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Kirsten E. Nicholson1*, Luke J. Harmon2, Jonathan B. Losos3

1 Department of Biology, Central Michigan University, Mt. Pleasant, Michigan, United States of America, 2 Biodiversity Centre, University of British
Columbia, Vancouver, British Columbia, Canada, 3 Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology,
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Background. The dewlaps of Anolis lizards provide a classic example of a complex signaling system whose function and
evolution is poorly understood. Dewlaps are flaps of skin beneath the chin that are extended and combined with head and
body movements for visual signals and displays. They exhibit extensive morphological variation and are one of two cladistic
features uniting anoles, yet little is known regarding their function and evolution. We quantified the diversity of anole
dewlaps, investigated whether dewlap morphology was informative regarding phylogenetic relationships, and tested two
separate hypotheses: (A) similar Anolis habitat specialists possess similar dewlap configurations (Ecomorph Convergence
hypothesis), and (B) sympatric species differ in their dewlap morphologies to a greater extent than expected by chance
(Species Recognition hypothesis). Methodology/Principal Findings. We found that dewlap configurations (sizes, patterns
and colors) exhibit substantial diversity, but that most are easily categorized into six patterns that incorporate one to three of
13 recognizable colors. Dewlap morphology is not phylogenetically informative and, like other features of anoles, exhibits
convergence in configurations. We found no support for the Ecomorph Convergence hypothesis; species using the same
structural habitat were no more similar in dewlap configuration than expected by chance. With one exception, all sympatric
species in four communities differ in dewlap configuration. However, this provides only weak support for the Species
Recognition hypothesis because, due to the great diversity in dewlap configurations observed across each island, few cases of
sympatric species with identical dewlaps would be expected to co-occur by chance alone. Conclusions/Significance. Despite
previous thought, most dewlaps exhibit easily characterizable patterns and colorations. Nevertheless, dewlap variation is
extensive and explanations for the origin and evolution of this diversity are lacking. Our data do not support two hypothesized
explanations for this diversity, but others such as sexual selection remain to be tested.

Citation: Nicholson KE, Harmon LJ, Losos JB (2007) Evolution of Anolis Lizard Dewlap Diversity. PLoS ONE 2(3): e274. doi:10.1371/
journal.pone.0000274

INTRODUCTION
Animals convey information to one another through a broad

variety of signaling mechanisms [1–3]. Communication may be

necessary for territory establishment or defense, reproductive

interactions, predator defense, or resource location. Communica-

tion systems vary between species and take a variety of forms

including auditory and visual displays.

Lizard communication systems have evolved to form complex

displays and can exhibit extraordinary diversity [4–6]. The

complex displays of some lizards have been studied from

a proximate behavioral or ecological point of view to identify

the relevant components and contexts of the signals. To be

effective, signals must evolve within the context of the environ-

mental, perceptual, sexual, and social selection pressures facing

a species [5–9]. One of the goals of comparative evolutionary

biology is to identify the evolutionary forces responsible for

generating this diversity.

The dewlaps of Anolis lizards present a classic example of

a complex signaling system whose function and evolution is poorly

understood. A characteristic and charismatic feature of Anolis, the

dewlap consists of a flap of skin below the chin that is supported by

the second ceratobranchial cartilage, a modification of the hyoid

apparatus [10–11]. Dewlaps vary dramatically in size, shape,

color, and pattern (Figure 1), and are frequently used to delineate

species boundaries (e.g., see 12 and references therein). Anoles

extend and retract their dewlaps in various temporal patterns,

frequently combined with head and other body movements, that

are thought to communicate mating and territorial interests [4,13],

as well as being used in predator deterrence [14]. In addition, the

cadence of head-bobbing used in these visual displays appears to

be species specific [4 and references therein].

The breadth of morphological diversity demonstrated by Anolis

dewlaps is impressive (Figure 1). This broad diversity gives the

impression that no two dewlaps are exactly alike. While a few

studies have examined the evolution of anole dewlaps [15–17],

empirical characterization of dewlap diversity has so far never

been attempted. Without such a survey, the extent to which

dewlaps are unique cannot be assessed. In addition, systematists

often use dewlap features as taxonomic characters, yet no test of

the evolutionary lability of dewlaps has ever been conducted.

