rds	Gageville
~ . ~	_			
Cowles Creek				a
7.24	C,D	41 47 52 / 80 55 21	ust Barnum Rd	Geneva
7.2	B,F	41 47 51 / 80 55 21	ust Barnum Rd	Geneva
7.1	В	41 47 53 / 80 55 31	dst Barnum Rd	Geneva
6.2	F	41 47 50 / 80 56 20	ust Eastwood Rd	Geneva
5.6	B	41 48 09 / 80 56 39	ust Eastwood Rd	Geneva
5.48	Fec	41 48 16 / 80 56 40	ust Eastwood Rd	Geneva
5.21	Fec	41 48 26 / 80 56 33	Main St (US 20)	Geneva
4.83	B,C,F,D	41 48 46 / 80 56 36	near Water street	Geneva
4.77	C-effluent	41 48 50 / 80 56 32	at Geneva WWTP	Geneva
4.67	D	41 48 52 / 80 56 29	dst WWTP	Geneva

MAS/1996-11-5

Grand and Ashtabula River Basins TSD

January 7, 1997

Table 3. Continued.

• 1			USGS 7.5 Minute
Sampling	Latitude/Longitude	Landmark	Quadrangle Map
C,Fec	41 48 52 / 80 56 29	dst WWTP	Geneva
B,F	41 49 10 / 80 56 24	dst WWTP	Geneva
B,F,D	41 49 35 / 80 56 43	ust Maple Rd	Geneva
C,Fec	41 49 46 / 80 56 52	dst Maple Rd	Geneva
F	41 51 00 / 80 57 40	dst New London Rd	Geneva
B,C,Fec	41 50 42 / 80 57 31	dst New London Rd	Geneva
C,D	41 51 01 / 80 57 44	SR 534	Geneva
C,D	41 51 15 / 80 58 05	Lake Road	Geneva
B,F	41 51 15 / 80 58 11	Lake Road	Geneva
k			
В	41 47 15 / 81 03 53	@ Middle Ridge Rd	Madison
C _n ,F	41 47 34 / 81 03 42	ust Madison WWTP	Madison
C-effluent	41 47 33 / 81 03 41	Madison WWTP	Madison
C_{n}, B, F	41 47 37 / 81 03 38	dst Madison WWTP	Madison
$\mathbf{C}^{\mathbf{F}}$	41 47 40 / 81 03 50	dst Feedlot	Madison
С	41 47 60 / 81 02 56	SR 528	Madison
B,C_{p},F	41 47 53 / 81 01 39	nursery road W of Bennet Rd	Madison
B,C,F	41 49 37 / 81 00 52	@ Cunningham Rd	Madison
B,F	41 50 34 / 81 00 24	dst Vrooman Rd	Madison
reek			
B,C	41 54 14 / 80 31 40	ust Furnace Rd	Conneaut
F	41 54 12 / 80 31 55	dst Furnace Rd	Conneaut
B,C	41 53 59 / 80 39 32	dst Kingsville	N. Kingsville
F	41 54 05 / 80 39 20	ust old landfill	N. Kingsville
В	41 55 58 / 80 35 21	Grant Rd	Conneaut
	Type of Sampling k - continued C,Fec B,F B,F,D C,Fec F B,C,Fec C,D C,D B,F k B C _p ,F C-effluent C _p ,B,F C C B,C _p ,F B,C,F B,C,F B,C,F B,C,F B,C F B,C F	Type of SamplingLatitude/Longitudek - continuedC,Fec41 48 52 / 80 56 29B,F41 49 10 / 80 56 24B,F,D41 49 35 / 80 56 43C,Fec41 49 35 / 80 56 43C,Fec41 49 46 / 80 56 52F41 51 00 / 80 57 40B,C,Fec41 50 42 / 80 57 31C,D41 51 01 / 80 57 44C,D41 51 10 / 80 57 44C,D41 51 15 / 80 58 05B,F41 51 15 / 80 58 11kB41 47 15 / 81 03 53Cp,F41 47 33 / 81 03 42C-effluent41 47 33 / 81 03 41Cp,B,F41 47 37 / 81 03 38C41 47 60 / 81 02 56B,Cp,F41 47 53 / 81 01 39B,C,F41 50 34 / 81 00 24reekB,C41 54 14 / 80 31 40F41 54 12 / 80 31 55B,C41 53 59 / 80 39 32F41 54 05 / 80 39 20	Type of SamplingLatitude/LongitudeLandmarkk - continuedC,Fec41 48 52 / 80 56 29dst WWTPB,F41 49 10 / 80 56 24dst WWTPB,F,D41 49 35 / 80 56 43ust Maple RdC,Fec41 49 46 / 80 56 52dst Maple RdF41 51 00 / 80 57 40dst New London RdB,C,Fec41 50 42 / 80 57 31dst New London RdC,D41 51 10 / 80 57 44SR 534C,D41 51 15 / 80 58 05Lake RoadB,F41 51 15 / 80 58 11Lake RoadB,F41 51 15 / 80 58 11Lake RoadkC,p,F41 47 33 / 81 03 41Madison WWTPC-effluent41 47 33 / 81 03 41C,p,F,F41 47 37 / 81 03 50dst Madison WWTPC41 47 60 / 81 02 56SR 528B,C,F,F41 47 53 / 81 01 39nursery road W of Bennet RoB,C,F41 50 34 / 81 00 24dst Vrooman RdF41 54 12 / 80 31 55dst Furnace RdF41 54 14 / 80 31 40ust Furnace RdF41 54 05 / 80 39 20ust old landfill

Pollutant Loadings

Cowles Creek - Geneva WWTP: 1980-1995

Initially constructed in 1937, the Geneva WWTP was expanded to provide nitrification and chlorination/dechlorination in 1988 with a permitted flow of 1 MGD. Rapid sand filters were added to the plant through an upgrade which was completed in 1990. A second nitrification tower was added to the plant in 1994. The NPDES permit for the plant was modified to allow an increase in flow to 1.4 MGD in November 1994 and was subsequently modified in May 1995 to allow a flow of 2.0 MGD following the installation of the second nitrification tower. The Geneva WWTP currently employs tertiary treatment which includes aerated grit chambers, primary settling, trickling filters, secondary clarification, nitrification, tertiary filtering via rapid sand filters, and chlorination-dechlorination. Phosphorus removal is accomplished through the addition of alum during the treatment process. The facility discharges to Cowles Creek at RM 4.73. The latest census estimated the city's population at 6,200, approximately 3,088 of whom were served by the WWTP. The sewer service area has been expanded in recent years through sewer extensions approved by the Ohio EPA. The sewer system includes two lift stations and is a separate system with no combined sewers or overflows. Inflow and infiltration has been a persistent problem with excessive flows (to 6.47 MGD) to the plant during heavy rainstorms.

The Ohio EPA has conducted three rounds of compliance sampling inspections (CSI's) at the Geneva WWTP. The CSI's were carried out in 1985-1986, 1991 and 1994-1995. Each CSI consists of two sampling events where an automatic sampler is used to collect a 24 hour composite sample of the effluent. Grab samples of the effluent are collected for the analysis of parameters for which composite sampling cannot be used (i.e. fecal coliform bacteria, oil and grease, volatile organic compounds, and cyanide). Grab samples are also taken from the receiving stream (Cowles Creek) upstream from the discharge point and within the mixing zone to quantify impacts of the discharge on the stream. In addition to chemical and bacteriological analyses, the Geneva WWTP effluent was also tested for acute toxicity to indicator organisms (*Ceriodaphnia* and fathead minnow) using bioassay techniques in 1991 and 1994-1995. No acute toxicity was observed in any of the samples taken for the 1991 or the 1994-1995 CSI's.

Sampling conducted in 1985-1986 detected exceedances for oil and grease (22.0 mg/l, effluent vs. 10 mg/l, permit limit) in July 1985 and for fecal coliform bacteria (2,700 colonies/100ml, effluent vs. 2,000, maximum permit limit) in June of 1986. Sampling conducted in 1991 detected an exceedance for phosphorus (1.98 mg/l, effluent vs. 1.5 mg/l 7 day max in permit). No exceedances were detected during the 1994-1995 CSI.

Analyses for priority pollutant organic compounds for the 1991 and 1994-1995 CSI's detected no semi-volatile organic compounds. Volatile organic compounds detected in trace amounts were bromodichloromethane and chloroform in samples taken September 1991, October 1994 and June 1995 and dibromochloromethane which was detected in samples taken by Ohio EPA September 1994 and June 1995.

Grand and Ashtabula River Basins TSD

January 7, 1997

Annual median (50th percentile) daily flows to the plant have gradually increased over the last 15 years due to growth within in the service area. Flows from the WWTP have ranged from 0.63 to 1.13 MGD (Figure 2). Daily flows to the plant fluctuate widely during rain events as reflected by 95th percentile values which range from 0.98 to 2.11 MGD. Until the permitted flow value was increased to 2.0 MGD in 1995, these events contributed to several violations for daily loading for suspended solids and phosphorus. Maximum flows to the Geneva WWTP as high as 6.47 MGD have been reported.

The impacts of discharges of ammonia nitrogen (NH_3 -N) from the Geneva WWTP on water quality in Cowles Creek were severe prior to the installation of nitrification processes in 1988 (Figures 2 and 3). Summertime in-stream NH_3 -N concentrations downstream from the Geneva WWTP as reported by the city ranged as high as 26.8 mg/l during this period. Addition of the nitrification equipment has reduced the summertime NH_3 -N concentrations in the effluent from the plant by over 90% (Figure 4). Annual median (50th percentile)daily loading values for NH_3 -N from the plant for the period of 1980 to 1986 ranged from 11.4 to 61.9 kg/day (Figure 2). The range of the annual median (50th percentile) loading of NH_3 -N from the plant has decreased to 0.25 to 1.00 kg/day during the period of 1989 through 1995.

Annual median (50th percentile) total suspended solids (TSS) loadings decreased markedly following the addition of rapid sand filters in 1990 (Figures 2). The average annual median TSS loading decreased from 54.9 kg/day for the period of 1980 through 1989 to 14.1 kg/day for the period since the installation of the tertiary sand filters. Although the median annual loadings have decreased since 1990, maximum annual daily loadings as reflected by 95th percentile data have not reflected the same decrease. However, maximum summertime daily concentrations reflected by 95th percentile data have decreased since the addition of the tertiary sand filters (Figure 3) These trends indicate that the fluctuations in flow are primarily responsible for peaks in TSS loading, and that the presence of the tertiary filtering equipment is mitigating the impacts of these fluctuations on the stream to some degree.

Concentrations of phosphorus and the loading of phosphorus to Cowles Creek have remained relatively stable over time (Figure 2). Marked differences between the median (50th percentile) and maximum (95th percentile) concentration and loading values are indicative of the stress placed upon the treatment system during high flow events.

The Genvea WWTP has consistently met the NPDES permit limit for fecal coliform bacteria During the period of 1980 through 1995, self-monitoring has indicated only two instances where fecal coliform bacteria have exceeded the 1,000 colonies/100 ml permit limit. However, upstream and downstream monitoring within Cowles Creek conducted by the WWTP staff has detected persistently high summertime fecal coliform bacteria counts upstream from the WWTP which are 1 to 3 orders of magnitude higher than those found in the plant effluent (Figure 4) Although dilution from the WWTP effluent appears to reduce the in-stream fecal coliform count

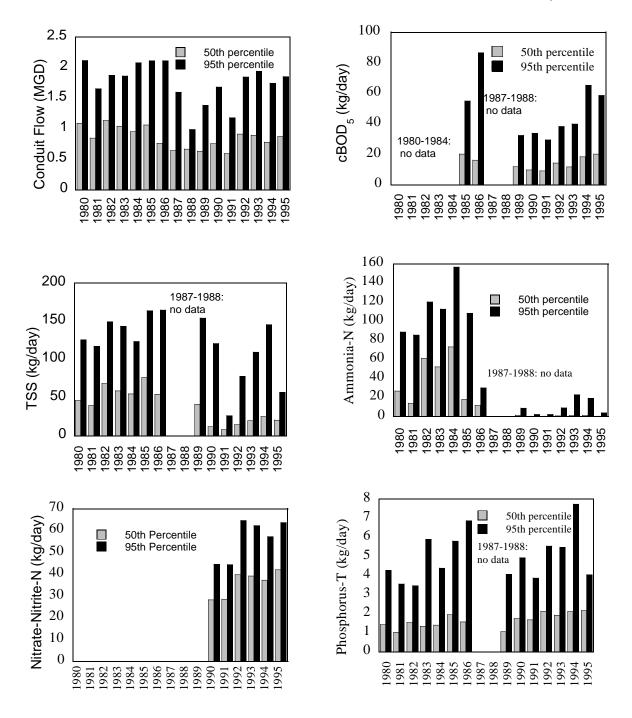
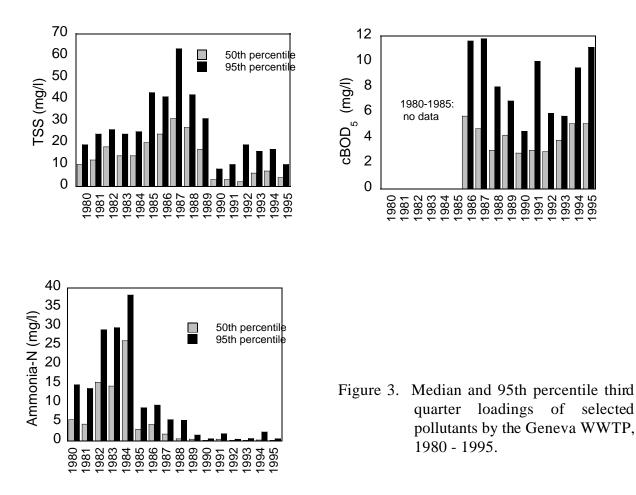



Figure 2. Median and 95th percentile annual loadings of selected pollutants to Cowles Creek by the Geneva WWTP, 1980 - 1995.

somewhat, the concentrations both upstream and downstream of the plant consistently exceed the Water Quality Standard for Primary Contact Recreation of 1,000 colonies/100 ml.

Arcola Creek - Madison Village WWTP: 1985-1995

Initially constructed in 1965, the Madison WWTP utilizes oxidation ditches for waste water treatment followed by clarification and chlorination/dechlorination. The plant was expanded in 1991 to provide for a total of four 100,000 gallon oxidation ditches and four clarifiers, the expansion of the chlorine contact tanks, the addition of stand-by power, new sludge holding ponds and a 240,000 gallon equalization basin to minimize the likelihood of bypasses during peak flows. The dechlorination and sludge handling equipment at the plant as well as the on-site laboratory were upgraded in 1994. The plant is currently permitted for the discharge of 0.3 MGD, although peak flows to 1.19 MGD have been reported. Current plant design is based upon

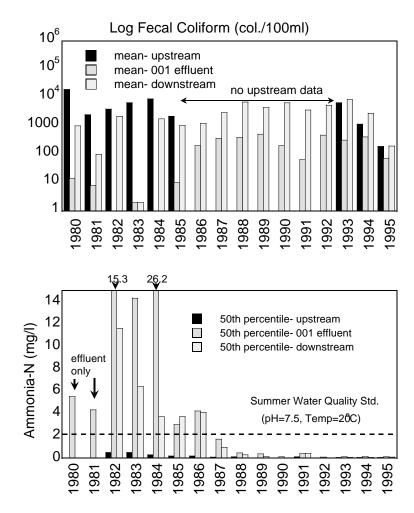


Figure 4. Fecal coliform counts (top) and ammonia-nitrogen concentrations (bottom) in the Geneva WWTP effluent (third quarter data) compared to the upstream and downstream receiving waters.

0.4 MGD average flow and peak flows to 1.13 MGD. Inflow and infiltration have been identified as the major source of excessive flows during storm events, but extensive smoke testing of the sewer system prior to 1987 did not detect any major sources. In 1994, the Village of Madison requested that the permit be modified to increase the allowable flow from the plant to 0.5 MGD. Estimates from 1991 indicate that the sewer district includes a population of approximately 2,600, 85% of whom are served by the sewer system.

Annual median (50th percentile) daily flows to the Madison WWTP haveroughly doubled since

the upgrade of the plant in 1991 (Figure 5). Median daily flows from the WWTP increased from an average of 0.19 MGD for the period of 1985-1991 to 0.42 MGD for the period of 1992-1995, indicating average flows in excess of plant design. Peaks in daily flows to the plant reflected by 95th percentile values ranged from 0.26 to 0.44 MGD for the period of 1985-1991, and from 0.67 to 0.81 MGD for 1992-1995. The maximum flow reported in monthly operating reports from the plant for the period of 1985 to 1995 was 1.11 MGD.

Upgrade of the WWTP in 1991 significantly reduced the loadings of total suspended solids (TSS), phosphorus and ammonia nitrogen (NH₃-N) (Figure 5) to Arcola Creek. However, loadings for all three pollutants have increased since 1993. Median (50th percentile) annual daily loadings of TSS have increased from 2.36 kg/day in 1991 to an average of 9.19 kg/day during the period of 1993-1995. Similarly, median annual loadings for phosphorus have increased from 0.75 kg/day in 1991 to an average of 2.59 kg/day for 1993-1995, and NH₃-N loadings have increased from 0.36 kg/day in 1991 to an average of 2.38 kg/day for 1993-1995.

The increase in loadings for TSS and phosphorus during the period 1993-1995 appears to be caused primarily by the increase in flow from the plant. Increased loadings of NH_3 -N appear to be caused by a combination of increased flow and concentration in the effluent, although the increase in plant flow appears to be the dominant factor. Total suspended solids concentrations have remained relatively constant throughout this period (Figure 6), with median (50th percentile) summertime TSS concentrations averaging 2.4 mg/l for the years 1991-1995. Median summertime phosphorus concentrations (Figure 6) declined from 4.6 mg/l in 1987 to an average of 0.82 mg/l for the period 1991-1994. Median (50th percentile) summertime NH_3 -N concentrations in the plant effluent declined following the upgrade to the plant in 1991 from an average of 2.2 mg/l for the years 1988-1990 to an average of 0.5 mg/l for the years 1991-1993. Summertime NH_3 -N concentrations in the effluent increased in 1994 and 1995, with median (50th percentile) concentrations equaling 1.7 and 1.2 mg/l, respectively; concentrations exceeding water quality standards for a typical range of pH and temperatures in found in summer.

Loadings of $cBOD_5$ have increased steadily since the upgrade of the plant in 1991 (Figure 5). Annual median (50th percentile) $cBOD_5$ loadings have increased from a minimum of 0.94 kg/day in 1991 to 6.24 kg/day in 1995. Loadings in 1995 exceed those observed prior to the plant upgrade, when median annual $cBOD_5$ loadings averaged 5.2 kg/day (1989-1990 data). The increase in $cBOD_5$ loading during the period of 1992 through 1994 was primarily caused by increased flow, since concentrations of $cBOD_5$ in the effluent were decreasing during this period (Figure 5). Median (50th percentile) summertime $cBOD_5$ concentrations in the effluent averaged 1.4 mg/l for the years 1991-1994. However, the summertime median $cBOD_5$ concentration in the effluent increased sharply in 1995 to 5.7 mg/l, which is equivalent to the summertime median concentrations observed prior to the plant upgrade in 1991. This increase may have been caused

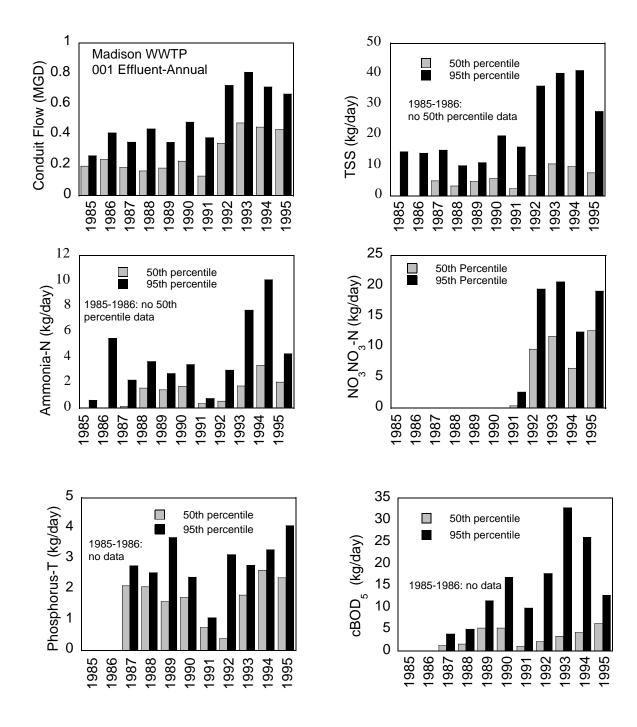
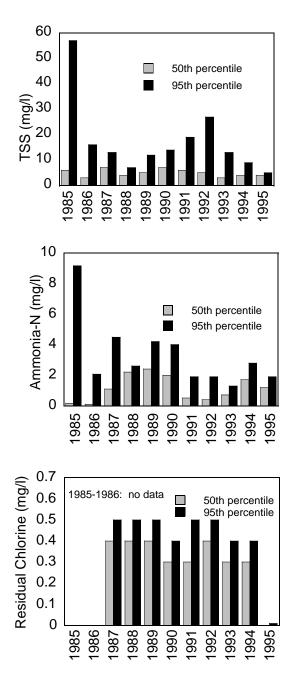



Figure 5. Median and 95th percentile annual loadings of select pollutant parameters by the Madison WWTP to Arcola Creek, 1985 - 1995.

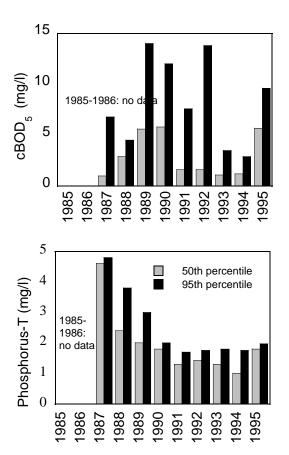


Figure 6. Median and 95th percentile third quarter concentrations (mg/l) of select pollutant parameters by the Madison WWTP to Arcola Creek, 1985 - 1995.

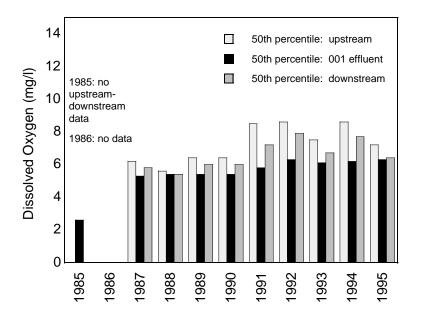


Figure 7. Concentrations of dissolved oxygen in the Madison WWTP effluent (third quarter) in relation to the upstream and downstream receiving waters.

by increased concentrations in the influent caused by the extremely dry weather which prevailed during the summer of 1995. Hydraulic contributions due to inflow and infiltration were likely to have been non-existent during this period.

The upgrade of the dechlorination equipment within the plant in 1994 has significantly reduced the concentration of residual chlorine in the plant effluent (Figure 6). Prior to installation of the new dechlorination equipment, summertime median (50th percentile) residual chlorine concentrations averaged 0.35 mg/l. In 1995, the median residual chlorine concentration was at the non-detect level for the test procedure.

In-stream monitoring of dissolved oxygen concentrations in Arcola Creek by WWTPstaff did not detect any violations of the Water Quality Standards during the summers of 1987 through 1995 (Figure 7). However, a comparison of the upstream and downstream monitoring data with that of the plant effluent does indicate that the discharge reduces the median summertime in-stream dissolved oxygen concentrations at the downstream monitoring station by an average of 0.6 mg/l The downstream station is located approximately 0.1 river miles downstream of the WWTP outfall.

Spills, Overflows and Unauthorized Releases

Cowles Creek

The discharge of approximately 619,000 gallons of untreated wastewater from the Geneva WWTP on January 15 and 16, 1995 was the largest documented spill to Cowles Creek reported to the Ohio EPA Division of Emergency and Remedial Response (DERR) in 1995. Reports submitted to the Ohio EPA Division of Surface Water (DSW) regarding this incident indicate that the bypass was caused by a storm event which increased flows beyond the hydraulic capacity of the WWTP. The report from the Geneva WWTP to the DSW indicated that approximately 3,500 gallons was bypassed to the stream on January 15, 1995 and that approximately 619,500 gallons was bypassed to the stream on January 16, 1995. The characteristics of the bypassed wastewater are included in Table 4. One other spill was reported to the DERR during 1995. The report alleged that an unknown quantity of oil had been released to a tributary of Cowles Creek. This release was not verified in the field.

For the period 1990-1995, the Geneva WWTP has reported ten bypasses resulting in discharges of untreated or partially treated wastewater to Cowles Creek (Table 4). Although there are m documented violations of the WQS in Cowles Creek associated with these bypasses, it is likely that they have had an impact on downstream water quality due to the characteristics of the bypassed effluent. High flows during storm events were the cause of five of the ten reported bypasses, electrical problems contributed to three, and pump malfunctions caused two bypasses. Discharges of untreated effluent from bypasses caused by rain events resulted in much larger releases than those caused by other reasons. The bypasses caused by rain events resulted in an average discharge of 373,500 gallons, while bypasses resulting from other causes resulted in an average discharge of 26,400 gallons.

Arcola Creek

Only one spill to Arcola Creek was reported to the Ohio EPA DERR in 1995. The report concerned an oily sheen believed to be caused by the release of diesel fuel to the stream. This release was not verified in the field.

Fish Kills

Three fish kills were recorded from Cowles creek between 1983 and 1988 due to either discharges of raw or poorly treated sewage (see Table 4 for examples) from the Geneva WWTP or toxic levels of ammonium in their effluent. No fish kills have been reported subsequent to the plant upgrades. Only three other fish kills were reported from the study area since 1983, reflecting the relatively undeveloped nature of the watershed.

Date	Duration	Quantity Released	Cause	Characteristics of Bypassed Effluent	Comments
7/17/90	~2 hours	1,000-5,000 gal.	Pump malfunction	??	
7/30/90	~2 hours	400,000-500,000 gal.	Heavy rain	??	
8/7/90	??	60,000 gal.	Pump malfunction	??	Bypass after primary treatment
12/28/91 12/29/91	- ????		Heavy rain	cBOD ₅ =142 mg/l TSS=92 mg/l	Bypass flow meter malfunction. Instream cBOD ₅ dst of bypass=14mg/l
8/4/92 3	hrs, 41 min.	371,000 gal.	Heavy rain	cBOD₅=21.3 mg/l TSS=292 mg/l	
9/9/92	21 min.	10,000 gal.	Loss of electricity	cBOD ₅ =25 mg/l TSS=60 mg/l	
11/19/93	65 min.	50,000 gal.	Loss of electricity	cBOD ₅ =112.5 mg/l TSS=110 mg/l	
8/14/95	??	7,000 gal.	Electrical surge TSS=40 mg/l	cBOD ₅ =17.5mg/l	
1/15/95	??	3,500 gal.	Heavy rain	cBOD ₅ =14.6 mg/l TSS=76.0 mg/l	
1/16/95	??	619,500 gal.	Heavy rain	cBOD ₅ =157.5 mg/l TSS=596 mg/l	

Table 4. Summary of effluent bypass events from the Geneva WWTP, 1990-1995.

Surface Water and Sediment Quality

Ashtabula River

Concentrations of phosphorus and oxidized nitrogen (nitrate-nitrite), measured in water quality grab samples collected from the Ashtabula River were at or near detection levels in most samples (Figure 8) reflecting the lack of point sources and relatively low intensity land use within the watershed. Ammonia nitrogen levels, while generally low were elevated in several samples, especially from those collected at Benetka Road (RM 19.1) and East 24th Street (RM 2.5). The highest ammonia-nitrogen levels were recorded during rain event sampling (see plot of fecd coliform - Figure 8), and likely represent runoff from livestock waste in the upper and middle reaches, and unsewered inputs in the lower reach (i.e., RM 2.5). Similarly, fecal coliform bacterial levels were also elevated in rain event samples (Figure 8, Table 7). Correspondingly, chemical oxygen demand was higher in the headwater reaches compared with downstream. Other parameters indicative of organic enrichment (i.e., TKN and TDS - see Appendix Table 3) were not elevated, suggesting the enrichment was not acute. Mean dissolved oxygen (DO) concentrations measured in grab samples from the Ashtabula River were above the twenty-four hour average minimum Warmwater Habitat Water Quality Standard of 5.0 mg/l (Figure 8) However, DO concentrations at or below the minimum Water Quality Standard of 40 mg/l were detected at RM 19.1 of the mainstem and in both branches. The low concentrationswere caused primarily by the very low and intermittent flows observed in late summer, but may have been exacerbated by organic loadings.

The unnammed tributary sampled near the junction of Carson and Beck Roads had elevated levels of ammonia nitrogen, and mean fecal coliform bacteria counts ($\bar{x} = 3230/100$ ml) exceeding secondary contact Water Quality Standard of 2000/100ml (Figure 8, Table 7). The high levels were likely caused by livestock access to the stream.

Concentrations of water column metals in the Ashtabula River were low and well within the WWH water quality criteria. Arsenic, lead, copper and zinc were detected at concentrations very close to their analytical detection limits (maximum observed concentrations: As=6 ug/l at West Branch Ashtabula @ Beckwith Road, Pb=8 ug/l at West Branch Ashtabula @ Beckwith Road, Cu=15 ug/l at RM 6.3, Zn=73 ug/l at Beckwith Road).

Sediment metal concentrations in the Ashtabula River were elevated compared to background concentrations described by Kelly and Hite (1984) for Illinois streams and exceeded the lowest effect level described by Persaud et al. (1994) for arsenic, chromium, copper, lead and mercury. The levels do not indicate contamination from point sources, but are more likely due to the parent bedrock and glacial deposits. Concentrations of all metals, excluding cadmium, were higher at RM 2.5 than RM 27.1, reflecting the increased contamination from urban runoff.

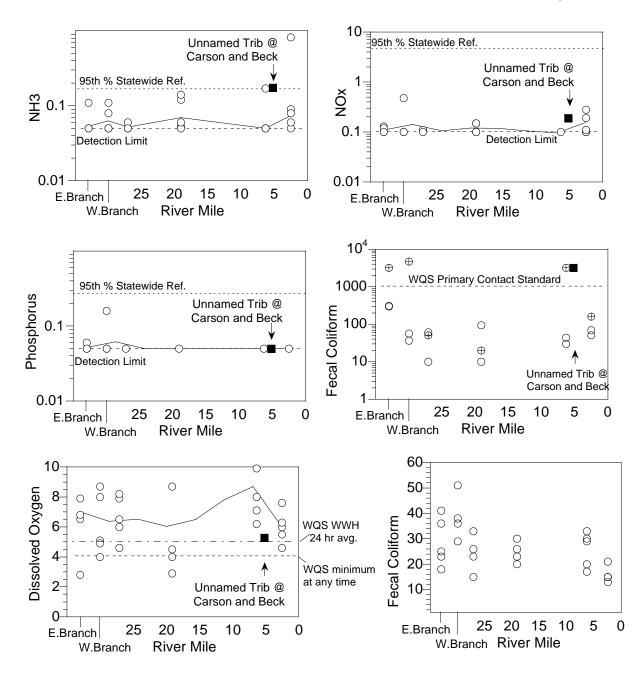


Figure 8. Select water quality parameters measured in grab samples collected from the Ashtabula River, 1995. Solid lines conjoin means. 95th percentile values are for wadeable statewide reference sites. Marked data points in the fecal coliform plot show rain event samples. Dection limits and Water Quality Standards (WQS) are shown where appropriate.

Table 5. Concentrations of heavy metals in sediments in the Ashtabula study area collected in 1995. All parameter concentrations except nickel were ranked based on a stream sediment classification system described by Kelly and Hite (1984). All values are mg/kg.

River	,						
Mile	As	Cd	Cr	Cu	Pb	Hg	Zn
27.1	12.9 ^{c†}	0.563 ^b	52.0 ^{d†}	16.5 ^{a†}	<26 ^a	0.069 ^a	100 ^c
2.5	14.2 ^{c†}	0.537 ^b	69.8 ^{d†}	33.5 ^{a†}	$46.0^{c\dagger}$	0.167°	180 ^{d†}

^a Non-elevated ^b Slightly elevated ^c Elevated ^d Highly elevated ^e Extremely elevated

"<" - indicates the concentration is less than the stated detection limit for that sample. Evaluations basedupon the Kelly and Hite (1984) criteria for the "<" samples assume the concentration of the sediment sample is at the stated detection limit.

[†] Exceeds the Lowest Effect Level given by Persaud et al. (1993).

No concentration exceeded the Ontario Severe Effect Level (Persaud et al. 1993).

Table 6.	Dry weight concentrations of volatile and semi-volatile organic and pesticide/PCB
	pollutants detected in the sediments of the Ashtabula River, 1995.

Astabula River	RM 27.1	RM 2.5	
Parameter			
Volatiles / Semi-Volatiles (mg/kg or ppr	n)		
Number of compounds analyzed	163	163	
Number of compounds below			
detection limits	163	157	
List of Semi Volatiles found			
BENZP [B & K] FLUORANTHENE	1.4	0.7	
BIS (2-ETHYLHEXYL) PHTHALATE	1.1	0.7	
CHRYSENE	0.9	0.7	
FLUORANTHENE	1.8	0.7	
PHENANTHRENE	0.7	0.7	
Pesticides and PCBs (ug/kg or ppb)			
Number of compounds analyzed	26	26	
Number below detection limits	26	26	

Cowles Creek

Dissolved oxygen (D.O.) concentrations in Cowles Creek measured during day time sampling events were consistently above levels necessary to support the Warm Water Habitat (WWH) aquatic life use designation (Figure 9). Dissolved oxygen concentrations were highest in Cowles Creek downstream from the Geneva Waste Water Treatment Plant (WWTP), where they averaged 8.15 mg/l. Dissolved oxygen concentrations measured during day time sampling events in the Creek ranged from 5.6 to 9.5 mg/l during the study period.

Measurement of diurnal D.O. concentrations in Cowles Creek using Data Sonde continuous monitors during the period of July 25-July 26, 1995 did not detect any violations of the water quality standards (WQS). However, monitoring did detect reduced DO concentrations at night in the upper reaches of the stream (RM 7.2) and near the mouth (RM 0.3) (Figure 9). Dissolved oxygen concentrations at Barnum Road (RM 7.2) ranged from 4.15 to 7.3 mg/l. This site had extremely low flows during June and July, and had no detectable flow in Augustand September. Concentrations measured near the mouth of the Creek (RM 0.3) ranged from 4.2 to 7.4 mg/l over a 24 hour period, and averaged 5.45 mg/l. This segment of the stream is deeper and slower moving that the remainder of the sites assessed upstream. The diurnal D.O. regime within the middle segment downstream from the Geneva WWTP (RM 4.51 to 0.9) was very good, with concentrations ranging from 5.5 to 8.7 mg/l at the four sites assessed.

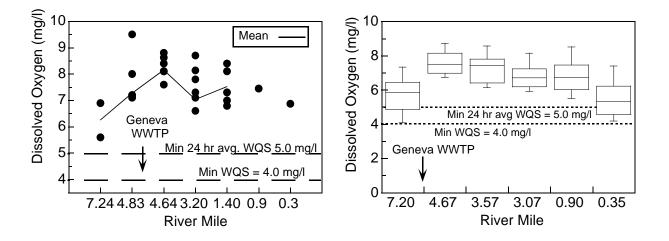
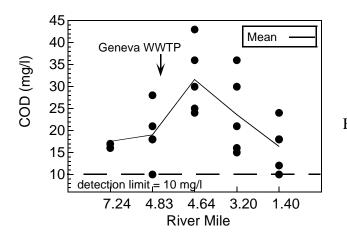



Figure 9. Dissolved oxygen concentrations (mg/l) measured in Cowles Creek in routine water quality grab samples (left) and from hourly Datasonde records collected over a 48 period, July 25 - July 26, 1995 (left).

Concentrations of carbonaceous five day biochemical oxygen demand (cBOD₅) were low (2.4 and 2.3 mg/l) in samples taken from the Geneva WWTP effluent. In-stream cBOD₅ concentrations were similarly low, with cBOD₅ concentrations ranging from less than the analytical detection limit (2.0 mg/l) to 2.3 mg/l upstream from the WWTP, and from less than the analytical detection limit to 3.7 mg/l downstream from the plant.

Chemical oxygen demand (COD) concentrations in Cowles Creek were elevated by the discharge from the Geneva WWTP (Figure 10). In-stream COD concentrations increased from an average of 19 mg/l upstream from the WWTP (RM 4.83) to an average of 31.6 mg/l downstream from the plant (RM 4.64). Samples taken from the WWTP effluent during the study period had an average COD concentration of 27.3 mg/l. Concentrations of COD declined steadily downstream from the WWTP, averaging 23.6 mg/l at RM 3.2 and 16.4 mg/l at RM 1.4.

Figure 10.	Chem	nical oxyge	en demand (COD)
	measu	ared in rou	tine water q	uality
	grab	samples	collected	from
	Cowle	es Creek, 1	.995.	

Ammonia nitrogen (NH_3 -N) concentrations were only slightly elevated downstream from the Geneva WWTP, and were significantly below the WQS (Figure 11). Average NH_3 -N concentrations in Cowles Creek increased from an average of 0.05 mg/l upstream from the WWTP (RM 4.83) to an average of 0.15 mg/l at the downstream monitoring station (RM 4.64). The WWTP effluent samples had NH_3 -N concentrations ranging from 0.06 to 0.15 mg/l, while NH_3 -N concentrations for samples taken in Cowles Creek downstreamfrom the WWTP (RM 6.64 to RM 0.3) ranged from less than the analytical detection limit of 0.05 mg/l to 0.39 mg/l.

Discharges of nitrate-nitrite nitrogen (NO_3 - NO_2 -N) from the Geneva WWTP dominated the nutrient dynamics of Cowles Creek during the study period. Effluent NO_3 - NO_2 -N concentrations ranged from 11.0 to 16.4 mg/l, resulting in an increase in average in-stream NO_3 - NO_2 -N

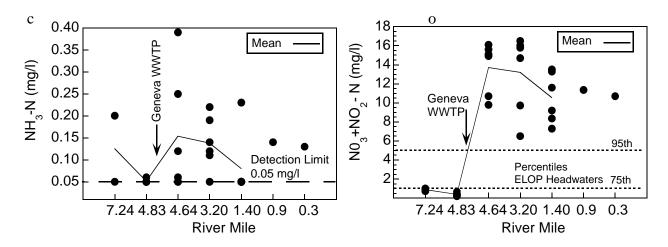


Figure 11. Concentrations of ammonia-nitrogen (left) and nitrate/nitrite-nitrogen (right)measured in water quality grab samples collected from Cowles Creek, 1995.

from 0.38 mg/l upstream from the WWTP (RM 4.83) to 13.7 mg/l at the site downstream from the plant (RM 4.64) (Figure 11). Concentrations of NO_3 - NO_2 -N in the stream remained elevated throughout the study period for all of the downstream sampling sites, averaging 13.2 mg/l at RM 3.2 and 10.5 mg/l at RM 1.4. Results from analysis of samples taken on July 26, 1995 indicate that these elevated NO_3 - NO_2 -N concentrations persist to the mouth of the stream. Concentrations of NO_3 - NO_2 -N at RM 0.9 and RM 0.3 on that date were 11.2 mg/l and 10.7 mg/l respectively.

Total Kjeldahl nitrogen (TKN), a measure of organically-bound nitrogen, displayed the same pattern with respect to concentrations in Cowles Creek as NO_3 - NO_2 -N. Discharges of TKN from the Geneva WWTP (average effluent concentration = 1.5 mg/l) increased the average in-stream TKN concentration from 0.5mg/l upstream (RM 4.83) to 1.6 mg/l downstream from the WWTP (RM 4.64). As with NO_3 - NO_2 -N, TKN concentrations remained elevated at all sites downstream from the WWTP to the mouth of the stream, ranging from 0.9 to 1.5 mg/l throughout the study period.

The data from the survey indicate that although some of the NO_3-NO_2-N and TKN discharged to the stream is assimilated downstream from the WWTP, most of the load is conserved and exported to Lake Erie. Average concentrations of NO_3-NO_2-N were 28 times higher at RM 1.4 than those found upstream from the WWTP (RM 4.83) and average TKN concentrations were 2.1 times higher. Results from sampling at stations farther downstream from the WWTP (RM 09 and 0.3) on July 26, 1995 indicate that this condition persists to the mouth of the stream.

Phosphorus concentrations in Cowles Creek were slightly elevated downstream from the Geneva WWTP (Figure 12). Concentrations of phosphorus upstream from the WWTP at RMs 7.24 and RM 4.83 ranged from less than the analytical detection limit of 0.05 mg/l to 0.11 mg/l during the

study. Discharges from the WWTP (average effluent concentration during the study = 0.50 mg/l) increased the phosphorus concentrations downstream (RM 4.64) to an averaged 0.42 mg/l Phosphorus was quickly assimilated in the stream, with average concentrations declining to 0.30 mg/l at RM 3.2 and 0.20 mg/l at RM 1.4.

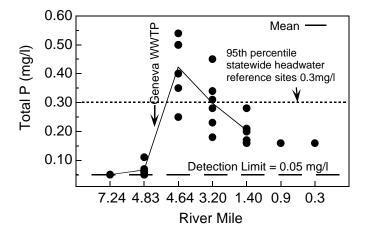


Figure 12. Total Phosphorus concentrations in water quality grab samples collected from Cowles Creek, 1995, in relation to the Geneva WWTP.

Concentrations of metals in Cowles Creek were low and well within the WQS for all stream use designations. Cadmium, copper and lead were detected in only three, one, and three samples respectively, at concentrations very close to their analytical detection limits (maximum observed concentrations: Cd = $0.3 \mu g/l$ at RM 1.4, Cu = $17 \mu g/l$ at RM 1.4, and Pb = $5 \mu g/l$ at RM 4.83). Zinc was detected in all but three samples, but concentrations were well below the WQS both upstream and downstream from the Geneva WWTP.

Contamination of Cowles Creek within the City of Geneva upstream from the Geneva WWTP from fecal coliform bacteria was identified as a significant problem (Table 7, Figure 13) Although one sample taken from the Barnum Rd. sampling site (RM 7.24) exceeded the primary contact 30 day geometric mean WQS (30- day WQS) of 1,000 colonies/100ml (col./ml), densities of fecal coliform increased dramatically within the City of Geneva. Fecal coliform bacteria densities ranged from 2,300 to 5,600 at Eastwood Ave. (RM 5.48), exceeding the maximum WQS for primary contact recreation on all three sampling dates and that for secondary contact recreation on two of the three dates. Fecal coliform densities were found to be even higher at East Main St. (RM 5.2), where densities ranged from 4,600 to 25,000 col./ml. The geometric mean fecal coliform bacteria count was 12,504 col/ml at RM 5.2. Densities of fecal coliform sources are ranging from 800 to 10,000 col./ml at RM 4.83, 67 to 4,300 col./ml at RM 464, and from 800 to

3,100 col./ml at RM 3.2. There were no detected exceedences for fecal coliform bacteria at RM 1.4, where densities ranged from 430 to 900 col./ml.

Two surveys conducted by walking the stream upstream from East Main St. failed to locate an obvious source for the bacterial contamination detected in the stream. Failure to also deted elevated nutrient (phosphorus and/or nitrogen) concentrations as well as the lack of any observed oxygen deficiency in the Creek upstream from the Geneva WWTP indicate that a sewer break is not the likely cause of the problem. Additional surveys should be conducted in Cowles Creek to identify and correct the cause of the contamination to ensure that recreational uses of the stream are protected.

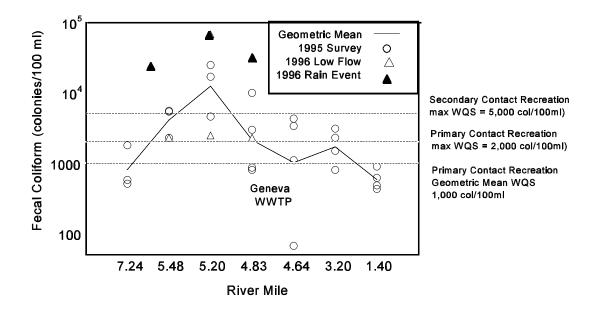


Figure 13. Number of fecal coliform colonies in grab samples collected from Cowles Creek, 1995, and in follow-up samples collected in 1996.

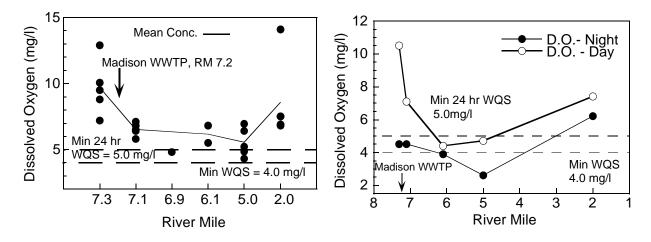
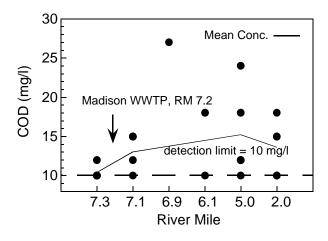
Arcola Creek

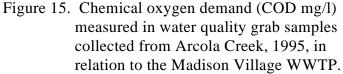
Daytime D.O. concentrations in the middle segment of Arcola Creek downstream from the Madison Village WWTP (RM 7.1 to RM 5.0) were depressed compared to the upstream sampling location (RM 7.3), and the sampling station downstream from US. Route 20 (RM 2.0) (Figure 14). Average daytime D.O. concentrations in the reach were 3.2 to 4.9 mg/l less than those measured at the upstream location (RM 7.3), and six of sixteen (38%) measurements were below the WWH 24-hour average minimum WQS concentration of 5.0 mg/l (Table 7). Dissolved

Grand and Ashtabula River Basins TSD

oxygen concentrations recovered downstream from U.S. Route 20, averaging 8.6mg/l at RM 2.0.

Results from a diurnal survey conducted on August 15, 1995 indicate that the sag in D.O. concentrations in Arcola Creek is more pronounced at night (Figure 14). A severe depression in D.O. concentration was observed at all of the sites upstream from U.S. Route 20, including the site upstream from the Madison Village WWTP (RM 4.73). Night time D.O. concentrations ranged from 2.6 to 4.5 mg/l upstream from U.S. Route 20, with concentrations at both the RM 6.1 and 5.0 sampling sites falling below the minimum WWH WQS of 4.0 mg/l (Table 7). Only the site downstream from U.S. Route 20 at RM 2.0 maintained a D.O. concentration above the minimum WWH WQS throughout the night time hours.


Figure 14. Dissolved oxygen concentrations (mg/l) in Arcola Creek measured inroutine water quality grab samples (left), and from samples collected in a diurnal survey (right)

Flow within the stream was extremely low throughout the study period, with no flow conditions occurring at the downstream sampling site (RM 2.0) by the last sampling date on September 5, 1995. Due to the characteristics of the middle segment of the stream (deeper channels, few rffle areas), aeration within the stream due to natural flow was probably minimal during the study period. Although dissolved oxygen averaged 5.6 mg/l in the WWTP effluent during the study, it appears that little surplus oxygen was being supplied to the stream from the WWTP, and that the current permit limit of 5.0 mg/l is insufficient for the needs within the stream. Reaeration of the WWTP effluent to provide DO in excess of the current minimum of 5.0 mg/l D.O. in the plant effluent specified in the N.P.D.E.S. permit should be strongly considered as a mechanism for improving in-stream D.O. concentrations.

Carbonaceous five day biochemical oxygen demand (cBOD₅) concentrations in the Madison

Village WWTP were low (2.1 mg/l) for both samples taken during the study. In-stream $cBOD_5$ concentrations were similarly low, with only two samples found to have $cBOD_5$ concentrations slightly above the analytical detection limit of 2.0 mg/l. Although chemical oxygen demand (COD) concentrations in Arcola Creek were variable downstream from the WWTP, the average detected concentrations at the downstream stations were very similar (Figure 15). The average COD concentration in the WWTP effluent was 19.7 mg/l during the study, and in-stream average COD concentrations ranged from 9.6 to 15.2 mg/l downstream from the WWTP.

There were no exceedences of any of the water quality criteria for nitrogen compounds in Arola Creek detected during the study period. However, concentrations of nitrogen compounds were highest in the stream below the Madison Village WWTP (Figure 16). Average NH_3 -N concentrations increased from less than the limits of detection (0.05 mg/l) upstream from the WWTP to 0.46 mg/l downstream. Ammonia nitrogen was quickly assimilated in the stream, and ranged from 0.06 to 0.15 mg/l from RM 6.1 to the downstream station at RM 2.0. NH_3 -N concentrations in the WWTP effluent averaged 0.51 mg/l. Concentrations of NO_3 - NO_2 -N were highest at State Route 528 (RM 6.1), possibly reflecting the assimilation and conversion of NH_3 -N discharged by the WWTP to NO_3 - NO_2 -N. As compared to the upstream sampling location,

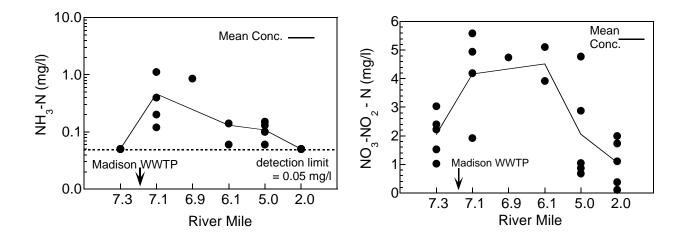


Figure 16. Concentrations of ammonia-nitrogen (left) and nitrified-nitrogen (right) in water quality grab samples collected from Arcola Creek, 1995 in relation to the Madison WWTP.

 NO_3 - NO_2 -N concentrations downstream from the WWTP were elevated by an average of 2.4 mg/l in the segment from RM 7.2 to RM 6.1, ranging from 1.92 to 5.58 mg/l. Effluent from the WWTP averaged 5.34 mg/l of NO_3 - NO_2 -N during the study period. Concentrations of NO_3 - NO_2 -N returned to levels comparable to upstream conditions by RM 5.0, and were markedly lower at RM 2.0, with concentrations there ranging from less than the detection limit (0.10 mg/l) to 1.99 mg/l. Concentrations of TKN averaged 1.0 mg/l just downstream from the WWTP, but were highly similar at the remainder of the downstream stations, with average concentrations of 0.5 to 0.6 mg/l from RM 6.1 to RM 2.0.

Phosphorus concentrations in the Madison Village WWTP effluent ranged from 1.36 to 2.73 mg/l during the study period. The effluent discharge increased the average in-stream corcentration of phosphorus from <0.05 mg/l at the upstream sampling site (RM 7.3) to 1.27 mg/l at the downstream site (RM 7.2). Phosphorus concentrations declined but remained elevated further downstream from the WWTP, averaging 0.93 mg/l at RM 6.1, 0.29 mg/l at RM 5.0, and 0.15 at RM 2.0. Concentrations of phosphorus in the stream exceeded the WQS guideline of 1.0 mg/l in four of the seven samples taken downstream from the WWTP between RM 7.1 and RM 6.1 (Figure 17, Table 7).

Biological productivity of aquatic systems has been found to be limited by the availability of nitrogen and phosphorus (for discussions see Wetzel 1975). A significant relationship exists between average in-stream nutrient concentrations and fish community indices. Existing data indicate that when average in-stream phosphorus concentrations exceed 0.1 mg/l, changes in the

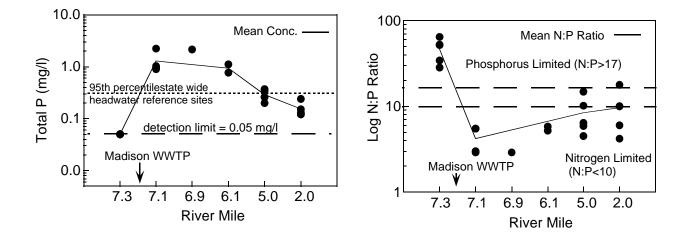


Figure 17. Total phosphorus concentration in water quality grab samples collected from Arcola Creek, 1995 (left), and their respective nitrogen:phosphorus ratios (right).

fish community become evident which result in lower IBI scores. A similar relationship also has been observed in Ohio streams when nitrate-nitrogen concentrations exceed 8.0 mg/l. Ultimately, the nutrient which will limit biological activity is dependant upon the ratio of nitrogen to phosphorus (N:P). Studies show that phosphorus is the exclusive limiting nutrient at N:P > 37.7:1, and that nitrogen is exclusively limiting at N:P < 4.1:1 (Smith, 1982). At intermediate N:P values, the availability of both nutrients impacts productivity (Hecky and Killiam 1988) Systems where N:P values are less than 10:1 are typically characterized as predominantly nitrogen limited, while systems with N:P values greater than 17:1 are characterized α predominantly phosphorus limited.

Using the data collected during the 1995 survey, it is estimated that the WWTP effluent averages approximately 65% of the stream flow in Arcola Creek downstream from the Madison Village WWTP during low flow conditions. Analysis of the ratios of total nitrogen (TKN + NO₃-NO₂-N) to phosphorus in Arcola Creek indicates that the stream is enriched with phosphorus at all of the sampling sites downstream from the Madison Village WWTP (Figure 17), while biological productivity at the upstream (RM 7.3) sampling location was found to be exclusively limited by phosphorus (average N:P = 46.4:1). Nitrogen to phosphorus ratios downstream from the WWTP (RM 7.1) decreased to an average of 4.2:1, indicating that loadings of phosphorus from the WWTP had significantly enriched the stream. Average N:P ratios in the WWTP effluent during the study period were 3.3:1. It is apparent that loadings of phosphorus to the stream from the WWTP dominated the nutrient dynamics within the stream during the study and that nutrient enrichment of the stream was the major factor in the observed decline in DO concentrations in the middle reach (RM 7.1 to RM 5.0).

Grand and Ashtabula River Basins TSD

Using an average in-stream phosphorus concentration of 0.5 mg/l as a target for water quality below the Madison Village WWTP and data from the 1995 survey, it is estimated that the effluent phosphorus concentration should be reduced to an average of 0.73 mg/l under theproposed plant expansion to 0.5 MGD. Assuming that total nitrogen loadings from the WWTP remain the same, this would result in an N:P ratio of approximately 10:1, the lower limit for phosphorus limitation of biological activity as found in the literature. Therefore, this proposed limit should be considered the maximum acceptable loading, with a goal of reducing in-stream phosphorus concentrations even lower than 0.5 mg/l. Data from the 1995 survey indicate that a reduction of phosphorus loadings to Arcola Creek, through additional treatment at the Madison Village WWTP, will have beneficial impacts on the downstream biological community. Although the approach used to determine an appropriate target concentration for phosphorus in the stream results in an estimate below the 1.0 mg/l WQS guideline, it must be noted that the guideline is based upon strategies for the reduction of phosphorus loadings to the Great Lakes and not upon maintaining in-stream biological integrity. It is therefore recommended that permit requirements for the Madison WWTP be established to reduce average in-stream phosphorus concentrations to 0.5 mg/l by setting an average effluent limit for phosphorus of 0.73 mg/l.

Concentrations of zinc were elevated downstream from the Madison Village WWTP, though they were well within the WQS. The average zinc concentration upstream from the WWTP (RM 7.3) was 12 μ g/l, while the average concentration downstream from it (RM 7.1) was 29 μ g/l. The average concentration in the WWTP effluent was 41 μ g/l. Discussion with DSW staff in the Ohio EPA Northeast District Office indicates that a single industrial discharger may be responsible for the majority of the zinc in the WWTP influent. Additional pretreatment oversight has already begun for this discharger.

Fecal coliform bacteria levels in Arcola Creek were well within the range acceptable for pimary contact recreation except for two instances where the levels exceeded the 30 day WQS (Table 7, Figure 18). Feedlot activities along the stream in the area of RM 69 may have been responsible for these events.

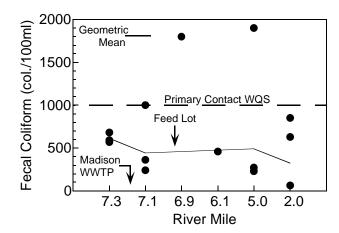


Figure 18. Fecal coliform colonies (#/100ml) in water quality grab samples collected from Arcola Creek, 1995.

The herbicide dieldrin was detected in a grab sample taken upstream from the WWTP (RM 7.3) at a concentration $(0.010 \,\mu\text{g/l})$ exceeding the numerical criteria for the outside mixing zone 30-day average. Dieldrin, endrin and heptachlor epoxide were all detected at $0.003 \,\mu\text{g/l}$ at RM 5.0 (Table 7). Run off from the extensive acreage used for the nursery industry in the Arcola Creek watershed is the likely source for these organic compounds.

Conneaut Creek

During the 1995 survey season, Ohio EPA sampled one site inConneaut Creek at Furnace Road (River Mile 23.1) for Water Quality. The site was sampled five times during the study period. Results of individual grab samples are presented in Appendix Table X.

The survey data indicated good water quality with no exceedances of any of Ohio's Water Quality Criteria with the exception of one dissolved oxygen value recorded on August 16, 1995 @ 7:43 AM. The dissolved oxygen concentration was 5.0 mg/l, which is an exceedence of the Exceptional Warmwater Habitat Water Quality Standard of 6.0 mg/l at any time. Dissolved oxygen concentrations measured during day time sampling events at Furnace Road ranged from 5.0 to 8.8 mg/l during the study period. The low dissolved oxygen reading does not necessarily indicate water quality impacts associated with non-point pollution sources, rather it is likely attributable to low flow conditions observed throughout the study period.

Nutrient concentrations in Conneaut Creek were very low. Nitrate-nitrite nitrogen concentrations were generally below 0.50 mg/l and ammonia-nitrogen concentrations were present below or near method detection limits. Phosphorus concentrations were below the detection limit in all samples. Chemical Oxygen Demand concentrations at the Furnace Road site ranged from <10 to 18 mg/l. Concentrations of metals in the Conneaut Creek were also low during the study and well within the Water Quality Criteria for the stream's use designation.

Fecal coliform bacteria levels in the Conneaut Creek were within the acceptable range for primary contact recreation.

MAS/1996-11-5

Table 7. Instances of exceedences from the Ohio EPA Warmwater Habitat criteria(OAC 3745-1) for chemical/physical water parameters measured in grab samples taken from the Cowles Creek and Arcola Creek study areas during 1995 (units are µg/l for organics, # colonies/100ml for fecal coliform bacteria, and mg/l for all other parameters).

Stream	River Mile	Parameter (value)
Ashtabula River		
	27.1	Dissolved Oxygen (4.6 [‡])
	19.1	Dissolved Oxygen (4.5 [‡])
	6.3	Fecal Coliform (3200 ^{**})
East Branch	1.4	Fecal Coliform (3200 ^{**})
West Branch	1.8	Fecal Coliform (4700 ^{**})
Unnamed Trib		
	1.5	Fecal Coliform (3230 ^{**})
Cowles Creek		
	7.24	Dissolved Oxygen (4.08)
		Fecal coliform (1,800 [*])
	5.48	Fecal coliform (5,400 ^{***} ; 5,600 ^{***} ; 2,300 ^{**})
	5.20	Fecal coliform (25,000 ^{***} ; 4,600 ^{**} ; 17,000 ^{***})
	4.83	Fecal coliform (10,000 ^{***} ; 3,000 ^{**})
	4.64	Fecal coliform (4,300**; 3,400**; 1,100*)
	3.20	Fecal coliform (3,100**; 2,300**; 1,500*)
	0.30	Dissolved oxygen (4.19^{\ddagger})
Arcola Creek		
	7.3	Dieldrin (0.010 ^{#, ##})
		Dissolved oxygen (4.5^{\ddagger})
	7.1	Dissolved oxygen (4.5^{\ddagger})
		Phosphorus $(1.02^{\dagger}; 2.23^{\dagger})$

Table x. Continued.