Explanations for the evolution of dewlap diversity are lacking,

although two hypotheses may be relevant. The Ecomorph

Convergence hypothesis [18] is based on the extensive conver-

gence seen among the anole radiations in the Greater Antilles. On

each island, anoles have radiated mostly independently, producing

the same set of habitat specialists, termed ‘‘ecomorphs’’, on each

island [19–20]. Convergence among members of the same
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ecomorph class involves limb and tail length, head dimensions,

toe-pad characteristics, sexual dimorphism, and other characters

[18,21–23]. We test whether this convergence extends to the

configuration of the dewlap.

The Species Recognition hypothesis [17] predicts that sympat-

ric species should evolve characteristics that aid in distinguishing

conspecifics from heterospecifics. Application of this hypothesis to

anoles predicts that sympatric species should have distinctly

different dewlaps. This hypothesis has been examined [17] or

discussed [24–30] in several studies that propose that dewlap

colors have evolved to allow the rapid identification of hetero-

specifics.

The Ecomorph Convergence and Species Recognition hypoth-

eses have not yet been tested extensively across anoles. Previous

tests (discussed above) have focused on small communities or

comparisons among small subsets of species. Considerable

information is now available on the dewlap characteristics of

most Caribbean anoles. This increase in available data allows the

extension of previous studies that have focused upon individual

components of dewlap morphology (color or size only). Impor-

tantly, phylogenetic relationships of Caribbean anoles are now

well resolved [20,31–33] allowing for the analysis of morphological

data within a reliable phylogenetic context.

The goals of this study were therefore 1) to quantify the diversity

in Caribbean Anolis dewlap morphologies, 2) examine the extent to

which dewlap morphology contains phylogenetic signal, versus the

alternative hypothesis that no relationship exists between degree of

phylogenetic relatedness and dewlap similarity, and 3) test two

separate hypotheses that may explain dewlap diversity: (A) do

similar Anolis habitat specialists possess similar dewlap configura-

tions (Ecomorph Convergence hypothesis), and (B) do sympatric

species differ in their dewlap morphologies to a greater extent than

expected by chance (Species Recognition hypothesis)? We have

focused our study on Caribbean species because precise in-

formation on phylogenetic relationships and dewlap configurations

are as yet incomplete for mainland taxa.

METHODS
We categorized three components of dewlap appearance: pattern,

color, and size. We collected information on dewlap color and

patterns from detailed published literature [12,34–37], photo-

graphs taken in the field, and from experts familiar with these

species (summarized in Table 1). Dewlap patterns were classified

into categories (see Results for complete descriptions of all pattern

categories). To categorize the proportion of each color present in

a given pattern, we implemented a standardized approach in

which we measured the area occupied by each component of the

pattern on the dewlap of a single, representative species with that

pattern. For example, a representative of a bicolored marginal

dewlap was measured for the area comprising the margin (10%)

and the remainder (90%) of the dewlap. All other species

possessing this pattern were recorded as having 10%color A and

90%color B. In a few cases, components of species’ patterns

Figure 1. A small sample of Anolis dewlaps exemplifying observed morphological diversity. Some images are modified from original photographs and
used with permission from David Hillis and Richard Glor. Species depicted are as follows (in order right to left and top to bottom): A. pulchellus, A.
sericeus, A. liogaster, A. longitibalis, A. cobanensis, A. gorgonae, A. cristatellus, A. chlorocyanus, A. reconditus, A. christophei, A. cuprinus, A. new species, A.
lineatopus, A. annectens, A. baleatus, A. auratus.
doi:10.1371/journal.pone.0000274.g001
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Table 1. List of species included in this study and source of dewlap information (authors indicated by initials, * = Richard E. Glor).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Species Citation Pers. Obs. Species Citation Pers. Obs.