Stream	River Mile	Parameter (value)
Arcola Cree	k - Continued.	
	6.9	Dissolved oxygen (4.8^{\ddagger})
		Phosphorus (2.13^{\dagger})
		Fecal coliform (1,800 [*])
	6.1	Dissolved oxygen $(3.9^{\ddagger \ddagger}; 4.4^{\ddagger})$
		Phosphorus (1.10^{\dagger})
	5.0	Dieldrin (0.003 ^{##})
		Endrin (0.003 ^{##})
		Dissolved oxygen $(4.3^{\ddagger}; 2.6^{\ddagger\ddagger}; 4.7^{\ddagger}; 4.85^{\ddagger})$
		Fecal coliform (1,900 [*])

[#]Concentrations exceeding the numerical criteria for outside the mixing zone 30-day average. ##

Concentrations exceeding the numerical criteria for human health 30-day average.

- Dissolved Oxygen concentrations noted in italics are minimum readings obtained by use of Datasondes.
- ‡ Concentrations below the average warmwater habitat dissolved oxygen criterion (5.0 mg/l). ‡‡
- Concentrations below the minimum warmwater habitat dissolved oxygen criterion (4.0 mg/l).
- Data exceeding the average Primary Contact Recreation criterion for fecal coliform bacteria (1,000 colonies/100 ml). **
- Data exceeding the maximum Primary Contact Recreation criterion for fecal coliform bacteria (2,000 colonies/100 ml). ***
- Data exceeding the maximum Secondary Contact Recreation criterion for fecal coliform bacteria (5,000 colonies/100 ml).
- † Data exceeding the Water Quality Standards guideline for daily average total phosphorus (1.0 mg/l).

Physical Habitat for Aquatic Life

Ashtabula River

The quality of the macro habitats at five locations sampled for fish in the Ashtabula River, and at the sites sampled in the East and West Branches (Table 8), were assessed using the Qualitative Habitat Evaluation Index (QHEI - Rankin 1989). The mean QHEI score for the basin was 73.2 \pm 5.93 s.d., indicating generally good to excellent habitat quality and the capability of supporting a diverse aquatic fauna. The absence of anthropogenic modifications to the river is demonstrated by the low ratio (<0.5) of modified habitat attributes to warmwater habitat attributes. The postive warmwater habitat attributes encountered in the Ashtabula River is largely ascribed to a lack of channelization, wide mature riparian areas, and small acreage farms using conservative practices in the basin. Riffle and channel substrates were unembedded and generally silt free. Glacial till and fractured bedrock provided a variety of substrate sizes and habitat complexity, especially in the upper watershed. Although the physical habitat is very good, extremely low or intermittent flows occur every summer in the Ashtabula River (USGS reference) limiting the amount of habitat available to aquatic fauna. The low flows in summer are due to the limited ground water capacity of the shale bedrock aquifers. High volumes of stream discharge (>5000 cfs, max ~ 11,100 cfs in 1959), emanating from snow melt, scours and denudes the lower reach of the Ashtabula River. Consequently, QHEI scores decreased with proximity to Ashtabula mainly because of the increased prevalence of unbroken shale bedrock and less cover.

Cowles Creek

Macro habitats in Cowles Creek were evaluated at seven fish sampling locations (Table 8). The average QHEI score was 59.6 ± 3.23 s.d., reflecting fair to good habitat quality overall, and the ability to support a fish fauna consistent with expectations of WWH criteria. However, ratios of modified habitat characteristics to warmwater habitat characteristics exceeded 1 at 4 of 7 locations reflecting modifications to the stream. Modified habitat attributes limiting to biological communities identified at most locations include moderate to heavy siltation, poor channel development, no fast current, embedded substrates, and sparse cover. Two segments had been previously channelized, RMs 5.0 and 1.1. The reach flowing through the city of Geneva has been confined with revetments, although the creek had recovered free flowing characteristics within the confines of the revetments at RM 5.0. The channel at RM 1.1, previously straightened for road construction, was starting to meander, and riparian vegetation was recovering. Stream dewatering for nursery irrigation upstream from Geneva appeared to have altered the natural flow. Reduced flows contributed to the generally poor quality of the riffle habitat by reducing the downstream transport of silt, and reducing available habitat. The habitat was limited by natural factors, specifically poor in-stream cover due to shale bedrock in the lower reaches. Positive warmwater habitat attributes common to most sites were no past channel modifications, the presence of glacial till adding habitat complexity and in-stream cover, and deep pools.

WWH Attributes MWH Attributes	
High Influence Moderate Influence	
Kivel Manuelization or Recovered Boulder/Cobble/Gravel Substrates Silt Free Substrates Sod/Excelent Development Moderater/High Sinuosity Extensive/Moderate Cover Fast Current/Eddines Max. Depth > 40cm Max. Depth > 40cm Low/Normal Embeddedness Nax. Depth > 40cm Low/Normal Embeddedness Nax. Depth > 40cm MDHWI Adom Substrate (Raunel HeavyModerate Silt Cover Max. Depth < 40 cm (WDHW)	MWH H.L/WWH Ratio MWH M.L. WWH Ratio
19.1 75.5 9.4 12.1 77.5 11.4 6.3 72.5 17.5	0.13 0.25 0.11 0.22 0.10 0.10 0.22 0.33 0.22 0.44
(07-004) West Branch Ashtabula River	
	0.11 0.22
(07-005) East Branch Ashtabula River	
	0.11 0.22
(07-007) Cowles Creek	
	0.25 0.75
6.2 63.0 14.3 DEFINE 7 • 1 A A A	0.25 0.75
5.0 57.5 21.7	0.60 1.60
	0.25 0.63
	0.29 1.00
	0.75 2.50
	0.50 2.00
(07-011) Arcola Creek	
	0.80 2.20
	1.33 3.67
	6.00 9.99
	0.25 0.38
0.5 60.0 29.4	0.43 0.57
(07-100) Conneaut Creek	
	0.10 0.10
12.1 85.5 5.6	0.10 0.10

Table 8. QHEI matrix for sites sampled in the Ashtabula River basin, 1995.

Arcola Creek

Macrohabitats were evaluated at five locations in Arcola Creek (Table 8). The three upper sites were recently channelized, and consequently had severely degraded habitats (QHEI < 45). The ratio of modified habitat attributes to warmwater habitat attributes at these sites ranged from 2.20 at RM 7.3 to >10 (i.e., no warmwater habitat attributes) at RM 5.0. Of the three channelized sites, RM 5.0 had the most degraded habitat, as it was the most recently channelized, and consequently was completely lacking in any warmwater habitat attributes. Redeposition of sand and silt, and sediment runoff from nurseries had completely covered the channel to the point that it was difficult to wade in, cover was lacking, and depth was uniformly shallow. Habitat degradation was less severe at the upstream sites bracketing the WWTP, as the channel had recovered several warmwater habitat attributes. Original substrates were present, channel development was higher and cover was more abundant. The two sites downstream from U.S. Rt. 20 had not been previously channelized (or were recovered), as reflected by QHEI scores (67.5 and 60.0 at RMs 5.0 and 0.5, respectively) and the relatively low ratio of modified habitat attributes to warmwater habitat attributes (<0.6 at both sites). Habitat attributes favoring WWH fish communities common to both sites were unembedded substrates, and a well developed and sinuous channel containing gravel, cobbles and bedrock slabs. Water withdrawal for irrigation, however, had rendered flows intermittent at the two downstream sites, and significantly reduced available habitat. Collectively, anthropogenic modifications to the physical habitat and hydrologic budget are serious limitations to the fish community of Arcola Creek.

Conneaut Creek

Excellent habitat quality was noted at the two sites evaluated in Conneaut Creek (Table 8) Fractured bedrock and glacial tills provided substrates with a variety of sizes and high complexity, and channel development was excellent. Riffles were free of embedding silt, and silt in the slower channels was confined to depositional areas. Wide mature riparian vegetation covered the undeveloped flood plain at both locations, providing woody debris for in-stream cover. Small acreage farms using conservation tillage practices, paired with wide riparian buffers, helped reduce the amount of sediment entering the stream.

Biological Assessment: Macroinvertebrate Community

Artificial substrate samplers were collected from 19 of 20 stations in the AshtabulaRiver, Cowles Creek, Arcola Creek, and Conneaut Creek during the summer of 1995 (Table 9). Narratiw evaluations ranged from poor in the upper reaches of Arcola Creek to exceptional at thræ Conneaut Creek stations and one Ashtabula River station. Eighteen of the twenty artificial substrate sets were affected by inadequate current velocities (< 0.3 ft./sec.) or no detectable current in the location where they were placed. Also, stream flows were intermittent or nearly intermittent at eight of the twenty sites, in the Ashtabula River, Arcola Creek and the upper section of Cowles Creek. Because the lack of current could result in lower ICIscores by limiting the presence of flow-dependent taxa on the artificial substrates, these sites were also evaluated based on the qualitative (natural substrate) collections. This analysis overrides the ICI scores at four locations where the evaluation was raised from "fair" to "marginally good" (Table 9).

Ashtabula River

Artificial substrate sampling in the Ashtabula River basin included four mainstem sites from RM 25.6 to 3.6 (upstream from the estuary) and a site in the West Branch at RM 1.8. The samplers were lost in the East Branch at RM 1.4 and only qualitative sampling was performed. A total of 160 taxa were collected from the six sites in the basin, with an average of 11 EPT taxa collected from natural substrates per site. At the five locations where both quantitative and qualitative data were collected, an average of 71 total taxa were found per site. Narrative evaluations were consistently in the marginally good range; however, RM 3.6 was rated excellent (Table 9, Figure 19).

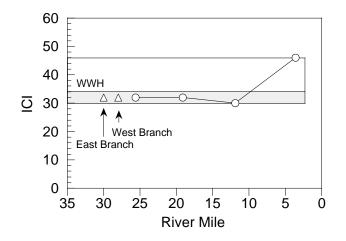


Figure 19. Longitudinal performance of the Invertebrate Community Index (ICI) for the Ashtabula River, 1995.

Grand and Ashtabula River Basins TSD

January 7, 1997

Stream flow in the branches and mainstem was very low during the late summer collection period. All sites were intermittent or nearly intermittent except the mainstem at RM 3.6 Marginally good macroinvertebrate communities were found in both the West Branch of the Ashtabula River (ICI=32 at RM 1.8) and the East Branch based on the qualitative collections ICI scores in the upper mainstem were also in the marginally good range at RMs 25.6 and 19.1. A slight drop into the fair range at RM 11.9 (ICI=28) was considered primarily a result of stream intermittence and not a significant change in water quality; the community was also evaluated as marginally good. Communities improved to an exceptional condition (ICI=46) at RM3.6 where flow conditions improved. With the exception of RM 3.6, communities throughout the Ashtabula River basin reflected moderate stresses from the late summer-low flow conditions.

Cowles Creek

Artificial substrates were collected at seven sites from RM 7.2 (upstream from Geneva) to RM 0.3 in the Lake Erie estuary. Narrative evaluations ranged from fair at sites between Geneva and Lake Erie, to marginally good at two sites upstream from the village. A total of 133 taxa were collected from the seven mainstem sites.

Flow conditions upstream from Geneva were intermittent or nearly intermittent at RM 7.1 and 5.6. Both sites had low ICI scores (fair range) but relatively good communities were collected from the natural substrates (Table 9, Figure 20). Numbers of EPT taxacollected from the natural substrates exceeded or were near ecoregional expectations, and the QCTV scores were in the high range. Based on the qualitative collections, both sites were considered marginally good.

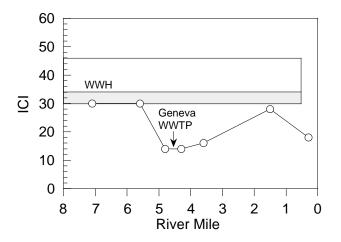


Figure 20. Longitudinal performance of the Invertebrate Community Index (ICI) for Cowles Creek in relation to the Geneva WWTP, 1995.

Community health declined at RM 4.8, downstream from the city of Geneva and immediately upstream from the Geneva WWTP. Despite a lack of current flowing over the artificial substrates, the ICI of 14 (low fair range) was considered indicative of water quality impacts Pollution tolerant oligochaetes and snails accounted for over fifty percent of total organisms

obtained from the artificial substrates, and declines in the QCTV score and qualitative EPT taxa were recorded based on the natural substrate collection.

Habitat conditions improved and current velocities increased downstream from the Geneva WWTP as stream flow was augmented by the effluent discharge. However, macroinvertebrate communities remained in the fair range at three sites between the WWTP and Lake Erie. ICI scores ranged from 14 at RM 4.3 to 28 at RM 1.5 before declining again in the estuary at RM 0.3. Oligochaetes, snails and midges (excluding the Tanytarsini fraction) accounted for up to 95% of the organisms from the free flowing sites. A gradual decrease in tolerant taxa and subsequent increase in Tanytarsini midges characterized the improving trend from upstream to downstream. An odor of ammonia was detected at RM 4.3 (nearest to the Geneva WWTP) and several septic tank discharges were observed at additional sites downstream.

Arcola Creek

Artificial substrates were collected at five sites from RM 7.5 (upstream from the Madison WWTP) to RM 0.6 (upstream from the Lake Erie estuary). A total of 106 taxa were collected from the five mainstem sites with an average 44 total taxa and 4 qualitative EPT taxa per site Narrative evaluations ranged from poor at RM 7.5 to good at RM 5.0.

A degraded communities (ICI=12) was encountered upstream from the Madison WWTP at RM 7.5 (Figure 21). Foul smelling muck was deposited on the artificial substrates and along stream margins. Only one mayfly and one caddisfly taxon were collected while nutrient tolerant oligochaetes and flatworms predominated the quantitative and qualitative samples, respectively. Immediately downstream from the Madison WWTP at RM 7.1, the ICI increased to 26 (fair range). Improvement in the ICI score probably resulted from the augmented flow downstream from the discharge. High densities of hemoglobin utilizing midges (*Chironomus decorus* group) collected from the natural substrates and oligochaetes gathered from the artificial substrates reflected highly enriched conditions. However, the presence of numerous midges of the Tribe Tanytarsini, a toxics intolerant group, indicated a lack of toxicity associated with the effluent.

Further downstream, continued improvement in the ICI (34) was noted at RM 5.0. However, the poor quality of the qualitative sample (i.e., only three EPT taxa and low QCTV score [26.4]) indicated continued water quality impacts. Mayflies were entirely lacking on the artificial substrates and the ICI metric scoring was very erratic with five of the ten metrics receiving a "0" and four receiving a "6" on the 0 to 6 scoring scale. This scoring pattern is quite unusual for an undisturbed sampler set under adequate current conditions. Data from RM 5.0 shows that significant aspects of the macroinvertebrate community performed well below ecoregional expectations and, despite the ICI score, the site was considered impacted from enrichment sources upstream.

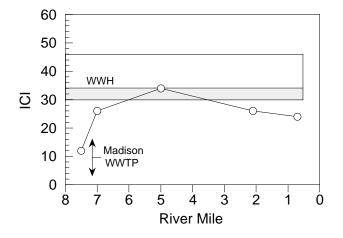


Figure 21. Longitudinal performance of the Invertebrate Community Index (ICI) for Arcola Creek in relation to the Madison WWTP, 1995.

Artificial substrates at RMs 2.1 and 0.7 were collected from areas with no detectable current consequently ICI scores dropped into the fair range. Based on analysis of the qualitative samples, communities appeared to gradually improve with increased distance downstream but recovery was considered incomplete prior to entering Lake Erie due to stream dewatering.

Conneaut Creek

Macroinvertebrate communities were consistently in the exceptional range at three sampling locations located between the state line and RM 5.4 near the city of Conneaut (Table 9). ICI scores, EPT taxa richness and QCTV scores were consistently among the highest in the survey. A total of 149 taxa were collected from the three mainstem sites with an average 99total taxa and 23 qualitative EPT taxa per site. The RM 23.3 site yielded 110 total taxa, the highest number recorded from any station in the Ohio EPA data base (4610 samples).

Table 9. Summary of macroinvertebrate data collected from artificial substrates (quantitative evaluation) and natural substrates (qualitative evaluation) in the Ashtabula River basin, Cowles Creek, Arcola Creek and Conneaut Creek study area, 1979 to 1995.

			Quanti	tative Ev	aluation			
Stream	Density	Quant.	Qual.	Total	Qual.	OCTA	ICI	Narrative
	$\frac{(\text{No./Sq. Ft.})}{(1005)}$	Taxa	Taxa	Taxa	EPT ^a	QCTV ^b	ICI	Evaluation ^c
	<i>River (1995)</i>	15	50	01	10	25.6	20ns	Mana Caad
25.6	589 126	45 44	52	81 71	10	35.6	32^{ns}	Marg. Good
19.1	126		46	71	10	37.2	32^{ns}	Marg. Good
11.9	550 140	40 40	38	63 71	9 16	38.5	28*	Marg. Good ^c
3.6	140	40	48	71	16	39.2	46	Exceptional
Ashtabula I	River (1989)							
10.0		29	42	57	18	39.3	42	Very Good
Ashtabula I	River (1983)							
25.6		43	49	71	20	40.0	34	Good
West Branc	h Ashtabula I	River (19	95)					
1.8	780	30	59	71	11	34.1	32 ^{ns}	Marg. Good
West Branc	h Ashtabula I	River (19	984)					
1.8		32	40	61	11	39.0	40	Good
East Brance	h Ashtabula I	River (19	95)					
1.4			46		9	35.3		Marg. Good
Cowles Cre	ek (1995)							
7.1	23	22	36	47	9	35.6	24*	Marg. Good ^c
5.6	11	18	31	41	6	39.2	20*	Marg. Good ^c
4.8	96	25	35	46	5	35.3	14*	Fair
4.3	304	30	32	45	3	32.3	14*	Fair
3.6	380	23	32	40	2	35.6	16*	Fair
1.5	197	35	34	53	7	37.2	28*	Fair
0.3	694	27	31	52	2	29.6	18*	Fair
Arcola Cree	ek (1995)							
7.5	824	31	43	48	2	26.4	<u>12</u> *	Poor

Table 9. (continued).

			Quanti	tative E	valuation	l		
<i>Stream</i> River Mile	Density (No./Sq. Ft.)	Quant. Taxa	Qual. Taxa	Total Taxa	•	OCTV ^b	ICI	Narrative Evaluation ^c
7.0	1541	32	38	41	3	31.3	26*	Fair
5.0	308	45	44	46	2	26.4	34	Good
2.1	160	22	31	45	6	37.5	26*	Fair
0.7	544	27	37	40	7	35.8	24*	Fair
Conneaut (Creek (1995)							
23.3	819	68	80	110	23	39.1	46	Exceptional
12.6	1151	60	66	95	21	39.9	46	Exceptional
5.4	470	57	60	92	26	40.9	50	Exceptional
Conneaut (Creek (1989)							
6.7		43	65	84	26	39.9	52	Exceptional
Conneaut (Creek (1979)							
6.7		36	32	55	16	41.3	48	Exceptional
			Qualit	ative Ev	aluation			
			Av	erage				
Stream	No. Qual.		Q	ual.	Relative	Predomina	nnt	Narrative
River Mile	Taxa	QCTV ^b	E	PT ^a	Density	Organisms	5	Evaluation ^c
East Branc	h Ashtabula I	River (199:	5)					
1.4	46	35.3		9	High	Crayfish,Wa	ater	Marg.Good ^c
	-				0	Pennies, Ma		
	Ecoreg	gion Biocr	iteria:	Erie-O	ntario La	ke Plains (EC	DLP)	
	INDEX	WWH	EW	Ή	MWH / I	Lake Erie Est	uary ^d	
	ICI	34	40	5		22		

^a EPT= total Ephemeroptera (mayflies), Plectoptera (stoneflies) and Tricoptera (caddisflies).
 ^b Qualitative Community Tolerance Values (QCTV) calculated as the median of the tolerance values determined for each qaulitative taxon colleted.

^c A qualitative narrative evaluation based on best professional judgement and samplingattributes such as community composition, EPT taxa richness, and QCTV scores was used when quantitative data were not available or considered unreliable due to current velocities less than 0.3 fps flowing over the artificial substrates.

^d Modified Warmwater Habitat for channel modified areas and Lake Erie river mouths.

* Significant departure from ecoregion biocriterion (>4 ICI units); poor and very poor results are underlined.

^{ns} Nonsignificant departure from ecoregion biocriterion <u>K4</u> ICI units).

Biological Assessment - Fish Communities

Ashtabula River

Fish communities in the Ashtabula River, including the East and West Branches, achieved expectations for WWH as measured by the IBI at all locations, and at all locations except RM 19.1 as measured by the MIwb (Table 10, Figure 22). MIwb scores for the Ashtabula River were generally low, with nonsignificant departure at three locations and the previously noted significant departure. The marginal performance of the MIwb does not necessarily indcate poor water quality originating from anthropogenic stresses; it stems largely from stresses to the fish community imposed by intermittent flow experienced in most years (U.S.G.S. reference). Intermittent flows crowd fishes into pools, exposing them to predators and increasing competition for space and food. Through stagnation, intermittency can also result in wide diurnal fluctuations in dissolved oxygen. Combined, those stessors lower the carrying capacity of the steam. The MIwb is particularly sensitive to low numbers or biomass, hence the marginal scores. The good to very good IBI scores obtained, and the presence of pollution intolerant species at all locations further suggests that water quality is not significantly impaired by anthropogenic sources However, anthropogenic stresses, namely septic discharge and livestock operations likely exacerbated effects of intermittency. High fecal coliform counts (>1000/100 ml) were detected at several locations sampled following a rain event, and over grazing and open cattle access b the stream was observed sporadically in the upper watershed. Dissolved oxygen levels below the 24 hr minimum average criteria of 5.0 mg/l were measured at two locations in the middle reach, possibly reflecting the loadings of organic wastes. The frequent intermittency, though not influencing the IBI as severely as the MIwb, also suppressed IBI scores and likely prevents the establishment of an exceptional fauna. This is born out by the lack of correlation between QHEI scores and the IBI (t = 1.03, P = 0.3503), especially in light of the excellent habitat. The MIwb was significantly influenced by habitat quality (t = 2.94, P = 0.0321) owing to its effect, especially that of deep pool habitat under low flows, on biomass.

A discernable decline in both the MIwb and IBI was noticed at RM 3.5. The IBI score was strongly influenced by the presence of bluntnose minnows in the second sampling pass (9/8/95), when they constituted 40% of the total catch by number. This may reflect urban impacts (*i.e.*, stormwater run-off, or unsewered inputs) on water quality.

The benefits of conservative farming practices paired with intact riparian vegetation were manifest, especially in the middle reaches, by the high relative abundance of mimic shiner and bigeye chub, species requiring clear, silt free habitats to thrive. Rosyface shiners, also intolerant of pollution and turbidity, were abundant at RM 3.5 (though only in the first pass). Bigeye chub is a species that has been extirpated throughout much of its former range in Ohio.

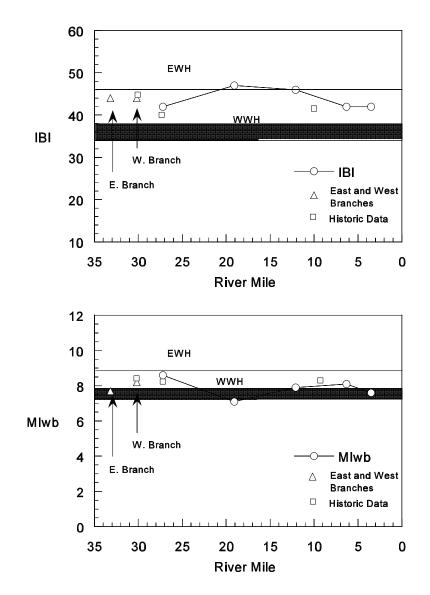


Figure 22. Biological performance of fish communities in the Ashtabula River, and East and West Branches, as measured by the IBI (top) and MIwb (bottom). Limited historical information is also presented - see Table xx for corresponding years. The shaded box shows the area of insignificant departure for EWH criteria. The solid horizontal line depicts the lower bounds of WWH.

Cowles Creek

Fish communities in Cowles Creek were generally degraded, and only marginally met WWH criterion at three locations (Table 10). A noticeable drop in IBI scores occurred downstream of the Geneva WWTP relative to upstream scores (Figure 23), corresponding to a decline in the number of darter species and an increase in the percentage of tolerant and pioneering fishes Organic enrichment from the effluent was evident in its effect on the composition of the fauna. The relative number of fish, especially creek chubs and stonerollers, increased by nearly two orders of magnitude (Figure 24). The loss of darter species suggests a toxic impact associated with the effluent as opposed to organic enrichment alone, however, effluent toxicity tests revealed no acute toxicity and NH₃-N concentrations in the effluent have decreased to less than 1.0 mg/l. This suggests that impacts to the fish community may be linked to a combination of periodic upsets in the plant due to inflow and infiltration problems and stormwater runoff from the city of Geneva (see *Pollutant Loadings* section). Partial recovery of the fish community to that found upstream of the plant was observed at RM 1.1.

The sample collected in the estuarine portion at RM 0.3 did not meet the WWH criterion for headwaters. Interpretation of community indices in estuarine portions of streams is confounded by the slow current, and changes in habitat and species composition. Expectations of community performance have not been developed for estuarine portions of wadable streams, but have been established for boatable estuarine streams, and are lower than those for free flowing streams Consequently, it can be reasonably expected that those for wadable estuarine stream should also be lower. However, the organic enrichment from the WWTP effluent appears to have exacerbated the effect of slow current on dissolved oxygen concentrations and impacted the fish community at RM 0.3, given that 9 of 12 species of fish sampled were either tolerant σ moderately tolerant and composed 69.8% of the catch.

The fish community sampled at RM 7.2 did not achieve the headwater WWH criterion. Flows at this site were interstitial and the lack of sustained flow may have been responsible for the impaired fish community. The headwaters of Cowles Creek originate in the end moraines and old beach reaches left from the retreating glaciers and glacial lakes. These water bearing deposits are of consistent but low yield, and are susceptible to perturbations in the overlaying strata Development or stream dewatering for irrigation may have contributed to the observed low flows

Arcola Creek

The fish communities in Arcola Creek at the five locations sampled did not meet WWH criterion, due mainly to habitat limitations and partially to nutrient enrichment. The creek had recently been channelized at the three upper locations (RM 7.4, 7.2 and 5.0), and had severely degraded physical habitats ($\overline{\times}$ QHEI = 40.3). Consequently, the fish fauna was composed primarily of tolerant and pioneering species, especially at the two upstream sites. Water appropriations by local nurseries for irrigation captured most of the stream flow on the first sampling pass, and all of the flow on the second pass, rendering extremely low or intermittent flows from RM 5.0 to the mouth, and severely limiting the amount of habitat available to aquatic life. Accordingly, fish communities at the downstream locations, while not limited by in-stream physical habitat, were heavily impacted by low flows.

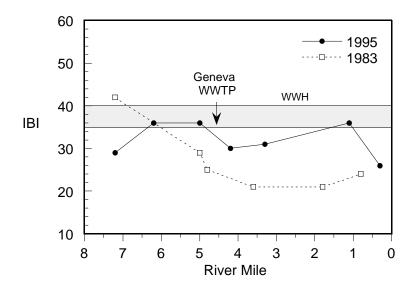


Figure 23. Longitudinal performance of the Index of Biotic Integrity (IBI) in relation to the Geneva WWTP for Cowles Creek, 1995 and 1981.

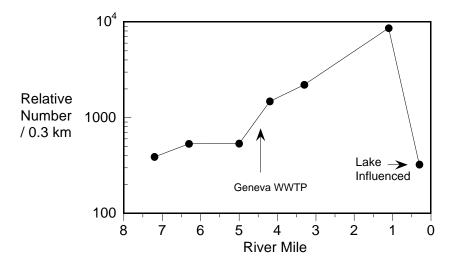


Figure 24. Relative number of fish by river mile in Cowles Creek in relation to the Geneva WWTP

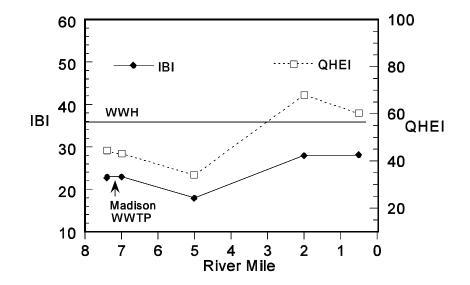


Figure 25. Longitudinal trends in the Index of Biotic Integrity (IBI) in relation to the Madison WWTP, and available habitat as measured by the Qualitative Habitat Evaluation Index (QHEI) for Arcola Creek. The solid horizontal line represents the lower bounds of nonsignificant departure from WWH criterion.

The Madison WWTP did not appear to significantly impact the fish communities in Arcola Creek given the habitat limitations, but likely aggravated effects of the habitat alterations through nutrient enrichment. Although a significant drop in community performance was noted in the far field sampling zone (RM 5.0) relative to the upstream sites, the QHEI score at RM 5.0 also declined relative to the upstream sites (Figure 25). Furthermore, the mean IBI score obtained immediately downstream of the plant was identical to that obtained upstream, and no avoidance was noted in the near-field sample.

Conneaut Creek

Exceptional fish communities were found at both locations sampled on Conneaut Creek. Bigeye chub constituted nearly 10% of the total catch by number at both locations, and black redhorse, river chub, mimic shiner and rosyface shiner were also abundant. These species have declining populations or a shrinking range across the state.

Although the MIwb scores were similar at both locations, the mean IBI score at RM 12.1 was significantly less than the score at RM 23.1 due mainly to the presence of large numbers of stonerollers at RM 12.1. Unbroken shale bedrock, conducive to the growth of diatoms and

periphyton, was more prevalent at the downstream location, and thus supported high populations of stonerollers. Also, the watershed surrounding the downstream location was more developed, and likely received a higher load of anthropogenically derived nutrients. Because the IBI at the downstream site was marginally meeting exceptional warmwater habitat (EWH) criteria, no further nutrient loads should be added to the creek, and the excellent riparian buffers present should be maintained.

	1989, 19	84, 1983 an	d 1981.					
	Mean		Mean	Mean				
	Number	Cumulative	Rel. No	Rel. Wt.		Mean	Mean	Narrative
River Mi	le Species	Species (1	No./0.3 km) (wt./0.3 km)	QHEI	Miwb ^a	IBI	Evaluation
Ashtabu	la River (1	1995)						
27.2	20.0	22	1037.3	8.1	85	8.6	42	Good
19.1	14.0	17	375.8	5.1	76	7.1^{*}	47	Fair/V.Good
12.1	16.0	20	606.8	7.8	78	7.9	46	Good/V.Good
6.3	20.0	26	417.8	4.2	73	8.1	42	Good
3.5	18.5	22	754.6	2.1	64	7.6 ^{ns}	36 ^{ns}	M.Good
Ashtabu	la River (1	1989)						
9.9	23.0		877.0		47	8.2	42	Good
Ashtabu	la River (1	1983)						
27.2	20.5		1127.0		73	8.0	40	Good
West Bra	anch Asht	abula Rive	er (1995)					
2.7	18.0	18	590.0	2.7	66	7.7 ^{ns}	44	M.Good/Good
West Bra	anch Asht	abula Rive	r (1983)					
1.9	21.0		317.0		74	8.2	45	Good
East Bra	nch Ashta	abula River	r (1995)					
1.5	18.0	18	1202.0	2.4	73	8.2	44	Good
Conneau	ut Creek ((1995)						
23.1	24.0	26	1004.3	14.0	88	9.3 ^{ns}	55	V.Good/Except
12.1	24.5	27	1805.3	14.4	86	9.5	48^{ns}	Except/V.Good
Conneau	t Creek (1	1989)						-
6.7	19.0		525.0		56	8.5^*	47 ^{ns}	Good/V.Good

Table 10. Fish community indices from samples collected in the Ashtabula study area, 1995, 1989, 1984, 1983 and 1981.

MAS/1996-11-5

Table 10.	Continue	d.						
	Mean		Mean	Mean				
	Number	Cumulative	Rel. No	Rel. Wt.		Mean	Mean	Narrative
River Mile	Species	Species (No./0.3 k	m) (wt./0.3 km)	QHEI	Miwb ^a	IBI	Evaluation
Cowles Cr	eek (199	5)						
7.2	9.0	10	388.0	4.7	63	NA	29^*	Fair
6.2	9.5	10	532.0	2.7	63	NA	36 ^{ns}	M.Good
5.0	11.0	12	537.0	2.1	58	NA	36 ^{ns}	M.Good
4.2	10.0	11	1484.6	6.5	63	NA	30^{*}	Fair
3.3	9.0	10	2207.3	5.0	60	NA	31*	Fair
1.1	10.5	13	8608.0	14.7	56	NA	36 ^{ns}	M.Good
0.3	11.0	12	322.5	9.1	56	NA	<u>26</u> *	Poor
a i a	. (100							
Cowles Cr		51)					10	a 1
7.2	12.0		233.0		60	NA	42	Good
4.8	11.0		375.0		66	NA	29 [*]	Fair
3.6	6.5		474.0		79	NA	<u>25</u> *	Poor
1.8	5.5		235.0		73	NA	<u>21</u> *	Poor
0.8	11.0		202.0)	66	NA	<u>24</u> *	Poor
Arcola Cr	eek (199	5)						
7.4	9.5	11	1791.0	9.9	44	NA	23^{*}	Poor
7.0	8.0	11	2443.0		43	NA	$\overline{23}^{*}$	Poor
5.0	5.5	8	166.0		34	NA	18^{*}	Poor
2.0	8.0	9	1758.5		68	NA	$\overline{28}^{*}$	Fair
0.5	12.0	15	2193.0		60	NA	28^*	Fair
		Ec		criteria: Erie-Onta	rio Lake	Plain		
			IBI			MIwb		
Site T	• •	WW		MWH ^c	WWH	EWH	MWH ^c	
Headw Wadi		40 38		24 24	7.9	9.4	5.6	
Boa	-	58 40		24 24	7.9 8.7	9.4 9.6	5.0 5.7	
D00		10		- •	0.,	2.0		

a - MIwb is not applicable to headwater streams with drainage areas $\leq 20 \text{ mi}^2$.

ns - Nonsignificant departure from biocriteria <u>(≤4</u> IBI units or <u><0.5</u> MIwb units).

* - Indicates significant departure from applicable biocriteria (>4 IBI units or >0.5 MIwb units). Underlined scores are in the Poor or Very Poor range.

Chemical Water Quality Changes

Cowles Creek 1975-1995

Comparison of D.O. profiles from Cowles Creek taken over the last twenty years demonstrates the water quality improvements attained through the provision of adequate wasewater treatment (Figure 26). Although the stream was sampled only once during 1975, depletions of D.O.

downstream of the Geneva WWTP and especially downstream of the Geneva-on-the-Lake WWTP, which at that time discharged at approximately RM 0.4, were evident. Another round of sampling in 1979 found that depletions below the Geneva WWTP (at RM 3.2) were stil evident, with the D.O. concentration at RM 3.2 of 4.9 mg/l. The in-stream D.O. concentration recovered by RM 0.9 in 1975 (8.7 mg/l). Sampling was not conducted near the mouth (RM 0.3) in 1979 or 1981 because the outfall for the Geneva-on-the-Lake WWTPhad been moved to Lake Erie. Dissolved oxygen concentrations in Cowles Creek were much improved in 1981, when they ranged from 6.5 to 12.8 mg/l downstream of the Geneva WWTP. Concentrations measured in 1995 followed a similar longitudinal pattern to that observed in 1981; however, 1981 values were uniformly higher, possibly due to higher flows.

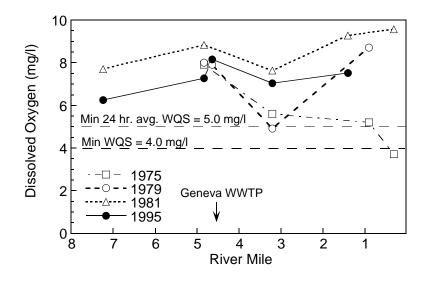


Figure 26. Trends in mean dissolved oxygen concentrations measured in water quality grab samples collected from Cowles Creek, 1975 - 1995.

Water quality degradation in Cowles Creek during the 1970's can be largely attributed to the discharge of NH₃-N from the Geneva WWTP. Sampling conducted once in 1975 and 1979 found Concentrations of NH₃-N downstream of the WWTP ranged as high as 7.73 mg/l in 1975 and 4.02 mg/l in 1979 (Figure 27). Average concentrations of NH₃-N downstream of the WWTP decreased to 0.37 to 0.8 mg/l during the survey of Cowles Creek conducted in 1981 (3 sampling visits per site). The observed decrease can be attributed to better operation and maintenance at the Geneva WWTP. Effluent NH₃-N concentrations decreased from 22.4 mg/l (50th percentile data averaged over annual periods) during the period of 1976-1979 to 10.1 mg/l during the years 1980 to 1988.

The concentrations of NH_3 -N in Cowles Creek downstream of the Geneva WWTP have been reduced by 73 percent in 1995 as compared to 1981 (reduction in average concentration from 0.52 mg/l to 0.14 mg/l at RM 3.2) through the addition the nitrification towers in 1988 and 1994 Water quality problems due to the presence of NH_3 -N in Cowles Creek appear to have been eliminated through this facility upgrade. However, from a nutrient loadings standpoint, NH_3 -N has been supplanted by Nitrate-Nitrite nitrogen (NO_x). Concentrations of NO_x in Cowles Creek have increased by an average of 342 percent at the stations downstream of the Geneva WWTP between 1981 and 1995 (Figure 27). The increase in NO_x concentrations reflects increased loadings from the service area coupled with the addition of nitrification. From a biological standpoint, the stream can be assumed to be saturated with respect to nutrient availability for NO_x since little assimilation of these nutrients (as would be evidenced by decreasing concentrations farther downstream from the source) is observable based on the 1995 data. Concentrations of TKN at stations downstream of the Geneva WWTP have remained relatively constant between 1981 (average = 1.14 mg/l) and 1995 (average = 1.33 mg/l). Conditions have improved markedly since the 1970's when concentrations as high as 9.2 mg/l (RM 3.2 in 1975) were observed.

The installation of phosphorus removal treatment processes at the Geneva WWTP in the late 1970's has significantly reduced concentrations of phosphorus in Cowles Creek. Concentrations of total phosphorus as high as 3.8 mg/l were observed downstream of the WWTP (RM 3.2) in 1975. Downstream phosphorus concentrations averaged 0.15 mg/l in 1979, 0.19 mg/l in 1981

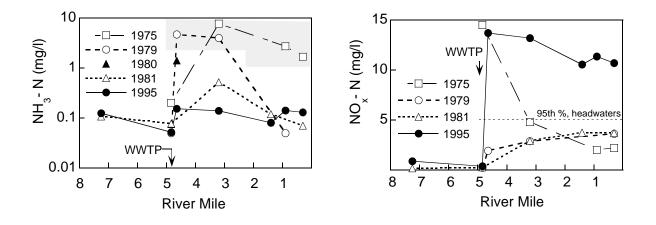


Figure 27. Trends in concentrations of ammonia-nitrogen (left) and nitrate-nitrite nitrogen (right) in Cowles Creek in relation to the Geneva WWTP, 1975 - 1995. Values inside the shaded region in the plot of ammonia-nitrogen represent WQS violations.

Grand and Ashtabula River Basins TSD

and 0.33 in 1995. The increasing trend reflects increasing influent volume. Continued effort to maintain phosphorus concentrations at low levels (i.e. < 0.5 mg/l) is critical as the stream is over enriched with nitrogen nutrients, and any increase in phosphorus concentrations would be expected to cause water quality degradation through increased biological productivity.

Arcola Creek

The Ohio EPA has not conducted any water quality surveys of Arcola Creek prior to the 1995 intensive survey.

Changes in Biological Community Performance: Macroinvertebrate Communities

Ashtabula River

Artificial substrate samples were collected from the West Branch of the Ashtabula River in 1984 and from two sites in the mainstem in 1983 and 1989. Narrative evaluations at the sites range from marginally good to very good. Like the 1995 collections, all the artificial substrates were collected from slow or no detectable current velocities. Variation in the communities between sampling years appeared primarily related to the severity of flow conditions during each late summer sampling period.

Cowles Creek

Cowles Creek was previously surveyed in 1981 using qualitative techniques. Impact trends were similar to those observed in 1995 with the highest quality communities found upstream from Geneva, and degraded communities downstream from Geneva to Lake Erie. Evaluations in the vicinity of the Geneva WWTP were confounded by the relative lack of organisms immediately upstream and several miles downstream from the discharge. A high water event a few days prior to sampling coupled with marginal substrate conditions (sand and soft shale) were considered the primary reason for the poor collections upstream from the discharge in 1981.

Conneaut Creek

Previous sampling in Conneaut Creek in 1989 and 1979 reflected exceptional quality macroinvertebrate communities over the past 16 years. Conneaut Creek has consistently been among the highest quality streams in the state of Ohio with regards to macroinvertebrate community performance.

Changes in Biological Performance: Fish Communities

Ashtabula River

Limited historical information exists for the Ashtabula River basin. The community scores in this survey compared favorably with scores obtained previously in similar locations or reaches (Table 10), suggesting water and habitat quality has not diminished in the intervening period.

Cowles Creek

Cowles Creek was previously surveyed in 1981. Results of that survey revealed significant impairment downstream from the city of Geneva, especially downstream from the WWTP (Figue 23). Upgrades to the plant implemented over the last decade have resulted in improvements to the fish community with the fish recovering to nonsignificant departure downstream of the plant. Area of Degradation (ADV) scores illustrate the difference. The ADV/mile in 1981 was 81.5, but in 1995 it was 29.4, a 36% reduction (Table 11). An exception to the trend toward improvement was at RM 7.2 where the IBI dropped to 29 in 1995 from 42 in to 1981. No causes for the decline were apparent other than possibly stream dewatering for irrigation.

Table 11. Area of Degradation (ADV) statistics for similar segments of Cowles Creek sampled in 1995 and 1981.

	Biological Index Scores					Area of I	Degradat	ion Values	Attainment Status (Miles)				
Year Index	Upper RM	Lower RM			Mean	ADV		Neg. % of Criteria	Full	Partial	NON I	POOR/VP	
Cowles 1995 IBI MIwb ICI	s Creek 7.2	0.3	26 	32 	36 	203 	29.4 	14.8 	1.4	0.1	5.4	0.0	
1981 IBI MIwb ICI	7.2	0.8	21 	42 	28 	522	81.5 	41.1 	1.3	0.0	5.1	2.8	

REFERENCES

- Anonymous. 1992. Wastewater treatment/disposal for small communities, manual, EPA/625/R-92/005
- Fausch, D.O., J.R. Karr and P.R. Yant. 1984. Regional application of an index of biotic integrity based on stream fish communities. Trans. Amer. Fish. Soc. 113:39-55.
- Gammon, J.R. 1976. The fish populations of the middle 340 km of the Wabash River. Tech Report No. 86. Purdue University. Water Resources Research Center, West Lafayette, Indiana. 73 pp.
- Gammon, J.R., A. Spacie, J.L. Hamelink, and R.L. Kaesler. 1981. Role of electrofishing in assessing environmental quality of the Wabash River. pp. 307-324. In: Ecological assessments of effluent impacts on communities of indigenous aquatic organisms. ASTM STP 703, J.M. Bates and C.I. Weber (eds.). Philadelphia, PA.
- Gordon, N.D., T.A. McMahon, B.L. Finlayson. 1992. Stream Hydrology: An introduction for ecologists. John Wiley & Sons, Ltd. Chichesler, West Susex, England. 526 pp.
- Hecky, R. E., and P. Kilham. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33: 796-882.
- Hughes, R.M., D.P. Larsen, and J.M. Omernik. 1986. Regional reference sites: a method for assessing stream pollution. Env. Mgmt. 10(5): 629-635.
- Karr, J. R., R. C. Heidinger, and E. H. Helmer. 1985. Effects of chlorine and ammonia from wastewater treatment facilities on biotic integrity. J. Water Polut. Control Fed., 57:912-915.
- Karr, J.R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6 (6): 21-27.
- Karr, J.R. and D.R. Dudley. 1981. Ecological perspective on water quality goals. Env. Mgmt. 5(1): 55-68.
- Kelly, M.H., R. L.Hite. 1984. Evaluation of Illinois stream sediment data: 1974-1980. Illinois Environmental Protection Agency, Division of Water Pollution Control. Springfield, Illinois.
- Kelly, M.H., R.L. Hite, and K. Rodgers. 1984. Analysis of surficial sediment from 63 Illinois lakes. Illinois Environmental Protection Agency. Proceedings of the third annual

conference of the North American Lake Management Society, October 18-20, 1983.

- Leonard , P.M. and D.J. Orth. 1986. Application and testing of an Index of Biotic Integrity in small, cool water streams. Trans. Am. Fish. Soc. 115: 401-414.
- Long, E.R. and L.G. Morgan. 1991. The potential for biological effects of sediment-sorbed contaminants tested in the national status and trends program. Technical Memorandum NOSOMA 52. National Oceanic and Atmospheric Administration, Seattle, Washington.
- Lukas, J. A. and D. J. Orth. 1995. Factors affecting nesting success of smallmouth bass in a regulated Verginia stream. Trans. Am. Fish. Soc. 124: 726-735.
- Ohio Department of Natural Resources. 1960. Gazetteer of Ohio Streams, Report No. 12, Ohio Water Plan Inventory . Columbus, Ohio.
- Ohio Environmental Protection Agency. 1983. Amendments to the Muskingum River Basin Water Quality Management Plan: Rocky Fork Mohican River Basin Comprehensive Water Quality Report.
- ____ 1987a. Biological criteria for the protection of aquatic life: Volume I. The role of biological data in water quality assessment. Division of Water Quality Monitoring and Assessment, Surface Water Section, Columbus, Ohio.
- ____ 1987b. Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters. Division of Water Quality Monitoring and Assessment, Surface Water Section, Columbus, Ohio.
- ____ 1988. Ohio nonpoint source assessment. Division of Water Quality Monitoring and Assessment, Nonpoint Source Management Section Columbus, Ohio.
- 1989a. Addendum to biological criteria for the protection of aquatic life Users manual for biological field assessment of Ohio surface waters. Division of Water Quality Planning and Assessment, Surface Water Section, Columbus, Ohio.
- 1989b. Biological criteria for the protection of aquatic life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Division of Water Quality Planning and Assessment, Columbus, Ohio.
- ____ 1989c. Ohio EPA manual of surveillance methods and quality assurance practices, updated edition. Division of Environmental Services, Columbus, Ohio.
- ____ 1990a. The use of biological criteria in the Ohio EPA surface water monitoring and

assessment program. Division of Water Quality Planning & Assessment, Ecological Assessment Section, Columbus, Ohio.

- 1990b. Compendium of biological results from Ohio rivers, streams and lakes: 1989 edition. Division of Water Quality Monitoring and Assessment, Surface Water Section, Columbus, Ohio.
- 1990c. State of Ohio Nonpoint Source Assessment. Volume 5. Lake Erie West Region Division of Surface Water, Nonpoint Source Program Management Section, Columbus, Ohio.
- ____ 1993. State of Ohio Water Quality Standards. Chapter 3745-1 of the Ohio Administrative Code.
- Omernik, J.M. 1988. Ecoregions of the conterminous United States. Ann. Assoc. Amer. Geogr. 77(1): 118-125.
- Persaud, D., J. Jaagumayi, and A. Hayton. 1994. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ministry of the Environment, Public Information Centre, Toronto, Ontario.
- Rankin, E.T. 1989. The qualitative habitat evaluation index (QHEI): rationale, methods, and application. Division of Water Quality Planning and Assessment, Columbus, Ohio.
- Rankin, E.T.and C.O. Yoder. 1991. Calculation and uses of the area of degradation value (ADV). Division of Water Quality Planning and Assessment, Surface Water Section, Columbus, Ohio.
- Reash R.J. and T.M. Berra. 1989. Incidence of fin erosion and anomalous fishes in a polluted stream and a nearby clean stream. Water, Air, Soil Pollution. 47: 47-63.
- Reash R.J. and T.M. Berra. 1987. Comparison of fish communities in a dean-water stream and an adjacent polluted stream. Am. Midl. Nat. 118: 301-322.
- Reash R.J. and T.M. Berra. 1986. Fecundity and trace-metal content of creek chubs from a metal contaminated stream. Trans. Am. Fish. Soc. 115: 346-351.
- Smith, V. H. 1982. The nitrogen and phosphorus dependence of algal biomass in lakes: An empirical and theoretical analysis. Limnol. Oceanogr., 27(6): 1101-1112.
- Sowa, S. P. and C. F. Rabeni. 1995. Regional evaluation of the relation of habitat to distribution and abundance of smallmouth bass and largemouth bass in Missouri streams. Trans. Am. Fish. Soc. 124: 240-251.
- Steedman, R.J. 1988. Modification of an index of biotic integrity to quantify stream quality in southern Ontario. Canadian Journal of Aquatic Science. 45: 492-501.

- Thurston, R. V., R. C. Russo, and K. Emerson. 1979. Aqueous ammonia equilibrium -Tabulation of percent un-ionized ammonia. U.S. EPA Environmental Research Laboratory, Duluth, MN. EPA-600/3-79-091.
- U.S. Dept. of Agriculture, 1981. Soil Survey of Ottawa County Ohio.

- U.S. Environmental Protection Agency. 1976. Quality Criteria for Water. Washington, D.C.
- Warren, C. E. 1971. Biology and Water Pollution Control. W. B. Saunders Co., Philadelphia, Pa. 434 pp.
- Wichert, G. A. 1995. Effects of improved sewage effluent managment and urbanization on fish associations of Toronto streams. North Am. J. Fish. Mgt. 15: 440-456.
- Wetzel, R. G. 1975. Limnology, Second Edition. Saunders College Publishing, Philadelphia, PA.

Appendices to:

Biological and Water Quality Study of the Grand and Ashtabula River Basins including Arcola Creek, Cowles Creek and Conneaut Creek

Ashtabula, Geauga, Lake and Trumbull Counties

Volume II

January 7, 1997

P.O. Box 1094, 1800 WaterMark Drive, Columbus, Ohio 43216-1049

MAS/1996-11-5

Entity	Stream	County	Permit No.	Design Flow	Type ¹
		-		MGD (industrial)
Sanitary Discharges					
Auburn Voc. School Dist	Ellison Creek	Lake	3PT00058	0.012	
Painesville WWTP	Grand River	Lake	3PD00029	6.0	
Lake Co. Heatherstone	Grand River	Lake	3PH00054	0.400	
Lake Co. Far Hills	Grand River	Lake	(Abandoned 1994)	0.040	
River Pine Resorts, Inc.	Grand River	Geauga	3PR00135	0.025	
Rustic Pine MHP	Mill Creek	Geauga	3PV00076	0.030	
Orwell Village	Trib to Grand River	Ashtabula	3PB00041	0.0260	
Nelson Ledges Estates MHP		Trib to Grand	River	Portage	
	3PV00009	0.03			
Lake Co. Rio Grande	Big Creek	Lake	3PG00130	0.0215	
Lake Co. Sunshine Acres	East Creek Trib	Lake	3PG00063	0.020	
Lake Co. Park Estates	Red Creek	Lake	(Abandoned 1994)	0.055	
Lake Co.Kellogg	Kellogg Creek	Lake	3PG00129	0.037	
Chardon Village	Big Creek	Geauga	3PB00010	1.10	
Terrace Glen Estates	Cutts Creek to Big Creek	Geauga	3PR00156	0.020	
Geauga Wintergreen Hills	Trib to Big Creek	Geauga	3PG00055	0.015	
Leroy Schools	East Creek	Lake	3PT00055	0.008	
Grennan Mobile Village	Jenks Creek to Big Creek	Geauga	3PV00077	0.025	
Thunderhill Golf Course	Trib to Griswold Creek	Lake	3PR00143	0.0125	
Ashtabula JVS	Mill Creek	Ashtabula	3PT00029	0.04	
Jefferson Village	Cemetery Crk to Mill Crk	Ashtabula	3PC00021	1.0	
Rock Creek Village	Rock Creek	Ashtabula	3PA00029	0.070	
6 6	Rock Creek	Ashtabula	3PB00068	0.120	
Middlefield MHP	Trib to Swine Creek	Geauga	3PV00053	0.020	
Southington Pk Estates	Trib to Dead Branch	Trumbull	3PV00066	0.030	
Industrial Discharges					
Avery Dennison Bldg 7	SS. to Grand R	Lake	3IN00196		NC
Avery Dennison Bldg 5	SS. to Grand R	Lake	3IN00195		NC
Avery Dennison Bldg 3	SS. to Grand R	Lake	3IN00194		NC
Avery International (Fasson)	Grand R	Lake	3IN00125		
Structural Fibers, Inc.	Trib to Big Creek	Geauga	3IE00058	0.031	Р
Chardon Rubber Co.	Trib to Big Creek	Geauga	31100003		ST
Waste Mgmt. Ohio W. Resrv	V Cutts Creek	Geauga	3IN00177		ST
Ricerca Inc.	Trib to Ellison Creek	Lake	3IE00004		NC, ST
Aluminum Smelting	Trib to Griggs Creek		3IN00194		
Worthington Cylinder	Trib to Cemetery Creek		Ashtabula	3II00037	
Village of Roaming Shores	Rock Creek	Ashtabula	3IV00100		
PET Processors, Inc.	Silver Creek		3IF00009		
Mercury Plastics	Trib to Swine Creek	Geauga	3IQ00027	0.09	S,P, NC,
ST					
Polymer/Raymond	Trib to Swine Creek	Geauga	3IR00046		S
Venture Plastics	Trib	-	3IQ00033		
Vari-seal	Grand River	Geauga	3IR00051		NC

Table A-1. NPDES pe	ermitted dischargers	to the Grand River a	nd select tributaries.
---------------------	----------------------	----------------------	------------------------

Entity	Stream	County	Permit No.	Design Flow MGD	Type ¹ (industrial)
Fairport					
Harbor Water Plt	Grand River	Lake	3IV00230		Р
Louza, Inc.	Trib to Grand R	Lake	3IJ00007		NC
LTV Steel Lime Plant	Grand River	Lake	3IJ00021		NC, ST
Lyden Oil	Grand River	Ashtabula	3IN00107		
Morton Salt	Grand River	Lake	3IE00030		P, CS
Painesville City Muni Elec	SS to Grand R	Lake	3IB00015		Р
Obron Atlantic Corp.	Grand River	Lake	3II00194		ST
Chem Land Holdings Site 2	Grand River	Lake	3II00070		ST
Lonza, Inc.	Grand River	Lake	3II00169		ST
Euclid Chemical	Grand River	Lake	3II00040		ST
Uniroyal	Grand River	Lake	31100080		ST
Zeneca	Red Creek	Lake	3IF00001		S,P
1 C = COOLING WATER	NC = NON	-CONTACT CC	OLING WATER	B = BOILER B	LOWDOWN
P = PROCESS WASTEW	ATER			CS = CONTAM	IINATED
STORM WATER	S = SANITA	ARY			

Table A-1. Continued.

ST = STORM WATER

MAS/1996-11-5

Grand and Ashtabula River Basins TSD

Table A-2	Water quality parameters h	y sampling location and collection date for sites sampled in the Grand River basin, 1995.	
1 4010 11 2.	valor quality parameters e	y sumpting toouton and concerton date for sites sumpted in the orang rever busin, 1995.	•

LOCATION	RIVER	DATE	TEMP	pН	D.O.	COND	COD	NOx	NH3	TKN	PHOS	TDS	TSS	F.C. BACT
	MILE		С	S.U.	mg/l	µmho/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	Col/100 ml
Grand River	95.4	July 12, 1995	18	7.97	8.4	418	12	0.15	0.05K	0.3	0.05K	280	5K	
UST U.S. 422	95.4	July 19, 1995	20											
	95.4	July 25, 1995	24	8.4	8.6	455	13	0.1K	0.06	0.3	0.05K	278	5K	110
	95.4	August 09, 1995	19.9	8.2	7.7	326	19	0.2	0.05K	0.2	0.05K	302	5	
	95.4	August 23, 1995	18	8.1	7.6	390	12	0.1K	0.05K	0.3	0.05K	310	5K	
	95.4	September 06, 1995	16.6	7.95	9.3	382	10K	0.24	0.05K	0.3	0.05K	334	5K	
Grand River	83.5	July 12, 1995	20	7.9	7.8	398	21	0.1K	0.05K	0.2	0.05K	278	11	
near Hyde Rd	83.5	July 19, 1995	100											
Wildlife area)	83.5	July 25, 1995	24.1	7.8	6.4	470	13	0.1K	0.08	0.3	0.05K	288	14	200
	83.5	August 09, 1995	20.9	7.9	5.3	462	16	0.1K	0.05K	0.2	0.06	294	37	
	83.5	August 23, 1995	20.5	7.8	4.8	432	20	0.1K	0.05K	0.2	0.05K	295	44	
	83.5	September 06, 1995	18	7.6	8.2	393	306	27						
Baughman Crk	80.76/3.3	July 12, 1995	20	7.86	10.4	530	12	0.93	0.05K	0.2	0.05K	402	5K	
Aessic Rd	80.76/3.3	July 25, 1995	22	7.7	7.2	550	10K	0.85	0.11	0.4	0.05K	390	5K	
	80.76/3.3	July 26, 1995	1000											
	80.76/3.3	August 09, 1995	18.3	7.7	6.5	545	10K	0.96	0.05K	0.2K	0.05K	409	5K	
	80.76/3.3	August 23, 1995	16.8	7.7	5.4	520	10K	0.92	0.05K	0.2K	0.05K	400	5	200
	80.76/3.3	September 06, 1995	16	7.65	7.65	465	10K	0.91	0.05K	0.2K	0.05K	378	5K	
Swine Creek	75.17/5.2	July 12, 1995	18.5	7.96	7.9	500	10K	0.1K	0.05K	0.2K	0.05K	374	5K	
S.R. 534	75.17/5.2	July 25, 1995	23.5	7.9	7.7	550	10K	0.1K	0.05K	0.2K	0.05K	368	5K	
	75.17/5.2	July 26, 1995	11000											
	75.17/5.2	August 09, 1995	19.9	8	7.1	515	22	0.1K	0.05K	0.2K	0.05K	382	5K	
	75.17/5.2	August 23, 1995	19.2	7.8	6.6	555	10K	0.1K	0.05K	0.2K	0.05K	406	5	1100
	75.17/5.2	September 06, 1995	18	7.7	8.1	498	13	0.1K	0.05K	0.2K	0.05K	376	5	
helps Creek	72.02/5.3	July 12, 1995	19	8.14	8.5	326	12	0.12	0.05K	0.4	0.05K	216	5K	
Viswell Rd	72.02/5.3	July 25, 1995	23	7.9	7.2	380	19	0.1K	0.05K	0.4	0.05K	256	5K	
	72.02/5.3	July 26, 1995	120											
	72.02/5.3	August 09, 1995	19.9	8	7	389	16	0.1K	0.05K	0.3	0.05K	252	5K	
	72.02/5.3	August 23, 1995	17.8	7.7	4.4	370	12	0.3	0.05K	0.4	0.05K			27
	72.02/5.3	September 06, 1995	17.1	7.7	8.4	380	13	0.23	0.05K	0.2	0.05K			
Grand River	65.9	July 12, 1995	20.5	7.82	6.6	408	24	0.2	0.05K	0.2	0.1	296		

LOCATION	RIVER	DATE	TEMP	pН	D.O.	COND	COD	NOx	NH3	TKN	PHOS	TDS T	ΓSS	F.C. BACT
	MILE		С	S.U.	mg/l	µmho/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l n	ng/l	Col/100 ml
UST U.S. 322	65.9	July 19, 1995	90											
	65.9	July 25, 1995	23.3	7.7	4.6	475	16	0.1K	0.08	0.4	0.08	302 3	32	
	65.9	August 09, 1995	21.5	7.8	4.7	462	19	0.11	0.05	0.3	0.08	298 3	37	
	65.9	August 23, 1995	20.8	7.7	5.1	449	20	0.1K	5K	0.3	0.05K	300 3	34	
	65.9	September 06, 1995	18.9	7.8	7	418	13	0.1K	0.05K	0.3	0.05	314 2	26	
Rock Creek	50.59/0.8	July 12, 1995	26.7	8.77	11.4	273	24	0.72	0.09	0.7	0.18	178 5	δK	
Jnion Cemetery	50.59/0.8	July 25, 1995	23.6	8	8.3	320	32	1.87	0.11	1	0.48	214 5	5	
	50.59/0.8	July 26, 1995	220											
	50.59/0.8	August 09, 1995	22.3	8.6	9.6	256	19	0.43	0.05K	0.5	0.08	172 5	δK	
	50.59/0.8	August 23, 1995	19.5	8.5	6.9	280	23	0.96	0.05K	0.6	0.24	206 5	δK	200
	50.59/0.8	September 06, 1995	20.5	8.1	9.9	465	33	7.56	0.05	1.1	1.12	348 5	δK	
Grand River	42.4	July 12, 1995												
chweitzer Rd	42.4	July 12, 1995	22.5	7.8	6.7	350	89	0.13	0.05K	0.4	0.05K	186 2	26	
	42.4	July 19, 1995	70											
	42.4	July 25, 1995	24	7.6	4.3	462	22	0.1K	0.1	0.4	0.05K	274 3	34	140
	42.4	August 09, 1995	23	7.6	4	275	22	0.15	0.09	0.4	0.21	198 1	3	
	42.4	August 23, 1995	23.9	7.2	5.9	438	21	0.1K	0.05K	0.3	0.05K	268 1	8	
	42.4	September 06, 1995	19.7	7.6	4.7	410	20	0.1K	0.05K	0.2K	0.05K	268 1	6	
Aill Creek	41.28/18.2	July 12, 1995	25.5	7.63	7.15	385	35	0.93	0.19	1	0.05K	244 5	δK	
Netcher Rd	41.28/18.2	July 25, 1995	22	7.5	6.1	255	32	1.07	0.09	0.8	0.08	182 3	34	
	41.28/18.2	July 26, 1995	25000											
	41.28/18.2	August 23, 1995	23.8	7.8	7.2	288	32	0.1K	0.05K	0.9	0.06	208 1	4	100
	Κ													
	41.28/18.2	September 06, 1995	22.9	7.5	7.1	277	30	0.1K	0.05K	0.8	0.05K	194 6	5	
Aill Creek	41.28/12.1	July 12, 1995	27.1	8.35	10	1008	21	0.12	0.05K	0.8	0.05K	242 5	δK	
.R. 46	41.28/12.1	July 25, 1995	23.9	7.6	6.3	380	29	0.24	0.13	0.9	0.06	248 2	20	
	41.28/12.1	July 26, 1995	2400											
	41.28/12.1	August 09, 1995	21.5	7.9	7.3	276	37	1.08	0.05K	0.9	0.06	220 5	δK	
	41.28/12.1	August 23, 1995												
	41.28/12.1	August 23, 1995	22.3	7.8	5	302	32	0.1K	0.05K	1	0.06	198 1	4	33
	41.28/12.1	September 06, 1995	23	7.35	6.5	315	36	0.1K	0.05K	0.8	0.05K	204 1	4	

LOCATION		DATE	TEMP	pН	D.O.	COND	COD	NOx	NH3	TKN	PHOS	TDS TSS	F.C. BACT
	MILE		С	S.U.	mg/l	µmho/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l mg/l	Col/100 ml
Cemetery Creek	41.28/8.42/2.5	July 12, 1995	23	7.6	3.45	826	24	0.12	0.28	0.8	0.12	548 8	
Market St													
Cemetery Crk	41.28/8.42/2.1	July 12, 1995	23.2	8.53	8.6	1173	18	1.47	0.2	1	0.2	686 18	
UST WWTP	41.28/8.42/2.1	July 25, 1995	21.9	7.6	7.2	350	32	1.18	0.05K	0.7	0.1	256 42	
	41.28/8.42/2.1	August 09, 1995	80.4	8	8.2	874	19	0.5	0.05K	0.4	0.05K	552 5K	
	41.28/8.42/2.1	August 23, 1995	19.8	7.7	4	750	26	0.1K	0.05K	0.6	0.05K	484 20	
Cemetery Crk	41.28/8.42/1.25	5 July 12, 1995	24	7.66	7.6	877	15	12	0.07	1.1	2.01	528 5K	
DST Poplar St	41.28/8.42/1.25	5 July 25, 1995	22	7.7	6.9	425	38	2.5	0.33	1.2	0.54	288 44	
	41.28/8.42/1.25	5 July 26, 1995	840										
	41.28/8.42/1.25	5 August 09, 1995	20.5	7.6	6.4	824	25	14.7	0.25	1.1	2.99	542 5K	
	41.28/8.42/1.25	5 August 23, 1995	20.7	7.9	8.7	780	20	11	0.2	1.1	0.72	522 5K	240
	41.28/8.42/1.25	5 September 06, 1995	21.5	7.4	8.6	760	10	13	0.56	1.3	0.47	408 5K	
Grand River	36.3	July 12, 1995	25	8.7	11.6	350	24	0.1K	0.05K	0.5	0.05K	200 14	
Tote Rd	36.3	July 19, 1995	30										
	36.3	July 25, 1995	24.5	7.9	7.6	432	22	0.1K	0.05K	0.5	0.05K	238 5K	20
	36.3	August 09, 1995	23.9	7.9	7.6	285	40	0.6	0.05K	0.9	0.06	196 14	
	36.3	August 23, 1995	27.7	7.6	7.6	418	18	0.1K	0.05K	0.4	0.05K	252 9	
	36.3	September 06, 1995	21.1	7.9	4.4	380	23	0.1K	0.05K	0.3	0.05K	246 18	
Grand River	34	July 12, 1995	25	8.5	10.5	350	21	0.1K	0.05K	0.6	198	15	
Sexton Rd	34	July 19, 1995	40										
	34	July 25, 1995	25	7.8	6.3	400	22	0.1K	0.06	0.5	0.05K	250 5K	180
	34	August 09, 1995	23.9	8	7.6	290	31	0.69	0.05K	0.3	0.19	206 12	
	34	August 23, 1995	29.1	7.4	8.1	406	23	0.1K	0.05K	0.6	0.05K	238 9	
	34	September 06, 1995	19.5	7.9	5	360	16	0.1K	0.05K	0.4	0.05K	244 9	
Grand River	28.4	July 12, 1995	25	8.6	9.1	350	24	0.1K	0.05K	0.6	0.08	201 6	
Brandt Rd	28.4	July 19, 1995	50										

Table A-2. Continued.

LOCATION	RIVER	DATE	TEMP	pН	D.O.	COND	COD	NOx	NH3	TKN	PHOS	TDS TSS	F.C. BACT
	MILE		С	S.U.	mg/l	µmho/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l mg/	1 Col/100 ml
	28.4	July 25, 1995	25.4	7.9	7.6	399	22	0.1K	0.05K	0.4	0.14	210 5K	40
	28.4	August 09, 1995	22.5	8.1	7.9	280	28	0.8	0.05K	0.5	0.05K	216 8	
	28.4	August 23, 1995	25.4	8	9.7	355	24	0.1K	0.05K	0.5	0.05K	220 6	
	28.4	September 06, 1995	19.9	8.1	7	340	23	0.1K	0.05K	0.5	0.05K	230 5	
Grand River	22.1	July 12, 1995	24.5	8.4	8.9	350	24	0.1K	0.05K	0.5	0.05K	194 8	
S.R. 528	22.1	July 19, 1995	10										
	22.1	July 25, 1995	26	7.9	7.7	400	24	0.1K	0.05	0.4	0.05K	218 5K	100
	22.1	August 09, 1995	22.9	8.1	7.9	275	22	0.52	0.05K	0.4	0.05K	154 10	
	22.1	August 23, 1995	25.2	7.9	9.3	349	18	0.1K	0.05K	0.4	0.05K	218 14	
	22.1	September 06, 1995	20.4	8.1	6.6	355	16	0.1K	0.05K	0.5	0.05K	236 8	
Paine Creek	14.31/0.5	July 12, 1995	22.8	8.2	8.4	380	10K	0.1K	0.05K	0.2K	0.05K	210 5K	
Seely Rd	14.31/0.5	July 25, 1995	24.4	8.1	7.8	276	10K	0.2	0.05	0.3	0.05K	170 34	
	14.31/0.5	July 26, 1995	200										
	14.31/0.5	August 09, 1995	19.3	8.1	8.2	300	10K	0.1K	0.05K	0.2K	0.05K	222 26	
	14.31/0.5	August 23, 1995	23	8.1	8.5	382	10K	0.1K	0.05K	0.2K	0.05K	242 5K	33
	14.31/0.5	September 06, 1995	18	8.2	7.9	510	16	0.1K	0.05K	0.2	0.05K	326 5K	
Grand River	13.6	July 12, 1995	24	8.1	7.2	350	24	0.1K	0.05K	0.5	0.05K	212 17	
Vrooman Rd	13.6	July 19, 1995	20										
	13.6	July 25, 1995	26	7.9	7.3	359	22	0.12	0.06	0.3	0.05K	206 24	520
	13.6	August 09, 1995	22.1	8	7.3	300	20	0.35	0.05K	0.2	0.05	226 60	
	13.6	August 23, 1995	25.4	7.7	7.9	350	29	0.1K	0.05K	0.5	0.05K	218 10	
	13.6	September 06, 1995	23	8	6.6	395	23	0.1K	0.05K	0.4	0.05K	254 30	
Chardon WWT	P 9.32/16.1	July 12, 1995	20	7.5	80	1025	18	15.6	0.05K	0.8	0.1	862 5K	
Effluent	9.32/16.1	July 25, 1995	22	7.5	8.3	1339	10K	10.6	0.06	0.7	0.07	804 5K	
	9.32/16.1	July 26, 1995	10	Κ									
	9.32/16.1	August 09, 1995	21.8	7.7	7.9	1030	25	13.2	0.15	1	0.05	870 5K	
	9.32/16.1	August 23, 1995	21.5	7.5	7.9	1275	29	11.6	0.05K	1	0.1	782 5K	960
	9.32/16.1	September 06, 1995	22.1	7.7	7.9	1210	20	13.1	0.05K	1	0.16	778 5K	
Big Creek	9.32/15.8	July 12, 1995	19.8	7.7	8	1020	28	14.6	0.05K	1	0.08	914 5K	
DST Chardon	9.32/15.8	July 25, 1995	22.4	7.8	8.6	1286	10K	9.5	0.06	0.6	0.12	796 5K	10K
WWTP	9.32/15.8	July 26, 1995	90										

Table A-2. Continued.

LOCATION	RIVER	DATE	TEMP	pН	D.O.	COND	COD	NOx	NH3	TKN	PHOS	TDS 1	ГSS	F.C. BACT
	MILE		С	S.U.	mg/l	µmho/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l r	mg/l	Col/100 ml
	9.32/15.8	July 26, 1995	10	Κ										
	9.32/15.8	August 09, 1995	21	7.8	7.6	1200	25	11.4	0.16	1	0.05	820 5	5K	
	9.32/15.8	August 23, 1995	26	7.6	8.1	1224	30	11	0.05K	0.9	0.09	754 5	5K	1000
	9.32/15.8	August 23, 1995	21.5	7.5	7.9	1275	29	11.6	0.05K	1	0.1	782 5	5K	960
	9.32/15.8	September 06, 1995	22.1	8	8.7	1180	28	11.2	0.05K	1	0.14	726 5	5K	
	9.32/15.8	September 06, 1995	22.1	7.7	7.9	1210	20	13.1	0.05K	1	0.16	778 5	5K	
Big Creek	9.32/14.2	July 12, 1995	17.5	7.7	7	900	12	6.72	0.05K	0.6	0.06	704 5	5K	
Woodin Rd	9.32/14.2	July 25, 1995	23	8.1	8.2	914	10K	4.49	0.06	0.6	0.06	526 5	5K	
	9.32/14.2	July 26, 1995	610											
	9.32/14.2	August 09, 1995	19.6	8	6.8	850	12	5.11	0.05K	0.7	0.05K	598 5	5K	
	9.32/14.2	August 23, 1995	18	7.7	7.2	1060	15	6.81	0.05K	0.4	0.05	716 5	5K	250
	9.32/14.2	September 06, 1995	19.5	8.3	9.5	1100	20	8.83	0.05K	0.6	0.1	678 5	5K	
enks Creek	9.32/11.52/0.4	July 12, 1995	16	8	7.5	320	10K	0.13	0.05K	0.2K	0.05K	234 5	5K	
Robinson Rd	9.32/11.52/0.4	July 25, 1995	21	8	8	309	10K	0.1K	0.05K	0.2K	0.05K	204 5	5K	
	9.32/11.52/0.4	July 26, 1995	300											
	9.32/11.52/0.4	August 09, 1995	18.8	8	7.1	350	10K	0.13	0.05K	0.2K	0.05K	262 5	5K	
	9.32/11.52/0.4	August 23, 1995	17	7.8	7.9	388	10K	0.2	0.05K	0.2K	0.05K	272 5	5K	11
	9.32/11.52/0.4	September 06, 1995	16.4	8.2	8.1	390	10K	0.16	0.05K	0.2K	0.05K	264 5	5K	
Big Creek	9.32/16.3	July 12, 1995	18.5	7.3	4.9	800	24	0.1K	1.99	2.6	0.08	697 (5	
J.S. 6	9.32/16.3	July 25, 1995	23.4	7.4	3.4	618	16	0.1K	0.74	1.3	0.13	346 5	5K	
	9.32/16.3	July 26, 1995	67											
	9.32/16.3	August 09, 1995	20.5	7.6	3.8	570	40	0.1K	0.71	1.4	0.13	414 5	5K	
	9.32/16.3	August 23, 1995	18.8	7.4	6.4	1610	35	0.1	1.14	0.13	1700	18		
	9.32/16.3	September 06, 1995	21.8	7.9	1.2	2550	60	0.1K	1.39	2.2	0.19	1750		8
Big Creek	9.32/4.9	July 25, 1995	26.4	8.7	9.7	462	10K	0.15	0.05K	0.2	0.05K	280 5	5K	
Villiams Rd	9.32/4.9	July 26, 1995	100											
	9.32/4.9	August 09, 1995	19.2	8.3	8.2	500	12	0.1K	0.05K	0.2K	0.05K	347 5	5K	
	9.32/4.9	August 23, 1995	18	7.7	9.4	612	10K	0.24	0.05K	0.2K	0.05K	406 5	5K	53
	9.32/4.9	September 06, 1995	21.5	8.6	11	700	10K	0.64	0.05K	0.2K	0.05K	430 6	5	
Big Creek	9.32/2.5	July 12, 1995	18.8	8.2	8.8	525	10K	0.1K	0.05K	0.2K	0.05K	384 5	5K	
Fay Road	9.32/2.5	July 26, 1995	400											

Table A-2. Continued.

LOCATION	RIVER	DATE	TEMP	pН	D.O.	COND	COD	NOx	NH3	TKN	PHOS	TDS T	SS	F.C. BACT
	MILE		С	S.U.	mg/l	µmho/cm	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l m	ıg/l	Col/100 ml
	9.32/2.5	August 09, 1995	19.4	8.3	8	500	10K	0.1K	0.05K	0.2K	0.05K	352 51	K	400
	9.32/2.5	August 23, 1995	19.5	7.9	9.1	612	10K	0.1K	0.05K	0.2K	0.05K	432 51	K	40
	9.32/2.5	September 06, 1995	22.5	8.5	9.5	700	10K	0.18	0.05K	0.2K	0.05K	452 51	K	
	9.32/2.5	July 25, 1995	26.5	8.5	9.2	618	13	0.26	0.05K	0.2K	0.05K	332 51	K	
Grand River	8.6	July 12, 1995	23.2	8	7.3	370	21	0.16	0.05	0.4	0.05K	230 22	2	
S.R. 84	8.6	July 19, 1995	90											
	8.6	July 25, 1995	27.5	8.1	8.2	472	10K	0.11	0.06	0.4	0.05K	288 14	4	410
	8.6	August 09, 1995	22.5	8.2	7.2	310	25	0.21	0.05K	0.3	0.05K	242 20	0	
	8.6	August 23, 1995	23.4	7.8	7.6	397	18	0.22	0.05K	0.4	0.05K	246 20	0	
	8.6	September 06, 1995	24	8.2	7.1	490	20	0.68	0.05K	0.3	0.06	297 12	2	
Grand River	6.1	July 12, 1995	24.5	8.3	8.8	400	24	0.1	0.05K	0.6	0.05K	224 22	2	
Kiwanis Park	6.1	July 19, 1995	60											
	6.1	July 25, 1995	28.6	8.4	9.6	402	10K	0.1K	0.05	0.4	0.05K	268 51	K	60
	6.1	August 09, 1995	22.4	8.2	7.9	350	25	0.12	0.05K	0.2	0.05K	280 28	8	
	6.1	August 23, 1995	24.5	7.8	8.7	395	18	0.12	0.05K	0.5	0.05K	227 10	6	
	6.1	September 06, 1995	23	8.2	8.8	500	16	0.22	0.05K	0.4	0.05K	306 10	0	

Grand and Ashtabula River Basins TSD

Table A-3. Results of water quality grab samples by location and date collected from the Ashtabula River, 1995.

ID	Location	Date	Temp C	pH s.u.	D.O.		COD	Sp.Cond.	NOx	NH3	TKN	P665	TDS	TSS	Fecal Col.
					mg/l	mg/l	mg/l	umhos	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	#/100ml
Ashtab	oula River	10-Jul-95	21	8.42	11.5	129	17		0.1K	0.05K	0.4	0.05K	254	8	
502760	State Road	18-Jul-95	27	8.5	8	154	20		0.1K	0.05K	0.4	0.05K	296	14	30
502760	Rm 6.3	16-Aug-95	5 26	8.18	6.2	110	29		0.1K	0.05K	0.7	0.05K	194	5	44
502760		14-Sep-95	19	7.92	7.1	227	30	690	0.1K	0.17	0.8	0.05K	458	16	3200
502760		26-Sep-95	16	8.32	9.9	336	33		0.1K	0.05K	1	0.05K	576	14	
502790	Ust E. 24th Street	10-Jul-95	21	8.42	5.5	294	15		0.01K	0.09	0.6	0.05K	682	6	
502790	Rm 2.5	18-Jul-95	27	8.2	6	151	15		0.19	0.05K	0.3	0.05K	206	5K	70
502790		16-Aug-95	5 28.5	7.8	4.6	362	13		0.1K	0.82	0.7	0.05K	860	6	51
502790		14-Sep-95	21	7.82	6.3	385	21	1280	0.28	0.06	0.6	0.05K	922	12	160
502790		26-Sep-95	15	7.75	7.6	443	15		0.11	0.08	0.5	0.05K	1070	10	
	Dst Root Road	10-Jul-95	19	8.47	7.9	119	15		0.11	0.05K	0.6	0.05K	214	5K	
	Rm 25.6	18-Jul-95	26	8	4.6	122	26		0.1K	0.05K	0.7	0.05K	170	10	10
A01S02		16-Aug-95	5 26.5	7.82	6	96	23		0.1K	0.06	0.7	0.05K	134	5K	61
A01S02		14-Sep-95		7.65	6.5	110	33	262	0.1K	0.05K	0.9	0.05K	146	15	51
A01S02		26-Sep-95				113	33	277	0.1K	0.05K	0.8	0.05K	174	10	
A01S03		10-Jul-95	19	8.3	8	119	29		0.1K	0.05K	0.7	0.05K	188	10	
A01S03		18-Jul-95	23	8.3	5.1	113	38		0.1K	0.05K	0.7	0.05K	174	38	37
A01S03	Rm 1.8	16-Aug-95		7.84	4	99	38		10K	0.08	0.9	0.05K	166	5K	57
A01S03		14-Sep-95		8	4.9	110	51	236	0.48	0.11	1.2	0.16	175	171	4700
A01S03		14-Sep-95													
A01S03		26-Sep-95		8	8.7	144	36	314	0.1K	0.05K	0.5	0.05K	208	28	
	9 East Branch	10-Jul-95	19	8.8	11	129	18		0.1	0.05K	0.4	0.05K	190	7	
	9 @ Scribner Road	18-Jul-95	23	8.4	7.9	134	25		0.1K	0.05K	0.7	0.05K	198	5K	310
A01W19	9 Rm 1.4	16-Aug-95		7.92	6.5	110	23		0.13	0.05K	0.7	0.05K	164	5K	300
A01W19)	14-Sep-95		8	2.8	144	36	322	0.12	0.11	1.2	0.06	202	8	3200
A01W19		26-Sep-95		7.7	6.8	158	41	376	0.1K	0.05K	1	0.05K	236	6	
) Dst Root Road	10-Jul-95	20	8.76	10.1	94	20		0.01K	0.053K		0.05K	438	5K	
A01W20) Rm 19.1	18-Jul-95	26	8	4.5	100	23		0.1K	0.05K	0.6	0.05K	160	6	10
A01W20)	16-Aug-95	5 26	7.7	4	89	26		0.1K	0.12	0.8	0.05K	178	10	94
A01W20) 14-Sep-95	19	7.5	2.9	84	30	221		0.15	0.14	1	0.05K	146	5K	20

ID	Location	Date	Temp C	pH s.u.	D.O.		COD	Sp.Cond.	NOx	NH3	TKN	P665	TDS	TSS	Fecal Col
					mg/l	mg/l	mg/l	umhos	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	#/100ml
A01W20	26-Sep-95		10	7.7	8.7	86	30	226	0.1	0.06	0.7	0.05K	158	8	
A01W21	Unnamed Tributary	/ 10-Jul-95	17	8.22	5.5	500	38		0.17	0.08	0.9	0.05K	956	8	
A01W21	@ Carson and Beck	k 18-Jul-95	22	7.74	5.5	545	26		0.1K	0.05K	0.6	0.05K	1060	5K	290
A01W21		16-Aug-9		7.93	3.8	350	50		0.16	0.22	1.1	0.05K	626	5K	6400
A01W21		14-Sep-95	5 17.5	7.6	3.7	336	42		0.23	0.29	1.2	0.05K	662	47	3000
A01W21	26-Sep-95		13	7.9	7.9	362	41		0.29	0.23	1.1	0.05K	684	29	
Cowles	Creek														
		une 29, 1995	5 22.3	7.6	6.9	202	16	520	0.74	< 0.05	0.4	< 0.05	392	55	580
	7.24 J	uly 20, 1995	21	7.19	5.6	285	17	714	1.01	0.2	0.8	< 0.05	510	18	510
	7.24 A	Aug. 15, 199	5												1800
	5.48 J	uly 20, 1995													5400
	5.48 A	Aug. 15, 199	5												5600
	5.48 S	Sept. 05, 199	5												2300
	5.2 J	uly 20, 1995													25000
	5.2 A	Aug. 15, 199	5												4600
	5.2 S	Sept. 05, 199	5												17000
	4.83 J	une 29, 1995	5 22	7.3	7.2	197	28	581	0.46	< 0.05	0.5	$<\!0.05$	392	12	10000
	4.83 J	uly 20, 1995	22.2	7.93	8	243	18	805	0.23	0.06	0.6	$<\!0.05$	500	<5	870
	4.83 J	uly 26, 1995	24.8	7.92	4.59	2.3	0.66	784	0.05	0.6	0.11	374	18		
	4.83 A	Aug. 03, 199	5 25.2	8.1	7.2	237	18	600	0.4	0.05	0.5	0.06	446	<5	
	4.83 A	Aug. 15, 199	5												3000
	4.83 A	Aug. 24, 1993	5 20.5	7.7	7.1	246	<10	816	0.33	< 0.05	0.4	0.07	494	<5	
		Sept. 05, 199	5 20.1	7.3	9.5	241	<2	741	21	0.21	< 0.05	0.4	0.06	444	8
	800														
	4.73 J	une 29, 1995	5 24	7.6	8.7	181	16	826	14.5	0.06	1.2	0.38	576	<5	60
	4.73 A	Aug. 03, 199	5 28	8	7.3	176	36	918	16.4	0.15	1.6	0.55	556	<5	
	4.73 S	Sept. 05, 199	5 21.1	7.1	8.6	164	2.3	690	11	0.09	1.7	0.56	444	<5	90

ID	Location	Date	Temp C	pH s.u.	D.O.	CaCO3	COD	Sp.Cond.	NOx	NH3	TKN	P665	TDS	TSS	Fecal Col.
					mg/l	mg/l	mg/l	umhos	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	#/100ml
Cow	les Creek - co	ontinued													
	4.64	June 29, 1995	5 22.1	7.5	8.1	179	25	765	9.78	< 0.05	1.2	0.25	510	<5	4300
	4.64	July 20, 1995	21.2	7.6	8.1	164	24	856	16.1	0.25	1.8	0.5	564	<5	3400
	4.64	July 26, 1995	24.5	7.9	3.7			890	15.6	0.39	2	0.35	384	23	
	4.64	Aug. 03, 199	5 24.5	7.9	8.4	181	36	905	15.1	0.12	1.8	0.5			
	4.64	Aug. 15, 199	5						1100						
	4.64	Aug. 24, 199	5 21.9	7.2	7.6	164	43	816	14.9	< 0.05	1.5	0.4	530	<5	
	4.64	Sept. 05, 199	5 20.9	7.7	8.8	167	30	713	10.7	0.06	1.5	0.54	442	<5	67
	3.2	June 29, 1995	5 21.1	7.5	7.8	196	16	795	9.73	0.12	1.4	0.23	518	6	3100
	3.2	July 20, 1995	22.8	7.92	7.3	181	15	868	16.5	0.22	1.4	0.28	524	<5	2300
	3.2	July 26, 1995	28.7	7.16	4.67		2.2		6.5	0.19	1.1	0.18	338	17	
	3.2	Aug. 03, 199	5 24	7.8	6.6	183	30	905	15.8	0.14	1.4	0.34	532	6	
	3.2	Aug. 15, 199	5						1500						
	3.2	Aug. 24, 199	5 20.1	7.1	7.1	167	21	818	16	< 0.05	1.5	0.31	544	<5	
	3.2	Sept. 05, 199	5 19.1	7.4	8.7	167	36	693	14.7	0.11	1.4	0.45	460	<5	800
	1.4	June 29, 1995	5 22	7.3	7	202	12	734	7.28	< 0.05	0.9	0.16	504	43	430
	1.4	July 20, 1995	23.2	8.12	8.1	169	<10	794	9.21	0.05	0.9	0.17	530	<5	620
	1.4	July 26, 1995	23.6	7.76			2.4	870	11.6	0.23	1.5	0.21	492		
	1.4	Aug. 03, 199	5 25	7.9	7.3	168	18	764	8.35	< 0.05	1	0.2	424	<5	
	1.4	Aug. 15, 199	5												900
	1.4	Aug. 24, 199	5 20.5	7.2	6.8	183	18	816	13.3	< 0.05	1.1		540	<5	
	1.4	Sept. 05, 199	5 18.2	7.58	8.4	169	24	694	13.5	0.05	1	0.28	490	<5	480
	0.9	July 26, 1995	28.26	7.82	7.45		2.2	750	11.2	0.13	1.3	0.16		< 0.2	
	0.3	July 26, 1995	25.5	7.58	6.88		<2	810	10.7	0.13	1.3	0.16	482	22	

ID	Location	Date	Temp C	pH s.u.	D.O.	SpecC	CaCO3	COD	NOx	NH3	TKN	P665	TDS	TSS	Fecal Col
					mg/l	umhos	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	#/100ml
Arco	la Creek														
	7.3	June 29, 1995	19.9	7.4	7.2	530	257	<10	1.02	< 0.05	0.4	< 0.05	396	8	570
	7.3	July 20, 1995	22.6	9.01	12.9	595	253	<10	2.22	< 0.05	0.4	< 0.05	390	<5	590
	7.3	Aug. 03, 1995	22	8	8.8	615	287	12	1.52	< 0.05	0.2	< 0.05	374	<5	
	7.3	Aug. 15, 1995	22	4.5											
	7.3	Aug. 15, 1995	26	10.5											
	7.3	Aug. 24, 1995	20.3	7.5	10.05	602	254	<10	2.4	< 0.05	< 0.2	< 0.05	380	<5	
	7.3	Sept. 05, 1995	15.9	7.75	9.5	656	276	<10	3.03	< 0.05	< 0.2	< 0.05	378	16	680
	7.2	June 29, 1995	21	6.9	4.7	765	226	19	2.42	0.17	0.9	1.36	510	<5	940
	7.2	Aug. 03, 1995	22	7.5	6.5	816	242	16	8.28	0.07	0.9	1.7	492	<5	
	7.2	Sept. 05, 1995	19.4	7.35	5.5	694	214	24	5.32	1.3	2	2.73	452	<5	60
	7.1	June 29, 1995	20	7	5.8	714	243	12	1.92	0.12	0.8	0.94	478	5	1000
	7.1	July 20, 1995	21	8.21	7.1	804	246	<10	4.19	0.2	0.8	0.9	504	6	360
	7.1	Aug. 03, 1995	22	7.7	6.5	715	253	15	5.58	0.4	0.6	1.02	496	<5	
	7.1	Aug. 15, 1995	22.5	4.5											
	7.1	Aug. 15, 1995	24	7.1											
	7.1	Aug. 24, 1995	20.8	7	6.4	745							480	<5	
	7.1	Sept. 05, 1995	19.3	7.3	6.8	770	220	15	4.94	1.11	1.7	2.23	436	<5	240
	6.9	Sept. 05, 1995	18.4	7.4	4.8	713	2	27	4.74	0.86	1.5	2.13	452	26	1800
	6.1	Aug. 15, 1995	24	3.9											
	6.1	Aug. 15, 1995	25	4.4											
	6.1	Aug. 24, 1995	20.3	7.1	5.5	724	227	<2	<10	3.92	0.06	0.5	0.76	480	10
	6.1	Sept. 05, 1995	18.1	7.5	6.8	665	222	<2	18	5.11	0.14	0.6	1.1	434	14
	460	-													
	5	June 29, 1995	21	7.3	5.2	612	244	12	0.87	0.15	0.4	0.2	430	<5	1900
	5	July 20, 1995	21.9	8.22	6.95	714	242	<10	0.68	0.06	0.5	0.26	430	<5	270

D	Location	Date Temp C	pH s.u.	D.O.	SpecC	CaCO3	COD	NOx	NH3	TKN	P665	TDS	TSS	Feca	ıl Col.
				mg/l	umhos	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	#/10	0ml
Arco	la Creek - o	continued													
	5	Aug. 03, 1995	23.1	7.7	4.3	612	263	18	1.04	0.1	0.5	0.26	398	8	
	5	Aug. 15, 1995	23.3	2.6											
	5	Aug. 15, 1995	25	4.7											
	5	Aug. 24, 1995	20.8	6.9	4.85	687	227	12	2.88	0.1	0.6	0.34	410	6	
	5	Sept. 05, 1995	17.9	7.4	6.4	618	201	24	4.77	0.13	0.7	0.37	394	7	230
	2	June 29, 1995	22.2	7.6	7.5	663	258	<10	1.73	< 0.05	0.4	0.12	454	<5	850
	2	July 20, 1995	22.8	8.55	6.9	682	242	<10	0.38	< 0.05	0.4	0.13	420	<5	630
	2	Aug. 03, 1995	24	8	7.5	672	254	15	1.1	< 0.05	0.4	0.15	412	<5	
	2	Aug. 15, 1995	24.5	6.2											
	2	Aug. 15, 1995	25.5	7.4											
	2	Aug. 24, 1995	20.7	7.2	6.8	765	299	18	1.99	< 0.05	1.2	0.24	528	11	
	2	Sept. 05, 1995	20.8	8.3	14.1	646	256	15	< 0.10	< 0.05	0.4	0.12	402	<5	63
	2.0 (Dup)	Aug. 03, 1995	24	8	7.5	672	235	15	1.36	< 0.05	0.4	0.15	406	<5	
	2.0 (Dup)	Aug. 24, 1995	20.7	7.2	6.8	765	290	24	1.97	< 0.05	1.2	556	11		

Collection Date: 08/30/95 River Code: 03-001 River: Grand River

RM: 95.50

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant/Qual
01801	Turbellaria	+	83820	Microtendipes "caelum" (sensu Simpson c	£ +
03600	Oligochaeta	+		Bode, 1980)	
08240	Orconectes (Crokerinus) propinquus	+	84210	Paratendipes albimanus or P. duplicatus	+
11010	Acentrella sp	+	84300	Phaenopsectra obediens group	+
11130	Baetis intercalaris	+	84440	Polypedilum (P.) aviceps	+
11150	Labiobaetis propinquus	+	84480	Polypedilum (P.) laetum group	+
11650	Procloeon sp (w/ hindwing pads)	+	84750	Stictochironomus sp	+
12200	Isonychia sp	+	85625	Rheotanytarsus exiguus group	+
13400	Stenacron sp	+	85800	Tanytarsus sp	+
13521	Stenonema femoratum	+	85814	Tanytarsus glabrescens group	+
14950	Leptophlebia sp or Paraleptophebia sp	+	86100	Chrysops sp	+
15501	Ephemerellidae	+	86401	Atherix lantha	+
17200	Caenis sp	+	95100	Physella sp	+
21200	Calopteryx sp	+	96900	Ferrissia sp	+
22300	Argia sp	+			
23909	Boyeria vinosa	+	No. (Quantitative Taxa: 0 Total	Taxa: 56
24900	Gomphus sp	+		Qualitative Taxa: 56	ICI:
47600	Sialis sp	+		-	
48620	Nigronia serricornis	+	Num	ber of Organisms: 0 Qual	EPT: 20
50301	Chimarra aterrima	+			
50315	Chimarra obscura	+			
52200	Cheumatopsyche sp	+			
52430	Ceratopsyche morosa group	+			
52530	Hydropsyche depravata group	+			
52540	Hydropsyche dicantha	+			
54000	Leucotrichia pictipes	+			
57900	Pycnopsyche sp	+			
58505	Helicopsyche borealis	+			
59300	Mystacides sp	+			
60300	Dineutus sp	+			
68075	Psephenus herricki	+			
68707	Dubiraphia quadrinotata	+			
69400	Stenelmis sp	+			
71910	Tipula abdominalis	+			
77120	Ablabesmyia mallochi	+			
77800	Helopelopia sp	+			
78140	Labrundinia pilosella	+			
80310	Cardiocladius obscurus	+			
81650	Parametriocnemus sp	+			
82141	Thienemanniella xena	+			
82710	Chironomus (C.) sp	+			
82820	Cryptochironomus sp	+			
83040	Dicrotendipes neomodestus	+			
00010	Dictorenarpes neomouesius	•			

Collection Date: 08/30/95 River Code: 03-001 River: Grand River

RM: 83.30

Taxa	The second se	0 /0	Taxa	T	0
Code	Taxa	Quant/Qua	Code	Taxa	Quant/Qu
01320	Hydra sp	23 +	78140	Labrundinia pilosella	41
01801	Turbellaria	32	78650	Procladius sp	22 +
03600	Oligochaeta	65	79010	Tanypus carinatus	5 +
04685	Placobdella ornata	+	80370	Corynoneura lobata	33 +
04686	Placobdella papillifera	+	81231	Nanocladius (N.) crassicornus or N. (N.)	5
06201	Hyalella azteca	5 +		rectinervus	
08200	Orconectes sp	1 +	82121	Thienemanniella n.sp 3	61
11020	Acerpenna pygmaeus	+	82730	Chironomus (C.) decorus group	+
11150	Labiobaetis propinquus	+	82880	Cryptotendipes sp	27
11650	Procloeon sp (w/ hindwing pads)	1 +	83040	Dicrotendipes neomodestus	16
13400	Stenacron sp	65 +	83050	Dicrotendipes lucifer	22
13521	Stenonema femoratum	3	83840	Microtendipes pedellus group	5
13561	Stenonema pulchellum	8	84300	Phaenopsectra obediens group	38 +
14950	Leptophlebia sp or Paraleptophebia sp	350	84302	Phaenopsectra punctipes	5
17200	Caenis sp	31 +	84460	Polypedilum (P.) fallax group	38 +
21200	Calopteryx sp	3 +	84520	Polypedilum (Tripodura) halterale group	5
22300	Argia sp	18 +	84540	Polypedilum (Tripodura) scalaenum group	11
23909	Boyeria vinosa	1	84790	Tribelos fuscicorne	11
25010	Hagenius brevistylus	+	84800	Tribelos jucundum	5
34130	Acroneuria frisoni	+	85500	Paratanytarsus sp	5
45300	Sigara sp	+	85625	Rheotanytarsus exiguus group	115
45900	Notonecta sp	+	85720	Stempellinella n.sp nr. flavidula	5
47600	Sialis sp	1 +	85800	Tanytarsus sp	71
48620	Nigronia serricornis	3 +	85802	Tanytarsus curticornis group	22
50301	Chimarra aterrima	+	85814	Tanytarsus glabrescens group	66
50315	Chimarra obscura	+	86100	Chrysops sp	+
50804	Lype diversa	+	93200	Hydrobiidae	+
51400	Nyctiophylax sp	1 +	94400	Fossaria sp	+
51600	Polycentropus sp	б	95100	Physella sp	+
52200	Cheumatopsyche sp	б +	96002	Helisoma anceps anceps	+
53800	Hydroptila sp	1	96900	Ferrissia sp	28 +
57900	Pycnopsyche sp	+	99100	Pyganodon grandis	+
60300	Dineutus sp	+	99280	Lasmigona costata	+
60400	Gyrinus sp	1	99420	Amblema plicata plicata	+
68130	Helichus sp	1	99440	Fusconaia flava	+
68601	Ancyronyx variegata	1 +	99540	Elliptio dilatata	+
68708	Dubiraphia vittata group	+	99600	Actinonaias ligamentina carinata	+
68901	Macronychus glabratus	35 +	99820	Villosa iris iris	+
69400	Stenelmis sp	2 +	99860	Lampsilis radiata luteola	+
74501	Ceratopogonidae	2	99880	Lampsilis ventricosa	+
77120	Ablabesmyia mallochi	16			
77130	Ablabesmyia rhamphe group	22 +			
0 0	recae compta maniphe group	33 +			

Collection I	Date: 08/30/95	River Code: 03-001 Ri	ver: Grand H	River	RM: 83.30
	Taxa ative Taxa: 53 tive Taxa: 52	Quant/Qua Total Taxa: 82 ICI: 46	Taxa Il Code	Taxa	Quant/Qual
	Organisms: 139				

Collection Date: 08/30/95	River Code: 03-001	River: Grand River
---------------------------	--------------------	--------------------

RM: 65.80

Taxa			Taxa		
Code	Taxa	Quant/Qual	Code	Taxa	Quant/Qual
01320	Hydra sp	4	78650	Procladius sp	+
03600	Oligochaeta	8 +	80370	Corynoneura lobata	20
06201	Hyalella azteca	1 +	81231	Nanocladius (N.) crassicornus or N. (N.)	5
08240	Orconectes (Crokerinus) propinquus	1 +		rectinervus	
08601	Hydracarina	16	81632	Parakiefferiella n.sp 2	5
11020	Acerpenna pygmaeus	4 +	81825	Rheocricotopus (Psilocricotopus) robacki	5
11130	Baetis intercalaris	231 +	82880	Cryptotendipes sp	+
11650	Procloeon sp (w/ hindwing pads)	5 +	82900	Demicryptochironomus sp	+
11670	Procloeon irrubrum	+	83300	Glyptotendipes (G.) sp	11 +
13400	Stenacron sp	161 +	84300	Phaenopsectra obediens group	11
13521	Stenonema femoratum	1	84450	Polypedilum (P.) convictum	44
13561	Stenonema pulchellum	140 +	84460	Polypedilum (P.) fallax group	22
14950	Leptophlebia sp or Paraleptophebia sp	8	84540	Polypedilum (Tripodura) scalaenum group	+
16700	Tricorythodes sp	2	84700	Stenochironomus sp	5
18750	Hexagenia limbata	+	84800	Tribelos jucundum	5
21200	Calopteryx sp	+	85500	Paratanytarsus sp	11
22001	Coenagrionidae	+	85615	Rheotanytarsus distinctissimus group	11
22300	Argia sp	+	85625	Rheotanytarsus exiguus group	376 +
23909	Boyeria vinosa	+	85800	Tanytarsus sp	+
34130	Acroneuria frisoni	1	85802	Tanytarsus curticornis group	5
42700	Belostoma sp	+	85814	Tanytarsus glabrescens group	22
43570	Neoplea sp	+	86100	Chrysops sp	+
44300	Pelocoris sp	+	86401	Atherix lantha	+
45100	Palmacorixa sp	+	87540	Hemerodromia sp	+
45300	Sigara sp	+	93200	Hydrobiidae	+
45400	Trichocorixa sp	+	96900	Ferrissia sp	1
45900	Notonecta sp	+	98200	Pisidium sp	+
47600	Sialis sp	2 +	98600	Sphaerium sp	+
50804	Lype diversa	4 +	99100	Pyganodon grandis	+
51400	Nyctiophylax sp	+	99280	Lasmigona costata	+
52200	Cheumatopsyche sp	96 +	99440	Fusconaia flava	+
57900	Pycnopsyche sp	+	99600	Actinonaias ligamentina carinata	+
60300	Dineutus sp	2 +	99860	Lampsilis radiata luteola	+
68130	Helichus sp	+	99880	Lampsilis ventricosa	+
68601	Ancyronyx variegata	+			
68708	Dubiraphia vittata group	+	No. Ç	Quantitative Taxa: 39 Total T	axa: 75
68901	Macronychus glabratus	70 +	No. Q	Qualitative Taxa: 52	CI: 46
77500	Conchapelopia sp	11	Numl	-	2PT: 11
77750	Hayesomyia senata or Thienemannimyia norena	22	- , 4111	Qual L	
77800	Helopelopia sp	+			
78140	Labrundinia pilosella	8			
78450	Nilotanypus fimbriatus	12 +			
	······································				

Collection Date: 08/29/95 River Code: 03-001 River: Grand River

RM: 56.00

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant/Qua
01320	Hydra sp	3336 +	80410	Cricotopus (C.) sp	+
01801	Turbellaria	2	81231	Nanocladius (N.) crassicornus or N. (N.)	27
03121	Paludicella articulata	1		rectinervus	
03364	Plumatella emarginata	1	81240	Nanocladius (N.) distinctus	55 +
03369	Plumatella repens	б +	82820	Cryptochironomus sp	+
03451	Urnatella gracilis	72 +	83040	Dicrotendipes neomodestus	165 +
03600	Oligochaeta	9 +	83050	Dicrotendipes lucifer	55
04666	Helobdella triserialis	+	83158	Endochironomus nigricans	+
06201	Hyalella azteca	+	83300	Glyptotendipes (G.) sp	302
08240	Orconectes (Crokerinus) propinquus	1 +	83820	Microtendipes "caelum" (sensu Simpson &	27 +
13400	Stenacron sp	111 +		Bode, 1980)	
13561	Stenonema pulchellum	18	83840	Microtendipes pedellus group	+
16700	Tricorythodes sp	1	84060	Parachironomus pectinatellae	55
17200	Caenis sp	18 +	84210	Paratendipes albimanus or P. duplicatus	27
21200	Calopteryx sp	+	84300	Phaenopsectra obediens group	55
22001	Coenagrionidae	+	84450	Polypedilum (P.) convictum	+
22300	Argia sp	2 +	84470	Polypedilum (P.) illinoense	+
23804	Basiaeschna janata	+	84540	Polypedilum (Tripodura) scalaenum group	27 +
23909	Boyeria vinosa	1	84800	Tribelos jucundum	55
24107	Nasiaeschna pentacantha	+	85265	Cladotanytarsus vanderwulpi group Type 5	+
34130	Acroneuria frisoni	+	85625	Rheotanytarsus exiguus group	247 +
45100	Palmacorixa sp	+	85800	Tanytarsus sp	411
45400	Trichocorixa sp	+	85814	Tanytarsus glabrescens group	1042
45900	Notonecta sp	+	86100	Chrysops sp	+
47600	Sialis sp	2 +	87540	Hemerodromia sp	24
50315	Chimarra obscura	+	93200	Hydrobiidae	+
51206	Cyrnellus fraternus	10	95100	Physella sp	24 +
52200	Cheumatopsyche sp	46 +	96900	Ferrissia sp	92 +
53501	Hydroptilidae	2	98200	Pisidium sp	+
57900	Pycnopsyche sp	1	98600	Sphaerium sp	+
59100	Ceraclea sp	1	99230	Simpsonaias ambigua	+
59110	Ceraclea ancylus	+	99440	Fusconaia flava	+
59145		+	99540	Elliptio dilatata	+
63300	Hydroporus sp	+	99600	Actinonaias ligamentina carinata	+
68601	Ancyronyx variegata	+			
68708	Dubiraphia vittata group	+	No. Ç	Quantitative Taxa: 40 Total T	axa: 75
68901	Macronychus glabratus	52 +	No. Q	Qualitative Taxa: 55	ICI: 34
69400	Stenelmis sp	8 +			EPT: 6
71100	Hexatoma sp	+	1 101110	Qual L	A I, U
77740	Hayesomyia senata	521 +			
77800	Helopelopia sp	+			
78650	Procladius sp	+			

Collection Date: 08/30/95 River Code: 03-001 River: Grand River

RM: 44.70

Taxa Code	Taxa	Quant/Qua	Taxa al Code	Taxa	Quant/Qual
00401	Spongillidae	+	78450	Nilotanypus fimbriatus	53
01320	Hydra sp	144	80370	Corynoneura lobata	155
01801	Turbellaria	70	81229	Nanocladius (N.) crassicornus	28
03121	Paludicella articulata	1 +	81250	Nanocladius (N.) minimus	28
03360	Plumatella sp	1	81825	Rheocricotopus (Psilocricotopus) robacki	28
03451	Urnatella gracilis	1	82121	Thienemanniella n.sp 3	37
03600	Oligochaeta	96 +	82141	Thienemanniella xena	16
06201	Hyalella azteca	+	82820	Cryptochironomus sp	+
06700	Crangonyx sp	+	82880	Cryptotendipes sp	+
08240	Orconectes (Crokerinus) propinquus	+	83300	Glyptotendipes (G.) sp	28 +
08601	Hydracarina	20	83820	Microtendipes "caelum" (sensu Simpson a	& +
11020	Acerpenna pygmaeus	23		Bode, 1980)	
11130	Baetis intercalaris	61 +	84420	Polypedilum (P.) Type 1	2
12200	Isonychia sp	13 +	84450	Polypedilum (P.) convictum	369
13400	Stenacron sp	131 +	84460	Polypedilum (P.) fallax group	28 +
13561	Stenonema pulchellum	151 +	84470	Polypedilum (P.) illinoense	57 +
14950	Leptophlebia sp or Paraleptophebia sp	16	84540	Polypedilum (Tripodura) scalaenum grou	* *
17200	Caenis sp	4 +	84651	Stelechomyia perpulchra	16
21200	Calopteryx sp	+	84700	Stenochironomus sp	+
22001	Coenagrionidae	+	85265	Cladotanytarsus vanderwulpi group Type	5 28
22300	Argia sp	1 +	85625	Rheotanytarsus exiguus group	2044 +
24900	Gomphus sp	+	85720	Stempellinella n.sp nr. flavidula	16
25010	Hagenius brevistylus	+	85802	Tanytarsus curticornis group	28
25510	Stylogomphus albistylus	+	85814	Tanytarsus glabrescens group	28
34130	Acroneuria frisoni	2 +	85840	Tanytarsus guerlus group	28
47600	Sialis sp	+	86401	Atherix lantha	1
48620	Nigronia serricornis	+	87540	Hemerodromia sp	8
50315	Chimarra obscura	2	95100	Physella sp	+
50804	Lype diversa	4	96900	Ferrissia sp	4
51300	Neureclipsis sp	7	98600	Sphaerium sp	+
52200	Cheumatopsyche sp	797 +			
57900	Pycnopsyche sp	+	No. Q	Quantitative Taxa: 49 Total	Taxa: 72
59500	Oecetis sp	16	No. C	Qualitative Taxa: 41	ICI: 42
68601	Ancyronyx variegata	+		-	EPT: 8
68708	Dubiraphia vittata group	+	INUIII	Qual	LFI. O
68901	Macronychus glabratus	95 +			
69400	Stenelmis sp	б+			
72700	Anopheles sp	+			
77130	Ablabesmyia rhamphe group	28			
77500	Conchapelopia sp	28 +			
77740	Hayesomyia senata	28 +			
77800	Helopelopia sp	+			
78140	Labrundinia pilosella	32			
/8140	Labrundinia pilosella	32			

Collection Date: 08/29/95 River Code: 03-001 River: Grand River

RM: 32.90

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant/Qual
00401	Spongillidae	+	69400	Stenelmis sp	+
01801	Turbellaria	+	74100	Simulium sp	+
03040	Fredericella sp	+	77120	Ablabesmyia mallochi	+
03121	Paludicella articulata	+	77130	Ablabesmyia rhamphe group	+
03451	Urnatella gracilis	+	77355	Clinotanypus pinguis	+
03600	Oligochaeta	+	77750	Hayesomyia senata or Thienemannimy	via +
06201	Hyalella azteca	+		norena	
08240	Orconectes (Crokerinus) propinquus	+	78140	Labrundinia pilosella	+
11130	Baetis intercalaris	+	78650	Procladius sp	+
13400	Stenacron sp	+	78750	Rheopelopia paramaculipennis	+
13561	Stenonema pulchellum	+	81231	Nanocladius (N.) crassicornus or N. (1	V.) +
16700	Tricorythodes sp	+		rectinervus	
17200	Caenis sp	+	82880	Cryptotendipes sp	+
18100	Anthopotamus sp	+	83040	Dicrotendipes neomodestus	+
18600	Ephemera sp	+	83158	Endochironomus nigricans	+
21200	Calopteryx sp	+	83300	Glyptotendipes (G.) sp	+
22001	Coenagrionidae	+	83820	Microtendipes "caelum" (sensu Simps	on & +
22300	Argia sp	+		Bode, 1980)	
23804	Basiaeschna janata	+	84155	Paralauterborniella nigrohalteralis	+
23909	Boyeria vinosa	+	84300	Phaenopsectra obediens group	+
24900	Gomphus sp	+	84420	Polypedilum (P.) Type 1	+
27406	Neurocordulia obsoleta	+	84450	Polypedilum (P.) convictum	+
34130	Acroneuria frisoni	+	84470	Polypedilum (P.) illinoense	+
34700	Agnetina capitata complex	+	84800	Tribelos jucundum	+
43300	Ranatra sp	+	85720	Stempellinella n.sp nr. flavidula	+
47600	Sialis sp	+	92615	Cipangopaludina japonica	+
48410	Corydalus cornutus	+	93200	Hydrobiidae	+
49200	Climacia sp	+	93900	Elimia sp	+
50315	Chimarra obscura	+	95100	Physella sp	+
52200	Cheumatopsyche sp	+	96900	Ferrissia sp	+
52540	Hydropsyche dicantha	+	98600	Sphaerium sp	+
52550	Hydropsyche frisoni	+	99100	Pyganodon grandis	+
52620	Macrostemum zebratum	+	99260	Lasmigona compressa	+
57400	Neophylax sp	+	99280	Lasmigona costata	+
57900	Pycnopsyche sp	+			
58505	Helicopsyche borealis	+	No. Q	Quantitative Taxa: 0 To	tal Taxa: 74
59110	Ceraclea ancylus	+	No. Q	Qualitative Taxa: 74	ICI:
59500	Oecetis sp	+	Numl	ber of Organisms: 0 Qu	ual EPT: 19
59970	Petrophila sp	+		-	
68075	Psephenus herricki	+			
68601	Ancyronyx variegata	+			
68708	Dubiraphia vittata group	+			
68901	Macronychus glabratus	+			

Collection Date: 08/30/95 River Code: 03-001 River: Grand River

RM: 28.40

Taxa				Taxa			
Code	Taxa	Quant/Q	ual	Code	Taxa	Quant	/Qual
00700	Radiospongilla crateriformis	+		53800	Hydroptila sp	13	+
01801	Turbellaria	+		57900	Pycnopsyche sp		+
03040	Fredericella sp	1		59110	Ceraclea ancylus		+
03121	Paludicella articulata	1 +		59120	Ceraclea flava complex		+
03360	Plumatella sp	1		59150	Ceraclea resurgens group		+
03451	Urnatella gracilis	1 +		59500	Oecetis sp	9	+
03600	Oligochaeta	40 +		59970	Petrophila sp		+
08240	Orconectes (Crokerinus) propinquus	+		65800	Berosus sp		+
08601	Hydracarina	+		68708	Dubiraphia vittata group	1	+
11020	Acerpenna pygmaeus	25		68901	Macronychus glabratus	31	+
11130	Baetis intercalaris	19 +		69400	Stenelmis sp	3	+
11650	Procloeon sp (w/ hindwing pads)	2		70600	Antocha sp	1	
12200	Isonychia sp	10 +		77120	Ablabesmyia mallochi	49	+
13000	Leucrocuta sp	2		77750	Hayesomyia senata or Thienemannimyia	147	+
13400	Stenacron sp	428 +			norena		
13540	Stenonema mediopunctatum	70 +		77800	Helopelopia sp		+
13561	Stenonema pulchellum	1362 +		78140	Labrundinia pilosella	48	
16324	Serratella deficiens	17 +		78450	Nilotanypus fimbriatus	304	
16700	Tricorythodes sp	87 +		78650	Procladius sp		+
17200	Caenis sp	294 +		78750	Rheopelopia paramaculipennis	147	+
18600	Ephemera sp	+		80310	Cardiocladius obscurus		+
22001	Coenagrionidae	+		80360	Corynoneura "celeripes" (sensu Simpson &	112	
22300	Argia sp	1 +			Bode, 1980)		
24700	Dromogomphus sp	+		80370	Corynoneura lobata	16	
24900	Gomphus sp	+		80410	Cricotopus (C.) sp		+
26700	Macromia sp	+		80420	Cricotopus (C.) bicinctus		+
27406	Neurocordulia obsoleta	+		81280	Nanocladius (Plecopteracoluthus) n. sp		+
34130	Acroneuria frisoni	+		82070	Synorthocladius semivirens	8	
34140	Acroneuria internata	3 +		82101	Thienemanniella n.sp 1	49	+
34700	Agnetina capitata complex	+		82121	Thienemanniella n.sp 3	32	
43300	Ranatra sp	+		82600	Axarus sp		+
43570	Neoplea sp	+		82730	Chironomus (C.) decorus group		+
44300	Pelocoris sp	+		82820	Cryptochironomus sp		+
47600	Sialis sp	+		83040	Dicrotendipes neomodestus	196	+
48410	Corydalus cornutus	8 +		83300	Glyptotendipes (G.) sp		+
50315	Chimarra obscura	150 +		83820	Microtendipes "caelum" (sensu Simpson &		+
51400	Nyctiophylax sp	25			Bode, 1980)		
51600	Polycentropus sp	34 +		83900	Nilothauma sp	49	
52200	Cheumatopsyche sp	34 +		84450	Polypedilum (P.) convictum	490	+
52430	Ceratopsyche morosa group	23		84470	Polypedilum (P.) illinoense		+
52540	<i>Hydropsyche dicantha</i>	18 +		85210	Cladotanytarsus species group B	49	
52550	Hydropsyche frisoni	42		85615	Rheotanytarsus distinctissimus group	392	
52620	Macrostemum zebratum	8 +		85625	Rheotanytarsus exiguus group	2010	+

Collection Date: 08/30/95	River Code: 03-001	River: Grand River	RM: 28.40

Taxa				Taxa		
Code	Taxa	Quar	nt/Qual	Code	Taxa	Quant/Qual
85720	Stempellinella n.sp nr. flavidula		+			
85814	Tanytarsus glabrescens group	93	2 +			
85840	Tanytarsus guerlus group	4	9			
86401	Atherix lantha		+			
87540	Hemerodromia sp		8			
93200	Hydrobiidae		+			
93900	Elimia sp		+			
94400	Fossaria sp		+			
95100	Physella sp		+			
96900	Ferrissia sp		1 +			
98600	Sphaerium sp		+			
99180	Strophitus undulatus undulatus		+			
99200	Alasmidonta marginata		+			
99540	Elliptio dilatata		+			
No. Q	Quantitative Taxa: 53	Total Taxa: 9	7			
No. Q	Qualitative Taxa: 78	ICI: 5	4			
Numł	per of Organisms: 7852	Qual EPT: 2	3			