C. barbatus S&H 1991 JBL A. homolechis S&H 1991; LRS 1999 JBL

C. chamaeleonides S&H 1991 JBL A. imias S&H 1991; LRS 1999

C. porcus S&H 1991 JBL A. inexpectatus S&H 1991; LRS 1999

‘‘C’norops’’ barbouri S&H 1991; P&H 1996 JBL A. insolitus S&H 1991 JBL

A. acutus S&H 1991 KEN A. isolepis S&H 1991; LRS 1999 JBL

A. aeneus S&H 1991 A. juangundlachi S&H 1991; LRS 1999 JBL

A. ahli S&H 1991; LRS 1999 A. jubar S&H 1991; LRS 1999 JBL

A. alayoni LRS 1999 A. koopmani S&H 1991

A. alfaroi LRS 1999 A. krugi S&H 1991; Rivero 1978 JBL, *

A. aliniger S&H 1991 JBL A. lineatopus S&H 1991 JBL

A. allisoni S&H 1991; LRS 1999 JBL A. lividus S&H 1991

A. allogus S&H 1991; LRS 1999 JBL A. longiceps S&H 1991

A. altavelensis S&H 1991 A. longitibialis S&H 1991 JBL, *

A. alumina S&H 1991 JBL A. loysiana S&H 1991; LRS 1999 JBL

A. alutaceus S&H 1991; LRS 1999 JBL A. luciae S&H 1991

A. anfilioquioi S&H 1991; LRS 1999 A. lucius S&H 1991; LRS 1999

A. angusticeps S&H 1991; LRS 1999 JBL A. luteogularis S&H 1991; LRS 1999 JBL

A. argenteolis S&H 1991; LRS 1999 JBL A. macilentus LRS 1999

A. argillaceus S&H 1991; LRS 1999 A. marcanoi S&H 1991 JBL

A. armouri S&H 1991 A. marmoratus S&H 1991

A. bahorucoensis S&H 1991 JBL A. marron S&H 1991

A. baleatus S&H 1991 JBL A. maynardi S&H 1991

A. baracoe S&H 1991; LRS 1999 A. mestrei S&H 1991; LRS 1999 JBL

A. barahonae S&H 1991; P&H 1996 JBL A. monensis S&H 1991; Rivero 1978

A. bartschi S&H 1991; LRS 1999 JBL A. monticola S&H 1991

A. bimaculatus S&H 1991 A. noblei S&H 1991; LRS 1999

A. bremeri S&H 1991; LRS 1999 A. nubilis S&H 1991

A. brevirostris S&H 1991 JBL, * A. occultus S&H 1991; Rivero 1978 JBL

A. brunneus S&H 1991 A. oculatus S&H 1991

A. carolinensis Ashton and Ashton 1991 LJH, JBL, KEN, * A. olssoni S&H 1991 JBL

A. caudalis S&H 1991 A. opalinus S&H 1991 JBL

A. centralis S&H 1991; LRS 1999 JBL A. ophiolepis S&H 1991; LRS 1999

A. chlorocyanus S&H 1991 JBL, KEN A. paternus S&H 1991; LRS 1999

A. christophei S&H 1991 JBL, * A. pigmaequestris S&H 1991; LRS 1999

A. clivicola S&H 1991; LRS 1999 * A. pinchoti S&H 1991

A. coelestinus S&H 1991 JBL, * A. placidus S&H 1991 JBL

A. concolor S&H 1991 A. poncensis S&H 1991; Rivero 1978 JBL

A. confusus LRS 1999 A. porcatus S&H 1991; LRS 1999 KEN

A. conspersus S&H 1991; P&H 1996 A. pulchellus S&H 1991; Rivero 1978 JBL, *

A. cooki S&H 1991; Rivero 1978 JBL A. pumilis S&H 1991; LRS 1999

A. cristatellus S&H 1991; Rivero 1978 JBL, KEN A. quadriocellifer S&H 1991; LRS 1999

A. cupeyalensis S&H 1991; LRS 1999 A. reconditus S&H 1991

A. cuvieri S&H 1991; Rivero 1978 JBL A. richardi S&H 1991

A. cyanopleurus S&H 1991; LRS 1999 A. ricordii S&H 1991 JBL

A. cybotes S&H 1991 JBL, KEN A. rimarum S&H 1991

A. darlingtoni S&H 1991 A. roosevelti S&H 1991; Rivero 1978

A. delafuentei S&H 1991; LRS 1999 A. roquet S&H 1991

A. desachensis S&H 1991 A. rubribarbus S&H 1991; LRS 1999

A. distichus S&H 1991 JBL, KEN, * A. rupinae S&H 1991

A. dolichocephalus S&H 1991 A. sabanus S&H 1991
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departed obviously from these standardized sizes, and were