Collection Date: 08/30/95 River Code: 03-001 River: Grand River

RM: 22.60

D0401Spongillidae+53800Hydropilla sp19+01302Hydra sp7858050Helicopsyche borealis1+01301Tarbellaria159100Ceraclea sncylas-+01302Oliyochaeta17+59200Ceraclea macylas-+01400Oliyochaeta17+59100Occetis sp12+01400Orocetes (Crokerinus) propinguas+59100Occetis avara-+01500Dacies in tercalaris123+6200Opelatus sp-+11501Bactis intercalaris123+6200Opelatus sp-+11502Daciocons tp (uv hindwing pads)666000Beroava sp-+12000Leucocuta sp1+67800Tropisterms sp-+13000Leucocuta sp1+68010Macronychus glabratas2+13101Stenorema melohellum176+68010Macronychus glabratas2+13102Heneratus pubchellum176+68010Macronychus glabratas2+13103Heneratus pubchellum176+68010Macronychus glabratas2+12104Cacus sp9+77100Helonkapria funchi137+12104Cacus sp10+77800Helonkapria funchi10-12104Cacus sp+<	Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant	/Qual
Interfer Interfer Interfer Interfer Interfer 03101 Turbellaria 1 59100 Ceraclea maylus + 03460 Oligochaeta 17 59100 Ceraclea maylus + 04860 Piacobella sy 1 59500 Occetis sy 12 04860 Piacobella sy 1 59500 Occetis sy + 11135 Dabioactis propinguus + 65900 Berosus sp + 11550 Proclocon sp (w/hindwing pads) 6 66500 Encokrus sp + 11650 Stenacran sp 91 68100 Helichus sp + 1200 Leacracrata sp 91 68100 Babinshi withita group + 13540 Stenacran sp 91 68100 Bacrisnis sp 1 14700 Trajstermus sp 12 + 1354 Stenacran sp 1 1550 Stenacran sp 91 7120 Habesnyia mallochi 137 1560	00401	Spongillidae	+	53800	Hydroptila sp	19	+
Antonini 1000 Corracted ancylus 4 0450 Oflgachaeta 17 4 5910 Ceracted flava complex + 0460 Placobdella sp 1 5950 Oecetis sp 12 + 0460 Placobdella sp 1 5950 Oecetis sp 12 + 0460 Placobdella sp 12 6 6 Coracts apara 4 11130 Baetis intercalaris 123 6 Coracts sp + 1150 Procleeon sp (w/hindwing pads) 6 6 6 Conchrus sp + 1200 Lawychi sp 11 + 6780 Trapistermus sp + 13001 Leiterocuta sp 4 68075 Petphenits herricki + 13403 Stenacrom sp 91 + 68010 Macronychus glabratus 2 + 13501 Stenacrom sp 1 1 - 1 - 1 13601 Heitenus sp 10 <td>01320</td> <td></td> <td>78</td> <td>58505</td> <td></td> <td>1</td> <td>+</td>	01320		78	58505		1	+
0 Force of the second	01801	Turbellaria	1	59100	Ceraclea sp	1	
1110Origination1110Occetis y1211130Decodedla sp15950Occetis avara411130Datiobaciis propinquas+59510Occetis avara411130Datiobaciis propinquas+59500Berosus sp+11551Proclocon sp (w/hindwing pads)666500Encohrus sp+11650Proclocon sp (w/hindwing pads)666500Encohrus sp+11700Leurocuta sp11+67800Tropisernus sp+11850Stenacron sp91+68130Hellchus sp+11850Stenacron sp91+68130Macronychus glabratus211850Stenacren auchletlum176+68901Macronychus glabratus211850Stenacren sp10571100Hexatoma sp+111700Caenis sp99+77500Ablessnyla mallochi137+11700Caenis sp99+77500Haysomyla senata or Thienemanninyia39117200Caenis sp10+norerna20117200Caenis sp10+77500Haysomyla senata or Thienemanninyia3912300Argia sp10+norerna2012400Comphurus sp+77500Holosomyla senata or Thienemanninyia3912300Argia sp+77500Holosomyla senata or Thienemanninyia3912400 <td>03451</td> <td>Urnatella gracilis</td> <td>19</td> <td>59110</td> <td>Ceraclea ancylus</td> <td></td> <td>+</td>	03451	Urnatella gracilis	19	59110	Ceraclea ancylus		+
98240Orecnectes (Crokerinus) propinguus+59510Oecetia avara4111150Bacits intercalaris123+65200Copelatus sp+11151Labiobactis propinguas+65600Berosus sp+11150Procleeen sp (w) hudwing pads)66500Berosus sp+12200Isonychia sp11+67800Tropisternus sp+12301Leucrocutu sp+66075Psephenus herricki+12302Stenomena mediopunctatum18368708Dubiraphia vittata group+13515Stenomena pulchellum176+68901Macronychus glabratus215501Ephemerellidae1869400Stenelmis sp117200Caenis sp99+77120Ablabesmyia mallochi13717200Caenis sp99+77500Conchapelopia sp2017200Caenis sp10+norena2028300Ophicagomphus sp+77500Helopelopia sp2029300Dridogomphus sp+77800Helopelopia sp2029300Dridogomphus sp+78500Rheopelopia paramaculipennis9829300Dridogomphus sp+78750Rheopelopia paramaculipennis9829300Dridogomphus sp+78750Rheopelopia paramaculipennis9829300Dridogomphus sp+81231Nanocladius (N) crassicornus or N, (N,) <t< td=""><td>03600</td><td>Oligochaeta</td><td>17 +</td><td>59120</td><td>Ceraclea flava complex</td><td></td><td>+</td></t<>	03600	Oligochaeta	17 +	59120	Ceraclea flava complex		+
11130Baeris intercalaris12346200Copelatus sp+11150Labiobactis propinquus+65800Berosus sp+11650Procleeon sp (w/ hindwing pads)666500Enochrus sp+1200Sanychia sp11+67800Tropisternus sp+13000Leucrocuta sp+68075Psephenus herricki+13140Stenonema mediopunctatum18368708Dubiraphia vitata group+1551Stenonema pulchellum176+6800Macronychus glabratus2+15501Ephemerellidae1869400Stenatoms pp1-17002Caenis sp99+71100Heatatoma sp20-2001Cenengrionidae+77750Hayesomyia senata or Thienemanninyia3921300Hearina sp10+norena22001Cenengrionidae+77850Heloelopia sp+-23030Argia sp+78500Nilotanypus fimbriatus20-23040Ophigomphus sp+78500Nilotanypus fimbriatus20-23050Ophigomphus albistylus+80360Corynomeaur "celeripes" (sensu Simpson & 40-23040Macroneuria abnormis1+81201Nanocladius (N/, crassicornus or N. (N.)20+24103Acroneuria abnormis1+81201Nanocladius (N/, crassicornus or N. (04680	Placobdella sp	1	59500	Oecetis sp	12	+
11130 Baetis intercolaris 123 + 6200 Copelatus sp + 11150 Labiobaetis propinguas + 65800 Berosus sp + 11650 Proclocon sp (w/ hindwing pads) 6 66500 Enochrus sp + 1200 Konychia ap 11 + 67800 Tropisterms sp + 13000 Leucrocuta sp + 68075 Psephenus herricki + 13150 Stenonema mediopunctatum 183 68708 Dubiraphia vitata group + 15501 Ephemerellidae 18 69400 Stenonema sp 1 + 15502 Ephemerellidae 18 69400 Stenolemis sp 1 + 11000 Tricorythodes sp 105 71100 Heatatoma sp 20 2001 20011 Coensig sp 9 + 77150 Halvesomia senata or Thienemanninyia 39 21300 Heatarina sp 1 + 77850 Heloelopia sp + 21301 Hagenius brevistylus + 78150 Kheoelopia paramaculinennis	08240	Orconectes (Crokerinus) propinquus	+	59510	Oecetis avara	4	
11650Procloson sp (w/ hindwing pads)6666500Enochrus sp+12200Isonychia sp11 +67800Tropisternus sp+13000Lencrocuta sp66075Psephenus herricki+13400Stenonema mediopunctatum18366708Dubiraphia vittata group+13541Stenonema mediopunctatum18366708Dubiraphia vittata group+13551Stenonema pulchellum176+68901Macronychus glabratus215501Ephemerelidae1869400Stenelmis sp117007Tropythodes sp19571100Hexatoma sp+12300Area sp9+77500Canchapelopia sp2020011Coenagrionidae+777500Hayesomyia senata or Thienemannimyia3921300Argi sp10+norena+21300Argi sp10+77800Helopelopia sp+21301Argi sp+77800Helopelopia sp42021302Argi sp+77850Nakoalupus fimbriatus2021303Argi sp+78750Nacoladius (N) crassicornus or N. (N.)20+21304Argi sp+78750Nacoladius (Plecopteracoluthus) n. sp+21305Argi sp+81231Nancoladius (N.) crassicornus or N. (N.)20+21304Argi sp+81230Nancoladius (Plecopteracoluthus) n. sp+	11130		123 +	62200	Copelatus sp		+
120001167800Trobustrus sp113000Leucrocuta sp11+67800Trobustrus sp+13000Leucrocuta sp91+68103Helichus sp+13540Stenonema mediopunctatum10668706Dubiraphia vittata group+13551Stenonema pulchellum176+68901Macronychus glabratus2+15501Ephemerellidae1869400Stenelmis sp1-17000Caenis sp99+77120Ablabesmyia mallochi137+17200Caenis sp99+77150Conchapelopia sp202001Coenagrionidae+77750Hayesomyia senata or Thienemannimyia3923300Argia sp10+norena+24800Gomphurus sp+77850Rheopelopia sp+25101Hagenius brevistylus-+77850Rheopelopia sp4025102Ophiogomphus abistylus+78750Rheopelopia sp4026103Ophiogomphus abistylus+80360Corynoneura "celeripes" (sensu Simpson & 4027409Neurocordulia yamaskanensis+81281Nanocladius (N.) crassicornus or N. (N.)2027410Acroneuria thermata9+82121Thienemanniella n.sp.3+34120Acroneuria thermata9+82121Thienemanniella n.sp.3+34140Acroneuria thermata9<	11150	Labiobaetis propinquus	+	65800	Berosus sp		+
Allow Lewrocuta sp68075Psephenus herricki13400Stenacron sp91+68130Helichus sp13501Ekenonema mediopunctatum18368708Dubiraphia vittata group+13501Ehemerellidae1868000Stenelmis sp115501Ehemerellidae1868000Stenelmis sp116700Tricorythodes sp10571100Hexatoma sp+12300Caenis sp99+77120Ablabesmyia mallochi13712300Hetaerina sp477500Conchapelopia sp2022001Coenagrionidae+77700Helopelopia sp202300Argia sp10+norena224800Gomphurus sp+77800Helopelopia sp425010Hagenius brevistylus+78750Rheopelopia panculipennis9825510Stylogomphus albisylus+80360Corrynneurar "celeripes" (sensu Simpson & 4026700Macronicia p+78750Rheopelopia panculipennis9824810Acroneuria carolinensis1+81281Nanocladius (N.) crassicornus or N. (N.)2024810Acroneuria ternata9+82121Thienemanniella n.sp 3+34110Acconeuria carolinensis1+81280Nanocladius (N.) crassicornus or N. (N.)2024810Koroneuria carolinensis1+81281Nanocladius (N.) crassicornus or N. (N.) <td>11650</td> <td>Procloeon sp (w/ hindwing pads)</td> <td>6</td> <td>66500</td> <td>Enochrus sp</td> <td></td> <td>+</td>	11650	Procloeon sp (w/ hindwing pads)	6	66500	Enochrus sp		+
13400 Stenacron sp 91 + 68130 Helichus sp + 13540 Stenanema mediopunctatum 183 68708 Dubiraphia vittata group + 13551 Stenanema mediopunctatum 183 68708 Dubiraphia vittata group + 13551 Ephemerellidae 18 69400 Stenelmis sp 1 15501 Ephemerellidae 18 69400 Stenelmis sp 1 1700 Tricorythodes sp 105 T1100 Hexatoma sp + 12001 Caenis sp 99 + 77150 Ablabesmyia mallochi 137 + 13101 Hetaerina sp 20 Coenagrionidae + 77750 Hayesomyia senata or Thienemanninyia 39 22001 Coenagrionidae + 77800 Helopelopia sp + 7850 28000 Gomphurus sp + 7850 Nilotanypus fimbriatus 20 20 25101 Hagenius brevistylus + 7850 Reopelopia apmaculipennis 98 2551 25102 Stylogomphus abistylus +	12200	Isonychia sp	11 +	67800	Tropisternus sp		+
13540 Stenonema mediopunctatum 183 68708 Dubiraphia vituta group + 13561 Stenonema pulchellum 176 + 68901 Macronychus glabratus 2 + 13551 Ephemerellidae 18 69400 Stenelmis sp 1 16700 Tricorythodes sp 105 71100 Hextartona sp * 1200 Caenis sp 99 + 77120 Ablabesmyia mallochi 137 + 12100 Hetaerina sp 4 77500 Conchapelopia sp 20 20 22001 Coenagrionidae + 77750 Hayesomyia senata or Thienemannimyia 39 23100 Argia sp 10 + morena 20 24800 Gomphurus sp + 77800 Helopelopia sp 20 25101 Hagenius brevistylus + 80360 Corynoneura "celeripes" (sensu Simpson & 40 26700 Macromuria abirstylus + 80120 Acroneuria abirstylus + 81201 Nanocladius (N).crassicornus or N. (N.) 20 + 2410 Acroneuria ab	13000	Leucrocuta sp	+	68075	Psephenus herricki		+
1355Stemomen and chellum176+68901Macronychus glabratus2+15501Ephemerellidae1869400Stenelmis sp115700Tricorythodes sp10571100Hexatoma sp+17200Caenis sp99+77120Ablabesmyla mallochi137+121300Hetaerina sp477500Conchapelopia sp2020201Coenagrionidae+77750Hayesomyla senata or Thienemannimyla3922300Argia sp10+norena224800Gomphurus sp+77800Helopelopia sp+25010Hagenius brevistylus+7850Rheopelopia parmaculipennis9825103Sylogomphus albistylus+80360Corynoneura "celeripes" (sensu Simpson & 40926700Macromita bhormis+81231Nanocladius (N) crassicornus or N. (N.)20+27409Neurocordulia yamaskanensis1+81280Nanocladius (N) crassicornus or N. (N.)20+24110Acroneuria abnormis1+81281Thienemanniella n.sp 3++34100Ranetra ap+82730Chironomus (C.) decorus group++34300Neoperla clymene complex+82730Chironomus (C.) decorus group+34300Ranetra ap+82730Chironomus (C.) decorus group+34300Ranetra ap+83040Dicrotendipes ne	13400	Stenacron sp	91 +	68130	Helichus sp		+
15501Ephemereliaae1869400Sneehnis sp116700Tricorythodes sp10571100Hexatoma sp+17200Caenis sp99+77120Ablabesmyia mallochi137+21300Hetaerina sp477500Conchapelopia sp2022001Coenagrionidae+77750Hayesomyia senata or Thienemanninyia3922300Argia sp10+rorena2024800Gomphurus sp+77800Helopelopia sp+25010Hagenius brevistylus+7850Rheopelopia paramaculipennis9825510Stylogomphus albistylus+78750Rheopelopia paramaculipennis9826700Macromia sp+78750Rheopelopia paramaculipennis9826700Macromia sp+80360Corynneura "celeripes" (sensu Simpson & 4027409Neurocordulia yamaskanensis+81280Nanocladius (N.) crassicornus or N. (N.)2027410Acroneuria abnormis+*81280Nanocladius (Plecopteracoluthus) n. sp+34120Acroneuria carolinensis1+81280Nanocladius semivrens2034300Reoperla clymene complex+82121Thienemanniella .sp 3+34300Rantar sp+83040Dicorendipes neomodestus312+34300Rantar sp+83040Dicorendipes neomodestus312+34100Corydalu	13540	Stenonema mediopunctatum	183	68708	Dubiraphia vittata group		+
16700Tricorythodes sp10571100Hexatama sp+17200Caenis sp99+77120Ablabesmyia mallochi137+121300Hetaerina sp477500Conchapelopia sp2022001Coenagrionidae+77500Hayesomyia senata or Thienemanimyia3922300Argia sp10+norena*24800Gomphurus sp+77800Helopelopia sp*25010Hagenius brevistylus+78450Nilotanypus fimbriatus2026700Macromia sp+78750Rheopelopia paramaculipennis9825510Sylogomphus albistylus+80360Corynoneura "celeripes" (sensu Simpson & 4026700Macromia sp+81210Nanocladius (N.) crassicornus or N. (N.)2027410Neurocordulia yamaskanensis+81220Synorthocladius (Plecopteracoluthus) n. sp+34110Acroneuria carolinensis1+81220Synorthocladius semivirens2034140Acroneuria carolinensis1+82703Synorthocladius semivirens2034300Ranatra sp+82131Thienemanniella n.sp 3+34300Ranatra sp+83040Dicotendipes neomodestus31234300Ranatra sp+83040Dicotendipes neomodestus31234300Ranatra sp+83040Dicotendipes neomodestus31234310Corydalus cornutus	13561	Stenonema pulchellum	176 +	68901	Macronychus glabratus	2	+
17200 Caenis sp 99 + 7120 Albidesmyia mallochi 137 + 12100 Hetaerina sp 4 7750 Conchapelopia sp 20 22001 Coenagrionidae + 7770 Hayesomyia senata or Thienemanninyia 39 22001 Coenagrionidae + 7770 Hayesomyia senata or Thienemanninyia 39 22001 Coenagrionidae + 7770 Hayesomyia senata or Thienemanninyia 39 22001 Coenagrionidae + 7770 Hayesomyia senata or Thienemanninyia 39 22001 Gomphurus sp + 77800 Helopelopia paramaculipennis 98 2510 Stylogomphus sp + 78750 Rheopelopia paramaculipennis 98 26700 Macromia sp + 8060 Corynoneura "celeripes" (sensu Simpson & 40 9 27409 Neurocordulia yamaskanensis + 8121 Nanocladius (N.) crassicornus or N. (N.) 20 + 34100 Acroneuria abnormis 1 + 8207 Synorthocladius semivirens 20 34300 Ranatra sp	15501	Ephemerellidae	18	69400	Stenelmis sp	1	
2130Heiaerina sp47150Conchapelopia sp2022001Coenagrionidae+77750Hayesomyia senata or Thienemannimyia3922300Argia sp10+norena3924800Gomphurus sp+77800Helopelopia sp+25010Hagenius brevistylus+78450Nilotanypus fimbriatus2025300Ophiogomphus sp+78750Rheopelopia paramaculipennis9825510Stylogomphus albistylus+80360Corynoneura "celeripes" (sensu Simpson & 4026700Macromia sp+80360Corynoneura "celeripes" (sensu Simpson & 4027409Neurocordulia yamaskanensis+81231Nanocladius (N) crassicornus or N. (N.)2027409Neurocordulia gamaskanensis1+81280Nanocladius (Plecopteracoluthus) n. sp+34120Acroneuria carolinensis1+81280Synorthocladius semivirens2034140Acroneuria carolinensis1+82121Thienemanniella n.sp 3+34120Agnetina capitata complex+82130Chironomus (C.) decorus group+34130Ranatra sp+83040Dicrotendipes neomodestus312+34140Corydulus cornutus1+83040Dicrotendipes neomodestus312+34100Ranatra sp-+83040Dicrotendipes neomodestus312+34100Ranatra sp-+ </td <td>16700</td> <td>Tricorythodes sp</td> <td>105</td> <td>71100</td> <td>Hexatoma sp</td> <td></td> <td>+</td>	16700	Tricorythodes sp	105	71100	Hexatoma sp		+
22001Coenagrionidae+77750Hayesomyia senata or Thienemannimyia3922300Argia sp10 +norenanorena+24800Gomphurus sp+77800Helopelopia sp+25010Hagenius brevisrylus+78450Nilotansypus fimbriatus2025300Ophiogomphus sp+78750Relopelopia paramaculipennis9825510Stylogomphus albistylus+80360Ceoryoneura "celeripes" (sensu Simpson & 4026700Macromia sp+81231Nanocladius (N.) crassicornus or N. (N.)20 +27409Neurocordulia yamaskanensis+81280Nanocladius (Plecopteracoluthus) n. sp+34110Acroneuria carolinensis1 +81280Synorthocladius semivirens2034300Neoperla clymene complex+82121Thienemanniella xena2434300Ranatra sp+83040Dicrotendipes neomodestus312 +47600Sialis sp1+83000Nilohanua sp2048410Corydalus cornutus1 +84450Polypedilum (P.) convictum137 +50315Chimarra obscura1 +84450Polypedilum (P.) fallax group+52300Cheunatopsyche sp14 +84700Stenochironomus sp2052500Hydropsyche dicantha9 +84460Polypedilum (P.) fallax group+5250Hydropsyche fisoni2485615Reouchironomus sp20<	17200	Caenis sp	99 +	77120	Ablabesmyia mallochi	137	+
22300Argia sp10+norena24800Gomphurus sp+77800Helopelopia sp+25010Hagenius brevistylus+78450Nilotanypus fimbriatus2025300Ophiogomphus sp+78750Rheopelopia paramaculipennis9825510Stylogomphus albistylus+80360Corynoneura "celeripes" (sensu Simpson & 4026700Macromia sp+81231Nanocladius (N.) crassicornus or N. (N.)2027409Neurocordulia yamaskanensis+81231Nanocladius (N.) crassicornus or N. (N.)2027409Neurocordulia vamaskanensis+81280Nanocladius (Plecopteracoluthus) n. sp+34110Acroneuria carolinensis1+82070Synorthocladius semivirens2034140Acroneuria internata9+82121Thienemanniella n.sp 3+34300Reoperla clymene complex+82130Chironomus (C.) decorus group+34300Ranatra sp+83040Dicrotendipes neomodestus312+34300Ranatra sp1+84450Polypedilum (P.) convictum137+34300Cervatopus sp1+84460Polypedilum (P.) fillax group+34300Ranatra sp1+84460Polypedilum (P.) fillax group+34310Cervatopus sp184470Polypedilum (P.) fillax group+34310Chimarra obscura1+844	21300	Hetaerina sp	4	77500	Conchapelopia sp	20	
24800Gomphurus sp+77800Helopelopia sp+25010Hagenius brevistylus+78450Nilotanypus fimbriatus2025300Ophiogomphus sp+78750Rheopelopia paramaculipennis9825510Stylogomphus albistylus+80360Corynoneura "celeripes" (sensu Simpson & 4026700Macromia sp+80360Corynoneura "celeripes" (sensu Simpson & 4027409Neurocordulia yamaskanensis+81231Nanocladius (N.) crassicornus or N. (N.)2027410Acroneuria abnormis+81280Nanocladius (Plecopteracoluthus) n. sp+34120Acroneuria carolinensis1+81280Nanocladius (Plecopteracoluthus) n. sp+34140Acroneuria internata9+82121Thienemaniella n.sp 3+34300Raatra sp+82130Chironomus (C.) decorus group+34300Raatra sp+83040Dicrotendipes neomodestus31234300Kaatra sp+83040Dicrotendipes neomodestus31234300Kauerelipsis sp1+84500Polypedilum (P.) convictum13734310Corydalus cornutus1+84600Polypedilum (P.) fallax group+34300Keurelipsis sp184460Polypedilum (P.) fallax group+34300Chiranara obscura1+84700Stenchironomus sp-34410Corydalus cornutus+84460 <t< td=""><td>22001</td><td>Coenagrionidae</td><td>+</td><td>77750</td><td>Hayesomyia senata or Thienemannimyia</td><td>39</td><td></td></t<>	22001	Coenagrionidae	+	77750	Hayesomyia senata or Thienemannimyia	39	
25010Hagenius bry Hagenius brevistylus+78450Nilotanypus fibriatus202500Ophiogomphus sp+78750Rheopelopia paramaculipennis9825510Stylogomphus albistylus+80360Corynoneura "celeripes" (sensu Simpson & 4026700Macromia sp+Bode, 1980)27409Neurocordulia yamaskanensis+81231Nanocladius (N.) crassicornus or N. (N.)2027409Neurocordulia yamaskanensis+81280Nanocladius (Plecopteracoluthus) n. sp+34110Acroneuria carolinensis1+82070Synorthocladius semivirens2034140Acroneuria internata9+82121Thienemanniella n.sp 3+34100Neoperla clymene complex+82121Thienemanniella sena2434300Ranatra sp+83040Dicrotendipes neomodestus312+34100Corydalus cornutus1+84450Polypedilum (P.) convictum137+34100Neureclipsis sp184460Polypedilum (P.) convictum137+34100Neureclipsis sp184460Polypedilum (P.) convictum137+34100Ceratopsyche morosa group17+84888Xenochironomus sp434100Ceratopsyche morosa group17+84806Pseudochironomus sp2034110Ceratopsyche dicantha9+84607Polypedilum (P.) illinoense+ <t< td=""><td>22300</td><td>Argia sp</td><td>10 +</td><td></td><td>norena</td><td></td><td></td></t<>	22300	Argia sp	10 +		norena		
25010Integrination9825300Ophiogomphus sp+78750Rheopelopia paramaculipennis9825510Stylogomphus albistylus+80360Corynoneura "celeripes" (sensu Simpson & 4026700Macromia sp+81231Nanocladius (N.) crassicornus or N. (N.)20+27409Neurocordulia yamaskanensis+81231Nanocladius (N.) crassicornus or N. (N.)20+27410Acroneuria abnormis+81280Nanocladius (Plecopteracoluthus) n. sp+34120Acroneuria internata9+82070Synorthocladius semivirens2034300Neoperla clymene complex+82121Thienemanniella n.sp 3+34300Ranatra sp+83040Dicrotendipes neomodestus312+34300Ranatra sp+83040Dicrotendipes neomodestus312+34300Ranatra sp1+84450Polypedilum (P.) convictum137+35315Chimarra obscura1+84460Polypedilum (P.) fallax group+35300Neureclipsis sp184470Polypedilum (P.) fallax group+35300Ceratopsyche morosa group17+84888Xenochironomus sp2035440Pysuberdinan9+84960Pseudochironomus sp2035550Hydropsyche frisoni2485655Rheotanytarsus distinctissimus group2335555Hydropsyche frisoni24<	24800	Gomphurus sp	+	77800	Helopelopia sp		+
23500Opiniogomphilis sp+Ricepeting Parameteringer (sensu Simpson & 4025510Stylogomphus albistylus+80360Corynoneura "celeringer" (sensu Simpson & 4026700Macromia sp+8040Bode, 1980)27409Neurocordulia yamaskanensis+81231Nanocladius (N.) crassicornus or N. (N.)2034110Acroneuria abnormis+81280Nanocladius (Plecopteracoluthus) n. sp+34120Acroneuria internata9+82070Synorthocladius semivirens2034140Acroneuria internata9+82121Thienemanniella n.sp 3+34300Neoperla clymene complex+82141Thienemanniella xena2434700Agnetina capitata complex+82730Chironomus (C.) decorus group+34300Ranatra sp+83040Dicrotendipes neomodestus312+34100Sialis sp+83900Nilothauma sp20348410Corydalus cornutus1+84450Polypedilum (P.) convictum137+31300Neureclipsis sp184470Polypedilum (P.) idlingense++31300Neureclipsis sp184470Polypedilum (P.) illingense++31300Neureclipsis sp184470Polypedilum (P.) illingense++31300Neureclipsis sp184470Polypedilum (P.) illingense++31300Chimarga disgrippic telegrippic	25010	Hagenius brevistylus	+	78450	Nilotanypus fimbriatus	20	
25310Sytogomputs distryinsImage: First Product Produ	25300	Ophiogomphus sp	+	78750	Rheopelopia paramaculipennis	98	
20100Macronar sp+27409Neurocordulia yamaskanensis+34110Acroneuria abnormis+34120Acroneuria carolinensis134120Acroneuria carolinensis134120Acroneuria internata934130Neoperla clymene complex+341700Agnetina capitata complex234300Ranatra sp+34100Sialis sp+34100Corydalus cornutus234110Acroneuria internata234200Ranatra sp+34100Renatra sp+34100Renatra sp+34110Corydalus cornutus134110Corydalus cornutus134110Corydalus cornutus134110Stalis sp134110Stalis sp134110Corydalus cornutus134110Corydalus cornutus134110Polypedilum (P.) convictum13734110Stalis sp134110Stenochironomus sp+34110Stenochironomus sp+34110Stenochironomus sp+34110Stenochironomus sp+34110Stenochironomus sp+34110Stenochironomus sp+34110Stenochironomus sp+34110Stenochironomus sp+34110Stenochironomus sp+34110Stenochironomus sp+34200Ste	25510	Stylogomphus albistylus	+	80360	Corynoneura "celeripes" (sensu Simpson &	40	
27409Neurocordulta yamaskanensis+Finite initiation of the finite constraints of	26700	Macromia sp	+		Bode, 1980)		
34110Acroneuria abnormis+34120Acroneuria carolinensis1+34120Acroneuria internata9+34140Acroneuria internata9+34300Neoperla clymene complex+34700Agnetina capitata complex243300Ranatra sp+47600Sialis sp+48410Corydalus cornutus150315Chimarra obscura151300Neureclipsis sp151600Polycentropus sp151600Polycentropus sp152200Cheumatopsyche morosa group+52430Ceratopsyche dicantha952550Hydropsyche frisoni24	27409	Neurocordulia yamaskanensis	+	81231		20	+
34120Acroneuria carolinensis1+Bactor of the interval of th	34110	Acroneuria abnormis	+				
34140Acroneuria internata9+12101Synchronouria internation34300Neoperla clymene complex+82121Thienemanniella n.sp 3+34700Agnetina capitata complex2+82121Thienemanniella xena2443300Ranatra sp+82130Chironomus (C.) decorus group+47600Sialis sp+83040Dicrotendipes neomodestus312+48410Corydalus cornutus1+83900Nilothauma sp2050315Chimarra obscura1+84450Polypedilum (P.) convictum137+51300Neureclipsis sp184460Polypedilum (P.) fallax group++51600Polycentropus sp184470Stenochironomus sp++52200Cheumatopsyche sp14+84888Xenochironomus sp++52430Ceratopsyche morosa group17+84888Xenochironomus sp2052540Hydropsyche frisoni2485615Rheotanytarsus distinctissimus group29352550Hydropsyche frisoni2485615Rheotanytarsus distinctissimus group293	34120	Acroneuria carolinensis	1 +				+
34300Neoperla clymene complex+82141Thienemanniella xena2434700Agnetina capitata complex2+82730Chironomus (C.) decorus group+43300Ranatra sp+83040Dicrotendipes neomodestus312+47600Sialis sp+83040Dicrotendipes neomodestus312+48410Corydalus cornutus1+83900Nilothauma sp2050315Chimarra obscura1+84450Polypedilum (P.) convictum137+51300Neureclipsis sp184460Polypedilum (P.) fallax group++51600Polycentropus sp184470Polypedilum (P.) illinoense+52200Cheumatopsyche sp14+84888Xenochironomus sp+52430Ceratopsyche morosa group17+84888Xenochironomus sp2052540Hydropsyche dicantha9+84960Pseudochironomus sp2052550Hydropsyche frisoni2485615Rheotanytarsus distinctissimus group293	34140	Acroneuria internata	9 +		•	20	
34700Agnetina capitata complex2+Status functional actual43300Ranatra sp+82730Chironomus (C.) decorus group+43300Sialis sp+83040Dicrotendipes neomodestus312+48410Corydalus cornutus1+83900Nilothauma sp2050315Chimarra obscura1+84450Polypedilum (P.) convictum137+51300Neureclipsis sp1+84460Polypedilum (P.) fallax group+51600Polycentropus sp184470Polypedilum (P.) illinoense+52200Cheumatopsyche sp14+84700Stenochironomus sp+52430Ceratopsyche morosa group17+84888Xenochironomus sp2052540Hydropsyche dicantha9+85615Rheotanytarsus distinctissimus group29352550Hydropsyche frisoni2485625Rheotanytarsus exiguus eroup273+	34300	Neoperla clymene complex	+		•		+
43300Ranatra sp+Bit is	34700	Agnetina capitata complex	2 +			24	
47600Sialis sp+10000Distributing of informations48410Corydalus cornutus1+83900Nilothauma sp2050315Chimarra obscura1+84450Polypedilum (P.) convictum137+51300Neureclipsis sp1+84460Polypedilum (P.) fallax group+51600Polycentropus sp184470Polypedilum (P.) illinoense+52200Cheumatopsyche sp14+84700Stenochironomus sp+52430Ceratopsyche morosa group17+84888Xenochironomus sp+52540Hydropsyche dicantha9+84960Pseudochironomus sp2085615Rheotanytarsus distinctissimus group29385625Rheotanytarsus exiguus group273+	43300	Ranatra sp	+				+
48410Corydalus cornutus1 +Neuroperiod (P.) convictum137 +50315Chimarra obscura1 +84450Polypedilum (P.) convictum137 +51300Neureclipsis sp184460Polypedilum (P.) fallax group+51600Polycentropus sp184470Polypedilum (P.) illinoense+52200Cheumatopsyche sp14 +84700Stenochironomus sp+52430Ceratopsyche morosa group17 +84888Xenochironomus sp+52540Hydropsyche dicantha9 +84960Pseudochironomus sp2052550Hydropsyche frisoni2485615Rheotanytarsus distinctissimus group293	47600	Sialis sp	+		-		+
50315Chimarra obscura1+84460Polypedilum (P.) fallax group+51300Neureclipsis sp184460Polypedilum (P.) fallax group+51600Polycentropus sp184470Polypedilum (P.) illinoense+52200Cheumatopsyche sp14+84700Stenochironomus sp+52430Ceratopsyche morosa group17+84888Xenochironomus xenolabis+52540Hydropsyche dicantha9+84960Pseudochironomus sp2052550Hydropsyche frisoni2485615Rheotanytarsus distinctissimus group29385625Rheotanytarsus exiguus eroup273+	48410	Corydalus cornutus	1 +		•		
51300Neureclipsis sp184470Polypedilum (P.) illinoense+51600Polycentropus sp184470Stenochironomus sp+52200Cheumatopsyche sp14+84700Stenochironomus sp+52430Ceratopsyche morosa group17+84888Xenochironomus xenolabis+52540Hydropsyche dicantha9+84960Pseudochironomus sp2052550Hydropsyche frisoni2485615Rheotanytarsus distinctissimus group29385625Rheotanytarsus exiguus group273+	50315		1 +			137	+
51600Polycentropus sp1Explanation (1)52200Cheumatopsyche sp14+52430Ceratopsyche morosa group17+52540Hydropsyche dicantha9+52550Hydropsyche frisoni248561585625Rheotanytarsus exiguus group273+	51300	Neureclipsis sp	1				+
52200Cheumatopsyche sp14 +84700Stenochironomus sp+52430Ceratopsyche morosa group17 +84888Xenochironomus xenolabis+52540Hydropsyche dicantha9 +84960Pseudochironomus sp2052550Hydropsyche frisoni2485615Rheotanytarsus distinctissimus group29385625Rheotanytarsus exiguus eroup273 +	51600		1				+
52430Ceratopsyche morosa group1784888Xenochironomus xenolabis+52540Hydropsyche dicantha9+84960Pseudochironomus sp2052550Hydropsyche frisoni2485615Rheotanytarsus distinctissimus group29385625Rheotanytarsus exiguus group273+	52200		14 +		-		+
52540Hydropsyche dicantha9 +84960Pseudochironomus sp2052550Hydropsyche frisoni2485615Rheotanytarsus distinctissimus group29385625Rheotanytarsus exiguus group273 +			17 +				+
52550Hydropsyche frisoni2485615Rheotanytarsus distinctissimus group29385625Rheotanytarsus exiguus group273 +	52540		9 +		-		
85625 Rheotanytarsus exiguus group 273 +			24	85615			
			+	85625	Rheotanytarsus exiguus group	273	+

Collection Date: 08/30/95	River Code: 03-001	River: Grand River	RM: 22.60

Taxa Code	Taxa	Quant	/Qual	Taxa Code	Taxa	Quant/Qual
85720	Stempellinella n.sp nr. flavidula	20				
85800	Tanytarsus sp	39				
85814	Tanytarsus glabrescens group	351	+			
85840	Tanytarsus guerlus group		+			
87540	Hemerodromia sp	48				
93900	Elimia sp	9	+			
95100	Physella sp	1	+			
96900	Ferrissia sp	1				
98600	Sphaerium sp		+			
99180	Strophitus undulatus undulatus		+			
99280	Lasmigona costata		+			
No. Q	Quantitative Taxa: 56	Total Taxa: 94				
No. Q	Qualitative Taxa: 65	ICI: 50				
Numb	per of Organisms: 3004	Qual EPT: 22				

Collection Date: 08/31/95 River Code: 03-001 River: Grand River

RM: 13.60

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant	t/Qual
01320	Hydra sp	34	59110	Ceraclea ancylus		+
01900	Nemertea	+	59120	Ceraclea flava complex		+
03360	Plumatella sp	1	59500	Oecetis sp	8	
03451	Urnatella gracilis	8	59970	Petrophila sp		+
03600	Oligochaeta	16	65800	Berosus sp		+
04964	Mooreobdella microstoma	+	67500	Laccobius sp		+
08240	Orconectes (Crokerinus) propinquus	+	68075	Psephenus herricki		+
11110	Baetis armillatus	3	68601	Ancyronyx variegata		+
11118	Baetis dubius	1	68901	Macronychus glabratus	6	
11130	Baetis intercalaris	502	69400	Stenelmis sp	5	+
12200	Isonychia sp	78 +	71100	Hexatoma sp		+
13000	Leucrocuta sp	39	74100	Simulium sp		+
13400	Stenacron sp	137 +	77130	Ablabesmyia rhamphe group		+
13540	Stenonema mediopunctatum	647 +	78450	Nilotanypus fimbriatus	208	+
13561	Stenonema pulchellum	39 +	78650	Procladius sp		+
13590	Stenonema vicarium	39	78750	Rheopelopia paramaculipennis	148	+
16324	Serratella deficiens	2	80410	Cricotopus (C.) sp		+
16700	Tricorythodes sp	36	81250	Nanocladius (N.) minimus	30	
17200	Caenis sp	34 +	81270	Nanocladius (N.) spiniplenus		+
18600	Ephemera sp	1	82730	Chironomus (C.) decorus group		+
22001	Coenagrionidae	+	82770	Chironomus (C.) riparius group		+
22300	Argia sp	12 +	82820	Cryptochironomus sp		+
24710	Dromogomphus spinosis	+	83040	Dicrotendipes neomodestus	30	+
24900	Gomphus sp	+	84450	Polypedilum (P.) convictum	445	+
25510	Stylogomphus albistylus	+	84651	Stelechomyia perpulchra	30	
27400	Neurocordulia sp	1	85615	Rheotanytarsus distinctissimus grou	<i>up</i> 296	
34110	Acroneuria abnormis	+	85625	Rheotanytarsus exiguus group	2019	+
34130	Acroneuria frisoni	2 +	85800	Tanytarsus sp		+
34140	Acroneuria internata	6	85814	Tanytarsus glabrescens group	178	
34300	Neoperla clymene complex	+	85840	Tanytarsus guerlus group	119	
34700	Agnetina capitata complex	1 +	87540	Hemerodromia sp	1	
43300	Ranatra sp	+	93900	Elimia sp	3	+
47600	Sialis sp	+	95100	Physella sp		+
48410	Corydalus cornutus	10 +	96900	Ferrissia sp	2	+
50315	Chimarra obscura	31 +	98600	Sphaerium sp		+
51300	Neureclipsis sp	3	99180	Strophitus undulatus undulatus		+
51600	Polycentropus sp	1	99560	Ptychobranchus fasciolaris		+
52200	Cheumatopsyche sp	130 +	99600	Actinonaias ligamentina carinata		+
52430	Ceratopsyche morosa group	42		<u>.</u>		
52540	Hydropsyche dicantha	77 +	No. C	Quantitative Taxa: 48	Fotal Taxa: 81	
52550	Hydropsyche frisoni	91 +		-		
52620	Macrostemum zebratum	7 +		Qualitative Taxa: 55	ICI: 52	
53800	Hydroptila sp	16	Numł	per of Organisms: 5575	Qual EPT: 16	

Collection Date: 08/30/95 River Code: 03-001 River: Grand River

RM: 8.50

Taxa			Taxa		
Code	Taxa	Quant/Qual	Code	Taxa	Quant/Qual
03600	Oligochaeta	+	82220	Tvetenia discoloripes group	+
08240	Orconectes (Crokerinus) propinquus	+	82600	Axarus sp	+
11118	Baetis dubius	+	82730	Chironomus (C.) decorus gro	up +
11130	Baetis intercalaris	+	82820	Cryptochironomus sp	+
11650	Procloeon sp (w/ hindwing pads)	+	83040	Dicrotendipes neomodestus	+
13000	Leucrocuta sp	+	84450	Polypedilum (P.) convictum	+
13400	Stenacron sp	+	85263	Cladotanytarsus vanderwulpi	group Type 3 +
13561	Stenonema pulchellum	+	85615	Rheotanytarsus distinctissimu	s group +
17200	Caenis sp	+	85625	Rheotanytarsus exiguus group	
18100	Anthopotamus sp	+	95100	Physella sp	+
18600	Ephemera sp	+	96900	Ferrissia sp	+
18750	Hexagenia limbata	+	99600	Actinonaias ligamentina carir	nata +
22001	Coenagrionidae	+			
22300	Argia sp	+	No. (Quantitative Taxa: 0	Total Taxa: 55
24900	Gomphus sp	+		Qualitative Taxa: 55	ICI:
27409	Neurocordulia yamaskanensis	+		-	
34110	Acroneuria abnormis	+	Num	ber of Organisms: 0	Qual EPT: 23
34140	Acroneuria internata	+			
34700	Agnetina capitata complex	+			
47600	Sialis sp	+			
48410	Corydalus cornutus	+			
50301	Chimarra aterrima	+			
50315	Chimarra obscura	+			
51300	Neureclipsis sp	+			
52200	Cheumatopsyche sp	+			
52430	Ceratopsyche morosa group	+			
52540	Hydropsyche dicantha	+			
52620	Macrostemum zebratum	+			
53800	Hydroptila sp	+			
59110	Ceraclea ancylus	+			
59120	Ceraclea flava complex	+			
60900	Peltodytes sp	+			
68075	Psephenus herricki	+			
68901	Macronychus glabratus	+			
69400	Stenelmis sp	+			
71100	Hexatoma sp	+			
74100	Simulium sp	+			
77800	Helopelopia sp	+			
78450	Nilotanypus fimbriatus	+			
78650	Procladius sp	+			
80310	Cardiocladius obscurus	+			
80420	Cricotopus (C.) bicinctus	+			
81280	Nanocladius (Plecopteracoluthus) n. sp	+			
	,, ,				

Collection Date: 08/31/95 River Code: 03-001 River: Grand River

RM: 6.20

Taxa ra sp ellaria utella gracilis ochaeta is dubius is intercalaris vchia sp rocuta sp acron sp	Quant/Qual 32 24 + 32 432 + 90 1331 + +	Code 74100 77500 77750 77800	Simulium sp Conchapelopia sp Hayesomyia senata or Thienemannimyia norena	Quant 33 112 223	
ellaria atella gracilis ochaeta is dubius is intercalaris ochia sp rocuta sp	24 + 32 432 + 90 1331 +	77500 77750	Conchapelopia sp Hayesomyia senata or Thienemannimyia norena	112	
itella gracilis ochaeta is dubius is intercalaris ychia sp rocuta sp	32 432 + 90 1331 +	77750	Hayesomyia senata or Thienemannimyia norena		+
ochaeta is dubius is intercalaris vchia sp rocuta sp	432 + 90 1331 +		norena	225	
is dubius is intercalaris vchia sp rocuta sp	90 1331 +	77800			•
is intercalaris vchia sp rocuta sp	1331 +		Helopelopia sp		+
vchia sp rocuta sp		78450	Nilotanypus fimbriatus	781	
rocuta sp	т	78750	Rheopelopia paramaculipennis	893	+
-		80370	Corynoneura lobata		+
	+ 258 +	80410	Cricotopus (C.) sp		+
-	190	80420	Cricotopus (C.) sp	223	•
onema mediopunctatum		81231	Nanocladius (N.) crassicornus or N. (N.)	225	+
onema pulchellum	432 +	01231	rectinervus		•
prythodes sp	107 +	82101	Thienemanniella n.sp 1		+
uis sp	303 +	82141	Thienemanniella xena	112	•
opotamus sp	+	82820	Cryptochironomus sp	110	<u>т</u>
emera sp	+	83040	Dicrotendipes neomodestus		т
agrionidae	+		-	P	+
a sp	9 +	83820	Microtendipes "caelum" (sensu Simpson o Bode, 1980)	X	Ŧ
ria vinosa	+	84450	Polypedilum (P.) convictum	2902	<u>т</u>
gomphus albistylus	+	84470	Polypedilum (P.) illinoense	2702	÷
ocordulia yamaskanensis	+	85261	Cladotanytarsus vanderwulpi group Type	. 1	+
neuria internata	+			781	т
etina capitata complex	+	85615	Rheotanytarsus distinctissimus group	3907	
s sp	+	85625	Rheotanytarsus exiguus group	112	+
edalus cornutus	5	85814	Tanytarsus glabrescens group	64	
ıarra obscura	536 +	87540	Hemerodromia sp	04	
eclipsis sp	3 +	89501	Ephydridae	1.0	+
centropus sp	+	93900	Elimia sp	10	+
imatopsyche sp	1433 +	95100	Physella sp		+
topsyche morosa group	677	96900	Ferrissia sp	76	+
copsyche dicantha	954 +	99240	Lasmigona complanata		+
opsyche frisoni	348	99700	Potamilus alatus		+
rostemum zebratum	1425 +				
optila sp	66 +	No. Ç	Quantitative Taxa: 38 Total	Taxa: 71	
	+	No. Q	Qualitative Taxa: 55	ICI: 44	
iclea ancylus	+	Numl	per of Organisms: 18924 Qual	EPT· 20	
etis sp	3		Qual	21 1. 20	
utus sp	+				
•	+				
chus sp	+				
•	+				
	1				
· ····································					
ronychus glabratus	•				
co et u h cl	opsyche borealis elea ancylus is sp etus sp eenus herricki hus sp eonyx variegata eaphia sp onychus glabratus	ppsyche borealis+ppsyche borealis+elea ancylus+is sp3atus sp+penus herricki+hus sp+ponyx variegata+paphia sp1ponychus glabratus+	opplid sp00+No. Qopsyche borealis+No. Qclea ancylus+Numlis sp3atus sp+enus herricki+hus sp+eonyx variegata+aphia sp1onychus glabratus+	opplid sp00+No. Qualitative Taxa: 55opsyche borealis+No. Qualitative Taxa: 55clea ancylus+Number of Organisms: 18924Qualitative Taxa: 55is sp3+clea sp++enus herricki++hus sp++ennyx variegata+aphia sp1onychus glabratus+	oppild sp00+No. Qualitative Taxa: 55ICI: 44opsyche borealis+Number of Organisms: 18924Qual EPT: 20is sp3+tus sp+tenus herricki+hus sp+ronyx variegata+1

Collection Date: 08/30/95	River Code: 03-022	River: Baughman Creek
---------------------------	--------------------	-----------------------

RM: 4.10

Taxa			Taxa			
Code	Taxa	Quant/Qual		Taxa	Quant	/Qual
00675	Heteromeyenia latitenta	+	77500	Conchapelopia sp	15	+
01801	Turbellaria	12 +	77750	Hayesomyia senata or Thienemannimyia		+
03600	Oligochaeta	1		norena		
08240	Orconectes (Crokerinus) propinquus	+	77800	Helopelopia sp	5	
08601	Hydracarina	+	78402	Natarsia baltimoreus	5	
11020	Acerpenna pygmaeus	9 +	78450	Nilotanypus fimbriatus	56	
11120	Baetis flavistriga	1	79400	Zavrelimyia sp	19	
11130	Baetis intercalaris	3 +	80370	Corynoneura lobata	90	
11651	Procloeon sp (w/o hindwing pads)	1	81650	Parametriocnemus sp		+
13400	Stenacron sp	29 +	82121	Thienemanniella n.sp 3	10	
13521	Stenonema femoratum	3 +	82200	Tvetenia bavarica group		+
13590	Stenonema vicarium	22 +	82820	Cryptochironomus sp		+
14950	Leptophlebia sp or Paraleptophebia sp	379 +	83040	Dicrotendipes neomodestus	5	
17200 21200	Caenis sp Calopteryx sp	+ 12 +	83820	Microtendipes "caelum" (sensu Simpson & Bode, 1980)	10	
22001	Coenagrionidae	3	83840	Microtendipes pedellus group	160	+
45100	Palmacorixa sp	+	84210	Paratendipes albimanus or P. duplicatus	29	
45300	Sigara sp	+	84300	Phaenopsectra obediens group	24	
47600	Sialis sp	+	84440	Polypedilum (P.) aviceps		+
48620	Nigronia serricornis	1 +	84450	Polypedilum (P.) convictum		+
50301	Chimarra aterrima	1 +	84460	Polypedilum (P.) fallax group	34	+
50315	Chimarra obscura	+	84480	Polypedilum (P.) laetum group		+
50804	Lype diversa	6	84540	Polypedilum (Tripodura) scalaenum group		+
51300	Neureclipsis sp	1 +	84700	Stenochironomus sp	5	
51600	Polycentropus sp	+	84750	Stictochironomus sp		+
52200	Cheumatopsyche sp	2 +	85625	Rheotanytarsus exiguus group	83	+
52430	Ceratopsyche morosa group	+	85800	Tanytarsus sp	39	
52530	Hydropsyche depravata group	4 +	85802	Tanytarsus curticornis group	10	
57400	Neophylax sp	+	85814	Tanytarsus glabrescens group	68	+
57900	Pycnopsyche sp	+	86100	Chrysops sp		+
58505	Helicopsyche sp Helicopsyche borealis	+	87540	Hemerodromia sp	14	+
60300	Dineutus sp	+	96900	Ferrissia sp	10	
64800	Uvarus sp	+	98200	Pisidium sp		+
66150	Crenitis sp	+	98600	Sphaerium sp		+
67100	Hydrobius sp	+				
68075	Psephenus herricki	+	No. C	Quantitative Taxa: 41 Total T	axa: 75	
68130	Helichus sp	1		-	CI: 50	
68708	Dubiraphia vittata group	+		-		
68901	Macronychus glabratus	3 +	Numl	ber of Organisms: 1190 Qual E	PT: 17	
69400	Stenelmis sp	5 +				
71100	Hexatoma sp					
71910	Tipula abdominalis	+				
74100	-					
/4100	Simulium sp	+				

Collection Date: 08/29/95	River Code: 03-100	River: Big Creek
---------------------------	--------------------	------------------

94653 Glo. 94935 Erp. 98240 Orc 98240 Orc 98240 Orc 98240 Orc 98240 Orc 98240 Cala 94950 Lep. 92001 Coe 92300 Arg. 923905 Boy 923909 Boy 92700 Beld 92200 Che 92530 Hyd 93800 Hyd 96500 Eno 94100 Sim. 94501 Cerr. 97500 Con 97750 Hay 97800 Held 98450 Nild	Taxa gochaeta possiphonia complanata pobdella punctata punctata conectes (Crokerinus) propinquus etis flavistriga ptophlebia sp or Paraleptophebia sp lopteryx sp enagrionidae gia sp veria grafiana veria vinosa lostoma sp eumatopsyche sp dropsyche depravata group droptila sp pochrus sp nulium sp ratopogonidae	4	+ + + + + + + + + + + + + + +	Code	Taxa	Quant/Qu
04653 Glo. 04935 Erp. 08240 Orc 1120 Bae 4955 Lep. 21200 Cala 22001 Coe 23005 Boy 23905 Coe 23905 Coe 24500 Che 25300 Hyd 36500 Eno 24501 Cern 27500 Con 27750 Hay nora R4501 27800 Held 28450 Nild	ossiphonia complanata oobdella punctata punctata conectes (Crokerinus) propinquus etis flavistriga otophlebia sp or Paraleptophebia sp lopteryx sp enagrionidae gia sp veria grafiana veria vinosa lostoma sp eumatopsyche sp dropsyche depravata group droptila sp ochrus sp nulium sp ratopogonidae	1 4 4	+ + + + + + + + + + + + + + + + + + +			
4935 Erp 8240 Orc 1120 Bae 4950 Lep 1200 Cale 2001 Coe 2300 Arg 3905 Boy 3909 Boy 2200 Che 2530 Hyd 3800 Hyd 6500 Eno 4100 Sim 4501 Cerv 7500 Con 7750 Hay 7800 Held 8450 Nild	pobdella punctata punctata conectes (Crokerinus) propinquus etis flavistriga ptophlebia sp or Paraleptophebia sp lopteryx sp enagrionidae gia sp yeria grafiana yeria vinosa dostoma sp eumatopsyche sp dropsyche depravata group droptila sp pochrus sp nulium sp ratopogonidae	4	+ + + + + + + + + + + + + + + + + +			
8240 Orc 1120 Bae 4950 Lep 1200 Cala 2001 Coe 2300 Arg 3905 Boy 3909 Boy 2200 Che 2200 Che 2530 Hyd 6500 Eno 4100 Sim 4501 Cer 7500 Con 7750 Hay nore 7800 8450 Nild	conectes (Crokerinus) propinquus etis flavistriga otophlebia sp or Paraleptophebia sp lopteryx sp enagrionidae gia sp yeria grafiana yeria vinosa lostoma sp eumatopsyche sp dropsyche depravata group droptila sp ochrus sp nulium sp ratopogonidae	4	+ + + + + + + + + + + + +			
1120 Bae 4950 Lep 1200 Cala 2001 Coe 2300 Arg 3905 Boy 3909 Boy 2200 Che 2200 Che 2530 Hyd 3800 Hyd 6500 Eno 4100 Sim 4501 Cerv 7500 Con 7750 Hay 7800 Held 8450 Nild	etis flavistriga ptophlebia sp or Paraleptophebia sp lopteryx sp enagrionidae gia sp yeria grafiana yeria vinosa dostoma sp eumatopsyche sp dropsyche depravata group droptila sp pochrus sp nulium sp ratopogonidae	4	+ + + + + + + + + +			
4950 Lep. 1200 Cala 2001 Coe 2300 Arg. 3905 Boy 3909 Boy 2700 Bela 2200 Che 2530 Hyd 6500 Eno 4100 Sim. 4501 Cert 7500 Con 7750 Hay norta Ray 7800 Hela 8450 Nilda	otophlebia sp or Paraleptophebia sp lopteryx sp enagrionidae gia sp yeria grafiana yeria vinosa lostoma sp eumatopsyche sp dropsyche depravata group droptila sp ochrus sp nulium sp ratopogonidae	4	+ + + + + + + + +			
11200 Cala 12001 Coe 12300 Arg. 13905 Boy 13909 Boy 12700 Bela 12200 Che 12200 Che 12200 Che 12200 Che 12530 Hyd 13800 Hyd 16500 Eno 14501 Cern 17500 Con 17750 Hay 17800 Hela 18450 Nilo	lopteryx sp enagrionidae gia sp yeria grafiana yeria vinosa lostoma sp eumatopsyche sp dropsyche depravata group droptila sp ochrus sp nulium sp ratopogonidae	4	+ + + + + + +			
22001 Coe 2300 Arg. 23905 Boy 23909 Boy 23909 Boy 22700 Beld 22200 Che 22530 Hyd 3800 Hyd 6500 Eno 4100 Simu 4501 Cero 77500 Con 77750 Hay nore 77800 78450 Nilo	enagrionidae gia sp yeria grafiana yeria vinosa lostoma sp eumatopsyche sp dropsyche depravata group droptila sp ochrus sp nulium sp ratopogonidae		+ + + + + + +			
22300 Arg. 23905 Boy 23909 Boy 23909 Boy 22700 Beld 52200 Che 52530 Hyd 53800 Hyd 56500 Eno 24501 Cerr 77500 Con 77750 Hay 77800 Held 28450 Nildo	gia sp yeria grafiana yeria vinosa dostoma sp eumatopsyche sp dropsyche depravata group droptila sp ochrus sp nulium sp ratopogonidae	4	+ + + + + +			
3905 Boy 3909 Boy 3909 Boy 2700 Bela 2200 Che 2530 Hyd 3800 Hyd 6500 Eno 4100 Simu 4501 Cerr 77500 Con 77750 Hay 77800 Hela 8450 Nila	yeria grafiana yeria vinosa lostoma sp eumatopsyche sp dropsyche depravata group droptila sp ochrus sp nulium sp ratopogonidae		+ + + +			
23909 Boy 23909 Boy 22700 Beld 52200 Che 52200 Hyd 53800 Hyd 56500 Eno 24100 Sim. 24501 Cer. 27500 Con 27750 Hay 77750 Hay 77800 Held 28450 Nild	yeria vinosa lostoma sp eumatopsyche sp dropsyche depravata group droptila sp ochrus sp nulium sp ratopogonidae		+ + + +			
2700 Beld 2200 Che 22530 Hyd 33800 Hyd 36500 Eno 24100 Simu 24501 Ceru 27500 Con 27750 Hay nore 27800 Held 28450 Nilo	lostoma sp eumatopsyche sp dropsyche depravata group droptila sp ochrus sp nulium sp ratopogonidae		+ + +			
S2200 Che S2530 Hyd S3800 Hyd S6500 Eno 24100 Sim. 24501 Cer. 27500 Con 27750 Hay 77800 Hela 28450 Nilo	eumatopsyche sp dropsyche depravata group droptila sp ochrus sp nulium sp ratopogonidae		+ +			
22530 Hyd 3800 Hyd 6500 Eno 4100 Sim 4501 Cerr 7500 Con 7750 Hay nore 7800 Helo 8450 Nilo	dropsyche depravata group droptila sp ochrus sp nulium sp ratopogonidae		+ +			
 3800 Hyd 3800 Eno 4100 Sim. 4501 Cer. 7500 Con 7750 Hay 77800 Helo 8450 Nilo 	droptila sp ochrus sp nulium sp ratopogonidae		+			
6500 Eno 24100 Sim. 24501 Cerr 27500 Con 27750 Hay nore 27800 Helo 28450 Nilo	ochrus sp nulium sp ratopogonidae					
 4100 Sim. 4501 Cer. 7500 Con 7750 Hay 7750 Hay 7800 Held 8450 Nilo 	nulium sp ratopogonidae					
4501 Cer. 7500 Con 7750 Hay nore 7800 Hele 8450 Nile	ratopogonidae		+			
7500 Con 7750 Hay nord 7800 Held 8450 Nild			+			
7750 Hay nore 7800 Hela 8450 Nilo		12				
nore 7800 Held 8450 Nild	nchapelopia sp	26				
8450 Nild	yesomyia senata or Thienemannimyia rena	77	+			
	lopelopia sp	109	+			
0370 Cor	otanypus fimbriatus	б	+			
	rynoneura lobata	4				
	nocladius (N.) crassicornus or N. (N.) tinervus	32				
1650 Par	rametriocnemus sp	13				
4315 Pha	aenopsectra flavipes	13				
4430 Poly	lypedilum (P.) albicorne	96	+			
4460 Poly	lypedilum (P.) fallax group	148				
4470 Poly	lypedilum (P.) illinoense	13				
5500 Par	ratanytarsus sp	13				
5814 Tan	nytarsus glabrescens group	6				
86100 Chr	rysops sp		+			
6401 Athe	eerix lantha		+			
5100 Phy	ysella sp	5	+			
6002 Heli	lisoma anceps anceps		+			
6900 Feri	rrissia sp	138	+			
No. Quan	ntitative Taxa: 21 Total Ta	axa: 36				
No. Quali	itative Taxa: 25 I	ICI: 12				

RM: 16.10

Collection Date: 08/29/95	River Code: 03-100	River: Big Creek
---------------------------	--------------------	------------------

Taxa Code	Taxa	Quant/Qua	Taxa l Code	Taxa	Quant/Qua
				Тала	Quanti Qua
03600	Oligochaeta	426 +			
08240	Orconectes (Crokerinus) propinquus	+			
11120	Baetis flavistriga	136 +			
16200	Eurylophella sp	1			
17200	Caenis sp	1			
21200	Calopteryx sp	5 +			
22300	Argia sp	2 +			
23618	Aeshna umbrosa	+			
23905	Boyeria grafiana	+			
26100	Cordulegaster sp	+			
52530	Hydropsyche depravata group	+			
53800	Hydroptila sp	+			
66500	Enochrus sp	+			
67800	Tropisternus sp	+			
68130	Helichus sp	+			
71910	Tipula abdominalis	+			
74100	Simulium sp	+			
74501	Ceratopogonidae	+			
77500	Conchapelopia sp	102 +			
77750	Hayesomyia senata or Thienemannimyia norena	66 +			
77800	Helopelopia sp	46			
80410	Cricotopus (C.) sp	+			
80420	Cricotopus (C.) bicinctus	244 +			
80430	Cricotopus (C.) tremulus group	5			
81650	Parametriocnemus sp	10			
81825	Rheocricotopus (Psilocricotopus) robacki	+			
82820	Cryptochironomus sp	10 +			
84460	Polypedilum (P.) fallax group	10			
84470	Polypedilum (P.) illinoense	36 +			
85625	Rheotanytarsus exiguus group	10 +			
86100	Chrysops sp	5			
87540	Hemerodromia sp	4			
89501	Ephydridae	+			
95100	Physella sp	4 +			
96900	Ferrissia sp	2			
98200	Pisidium sp	+			
No. Q	Quantitative Taxa: 20 Total T	axa: 36	_		
No. Q	Qualitative Taxa: 27	ICI: 12			
	-	EPT: 3			

RM: 16.00

Collection Date: 08/29/95 River Code: 03-100 River: Big Creek

RM:	14.20

Taxa Code	Taxa	Quant/	Qual	Taxa Code	Taxa	Quar	nt/Qua
01801	Turbellaria		+	82820	Cryptochironomus sp		+
03360	Plumatella sp		+	83040	Dicrotendipes neomodestus	8	3
08240	Orconectes (Crokerinus) propinquus		+	84300	Phaenopsectra obediens group	8	3
11120	Baetis flavistriga	105	+	84315	Phaenopsectra flavipes		+
11130	Baetis intercalaris	100	+	84450	Polypedilum (P.) convictum	31	-
11651	Procloeon sp (w/o hindwing pads)	1	+	84460	Polypedilum (P.) fallax group	47	′ +
12200	Isonychia sp	5	+	84470	Polypedilum (P.) illinoense	16	5
13000	Leucrocuta sp	11	+	84480	Polypedilum (P.) laetum group		+
13400	Stenacron sp	23	+	84540	Polypedilum (Tripodura) scala	enum group 31	
13521	Stenonema femoratum	12	+	84700	Stenochironomus sp	8	}
13590	Stenonema vicarium	2	+	84750	Stictochironomus sp		+
17200	Caenis sp	5	+	85501	Paratanytarsus n.sp 1	16	+
21200	Calopteryx sp	26	+	85625	Rheotanytarsus exiguus group	109) +
22300	Argia sp		+	85800	Tanytarsus sp	23	3 +
23618	Aeshna umbrosa		+	85814	Tanytarsus glabrescens group	109)
23909	Boyeria vinosa		+	86401	Atherix lantha	1	. +
24900	Gomphus sp		+	87400	Stratiomys sp		+
34700	Agnetina capitata complex	2	+	87540	Hemerodromia sp	48	3
48620	Nigronia serricornis		+	95100	Physella sp	12	2 +
50301	Chimarra aterrima		+	96900	Ferrissia sp	15	+
50804	Lype diversa	8	+		· · · · · · · · · · · · · · · · · · ·		
51400	Nyctiophylax sp		+	No (Quantitative Taxa: 38	Total Taxa: 63	3
52200	Cheumatopsyche sp		+		-		
52440	Ceratopsyche slossonae		+		Qualitative Taxa: 51	ICI: 50	
52530	Hydropsyche depravata group		+	Num	per of Organisms: 1208	Qual EPT: 17	7
57900	Pycnopsyche sp		+				
68075	Psephenus herricki		+				
69400	Stenelmis sp	37	+				
70600	Antocha sp	3	+				
71100	Hexatoma sp		+				
74100	Simulium sp		+				
74501	Ceratopogonidae		+				
77120	Ablabesmyia mallochi		+				
77500	Conchapelopia sp	116	+				
77800	Helopelopia sp	39					
78450	Nilotanypus fimbriatus	40	+				
80370	Corynoneura lobata	108	+				
80410	Cricotopus (C.) sp	39					
81465	Orthocladius (O.) carlatus	8					
81650	Parametriocnemus sp	16	+				
82101	Thienemanniella n.sp 1	16	+				
82141	Thienemanniella xena	4					
82300	Xylotopus par		+				

Collection Date: 08/29/95 River Code: 03-100 River: Big Creek

RM: 9.40

Taxa Code	Taxa	Quant/Qua	Taxa Il Code	Taxa	Quar	nt/Qua
01801	Turbellaria	+	74501	Ceratopogonidae		+
03360	Plumatella sp	+	77120	Ablabesmyia mallochi	21	-
03600	Oligochaeta	8	77500	Conchapelopia sp		+
08240	Orconectes (Crokerinus) propinguus	+	77800	Helopelopia sp	137	/ +
11130	Baetis intercalaris	10 +	78140	Labrundinia pilosella	10)
11650	Procloeon sp (w/ hindwing pads)	+	78402	Natarsia baltimoreus	10)
11651	Procloeon sp (w/o hindwing pads)	3 +	80370	Corynoneura lobata	44	Ł
11670	Procloeon irrubrum	+	80420	Cricotopus (C.) bicinctus		+
12200	Isonychia sp	+	81231	Nanocladius (N.) crassicornus o	<i>r N. (N.)</i> 21	. +
13000	Leucrocuta sp	9 +		rectinervus		
13400	Stenacron sp	+	82101	Thienemanniella n.sp 1	4	Ł
13521	Stenonema femoratum	2 +	82141	Thienemanniella xena		+
13561	Stenonema pulchellum	+	83040	Dicrotendipes neomodestus	42	2
13590	Stenonema vicarium	2	83840	Microtendipes pedellus group	10)
17200	Caenis sp	22 +	84210	Paratendipes albimanus or P. di	<i>uplicatus</i> 95	5
18619	Ephemera simulans	1 +	84300	Phaenopsectra obediens group	10) +
21200	Calopteryx sp	4 +	84460	Polypedilum (P.) fallax group	127	7
23909	Boyeria vinosa	1 +	84480	Polypedilum (P.) laetum group		+
24900	Gomphus sp	+	84540	Polypedilum (Tripodura) scalae	num group 137	⁷ +
25510	Stylogomphus albistylus	+	85230	Cladotanytarsus mancus group		+
34120	Acroneuria carolinensis	1 +	85500	Paratanytarsus sp	53	3
34700	Agnetina capitata complex	+	85625	Rheotanytarsus exiguus group	53	3 +
47600	Sialis sp	1	85800	Tanytarsus sp	116	5
48620	Nigronia serricornis	+	85814	Tanytarsus glabrescens group	42	2
50301	Chimarra aterrima	+	86401	Atherix lantha		+
50315	Chimarra obscura	+	87540	Hemerodromia sp	8	3 +
50804	Lype diversa	+	95100	Physella sp	3	3
51400	Nyctiophylax sp	+	96900	Ferrissia sp	21	. +
52430	Ceratopsyche morosa group	+				
52440	Ceratopsyche slossonae	+	No. (Quantitative Taxa: 34	Total Taxa: 7()
52530	Hydropsyche depravata group	+	No. (Qualitative Taxa: 53	ICI: 3 2)
52540	Hydropsyche dicantha	+		-		
53800	Hydroptila sp	+	Inum	ber of Organisms: 1036	Qual EPT: 25)
57400	Neophylax sp	+				
57900	Pycnopsyche sp	+				
58505	Helicopsyche borealis	+				
55800	Berosus sp	3				
58075	Psephenus herricki	+				
58708	Dubiraphia vittata group	+				
59210	Optioservus ampliatus	+				
59400	Stenelmis sp	5 +				
70600	Antocha sp	+				
74100	Simulium sp	+				

Collection Date: 08/29/95 River Code: 03-100 River: Big Creek

RM:	2.50
KM:	2.50

Taxa Code	Taxa	Quant/Qua	Taxa l Code	Taxa	Quant/Qua
05800	Caecidotea sp	+		norena	
08240	Orconectes (Crokerinus) propinquus	+	77800	Helopelopia sp	8
11010	Acentrella sp	1 +	78450	Nilotanypus fimbriatus	28
11120	Baetis flavistriga	5	78650	Procladius sp	+
11130	Baetis intercalaris	41 +	80360	Corynoneura "celeripes" (sensu Simpson &	& 12 +
11650	Procloeon sp (w/ hindwing pads)	1		Bode, 1980)	
12200	Isonychia sp	24 +	80370	Corynoneura lobata	88
13000	Leucrocuta sp	43 +	80410	Cricotopus (C.) sp	24
13400	Stenacron sp	12 +	80420	Cricotopus (C.) bicinctus	8
13521	Stenonema femoratum	+	80430	Cricotopus (C.) tremulus group	16
13561	Stenonema pulchellum	79 +	81060	Lopescladius sp	+
13590	Stenonema vicarium	9	81231	Nanocladius (N.) crassicornus or N. (N.)	8
16700	Tricorythodes sp	11 +		rectinervus	
17200	Caenis sp	70 +	82101	Thienemanniella n.sp 1	4
21200	Calopteryx sp	+	82141	Thienemanniella xena	16
22001	Coenagrionidae	+	82730	Chironomus (C.) decorus group	+
22300	Argia sp	+	82820	Cryptochironomus sp	+
23905	Boyeria grafiana	+	83040	Dicrotendipes neomodestus	16
24900	Gomphus sp	+	83820	Microtendipes "caelum" (sensu Simpson &	16
34120	Acroneuria carolinensis	2 +		Bode, 1980)	
34700	Agnetina capitata complex	+	84210	Paratendipes albimanus or P. duplicatus	+
36001	Chloroperlidae	+	84450	Polypedilum (P.) convictum	110 +
48410	Corydalus cornutus	+	84470	Polypedilum (P.) illinoense	24
50301	Chimarra aterrima	1 +	84540	Polypedilum (Tripodura) scalaenum group	, 8
50315	Chimarra obscura	2 +	84750	Stictochironomus sp	+
51300	Neureclipsis sp	+	85625	Rheotanytarsus exiguus group	353 +
52200	Cheumatopsyche sp	9 +	85720	Stempellinella n.sp nr. flavidula	8 +
52430	Ceratopsyche morosa group	1 +	85752	Sublettea coffmani	8
52530	Hydropsyche depravata group	+	85800	Tanytarsus sp	63 +
52540	Hydropsyche dicantha	22 +	85802	Tanytarsus curticornis group	8
57900	Pycnopsyche sp	+	85814	Tanytarsus glabrescens group	39 +
59110	Ceraclea ancylus	+	86401	Atherix lantha	+
59500	Oecetis sp	1	87540	Hemerodromia sp	20
60300	Dineutus sp	+	96900	Ferrissia sp	+
67800	Tropisternus sp	+			
68075	Psephenus herricki	+	No. (Quantitative Taxa: 45 Total	Taxa: 73
69400	Stenelmis sp	1 +	No. (Qualitative Taxa: 51	ICI: 52
70600	Antocha sp	4 +		-	EPT: 21
71100	Hexatoma sp	+	1 (4111)	Qual	<u></u>
74501	Ceratopogonidae	4			
77120	Ablabesmyia mallochi	+			
77500	Conchapelopia sp	24			
77750	Hayesomyia senata or Thienemannimyia	94 +			

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant/Qua
07860	Cambarus (Puncticambarus) robustus	+			
11120	Baetis flavistriga	+	No. Quantita	ative Taxa: 0	Total Taxa: 40
11650	Procloeon sp (w/ hindwing pads)	+	No. Qualitat	ive Taxa: 40	ICI:
13400	Stenacron sp	+	Number of C		
13521	Stenonema femoratum	+	Inulliber of C	Jiganishis. 0	Qual EPT: 17
16200	Eurylophella sp	+			
21200	Calopteryx sp	+			
23905	Boyeria grafiana	+			
34120	Acroneuria carolinensis	+			
34130	Acroneuria frisoni	+			
34700	Agnetina capitata complex	+			
48620	Nigronia serricornis	+			
50410	Dolophilodes distinctus	+			
50804	Lype diversa	+			
50906	Psychomyia flavida	+			
51400	Nyctiophylax sp	+			
52440	Ceratopsyche slossonae	+			
52530	Hydropsyche depravata group	+			
53501	Hydroptilidae	+			
56001	Limnephilidae	+			
57400	Neophylax sp	+			
58025	Ectopria sp	+			
58075	Psephenus herricki	+			
70700	Dicranota sp	+			
71100	Hexatoma sp	+			
71910	Tipula abdominalis	+			
72340	Dixella sp	+			
77500	Conchapelopia sp	+			
77750	Hayesomyia senata or Thienemannimyia norena	+			
79300	Trissopelopia ogemawi	+			
79400	Zavrelimyia sp	+			
32200	Tvetenia bavarica group	+			
33820	Microtendipes "caelum" (sensu Simpson & Bode, 1980)	+			
34470	Polypedilum (P.) illinoense	+			
35501	Paratanytarsus n.sp 1	+			
35615	Rheotanytarsus distinctissimus group	+			
35625	Rheotanytarsus exiguus group	+			
35800	Tanytarsus sp	+			
95100	Physella sp	+			
96900	Ferrissia sp	+			

Collection Date: 08/30/95	River Code: 03-110	River: Paine Creek	RM:	0.50

Taxa			Taxa		
Code	Taxa	Quant/Qual	Code	Taxa	Quant/Qual
03360	Plumatella sp	+			
08240	Orconectes (Crokerinus) propinquus	+			
11010	Acentrella sp	+			
12200	Isonychia sp	+			
13000	Leucrocuta sp	+			
13400	Stenacron sp	+			
13521	Stenonema femoratum	+			
13561	Stenonema pulchellum	+			
13590	Stenonema vicarium	+			
17200	Caenis sp	+			
18600	Ephemera sp	+			
22300	Argia sp	+			
25305	Ophiogomphus aspersus	+			
25510	Stylogomphus albistylus	+			
34130	Acroneuria frisoni	+			
34140	Acroneuria internata	+			
47600	Sialis sp	+			
48620	Nigronia serricornis	+			
50301	Chimarra aterrima	+			
50315	Chimarra obscura	+			
52200	Cheumatopsyche sp	+			
52430	Ceratopsyche morosa group	+			
57900	Pycnopsyche sp	+			
68075	Psephenus herricki	+			
68130	Helichus sp	+			
69400	Stenelmis sp	+			
74501	Ceratopogonidae	+			
77120	Ablabesmyia mallochi	+			
77800	Helopelopia sp	+			
81631	Parakiefferiella n.sp 1	+			
81650	Parametriocnemus sp	+			
82730	Chironomus (C.) decorus group	+			
82770	Chironomus (C.) riparius group	+			
83840	Microtendipes pedellus group	+			
84210	Paratendipes albimanus or P. duplicatus	+			
84300	Phaenopsectra obediens group	+			
84540	Polypedilum (Tripodura) scalaenum group) +			
		Taxa: 37			
	Qualitative Taxa: 37	ICI:			
Numł	ber of Organisms: 0 Qual	EPT: 16			

Collection Date: 08/29/95 River Code: 03-120 River: Mill Creek (Grand R. RM 41.28) RM: 18.20

Taxa			Taxa			
Code	Taxa	Quant/Qual	Code	Taxa	Quant	/Qual
01320	Hydra sp	133	68708	Dubiraphia vittata group	1	+
01801	Turbellaria	4 +	69400	Stenelmis sp	74	+
03121	Paludicella articulata	1 +	71900	Tipula sp		+
03360	Plumatella sp	5 +	74501	Ceratopogonidae		+
03600	Oligochaeta	283 +	77115	Ablabesmyia janta	16	
04685	Placobdella ornata	+	77500	Conchapelopia sp	48	+
04686	Placobdella papillifera	1	77750	Hayesomyia senata or Thienemannimyia	32	
06201	Hyalella azteca	2 +		norena		
08240	Orconectes (Crokerinus) propinquus	1 +	78101	Labrundinia becki	16	
08601	Hydracarina	+	78140	Labrundinia pilosella	32	
11130	Baetis intercalaris	+	80370	Corynoneura lobata	96	+
11250	Centroptilum sp (w/o hindwing pads)	+	80410	Cricotopus (C.) sp	587	
11651	Procloeon sp (w/o hindwing pads)	10	81231	Nanocladius (N.) crassicornus or N. (N.)	16	
12200	Isonychia sp	+		rectinervus		
13400	Stenacron sp	12 +	82820	Cryptochironomus sp		+
13521	Stenonema femoratum	+	83300	Glyptotendipes (G.) sp	16	+
16200	Eurylophella sp	+	83840	Microtendipes pedellus group	95	+
17200	Caenis sp	64 +	84210	Paratendipes albimanus or P. duplicatus	16	
21200	Calopteryx sp	2	84450	Polypedilum (P.) convictum	127	+
22001	Coenagrionidae	+	84460	Polypedilum (P.) fallax group	79	+
22300	Argia sp	+	84470	Polypedilum (P.) illinoense	16	
24501	Gomphidae	+	84540	Polypedilum (Tripodura) scalaenum group	79	+
34130	Acroneuria frisoni	7 +	84700	Stenochironomus sp	16	
43300	Ranatra sp	+	84750	Stictochironomus sp		+
47600	Sialis sp	+	85625	Rheotanytarsus exiguus group	127	+
50315	Chimarra obscura	+	85800	Tanytarsus sp	429	+
51600	Polycentropus sp	+	85802	Tanytarsus curticornis group	254	
52200	Cheumatopsyche sp	1 +	85814	Tanytarsus glabrescens group	175	+
52430	Ceratopsyche morosa group	+	86200	Tabanus sp		+
57400	Neophylax sp	+	92516	Campeloma decisum		+
57900	Pycnopsyche sp	+	95100	Physella sp	1	+
59110	Ceraclea ancylus	+	96100	Menetus (Micromenetus) sp	6	
59400	Nectopsyche sp	+	96264	Planorbella (Pierosoma) pilsbryi	8	+
60400	Gyrinus sp	+	96900	Ferrissia sp	12	+
63300	Hydroporus sp	1	98600	Sphaerium sp	3	+
65800	Berosus sp	+	99280	Lasmigona costata		+
66500	Enochrus sp	2	99440	Fusconaia flava		+
67700	Paracymus sp	+	99860	Lampsilis radiata luteola		+
67800	Tropisternus sp	+				
68025	Ectopria sp	+	No. Q	Quantitative Taxa: 45 Total T	axa: 79	
68075	Psephenus herricki	8 +	No. C	Qualitative Taxa: 61	ICI: 36	
68201	Scirtidae	8		-	EPT: 16	
68601	Ancyronyx variegata	+	1 Julii	Qual L	. 1. 10	

Collection Date: 08/28/95 River Code: 03-120 River: Mill Creek (Grand R. RM 41.28) RM: 12.10

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant/Qual
01320	Hydra sp	62	78140	Labrundinia pilosella	16
01801	Turbellaria	42 +	80370	Corynoneura lobata	+
03360	Plumatella sp	3 +	80410	Cricotopus (C.) sp	16
03600	Oligochaeta	2018 +	81231	Nanocladius (N.) crassicornus or N. (N.)	6
04666	Helobdella triserialis	+		rectinervus	
06201	Hyalella azteca	31 +	82820	Cryptochironomus sp	+
08240	Orconectes (Crokerinus) propinquus	+	82880	Cryptotendipes sp	+
08601	Hydracarina	+	83040	Dicrotendipes neomodestus	71 +
11651	Procloeon sp (w/o hindwing pads)	23	83051	Dicrotendipes simpsoni	5
11670	Procloeon irrubrum	+	83300	Glyptotendipes (G.) sp	44 +
13521	Stenonema femoratum	34 +	83820	Microtendipes "caelum" (sensu Simpson &	+
15000	Paraleptophlebia sp	63		Bode, 1980)	
16200	Eurylophella sp	11 +	83840	Microtendipes pedellus group	27 +
17200	Caenis sp	132 +	83900	Nilothauma sp	11
22001	Coenagrionidae	34 +	84010	Parachironomus "abortivus" (sensu	6
22300	Argia sp	10		Simpson & Bode, 1980)	_
23804	Basiaeschna janata	+	84060	Parachironomus pectinatellae	5
27610	Epitheca (Tetragoneuria) cynosura	+	84450	Polypedilum (P.) convictum	+
43300	Ranatra sp	+	84460	Polypedilum (P.) fallax group	5
47600	Sialis sp	+	84800	Tribelos jucundum	6
50315	Chimarra obscura	+	84960	Pseudochironomus sp	11
51400	Nyctiophylax sp	24 +	85201	Cladotanytarsus species group A	6
51600	Polycentropus sp	1	85500	Paratanytarsus sp	16
52200	Cheumatopsyche sp	+	85720	Stempellinella n.sp nr. flavidula	5
57400	Neophylax sp	+	85800	Tanytarsus sp	60 +
59100	Ceraclea sp	1	85814	Tanytarsus glabrescens group	27
59110	Ceraclea ancylus	+	86100	Chrysops sp	+
60800	Haliplus sp	+	89560	Hydrellia sp	+
65800	Berosus sp	33 +	95100	Physella sp	55
68075	Psephenus herricki	+	96120	Menetus (Micromenetus) dilatatus	556
68601	Ancyronyx variegata	1 +	96900	Ferrissia sp	75
68708	Dubiraphia vittata group	4 +	98600	Sphaerium sp	+
68901	Macronychus glabratus	+	99100	Pyganodon grandis	+
69400	Stenelmis sp	1 +	99820	Villosa iris iris	+
74501	Ceratopogonidae	8			
77115	Ablabesmyia janta	27	No. Ç	Quantitative Taxa: 47 Total T	°axa: 73
77120	Ablabesmyia mallochi	33 +	No. Q	Qualitative Taxa: 44	ICI: 26
77130	Ablabesmyia rhamphe group	6		-	EPT: 9
77500	Conchapelopia sp	11	1 (0111)	Qual 1	
77750	Hayesomyia senata or Thienemannimyia	6			
	norena				
77800	Helopelopia sp	+			
78101	Labrundinia becki	6			

Collection Date: 08/28/95	River Code: 03-124	River: Cemetery Creek	RM: 2.50

Taxa			Taxa		
Code	Taxa	Quant/Qual	Code	Taxa	Quant/Qual
01801	Turbellaria	+			
03360	Plumatella sp	+			
04664	Helobdella stagnalis	+			
04685	Placobdella ornata	+			
06201	Hyalella azteca	+			
08240	Orconectes (Crokerinus) propinquus	+			
13521	Stenonema femoratum	+			
17200	Caenis sp	+			
21200	Calopteryx sp	+			
22001	Coenagrionidae	+			
23700	Anax sp	+			
28500	Libellula sp	+			
45300	Sigara sp	+			
47600	Sialis sp	+			
63900	Laccophilus sp	+			
66500	Enochrus sp	+			
67700	Paracymus sp	+			
77120	Ablabesmyia mallochi	+			
77500	Conchapelopia sp	+			
78401	Natarsia species A (sensu Roback, 1978)	+			
78650	Procladius sp	+			
81231	Nanocladius (N.) crassicornus or N. (N.) rectinervus	+			
82730	Chironomus (C.) decorus group	+			
83040	Dicrotendipes neomodestus	+			
84210	Paratendipes albimanus or P. duplicatus	+			
84315	Phaenopsectra flavipes	+			
84750	Stictochironomus sp	+			
85500	Paratanytarsus sp	+			
85800	Tanytarsus sp	+			
85814	Tanytarsus glabrescens group	+			
95100	Physella sp	+			
96002	Helisoma anceps anceps	+			
96408	Promenetus umbilicatellus	+			
96900	Ferrissia sp	+			
98600	Sphaerium sp	+			

No. Quantitative Taxa: 0	Total Taxa: 35
No. Qualitative Taxa: 35	ICI:
Number of Organisms: 0	Qual EPT: 2

Number of Organisms: 0

Collection Date: 08/28/95 River Code: 03-124 Ri	iver: Cemetery Creek	RM:	1.30
---	----------------------	-----	------

Taxa			Taxa		
Code	Taxa	Quant/Qual	Code	Taxa	Quant/Qual
04664	Helobdella stagnalis	+			
04960	Mooreobdella sp	+			
06201	Hyalella azteca	+			
08601	Hydracarina	+			
21200	Calopteryx sp	+			
22001	Coenagrionidae	+			
25510	Stylogomphus albistylus	+			
47600	Sialis sp	+			
48620	Nigronia serricornis	+			
52530	Hydropsyche depravata group	+			
67700	Paracymus sp	+			
69400	Stenelmis sp	+			
71700	Pilaria sp	+			
77500	Conchapelopia sp	+			
80420	Cricotopus (C.) bicinctus	+			
82820	Cryptochironomus sp	+			
83040	Dicrotendipes neomodestus	+			
84300	Phaenopsectra obediens group	+			
84450	Polypedilum (P.) convictum	+			
85625	Rheotanytarsus exiguus group	+			
95100	Physella sp	+			
98600	Sphaerium sp	+			
	Quantitative Taxa: 0	Total Taxa: 22			
	-				
No. Ç	Qualitative Taxa: 22	ICI:			

Qual EPT: 1

Collection Date: 08/29/95 River Code: 03-130 River: Rock Creek

RM: 0.80

Taxa	_	_	Taxa	_	_		10
Code	Taxa	Quant/Qua	Code	Taxa	Q	uant	/Qua
01320	Hydra sp	34	80370	Corynoneura lobata		50	+
01801	Turbellaria	59 +	82070	Synorthocladius semivirens		7	
03121	Paludicella articulata	1	82820	Cryptochironomus sp			+
03360	Plumatella sp	+	83040	Dicrotendipes neomodestus		59	
03600	Oligochaeta	108 +	83820	Microtendipes "caelum" (sensu S	Simpson &	7	
04666	Helobdella triserialis	+		Bode, 1980)			
05800	Caecidotea sp	+	83840	Microtendipes pedellus group		15	
06201	Hyalella azteca	14 +	84010	Parachironomus "abortivus" (ser	ısu	7	
08240	Orconectes (Crokerinus) propinquus	2 +		Simpson & Bode, 1980)			
08601	Hydracarina	+	84210	Paratendipes albimanus or P. du	plicatus	22	
11020	Acerpenna pygmaeus	3	84300	Phaenopsectra obediens group		7	
11130	Baetis intercalaris	1 +	84450	Polypedilum (P.) convictum		118	+
11250	Centroptilum sp (w/o hindwing pads)	+	84470	Polypedilum (P.) illinoense		7	+
13400	Stenacron sp	332 +	84520	Polypedilum (Tripodura) haltera			+
13521	Stenonema femoratum	23 +	84540	Polypedilum (Tripodura) scalaen	um group	22	+
13561	Stenonema pulchellum	126 +	84700	Stenochironomus sp		7	
14950	Leptophlebia sp or Paraleptophebia sp	2	85625	Rheotanytarsus exiguus group		110	+
17200	Caenis sp	97 +	85800	Tanytarsus sp		37	
21200	Calopteryx sp	1	85814	Tanytarsus glabrescens group		81	
22001	Coenagrionidae	+	87540	Hemerodromia sp		7	
22300	Argia sp	32 +	95100	Physella sp			+
47600	Sialis sp	+	96120	Menetus (Micromenetus) dilatatu	!S		+
50315	Chimarra obscura	+	96900	Ferrissia sp		4	
52200	Cheumatopsyche sp	3 +					
52430	Ceratopsyche morosa group	+	No. (Quantitative Taxa: 41	Total Taxa:	64	
52530	Hydropsyche depravata group	+	No. (Qualitative Taxa: 46	ICI:	46	
52540	Hydropsyche dicantha	+	Num	per of Organisms: 1479	Qual EPT:	14	
57400	Neophylax sp	+		0			
58505	Helicopsyche borealis	2 +					
59100	Ceraclea sp	2 +					
65800	Berosus sp	+					
66500	Enochrus sp	+					
67800	Tropisternus sp	+					
68075	Psephenus herricki	2 +					
68708	Dubiraphia vittata group	+					
68901	Macronychus glabratus	+					
69400	Stenelmis sp	9 +					
72700	Anopheles sp	+					
72900	Culex sp	+					
77500	Conchapelopia sp	29 +					
77800	Helopelopia sp	15 +					
78450	Nilotanypus fimbriatus	8 +					
78650	Procladius sp	7					

Collection Date: 08/29/95 River Code: 03-150 River: Phelps Creek

RM: 4.90

Taxa			Taxa		
Code	Taxa	Quant/Qual	Code	Taxa	Quant/Qua
00401	Spongillidae	+	83840	Microtendipes pedellus group	85 +
01320	Hydra sp	2	84210	Paratendipes albimanus or P. duplicatus	4
01801	Turbellaria	+	84300	Phaenopsectra obediens group	32
03600	Oligochaeta	+	84315	Phaenopsectra flavipes	4
08240	Orconectes (Crokerinus) propinquus	+	84420	Polypedilum (P.) Type 1	+
11120	Baetis flavistriga	+	84440	Polypedilum (P.) aviceps	+
11250	Centroptilum sp (w/o hindwing pads)	4	84460	Polypedilum (P.) fallax group	11
11651	Procloeon sp (w/o hindwing pads)	11	84470	Polypedilum (P.) illinoense	+
12200	Isonychia sp	+	84480	Polypedilum (P.) laetum group	+
13400	Stenacron sp	8 +	84540	Polypedilum (Tripodura) scalaenum group	y 4
13521	Stenonema femoratum	22 +	84750	Stictochironomus sp	+
13590	Stenonema vicarium	1 +	85262	Cladotanytarsus vanderwulpi group Type	2 4
14950	Leptophlebia sp or Paraleptophebia sp	б +	85500	Paratanytarsus sp	4
15501	Ephemerellidae	2	85625	Rheotanytarsus exiguus group	+
17200	Caenis sp	4 +	85800	Tanytarsus sp	116 +
18600	Ephemera sp	+	85814	Tanytarsus glabrescens group	74
24900	Gomphus sp	+	86401	Atherix lantha	+
25510	Stylogomphus albistylus	+	87540	Hemerodromia sp	2
34130	Acroneuria frisoni	+	96900	Ferrissia sp	4 +
34300	Neoperla clymene complex	+	98200	Pisidium sp	+
48620	Nigronia serricornis	+	98600	Sphaerium sp	+
50301	Chimarra aterrima	+	99180	Strophitus undulatus undulatus	+
51600	Polycentropus sp	+			
52200	Cheumatopsyche sp	+	No. Q	Quantitative Taxa: 26 Total	Taxa: 64
52530	Hydropsyche depravata group	+	No. (Qualitative Taxa: 47	ICI: 36
52540	Hydropsyche dicantha	+		-	EPT: 16
59120	Ceraclea flava complex	+	INUIII	Qual	EF1. 10
63300	Hydroporus sp	+			
68075	Psephenus herricki	+			
69400	Stenelmis sp	+			
71100	Hexatoma sp	+			
74501	Ceratopogonidae	+			
77120	Ablabesmyia mallochi	28 +			
77500	Conchapelopia sp	+			
77750	Hayesomyia senata or Thienemannimyia norena	7			
78140	Labrundinia pilosella	4			
79400	Zavrelimyia sp	+			
80370	Corynoneura lobata	19			
81650	Parametriocnemus sp	+			
81825	Rheocricotopus (Psilocricotopus) robacki	+			
82820	Cryptochironomus sp	+			
83040	Dicrotendipes neomodestus	49			

RM: 5.20

Taxa	_	-		Taxa	-	C	
Code	Taxa	Quant/	Qual	Code	Taxa	Quan	t/Qua
03600	Oligochaeta	24	+	78450	Nilotanypus fimbriatus	127	
08240	Orconectes (Crokerinus) propinquus		+	80410	Cricotopus (C.) sp	55	
11018	Acerpenna macdunnoughi	4		80420	Cricotopus (C.) bicinctus	18	
11120	Baetis flavistriga	1	+	81650	Parametriocnemus sp	18	
11130	Baetis intercalaris	27	+	82820	Cryptochironomus sp		+
11150	Labiobaetis propinquus	1		83040	Dicrotendipes neomodestus	73	+
11651	Procloeon sp (w/o hindwing pads)	2	+	83840	Microtendipes pedellus group	127	
11670	Procloeon irrubrum	3		84460	Polypedilum (P.) fallax group	73	
12200	Isonychia sp	32	+	84540	Polypedilum (Tripodura) scalaenum group	36	
13400	Stenacron sp	56	+	85261	Cladotanytarsus vanderwulpi group Type	1 18	
13521	Stenonema femoratum	13	+	85500	Paratanytarsus sp	91	
13561	Stenonema pulchellum	340		85625	Rheotanytarsus exiguus group	121	+
13590	Stenonema vicarium	110	+	85720	Stempellinella n.sp nr. flavidula	55	
14950	Leptophlebia sp or Paraleptophebia sp	826	+	85800	Tanytarsus sp	55	
16200	Eurylophella sp	123	+	85802	Tanytarsus curticornis group	91	+
17200	Caenis sp	58	+	85814	Tanytarsus glabrescens group	310	
18750	Hexagenia limbata		+	85840	Tanytarsus guerlus group	73	
21200	Calopteryx sp	37	+	86100	Chrysops sp		+
23909	Boyeria vinosa	4	+	86401	Atherix lantha		+
24501	Gomphidae		+	95100	Physella sp		+
26120	Cordulegaster maculata		+	96900	Ferrissia sp	78	+
47600	Sialis sp		+	98200	Pisidium sp		+
48620	Nigronia serricornis	3	+	98600	Sphaerium sp		+
50315	Chimarra obscura	8	+				
50804	Lype diversa		+	No. Ç	Quantitative Taxa: 48 Total 7	Faxa: 66	
51600	Polycentropus sp	3	+	No. C	Dualitative Taxa: 45	ICI: 56	
52200	Cheumatopsyche sp	38	+				
52430	Ceratopsyche morosa group	8	+	INUIIII	Qual	EPT: 18	
52440	Ceratopsyche slossonae		+				
52530	Hydropsyche depravata group		+				
60300	Dineutus sp		+				
67000	Helophorus sp		+				
68130	Helichus sp	1	+				
68700	Dubiraphia sp	1	+				
68901	Macronychus glabratus	42	+				
69210	Optioservus ampliatus		+				
69400	Stenelmis sp	4	+				
71100	Hexatoma sp		+				
74501	Ceratopogonidae	1					
77120	Ablabesmyia mallochi	18					
77500	Conchapelopia sp	200	+				
77800	Helopelopia sp	36					
78140	Labrundinia pilosella	18					

Collection Date: 08/30/95	River Code: 07-001	River: Ashtabula River
---------------------------	--------------------	------------------------

RM: 25.60

Taxa			Taxa			
Code	Taxa	Quant/Qual	Code	Taxa	Quant	/Qua
01320	Hydra sp	72	77120	Ablabesmyia mallochi	21	+
01801	Turbellaria	9 +	77130	Ablabesmyia rhamphe group		+
03360	Plumatella sp	2	77750	Hayesomyia senata or Thienemannimyia	21	+
03600	Oligochaeta	387 +		norena		
06201	Hyalella azteca	+	78101	Labrundinia becki	84	
08240	Orconectes (Crokerinus) propinquus	+	78680	Procladius (Psilotanypus) bellus		+
08601	Hydracarina	+	80358	Corynoneura n.sp 8	8	
11651	Procloeon sp (w/o hindwing pads)	2	80370	Corynoneura lobata	37	
13400	Stenacron sp	+	80410	Cricotopus (C.) sp	209	
13521	Stenonema femoratum	10 +	81640	Parakiefferiella poss. coronata	42	
14600	Choroterpes sp	+	82121	Thienemanniella n.sp 3	29	
16200	Eurylophella sp	8	82710	Chironomus (C.) sp	21	
17200	Caenis sp	223 +	82820	Cryptochironomus sp		+
18600	Ephemera sp	+	82880	Cryptotendipes sp	21	
22001	Coenagrionidae	+	83040	Dicrotendipes neomodestus	522	+
22300	Argia sp	+	83051	Dicrotendipes simpsoni	21	
23909	Boyeria vinosa	1	83300	Glyptotendipes (G.) sp	21	
25510	Stylogomphus albistylus	+	83840	Microtendipes pedellus group	84	+
34130	Acroneuria frisoni	+	83900	Nilothauma sp	21	
43300	Ranatra sp	+	84210	Paratendipes albimanus or P. duplicatus	63	
45300	Sigara sp	+	84300	Phaenopsectra obediens group		+
45900	Notonecta sp	+	84302	Phaenopsectra punctipes	21	
47600	Sialis sp	+	84460	Polypedilum (P.) fallax group	42	
51400	Nyctiophylax sp	2 +	84470	Polypedilum (P.) illinoense		+
51600	Polycentropus sp	1	84700	Stenochironomus sp	21	
53800	Hydroptila sp	14	84750	Stictochironomus sp		+
54300	Oxyethira sp	2	84800	Tribelos jucundum	293	
57400	Neophylax sp	+	85230	Cladotanytarsus mancus group		+
57900	Pycnopsyche sp	+	85500	Paratanytarsus sp	21	
58505	Helicopsyche borealis	20 +	85800	Tanytarsus sp		+
59110	Ceraclea ancylus	+	85802	Tanytarsus curticornis group	146	
60900	Peltodytes sp	+	85803	Tanytarsus Type 3	146	
63300	Hydroporus sp	+	85814	Tanytarsus glabrescens group	104	
65800	Berosus sp	9 +	85815	Tanytarsus glabrescens group Type 1	42	+
67000	Helophorus sp	+	95100	Physella sp	14	+
67800	Tropisternus sp	+	96002	Helisoma anceps anceps		+
68025	Ectopria sp	+	98600	Sphaerium sp		+
68075	Psephenus herricki	+	99100	Pyganodon grandis		+
68601	Ancyronyx variegata	9 +	99860	Lampsilis radiata luteola		+
68708	Dubiraphia vittata group	+				
68901	Macronychus glabratus	13 +				
69400	Stenelmis sp	2 +				
77115	Ablabesmyia janta	84				

Collection Date: 08/30/95	5 River Code: 07-001 Rive	er: Ashtabula River	RM: 25.60
Taxa Code Taxa No. Quantitative Taxa: 4 No. Qualitative Taxa: 52		Taxa Code Taxa	Quant/Qual
Number of Organisms: 29	Qual EPT: 11		

Collection Date: 08/30/95 River Code: 07-001 River: Ashtabula River

RM: 19.10

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quan	t/Qua
00401	Spongillidae	+	71100	Hexatoma sp		+
01320	Hydra sp	78	77120	Ablabesmyia mallochi	2	
01801	Turbellaria	б	77130	Ablabesmyia rhamphe group	6	
03040	Fredericella sp	+	77750	Hayesomyia senata or Thienemannimyia	4	+
03360	Plumatella sp	11		norena		
03600	Oligochaeta	18 +	77800	Helopelopia sp		+
04687	Placobdella parasitica	+	78140	Labrundinia pilosella	5	
07860	Cambarus (Puncticambarus) robustus	+	80370	Corynoneura lobata	19	
08240	Orconectes (Crokerinus) propinquus	+	81231	Nanocladius (N.) crassicornus or N. (N.)	4	
08601	Hydracarina	2		rectinervus		
11020	Acerpenna pygmaeus	2	82121	Thienemanniella n.sp 3	2	
11651	Procloeon sp (w/o hindwing pads)	8	83310	Glyptotendipes (Trichotendipes) amplus	2	
13400	Stenacron sp	28 +	83840	Microtendipes pedellus group	31	+
13521	Stenonema femoratum	21 +	84155	Paralauterborniella nigrohalteralis		+
13561	Stenonema pulchellum	9	84210	Paratendipes albimanus or P. duplicatus	2	+
14600	Choroterpes sp	+	84300	Phaenopsectra obediens group	4	
14950	Leptophlebia sp or Paraleptophebia sp	4	84460	Polypedilum (P.) fallax group	12	
16700	Tricorythodes sp	1	84540	Polypedilum (Tripodura) scalaenum grou	<i>up</i> 14	+
18600	Ephemera sp	+	84750	Stictochironomus sp		+
22001	Coenagrionidae	1 +	84800	Tribelos jucundum	6	+
22300	Argia sp	2 +	84888	Xenochironomus xenolabis		+
24900	Gomphus sp	+	85625	Rheotanytarsus exiguus group	14	
30000	Plecoptera	1	85802	Tanytarsus curticornis group	61	
34130	Acroneuria frisoni	8 +	85814	Tanytarsus glabrescens group	14	
43300	Ranatra sp	1 +	86100	Chrysops sp		+
47600	Sialis sp	- ·	87540	Hemerodromia sp	4	
51400	Nyctiophylax sp	+	93900	Elimia sp	74	+
51600	Polycentropus sp	+	95100	Physella sp	1	+
57400	Neophylax sp	+	96900	Ferrissia sp	50	
57400	Pycnopsyche sp	+	98600	Sphaerium sp		+
58505	Helicopsyche borealis	2				
		1 +	No. (Quantitative Taxa: 44 Total	Taxa: 71	
59110	Ceraclea ancylus	1 +		Qualitative Taxa: 46		
59970 60300	Petrophila sp				ICI: 32	
	Dineutus sp	+	Num	per of Organisms: 631 Qual	EPT: 10	
60900	Peltodytes sp	+				
63300	Hydroporus sp	+				
65700 68025	Anacaena sp Estopyia sp	+				
	Ectopria sp	+				
68075	Psephenus herricki	+ 2.				
68601	Ancyronyx variegata	2 +				
68708	Dubiraphia vittata group	+				
68901	Macronychus glabratus	27 +				
69400	Stenelmis sp	66 +				

Collection Date: 08/30/95 River Code: 07-001 River: Ashtabula River

RM: 11.90

Taxa Code	Taxa	Quant/Q	119]	Taxa Code	Taxa		Quant	/0112
Code	1 4 X 4	Quant/Q		Code			Quain	Qua
01320	Hydra sp	224		82101	Thienemanniella n.sp 1			+
01801	Turbellaria	16		82730	Chironomus (C.) decorus group			+
03360	Plumatella sp	4		82820	Cryptochironomus sp			+
03600	Oligochaeta	380 +		82880	Cryptotendipes sp			+
08240	Orconectes (Crokerinus) propinquus	+		83040	Dicrotendipes neomodestus		181	+
11130	Baetis intercalaris	+		83840	Microtendipes pedellus group		9	+
11650	Procloeon sp (w/ hindwing pads)	+		84060	Parachironomus pectinatellae		9	
11651	Procloeon sp (w/o hindwing pads)	2		84300	Phaenopsectra obediens group		9	
13400	Stenacron sp	62 +		84450	Polypedilum (P.) convictum		9	
13521	Stenonema femoratum	14 +		84540	Polypedilum (Tripodura) scalaen	um group	43	+
13590	Stenonema vicarium	21		85625	Rheotanytarsus exiguus group		155	
14600	Choroterpes sp	1		85800	Tanytarsus sp			+
14950	Leptophlebia sp or Paraleptophebia sp	36		85802	Tanytarsus curticornis group		77	
16200	Eurylophella sp	4		85814	Tanytarsus glabrescens group		95	+
17200	Caenis sp	144 +		85840	Tanytarsus guerlus group		155	
18600	Ephemera sp	+		86401	Atherix lantha			+
22001	Coenagrionidae	+		87540	Hemerodromia sp		60	
22300	Argia sp	2 +		93900	Elimia sp		18	+
34130	Acroneuria frisoni	8 +		95100	Physella sp		843	+
47600	Sialis sp	+		96280	Planorbella (Pierosoma) trivolvis			+
52540	Hydropsyche dicantha	+		96900	Ferrissia sp		4	+
54200	Orthotrichia sp	2						
59110	Ceraclea ancylus	1 +		No. Q	Quantitative Taxa: 40	Total Tax	a: 63	
59310	Mystacides sepulchralis	1		No (Qualitative Taxa: 38	IC	I: 28	
59510	Oecetis avara	7			-		-	
60300	Dineutus sp	+		INUIII	per of Organisms: 2751	Qual EP	Г: 9	
66500	Enochrus sp	+						
67500	Laccobius sp	+						
68075	Psephenus herricki	+						
68901	Macronychus glabratus	28						
69400	Stenelmis sp	25 +						
71900	Tipula sp	+						
77120	Ablabesmyia mallochi	9						
77500	Conchapelopia sp	9						
77750	Hayesomyia senata or Thienemannimyia	26						
	norena							
77800	Helopelopia sp	+						
78140	Labrundinia pilosella	9						
78655	Procladius (Holotanypus) sp	+						
80370	Corynoneura lobata	32						
80420	Cricotopus (C.) bicinctus	+						
80646	Epoicocladius sp 3 (sensu Jacobsen, 1992)	+						
81250	Nanocladius (N.) minimus	17						

Collection Date: 08/30/95	River Code: 07-001	River: Ashtabula River
---------------------------	--------------------	------------------------

RM: 3.60

Taxa			Taxa		-	
Code	Taxa	Quant/Qual	Code	Taxa	Quant	/Qua
00401	Spongillidae	+	77120	Ablabesmyia mallochi	4	
01320	Hydra sp	18	77750	Hayesomyia senata or Thienemannimyia	<i>i</i> 4	
01801	Turbellaria	58 +		norena		
03360	Plumatella sp	7	77800	Helopelopia sp	4	+
03600	Oligochaeta	б +	78140	Labrundinia pilosella	2	
04935	Erpobdella punctata punctata	+	78655	Procladius (Holotanypus) sp		+
06810	Gammarus fasciatus	1	80360	Corynoneura "celeripes" (sensu Simpson	<i>ı</i> & 4	
08240	Orconectes (Crokerinus) propinquus	+		Bode, 1980)		
11020	Acerpenna pygmaeus	9 +	80370	Corynoneura lobata	26	+
11101	Baetis sp (w/o hindwing pads)	+	80420	Cricotopus (C.) bicinctus		+
11130	Baetis intercalaris	+	81250	Nanocladius (N.) minimus	11	
11651	Procloeon sp (w/o hindwing pads)	3	82121	Thienemanniella n.sp 3	б	
12200	Isonychia sp	+	82220	Tvetenia discoloripes group		+
13000	Leucrocuta sp	1	83040	Dicrotendipes neomodestus	45	+
13400	Stenacron sp	39 +	83840	Microtendipes pedellus group	8	
13521	Stenonema femoratum	+	84450	Polypedilum (P.) convictum		+
13590	Stenonema vicarium	4	84460	Polypedilum (P.) fallax group	8	
16700	Tricorythodes sp	32 +	84470	Polypedilum (P.) illinoense		+
17200	Caenis sp	14 +	84750	Stictochironomus sp		+
18600	Ephemera sp	+	84888	Xenochironomus xenolabis		+
22300	Argia sp	+	85210	Cladotanytarsus species group B	4	
25510	Stylogomphus albistylus	+	85625	Rheotanytarsus exiguus group	53	+
28955	Libellula lydia	+	85800	Tanytarsus sp	11	
34130	Acroneuria frisoni	1 +	85802	Tanytarsus curticornis group	23	
42700	Belostoma sp	+	85814	Tanytarsus glabrescens group	233	
45300	Sigara sp	+	85840	Tanytarsus guerlus group	19	+
47600	Sialis sp	+	86401	Atherix lantha		+
50315	Chimarra obscura	+	87540	Hemerodromia sp	4	
51600	Polycentropus sp	1	95100	Physella sp	6	+
52200	Cheumatopsyche sp	1 +	96900	Ferrissia sp	8	+
52430	Ceratopsyche morosa group	+				
52540	Hydropsyche dicantha	+	No. Q	Quantitative Taxa: 40 Tota	l Taxa: 71	
59110	Ceraclea ancylus	1 +	No. Ç	Qualitative Taxa: 48	ICI: 46	
59120	Ceraclea flava complex	+	Numl	per of Organisms: 701 Qua	l EPT: 16	
59510	Oecetis avara	13				
60900	Peltodytes sp	+				
63900	Laccophilus sp	+				
65800	Berosus sp	+				
68075	Psephenus herricki	7 +				
68601	Ancyronyx variegata	1				
68700	Dubiraphia sp	+				
69400	Stenelmis sp	+				
74673	Atrichopogon websteri	1				

Collection Date: 08/30/95 River Code: 07-001 River: Ashtabula River

RM: 2.50

Taxa			Taxa			
Code	Taxa	Quant/Qual		Taxa	Quant	/Qual
01200	Cordylophora lacustris	+	80500	Cricotopus (Isocladius) reversus group	11	+
01320	Hydra sp	866	81231	Nanocladius (N.) crassicornus or N. (N.)	11	
01801	Turbellaria	190 +		rectinervus		
03360	Plumatella sp	1 +	81240	Nanocladius (N.) distinctus	44	+
03451	Urnatella gracilis	8	81250	Nanocladius (N.) minimus	11	
03600	Oligochaeta	1953 +	82820	Cryptochironomus sp		+
04686	Placobdella papillifera	+	83002	Dicrotendipes modestus		+
05800	Caecidotea sp	+	83040	Dicrotendipes neomodestus	338	+
06700	Crangonyx sp	+	83050	Dicrotendipes lucifer	98	+
06810	Gammarus fasciatus	88 +	83051	Dicrotendipes simpsoni	164	
11651	Procloeon sp (w/o hindwing pads)	2	83158	Endochironomus nigricans	44	+
13400	Stenacron sp	5 +	83300	Glyptotendipes (G.) sp	11	
13521	Stenonema femoratum	5	83840	Microtendipes pedellus group	87	
15501	Ephemerellidae	16	84020	Parachironomus carinatus	55	
16700	Tricorythodes sp	19	84030	Parachironomus directus	11	
17200	Caenis sp	264 +	84040	Parachironomus frequens	11	+
18600	Ephemera sp	+	84450	Polypedilum (P.) convictum	11	
22001	Coenagrionidae	+	84470	Polypedilum (P.) illinoense		+
22300	Argia sp	6 +	84520	Polypedilum (Tripodura) halterale group		+
43300	Ranatra sp	+	85500	Paratanytarsus sp	11	
45400	Trichocorixa sp	+	85720	Stempellinella n.sp nr. flavidula	11	
47600	Sialis sp	1	85800	Tanytarsus sp	33	+
51206	Cyrnellus fraternus	38 +	85802	Tanytarsus curticornis group	22	
51600	Polycentropus sp	91 +	85814	Tanytarsus glabrescens group	65	+
59001	Leptoceridae	1	85840	Tanytarsus guerlus group	11	
59310	Mystacides sepulchralis	+	93900	Elimia sp		+
60300	Dineutus sp	+	94400	Fossaria sp		+
60400	Gyrinus sp	+	95100	Physella sp	20	+
60900	Peltodytes sp	+	95907	Gyraulus (Torquis) parvus		+
63300	Hydroporus sp	+	96900	Ferrissia sp	15	
63900	Laccophilus sp	+	97710	Dreissena polymorpha	16	+
67000	Helophorus sp	+				
68700	Dubiraphia sp	1	No. Ç	Quantitative Taxa: 46 Total T	'axa: 72	
68901	Macronychus glabratus	1 +	No. C	Qualitative Taxa: 47	ICI: 34	
69400	Stenelmis sp	+		-	EPT: 6	
77115	Ablabesmyia janta	55 +	Tunn	Qual 1	211. 0	
77120	Ablabesmyia mallochi	22				
77355	Clinotanypus pinguis	+				
77750	Hayesomyia senata or Thienemannimyia norena	+				
77800	Helopelopia sp	22				
78650	Procladius sp	+				
80410	Cricotopus (C.) sp	11				

Collection Date: 08/30/95	River Code: 07-001	River: Ashtabula River	RM:	2.30
---------------------------	--------------------	------------------------	-----	------

Taxa	The second se		Taxa	m	
Code	Taxa	Quant/Qu	al Code	Taxa	Quant/Qu
00401	Spongillidae	+	83050	Dicrotendipes lucifer	294
01200	Cordylophora lacustris	1	83051	Dicrotendipes simpsoni	483 +
01320	Hydra sp	32	83158	Endochironomus nigricans	231 +
01801	Turbellaria	250 +	83300	Glyptotendipes (G.) sp	294 +
03073	Lophopodella carteri	+	83310	Glyptotendipes (Trichotendipes	s) amplus 21
03337	Hyalinella punctata	8 +	84030	Parachironomus directus	21 +
03360	Plumatella sp	+	84040	Parachironomus frequens	21 +
03600	Oligochaeta	1672 +	84470	Polypedilum (P.) illinoense	+
04664	Helobdella stagnalis	+	84520	Polypedilum (Tripodura) halte	rale group 42 +
04687	Placobdella parasitica	+	84888	Xenochironomus xenolabis	+
05800	Caecidotea sp	+	85800	Tanytarsus sp	42 +
06810	Gammarus fasciatus	70 +	85814	Tanytarsus glabrescens group	42
13400	Stenacron sp	3 +	94400	Fossaria sp	+
13521	Stenonema femoratum	5 +	95100	Physella sp	1 +
16200	Eurylophella sp	16	95907	Gyraulus (Torquis) parvus	+
17200	Caenis sp	400 +	96120	Menetus (Micromenetus) dilato	<i>utus</i> 9 +
22001	Coenagrionidae	21 +	96900	Ferrissia sp	+
22300	Argia sp	6 +	97710	Dreissena polymorpha	16 +
23909	Boyeria vinosa	+			
27610	Epitheca (Tetragoneuria) cynosura	1	No. (Quantitative Taxa: 39	Total Taxa: 61
28908	Perithemis tenera	+	No. (Qualitative Taxa: 46	ICI: 26
45400	Trichocorixa sp	+		-	
51206	Cyrnellus fraternus	62	INUIII	ber of Organisms: 4467	Qual EPT: 6
51600	Polycentropus sp	9 +			
53800	Hydroptila sp	16			
54200	Orthotrichia sp	8			
54300	Oxyethira sp	8			
59520	Oecetis cinerascens	+			
59570	Oecetis nocturna	+			
60900	Peltodytes sp	+			
65800	Berosus sp	2 +			
69400	Stenelmis sp	26			
74501	Ceratopogonidae	40			
77115	Ablabesmyia janta	+			
77120	Ablabesmyia mallochi	+			
77130	Ablabesmyia rhamphe group	21 +			
77355	Clinotanypus pinguis	+			
78655	Procladius (Holotanypus) sp	+			
81250	Nanocladius (N.) minimus	21 +			
82730	Chironomus (C.) decorus group	21 +			
82820	Cryptochironomus sp	+			
83002	Dicrotendipes modestus	21			
83040	Dicrotendipes neomodestus	210			

Collection Date: 08/30/95	River Code: 07-001	River: Ashtabula River	RM:	1.30

Taxa				Taxa		
Code	Taxa	Quant	/Qual	Code	Taxa	Quant/Qual
00401	Spongillidae		+			
01200	Cordylophora lacustris	1				
01801	Turbellaria	498				
03360	Plumatella sp		+			
03600	Oligochaeta		+			
05800	Caecidotea sp	1	+			
06810	Gammarus fasciatus	52	+			
08601	Hydracarina	8				
17200	Caenis sp	8	+			
22001	Coenagrionidae	76	+			
22300	Argia sp	83	+			
23704	Anax junius	1				
27307	Epitheca (Epicordulia) princeps		+			
27610	Epitheca (Tetragoneuria) cynosura		+			
49200	Climacia sp		+			
53600	Agraylea sp		+			
59520	Oecetis cinerascens	9	+			
69400	Stenelmis sp	8				
77130	Ablabesmyia rhamphe group	178	+			
81231	Nanocladius (N.) crassicornus or N. (N.) rectinervus	59				
81240	Nanocladius (N.) distinctus	59				
83000	Dicrotendipes sp	59				
83051	Dicrotendipes simpsoni	475				
83158	Endochironomus nigricans	119	+			
83300	Glyptotendipes (G.) sp	4271	+			
84030	Parachironomus directus		+			
84050	Parachironomus "hirtalatus" (sensu Simpson & Bode, 1980)	59				
84450	Polypedilum (P.) convictum		+			
84888	Xenochironomus xenolabis		+			
93025	Bithynia tentaculata		+			
95100	Physella sp	72	+			
96120	Menetus (Micromenetus) dilatatus	34	+			
96900	Ferrissia sp	58				
97710	Dreissena polymorpha	95	+			
No. Ç	Qualitative Taxa: 23	Taxa: 34 ICI: 12 EPT: 3				

Collection Date: 08/31/95 River Code: 07-001	River: Ashtabula River	RM: 0.80
--	------------------------	----------

Taxa				Taxa		
Code	Taxa	Quant/O	Qual	Code	Taxa	Quant/Qual
00653	Eunapius fragilis		+			
01320	Hydra sp	24				
01801	Turbellaria	394	+			
03600	Oligochaeta	2033	+			
04935	Erpobdella punctata punctata		+			
05800	Caecidotea sp	79	+			
06810	Gammarus fasciatus	560	+			
08601	Hydracarina	8				
17200	Caenis sp	16				
22001	Coenagrionidae	4	+			
52410	Ceratopsyche alternans	2				
53600	Agraylea sp		+			
53800	Hydroptila sp	12	+			
59300	Mystacides sp		+			
68901	Macronychus glabratus	1	+			
77130	Ablabesmyia rhamphe group	15				
80500	Cricotopus (Isocladius) reversus group	22				
80510	Cricotopus (Isocladius) sylvestris group		+			
82121	Thienemanniella n.sp 3	15				
83002	Dicrotendipes modestus	29				
83040	Dicrotendipes neomodestus	7				
83050	Dicrotendipes lucifer	7				
83051	Dicrotendipes simpsoni	196				
83158	Endochironomus nigricans	269	+			
83300	Glyptotendipes (G.) sp	44				
83840	Microtendipes pedellus group	15				
84050	Parachironomus "hirtalatus" (sensu Simpson & Bode, 1980)	7	+			
84470	Polypedilum (P.) illinoense	29	+			
84520	Polypedilum (Tripodura) halterale group	29				
84960	Pseudochironomus sp	15				
85500	Paratanytarsus sp	15				
95100	Physella sp		+			
96264	Planorbella (Pierosoma) pilsbryi		+			
97710	Dreissena polymorpha	7712	+			
No C	Quantitative Taxa: 27 Total T	'axa: 34				

No. Quantitative Taxa: 27	Total Taxa: 34
No. Qualitative Taxa: 18	ICI: 16
Number of Organisms: 11559	Qual EPT: 3

Collection Date: 08/30/95 River Code: 07-004 River: West Branch Ashtabula River RM: 1.80