estimated accordingly. Descriptions in the literature and personal

observations of dewlap colors did not follow any standard color

scale [38]; therefore, all dewlaps were classified according to

conventional color categories. Spectrophotometric data would

most objectively represent dewlap colors, but these data are

currently available for few species [e.g., 25, 28]; although some

workers are now collecting such data, it will likely be many years

before a large data set will become available. Our approach, then,

is preliminary; taking advantage of the wealth of information on

dewlap colors currently available, while recognizing that eventu-

ally such data will be refined by the availability of more precise

and standardized spectrophotometric data. Categorizing color

data will tend to underestimate diversity by lumping dewlaps that

actually differ spectrally into the same categories. As a result, these

data will tend to bias our study to incorrectly detect convergent

evolution. Data on dewlap sizes were taken from [16] which

reported relative dewlap sizes as residuals of actual dewlap size

regressed against snout-vent length. Hereafter we use the term

‘‘configuration’’ to refer to particular combinations of dewlap

color(s), pattern and size.

Phylogenetic Signal
We tested whether any phylogenetic signal exists for each of the

three categories of dewlap configuration (pattern, color, and size)

within the context of a current anole phylogeny [20]. The

Nicholson et al. [20] tree is based upon 1483 aligned base pairs of

DNA sequences for 7 mitochondrial genes (partial COI, complete

ND2 and five complete tRNA’s) and reconstructed using both

parsimony and Bayesian methods. We used their consensus

Bayesian tree for our analyses, and rendered it ultrametric using

the program r8s [39] so that branch lengths represented an index

of time. Species were excluded using the program TreeEdit [40] if

we lacked dewlap pattern information.

For this test, we created three morphological distance matrices

representing dissimilarities in pattern, color, and size. The pattern

matrix consisted of scores of pairwise similarities (0) or differences

(1) depending on whether two species shared the same pattern. In

cases of polymorphism, species were considered to have the same

dewlap patterning if any morph of one species had the same

pattern as a morph in the other species. Dewlap colors were

represented in a matrix in which we recorded the proportion of

dewlap area represented by each color (e.g., 4%of the dewlap area

was red, 38%white, 58%blue) for each species. To calculate

dewlap color dissimilarity between species, we calculated pairwise

Manhattan distances. In this case we wanted to emphasize the

absolute difference in dewlap coloration between pairs of species in

terms of overall shared coloration (both number of colors as well as

proportion of each color shared) which Manhattan distances

represent better than Euclidean distances. The dewlap size matrix

represented the difference in relative dewlap area between species.

Data on dewlap sizes was taken from [16] and pairwise differences

calculated.

We created a phylogenetic distance matrix with distances

calculated on the ultrametric phylogenetic tree for these species.

Using Mantel tests, we tested for a relationship between each

morphological distance matrix and the phylogenetic distance

matrix [41]. Significance was determined by comparing the matrix

correlation statistic to a distribution obtained by permuting the

matrices 9,999 times, using the program Permute! [42] and

implementing the double permutation method option and back-

ward elimination and forward selection testing options. Sub-

sequent comparisons using Permute!, described below, follow the

same procedure.

Species Citation Pers. Obs. Species Citation Pers. Obs.