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant/Qua
01320	Hydra sp	365	77800	Helopelopia sp	+
01801	Turbellaria	478 +	78101	Labrundinia becki	20
03600	Oligochaeta	219 +	78140	Labrundinia pilosella	20
04935	Erpobdella punctata punctata	+	80360	Corynoneura "celeripes" (sensu Simpson &	48
06201	Hyalella azteca	+		Bode, 1980)	
08240	Orconectes (Crokerinus) propinquus	+	80370	Corynoneura lobata	309 +
11200	Callibaetis sp	+	81240	Nanocladius (N.) distinctus	20
11651	Procloeon sp (w/o hindwing pads)	4	82121	Thienemanniella n.sp 3	137
12501	Heptageniidae	2	82730	Chironomus (C.) decorus group	+
13400	Stenacron sp	43 +	82820	Cryptochironomus sp	+
13521	Stenonema femoratum	189 +	83040	Dicrotendipes neomodestus	1466 +
17200	Caenis sp	98 +	83840	Microtendipes pedellus group	+
22001	Coenagrionidae	1 +	84010	Parachironomus "abortivus" (sensu	+
22300	Argia sp	+		Simpson & Bode, 1980)	
23804	Basiaeschna janata	+	84210	Paratendipes albimanus or P. duplicatus	+
24900	Gomphus sp	+	84300	Phaenopsectra obediens group	20 +
25510	Stylogomphus albistylus	+	84470	Polypedilum (P.) illinoense	+
27610	Epitheca (Tetragoneuria) cynosura	+	84540	Polypedilum (Tripodura) scalaenum group	+
28500	Libellula sp	+	84750	Stictochironomus sp	+
28955	Libellula lydia	+	84800	Tribelos jucundum	+
34130	Acroneuria frisoni	1 +	85230	Cladotanytarsus mancus group	+
43300	Ranatra sp	+	85710	Stempellinella sp	+
45300	Sigara sp	+	85800	Tanytarsus sp	156
47600	Sialis sp	+	85814	Tanytarsus glabrescens group	20 +
51400	Nyctiophylax sp	25 +	85840	Tanytarsus guerlus group	39
51600	Polycentropus sp	1 +	95100	Physella sp	42 +
57400	Neophylax sp	+	96002	Helisoma anceps anceps	11 +
57900	Pycnopsyche sp	1 +	96280	Planorbella (Pierosoma) trivolvis	б +
58505	Helicopsyche borealis	+	96801	Ancylidae	+
59120	Ceraclea flava complex	+	98600	Sphaerium sp	+
59970	Petrophila sp	+	99860	Lampsilis radiata luteola	+
60900	Peltodytes sp	+			
65800	Berosus sp	2 +	No. Q	Quantitative Taxa: 30 Total Ta	axa: 71
68025	Ectopria sp	+	No. C	Qualitative Taxa: 59 I	CI: 32
68075	Psephenus herricki	+		-	PT: 11
68708	Dubiraphia vittata group	+	INUIIII	Qual E	FI. II
69400	Stenelmis sp	+			
72700	Anopheles sp	+			
74501	Ceratopogonidae	+			
77120	Ablabesmyia mallochi	137			
77355	Clinotanypus pinguis	+			
77750	Hayesomyia senata or Thienemannimyia	20			
	norena	-			

Collection Date: 08/30/95 River Code: 07-005 River: East Branch Ashtabula River RM: 1.40

Taxa			Taxa		
Code	Taxa	Quant/Qual		Taxa	Quant/Qua
01801	Turbellaria	+	96280	Planorbella (Pierosoma) trivolvis	+
03360	Plumatella sp	+	98200	Pisidium sp	+
03600	Oligochaeta	+	98600	Sphaerium sp	+
06201	Hyalella azteca	+	99180	Strophitus undulatus undulatus	+
08240	Orconectes (Crokerinus) propinquus	+			
13400	Stenacron sp	+	No (Quantitative Taxa: ()	Total Taxa: 46
13521	Stenonema femoratum	+		-	
14600	Choroterpes sp	+		Qualitative Taxa: 46	ICI:
17200	Caenis sp	+	Num	per of Organisms: 0	Qual EPT: 9
22001	Coenagrionidae	+			
23804	Basiaeschna janata	+			
28511	Libellula luctuosa	+			
28955	Libellula lydia	+			
34130	Acroneuria frisoni	+			
45100	Palmacorixa sp	+			
45300	Sigara sp	+			
47600	Sialis sp	+			
57400	Neophylax sp	+			
57900	Pycnopsyche sp	+			
58505	Helicopsyche borealis	+			
59110	Ceraclea ancylus	+			
60900	Peltodytes sp	+			
65800	Berosus sp	+			
66500	Enochrus sp	+			
67800	Tropisternus sp	+			
68025	Ectopria sp	+			
68075	Psephenus herricki	+			
68601	Ancyronyx variegata	+			
68700	Dubiraphia sp	+			
69400	Stenelmis sp	+			
77500	Conchapelopia sp	+			
77750	Hayesomyia senata or Thienemannimyia	+			
	norena				
82820	Cryptochironomus sp	+			
83040	Dicrotendipes neomodestus	+			
83840	Microtendipes pedellus group	+			
84540	Polypedilum (Tripodura) scalaenum group	+			
84750	Stictochironomus sp	+			
85230	Cladotanytarsus mancus group	+			
85800	Tanytarsus sp	+			
85802	Tanytarsus curticornis group	+			
85814	Tanytarsus glabrescens group	+			
96002	Helisoma anceps anceps	+			

	Collection Date: 08/29/95 River Code: 07-007				vles Creek	RM: 7.10	
Taxa Code	Taxa	Quant/0	Qual	Taxa Code	Taxa	Qu	ant/Qua
03360	Plumatella sp		+	85814	Tanytarsus glabrescens group		2
03600	Oligochaeta	1	+	87400	Stratiomys sp		+
06201	Hyalella azteca		+	95100	Physella sp		+
08240	Orconectes (Crokerinus) propinquus	4	+	96900	Ferrissia sp		2 +
11651	Procloeon sp (w/o hindwing pads)		+	98600	Sphaerium sp		+
13400	Stenacron sp	1	+				
13521	Stenonema femoratum	1	+	No. (Quantitative Taxa: 22	Total Taxa:	47
14950	Leptophlebia sp or Paraleptophebia sp	13	+	No. (Qualitative Taxa: 36	ICI:	24
17200	Caenis sp	3	+		ber of Organisms: 115	Qual EPT:	
18704	Hexagenia atrocaudata		+	INUIII	ber of Organishis. 115	Qual EP1:	9
18750	Hexagenia limbata		+				
21200	Calopteryx sp		+				
23909	Boyeria vinosa		+				
27500	Somatochlora sp		+				
45000	Hesperocorixa sp		+				
47600	Sialis sp		+				
57900	Pycnopsyche sp		+				
58505	Helicopsyche borealis		+				
63300	Hydroporus sp		+				
66500	Enochrus sp		+				
67500	Laccobius sp		+				
68025	Ectopria sp		+				
68901	Macronychus glabratus		+				
72420	Chaoborus sp		+				
72501	Culicidae		+				
77120	Ablabesmyia mallochi	7					
78140	Labrundinia pilosella	1					
78650	Procladius sp		+				
80370	Corynoneura lobata	2					
82730	Chironomus (C.) decorus group	4					
82820	Cryptochironomus sp		+				
83040	Dicrotendipes neomodestus	2					
83820	Microtendipes "caelum" (sensu Simpson & Bode, 1980)	2					
83840	Microtendipes pedellus group	12	+				
84210	Paratendipes albimanus or P. duplicatus	20	+				
84460	Polypedilum (P.) fallax group	7					
84750	Stictochironomus sp	1	+				
84800	Tribelos jucundum	12					
84960	Pseudochironomus sp		+				
85500	Paratanytarsus sp	б	+				
85501	Paratanytarsus n.sp 1	8					
85800	Tanytarsus sp	4					

Collection Date: 08/29/95 River Code: 07-007 River: Cowles Creek

RM: 7.10

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant/Qua
03600	Oligochaeta	+			
07860	Cambarus (Puncticambarus) robustus	+	No. Quant	itative Taxa: 18	Total Taxa: 41
08240	Orconectes (Crokerinus) propinquus	+		ative Taxa: 31	ICI: 20
L3400	Stenacron sp	+			
L3521	Stenonema femoratum	1 +	Number of	f Organisms: 56	Qual EPT: 6
L7200	Caenis sp	1 +			
L8750	Hexagenia limbata	+			
21200	Calopteryx sp	+			
15300	Sigara sp	+			
17600	Sialis sp	+			
50301	Chimarra aterrima	+			
52200	Cheumatopsyche sp	+			
58075	Psephenus herricki	+			
59400	Stenelmis sp	+			
70700	Dicranota sp	+			
71100	Hexatoma sp	+			
71900	Tipula sp	+			
77120	Ablabesmyia mallochi	3 +			
78401	Natarsia species A (sensu Roback, 1978)	+			
79100	Thienemannimyia group	1			
30370	Corynoneura lobata	7 +			
31650	Parametriocnemus sp	+			
32730	Chironomus (C.) decorus group	3			
33003	Dicrotendipes fumidus	3			
33040	Dicrotendipes neomodestus	4			
33840	Microtendipes pedellus group	6			
34210	Paratendipes albimanus or P. duplicatus	4			
34300	Phaenopsectra obediens group	4			
34450	Polypedilum (P.) convictum	1 +			
34460	Polypedilum (P.) fallax group	4 +			
34470	Polypedilum (P.) illinoense	+			
34480	Polypedilum (P.) laetum group	+			
34750	Stictochironomus sp	+			
35501	Paratanytarsus n.sp 1	1			
35625	Rheotanytarsus exiguus group	8 +			
35800	Tanytarsus sp	1			
35814	Tanytarsus glabrescens group	3			
36401	Atherix lantha	+			
95100	Physella sp	+			
96900	Ferrissia sp	1 +			
98600	Sphaerium sp	+			

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant/Qual
01801	Turbellaria	2 +	96900	Ferrissia sp	101 +
03600	Oligochaeta	103 +	98200	Pisidium sp	+
04664	Helobdella stagnalis	32	98600	Sphaerium sp	+
04682	Placobdella montifera	+			
04687	Placobdella parasitica	+	No. (Quantitative Taxa: 25	Total Taxa: 46
06700	Crangonyx sp	+	No. (Qualitative Taxa: 35	ICI: 14
08240	Orconectes (Crokerinus) propinquus	3 +		ber of Organisms: 481	Qual EPT: 5
11120	Baetis flavistriga	+	INUIII	ber of Organishis. 401	Qual EP1. 3
11130	Baetis intercalaris	+			
21200	Calopteryx sp	4 +			
21300	Hetaerina sp	3			
22300	Argia sp	+			
23905	Boyeria grafiana	+			
23909	Boyeria vinosa	+			
47600	Sialis sp	1 +			
52200	Cheumatopsyche sp	+			
52530	Hydropsyche depravata group	+			
53800	Hydroptila sp	+			
63300	Hydroporus sp	+			
66500	Enochrus sp	+			
67800	Tropisternus sp	+			
68708	Dubiraphia vittata group	+			
69400	Stenelmis sp	1 +			
77120	Ablabesmyia mallochi	23 +			
77500	Conchapelopia sp	8 +			
77800	Helopelopia sp	+			
78401	Natarsia species A (sensu Roback, 1978)	1 +			
78450	Nilotanypus fimbriatus	1			
82730	Chironomus (C.) decorus group	3			
82820	Cryptochironomus sp	+			
83040	Dicrotendipes neomodestus	9			
84210	Paratendipes albimanus or P. duplicatus	41 +			
84300	Phaenopsectra obediens group	35 +			
84410	Polypedilum (Pentapedilum) tritum	1			
84450	Polypedilum (P.) convictum	+			
84460	Polypedilum (P.) fallax group	4			
84540	Polypedilum (Tripodura) scalaenum group	3 +			
84750	Stictochironomus sp	+			
84790	Tribelos fuscicorne	1			
85500	Paratanytarsus sp	44			
85800	Tanytarsus sp	3			
35814	Tanytarsus glabrescens group	1			
		5.0			

53 **+**

95100 Physella sp

Taxa Code	Taxa	Quant/Qua	Taxa Il Code	Taxa	Quant/Qua
03000	Ectoprocta	1	95904	Gyraulus (G.) deflectus	1
03600	Oligochaeta	223 +	96900	Ferrissia sp	193 +
04935	Erpobdella punctata punctata	+	98200	Pisidium sp	45 +
07860	Cambarus (Puncticambarus) robustus	+			
08240	Orconectes (Crokerinus) propinquus	+	No. (Quantitative Taxa: 30	Total Taxa: 45
11120	Baetis flavistriga	+		Qualitative Taxa: 32	ICI: 14
21200	Calopteryx sp	32 +		-	
21300	Hetaerina sp	+	INUIII	ber of Organisms: 1520	Qual EPT: 3
22001	Coenagrionidae	10 +			
23600	Aeshna sp	+			
24900	Gomphus sp	+			
47600	Sialis sp	10 +			
52200	Cheumatopsyche sp	7 +			
52530	Hydropsyche depravata group	+			
66500	Enochrus sp	+			
68075	Psephenus herricki	1			
68700	Dubiraphia sp	+			
69400	Stenelmis sp	3 +			
71900	Tipula sp	+			
72501	Culicidae	1 +			
77500	Conchapelopia sp	216 +			
77800	Helopelopia sp	225			
78401	Natarsia species A (sensu Roback, 1978)	4 +			
78402	Natarsia baltimoreus	4 +			
78650	Procladius sp	+			
78750	Rheopelopia paramaculipennis	+			
81231	Nanocladius (N.) crassicornus or N. (N.) rectinervus	92			
81270	Nanocladius (N.) spiniplenus	8			
82820	Cryptochironomus sp	8 +			
83040	Dicrotendipes neomodestus	8			
84300	Phaenopsectra obediens group	100 +			
84315	Phaenopsectra flavipes	8			
84450	Polypedilum (P.) convictum	8			
84460	Polypedilum (P.) fallax group	17 +			
84470	Polypedilum (P.) illinoense	75 +			
84480	Polypedilum (P.) laetum group	+			
84750	Stictochironomus sp	+			
84800	Tribelos jucundum	8			
85814	Tanytarsus glabrescens group	8			
85840	Tanytarsus guerlus group	8			
95100	Physella sp	194 +			
95900	Gyraulus sp	2			

Taxa Code	Taxa	Quant/Qual	Taxa Code Taxa	Quant/Qua
01801	Turbellaria	8 +		
03039	Fredericellidae	1	No. Quantitative Taxa: 23	Total Taxa: 40
03360	Plumatella sp	2 +	No. Qualitative Taxa: 32	
03600	Oligochaeta	120 +		ICI: 16
08240	Orconectes (Crokerinus) propinquus	+	Number of Organisms: 1900	Qual EPT: 2
L1120	Baetis flavistriga	+		
21200	Calopteryx sp	42 +		
23600	Aeshna sp	+		
24900	Gomphus sp	+		
27500	Somatochlora sp	+		
17600	Sialis sp	+		
52200	Cheumatopsyche sp	9 +		
53300	Hydroporus sp	+		
57000	Helophorus sp	+		
58700	Dubiraphia sp	+		
59400	Stenelmis sp	+		
71910	Tipula abdominalis	+		
77500	Conchapelopia sp	188 +		
77800	Helopelopia sp	548		
78350	Meropelopia sp	78		
78401	Natarsia species A (sensu Roback, 1978)	+		
78402	Natarsia baltimoreus	+		
78450	Nilotanypus fimbriatus	8		
31231	Nanocladius (N.) crassicornus or N. (N.) rectinervus	47 +		
32730	Chironomus (C.) decorus group	+		
32820	Cryptochironomus sp	+		
33040	Dicrotendipes neomodestus	31		
34210	Paratendipes albimanus or P. duplicatus	47 +		
34300	Phaenopsectra obediens group	188 +		
34450	Polypedilum (P.) convictum	31 +		
34470	Polypedilum (P.) illinoense	31 +		
35500	Paratanytarsus sp	16		
35625	Rheotanytarsus exiguus group	16		
35800	Tanytarsus sp	31 +		
35814	Tanytarsus glabrescens group	172 +		
35840	Tanytarsus guerlus group	+		
36200	Tabanus sp	+		
94400	Fossaria sp	9		
95100	Physella sp	37 +		
96900	Ferrissia sp	240 +		

Collection Date: 08/29/95 River Code: 07-007 River	Cowles Creek
--	--------------

Taxa				Taxa				
Code	Taxa	Quant/Q	Qual	Code	Taxa	Qu	iant	/Qual
00653	Eunapius fragilis	-	÷	84790	Tribelos fuscicorne		7	
01801	Turbellaria	-	+	85500	Paratanytarsus sp		30	
03040	Fredericella sp	-	+	85625	Rheotanytarsus exiguus group		37	
03360	Plumatella sp	-	+	85800	Tanytarsus sp		15	
03600	Oligochaeta	4 -	+	85814	Tanytarsus glabrescens group	-	141	
04664	Helobdella stagnalis	2		85840	Tanytarsus guerlus group		7	
05800	Caecidotea sp	-	+	87540	Hemerodromia sp		2	
06700	Crangonyx sp	-	+	95100	Physella sp		12	+
07701	Cambaridae	1		96002	Helisoma anceps anceps		13	+
08240	Orconectes (Crokerinus) propinquus	1 -	+	96900	Ferrissia sp		63	+
11120	Baetis flavistriga	5 -	+	98600	Sphaerium sp			+
11130	Baetis intercalaris	-	+					
13400	Stenacron sp	-	+	No. (Quantitative Taxa: 35	Total Taxa:	53	
13521	Stenonema femoratum	1 -	+		Qualitative Taxa: 33	ICI:	20	
21200	Calopteryx sp	9 -	+		-			
21300	Hetaerina sp	2		Num	per of Organisms: 985	Qual EPT:	/	
23600	Aeshna sp	-	+					
23909	Boyeria vinosa	1						
24900	Gomphus sp	-	+					
47600	Sialis sp	5 -	+					
52200	Cheumatopsyche sp	10 -	+					
52530	Hydropsyche depravata group	-	+					
53501	Hydroptilidae	2						
59100	Ceraclea sp	-	+					
68025	Ectopria sp	-	+					
69400	Stenelmis sp	7 -	+					
71900	Tipula sp	-	+					
77120	Ablabesmyia mallochi	37 -	+					
77500	Conchapelopia sp	37						
77750	Hayesomyia senata or Thienemannimyia norena	30						
77800	Helopelopia sp	156 -	+					
78402	Natarsia baltimoreus	15						
78750	Rheopelopia paramaculipennis	-	+					
80370	Corynoneura lobata	150						
82141	Thienemanniella xena	б						
83040	Dicrotendipes neomodestus	22						
84210	Paratendipes albimanus or P. duplicatus	7						
84300	Phaenopsectra obediens group	111 -	÷					
84450	Polypedilum (P.) convictum	7 -	÷					
84460	Polypedilum (P.) fallax group	30						
84480	Polypedilum (P.) laetum group	-	÷					
84750	Stictochironomus sp	-	+					

RM: 1.50

Collection Date: 08/29/95	River Code: 07-007	River: Cowles Creek
---------------------------	--------------------	---------------------

RM: 0.30

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant/Qua
00401	Spongillidae	+	84460	Polypedilum (P.) fallax group	17
01200	Cordylophora lacustris	1	84470	Polypedilum (P.) illinoense	34 +
01320	Hydra sp	93	84540	Polypedilum (Tripodura) scala	enum group +
01801	Turbellaria	1160 +	84750	Stictochironomus sp	+
03600	Oligochaeta	106 +	85230	Cladotanytarsus mancus group	
04689	Placobdella pediculata	+	85800	Tanytarsus sp	51
05800	Caecidotea sp	+	85814	Tanytarsus glabrescens group	135
06201	Hyalella azteca	+	85840	Tanytarsus guerlus group	85
06810	Gammarus fasciatus	+	95100	Physella sp	+
08240	Orconectes (Crokerinus) propinquus	+	99180	Strophitus undulatus undulatus	+
11250	Centroptilum sp (w/o hindwing pads)	+			
17200	Caenis sp	51	No. (Quantitative Taxa: 27	Total Taxa: 52
22001	Coenagrionidae	5	No. (Qualitative Taxa: 31	ICI:
28705	Pachydiplax longipennis	+	Num	ber of Organisms: 3469	Qual EPT: 0
28955	Libellula lydia	+	1 (unit	of of organisms. 5407	
44501	Corixidae	19			
45300	Sigara sp	+			
45400	Trichocorixa sp	+			
47600	Sialis sp	+			
53600	Agraylea sp	6			
53800	Hydroptila sp	36 +			
60400	Gyrinus sp	+			
60900	Peltodytes sp	+			
67700	Paracymus sp	+			
67800	Tropisternus sp	+			
69400	Stenelmis sp	+			
74501	Ceratopogonidae	17			
77120	Ablabesmyia mallochi	17 +			
77500	Conchapelopia sp	34			
77750	Hayesomyia senata or Thienemannimyia norena	17			
78650	Procladius sp	+			
80370	Corynoneura lobata	8			
80410	Cricotopus (C.) sp	+			
82820	Cryptochironomus sp	+			
83002	Dicrotendipes modestus	103 +			
83040	Dicrotendipes neomodestus	525			
83050	Dicrotendipes lucifer	41			
83051	Dicrotendipes simpsoni	738			
83158	Endochironomus nigricans	68			
83300	Glyptotendipes (G.) sp	17			
84300	Phaenopsectra obediens group	68			
84315	Phaenopsectra flavipes	17			

Collection Date: 08/28/95 River Code: 07-011 River: Arcola Creek

RM: 7.50

Taxa Code	Taxa	Quant	/Oual	Taxa Code	Taxa	Ouar	nt/Qua
		2 uun 16	<u></u>				
01320	Hydra sp	16 37		84210	Paratendipes albimanus or P. duplica	<i>tus</i> 402 50	
01801	Turbellaria		+ +	84300	Phaenopsectra obediens group	50	
03360	Plumatella sp			84450	Polypedilum (P.) convictum	0.0	+
03600	Oligochaeta	1864		84460	Polypedilum (P.) fallax group	25	
04615	Actinobdella inequiannulata		+	84470	Polypedilum (P.) illinoense		+
04663	Helobdella papillata	2	+	84750	Stictochironomus sp	1.01	+
04664	Helobdella stagnalis	2	+	85500	Paratanytarsus sp	101	
04687	Placobdella parasitica	1		85800	Tanytarsus sp	50	
04935	Erpobdella punctata punctata	1	+	85814	Tanytarsus glabrescens group	50)
05800	Caecidotea sp		+	86100	Chrysops sp		+
06201	Hyalella azteca		+	95100	Physella sp	3	
17200	Caenis sp	17	+	96002	Helisoma anceps anceps	22	
21200	Calopteryx sp	9	+	96900	Ferrissia sp	33	8
22001	Coenagrionidae	22	+	98200	Pisidium sp		+
22300	Argia sp	35	+	98600	Sphaerium sp		+
23909	Boyeria vinosa		+				
26100	Cordulegaster sp		+	No. (Quantitative Taxa: 31 To	tal Taxa: 57	7
28500	Libellula sp		+	No (Qualitative Taxa: 43	ICI: 12	,
28955	Libellula lydia		+		-		
45300	Sigara sp		+	Num	ber of Organisms: 4120 Q	ual EPT: 2	
47600	Sialis sp	1					
52200	Cheumatopsyche sp		+				
60900	Peltodytes sp		+				
65800	Berosus sp	46	+				
66500	Enochrus sp		+				
67800	Tropisternus sp		+				
68708	Dubiraphia vittata group	52	+				
69400	Stenelmis sp		+				
71900	Tipula sp		+				
74501	Ceratopogonidae	16	+				
77355	Clinotanypus pinguis	25					
77500	Conchapelopia sp		+				
77800	Helopelopia sp		+				
78401	Natarsia species A (sensu Roback, 1978)		+				
78650	Procladius sp		+				
81231	•	25	т				
81231	Nanocladius (N.) crassicornus or N. (N.) rectinervus						
82730	Chironomus (C.) decorus group	25	+				
82820	Cryptochironomus sp		+				
83040	Dicrotendipes neomodestus	50					
83051	Dicrotendipes simpsoni	101					
83300	Glyptotendipes (G.) sp	980	+				

T	Токо						
Taxa Code	Taxa	Quant	/Qual	Taxa Code	Taxa	Qua	nt/Qua
03600	Oligochaeta	1353	+	95100	Physella sp		+
04602	Glossiphoniidae sp 1	1		96002	Helisoma anceps anceps		5 +
04663	Helobdella papillata	1		96900	Ferrissia sp	4	0 +
04664	Helobdella stagnalis	21	+	98200	Pisidium sp		2
04935	Erpobdella punctata punctata	б	+	98600	Sphaerium sp		1
05800	Caecidotea sp	1					
06201	Hyalella azteca		+	No. (Quantitative Taxa: 32	Total Taxa: 4	8
08601	Hydracarina	36		No. (Qualitative Taxa: 38	ICI: 2	6
17200	Caenis sp	32	+		ber of Organisms: 6164		
21200	Calopteryx sp	19	+	INUIII	ber of Organishis: 6164	Qual EPT: 3)
22001	Coenagrionidae	6	+				
22300	Argia sp	5					
23600	Aeshna sp		+				
45300	Sigara sp		+				
52200	Cheumatopsyche sp	239	+				
52530	Hydropsyche depravata group		+				
65800	Berosus sp	11	+				
67800	Tropisternus sp		+				
68708	Dubiraphia vittata group	64	+				
69400	Stenelmis sp	1	+				
71000	Helius sp		+				
71900	Tipula sp		+				
72700	Anopheles sp		+				
77355	Clinotanypus pinguis		+				
77500	Conchapelopia sp	43	+				
78650	Procladius sp		+				
80410	Cricotopus (C.) sp		+				
80430	Cricotopus (C.) tremulus group		+				
82730	Chironomus (C.) decorus group	87	+				
82820	Cryptochironomus sp	43	+				
83040	Dicrotendipes neomodestus	391					
83300	Glyptotendipes (G.) sp	1348	+				
84210	Paratendipes albimanus or P. duplicatus	217	+				
84300	Phaenopsectra obediens group	43					
84450	Polypedilum (P.) convictum	435	+				
84470	Polypedilum (P.) illinoense		+				
84750	Stictochironomus sp		+				
85400	Micropsectra sp	87	+				
85500	Paratanytarsus sp	783	+				
85625	Rheotanytarsus exiguus group	783	+				
85800	Tanytarsus sp	43					
86100	Chrysops sp		+				
87540	Hemerodromia sp	17	+				

Collection Date: 08/28/95 River Code: 07-011 River: Arcola Creek

RM: 5.00

Taxa Code		Quant/Qu	ual	Taxa Code	Taxa	Quan	t/Qua
01320	Hydra sp	52		83002	Dicrotendipes modestus	89	+
01801	Turbellaria	52 +		83003	Dicrotendipes fumidus	10	
03600	Oligochaeta	117 +		83040	Dicrotendipes neomodestus	10	
04664	Helobdella stagnalis	20 +		84210	Paratendipes albimanus or P. duplicati	<i>4</i> 0	+
04666	Helobdella triserialis	15		84300	Phaenopsectra obediens group	20	
04685	Placobdella ornata	1 +		84450	Polypedilum (P.) convictum	139	+
04935	Erpobdella punctata punctata	61 +		84460	Polypedilum (P.) fallax group	10	
05800	Caecidotea sp	36 +		84800	Tribelos jucundum	109	
06201	Hyalella azteca	18 +		85500	Paratanytarsus sp	159	
08240	Orconectes (Crokerinus) propinquus	+		85625	Rheotanytarsus exiguus group	50	
11200	Callibaetis sp	+		85800	Tanytarsus sp	30	
21200	Calopteryx sp	8 +		85814	Tanytarsus glabrescens group	10	
22001	Coenagrionidae	40 +		85840	Tanytarsus guerlus group	50	+
22300	Argia sp	36		86100	Chrysops sp		+
23710	Anax longipes	+		89501	Ephydridae	8	
28955	Libellula lydia	+		95100	Physella sp	17	+
45100	Palmacorixa sp	+		96002	Helisoma anceps anceps	57	+
45300	Sigara sp	+		96280	Planorbella (Pierosoma) trivolvis	19	+
45900	Notonecta sp	+		96900	Ferrissia sp	8	+
52200	Cheumatopsyche sp	1 +		98200	Pisidium sp		+
53800	Hydroptila sp	2		98600	Sphaerium sp	2	+
54300	Oxyethira sp	44					
55300	Ptilostomis sp	+		No. C	Duantitative Taxa: 45 Tota	al Taxa: 64	
60300	Dineutus sp	1			Dualitative Taxa: 45	ICI: 34	
60800	Haliplus sp	+				-	
60900	Peltodytes sp	+		Num	per of Organisms: 1542 Qu	al EPT: 3	
63900	Laccophilus sp	+					
65800	Berosus sp	+					
67800	Tropisternus sp	+					
68708	Dubiraphia vittata group	41 +					
69400	Stenelmis sp	8					
72700	Anopheles sp	+					
74501	Ceratopogonidae	12 +					
77130	Ablabesmyia rhamphe group	30					
77355	Clinotanypus pinguis	10 +					
77500	Conchapelopia sp	60 +					
78650	Procladius sp	10 +					
79030	Tanypus punctipennis	+					
80410	Cricotopus (C.) sp	+					
80420	Cricotopus (C.) bicinctus	10 +					
82730	Chironomus (C.) decorus group	+					
82800	Cladopelma sp	10					
82820	Cryptochironomus sp	10 +					

Taxa				
Code	Taxa	Quant/Qual	Code Taxa	Quant/Qua
01801	Turbellaria	+		
04664	Helobdella stagnalis	+	No. Quantitative Taxa: 22	Total Taxa: 43
04685	Placobdella ornata	+	No. Qualitative Taxa: 31	ICI: 26
04935	Erpobdella punctata punctata	2 +	Number of Organisms: 801	Qual EPT: 6
07860	Cambarus (Puncticambarus) robustus	+	Number of Organisms. 801	Qual LI I. 0
08240	Orconectes (Crokerinus) propinquus	1 +		
11120	Baetis flavistriga	+		
13400	Stenacron sp	7 +		
13521	Stenonema femoratum	+		
21200	Calopteryx sp	5 +		
22300	Argia sp	+		
24900	Gomphus sp	+		
45300	Sigara sp	+		
52200	Cheumatopsyche sp	1 +		
52530	Hydropsyche depravata group	+		
53800	Hydroptila sp	+		
60900	Peltodytes sp	+		
68601	Ancyronyx variegata	+		
68708	Dubiraphia vittata group	1 +		
68901	Macronychus glabratus	1 +		
69400	Stenelmis sp	+		
77130	Ablabesmyia rhamphe group	+		
77500	Conchapelopia sp	б		
77800	Helopelopia sp	36		
78350	Meropelopia sp	+		
78650	Procladius sp	б		
80370	Corynoneura lobata	32		
82820	Cryptochironomus sp	+		
83040	Dicrotendipes neomodestus	47		
83300	Glyptotendipes (G.) sp	18		
84210	Paratendipes albimanus or P. duplicatus	214 +		
84440	Polypedilum (P.) aviceps	+		
84450	Polypedilum (P.) convictum	6		
84460	Polypedilum (P.) fallax group	47		
84750	Stictochironomus sp	+		
85500	Paratanytarsus sp	77		
85625	Rheotanytarsus exiguus group	б +		
85800	Tanytarsus sp	47		
85814	Tanytarsus glabrescens group	119		
85840	Tanytarsus guerlus group	59		
87540	Hemerodromia sp	+		
96900	Ferrissia sp	63 +		
98600	Sphaerium sp	+		

Taxa				Taxa			
Code	Taxa	Quant/0	Qual	Code	Taxa	Quan	t/Qual
01801	Turbellaria	150	+	85814	Tanytarsus glabrescens group	489	+
03360	Plumatella sp		+	85840	Tanytarsus guerlus group	49	
03600	Oligochaeta	49	+	95100	Physella sp	2	+
04664	Helobdella stagnalis		+	96900	Ferrissia sp	17	+
05800	Caecidotea sp	2	+	98600	Sphaerium sp		+
08240	Orconectes (Crokerinus) propinquus		+				
11670	Procloeon irrubrum		+	No. Q	Quantitative Taxa: 27	Total Taxa: 47	1
13400	Stenacron sp	2	+	No. Ç	Qualitative Taxa: 37	ICI: 24	
13521	Stenonema femoratum		+	Numl	per of Organisms: 2720	Qual EPT: 7	
17200	Caenis sp	294	+		C III		
18600	Ephemera sp		+				
21200	Calopteryx sp	1					
22001	Coenagrionidae	1					
23909	Boyeria vinosa		+				
24900 45300	Gomphus sp		+ +				
45500	Sigara sp Sialis sp		+				
52200	Cheumatopsyche sp		+				
52530	Hydropsyche depravata group		+				
65800	Berosus sp	1	-				
68075	Psephenus herricki		+				
68601	Ancyronyx variegata	1	+				
68708	Dubiraphia vittata group		+				
68901	Macronychus glabratus	20	+				
69400	Stenelmis sp	5	+				
77120	Ablabesmyia mallochi	49	+				
77500	Conchapelopia sp		+				
77800	Helopelopia sp	24	+				
78650	Procladius sp		+				
81231	Nanocladius (N.) crassicornus or N. (N.) rectinervus	24					
82730	Chironomus (C.) decorus group	49					
82820	Cryptochironomus sp		+				
83040	Dicrotendipes neomodestus	440	+				
83051	Dicrotendipes simpsoni	73					
84210	Paratendipes albimanus or P. duplicatus	440	+				
84300	Phaenopsectra obediens group	147					
84450	Polypedilum (P.) convictum	73					
84460	Polypedilum (P.) fallax group	49					
84540	Polypedilum (Tripodura) scalaenum group		+				
84750	Stictochironomus sp		+				
85500	Paratanytarsus sp	220					
85625	Rheotanytarsus exiguus group	49					

Taxa Code Taxa	Quant/Qual	Taxa Code	Taxa	Quant/Qual
63300 Hydroporus sp	+			
No. Quantitative Taxa: 0	Total Taxa: 1			
No. Qualitative Taxa: 1	ICI:			
Number of Organisms: 0	Qual EPT: 0			

Collection Date: 06/21/95 River Code: 07-019 River: Trib. to Lake Erie (N. Kingsville) RM: 0.90

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant/Qual
06830	Gammarus minus	+			
47600	Sialis sp	+			
95100	Physella sp	+			
No. Q	Quantitative Taxa: 0	Total Taxa: 3			
No. Q	Qualitative Taxa: 3	ICI:			
Numł	per of Organisms: 0	Qual EPT: 0			

Collection Date: 06/21/95 River Code: 07-019 River: Trib. to Lake Erie (N. Kingsville) RM: 0.60

Collection Date: 06/22/95 River Code: 07-019 River: Trib. to Lake Erie (N. Kingsville) RM: 0.10

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant/Qual
03600	Oligochaeta	+			
06830	Gammarus minus	+			
07860	Cambarus (Puncticambarus	r) robustus +			
32205	Amphinemura delosa	+			
74100	Simulium sp	+			
80204	Brillia flavifrons group	+			
81650	Parametriocnemus sp	+			
No. Q	Quantitative Taxa: 0	Total Taxa: 7			
No. Q	ualitative Taxa: 7	ICI:			
Numb	per of Organisms: 0	Qual EPT: 1			

Collection Date: 06/22/95 River Code: 07-020 River: Trib. to Lake Erie (Berkshire Rd.) RM: 0.30

Taxa			Taxa		
Code	Taxa	Quant/Qual	Code	Taxa	Quant/Qual
00401	Spongillidae	+			
03360	Plumatella sp	+			
06830	Gammarus minus	+			
07860	Cambarus (Puncticambarus) robustus	+			
50301	Chimarra aterrima	+			
52200	Cheumatopsyche sp	+			
52530	Hydropsyche depravata group	+			
57900	Pycnopsyche sp	+			
69400	Stenelmis sp	+			
71900	Tipula sp	+			
74100	Simulium sp	+			
74501	Ceratopogonidae	+			
77500	Conchapelopia sp	+			
78350	Meropelopia sp	+			
79880	Prodiamesa olivacea	+			
81650	Parametriocnemus sp	+			
82820	Cryptochironomus sp	+			
84450	Polypedilum (P.) convictum	+			
84888	Xenochironomus xenolabis	+			
85501	Paratanytarsus n.sp 1	+			
85625	Rheotanytarsus exiguus group	+			
87515	Clinocera (C.) sp	+			
95100	Physella sp	+			
98600	Sphaerium sp	+			
No. Q	Quantitative Taxa: 0 Tota	l Taxa: 24			
No. Q	Qualitative Taxa: 24	ICI:			
	-	al EPT: 4			

RM: 23.30

Taxa	T		Taxa	Tours	Onert	0
Code	Taxa	Quant/Qual	Code	Taxa	Quant/	Quai
00650	Eunapius sp	+	52540	Hydropsyche dicantha	110	+
01320	Hydra sp	120	52620	Macrostemum zebratum		+
01801	Turbellaria	+	53800	Hydroptila sp	18	+
03045	Fredericella indica	1	57400	Neophylax sp		+
03360	Plumatella sp	+	57900	Pycnopsyche sp		+
03451	Urnatella gracilis	8	58505	Helicopsyche borealis		+
03600	Oligochaeta	56 +	59100	Ceraclea sp		+
04664	Helobdella stagnalis	+	59110	Ceraclea ancylus		+
08240	Orconectes (Crokerinus) propinquus	+	59510	Oecetis avara	26	
11118	Baetis dubius	3 +	60300	Dineutus sp		+
11130	Baetis intercalaris	2	60400	Gyrinus sp		+
11650	Procloeon sp (w/ hindwing pads)	1	60900	Peltodytes sp		+
11651	Procloeon sp (w/o hindwing pads)	2	65800	Berosus sp		+
12200	Isonychia sp	5 +	66500	Enochrus sp		+
13000	Leucrocuta sp	4 +	67800	Tropisternus sp		+
13400	Stenacron sp	84 +	68075	Psephenus herricki	1	+
13540	Stenonema mediopunctatum	16 +	68601	Ancyronyx variegata	17	+
13561	Stenonema pulchellum	160	68708	Dubiraphia vittata group		+
13570	Stenonema terminatum	52	68901	Macronychus glabratus	129	+
13590	Stenonema vicarium	4	69000	Microcylloepus pusillus	9	
16324	Serratella deficiens	144	69200	Optioservus sp	56	+
16700	Tricorythodes sp	27	69400	Stenelmis sp	37	+
17200	Caenis sp	94 +	71700	Pilaria sp		+
18100	Anthopotamus sp	+	74501	Ceratopogonidae		+
18600	Ephemera sp	+	77120	Ablabesmyia mallochi		+
21200	Calopteryx sp	+	77500	Conchapelopia sp	65	+
22001	Coenagrionidae	+	77750	Hayesomyia senata or Thienemannimyia	43	
22300	Argia sp	8 +		norena		
23909	Boyeria vinosa	+	77800	Helopelopia sp	22	+
24900	Gomphus sp	+	78450	Nilotanypus fimbriatus	24	
25510	Stylogomphus albistylus	+	78750	Rheopelopia paramaculipennis	43	
34130	Acroneuria frisoni	1 +	80360	Corynoneura "celeripes" (sensu Simpson &	8	
34140	Acroneuria internata	21 +		Bode, 1980)		
34150	Acroneuria lycorias	4	80370	Corynoneura lobata	16	
34300	Neoperla clymene complex	+	80410	Cricotopus (C.) sp	65	+
34700	Agnetina capitata complex	3 +	80420	Cricotopus (C.) bicinctus	43	+
43300	Ranatra sp	+	80430	Cricotopus (C.) tremulus group	43	
47600	Sialis sp	+	81231	Nanocladius (N.) crassicornus or N. (N.)	22	
48410	Corydalus cornutus	1 +		rectinervus		
50315	Chimarra obscura	+	81250	Nanocladius (N.) minimus	22	
52200	Cheumatopsyche sp	58 +	81650	Parametriocnemus sp	22	
52430	Ceratopsyche morosa group	99 +	82101	Thienemanniella n.sp 1	40	
52530	Hydropsyche depravata group	23 +	82121	Thienemanniella n.sp 3	24	
	, , , , , , , , , , , , , , , , , , ,					

Collection Date: 08/31/95	River Code: 07-100	River: Conneaut Creek	RM: 23.30

Taxa				Taxa		
Code	Taxa	Quant	/Qual	Code	Taxa	Quant/Qual
82130	Thienemanniella similis	8				
82730	Chironomus (C.) decorus group		+			
82820	Cryptochironomus sp		+			
83003	Dicrotendipes fumidus	86				
83040	Dicrotendipes neomodestus	194	+			
83820	Microtendipes "caelum" (sensu Simpson & Bode, 1980)	86	+			
83840	Microtendipes pedellus group		+			
84450	Polypedilum (P.) convictum	862	+			
84460	Polypedilum (P.) fallax group	22				
84540	Polypedilum (Tripodura) scalaenum group	43	+			
84700	Stenochironomus sp	65				
84960	Pseudochironomus sp	43	+			
85615	Rheotanytarsus distinctissimus group		+			
85625	Rheotanytarsus exiguus group	474	+			
85800	Tanytarsus sp	43	+			
85814	Tanytarsus glabrescens group	86	+			
85840	Tanytarsus guerlus group	129	+			
86100	Chrysops sp		+			
86401	Atherix lantha		+			
87400	Stratiomys sp		+			
87540	Hemerodromia sp		+			
93900	Elimia sp	5	+			
95100	Physella sp	4	+			
96900	Ferrissia sp		+			
96930	Laevapex fuscus	38				
98200	Pisidium sp		+			
99860	Lampsilis radiata luteola		+			
No. Ç	Quantitative Taxa: 68 Total Ta	axa: 11	0			
		CI: 46				
Numł	ber of Organisms: 4095 Qual E	PT: 24				

Collection Date: 08/31/95 River Code: 07-100 River: Conneaut Creek

RM: 12.60

Taxa				Taxa			
Code	Taxa	Quant/Q	ual	Code	Taxa	Quant	t/Qual
01320	Hydra sp	112		52620	Macrostemum zebratum		+
01418	Craspedacusta sowerbyi	32		53800	Hydroptila sp	35	+
01801	Turbellaria	10		57400	Neophylax sp		+
01900	Nemertea	+		58505	Helicopsyche borealis		+
03040	Fredericella sp	1 +		59110	Ceraclea ancylus		+
03451	Urnatella gracilis	1		59120	Ceraclea flava complex		+
03600	Oligochaeta	464 +		59510	Oecetis avara	57	
04685	Placobdella ornata	+		59970	Petrophila sp		+
04686	Placobdella papillifera	+		60300	Dineutus sp		+
08240	Orconectes (Crokerinus) propinquus	+		63300	Hydroporus sp		+
08601	Hydracarina	+		65800	Berosus sp	1	
11118	Baetis dubius	1		68075	Psephenus herricki		+
11130	Baetis intercalaris	+		68601	Ancyronyx variegata		+
11650	Procloeon sp (w/ hindwing pads)	+		68708	Dubiraphia vittata group	1	+
11651	Procloeon sp (w/o hindwing pads)	12		68901	Macronychus glabratus	29	+
13000	Leucrocuta sp	+		69400	Stenelmis sp	23	+
13400	Stenacron sp	520 +		71100	Hexatoma sp		+
13540	Stenonema mediopunctatum	115 +		77120	Ablabesmyia mallochi	50	+
13561	Stenonema pulchellum	164		77800	Helopelopia sp		+
13590	Stenonema vicarium	58		78650	Procladius sp	25	+
14950	Leptophlebia sp or Paraleptophebia sp	32		80360	Corynoneura "celeripes" (sensu Simpson &	64	
16700	Tricorythodes sp	+			Bode, 1980)		
17200	Caenis sp	606 +		80370	Corynoneura lobata	40	
18100	Anthopotamus sp	137 +		80410	Cricotopus (C.) sp	25	
18619	Ephemera simulans	+		81231	Nanocladius (N.) crassicornus or N. (N.)	25	
21200	Calopteryx sp	2 +			rectinervus		
22001	Coenagrionidae	+		81250	Nanocladius (N.) minimus	25	+
22300	Argia sp	33 +		81280	Nanocladius (Plecopteracoluthus) n. sp	25	+
23804	Basiaeschna janata	+		82121	Thienemanniella n.sp 3	32	
23909	Boyeria vinosa	1		82141	Thienemanniella xena	32	
24900	Gomphus sp	+		82220	Tvetenia discoloripes group		+
34140	Acroneuria internata	1 +		82730	Chironomus (C.) decorus group	25	+
34150	Acroneuria lycorias	13 +		82820	Cryptochironomus sp		+
34300	Neoperla clymene complex	9 +		83040	Dicrotendipes neomodestus	349	+
43300	Ranatra sp	+		83900	Nilothauma sp	25	
47600	Sialis sp	+		84450	Polypedilum (P.) convictum	50	+
50315	Chimarra obscura	+		84470	Polypedilum (P.) illinoense		+
51400	Nyctiophylax sp	8		84960	Pseudochironomus sp	25	
51600	Polycentropus sp	2		85230	Cladotanytarsus mancus group	25	
52200	Cheumatopsyche sp	1		85500	Paratanytarsus sp	50	
52430	Ceratopsyche morosa group	1 +		85615	Rheotanytarsus distinctissimus group		+
52540	Hydropsyche dicantha	6 +		85625	Rheotanytarsus exiguus group	299	+
52550	Hydropsyche frisoni	21		85720	Stempellinella n.sp nr. flavidula	80	+

Collection Date: 08/31/95	River Code: 07-100	River: Conneaut Creek	RM: 12.60

Taxa	T	Orrent	/01	Taxa	Toyo	Quant/Qual
Code	Taxa	Quant	Qual	Code	Taxa	Quant/Qual
85800	Tanytarsus sp	50				
85802	Tanytarsus curticornis group	199				
85814	Tanytarsus glabrescens group	747	+			
85840	Tanytarsus guerlus group	623	+			
86100	Chrysops sp		+			
86200	Tabanus sp		+			
87540	Hemerodromia sp	48				
93900	Elimia sp	9	+			
95100	Physella sp	39	+			
96900	Ferrissia sp	262	+			
98600	Sphaerium sp		+			
No. Q	Quantitative Taxa: 60	Total Taxa: 95				
No. Q	Qualitative Taxa: 66	ICI: 46				
Numł	per of Organisms: 5757	Qual EPT: 21				

RM: 5.40

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant	/Qual
01320	Hydra sp	3	59110	Ceraclea ancylus		+
01801	Turbellaria	29 +	59500	Oecetis sp	25	
03360	Plumatella sp	4	59970	Petrophila sp	1	
03451	Urnatella gracilis	+	60300	Dineutus sp		+
03600	Oligochaeta	112 +	65700	Anacaena sp		+
11118	Baetis dubius	1 +	65800	Berosus sp	1	
11120	Baetis flavistriga	+	68075	Psephenus herricki	1	+
11130	Baetis intercalaris	+	68601	Ancyronyx variegata	12	
11651	Procloeon sp (w/o hindwing pads)	1	68708	Dubiraphia vittata group		+
12200	Isonychia sp	+	68901	Macronychus glabratus	8	+
13000	Leucrocuta sp	+	69275	Optioservus trivittatus		+
13400	Stenacron sp	75 +	69400	Stenelmis sp	7	+
13540	Stenonema mediopunctatum	20 +	71100	Hexatoma sp		+
13561	Stenonema pulchellum	108 +	77130	Ablabesmyia rhamphe group	14	
13590	Stenonema vicarium	8	77750	Hayesomyia senata or Thienemannimyia	56	
16324	Serratella deficiens	9 +		norena		
16700	Tricorythodes sp	12 +	77800	Helopelopia sp	14	
17200	Caenis sp	193 +	78401	Natarsia species A (sensu Roback, 1978)		+
18100	Anthopotamus sp	+	78450	Nilotanypus fimbriatus	42	
18600	Ephemera sp	+	80370	Corynoneura lobata	32	
21200	Calopteryx sp	+	80410	Cricotopus (C.) sp	98	+
22001	Coenagrionidae	+	80420	Cricotopus (C.) bicinctus		+
22300	Argia sp	29 +	81250	Nanocladius (N.) minimus	126	
24900	Gomphus sp	+	81280	Nanocladius (Plecopteracoluthus) n. sp		+
26700	Macromia sp	1	81631	Parakiefferiella n.sp 1	14	
34130	Acroneuria frisoni	+	82130	Thienemanniella similis		+
34140	Acroneuria internata	1 +	82600	Axarus sp		+
34150	Acroneuria lycorias	10	82820	Cryptochironomus sp		+
34300	Neoperla clymene complex	+	83040	Dicrotendipes neomodestus	42	
34700	Agnetina capitata complex	+	83840	Microtendipes pedellus group	14	
43300	Ranatra sp	+	84155	Paralauterborniella nigrohalteralis	14	
47600	Sialis sp	+	84300	Phaenopsectra obediens group	84	+
50315	Chimarra obscura	2 +	84450	Polypedilum (P.) convictum	56	+
50319	Chimarra socia	1 +	84460	Polypedilum (P.) fallax group	14	
51400	Nyctiophylax sp	18	84470	Polypedilum (P.) illinoense	14	
51600	Polycentropus sp	12	85210	Cladotanytarsus species group B	28	
52200	Cheumatopsyche sp	2 +	85230	Cladotanytarsus mancus group		+
52430	Ceratopsyche morosa group	4	85615	Rheotanytarsus distinctissimus group	70	
52540	Hydropsyche dicantha	4 +	85625	Rheotanytarsus exiguus group	419	+
52550	Hydropsyche frisoni	43 +	85802	Tanytarsus curticornis group	28	
52620	Macrostemum zebratum	+	85814	Tanytarsus glabrescens group	293	+
53800	Hydroptila sp	1 +	85840	Tanytarsus guerlus group	42	+
			86401	Atherix lantha		

Colle	ction Date: 08/31/95	River Code: 07-100	Rive	er: Conneau	ıt Creek	RM: 5.40
Taxa Code	Taxa	Quant	/Qual	Taxa Code	Taxa	Quant/Qual
93900	Elimia sp	1	+			
95100	Physella sp		+			
96900	Ferrissia sp	1	+			
96930	Laevapex fuscus	77				
98200	Pisidium sp		+			
98600	Sphaerium sp		+			
99860	Lampsilis radiata luteola		+			
No. Q	Quantitative Taxa: 57 Qualitative Taxa: 63 Der of Organisms: 235	Total Taxa: 92 ICI: 50 1 Qual EPT: 26				

Collection Date: 09/15/95	River Code: 07-100	River: Conneaut Creek
---------------------------	--------------------	-----------------------

RM: 2.20

Taxa			Taxa		
Code		Quant/Qua		Taxa	Quant/Qual
00401	Spongillidae	1	83040	Dicrotendipes neomodestus	5
00653	Eunapius fragilis	+	83050	Dicrotendipes lucifer	33 +
01200	Cordylophora lacustris	1	83158	Endochironomus nigricans	24 +
01320	Hydra sp	5	83840	Microtendipes pedellus group	57 +
01801	Turbellaria	33 +	84020	Parachironomus carinatus	5
03121	Paludicella articulata	+	84470	Polypedilum (P.) illinoense	85
03600	Oligochaeta	213 +	84750	Stictochironomus sp	+
04666	Helobdella triserialis	3	84790	Tribelos fuscicorne	76
06201	Hyalella azteca	10	85500	Paratanytarsus sp	9 +
08601	Hydracarina	5	85814	Tanytarsus glabrescens group	14
11650	Procloeon sp (w/ hindwing pads)	2 +	95100	Physella sp	35 +
13400	Stenacron sp	б +	96120	Menetus (Micromenetus) dilatatı	<i>us</i> 47 +
17200	Caenis sp	24 +	96900	Ferrissia sp	1 +
18100	Anthopotamus sp	+	98600	Sphaerium sp	1
22001	Coenagrionidae	8 +			
22300	Argia sp	37 +	No. (Quantitative Taxa: 41	Total Taxa: 56
23704	Anax junius	+		Qualitative Taxa: 34	ICI: 28
24900	Gomphus sp	+		-	
47600	Sialis sp	+	Num	ber of Organisms: 866	Qual EPT: 11
51206	Cyrnellus fraternus	+			
51400	Nyctiophylax sp	+			
51600	Polycentropus sp	4 +			
53800	Hydroptila sp	5 +			
54200	Orthotrichia sp	6			
54300	Oxyethira sp	19 +			
57400	Neophylax sp	+			
59500	Oecetis sp	+			
60900	Peltodytes sp	+			
65800	Berosus sp	3			
68075	Psephenus herricki	+			
68700	Dubiraphia sp	4			
68901	Macronychus glabratus	2			
69000	Microcylloepus pusillus	1			
69400	Stenelmis sp	9			
74501	Ceratopogonidae	6			
77115	Ablabesmyia janta	47 +			
77120	Ablabesmyia mallochi	+			
78650	Procladius sp	+			
81231	Nanocladius (N.) crassicornus or N. (N.) rectinervus	5			
81650	Parametriocnemus sp	5			
82121	Thienemanniella n.sp 3	5			
83002	Dicrotendipes modestus	5 +			

Collection Date: 09/15/95	River Code: 07-100	River: Conneaut Creek	
---------------------------	--------------------	-----------------------	--

RM: 1.10

Taxa Cada	Taxa	Quant/Qual	Taxa Codo	Taxa	Quant/Qua
Code		Qualit/Qual	Code		
00700	Radiospongilla crateriformis	+	84060	Parachironomus pectinatellae	36
01801	Turbellaria	93	84470	Polypedilum (P.) illinoense	29
03121	Paludicella articulata	+	84960	Pseudochironomus sp	6
03221	Pectinatella magnifica	3 +	85840	Tanytarsus guerlus group	3
03600	Oligochaeta	104 +	95100	Physella sp	28 +
04637	Batracobdella phalera	1	95907	Gyraulus (Torquis) parvus	41
04664	Helobdella stagnalis	+	96120	Menetus (Micromenetus) dilatatus	
04666	Helobdella triserialis	12 +	96930	Laevapex fuscus	38 +
05800	Caecidotea sp	+	97710	Dreissena polymorpha	23 +
06201	Hyalella azteca	28	98600	Sphaerium sp	+
06700	Crangonyx sp	4 +			
06810	Gammarus fasciatus	4	No. Ç	Quantitative Taxa: 42	Total Taxa: 52
08240	Orconectes (Crokerinus) propinquus	+	No. Q	Qualitative Taxa: 21	ICI: 22
08601	Hydracarina	4	Numl	ber of Organisms: 1173	Qual EPT: 2
13400	Stenacron sp	+	1 (unit	ter of organisms. 1175	
13521	Stenonema femoratum	+			
17200	Caenis sp	32			
22001	Coenagrionidae	17 +			
22300	Argia sp	19 +			
51206	Cyrnellus fraternus	1			
51600	Polycentropus sp	8			
53600	Agraylea sp	25			
54160	Ochrotrichia sp	10			
54200	Orthotrichia sp	189			
54300	Oxyethira sp	4			
59500	Oecetis sp	14			
63300	Hydroporus sp	+			
68708	Dubiraphia vittata group	+			
77115	Ablabesmyia janta	3			
77130	Ablabesmyia rhamphe group	13			
80370	Corynoneura lobata	3			
82121	Thienemanniella n.sp 3	3			
83002	Dicrotendipes modestus	19			
83040	Dicrotendipes neomodestus	19			
83050	Dicrotendipes lucifer	16			
83051	Dicrotendipes simpsoni	3			
83158	Endochironomus nigricans	49			
83300	Glyptotendipes (G.) sp	3			
83310	Glyptotendipes (Trichotendipes) amplus	3			
84030	Parachironomus directus	3			
84040	Parachironomus frequens	10 +			
84050	Parachironomus "hirtalatus" (sensu Simpson & Bode, 1980)	26			

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant/Qual
01200	Cordylophora lacustris	1			
01801	Turbellaria	53			
03360	Plumatella sp	1			
03600	Oligochaeta	2344			
05800	Caecidotea sp	1			
06810	Gammarus fasciatus	58 +			
51206	Cyrnellus fraternus	97			
68901	Macronychus glabratus	2 +			
77750	Hayesomyia senata or Thienemannimyia norena	6			
80410	Cricotopus (C.) sp	36			
80420	Cricotopus (C.) bicinctus	11			
80430	Cricotopus (C.) tremulus group	2 +			
80500	Cricotopus (Isocladius) reversus group	2			
81240	Nanocladius (N.) distinctus	4			
81631	Parakiefferiella n.sp 1	4			
82121	Thienemanniella n.sp 3	4			
83040	Dicrotendipes neomodestus	29			
83051	Dicrotendipes simpsoni	б			
83840	Microtendipes pedellus group	15			
84888	Xenochironomus xenolabis	+			
85625	Rheotanytarsus exiguus group	4			
85814	Tanytarsus glabrescens group	2			
87540	Hemerodromia sp	1			
95100	Physella sp	108			
96120	Menetus (Micromenetus) dilatatus	192			
96900	Ferrissia sp	63			
97710	Dreissena polymorpha	622 +			
No. Ç	Qualitative Taxa: 5	² axa: 27 ICI: 12			

Number of Organisms: 3668 Qual EPT: 0

Macroinvertebrate data for the Grand and Ashtabula River Basins

	Drainage		N	umber of			I	Percent:					
River Mile	Area (sq mi)	Total Taxa	Mayfly Taxa	Caddisfly Taxa	Dipteran Taxa	Mayflies	Caddis- flies	Tany- tarsini	Other Dipt/NI	Tolerant Taxa		Eco- region	ICI
GRAND RI	VER (03-0	01)											
Year: 95													
83.30	85.0	53(6)	6(4)	4(6)	27(6)	32.7(6)	1.0(2)	20.3(4)	41.2(4)	9.4(4)	12(4)	3	46
65.80	212.0	39(6)	8(4)	2(2)	19(6)	40.3(6)	7.3(2)	31.0(4)	15.9(6)	2.3(6)	11(4)	3	46
56.00	251.0	40(6)	4(2)	5(6)	16(4)	2.1(2)	0.9(2)	24.6(4)	71.5(0)	2.6(6)	7(2)	3	34
44.70	405.0	49(6)	7(4)	5(4)	25(6)	8.3(2)	17.2(4)	45.2(6)	27.2(4)	3.8(4)	8(2)	3	42
28.40	554.0	53(6)	11(6)	10(6)	20(6)	29.5(6)	4.5(2)	43.7(6)	21.7(4)	0.5(6)	23(6)	3	54
22.60	581.0	56(6)	9(6)	12(6)	19(6)	27.0(4)	3.5(2)	32.5(6)	36.1(2)	0.6(6)	22(6)	3	50
13.60	630.0	48(6)	13(6)	10(6)	11(4)	27.9(6)	7.3(2)	46.9(6)	17.1(6)	0.3(6)	16(4)	3	52
6.20	687.0	38(6)	7(4)	9(6)	12(4)	14.3(4)	28.8(4)	25.4(4)	31.4(2)	3.9(4)	20(6)	3	44
BAUGHMA	AN CREEK	(03-02	2)										
Year: 95													
4.10	17.8	41(6)	8(6)	5(6)	19(4)	37.6(6)	1.2(2)	16.8(4)	42.3(4)	3.8(6)	17(6)	3	50
BIG CREE	K (03-100)												
Year: 95													
16.10	1.2	21(2)	1(0)	0(0)	14(4)	0.5(2)	0.0(0)	2.1(2)	96.5(0)	52.3(0)	4(2)	3	12
16.00	1.2	20(2)	3(2)	0(0)	12(2)	12.3(4)	0.0(0)	0.9(2)	86.2(0)	64.2(0)	3(0)	3	12
14.20	4.5	38(6)	9(6)	1(4)	23(6)	21.9(4)	0.7(4)	21.3(6)	50.8(2)	7.5(6)	17(6)	3	50
9.40	14.9	34(4)	7(6)	0(0)	18(4)	4.7(2)	0.0(0)	25.5(6)	68.3(0)	15.3(4)	25(6)	3	32
2.50	35.0	45(6)	11(6)	6(6)	26(6)	22.0(4)	2.7(2)	35.6(6)	39.5(4)	2.4(6)	21(6)	3	52
MILL CRE	EK (03-120	D)											
Year: 95													
18.20	69.0	45(6)	3(2)	1(2)	20(6)	2.9(2)	0.1(2)	33.7(6)	59.8(2)	13.4(2)	16(6)	3	36
12.10	82.0	47(6)	5(2)	3(4)	25(6)	7.2(2)	0.7(2)	3.1(2)	86.7(0)	59.1(0)	9(2)	3	26
ROCK CRI	EEK (03-13	30)											
Year: 95													
0.80	57.6	41(6)	7(4)	3(4)	20(6)	39.5(6)	0.5(2)	15.4(4)	41.7(4)	8.1(4)	14(6)	3	46
PHELPS C	REEK (03	-150)											
Year: 95													
4.90	23.6	26(4)	8(6)	0(0)	16(4)	11.4(2)	0.0(0)	38.7(6)	49.9(2)	2.9(6)	16(6)	3	36
SWINE CR	EEK (03-1	60)											
Year: 95													
5.20	15.7	48(6)	14(6)	4(6)	21(6)	46.1(6)	1.6(2)	23.5(6)	26.1(6)	5.6(6)	18(6)	3	56
ASHTABU	LA RIVER	(07-001	I)										
Year: 95													
25.60	66.1	45(6)	4(2)	5(6)	26(6)	8.3(2)	1.3(2)	15.6(2)	73.7(0)	16.5(2)	11(4)	3	32

	Drainage		N	umber of			F	Percent:					
River Mile	Area (sq mi)	Total Taxa	Mayfly Taxa	Caddisfly Taxa	Dipteran Taxa	Mayflies	Caddis- flies	Tany- tarsini	Other Dipt/NI	Tolerant Taxa		Eco- region	ICI
19.10	93.0	44(6)	7(4)	2(4)	18(4)	11.6(2)	0.5(2)	14.1(2)	56.6(2)	12.8(2)	10(4)	3	32
11.90	107.0	40(6)	8(4)	4(4)	17(4)	10.3(2)	0.4(2)	17.5(4)	69.5(0)	44.6(0)	9(2)	3	28
3.60	128.0	40(6)	7(4)	4(4)	19(6)	14.5(2)	2.3(2)	48.9(6)	32.9(4)	4.0(6)	16(6)	3	46
2.30	132.0	39(6)	4(2)	5(4)	16(6)	9.5(4)	2.3(0)	1.9(2)	85.1(0)	48.7(0)	6(2)	3	26
W. BR. AS	HTABULA	R. (07-	004)										
Year: 95													
1.80	27.0	30(4)	5(4)	3(6)	13(2)	8.6(2)	0.7(2)	5.5(2)	85.1(0)	7.2(6)	11(4)	3	32
COWLES	CREEK (07	7-007)											
Year: 95													
7.10	6.8	22(2)	4(2)	0(0)	15(4)	15.7(4)	0.0(0)	17.4(4)	66.9(0)	12.1(4)	9(4)	3	24
5.60	9.9	18(2)	2(0)	0(0)	15(4)	3.6(2)	0.0(0)	23.2(6)	73.2(0)	14.3(4)	6(2)	3	20
4.80	11.5	25(4)	0(0)	0(0)	15(4)	0.0(0)	0.0(0)	10.0(4)	88.1(0)	55.1(0)	5(2)	3	14
4.30	11.7	30(4)	0(0)	1(2)	17(4)	0.0(0)	0.5(2)	1.1(2)	94.8(0)	46.2(0)	3(0)	3	14
3.60	12.9	23(2)	0(0)	1(2)	14(4)	0.0(0)	0.5(2)	12.4(4)	84.9(0)	22.5(2)	2(0)	3	16
1.50	14.7	35(4)	2(0)	2(4)	19(4)	0.6(2)	1.2(2)	23.3(6)	72.4(0)	11.1(4)	7(2)	3	28
0.30	15.2	27(4)	1(0)	2(2)	18(6)	1.5(2)	1.2(0)	7.8(4)	88.8(0)	25.8(0)	2(0)	3	18
ARCOLA	REEK (07	7-011)											
Year: 95													
7.50	7.8	31(4)	1(0)	0(0)	14(4)	0.4(2)	0.0(0)	4.9(2)	90.7(0)	49.8(0)	2(0)	3	12
7.00	7.9	32(4)	1(0)	1(4)	13(2)	0.5(2)	3.9(6)	27.5(6)	66.4(0)	24.0(2)	3(0)	3	26
5.00	11.0	45(6)	0(0)	3(6)	22(6)	0.0(0)	3.0(6)	19.4(6)	68.9(0)	10.5(4)	3(0)	3	34
2.10	19.0	22(2)	1(0)	1(2)	14(4)	0.9(2)	0.1(2)	38.5(6)	59.7(2)	13.7(4)	6(2)	3	26
0.70	19.5	27(4)	2(0)	0(0)	14(4)	10.9(2)	0.0(0)	29.7(6)	58.4(2)	8.8(4)	7(2)	3	24
CONNEAU	T CREEK	(07-100))										
Year: 95													
23.30	152.0	68(6)	14(6)	6(6)	28(6)	14.6(2)	8.2(2)	17.9(4)	52.3(2)	3.1(6)	24(6)	3	46
12.60	169.0	60(6)	9(6)	8(6)	24(6)	28.6(4)	2.3(2)	36.0(6)	31.2(4)	13.7(0)	21(6)	3	46
5.40	176.0	57(6)	9(6)	10(6)	21(6)	18.2(4)	4.8(2)	37.4(6)	36.6(4)	6.0(4)	26(6)	3	50

Macroinvertebrate data for the Grand and Ashtabula River Basins

0	•	т	•
N 1	000100		101
N	pecies		130

D	
Page	- I
I ago	1

				3	pecie	S LISI				Page 1
River Code: 03-001 River Mile: 94.30	Stream: Grand River Basin: Grand River Time Fished: 3600 sec Dist Fished: 0.40 km				Drain Area: 15.2 sq mi No of Passes: 2			Sample Date: 1995 Date Range: 07/25/95 Thru: 08/30/95 Sampler Type: D		
Species Name / ODNR status			Bree Guild		# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight
GRASS PICKEREL		Р	М	Р	1	0.75	0.09	0.02	0.47	29.00
GOLDEN REDHORSE	R	I	S	М	1	0.75	0.09	0.01	0.13	8.00
NORTHERN HOG SUCKER	R	I	S	М	72	54.00	6.72	1.06	22.73	19.64
WHITE SUCKER	W	0	S	т	58	43.50	5.41	0.13	2.80	3.00
RIVER CHUB	Ν	T	Ν	I	52	39.00	4.85	0.48	10.38	12.41
BLACKNOSE DACE	Ν	G	S	Т	15	11.25	1.40	0.01	0.29	1.21
CREEK CHUB	Ν	G	Ν	Т	68	51.00	6.34	0.55	11.85	10.85
ROSYFACE SHINER	Ν	I	S	I.	12	9.00	1.12	0.03	0.54	2.75
STRIPED SHINER	Ν	T	S		93	69.75	8.68	0.41	8.69	5.81
SAND SHINER	Ν	T	М	М	2	1.50	0.19	0.00	0.05	1.50
SILVERJAW MINNOW	Ν	I	М		97	72.75	9.05	0.27	5.79	3.71
BLUNTNOSE MINNOW	Ν	0	С	Т	136	102.00	12.69	0.27	5.84	2.67
CENTRAL STONEROLLER	Ν	н	Ν		305	228.75	28.45	0.91	19.40	3.96
YELLOW BULLHEAD		I	С	т	1	0.75	0.09	0.00	0.10	6.00
STONECAT MADTOM		Ι	С	I	5	3.75	0.47	0.04	0.95	11.80
ROCK BASS	S	С	С		5	3.75	0.47	0.31	6.68	83.00
LARGEMOUTH BASS	F	С	С		1	0.75	0.09	0.01	0.28	17.00
GREEN SUNFISH	S	I	С	Т	1	0.75	0.09	0.01	0.21	13.00
BLUEGILL SUNFISH	S	Ι	С	Р	1	0.75	0.09	0.00	0.06	4.00
PUMPKINSEED SUNFISH	S	Ι	С	Р	1	0.75	0.09	0.01	0.15	9.00
BLACKSIDE DARTER	D	I	S		1	0.75	0.09	0.00	0.03	2.00
JOHNNY DARTER	D	I	С		61	45.75	5.69	0.05	1.00	1.02
GREENSIDE DARTER	D	Ι	S	М	2	1.50	0.19	0.01	0.23	7.00
RAINBOW DARTER	D	T	S	М	16	12.00	1.49	0.01	0.26	1.00
FANTAIL DARTER	D	T	С		65	48.75	6.06	0.05	1.14	1.08
	Mile To	otal			1,072	804.00		4.67		
	Numbe	er of S	Specie	es	25	-				
	Numbe		•		0					
			-							

a	•	т	•
Sn2	00100		101
SDV	ecies		130
· · ·			

Page	2
I ago	-

				<u>u</u>	peere	5 LISt				Page 2
River Code: 03-001 River Mile: 83.50	Stream: Grand River Basin: Grand River Time Fished: 4658 sec Dist Fished: 0.40 km				Mile:83.50Basin:Grand RiverTime Fished:4658 secDrain Area:85.0 sq mi				ange: 08/	995 (03/95 (11/95
Species Name / ODNR status		IBI Feed Breed Grp Guild Guild Tol			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight
GRASS PICKEREL		Р	М	Р	11	8.25	6.40	0.12	3.84	14.09
SILVER REDHORSE	R	I	s	М	1	0.75	0.58	0.17	5.70	231.00
GOLDEN REDHORSE	R	I	s	М	2	1.50	1.16	0.20	6.45	131.00
NORTHERN HOG SUCKER	R	Т	S	М	1	0.75	0.58	0.08	2.76	112.00
WHITE SUCKER	W	0	s	т	7	5.25	4.07	0.27	9.01	52.29
SPOTTED SUCKER	R	Т	S		1	0.75	0.58	0.04	1.23	50.00
GOLDEN SHINER	Ν	Т	М	т	2	1.50	1.16	0.02	0.62	12.50
RIVER CHUB	Ν	I	Ν	I	1	0.75	0.58	0.02	0.62	25.00
CREEK CHUB	Ν	G	Ν	т	1	0.75	0.58	0.04	1.28	52.00
STRIPED SHINER	Ν	I	S		5	3.75	2.91	0.04	1.18	9.60
SPOTFIN SHINER	Ν	I	М		4	3.00	2.33	0.03	0.82	8.25
BLUNTNOSE MINNOW	Ν	0	С	т	19	14.25	11.05	0.04	1.17	2.47
YELLOW BULLHEAD		I	С	т	16	12.00	9.30	0.45	14.62	37.13
BLACK BULLHEAD		I	С	Р	1	0.75	0.58	0.03	0.87	35.00
BRINDLED MADTOM		Ι	С	I	7	5.25	4.07	0.02	0.72	4.14
TROUT-PERCH		Ι	Μ		7	5.25	4.07	0.06	1.92	11.14
BLACK CRAPPIE	S	I	С		6	4.50	3.49	0.06	2.12	14.33
ROCK BASS	S	С	С		4	3.00	2.33	0.08	2.58	26.00
LARGEMOUTH BASS	F	С	С		1	0.75	0.58	0.01	0.34	14.00
WARMOUTH SF	S	С	С		17	12.75	9.88	0.21	6.86	16.35
GREEN SUNFISH	S	Ι	С	т	17	12.75	9.88	0.11	3.73	8.88
BLUEGILL SUNFISH	S	I	С	Р	8	6.00	4.65	0.19	6.29	31.88
PUMPKINSEED SUNFISH	S	Ι	С	Р	4	3.00	2.33	0.05	1.66	16.75
WALLEYE	F	Р	S		1	0.75	0.58	0.61	19.94	810.00
BLACKSIDE DARTER	D	Ι	S		25	18.75	14.53	0.11	3.59	5.84
JOHNNY DARTER	D	I	С		2	1.50	1.16	0.00	0.10	2.00
GREENSIDE DARTER	D	I	S	Μ	1	0.75	0.58	0.00	0.13	5.00
	Mile To	otal			172	129.00		3.05		
	Numbe		Specie	es	27					
	Numbe		•		0					
					-					

a	•	т	•
Sn2	00100		1 ct
SDV	ecies		131

Page	3
------	---

				~	peere					Tuge 5
River Code: 03-001 River Mile: 65.90	Stream Basin Time Dist F	: Gr Fishe	and F d: 44	River 51 sec	Drain Area: 212.0 sq mi No of Passes: 2			Sample Date: 1995 Date Range: 07/25/95 Thru: 09/07/95 Sampler Type: A		
Species Name / ODNR status		Feed Guild			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight
GRASS PICKEREL		Р	М	Р	4	4.00	1.89	0.03	0.07	8.00
SILVER REDHORSE	R	I	S	М	21	21.00	9.91	18.15	37.26	864.19
BLACK REDHORSE	R	Т	S	I	1	1.00	0.47	0.88	1.81	880.00
GOLDEN REDHORSE	R	Т	S	М	68	68.00	32.08	16.18	33.21	237.89
NORTHERN HOG SUCKER	R	Т	S	М	12	12.00	5.66	0.78	1.60	64.93
WHITE SUCKER	W	0	S	т	24	24.00	11.32	9.60	19.71	399.92
RIVER CHUB	Ν	Ι	Ν	I	1	1.00	0.47	0.09	0.19	92.00
REDFIN SHINER	Ν	Ι	Ν		1	1.00	0.47	0.00	0.01	3.00
STRIPED SHINER	Ν	Ι	S		7	7.00	3.30	0.13	0.27	18.79
SPOTFIN SHINER	Ν	Ι	М		17	17.00	8.02	0.06	0.12	3.53
BLUNTNOSE MINNOW	Ν	0	С	Т	4	4.00	1.89	0.01	0.02	3.00
BRINDLED MADTOM		T	С	I	1	1.00	0.47	0.01	0.01	6.00
TROUT-PERCH		Ι	М		27	27.00	12.74	0.23	0.47	8.41
BLACK CRAPPIE	S	Ι	С		1	1.00	0.47	0.03	0.06	30.00
ROCK BASS	S	С	С		10	10.00	4.72	1.27	2.60	126.50
BLUEGILL SUNFISH	S	Ι	С	Р	2	2.00	0.94	0.13	0.26	63.00
PUMPKINSEED SUNFISH	S	T	С	Р	1	1.00	0.47	0.02	0.04	19.00
WALLEYE	F	Ρ	S		1	1.00	0.47	1.05	2.16	1,050.00
YELLOW PERCH			М		1	1.00	0.47	0.04	0.08	39.00
BLACKSIDE DARTER	D	Ι	S		5	5.00	2.36	0.03	0.06	5.47
JOHNNY DARTER	D	Ι	С		2	2.00	0.94	0.00	0.01	1.50
GREENSIDE DARTER	D	Т	S	Μ	1	1.00	0.47	0.00	0.00	1.00
	Mile To	otal			212	212.00		48.71		
	Numbe	er of S	Specie	es	22					
	Numbe		•		0					

a	•	T	•
Sne	0100		1ct
DDC	cies		ast.
1			

Pa	ge	4

River Code: 03-001 River Mile: 52.70	Basin Time	Stream: Grand River Basin: Grand River Time Fished: 5681 sec Dist Fished: 1.00 km				n: Grand River e Fished: 5681 sec Drain Area: 289.0 sq mi			Sample Date: 1995 Date Range: 07/25/95 Thru: 09/07/95 Sampler Type: A		
	Dist	Islicu	. 1.(NO 01 1 asses. 2			Sample	r rype. <i>r</i>	1	
Species Name / ODNR status		Feed Guild			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight	
GRASS PICKEREL		Р	М	Р	3	3.00	1.69	0.01	0.01	3.67	
SILVER REDHORSE	R	Ι	S	Μ	46	46.00	25.99	29.74	35.07	646.56	
GOLDEN REDHORSE	R	Ι	S	Μ	25	25.00	14.12	3.24	3.81	129.40	
RIVER REDHORSE [S]	R	Т	S	I	1	1.00	0.56	2.75	3.24	2,750.00	
WHITE SUCKER	W	0	S	т	8	8.00	4.52	2.16	2.54	269.50	
COMMON CARP	G	0	Μ	т	9	9.00	5.08	28.60	33.72	3,177.78	
GOLDEN SHINER	Ν	Ι	Μ	т	2	2.00	1.13	0.02	0.03	11.00	
REDFIN SHINER	Ν	Ι	Ν		2	2.00	1.13	0.00	0.00	1.50	
SPOTFIN SHINER	Ν	Ι	Μ		6	6.00	3.39	0.03	0.03	4.67	
SAND SHINER	Ν	Ι	Μ	Μ	1	1.00	0.56	0.00	0.00	1.00	
BLUNTNOSE MINNOW	Ν	0	С	т	5	5.00	2.82	0.01	0.01	1.20	
GRASS CARP	Е		Μ		1	1.00	0.56	5.60	6.60	5,600.00	
YELLOW BULLHEAD		Ι	С	т	5	5.00	2.82	1.53	1.81	306.60	
TROUT-PERCH		Ι	М		9	9.00	5.08	0.09	0.11	10.11	
WHITE CRAPPIE	S	Ι	С		5	5.00	2.82	0.91	1.07	181.80	
BLACK CRAPPIE	S	Т	С		5	5.00	2.82	0.66	0.78	132.80	
ROCK BASS	S	С	С		8	8.00	4.52	1.05	1.24	131.13	
SMALLMOUTH BASS	F	С	С	М	1	1.00	0.56	0.46	0.54	456.00	
LARGEMOUTH BASS	F	С	С		2	2.00	1.13	0.04	0.04	18.00	
WARMOUTH SF	S	С	С		1	1.00	0.56	0.06	0.07	56.00	
GREEN SUNFISH	S	Ι	С	т	1	1.00	0.56	0.02	0.03	22.00	
BLUEGILL SUNFISH	S	Т	С	Р	6	6.00	3.39	0.28	0.33	47.00	
LONGEAR SUNFISH	S	I	С	М	2	2.00	1.13	0.02	0.03	12.00	
PUMPKINSEED SUNFISH	S	I	С	Р	4	4.00	2.26	0.11	0.13	28.00	
B'GILL X PUMPKINSEED					1	1.00	0.56	0.06	0.08	64.00	
HYBRID X SUNFISH					1	1.00	0.56	0.03	0.03	27.00	
WALLEYE	F	Р	S		9	9.00	5.08	6.72	7.92	746.44	
YELLOW PERCH			М		4	4.00	2.26	0.59	0.70	148.50	
BLACKSIDE DARTER	D	I	s		2	2.00	1.13	0.01	0.01	5.00	
LOGPERCH	D	I	s	М	1	1.00	0.56	0.00	0.00	3.00	
JOHNNY DARTER	D	I	С		1	1.00	0.56	0.00	0.00	3.00	
	Mile Te	otal			177	177.00		84.81		-	
	Numbe		Snecia	29	29	177.00		04.01			
	Numbe		-		29						
	ivanibe	51 01 1	iyonu	0	2						

a	•	т	• .
N ne	ecies		1ct
NUN		_	isi

Page	5
I ugo	-

				<u> </u>	pecie	s List				Page 5	
River Code: 03-001	Stream	n: Gi	and	River				Sample	Date: 1	995	
River Mile: 40.90	Basin:	Basin: Grand River				Date Ra		/25/95			
	Time	Fishe	d: 49	75 sec	Drain Area: 521.0 sq mi			Thru: 09/07/95			
	Dist F	ished	: 1.0	00 km	No c	No of Passes: 2			Sampler Type: A		
Species		Feed			# of	Relative	% by	Relative	% by	Ave(gm)	
Name / ODNR status	Grp	Guild	Guild	l Tol	Fish	Number	Number	Weight	Weight	Weight	
NORTHERN PIKE	F	Ρ	М		3	3.00	0.68	0.71	1.35	237.00	
SILVER REDHORSE	R	T	S	М	32	32.00	7.21	15.90	30.25	497.02	
BLACK REDHORSE	R	T	S	I	10	10.00	2.25	2.81	5.34	280.90	
GOLDEN REDHORSE	R	Ι	S	М	94	94.00	21.17	17.46	33.21	185.72	
RIVER REDHORSE [S]	R	Ι	S	I	1	1.00	0.23	0.48	0.92	482.00	
NORTHERN HOG SUCKER	R	Ι	S	М	25	25.00	5.63	0.86	1.64	34.52	
COMMON CARP	G	0	М	Т	1	1.00	0.23	2.90	5.52	2,900.00	
HORNYHEAD CHUB	Ν	Т	Ν	Ι	2	2.00	0.45	0.01	0.02	4.00	
RIVER CHUB	Ν	I	Ν	Ι	6	6.00	1.35	0.10	0.19	16.67	
ROSYFACE SHINER	Ν	Т	S	I.	1	1.00	0.23	0.00	0.00	1.00	
REDFIN SHINER	Ν	Т	Ν		18	18.00	4.05	0.02	0.03	1.00	
STRIPED SHINER	Ν	Т	S		19	19.00	4.28	0.17	0.33	9.05	
SPOTFIN SHINER	Ν	T	М		13	13.00	2.93	0.05	0.10	3.85	
SAND SHINER	Ν	Ι	М	М	4	4.00	0.90	0.01	0.01	1.25	
MIMIC SHINER	Ν	Ι	М	I	78	78.00	17.57	0.13	0.25	1.65	
BLUNTNOSE MINNOW	Ν	0	С	т	51	51.00	11.49	0.16	0.31	3.20	
CENTRAL STONEROLLER	Ν	Н	Ν		8	8.00	1.80	0.04	0.07	4.38	
CHANNEL CATFISH	F		С		2	2.00	0.45	4.35	8.27	2,175.00	
STONECAT MADTOM		T	С	I	1	1.00	0.23	0.00	0.00	1.00	
BRINDLED MADTOM		T	С	I	1	1.00	0.23	0.01	0.01	5.00	
TROUT-PERCH		T	М		25	25.00	5.63	0.17	0.31	6.60	
BLACK CRAPPIE	S	Ι	С		1	1.00	0.23	0.20	0.38	198.00	
ROCK BASS	S	С	С		3	3.00	0.68	0.03	0.05	8.67	
SMALLMOUTH BASS	F	С	С	М	8	8.00	1.80	2.17	4.12	271.00	
LARGEMOUTH BASS	F	С	С		2	2.00	0.45	0.04	0.07	17.50	
GREEN SUNFISH	S	T	С	т	1	1.00	0.23	0.02	0.04	20.00	
BLUEGILL SUNFISH	S	T	С	Р	5	5.00	1.13	0.04	0.07	7.00	
LONGEAR SUNFISH	S	T	С	М	1	1.00	0.23	0.01	0.02	12.00	
WALLEYE	F	Р	S		5	5.00	1.13	3.68	7.00	735.80	
BLACKSIDE DARTER	D	Ι	s		12	12.00	2.70	0.03	0.06	2.50	
LOGPERCH	D	Ι	s	М	3	3.00	0.68	0.03	0.05	9.00	
JOHNNY DARTER	D	Т	С		1	1.00	0.23	0.00	0.00	1.00	
GREENSIDE DARTER	D	Ι	s	М	4	4.00	0.90	0.01	0.01	1.75	
FANTAIL DARTER	D	Ι	С		3	3.00	0.68	0.01	0.01	1.67	
	Mile To	otal			444	444.00		52.57			
		Number of Species									
			-		34 0						
Number of Hybrids 0											

a	•	т	•
S'nc	00100		1 ct
SDC	ecies		150

Pag	e	6

				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	r • • • • •					Tuge o		
River Code: 03-001	Stream	n: Gi	rand	River				Sample	Date: 1	.995		
River Mile: <b>36.30</b>		Basin: Grand River							Date Range: 07/17/95			
				70 sec		n Area: 543	-			/07/95		
	Dist F	ished	: 1.0	00 km	No c	of Passes: 2	2	Sample	r Type: A	A		
Species	IBI	Feed	Bree	d	# of	Relative	% by	Relative	% by	Ave(gm)		
Name / ODNR status	Grp	Guild	Guild	l Tol	Fish	Number	Number	Weight	Weight	Weight		
NORTHERN PIKE	F	Р	Μ		1	1.00	0.43	0.10	0.21	95.00		
MUSKELLUNGE [S]	F	Ρ	Μ		2	2.00	0.86	4.07	8.89	2,035.00		
SILVER REDHORSE	R	Ι	S	Μ	40	40.00	17.17	16.49	36.01	412.25		
BLACK REDHORSE	R	Ι	S	I	1	1.00	0.43	0.28	0.61	278.00		
GOLDEN REDHORSE	R	Ι	S	Μ	56	56.00	24.03	7.98	17.43	142.58		
WHITE SUCKER	W	0	S	т	1	1.00	0.43	0.14	0.31	141.00		
COMMON CARP	G	0	Μ	Т	4	4.00	1.72	10.46	22.83	2,614.25		
GOLDEN SHINER	Ν	Ι	Μ	Т	4	4.00	1.72	0.03	0.06	7.25		
REDFIN SHINER	Ν	T	Ν		1	1.00	0.43	0.00	0.00	1.00		
STRIPED SHINER	Ν	T	S		6	6.00	2.58	0.05	0.11	8.17		
SPOTFIN SHINER	Ν	T	Μ		5	5.00	2.15	0.02	0.04	3.60		
MIMIC SHINER	Ν	Ι	Μ	I	11	11.00	4.72	0.01	0.03	1.27		
BLUNTNOSE MINNOW	Ν	0	С	Т	19	19.00	8.15	0.02	0.05	1.11		
TROUT-PERCH		T	Μ		15	15.00	6.44	0.09	0.20	6.13		
WHITE CRAPPIE	S	T	С		4	4.00	1.72	0.20	0.44	50.50		
BLACK CRAPPIE	S	Ι	С		2	2.00	0.86	0.01	0.02	5.00		
ROCK BASS	S	С	С		11	11.00	4.72	0.62	1.36	56.45		
SMALLMOUTH BASS	F	С	С	Μ	5	5.00	2.15	1.40	3.05	279.60		
LARGEMOUTH BASS	F	С	С		8	8.00	3.43	0.12	0.25	14.38		
BLUEGILL SUNFISH	S	Ι	С	Р	6	6.00	2.58	0.11	0.23	17.50		
PUMPKINSEED SUNFISH	S	Ι	С	Р	14	14.00	6.01	0.25	0.54	17.79		
WALLEYE	F	Ρ	S		6	6.00	2.58	3.26	7.12	543.67		
YELLOW PERCH			Μ		2	2.00	0.86	0.07	0.16	35.50		
BLACKSIDE DARTER	D	Т	S		7	7.00	3.00	0.01	0.03	1.86		
LOGPERCH	D	Ι	S	М	2	2.00	0.86	0.01	0.02	5.50		
	Mile To	otal			233	233.00		45.80				
	Numbe	er of S	Specie	es	25							
	Numbe	er of H	lybria	ls	0							

a	•	т	•
S'nc	00100		1 ct
SDC	ecies		150

Page	7
I age	

Time Fished:         4078 sec Dist Fished:         Drain Area:         548.0 sq mi No of Passes:         Thru:         08/24/95 Sampler Type:         A           Species         IBI Feed SILVER REDHORSE         R         I         S         M         10         10.56         2.70         3.40         6.19         31           SILVER REDHORSE         R         I         S         M         10         10.56         2.70         3.40         6.19         31           GOLDEN REDHORSE         R         I         S         M         10         10.56         2.70         3.40         6.19         31           GOLDEN REDHORSE         R         I         S         M         38         39.89         10.22         4.13         7.52         11           GOLDEN REDHORSE         R         I         S         M         12         12.22         3.13         1.07         1.96         82           WHITE SUCKER         W         O         S         T         1         11         0.28         0.03         0.05         2           COMMON CARP         G         O         M         T         8         8.78         2.25         29.67         54.05 <t< th=""><th></th><th></th><th></th><th></th><th>3</th><th>pecie</th><th>s List</th><th></th><th></th><th></th><th>Page /</th></t<>					3	pecie	s List				Page /
Name / ODNR status         Grp Guild Guild Tol         Fish         Number         Number         Weight         State           BLACK REDHORSE         R         I         S         I         33         36.22         9.28         4.13         7.52         11           GOLDEN REDHORSE [S]         R         I         S         I         2         2.22         0.57         6.00         10.39         2.70           NORTHERN HOG SUCKER         R         I         S         M         12         12.22         3.13         1.07         1.96         8           WHITE SUCKER         W         O         S         T         1         1.111         0.28         0.03         0.05         2         9.010         0.010         0.02         Recenter         N         N         N         N         N         1.77         0.00         0.01         0.02 <t< td=""><td></td><td colspan="3">Basin: Grand River Time Fished: 4078 sec</td><td></td><td></td><td>-</td><td colspan="3">Date Range: 07/18/95 Thru: 08/24/95</td></t<>		Basin: Grand River Time Fished: 4078 sec					-	Date Range: 07/18/95 Thru: 08/24/95			
BLACK REDHORSE         R         I         S         I         33         36.22         9.28         4.13         7.52         11           GOLDEN REDHORSE         R         I         S         M         38         39.89         10.22         4.91         8.95         12           RIVER REDHORSE [S]         R         I         S         I         2         2.22         0.57         6.00         10.93         2.70           NORTHERN HOG SUCKER         R         I         S         M         12         12.22         3.13         1.07         1.96         8           WHITE SUCKER         W         O         S         T         1         1.11         0.28         0.03         0.05         2           COMMON CARP         G         O         M         T         8         8.78         2.25         2.967         54.05         3.33           RIVER CHUB         N         I         N         I         7         7.00         1.77         0.00         0.01         53           ROSYFACE SHINER         N         I         N         I         S         1         1.77         0.02         0.04											Ave(gm) Weight
GOLDEN REDHORSE       R       I       S       M       38       39.89       10.22       4.91       8.95       12         RIVER REDHORSE [S]       R       I       S       I       2       2.22       0.57       6.00       10.93       2.70         NORTHERN HOG SUCKER       R       I       S       M       12       12.22       3.13       1.07       1.96       8         WHITE SUCKER       W       O       S       T       1       1.11       0.28       0.03       0.05       2         COMMON CARP       G       O       M       T       8       8.78       2.25       29.67       54.05       3,39         RIVER CHUB       N       I       N       I       7       7.00       1.79       0.10       0.01       0.02         REDFIN SHINER       N       I       S       I       2       2.00       0.51       0.00       0.01         SPOTFIN SHINER       N       I       M       1111       111.78       28.63       0.17       0.30       0.04         BLUNTNOSE MINNOW       N       O       C       T       30       30.44       7.80       0.10	SILVER REDHORSE	R	I	S	М	10	10.56	2.70	3.40	6.19	311.30
RIVER REDHORSE [S]       R       I       S       I       2       2.22       0.57       6.00       10.93       2.70         NORTHERN HOG SUCKER       R       I       S       M       12       12.22       3.13       1.07       1.96       8         WHITE SUCKER       W       O       S       T       1       1.11       0.28       0.03       0.05       2         COMMON CARP       G       O       M       T       8       8.78       2.25       29.67       54.05       3.38         RIVER CHUB       N       I       N       I       7       7.00       1.79       0.10       0.19       1         ROSYFACE SHINER       N       I       S       I       2       2.00       0.51       0.01       0.02         SPOTFIN SHINER       N       I       S       29       30.11       7.71       0.24       0.43       3         SPOTFIN SHINER       N       I       M       1       111       111.78       28.63       0.17       0.30         BLUNTNOSE MINNOW       N       O       C       T       30       30.44       7.80       0.10       0.18	BLACK REDHORSE	R	Т	S	I	33	36.22	9.28	4.13	7.52	115.30
NORTHERN HOG SUCKER         R         I         S         M         12         12.22         3.13         1.07         1.96         8           WHITE SUCKER         W         O         S         T         1         1.11         0.28         0.03         0.05         2           COMMON CARP         G         O         M         T         8         8.78         2.25         29.67         54.05         3,38           RVER CHUB         N         I         N         I         7         7.00         1.79         0.10         0.19         1           ROSYFACE SHINER         N         I         S         1         2         2.00         0.51         0.01         0.02           REDFIN SHINER         N         I         S         29         30.11         7.71         0.24         0.43           SPOTFIN SHINER         N         I         M         1         111         111.78         28.63         0.17         0.30           BLUNTNOSE MINNOW         N         O         C         T         30         30.44         7.80         0.10         0.18           CENTRAL STONEROLLER         N         H         N	GOLDEN REDHORSE	R	Ι	S	М	38	39.89	10.22	4.91	8.95	121.03
WHITE SUCKER       W       O       S       T       1       1.11       0.28       0.03       0.05       2         COMMON CARP       G       O       M       T       8       8.78       2.25       29.67       54.05       3,39         RIVER CHUB       N       I       N       I       7.00       1.79       0.10       0.19       1         ROSYFACE SHINER       N       I       S       I       2       2.00       0.51       0.01       0.02       1         REDFIN SHINER       N       I       S       29       30.11       7.71       0.24       0.43       1         SPOTFIN SHINER       N       I       M       6       6.11       1.57       0.02       0.04         MIMIC SHINER       N       I       M       111       111.78       28.63       0.17       0.30         BLUNTNOSE MINNOW       N       O       C       T       30       30.44       7.80       0.00       0.01         STONECAT MADTOM       I       C       I       1       1.00       0.26       0.03       0.06       33         ROCK BASS       S       C       C	RIVER REDHORSE [S]	R	Ι	S	I	2	2.22	0.57	6.00	10.93	2,700.00
COMMON CARP         G         O         M         T         8         8.78         2.25         29.67         54.05         3,39           RIVER CHUB         N         I         N         I         7         7.00         1.79         0.10         0.19         1           ROSYFACE SHINER         N         I         S         I         2         2.00         0.51         0.01         0.02           REDFIN SHINER         N         I         S         29         30.11         7.71         0.24         0.43           SPOTFIN SHINER         N         I         S         29         30.11         7.71         0.24         0.43           SPOTFIN SHINER         N         I         M         1         111         11.78         28.63         0.17         0.30           BLUNTNOSE MINNOW         N         O         C         T         30         30.44         7.80         0.10         0.18           CENTRAL STONEROLLER         N         H         N         2         2.00         0.51         0.00         0.01           STONECAT MADTOM         I         C         I         1         1.00         0.26         0.	NORTHERN HOG SUCKER	R	I	S	М	12	12.22	3.13	1.07	1.96	86.50
RIVER CHUB       N       I       N       I       7       7.00       1.79       0.10       0.19       1         ROSYFACE SHINER       N       I       S       I       2       2.00       0.51       0.01       0.02         REDFIN SHINER       N       I       N       3       3.00       0.77       0.00       0.01         STRIPED SHINER       N       I       S       29       30.11       7.71       0.24       0.43         SPOTFIN SHINER       N       I       M       6       6.11       1.57       0.02       0.04         MIMIC SHINER       N       I       M       1       111       111.78       28.63       0.17       0.30         BLUNTNOSE MINNOW       N       O       C       T       30       30.44       7.80       0.00       0.01         STORECAT MADTOM       I       C       I       1       1.00       0.26       0.03       0.06       3         TROUT-PERCH       I       M       15       16.11       4.13       0.14       0.26         BLACK CRAPPIE       S       I       C       T       1       1.11       0.28 <t< td=""><td>WHITE SUCKER</td><td>W</td><td>0</td><td>S</td><td>т</td><td>1</td><td>1.11</td><td>0.28</td><td>0.03</td><td>0.05</td><td>24.00</td></t<>	WHITE SUCKER	W	0	S	т	1	1.11	0.28	0.03	0.05	24.00
ROSYFACE SHINER         N         I         S         I         2         2.00         0.51         0.01         0.02           REDFIN SHINER         N         I         N         3         3.00         0.77         0.00         0.01           STRIPED SHINER         N         I         S         29         30.11         7.71         0.24         0.43           SPOTFIN SHINER         N         I         M         6         6.11         1.57         0.02         0.04           MIMIC SHINER         N         I         M         I         111         111.78         28.63         0.17         0.30           BLUNTNOSE MINNOW         N         O         C         T         30         30.44         7.80         0.10         0.18           CENTRAL STONEROLLER         N         H         N         2         2.00         0.51         0.00         0.01           STONECAT MADTOM         I         C         I         1         1.00         0.26         0.03         0.06         33           ROCK BASS         S         C         C         22         2.57         0.64         1.17         28           RO	COMMON CARP	G	0	Μ	т	8	8.78	2.25	29.67	54.05	3,393.75
REDFIN SHINER         N         I         N         3         3.00         0.77         0.00         0.01           STRIPED SHINER         N         I         S         29         30.11         7.71         0.24         0.43           SPOTFIN SHINER         N         I         M         6         6.11         1.57         0.02         0.04           MIMIC SHINER         N         I         M         I         111         111.78         28.63         0.17         0.30           BLUNTNOSE MINNOW         N         O         C         T         30         30.44         7.80         0.10         0.18           CENTRAL STONEROLLER         N         H         N         2         2.00         0.51         0.00         0.01           STONECAT MADTOM         I         C         I         1         1.00         0.26         0.03         0.06         3           TROUT-PERCH         I         M         15         16.11         4.13         0.14         0.26           BLACK CRAPPIE         S         I         C         Z2         2.322         5.95         1.17         2.14         4           SMALLMOUTH BASS </td <td>RIVER CHUB</td> <td>Ν</td> <td>I.</td> <td>Ν</td> <td>I</td> <td>7</td> <td>7.00</td> <td>1.79</td> <td>0.10</td> <td>0.19</td> <td>14.57</td>	RIVER CHUB	Ν	I.	Ν	I	7	7.00	1.79	0.10	0.19	14.57
STRIPED SHINER       N       I       S       29       30.11       7.71       0.24       0.43         SPOTFIN SHINER       N       I       M       6       6.11       1.57       0.02       0.04         MIMIC SHINER       N       I       M       I       111       111.78       28.63       0.17       0.30         BLUNTNOSE MINNOW       N       O       C       T       30       30.44       7.80       0.10       0.18         CENTRAL STONEROLLER       N       H       N       2       2.00       0.51       0.00       0.01         STROUT-PERCH       I       M       15       16.11       4.13       0.14       0.26         BLACK CRAPPIE       S       I       C       22       23.22       0.57       0.64       1.17       28         ROCK BASS       S       C       C       M       12       12.67       3.24       2.67       4.87       21         GREEN SUNFISH       S       I       C       M       2       2.22       0.57       0.02       0.04       1         PUMPKINSEED SUNFISH       S       I       C       P       1       1.11 <td>ROSYFACE SHINER</td> <td>Ν</td> <td>I</td> <td>S</td> <td>I</td> <td>2</td> <td>2.00</td> <td>0.51</td> <td>0.01</td> <td>0.02</td> <td>5.50</td>	ROSYFACE SHINER	Ν	I	S	I	2	2.00	0.51	0.01	0.02	5.50
SPOTFIN SHINER         N         I         M         G         6.11         1.57         0.02         0.04           MIMIC SHINER         N         I         M         I         111         111.78         28.63         0.17         0.30           BLUNTNOSE MINNOW         N         O         C         T         30         30.44         7.80         0.10         0.18           CENTRAL STONEROLLER         N         H         N         2         2.00         0.51         0.00         0.01           STONECAT MADTOM         I         C         I         1         1.00         0.26         0.03         0.06         33           TROUT-PERCH         I         M         15         16.11         4.13         0.14         0.26           BLACK CRAPPIE         S         I         C         22         2.22         0.57         0.64         1.17         28           ROCK BASS         S         C         C         M         12         12.67         3.24         2.67         4.87         21           GREEN SUNFISH         S         I         C         T         1         1.11         0.28         0.00         0.00	REDFIN SHINER	Ν	I.	Ν		3	3.00	0.77	0.00	0.01	1.33
MIMIC SHINER       N       I       M       I       111       11.78       28.63       0.17       0.30         BLUNTNOSE MINNOW       N       O       C       T       30       30.44       7.80       0.10       0.18         CENTRAL STONEROLLER       N       H       N       2       2.00       0.51       0.00       0.01         STONECAT MADTOM       I       C       I       1       1.00       0.26       0.03       0.06       3         TROUT-PERCH       I       M       15       16.11       4.13       0.14       0.26         BLACK CRAPPIE       S       I       C       22       2.22       0.57       0.64       1.17       28         ROCK BASS       S       C       C       22       23.22       5.95       1.17       2.14       44         SMALLMOUTH BASS       F       C       M       12       12.67       3.24       2.67       4.87       21         GREEN SUNFISH       S       I       C       M       2       2.22       0.57       0.02       0.04       1         PUMPKINSEED SUNFISH       S       I       C       P       1	STRIPED SHINER	Ν	I	S		29	30.11	7.71	0.24	0.43	7.90
BLUNTNOSE MINNOW         N         O         C         T         30         30.44         7.80         0.10         0.18           CENTRAL STONEROLLER         N         H         N         2         2.00         0.51         0.00         0.01           STONECAT MADTOM         I         C         I         1         1.00         0.26         0.03         0.06         3           TROUT-PERCH         I         M         15         16.11         4.13         0.14         0.26           BLACK CRAPPIE         S         I         C         2         2.22         0.57         0.64         1.17         28           ROCK BASS         S         C         C         22         23.22         5.95         1.17         2.14         4           SMALLMOUTH BASS         F         C         C         M         12         12.67         3.24         2.67         4.87         21           GREEN SUNFISH         S         I         C         M         2         2.22         0.57         0.02         0.04         1           PUMPKINSEED SUNFISH         S         I         C         P         1         1.11         0.28 <td>SPOTFIN SHINER</td> <td>Ν</td> <td>I</td> <td>Μ</td> <td></td> <td>6</td> <td>6.11</td> <td>1.57</td> <td>0.02</td> <td>0.04</td> <td>3.83</td>	SPOTFIN SHINER	Ν	I	Μ		6	6.11	1.57	0.02	0.04	3.83
CENTRAL STONEROLLER         N         H         N         2         2.00         0.51         0.00         0.01           STONECAT MADTOM         I         C         I         1         1.00         0.26         0.03         0.06         3           TROUT-PERCH         I         M         15         16.11         4.13         0.14         0.26           BLACK CRAPPIE         S         I         C         2         2.22         0.57         0.64         1.17         28           ROCK BASS         S         C         C         22         23.22         5.95         1.17         2.14         4           SMALLMOUTH BASS         F         C         C         M         12         12.67         3.24         2.67         4.87         21           GREEN SUNFISH         S         I         C         T         1         1.11         0.28         0.00         0.00           LONGEAR SUNFISH         S         I         C         P         1         1.11         0.28         0.02         0.04         1           WALLEYE         F         P         S         3         3.11         0.80         0.22         <	MIMIC SHINER	Ν	I	Μ	I	111	111.78	28.63	0.17	0.30	1.48
STONECAT MADTOM       I       C       I       1       1.00       0.26       0.03       0.06       3         TROUT-PERCH       I       M       15       16.11       4.13       0.14       0.26         BLACK CRAPPIE       S       I       C       2       2.22       0.57       0.64       1.17       28         ROCK BASS       S       C       C       22       23.22       5.95       1.17       2.14       44         SMALLMOUTH BASS       F       C       C       M       12       12.67       3.24       2.67       4.87       21         GREEN SUNFISH       S       I       C       T       1       1.11       0.28       0.00       0.00       0.00         LONGEAR SUNFISH       S       I       C       M       2       2.22       0.57       0.02       0.04       1         PUMPKINSEED SUNFISH       S       I       C       P       1       1.11       0.28       0.02       0.04       0.7         BLACKSIDE DARTER       D       I       S       M       6       6.00       1.54       0.03       0.05       7         GREENSIDE DARTER	BLUNTNOSE MINNOW	Ν	0	С	т	30	30.44	7.80	0.10	0.18	3.30
TROUT-PERCH       I       M       15       16.11       4.13       0.14       0.26         BLACK CRAPPIE       S       I       C       2       2.22       0.57       0.64       1.17       28         ROCK BASS       S       C       C       22       23.22       5.95       1.17       2.14       4         SMALLMOUTH BASS       F       C       C       M       12       12.67       3.24       2.67       4.87       21         GREEN SUNFISH       S       I       C       T       1       1.11       0.28       0.00       0.00       0.00         LONGEAR SUNFISH       S       I       C       M       2       2.22       0.57       0.02       0.04       1         PUMPKINSEED SUNFISH       S       I       C       P       1       1.11       0.28       0.02       0.04       1         WALLEYE       F       P       S       3       3.11       0.80       0.22       0.41       6         BLACKSIDE DARTER       D       I       S       M       6       6.00       1.54       0.03       0.05         GREENSIDE DARTER       D       I </td <td>CENTRAL STONEROLLER</td> <td>Ν</td> <td>Н</td> <td>Ν</td> <td></td> <td>2</td> <td>2.00</td> <td>0.51</td> <td>0.00</td> <td>0.01</td> <td>1.50</td>	CENTRAL STONEROLLER	Ν	Н	Ν		2	2.00	0.51	0.00	0.01	1.50
BLACK CRAPPIE       S       I       C       2       2.22       0.57       0.64       1.17       28         ROCK BASS       S       C       C       22       23.22       5.95       1.17       2.14       4         SMALLMOUTH BASS       F       C       C       M       12       12.67       3.24       2.67       4.87       21         GREEN SUNFISH       S       I       C       T       1       1.11       0.28       0.00       0.00       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>STONECAT MADTOM</td> <td></td> <td>I.</td> <td>С</td> <td>I</td> <td>1</td> <td>1.00</td> <td>0.26</td> <td>0.03</td> <td>0.06</td> <td>32.00</td>	STONECAT MADTOM		I.	С	I	1	1.00	0.26	0.03	0.06	32.00
ROCK BASS       S       C       C       22       23.22       5.95       1.17       2.14       4         SMALLMOUTH BASS       F       C       C       M       12       12.67       3.24       2.67       4.87       21         GREEN SUNFISH       S       I       C       T       1       1.11       0.28       0.00       0.00       10         LONGEAR SUNFISH       S       I       C       M       2       2.22       0.57       0.02       0.04       11         PUMPKINSEED SUNFISH       S       I       C       P       1       1.11       0.28       0.02       0.04       11         WALLEYE       F       P       S       3       3.11       0.80       0.22       0.41       66         BLACKSIDE DARTER       D       I       S       11       11.22       2.87       0.04       0.07       11         GREENSIDE DARTER       D       I       S       M       66       6.00       1.54       0.03       0.05       11         GREENSIDE DARTER       D       I       S       M       66       6.00       1.54       0.00       0.00       0.00 <td>TROUT-PERCH</td> <td></td> <td>I.</td> <td>Μ</td> <td></td> <td>15</td> <td>16.11</td> <td>4.13</td> <td>0.14</td> <td>0.26</td> <td>8.80</td>	TROUT-PERCH		I.	Μ		15	16.11	4.13	0.14	0.26	8.80
SMALLMOUTH BASS       F       C       C       M       12       12.67       3.24       2.67       4.87       21         GREEN SUNFISH       S       I       C       T       1       1.11       0.28       0.00       0.00       1         LONGEAR SUNFISH       S       I       C       M       2       2.22       0.57       0.02       0.04       1         PUMPKINSEED SUNFISH       S       I       C       P       1       1.11       0.28       0.02       0.04       1         WALLEYE       F       P       S       3       3.11       0.80       0.22       0.41       6         BLACKSIDE DARTER       D       I       S       11       11.22       2.87       0.04       0.07         LOGPERCH       D       I       S       M       6       6.00       1.54       0.03       0.05         GREENSIDE DARTER       D       I       S       M       6       6.00       1.54       0.03       0.05         FANTAIL DARTER       D       I       C       1       1.00       0.26       0.00       0.00	BLACK CRAPPIE	S	I	С		2	2.22	0.57	0.64	1.17	288.50
GREEN SUNFISH       S       I       C       T       1       1.11       0.28       0.00       0.00         LONGEAR SUNFISH       S       I       C       M       2       2.22       0.57       0.02       0.04       1         PUMPKINSEED SUNFISH       S       I       C       P       1       1.11       0.28       0.02       0.04       1         WALLEYE       F       P       S       3       3.11       0.80       0.22       0.41       6         BLACKSIDE DARTER       D       I       S       11       11.22       2.87       0.04       0.07         LOGPERCH       D       I       S       M       6       6.00       1.54       0.04       0.07         GREENSIDE DARTER       D       I       S       M       6       6.00       1.54       0.03       0.05         FANTAIL DARTER       D       I       C       1       1.00       0.26       0.00       0.00         Mile Total       377       390.44       54.88       54.88       54.88       54.88	ROCK BASS	S	С	С		22	23.22	5.95	1.17	2.14	49.68
LONGEAR SUNFISH       S       I       C       M       2       2.22       0.57       0.02       0.04       1         PUMPKINSEED SUNFISH       S       I       C       P       1       1.11       0.28       0.02       0.04       1         WALLEYE       F       P       S       3       3.11       0.80       0.22       0.41       66         BLACKSIDE DARTER       D       I       S       11       11.22       2.87       0.04       0.07       66         BLACKSIDE DARTER       D       I       S       M       66       6.00       1.54       0.04       0.07         GREENSIDE DARTER       D       I       S       M       66       6.00       1.54       0.03       0.05         FANTAIL DARTER       D       I       S       M       66       6.00       1.54       0.03       0.05         Mile Total       C       1       1.00       0.26       0.00       0.00	SMALLMOUTH BASS	F	С	С	Μ	12	12.67	3.24	2.67	4.87	210.08
PUMPKINSEED SUNFISH       S       I       C       P       1       1.11       0.28       0.02       0.04       1         WALLEYE       F       P       S       3       3.11       0.80       0.22       0.41       6         BLACKSIDE DARTER       D       I       S       11       11.22       2.87       0.04       0.07         LOGPERCH       D       I       S       M       6       6.00       1.54       0.04       0.07         GREENSIDE DARTER       D       I       S       M       6       6.00       1.54       0.03       0.05         FANTAIL DARTER       D       I       S       M       6       6.00       1.54       0.00       0.00         Mile Total       C       1       1.00       0.26       0.00       0.00	GREEN SUNFISH	S	I	С	т	1	1.11	0.28	0.00	0.00	1.00
WALLEYE       F       P       S       3       3.11       0.80       0.22       0.41       6         BLACKSIDE DARTER       D       I       S       11       11.22       2.87       0.04       0.07         LOGPERCH       D       I       S       M       6       6.00       1.54       0.04       0.07         GREENSIDE DARTER       D       I       S       M       6       6.00       1.54       0.03       0.05         FANTAIL DARTER       D       I       C       1       1.00       0.26       0.00       0.00	LONGEAR SUNFISH	S	I.	С	Μ	2	2.22	0.57	0.02	0.04	10.50
BLACKSIDE DARTER         D         I         S         11         11.22         2.87         0.04         0.07           LOGPERCH         D         I         S         M         6         6.00         1.54         0.04         0.07           GREENSIDE DARTER         D         I         S         M         6         6.00         1.54         0.03         0.05           FANTAIL DARTER         D         I         S         M         6         0.00         0.26         0.00         0.00           Mile Total         377         390.44         54.88         54.88	PUMPKINSEED SUNFISH	S	I	С	Р	1	1.11	0.28	0.02	0.04	19.00
LOGPERCH         D         I         S         M         6         6.00         1.54         0.04         0.07           GREENSIDE DARTER         D         I         S         M         6         6.00         1.54         0.03         0.05           FANTAIL DARTER         D         I         C         1         1.00         0.26         0.00         0.00           Mile Total         377         390.44         54.88         54.88	WALLEYE	F	Ρ	S		3	3.11	0.80	0.22	0.41	67.33
GREENSIDE DARTER         D         I         S         M         6         6.00         1.54         0.03         0.05           FANTAIL DARTER         D         I         C         1         1.00         0.26         0.00         0.00           Mile Total         377         390.44         54.88         54.88         54.88         54.88	BLACKSIDE DARTER	D	I	S		11	11.22	2.87	0.04	0.07	3.36
FANTAIL DARTER         D         I         C         1         1.00         0.26         0.00         0.00           Mile Total         377         390.44         54.88         54.88	LOGPERCH	D	I	S	Μ	6	6.00	1.54	0.04	0.07	6.67
Mile Total 377 390.44 54.88	GREENSIDE DARTER	D	I	S	Μ	6	6.00		0.03	0.05	4.33
	FANTAIL DARTER	D	I	С		1	1.00	0.26	0.00	0.00	1.00
		Mile Te	otal			377	390.44		54.88		
Number of Species 28		Numbe	er of S	Specie	es	28					
Number of Hybrids 0		Numbe	er of H	- Iybria	ls	0					

a	•	т	•
S'nc	00100		1 ct
SDC	ecies		150

Page	8
------	---

r				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	P	5 <b>2</b> 15 <b>0</b>				ruge o
River Code:         03-001           River Mile:         28.40	Strear Basin	: Gr	and F	River	<b>.</b> .		<u>.</u>	Sample Date Ra	ange: 07/	995 18/95
				19 sec		n Area: 554	-			23/95
	Dist F	Fished	: 0.7	70 km	No c	of Passes: 2		Sample	r Type: A	D
Species	IBI	Feed	Bree	d	# of	Relative	% by	Relative	% by	Ave(gm)
Name / ODNR status	Grp	Guild	Guild	l Tol	Fish	Number	Number	Weight	Weight	Weight
SILVER REDHORSE	R	Ι	S	Μ	8	8.00	1.18	0.72	1.80	89.63
BLACK REDHORSE	R	Ι	S	I	61	55.00	8.13	11.90	29.88	211.13
GOLDEN REDHORSE	R	I	S	Μ	29	28.00	4.14	5.45	13.69	188.47
NORTHERN HOG SUCKER	R	I	S	М	97	87.50	12.93	8.48	21.28	92.92
COMMON CARP	G	0	М	т	2	2.00	0.30	1.94	4.88	971.00
RIVER CHUB	Ν	Ι	Ν	I	67	58.50	8.64	1.65	4.15	26.90
SILVER SHINER	Ν	I	S	I	10	9.25	1.37	0.06	0.16	6.80
ROSYFACE SHINER	Ν	I	S	I	56	45.00	6.65	0.09	0.23	1.96
REDFIN SHINER	Ν	I	Ν		1	1.00	0.15	0.01	0.02	6.00
STRIPED SHINER	Ν	Ι	S		95	84.50	12.49	0.83	2.08	9.53
SPOTFIN SHINER	Ν	Ι	М		5	5.00	0.74	0.03	0.08	6.00
SAND SHINER	Ν	I	М	М	8	7.75	1.15	0.02	0.06	2.88
MIMIC SHINER	Ν	I	М	I.	44	41.50	6.13	0.06	0.16	1.49
BLUNTNOSE MINNOW	Ν	0	С	т	37	31.00	4.58	0.12	0.29	3.81
CENTRAL STONEROLLER	Ν	н	Ν		29	22.50	3.32	0.18	0.44	7.76
STRIPED SH X ROSYFACE SH	ł	I			1	0.75	0.11	0.01	0.02	9.00
STONECAT MADTOM		I	С	I	7	6.00	0.89	0.25	0.63	40.86
ROCK BASS	S	С	С		57	51.25	7.57	4.71	11.83	89.96
SMALLMOUTH BASS	F	С	С	Μ	18	17.50	2.59	2.67	6.70	148.48
LONGEAR SUNFISH	S	I	С	Μ	1	1.00	0.15	0.05	0.13	52.00
WALLEYE	F	Р	S		1	1.00	0.15	0.21	0.51	205.00
BLACKSIDE DARTER	D	I	S		8	6.25	0.92	0.02	0.06	3.75
LOGPERCH	D	I	S	Μ	17	13.75	2.03	0.13	0.32	9.53
GREENSIDE DARTER	D	Т	S	М	59	48.75	7.20	0.17	0.42	3.43
RAINBOW DARTER	D	Т	S	М	12	10.75	1.59	0.03	0.09	3.25
FANTAIL DARTER	D	Т	С		41	33.25	4.91	0.05	0.13	1.50
	Mile T	otal			771	676.75		39.83		
	Numb		Specie	es	25	'				
	Numbe		•		1					
			-							

a	•	T	• .
Nn0	0100		1 of
SUC	cies	L.	ISU.