A. equestris S&H 1991; LRS 1999 KEN A. sagrei S&H 1991; LRS 1999 LJH, JBL, KEN, *

A. ernestwilliamsi S&H 1991 A. scriptus S&H 1991

A. etheridgei S&H 1991 JBL A. semilineatus S&H 1991 JBL

A. eugenegrahami S&H 1991 A. sheplani S&H 1991 JBL

A. evermanni S&H 1991; Rivero 1978 JBL A. shrevei S&H 1991 JBL

A. extremus S&H 1991 A. singularis S&H 1991 JBL

A. fairchildi S&H 1991 A. smallwoodi S&H 1991; LRS 1999

A. ferreus S&H 1991 A. smaragdinus S&H 1991

A. fowleri S&H 1991 JBL A. spectrum S&H 1991; LRS 1999

A. fugitivus S&H 1991; LRS 1999 A. strahmi S&H 1991 JBL

A. garmani S&H 1991 JBL, KEN A. stratulus S&H 1991; Rivero 1978 JBL

A. garridoi LRS 1999 A. stratulus S&H 1991; Rivero 1978

A. gingivinus S&H 1991 A. trinitatus S&H 1991

A. grahami S&H 1991 JBL A. valencienni S&H 1991 JBL

A. griseus S&H 1991 A. vandicus S&H 1991; LRS 1999

A. guafe LRS 1999 A. vermiculatus S&H 1991; LRS 1999 JBL

A. guazuma S&H 1991; LRS 1999 A. vescus LRS 1999

A. gundlachi S&H 1991; Rivero 1978 A. wattsi S&H 1991

A. haetianus S&H 1991 A. websteri S&H 1991

A. hendersoni S&H 1991 A. whitemani S&H 1991 JBL

Citation abbreviations are as follows: S&H 1991: [12] (and references therein); P&H 1996: [35]; LRS 1999: [37]; Rivero 1978: [36].
doi:10.1371/journal.pone.0000274.t001
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Ecomorph Convergence Hypothesis
We tested the Ecomorph Convergence hypothesis, which predicts

that Anolis species living in similar structural habitats will have

similar dewlap configurations. Six structural habitat categories

were recognized, corresponding to the different ecomorph classes

(grass-bush, trunk-ground, trunk, trunk-crown, crown-giant, and

twig) recognized by Williams [43]. Ecomorph designations were

based on previous studies [e.g., 19, 21] or on our unpublished

observations. We used a multiple Mantel test [44] with four

similarity matrices to test this hypothesis. The first matrix

indicated whether pairs of species were in the same or different

ecomorph categories. A matrix of ecomorphs was generated in

which pairs of species in the same ecomorph category were given

a score of 0, and pairs of species in different categories were given

a score of 1. Three additional matrices representing patterns,

colors, and sizes were generated using the same approach as in the

previous paragraph.

To remove the effect of phylogenetic relatedness, we regressed

ecomorphs, pattern, size, and color matrices onto the phylogenetic

distance matrix, and retained the residuals for subsequent analysis.

We then carried out multiple matrix regression using the program

Permute! [42] with dewlap color, pattern, and size as dependent

variables, and ecomorph as the independent variable. This

hypothesis predicts that there will be a significant correspondence

between dewlap configuration and ecomorph category.

Species Recognition Hypothesis
The species recognition hypothesis predicts that sympatric species

will have different dewlap configurations [16]. We focused on four

communities of sympatric anoles (Soroa, Cuba–10 species,

including A. vermiculatus, which does not have a dewlap; La Palma,

Hispaniola–7 species [A. cybotes and A. ricordii not included because

dewlap size data were not available]; Negril, Jamaica–5 species,

not including A. sagrei, which is a recent colonist [45]; Luquillo

Mountains, Puerto Rico–8 species). To test this hypothesis, we

counted the number of identical dewlap pairs within each of the

four Anolis communities. Dewlaps were considered identical if they

had the same pattern, the same proportions of colors, and

a residual dewlap size differing by less than 0.2 (other values for

size similarity cutoffs were tried, but the results were not affected;

data not shown). Because the dewlap of Anolis cristatellus (Puerto

Rico) occurs in four polymorphic forms, we repeated the analysis

separately with each of these forms.

We investigated whether dewlap similarity among sympatric

species was less than would be expected if communities were

composed of a random set of species. To this end, we generated

9,999 random communities by creating random communities with

the same number of species (created by selecting without

replacement from the pool of all species in these four

communities). We dealt with polymorphic species by considering

each form as a unique entity in the null pool. We then compared

the number of identical species in each random community to the

number from the actual community. We calculated a p-value for

this test as (number of random communities with the same or

fewer identical pairs+1)/10,000.