Page 9	9
--------	---

				~	r · · · ·					
River Code: 03-001	Stream	n: Gi	rand	River				Sample	Date: 1	995
River Mile: 22.10	Basin: Grand River						Date Ra	ange: 07/	/19/95	
	Time	Fishe	d: 54	00 sec	Drai	n Area: 581	.0 sq mi	Г	Thru: 08/	/23/95
	Dist F	ished	: 0.4	40 km	No c	of Passes: 2	2	Sample	r Type: D	)
Species		Feed			# of	Relative	% by	Relative	% by	Ave(gm)
Name / ODNR status	Grp	Guild	Guild	l Tol	Fish	Number	Number	Weight	Weight	Weight
BLACK REDHORSE	R	Т	S	I	11	8.25	1.13	1.37	6.63	165.59
GOLDEN REDHORSE	R	Ι	S	М	9	6.75	0.92	0.04	0.18	5.44
NORTHERN HOG SUCKER	R	Ι	S	М	63	47.25	6.47	6.06	29.36	128.17
WHITE SUCKER	W	0	S	Т	2	1.50	0.21	0.02	0.07	10.00
RIVER CHUB	Ν	Ι	Ν	I.	86	64.50	8.84	4.27	20.70	66.21
SILVER SHINER	Ν	Ι	S	I.	26	19.50	2.67	0.10	0.47	4.93
ROSYFACE SHINER	Ν	Ι	S	I.	86	64.50	8.84	0.14	0.68	2.17
STRIPED SHINER	Ν	Ι	S		77	57.75	7.91	1.06	5.12	18.29
SPOTFIN SHINER	Ν	I	М		7	5.25	0.72	0.02	0.10	3.86
SAND SHINER	Ν	I	М	М	9	6.75	0.92	0.01	0.04	1.22
MIMIC SHINER	Ν	Ι	Μ	I.	32	24.00	3.29	0.05	0.23	1.93
BLUNTNOSE MINNOW	Ν	0	С	т	79	59.25	8.12	0.26	1.25	4.35
CENTRAL STONEROLLER	Ν	Н	Ν		86	64.50	8.84	1.36	6.59	21.07
STRIPED SH X ROSYFACE SI	н	Ι			1	0.75	0.10	0.01	0.06	17.00
YELLOW BULLHEAD		I	С	т	1	0.75	0.10	0.10	0.50	138.00
STONECAT MADTOM		Ι	С	I.	21	15.75	2.16	0.35	1.68	21.94
ROCK BASS	S	С	С		77	57.75	7.91	2.82	13.65	48.75
SMALLMOUTH BASS	F	С	С	М	23	17.25	2.36	1.84	8.94	106.83
BLACKSIDE DARTER	D	Ι	S		19	14.25	1.95	0.02	0.09	1.37
LOGPERCH	D	Ι	S	Μ	38	28.50	3.91	0.36	1.76	12.71
JOHNNY DARTER	D	Ι	С		3	2.25	0.31	0.00	0.01	1.00
GREENSIDE DARTER	D	I	S	М	108	81.00	11.10	0.24	1.16	2.96
RAINBOW DARTER	D	Т	S	М	28	21.00	2.88	0.05	0.25	2.46
FANTAIL DARTER	D	Т	С		81	60.75	8.32	0.10	0.49	1.68
	Mile To	otal			973	729.75		20.63		
	Numbe	er of S	Specie	es	23					
	Numbe	er of H	- Iybria	s	1					

$\mathbf{\alpha}$	•	т	•
<b>N</b> 1	naciac		101
N	pecies		130

River Code: 03-001	Stream				Sample Date: 1995							
River Mile: <b>13.40</b>	Basin:		and F						Date Range: 07/19/95			
	Time					n Area: 630	-	Thru: 09/07/95				
	Dist F	ished	: 1.0	00 km	Noc	of Passes: 2		Sample	r Type: A	1		
Species	IBI	Feed	Bree	d	# of	Relative	% by	Relative	% by	Ave(gm)		
Name / ODNR status	Grp Guild Guild Tol			Fish	Number	Number	Weight	Weight	Weight			
SILVER REDHORSE	R	I	S	М	2	2.00	0.36	2.83	6.40	1,412.50		
BLACK REDHORSE	R	Ι	S	I	85	85.00	15.45	23.01	52.13	270.67		
GOLDEN REDHORSE	R	Ι	S	М	42	42.00	7.64	5.97	13.52	142.11		
RIVER REDHORSE [S]	R	I	S	I	2	2.00	0.36	2.62	5.94	1,310.00		
NORTHERN HOG SUCKER	R	Ι	S	Μ	79	79.00	14.36	5.02	11.36	63.49		
RIVER CHUB	Ν	Ι	Ν	I	15	15.00	2.73	0.34	0.77	22.67		
BIGEYE CHUB	Ν	Ι	S	I	1	1.00	0.18	0.00	0.00	1.00		
SILVER SHINER	Ν	Ι	S	I	41	41.00	7.45	0.18	0.40	4.32		
ROSYFACE SHINER	Ν	Ι	S	I.	39	39.00	7.09	0.09	0.19	2.20		
STRIPED SHINER	Ν	Ι	S		59	59.00	10.73	0.67	1.52	11.35		
SPOTFIN SHINER	Ν	Ι	М		6	6.00	1.09	0.02	0.05	3.50		
SAND SHINER	Ν	Ι	М	М	5	5.00	0.91	0.01	0.03	2.60		
MIMIC SHINER	Ν	Ι	М	I.	47	47.00	8.55	0.07	0.16	1.53		
BLUNTNOSE MINNOW	Ν	0	С	т	30	30.00	5.45	0.09	0.21	3.09		
CENTRAL STONEROLLER	Ν	н	Ν		11	11.00	2.00	0.10	0.23	9.27		
STONECAT MADTOM		Ι	С	I	2	2.00	0.36	0.04	0.08	18.00		
BRINDLED MADTOM		Ι	С	I	2	2.00	0.36	0.01	0.03	6.00		
ROCK BASS	S	С	С		19	19.00	3.45	1.26	2.85	66.21		
SMALLMOUTH BASS	F	С	С	М	20	20.00	3.64	1.55	3.50	77.30		
BLUEGILL SUNFISH	S	I	С	Р	3	3.00	0.55	0.09	0.20	30.00		
BLACKSIDE DARTER	D	I.	S		4	4.00	0.73	0.01	0.02	2.50		
LOGPERCH	D	Ι	S	М	20	20.00	3.64	0.15	0.34	7.40		
JOHNNY DARTER	D	Ι	С		1	1.00	0.18	0.00	0.00	1.00		
GREENSIDE DARTER	D	I	S	М	8	8.00	1.45	0.01	0.03	1.75		
RAINBOW DARTER	D	I	S	М	4	4.00	0.73	0.01	0.02	1.75		
FANTAIL DARTER	D	I	С		3	3.00	0.55	0.01	0.01	1.67		
	Mile To	otal			550	550.00		44.14				
	Numbe		Specie	es	26	-						
	Numbe		-		0							

Species Lis	t
-------------	---

Page	1	1
------	---	---

	1				1							
River Code: 03-001	1	Stream: Grand River						-	Sample Date: 1995			
River Mile: 8.00	Basin							Date Range: 07/19/95				
	1			76 sec		n Area: 686	-	Thru: 09/06/95				
	Dist F	ished	: 1.(	)0 km	No c	of Passes: 2		Sample	r Type: A	<u> </u>		
Species		Feed			# of	Relative	% by	Relative	% by	Ave(gm)		
Name / ODNR status	Grp	Guild	Guild	l Tol	Fish	Number	Number	Weight	Weight	Weight		
GIZZARD SHAD		0	М		1	1.00	0.28	0.16	0.21	156.00		
QUILLBACK CARPSUCKER	С	0	М		2	2.00	0.55	1.51	2.02	752.50		
SILVER REDHORSE	R	I	S	М	11	11.00	3.04	9.38	12.57	852.27		
BLACK REDHORSE	R	I	S	Ι	39	39.00	10.77	9.75	13.07	250.04		
GOLDEN REDHORSE	R	I	S	М	29	29.00	8.01	5.75	7.71	198.33		
NORTHERN HOG SUCKER	R	Ι	S	М	45	45.00	12.43	5.35	7.17	118.82		
WHITE SUCKER	W	0	S	т	2	2.00	0.55	0.24	0.32	120.00		
SPOTTED SUCKER	R	I	S		2	2.00	0.55	0.55	0.74	276.00		
COMMON CARP	G	0	М	Т	15	15.00	4.14	36.40	48.79	2,426.67		
RIVER CHUB	Ν	Ι	Ν	I	8	8.00	2.21	0.11	0.14	13.50		
SILVER SHINER	Ν	I	S	I	10	10.00	2.76	0.05	0.07	5.10		
ROSYFACE SHINER	Ν	I	S	I	16	16.00	4.42	0.07	0.09	4.19		
STRIPED SHINER	Ν	I	S		35	35.00	9.67	0.44	0.59	12.49		
SPOTFIN SHINER	Ν	I	М		10	10.00	2.76	0.05	0.07	5.10		
SAND SHINER	Ν	I	М	М	5	5.00	1.38	0.01	0.01	1.40		
MIMIC SHINER	Ν	Ι	М	I	12	12.00	3.31	0.03	0.04	2.42		
BLUNTNOSE MINNOW	Ν	0	С	т	7	7.00	1.93	0.03	0.04	4.57		
CENTRAL STONEROLLER	N	Н	N		25	25.00	6.91	0.41	0.55	16.40		
BRINDLED MADTOM	-	1	С	I	3	3.00	0.83	0.01	0.01	3.67		
ROCK BASS	S	C	C		15	15.00	4.14	1.14	1.52	75.83		
SMALLMOUTH BASS	F	c	c	М	23	23.00	6.35	1.45	1.94	63.09		
LARGEMOUTH BASS	F	C	C		2	2.00	0.55	0.05	0.06	23.00		
BLUEGILL SUNFISH	S	I	c	Р	7	7.00	1.93	0.17	0.23	24.86		
LONGEAR SUNFISH	S	·	c	M	6	6.00	1.66	0.14	0.19	23.33		
WALLEYE	F	P	S		1	1.00	0.28	0.01	0.01	11.00		
BLACKSIDE DARTER	D		s		1	1.00	0.28	0.01	0.01	5.00		
LOGPERCH	D	I	s	М	2	2.00	0.55	0.01	0.01	7.50		
JOHNNY DARTER	D	I	c		1	1.00	0.28	0.02	0.02	1.00		
GREENSIDE DARTER	D	I	s	М	9	9.00	2.49	0.00	0.05	3.89		
RAINBOW DARTER	D	I	s	M	8	9.00 8.00	2.49	0.04	0.03	0.63		
FANTAIL DARTER	D	1	C	141	9	9.00	2.21	0.01	0.01	0.03		
FRESHWATER DRUM	U		м	Р	9 1	9.00 1.00	2.49 0.28	1.30	1.74	0.75 1,300.00		
			141				0.20		1.74	.,000.00		
	Mile To				362	362.00		74.61				
	Numbe		-		32							
	Numbe	ər of H	lybria	s	0							

Species Lis	t
-------------	---

Page	12
------	----

River Code:         03-001           River Mile:         6.20	Stream Basin: Time Dist F	Gr Fishe	and F d: 35	River 33 sec		n Area: 687 of Passes: 2	-		inge: 07/	995 /19/95 /06/95
Species Name / ODNR status			Bree Guild		# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight
GIZZARD SHAD		0	М		14	14.00	2.93	1.75	4.34	124.93
SILVER REDHORSE	R	I	S	М	4	4.00	0.84	1.65	4.10	412.75
BLACK REDHORSE	R	I	S	I	55	55.00	11.51	13.52	33.58	245.88
GOLDEN REDHORSE	R	I	S	М	19	19.00	3.97	3.68	9.15	193.89
SHORTHEAD REDHORSE	R	T	S	М	2	2.00	0.42	0.52	1.29	260.00
NORTHERN HOG SUCKER	R	T	S	М	126	126.00	26.36	8.89	22.07	70.52
COMMON CARP	G	0	М	т	1	1.00	0.21	1.95	4.84	1,950.00
RIVER CHUB	Ν	T	Ν	I	30	30.00	6.28	0.63	1.57	21.03
EMERALD SHINER	Ν	I	S		1	1.00	0.21	0.00	0.00	2.00
SILVER SHINER	Ν	T	S	I	8	8.00	1.67	0.03	0.08	4.13
ROSYFACE SHINER	Ν	T	S	I	13	13.00	2.72	0.02	0.06	1.85
STRIPED SHINER	Ν	I	S		23	23.00	4.81	0.36	0.89	15.65
SPOTFIN SHINER	Ν	I	М		3	3.00	0.63	0.01	0.03	4.67
MIMIC SHINER	Ν	I	М	I	31	31.00	6.49	0.03	0.07	0.97
SILVERJAW MINNOW	Ν	I	М		1	1.00	0.21	0.00	0.00	2.00
BLUNTNOSE MINNOW	Ν	0	С	т	38	38.00	7.95	0.08	0.19	2.05
CENTRAL STONEROLLER	Ν	н	Ν		16	16.00	3.35	0.13	0.32	7.94
CHANNEL CATFISH	F		С		4	4.00	0.84	3.21	7.98	803.25
STONECAT MADTOM		T	С	I	3	3.00	0.63	0.07	0.17	22.33
WHITE BASS	F	Р	М		1	1.00	0.21	0.09	0.21	85.00
WHITE PERCH	Е		М		2	2.00	0.42	0.03	0.08	16.50
ROCK BASS	S	С	С		9	9.00	1.88	0.60	1.50	67.00
SMALLMOUTH BASS	F	С	С	М	20	20.00	4.18	1.80	4.46	89.90
LARGEMOUTH BASS	F	С	С		1	1.00	0.21	0.07	0.18	72.00
BLUEGILL SUNFISH	S	I	С	Р	1	1.00	0.21	0.02	0.04	17.00
WALLEYE	F	Р	S		1	1.00	0.21	0.10	0.26	103.00
BLACKSIDE DARTER	D	I	S		1	1.00	0.21	0.00	0.01	3.00
LOGPERCH	D	T	S	М	8	8.00	1.67	0.06	0.15	7.63
GREENSIDE DARTER	D	I	S	М	19	19.00	3.97	0.07	0.16	3.47
RAINBOW DARTER	D	T	S	М	4	4.00	0.84	0.01	0.01	1.25
FANTAIL DARTER	D	T	С		12	12.00	2.51	0.01	0.03	1.17
FRESHWATER DRUM			М	Ρ	7	7.00	1.46	0.87	2.15	123.86
	Mile To	otal			478	478.00		40.27		
	Numbe		Specie	es	32					
	Numbe				0					

					- I						
River Code: 03-100 River Mile: 16.30	Stream		g Cre and F					-	Sample Date: <b>1995</b> Date Range: 07/12/95		
	Time	Fishe	d· 40	40 sec	Drai	n Area: 1.0	sa mi		U	/22/95	
	Dist F					of Passes: 2	-		r Type: E		
	Dist I	Islicu	. 0		1000	11 d3505. 2		Sample	гтурс. L		
Species Name / ODNR status		IBI Feed Breed Grp Guild Guild Tol			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight	
CENTRAL MUDMINNOW		1	С	T	905	754.17	77.48	2.94	61.82	3.90	
WHITE SUCKER	W	0	s	T	27	22.50	2.31	0.27	5.73	12.11	
CREEK CHUB	N	G	N	Т	190	158.33	16.27	1.25	26.21	7.87	
SOUTH. REDBELLY DACE	Ν	Н	S		1	0.83	0.09	0.00	0.05	3.00	
COMMON SHINER	Ν	I	s		6	5.00	0.51	0.04	0.82	7.83	
CENTRAL STONEROLLER	Ν	н	Ν		28	23.33	2.40	0.13	2.79	5.68	
BLACK BULLHEAD		Т	С	Р	1	0.83	0.09	0.03	0.63	36.00	
LARGEMOUTH BASS	F	С	С		2	1.67	0.17	0.08	1.68	48.00	
BROOK STICKLEBACK		Ι	С		8	6.67	0.68	0.01	0.26	1.88	
	Mile To	Mile Total				973.33		4.76			
	Numbe	er of S	Specie	es	9						
	Numbe	er of H	Iybrid	ls	0						
			-								

					1					8		
River Code: <b>03-100</b> River Mile: <b>15.90</b>	Stream		g Cre and F					-	Sample Date: <b>1995</b> Date Range: 07/12/95			
	Time	Fishe	d. 36	00 sec	Drai	n Area: 1.3	sa mi		U	22/95		
	-	Time Fished: 3600 sec Dist Fished: 0.30 km				of Passes: 2	1					
	Dist F	Isneu	: 0.3	50 KIII	NOC	Passes: 2		Sample	r Type: E			
Species		IBI Feed Breed				Relative	% by	Relative	% by	Ave(gm)		
Name / ODNR status	Grp	Guild	Guild	l Tol	Fish	Number	Number	Weight	Weight	Weight		
CENTRAL MUDMINNOW		Ι	С	Т	180	180.00	76.27	0.64	62.29	3.53		
WHITE SUCKER	W	0	S	Т	1	1.00	0.42	0.03	2.84	29.00		
BLACKNOSE DACE	Ν	G	S	Т	1	1.00	0.42	0.00	0.29	3.00		
CREEK CHUB	Ν	G	Ν	т	24	24.00	10.17	0.11	10.48	4.46		
SOUTH. REDBELLY DACE	Ν	н	S		2	2.00	0.85	0.01	0.88	4.50		
CENTRAL STONEROLLER	Ν	Н	Ν		27	27.00	11.44	0.23	22.33	8.44		
PUMPKINSEED SUNFISH	S	I	С	Р	1	1.00	0.42	0.01	0.88	9.00		
	Mile To	otal			236	236.00		1.02				
	Numbe	er of S	Specie	es	7							
	Numbe	er of H	lybrid	s	0							

					T					-		
River Code: <b>03-100</b> River Mile: <b>13.90</b>	Stream Basin:		g Cre and R					-	Sample Date: <b>1995</b> Date Range: 07/11/95			
Kivel Wille. 13.90									U			
	Time	Fishe	d: 45	00 sec	Drai	n Area: 5.2	sq mi	T	'hru: 08/	22/95		
	Dist F	ished	: 0.3	88 km	No o	f Passes: 2	2	Sample	r Type: E			
Species Name / ODNR status	IBI Feed Breed Grp Guild Guild Tol			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight			
CENTRAL MUDMINNOW		I	С	Т	5	3.95	0.70	0.02	0.34	5.80		
NORTHERN HOG SUCKER	R	I	S	Μ	1	0.79	0.14	0.01	0.15	13.00		
WHITE SUCKER	W	0	S	т	72	56.84	10.14	4.22	62.30	74.24		
BLACKNOSE DACE	Ν	G	S	т	200	157.89	28.17	0.41	5.98	2.57		
CREEK CHUB	Ν	G	Ν	т	267	210.79	37.61	1.77	26.09	8.39		
REDSIDE DACE	Ν	Ι	S	I	2	1.58	0.28	0.01	0.08	3.50		
COMMON SHINER	Ν	Ι	S		55	43.42	7.75	0.19	2.74	4.27		
CENTRAL STONEROLLER	Ν	Н	Ν		51	40.26	7.18	0.09	1.31	2.20		
RAINBOW DARTER	D	Ι	S	Μ	57	45.00	8.03	0.07	1.03	1.55		
	Mile To	otal			710	560.53		6.78				
	Numbe	er of S	Specie	es	9							
	Numbe	er of H	lybrid	s	0							

				^	Peere	S LISt				Tage 10	
River Code: <b>03-100</b> River Mile: <b>9.50</b>	Stream Basin: Time I Dist F	Gr Gr	and F d: 52	River 80 sec		in Area: 14.9 of Passes: 2		Date Ra	Sample Date: <b>1995</b> Date Range: 07/11/95 Thru: 08/22/95 Sampler Type: D		
Species Name / ODNR status		IBI Feed Breed Grp Guild Guild Tol				Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight	
CENTRAL MUDMINNOW		I	С	Т	6	4.50	0.30	0.04	0.52	7.83	
NORTHERN HOG SUCKER	R	Ι	S	Μ	62	46.50	3.10	0.58	8.54	12.54	
WHITE SUCKER	W	0	S	Т	187	140.25	9.34	1.92	28.17	13.70	
BLACKNOSE DACE	Ν	G	S	Т	489	366.75	24.41	0.53	7.75	1.44	
CREEK CHUB	Ν	G	Ν	Т	61	45.75	3.05	0.38	5.50	8.19	
COMMON SHINER	Ν	Ι	S		142	106.50	7.09	0.42	6.21	3.98	
SILVERJAW MINNOW	Ν	Ι	М		6	4.50	0.30	0.02	0.24	3.67	
BLUNTNOSE MINNOW	Ν	0	С	Т	47	35.25	2.35	0.09	1.36	2.63	
CENTRAL STONEROLLER	Ν	Н	Ν		749	561.75	37.39	2.40	35.21	4.28	
YELLOW BULLHEAD		Ι	С	Т	3	2.25	0.15	0.15	2.13	64.67	
LARGEMOUTH BASS	F	С	С		2	1.50	0.10	0.02	0.26	11.50	
BLUEGILL SUNFISH	S	I.	С	Р	5	3.75	0.25	0.01	0.15	2.60	
HYBRID X SUNFISH					1	0.75	0.05	0.05	0.68	62.00	
JOHNNY DARTER	D	Ι	С		34	25.50	1.70	0.03	0.49	1.29	
RAINBOW DARTER	D	Ι	S	Μ	207	155.25	10.33	0.19	2.76	1.21	
FANTAIL DARTER	D	Ι	С		2	1.50	0.10	0.00	0.07	3.00	
	Mile To Numbe Numbe	er of S	•		2,003 15 1	1,502.25		6.82			

				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Peere	5 LISt					
River Code: 03-120 River Mile: 18.10	Basin:	Gr	and F	River		. RM 41.28)		Date Ra	Sample Date: 1995 Date Range: 07/12/95		
				20 sec		n Area: 69.0	-			24/95	
	Dist F	ished	: 0.3	38 km	No c	of Passes: 2		Sample	r Type: D)	
Species Name / ODNR status			Bree Guild		# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight	
GRASS PICKEREL		Р	М	Р	2	1.67	0.23	0.04	1.24	24.50	
NORTHERN HOG SUCKER	R	T	S	М	35	27.67	3.78	0.27	8.12	9.54	
WHITE SUCKER	W	0	S	т	26	20.83	2.84	0.13	3.96	6.54	
CREEK CHUB	Ν	G	Ν	т	54	41.92	5.72	0.26	7.73	6.20	
REDFIN SHINER	Ν	I	Ν		7	5.25	0.72	0.01	0.35	2.14	
STRIPED SHINER	Ν	Ι	S		5	4.17	0.57	0.00	0.12	1.00	
BLUNTNOSE MINNOW	Ν	0	С	т	189	146.33	19.98	0.24	7.10	1.60	
CENTRAL STONEROLLER	Ν	н	Ν		173	134.83	18.41	0.55	16.64	4.08	
YELLOW BULLHEAD		Ι	С	Т	12	9.92	1.35	0.12	3.67	13.00	
ROCK BASS	S	С	С		66	52.08	7.11	1.21	36.50	23.75	
GREEN SUNFISH	S	I	С	т	1	0.75	0.10	0.02	0.45	20.00	
BLUEGILL SUNFISH	S	I.	С	Р	6	4.75	0.65	0.08	2.43	17.83	
BLACKSIDE DARTER	D	Ι	S		7	5.67	0.77	0.02	0.48	2.86	
LOGPERCH	D	I	S	М	3	2.42	0.33	0.02	0.56	7.67	
JOHNNY DARTER	D	I.	С		72	57.17	7.81	0.06	1.78	1.03	
GREENSIDE DARTER	D	I.	S	Μ	56	44.92	6.13	0.10	2.88	2.14	
RAINBOW DARTER	D	I	S	Μ	90	70.42	9.62	0.09	2.72	1.28	
FANTAIL DARTER	D	I	С		131	101.58	13.87	0.11	3.31	1.08	
	Mile To	otal			935	732.33		3.31			
	Numbe	er of S	Specie	es	18						
	Numbe	er of H	lybrid	s	0						

Spec	cies	Lis	st
opec	100		JU

Page	18
Iugo	10

				5	peere	5 LISt				rage 10	
River Code: 03-120	Stream	n: M	ill Cr	eek (G	Sample Date: 1995						
River Mile: 10.00	Basin	: Gı	and F	River				Date Ra	Date Range: 07/12/95		
	Time	Fishe	d: 48	00 sec	Drai	n Area: 86.0) sq mi	Г	Thru: 08/24/95		
	Dist F	ished	: 0.4	40 km	No c	of Passes: 2	2	Sample	r Type: D)	
Species	IBI	Feed	Bree	d	# of	Relative	% by	Relative	% by	Ave(gm)	
Name / ODNR status	Grp	Guild	Guild	l Tol	Fish	Number	Number	Weight	Weight	Weight	
GRASS PICKEREL		Р	Μ	Р	7	5.25	1.11	0.16	2.07	30.57	
SILVER REDHORSE	R	I	S	М	1	0.75	0.16	0.00	0.01	1.00	
GOLDEN REDHORSE	R	Ι	S	М	19	14.25	3.00	0.03	0.32	1.74	
NORTHERN HOG SUCKER	R	Ι	S	М	48	36.00	7.58	0.74	9.53	20.49	
WHITE SUCKER	W	0	S	т	1	0.75	0.16	0.00	0.01	1.00	
CREEK CHUB	Ν	G	Ν	т	2	1.50	0.32	0.02	0.19	10.00	
REDFIN SHINER	Ν	Ι	Ν		7	5.25	1.11	0.01	0.14	2.00	
STRIPED SHINER	Ν	Ι	S		8	6.00	1.26	0.08	0.98	12.63	
MIMIC SHINER	Ν	Ι	Μ	I	28	21.00	4.42	0.04	0.47	1.71	
BLUNTNOSE MINNOW	Ν	0	С	т	139	104.25	21.96	0.24	3.09	2.29	
CENTRAL STONEROLLER	Ν	Н	Ν		50	37.50	7.90	0.40	5.23	10.78	
YELLOW BULLHEAD		Ι	С	т	18	13.50	2.84	1.81	23.41	134.22	
STONECAT MADTOM		Ι	С	I	1	0.75	0.16	0.04	0.52	54.00	
BLACK CRAPPIE	S	Ι	С		8	6.00	1.26	0.75	9.69	125.00	
ROCK BASS	S	С	С		37	27.75	5.85	1.07	13.87	38.70	
LARGEMOUTH BASS	F	С	С		13	9.75	2.05	1.20	15.46	122.69	
GREEN SUNFISH	S	Ι	С	т	6	4.50	0.95	0.08	0.97	16.67	
BLUEGILL SUNFISH	S	Ι	С	Р	15	11.25	2.37	0.44	5.68	39.07	
PUMPKINSEED SUNFISH	S	Ι	С	Р	11	8.25	1.74	0.22	2.78	26.00	
B'GILL X PUMPKINSEED					1	0.75	0.16	0.10	1.28	132.00	
HYBRID X SUNFISH					1	0.75	0.16	0.09	1.10	113.00	
BLACKSIDE DARTER	D	Ι	S		3	2.25	0.47	0.01	0.09	3.00	
LOGPERCH	D	Ι	S	М	16	12.00	2.53	0.12	1.54	9.88	
JOHNNY DARTER	D	Ι	С		27	20.25	4.27	0.02	0.21	0.80	
GREENSIDE DARTER	D	Ι	S	М	16	12.00	2.53	0.02	0.26	1.69	
RAINBOW DARTER	D	Ι	S	М	59	44.25	9.32	0.05	0.61	1.07	
FANTAIL DARTER	D	Т	С		91	68.25	14.38	0.04	0.54	0.61	
	Mile To	otal			633	474.75		7.74			
	Numbe	er of S	Specie	es	25						
	Numbe	er of H	lybria	ls	2						

Page	1

				k	specie	5 LIST				Page 1
River Code: 07-001 River Mile: 27.20	Stream Basin Time	: As	htabu	ula Ri 11a Riv	er	in Area: 72.0) sa mi	Sample Date Ra	ange: 08/	995 /01/95 /12/95
	Dist F					of Passes: 2	-		r Type: D	
Species Name / ODNR status		Feed Guild			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight
GOLDEN REDHORSE	R	Ι	S	Μ	2	1.50	0.14	0.12	1.47	80.00
NORTHERN HOG SUCKER	R	Т	S	Μ	29	21.75	2.10	0.89	10.89	40.83
WHITE SUCKER	W	0	S	т	8	6.00	0.58	0.13	1.54	20.88
BIGEYE CHUB	Ν	Т	S	I	73	54.75	5.27	0.15	1.89	2.81
CREEK CHUB	Ν	G	Ν	Т	14	10.50	1.01	0.17	2.08	16.14
REDFIN SHINER	Ν	Т	Ν		27	20.25	1.95	0.02	0.19	0.74
STRIPED SHINER	Ν	Т	S		81	60.75	5.85	0.46	5.67	7.61
SAND SHINER	Ν	I	Μ	Μ	37	27.75	2.67	0.03	0.36	1.05
MIMIC SHINER	Ν	Ι	М	I	345	258.75	24.93	0.30	3.70	1.17
BLUNTNOSE MINNOW	Ν	0	С	т	321	240.75	23.19	0.54	6.64	2.25
CENTRAL STONEROLLER	Ν	Н	Ν		163	122.25	11.78	1.26	15.46	10.31
YELLOW BULLHEAD		Ι	С	Т	6	4.50	0.43	0.33	4.07	73.67
ROCK BASS	S	С	С		83	62.25	6.00	2.73	33.52	43.89
SMALLMOUTH BASS	F	С	С	М	16	12.00	1.16	0.75	9.17	62.25
GREEN SUNFISH	S	Ι	С	Т	3	2.25	0.22	0.03	0.34	12.33
BLUEGILL SUNFISH	S	Ι	С	Р	11	8.25	0.79	0.01	0.11	1.09
PUMPKINSEED SUNFISH	S	Ι	С	Р	2	1.50	0.14	0.03	0.33	17.50
GR'N SF X PUMPKINS'D					1	0.75	0.07	0.01	0.15	16.00
BLACKSIDE DARTER	D	Ι	S		2	1.50	0.14	0.01	0.07	3.50
JOHNNY DARTER	D	Ι	С		4	3.00	0.29	0.00	0.04	1.00
GREENSIDE DARTER	D	Ι	S	Μ	44	33.00	3.18	0.07	0.83	2.05
RAINBOW DARTER	D	Ι	S	М	68	51.00	4.91	0.07	0.83	1.31
FANTAIL DARTER	D	Т	С		44	33.00	3.18	0.06	0.72	1.77
	Mile To	otal			1,384	1,038.00		8.15		
	Numbe	er of S	Specie	es	22					
	Numbe	er of H	lybria	ls	1					

Page	2
I age	4

					peere					Tage 2
River Code: 07-001 River Mile: 19.10	Basin:	: As Fishe	htabu d: 36	ula Riv 1la Rive 00 sec 35 km	er Drai	n Area: 93.0 of Passes: 2			inge: 07/	995 25/95 08/95 E
Species Name / ODNR status		Feed Guild			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight
LEAST BROOK LAMPREY		F	Ν		2	1.75	0.47	0.02	0.33	9.50
GOLDEN REDHORSE	R	I	S	Μ	2	2.00	0.53	0.08	1.56	39.50
NORTHERN HOG SUCKER	R	I	S	М	6	5.50	1.46	0.16	3.19	28.17
BIGEYE CHUB	Ν	I.	S	I	5	3.75	1.00	0.01	0.18	2.40
STRIPED SHINER	Ν	Ι	S		145	118.25	31.47	0.67	13.28	5.74
MIMIC SHINER	Ν	Ι	М	I	33	28.50	7.58	0.03	0.55	0.97
BLUNTNOSE MINNOW	Ν	0	С	т	4	3.25	0.86	0.01	0.19	3.00
CENTRAL STONEROLLER	Ν	Н	Ν		2	1.50	0.40	0.02	0.43	14.50
ROCK BASS	S	С	С		89	79.75	21.22	2.68	53.00	33.06
SMALLMOUTH BASS	F	С	С	М	3	2.75	0.73	1.10	21.80	393.33
LONGEAR SUNFISH	S	I.	С	М	8	7.00	1.86	0.12	2.45	17.25
BLACKSIDE DARTER	D	I	S		13	12.00	3.19	0.03	0.50	2.08
JOHNNY DARTER	D	I	С		7	5.75	1.53	0.00	0.07	0.57
GREENSIDE DARTER	D	I.	S	М	40	33.00	8.78	0.07	1.35	2.03
RAINBOW DARTER	D	I.	S	М	79	62.75	16.70	0.05	0.97	0.78
FANTAIL DARTER	D	I	С		11	8.25	2.20	0.01	0.20	1.22
	Mile To Numbe Numbe	er of S	-		449 16 0	375.75		5.06		
	NUMBE		iybila	3	U					

$\mathbf{\alpha}$	•	т	•
N 1	naciac		101
N	pecies		130

Page	3
I age	5

					peere	5 2150				
River Code: 07-001				ula Riv	Sample Date: 1995 Date Range: 07/24/95					
River Mile: 12.10	Basin			ıla Rive		107	0		-	
				00 sec		n Area: 107	-			08/95
	Dist F	Isnea	: 0.3	55 Km	NOC	of Passes: 2		Sample	r Type: D	E
Species		Feed			# of	Relative	% by	Relative	% by	Ave(gm)
Name / ODNR status	Grp	Guild	Guild	l Tol	Fish	Number	Number	Weight	Weight	Weight
GOLDEN REDHORSE	R	Ι	S	М	3	2.50	0.41	0.05	0.59	20.33
NORTHERN HOG SUCKER	R	Ι	S	М	103	77.25	12.73	1.53	19.57	19.83
WHITE SUCKER	W	0	S	т	70	65.00	10.71	0.85	10.85	13.29
BIGEYE CHUB	Ν	T	S	I	32	26.00	4.29	0.06	0.73	2.19
CREEK CHUB	Ν	G	Ν	т	9	7.25	1.19	0.10	1.24	13.22
STRIPED SHINER	Ν	Ι	S		113	90.75	14.96	0.92	11.77	10.34
MIMIC SHINER	Ν	Ι	М	I	1	1.00	0.16	0.00	0.01	1.00
SILVERJAW MINNOW	Ν	T	М		1	1.00	0.16	0.00	0.03	2.00
BLUNTNOSE MINNOW	Ν	0	С	т	45	36.25	5.97	0.25	3.20	7.06
CENTRAL STONEROLLER	Ν	Н	Ν		201	172.00	28.35	1.79	22.93	10.59
STONECAT MADTOM		T	С	I	2	1.50	0.25	0.02	0.26	13.50
ROCK BASS	S	С	С		32	27.25	4.49	0.66	8.39	24.54
SMALLMOUTH BASS	F	С	С	Μ	30	27.00	4.45	1.39	17.74	54.11
GREEN SUNFISH	S	T	С	т	1	0.75	0.12	0.00	0.04	4.00
BLUEGILL SUNFISH	S	T	С	Р	4	3.00	0.49	0.05	0.69	18.00
PUMPKINSEED SUNFISH	S	T	С	Р	1	1.00	0.16	0.02	0.20	16.00
GR'N SF X PUMPKINS'D					1	1.00	0.16	0.02	0.27	21.00
JOHNNY DARTER	D	Ι	С		3	2.25	0.37	0.00	0.02	0.67
GREENSIDE DARTER	D	Ι	S	Μ	37	28.75	4.74	0.06	0.72	1.92
RAINBOW DARTER	D	T	S	Μ	27	21.50	3.54	0.04	0.46	1.70
FANTAIL DARTER	D	I	С		18	13.75	2.27	0.02	0.29	1.67
	Mile To	otal			734	606.75		7.83		
	Numbe	er of S	Specie	es	20					
	Numbe	er of H	lybrid	s	1					

$\mathbf{\alpha}$	•	т	•
N 1	naciac		101
N	pecies		130

ŀ
ļ

River Code: 07-001 River Mile: 6.30				шя кіу	Sample Date: 1995						
	Basin			ula Riv 11a Rive				Date Range: 08/03/95			
				00 sec		n Area: 121	-				
	Dist F					of Passes: 2	-	Sampler Type: E			
								-			
Species	IBI Feed Breed			# of	Relative	% by	Relative	% by	Ave(gm)		
Name / ODNR status	Grp	Grp Guild Guild Tol		Fish	Number	Number	Weight	Weight	Weight		
GIZZARD SHAD		0	М		13	9.75	2.33	0.54	12.79	55.08	
QUILLBACK CARPSUCKER	С	0	М		2	1.50	0.36	0.01	0.14	4.00	
GOLDEN REDHORSE	R	I	S	М	5	3.75	0.89	0.01	0.30	3.20	
NORTHERN HOG SUCKER	R	Ι	S	М	10	7.50	1.79	0.61	14.58	81.60	
WHITE SUCKER	W	0	S	Т	5	3.75	0.89	0.00	0.11	1.25	
BIGEYE CHUB	Ν	Ι	S	I.	5	3.75	0.89	0.02	0.54	6.00	
CREEK CHUB	Ν	G	Ν	Т	3	2.25	0.54	0.04	0.92	17.00	
ROSYFACE SHINER	Ν	Т	S	I	1	0.75	0.18	0.00	0.04	2.00	
STRIPED SHINER	Ν	Т	S		69	51.75	12.34	0.41	9.82	7.96	
SPOTFIN SHINER	Ν	Т	М		14	10.50	2.50	0.03	0.71	2.86	
SAND SHINER	Ν	Т	М	М	1	0.75	0.18	0.00	0.02	1.00	
MIMIC SHINER	Ν	Т	М	I	19	14.25	3.40	0.02	0.54	1.56	
SILVERJAW MINNOW	Ν	Т	М		1	0.75	0.18	0.00	0.02	1.00	
BLUNTNOSE MINNOW	Ν	0	С	т	90	67.50	16.10	0.21	4.91	3.05	
CENTRAL STONEROLLER	Ν	Н	Ν		121	90.75	21.65	0.52	12.37	5.72	
YELLOW BULLHEAD		Т	С	т	2	1.50	0.36	0.06	1.42	39.50	
STONECAT MADTOM		Т	С	I.	20	15.00	3.58	0.33	7.77	21.70	
ROCK BASS	S	С	С		24	18.00	4.29	0.69	16.33	38.08	
SMALLMOUTH BASS	F	С	С	М	11	8.25	1.97	0.34	7.98	40.55	
GREEN SUNFISH	S	I	С	т	2	1.50	0.36	0.02	0.54	15.00	
BLUEGILL SUNFISH	S	I	С	Р	11	8.25	1.97	0.12	2.76	14.03	
PUMPKINSEED SUNFISH	S	Т	С	Р	2	1.50	0.36	0.07	1.64	46.00	
HYBRID X SUNFISH	-		-		1	0.75	0.18	0.02	0.50	28.00	
LOGPERCH	D	Т	S	М	4	3.00	0.72	0.02	0.52	7.25	
JOHNNY DARTER	D		c		1	0.75	0.18	0.00	0.02	1.00	
GREENSIDE DARTER	D		s	М	32	24.00	5.72	0.05	1.07	1.87	
RAINBOW DARTER	D		s	M	90	67.50	16.10	0.07	1.72	1.07	
		-	0				10.10			1.07	
	Mile To				559	419.25		4.20			
	Numbe		•		26						
	Numbe	er of F	lybrid	S	1						

$\mathbf{\alpha}$	•	т	•
N 1	naciac		101
N	pecies		130

Page	5
------	---

				~	peere					Tuge 5	
River Code: 07-001 River Mile: 3.50	Basin	: As	shtabu	ula Riv 11a Rive	Date Ra	Sample Date: 1995 Date Range: 08/02/95					
				00 sec		n Area: 128	-	Thru: 09/08/95			
	Dist F	ished	: 0.3	38 km	No c	of Passes: 2	2	Sample	Sampler Type: E		
Species Name / ODNR status	IBI Feed Breed Grp Guild Guild Tol			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight		
QUILLBACK CARPSUCKER	С	0	М		18	15.00	1.99	0.08	4.03	5.56	
BLACK REDHORSE	R	I	S	I	9	7.50	0.99	0.04	2.05	5.67	
GOLDEN REDHORSE	R	Ι	S	Μ	15	12.25	1.62	0.03	1.38	2.30	
WHITE SUCKER	W	0	S	т	22	18.08	2.40	0.04	1.93	2.18	
BIGEYE CHUB	Ν	Ι	S	I	42	33.42	4.43	0.09	4.44	2.74	
CREEK CHUB	Ν	G	Ν	т	1	0.83	0.11	0.00	0.07	2.00	
ROSYFACE SHINER	Ν	Ι	S	I	23	17.25	2.29	0.05	2.46	2.96	
STRIPED SHINER	Ν	I	S		76	61.25	8.12	0.10	4.93	1.68	
SPOTFIN SHINER	Ν	Ι	Μ		5	3.92	0.52	0.01	0.27	1.40	
MIMIC SHINER	Ν	I	Μ	I.	5	3.75	0.50	0.00	0.22	1.20	
SILVERJAW MINNOW	Ν	Ι	Μ		7	5.75	0.76	0.01	0.51	1.86	
BLUNTNOSE MINNOW	Ν	0	С	Т	295	240.17	31.83	0.43	20.93	1.83	
CENTRAL STONEROLLER	Ν	Н	Ν		130	105.17	13.94	0.50	24.22	4.72	
CHANNEL CATFISH	F		С		4	3.08	0.41	0.01	0.34	2.25	
YELLOW BULLHEAD		Ι	С	Т	3	2.25	0.30	0.03	1.67	15.33	
ROCK BASS	S	С	С		7	5.75	0.76	0.33	15.89	59.29	
SMALLMOUTH BASS	F	С	С	Μ	24	18.42	2.44	0.04	1.88	2.00	
LOGPERCH	D	Ι	S	Μ	1	0.75	0.10	0.00	0.22	6.00	
JOHNNY DARTER	D	Ι	С		10	8.17	1.08	0.01	0.46	1.10	
GREENSIDE DARTER	D	Ι	S	Μ	32	25.08	3.32	0.07	3.50	2.88	
RAINBOW DARTER	D	Ι	S	М	206	160.50	21.27	0.17	8.43	1.09	
FANTAIL DARTER	D	I	С		8	6.25	0.83	0.01	0.31	1.00	
	Mile To	otal			943	754.58		2.07			
	Numbe	er of S	Specie	es	22						
	Numbe	er of H	lybria	ls	0						

Page	6
I ago	U.

				~	P • • • •					I uge o	
River Code: 07-007 River Mile: 7.20	Basin	: As	htabu	Creek 11a Rive 00 sec	Date Ra	Sample Date: 1995 Date Range: 07/31/95 Thru: 09/11/95					
	Dist F					n Area: 6.8 of Passes: 2	-		Sampler Type: F E		
Species Name / ODNR status		IBI Feed Breed Grp Guild Guild Tol			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight	
WHITE SUCKER	W	0	S	Т	61	61.00	15.72	1.18	25.05	19.38	
BLACKNOSE DACE	Ν	G	S	Т	41	41.00	10.57	0.10	2.06	2.37	
CREEK CHUB	Ν	G	Ν	т	200	200.00	51.55	2.97	62.84	14.83	
COMMON SHINER	Ν	Ι	S		15	15.00	3.87	0.11	2.35	7.40	
BLUNTNOSE MINNOW	Ν	0	С	т	2	2.00	0.52	0.00	0.06	1.50	
CENTRAL STONEROLLER	Ν	Н	Ν		50	50.00	12.89	0.17	3.62	3.42	
GREEN SUNFISH	S	Ι	С	Т	5	5.00	1.29	0.08	1.76	16.60	
BLUEGILL SUNFISH	S	Ι	С	Р	5	5.00	1.29	0.05	0.97	9.20	
GR'N SF X PUMPKINS'D					1	1.00	0.26	0.05	1.02	48.00	
JOHNNY DARTER	D	Ι	С		5	5.00	1.29	0.00	0.06	0.60	
FANTAIL DARTER	D	Ι	С		3	3.00	0.77	0.01	0.19	3.00	
	Mile T	otal			388	388.00		4.72			
	Numbe	er of S	Specie	s	10						
	Numbe	er of H	lybrid	s	1						

Page	7
------	---

River Code: 07-007 River Mile: 6.20	Basin:	As Fishe	htabu d: 36	Creek ila Rive 00 sec	er	sq mi		ange: 07/	995 27/95 11/95 E	
Species Name / ODNR status	IBI Feed Breed Grp Guild Guild Tol				# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight
AMER BROOK LAMPREY		F	Ν	R	1	1.00	0.19	0.02	0.82	22.00
WHITE SUCKER	W	0	S	т	62	62.00	11.65	0.50	18.81	8.13
BLACKNOSE DACE	Ν	G	S	т	53	53.00	9.96	0.13	5.00	2.53
CREEK CHUB	Ν	G	Ν	т	156	156.00	29.32	1.32	49.39	8.48
COMMON SHINER	Ν	I	S		17	17.00	3.20	0.05	2.02	3.18
BLUNTNOSE MINNOW	Ν	0	С	т	10	10.00	1.88	0.03	1.19	3.20
CENTRAL STONEROLLER	Ν	Н	Ν		174	174.00	32.71	0.56	20.71	3.19
JOHNNY DARTER	D	T	С		26	26.00	4.89	0.02	0.71	0.73
RAINBOW DARTER	D	I	S	М	10	10.00	1.88	0.01	0.49	1.30
FANTAIL DARTER	D	I	С		23	23.00	4.32	0.02	0.86	1.00
	Mile To	otal			532	532.00		2.68		
	Numbe	er of S	Specie	es	10					
	Numbe	er of H	lybrid	s	0					

				5	peere					I age 0
River Code: 07-007 River Mile: 5.00	Basin	: As Fishe	htabu d: 30	Creek 11a Rive 00 sec 30 km	Date Ra	Sample Date: 1995 Date Range: 07/26/95 Thru: 09/11/95 Sampler Type: D E				
Species Name / ODNR status		IBI Feed Breed Grp Guild Guild Tol			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight
WHITE SUCKER	W	0	S	Т	64	64.00	11.92	0.13	6.34	2.09
BLACKNOSE DACE	Ν	G	S	т	17	17.00	3.17	0.05	2.56	3.18
CREEK CHUB	Ν	G	Ν	т	170	170.00	31.66	1.17	55.69	6.90
COMMON SHINER	Ν	Т	S		6	6.00	1.12	0.01	0.57	2.00
SILVERJAW MINNOW	Ν	Т	М		3	3.00	0.56	0.01	0.28	2.00
FATHEAD MINNOW	Ν	0	С	т	2	2.00	0.37	0.00	0.14	1.50
BLUNTNOSE MINNOW	Ν	0	С	т	15	15.00	2.79	0.05	2.37	3.33
CENTRAL STONEROLLER	Ν	Н	Ν		221	221.00	41.15	0.61	28.95	2.76
GREEN SUNFISH	S	Т	С	т	3	3.00	0.56	0.03	1.33	9.33
JOHNNY DARTER	D	Т	С		19	19.00	3.54	0.02	0.71	0.79
RAINBOW DARTER	D	Т	S	М	9	9.00	1.68	0.01	0.62	1.44
FANTAIL DARTER	D	Ι	С		8	8.00	1.49	0.01	0.43	1.13
	Mile To				537	537.00		2.11		
	Numbe		•		12					
	Numbe	er of H	lybrid	ls	0					

				•	I dge 🦻					
River Code: 07-007 River Mile: 4.20	Stream Basin: Time Dist F	As Fishe	htabu d: 33	ila Riv 00 sec	Date Ra	Sample Date: 1995 Date Range: 07/20/95 Thru: 09/11/95 Sampler Type: D E				
Species Name / ODNR status		Feed Guild			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight
CENTRAL MUDMINNOW		I	С	Т	6	6.00	0.40	0.04	0.56	6.00
WHITE SUCKER	W	0	S	т	150	128.74	8.67	0.56	8.72	4.15
BLACKNOSE DACE	Ν	G	S	Т	139	118.79	8.00	0.42	6.55	3.59
CREEK CHUB	Ν	G	Ν	Т	828	701.68	47.26	3.73	57.70	5.43
COMMON SHINER	Ν	I	S		6	5.79	0.39	0.04	0.69	7.50
SILVERJAW MINNOW	Ν	I	М		47	39.84	2.68	0.13	2.00	3.32
FATHEAD MINNOW	Ν	0	С	Т	1	0.79	0.05	0.00	0.02	2.00
BLUNTNOSE MINNOW	Ν	0	С	Т	24	21.47	1.45	0.07	1.04	3.21
CENTRAL STONEROLLER	Ν	н	Ν		540	457.89	30.84	1.46	22.64	3.11
COMMON SH X FATHEAD M					1	1.00	0.07	0.00	0.02	1.00
JOHNNY DARTER	D	I	С		2	1.79	0.12	0.00	0.03	1.00
FANTAIL DARTER	D	I	С		1	0.79	0.05	0.00	0.02	2.00
	Mile To	otal			1,745	1,484.58		6.46		
	Numbe	er of S	Specie	es	11					
	Numbe	er of H	lybrid	s	1					

River Code: 07-007 River Mile: 3.30	Stream Basin: Time Dist F	As Fishe	htabu d: 33	ila Riv 00 sec	Date Ra	Sample Date: 1995 Date Range: 07/26/95 Thru: 09/12/95 Sampler Type: E				
Species Name / ODNR status		Feed Guild			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight
WHITE SUCKER	W	0	S	Т	138	115.00	5.21	0.64	12.93	5.59
BLACKNOSE DACE	Ν	G	S	Т	257	212.50	9.63	0.72	14.54	3.46
CREEK CHUB	Ν	G	Ν	т	1,587	1,239.25	56.14	2.07	41.60	1.52
STRIPED SHINER	Ν	I	S		15	11.25	0.51	0.02	0.33	1.47
COMMON SHINER	Ν	I	S		27	27.00	1.22	0.05	1.01	1.85
SILVERJAW MINNOW	Ν	I.	Μ		28	23.50	1.06	0.05	1.05	2.13
FATHEAD MINNOW	Ν	0	С	Т	2	1.75	0.08	0.00	0.07	2.00
BLUNTNOSE MINNOW	Ν	0	С	Т	66	58.50	2.65	0.17	3.40	2.86
CENTRAL STONEROLLER	Ν	н	Ν		662	515.00	23.33	1.24	24.96	2.37
FANTAIL DARTER	D	I	С		4	3.50	0.16	0.01	0.12	1.75
	Mile To	otal			2,786	2,207.25		4.98		
	Numbe	er of S	Specie	s	10					
	Numbe	er of H	lybrid	s	0					

					I					I uge II		
River Code: 07-011 River Mile: 7.40	Stream: Arcola Creek Basin: Ashtabula River Time Fished: 3300 sec Drain Area:							Sample Date: 1995 Date Range: 08/01/95 Thru: 09/12/95				
	Dist F	ished	: 0.3	80 km	No	of Passes: 2	2	Sample	Sampler Type: E			
Species Name / ODNR status	IBI Feed Breed Grp Guild Guild Tol			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight			
CENTRAL MUDMINNOW		I	С	Т	1	1.00	0.06	0.01	0.07	7.00		
WHITE SUCKER	W	0	S	Т	178	178.00	9.94	1.60	16.21	8.97		
GOLDEN SHINER	Ν	I	М	Т	5	5.00	0.28	0.05	0.53	10.40		
BLACKNOSE DACE	Ν	G	S	Т	95	95.00	5.30	0.35	3.54	3.67		
CREEK CHUB	Ν	G	Ν	Т	897	897.00	50.08	5.91	60.01	6.59		
BLUNTNOSE MINNOW	Ν	0	С	Т	411	411.00	22.95	1.05	10.65	2.55		
CENTRAL STONEROLLER	Ν	Н	Ν		84	84.00	4.69	0.70	7.15	8.38		
GREEN SUNFISH	S	Ι	С	Т	5	5.00	0.28	0.02	0.16	3.20		
BLUEGILL SUNFISH	S	Ι	С	Р	14	14.00	0.78	0.02	0.19	1.33		
JOHNNY DARTER	D	Ι	С		96	96.00	5.36	0.14	1.38	1.42		
RAINBOW DARTER	D	Ι	S	Μ	5	5.00	0.28	0.01	0.11	2.20		
	Mile Total Number of Species				1,791	1,791.00		9.85				
					11							
	Numbe	er of H	lybrid	s	0							

					- P					1 480 12
River Code: 07-011 River Mile: 7.00	Strear Basin Time Dist F	: As Fishe	htabu d: 33	ila Riv 00 sec	Date Ra	Sample Date: 1995 Date Range: 08/01/95 Thru: 09/12/95 Sampler Type: E				
Species Name / ODNR status	IBI Feed Breed Grp Guild Guild Tol			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight	
RAINBOW TROUT	Е		Ν		1	1.00	0.04	0.02	0.09	15.00
WHITE SUCKER	W	0	S	Т	325	325.00	13.30	4.92	28.34	15.15
GOLDEN SHINER	Ν	Ι	М	Т	1	1.00	0.04	0.02	0.09	15.00
BLACKNOSE DACE	Ν	G	S	Т	271	271.00	11.09	1.14	6.58	4.21
CREEK CHUB	Ν	G	Ν	Т	1,709	1,709.00	69.95	10.81	62.25	6.33
FATHEAD MINNOW	Ν	0	С	т	1	1.00	0.04	0.00	0.01	2.00
BLUNTNOSE MINNOW	Ν	0	С	Т	82	82.00	3.36	0.27	1.57	3.32
CENTRAL STONEROLLER	Ν	Н	Ν		6	6.00	0.25	0.03	0.20	5.67
GREEN SUNFISH	S	Ι	С	Т	2	2.00	0.08	0.06	0.34	29.50
BLUEGILL SUNFISH	S	Ι	С	Ρ	12	12.00	0.49	0.03	0.16	2.33
JOHNNY DARTER	D	Ι	С		33	33.00	1.35	0.07	0.38	2.00
	Mile Total				2,443	2,443.00		17.37		
	Numbe	Number of Species Number of Hybrids								
	Numbe									

River Code: 07-011 River Mile: 5.00	Stream: Arcola CreekBasin: Ashtabula RiverTime Fished: 2400 secDrain Area: 11.0 sq miDist Fished: 0.30 kmNo of Passes: 2								Sample Date: 1995 Date Range: 08/01/95 Thru: 09/12/95 Sampler Type: E		
Species Name / ODNR status	IBI Feed Breed Grp Guild Guild Tol			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight		
WHITE SUCKER	W	0	S	Т	41	41.00	24.70	0.13	26.40	3.22	
COMMON CARP	G	0	М	Т	11	11.00	6.63	0.03	5.80	2.64	
BLACKNOSE DACE	Ν	G	S	т	1	1.00	0.60	0.00	0.40	2.00	
CREEK CHUB	Ν	G	Ν	т	56	56.00	33.73	0.20	40.60	3.63	
FATHEAD MINNOW	Ν	0	С	т	3	3.00	1.81	0.01	2.40	4.00	
BLUNTNOSE MINNOW	Ν	0	С	Т	27	27.00	16.27	0.02	3.40	0.63	
CENTRAL STONEROLLER	Ν	н	Ν		23	23.00	13.86	0.10	20.40	4.43	
JOHNNY DARTER	D	I	С		4	4.00	2.41	0.00	0.60	0.75	
	Mile Total Number of Species Number of Hybrids				166 8 0	166.00		0.50			

Page	14

	1			~	peere	5 LISt				
River Code: 07-100	Stream	n: Co	onnea	ut Cre	Sample Date: 1995					
River Mile: 23.10	Basin	Basin: Conneaut Creek						Date Ra	ange: 08/	02/95
	Time	Fishe	d: 24	00 sec	Dra	in Area: 152	.0 sq mi	Thru: 09/12/95		
	Dist F	ished	: 0.4	40 km	No	of Passes: 2	2	Sample	r Type: D)
Species	IBI	IBI Feed Breed			# of	Relative	% by	Relative	% by	Ave(gm)
Name / ODNR status	Grp	Guild	Guild	l Tol	Fish	Number	Number	Weight	Weight	Weight
BLACK REDHORSE	R	Ι	S	I	22	16.50	1.64	3.73	26.65	225.85
GOLDEN REDHORSE	R	Ι	S	М	49	36.75	3.66	0.80	5.70	21.67
NORTHERN HOG SUCKER	R	Ι	S	М	69	51.75	5.15	2.18	15.60	42.15
WHITE SUCKER	W	0	S	Т	14	10.50	1.05	0.02	0.17	2.29
RIVER CHUB	Ν	Ι	Ν	I	8	6.00	0.60	0.22	1.58	36.75
BIGEYE CHUB	Ν	Ι	S	I	117	87.75	8.74	0.23	1.63	2.60
SILVER SHINER	Ν	Ι	S	I	1	0.75	0.07	0.00	0.01	1.00
ROSYFACE SHINER	Ν	Ι	S	I	42	31.50	3.14	0.06	0.40	1.76
STRIPED SHINER	Ν	Ι	S		198	148.50	14.79	0.53	3.76	3.54
SPOTFIN SHINER	Ν	Ι	Μ		8	6.00	0.60	0.02	0.15	3.38
SAND SHINER	Ν	Ι	Μ	Μ	3	2.25	0.22	0.00	0.02	1.33
MIMIC SHINER	Ν	Ι	Μ	I	51	38.25	3.81	0.07	0.47	1.73
BLUNTNOSE MINNOW	Ν	0	С	Т	128	96.00	9.56	0.21	1.51	2.20
CENTRAL STONEROLLER	Ν	н	Ν		108	81.00	8.07	0.48	3.41	5.88
YELLOW BULLHEAD		Ι	С	Т	6	4.50	0.45	0.38	2.74	85.17
STONECAT MADTOM		Ι	С	I	2	1.50	0.15	0.07	0.48	44.50
ROCK BASS	S	С	С		79	59.25	5.90	3.05	21.82	51.48
SMALLMOUTH BASS	F	С	С	Μ	29	21.75	2.17	1.47	10.53	67.66
GREEN SUNFISH	S	Ι	С	Т	1	0.75	0.07	0.01	0.08	15.00
BLUEGILL SUNFISH	S	Ι	С	Р	1	0.75	0.07	0.00	0.01	1.00
BLACKSIDE DARTER	D	Ι	S		26	19.50	1.94	0.03	0.20	1.42
LOGPERCH	D	Ι	S	Μ	16	12.00	1.19	0.11	0.76	8.81
JOHNNY DARTER	D	Ι	С		25	18.75	1.87	0.01	0.09	0.67
GREENSIDE DARTER	D	Ι	S	Μ	152	114.00	11.35	0.19	1.36	1.67
RAINBOW DARTER	D	Т	S	М	151	113.25	11.28	0.11	0.76	0.94
FANTAIL DARTER	D	Т	С		33	24.75	2.46	0.02	0.15	0.82
	Mile To	otal			1,339	1,004.25		13.98		
	Numbe		Specie	es	26	·				
	Numbe		•		0					
			•							

Page	15

[и 	specie	5 LISt				Page 13	
River Code: 07-100	Stream			ut Cre				Sample		995	
River Mile: 12.10	Basin			ut Cree				Date Range: 08/02/95 Thru: 09/13/95			
	1			00 sec		in Area: 169	-				
	Dist F	ished	: 0.4	40 km	No	of Passes: 2		Sample	r Type: D)	
Species	IBI Feed Breed			# of	Relative	% by	Relative	% by	Ave(gm)		
Name / ODNR status	Grp Guild Guild Tol			Fish	Number	Number	Weight	Weight	Weight		
BLACK REDHORSE	R	Т	S	I	28	21.00	1.16	1.27	8.86	60.70	
GOLDEN REDHORSE	R	I	S	Μ	56	42.00	2.33	0.55	3.83	13.14	
NORTHERN HOG SUCKER	R	Ι	S	М	109	81.75	4.53	2.56	17.83	31.37	
WHITE SUCKER	W	0	S	т	19	14.25	0.79	0.16	1.11	11.22	
RIVER CHUB	Ν	Ι	Ν	I	20	15.00	0.83	0.36	2.50	23.95	
BIGEYE CHUB	Ν	Ι	S	I	273	204.75	11.34	0.56	3.92	2.76	
ROSYFACE SHINER	Ν	Ι	S	I	81	60.75	3.37	0.16	1.11	2.61	
STRIPED SHINER	Ν	Ι	S		89	66.75	3.70	0.56	3.92	8.46	
SPOTFIN SHINER	Ν	Ι	М		14	10.50	0.58	0.02	0.10	1.42	
SAND SHINER	Ν	Ι	М	М	48	36.00	1.99	0.05	0.38	1.50	
MIMIC SHINER	Ν	I	М	I	101	75.75	4.20	0.12	0.84	1.59	
SILVERJAW MINNOW	Ν	I	М		6	4.50	0.25	0.02	0.15	4.67	
BLUNTNOSE MINNOW	Ν	0	С	т	228	171.00	9.47	0.40	2.75	2.31	
CENTRAL STONEROLLER	Ν	н	Ν		946	709.50	39.30	3.55	24.71	5.01	
STRIPED SH X ROSYFACE S	н	I			1	0.75	0.04	0.00	0.03	5.00	
CHANNEL CATFISH	F		С		1	0.75	0.04	0.01	0.04	8.00	
YELLOW BULLHEAD		Ι	С	Т	7	5.25	0.29	0.22	1.51	41.40	
STONECAT MADTOM		I	С	I	10	7.50	0.42	0.17	1.15	22.10	
BRINDLED MADTOM		I	С	I	5	3.75	0.21	0.04	0.25	9.60	
ROCK BASS	S	С	С		40	30.00	1.66	1.75	12.14	58.20	
SMALLMOUTH BASS	F	С	С	М	30	22.50	1.25	1.39	9.64	61.60	
GREEN SUNFISH	S	Т	С	т	1	0.75	0.04	0.01	0.07	13.00	
BLUEGILL SUNFISH	S	I	С	Р	1	0.75	0.04	0.04	0.27	51.00	
LOGPERCH	D	Т	S	М	12	9.00	0.50	0.03	0.21	3.33	
JOHNNY DARTER	D	Т	С		19	14.25	0.79	0.02	0.11	1.06	
GREENSIDE DARTER	D	Т	S	М	159	119.25	6.61	0.27	1.87	2.25	
RAINBOW DARTER	D	Т	s	М	89	66.75	3.70	0.09	0.63	1.35	
FANTAIL DARTER	D	I	С		14	10.50	0.58	0.01	0.08	1.14	
	Mile To	otal			2,407	1,805.25		14.38			
	Numbe		Specie	es	27						
	Numbe		•		1						
			-								