RESULTS

Patterns and Colors
Most dewlaps exhibited one of six patterns (Figure 2), although

a few species had other patterns (Table 2). Solid dewlaps, which

contain only one color across the entire dewlap surface, were far-

and-away the most common pattern amongst Caribbean anoles

(Table 2). Marginal dewlaps have a single color that covers most of

the dewlap (,90%) and a second color along the outer margin

representing about 10%of the total area. Spotted dewlaps have

a clear, circular spot in the center that covers roughly 10%of the

total area. Basal dewlaps are similar to spotted dewlaps, except

that the spot is clearly positioned at the base of the throat instead

of in the middle of the dewlap, and generally comprises more

surface area than does the spot in spotted dewlaps (,12%area).

Striped dewlaps may exhibit rows of scales of a strongly

contrasting color to their background, or may be composed of

differently colored skin and cover approximately 4–5%of the total

area. Divided dewlaps included those that exhibited two color

patches that each covered approximately 50%of the total area.

These patches could be arranged dorsoventrally, anteroposteriorly

or diagonally. In addition to these six categories, 12%of the

species’ dewlaps we refer to as Unique because they exhibit

complex combinations of the above-mentioned patterns (e.g.,

Figure 2. Dewlap patterns categorized by this study. Six patterns were
observed among Caribbean Anolis species. While five of the patterns
(Solid, Marginal, Basal, Striped, and Spotted) were observed with some
frequency, four additional morphs were observed so rarely that they
were grouped together within a sixth category entitled Divided.
doi:10.1371/journal.pone.0000274.g002

Table 2. Distribution of dewlap patterns exhibited by
Caribbean anoles.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pattern Number % of Exhibited Morphs Colors

Solid 90 58.4% 13

Marginal 14 9.0% 12

Spotted 6 4.0% 8

Basal 4 2.6% 2

Chin 1 0.7% 2

Stripped 9 5.8% 10

Lateral 7 4.5% 12

Unique 17 11.0% 13

Absent 6 4.0%

Data from 140 Caribbean species. The last column gives an indication of color
diversity within each pattern category. *The number of exhibited patterns does
not total 140 because polymorphic species exhibit more than one pattern.
doi:10.1371/journal.pone.0000274.t002..
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marginal+striped; divided+marginal) or do not fit any of the

categories described above (e.g., A. marcanoi and A. scriptus exhibit

blotched or marbled dewlaps). Also, in a few (4%) species, dewlaps

are completely absent (they lack the second ceratobranchial

cartilage) or sufficiently reduced to be considered absent.

Thirteen dewlap colors (red, yellow, green, greenish-yellow,

blue, orange, black, white, peach, gray, pink, purple, brown) were

observed (Table 3). Yellow, orange, and red are the most common

colors in all pattern types (ranges from 42–83%depending on

pattern category). Despite the diversity of colors exhibited among

all patterns, only 65 combinations of patterns and colors were

observed among anole dewlaps, much less than the 793 possible

combinations (13 solid dewlaps+156 possible combinations of 2

out of 13 colors [78 combinations multiplied by two because each

pair of colors can occur in two different arrangements depending

on which color is the more common] * 5 dewlap patterns).

Phylogenetic Signal
All species included in the tests for phylogenetic signal in dewlap

morphology are shown in Figure 3. Dewlap patterns, colors, and

sizes are not phylogenetically informative; that is, no relationship

exists between how closely related two species are and how similar

they are in any feature of the dewlap. Figure 3 depicts dewlap

patterns on a phylogeny (colors and sizes not shown). Patterned

dewlaps have clearly evolved multiple times from ancestors

possessing solid dewlaps. However, the addition of color and/or

size data (not shown on the tree) eliminates all monophyletic

groups of anoles with identical dewlaps (i.e., not even a single pair

of sister taxa have identical dewlap configurations). Mantel tests

showed a lack of phylogenetic signal for each of the dewlap

characters (pattern: R2 = 0.018, P = 0.13; color: R2 = 0.001,

P = 0.63; size: R2 = 0.023, P = 0.07)

Ecomorph Convergence Hypothesis
No support was observed for the hypothesis that Anolis lizards in

the same structural habitat category are more similar in dewlap

configuration than expected by chance (four-way Mantel test,

overall R2 = 0.048; P = 0.21) (Table 4).

Species Recognition Hypothesis
Of the four Anolis island communities, only one, from Puerto Rico,

includes a species pair with identical dewlaps (Table 5). In the

other three communities, the dewlap of every anole is unique

within that community. These results are consistent with the

Species Recognition hypothesis. However, our randomization test

showed that this result is not unexpected given the distribution of

dewlap colors and patterns among species (Table 6). Results were

not qualitatively changed regardless of which dewlap morph of A.

cristatellus was used.

DISCUSSION
Although dewlaps do exhibit impressive morphological diversity,

our study shows that dewlaps can readily be placed into several

discrete categories, with less than 10%of all possible combinations

of color and pattern actually being observed among Caribbean

anoles. Figure 4 shows the distribution of patterns and colors, and

indicates the dominance of the Solid pattern and the color Yellow

among Caribbean anoles. Of the Solid morphs, 30%are yellow

and 21%are orange, with other colors decreasing dramatically in

frequency. The functional significance for the predominance of

Yellow and Orange dewlaps is unknown but is likely related to

contrasting effects with background colors in their habitats [24–

26,46]. Interestingly, these colors are believed to be carotenoid-

Table 3. Colors exhibited by each pattern.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pattern Color Numbers

Solid Yellow 39

Orange 27

Red 13

White 10

Pink 7

Brown 7

Green 6

Greenish yellow 6

Gray 5

Peach 4

Blue 3

Black 2

Purple 1

Marginal Yellow 11

Red 4

Orange 5

Greenish yellow 1

Black 1

White 2

Gray 2

Pink 1

Spotted Red 5

Yellow 4

Orange 3

Green 1

Greenish yellow 1

Blue 1

Brown 1

Basal Red 5

Yellow 5

Greenish yellow 1

Purple 1

Striped yellow 4

White 4

Orange 3

Red 2

Green 1

Peach 2

Gray 1

Pink 1

Purple 1

Lateral Red 2

Yellow 2

Gray 2

Orange 1

Black 1

Peach 1

Pink 1

Numbers in the right-hand column refer to the number of morphs exhibiting
the color in the indicated pattern, yielding an indication of color diversity within
each pattern.
doi:10.1371/journal.pone.0000274.t003..
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Figure 3. Dewlap patterns mapped on to a phylogeny for Anolis species. Patterns are indicated in color on the phylogeny (color legend upper left).
Polymorphic species are those that exhibited two or more pattern morphs (see text for how this was handled analytically). Patterns are defined in the
text. This tree includes all of the species used in the tests for phylogenetic signal of dewlap characters. The tree is modified from Nicholson et al.’s [20]
anole tree but has been pruned of taxa for which dewlap information was lacking. Analyses were based on an ultrametric version of this tree, but is
reproduced here in cladogram form for enhanced viewing of dewlap pattern information.
doi:10.1371/journal.pone.0000274.g003

Dewlap Evolution

PLoS ONE | www.plosone.org 7 March 2007 | Issue 3 | e274



Table 4. Data used to test the Ecomorph Convergence hypothesis.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Species Community Ecomorph
Relative
Size Pattern Color

A. ahi Cuba trunk-ground 0.958 Basal yellow & red

A. allisoni Cuba trunk-crown 20.423 Chin pink & white

A. allogus Cuba trunk-ground 1.065 Striped yellow & red

A. alutaceus Cuba grass-bush 0.396 Solid yellow

A. angusticeps Cuba twig 20.206 Solid pink

A. bartschi Cuba unique 21.635 – –

A. equestris Cuba crown-giant 20.385 Unique pink, blue, & yellow

A. guazuma Cuba twig 20.239 Solid white

A. homolechis Cuba trunk-ground 0.71 Solid white/gray

A. loysiana Cuba trunk 0.863 Unique yellow & red

A. lucius Cuba unique 0.403 Unique yellow, gray, & white

A. luteogularis Cuba crown-giant 20.49 Solid orange/pink/yellow

A. mestrei Cuba trunk-ground 0.925 Unique red, yellow, & white

A. ophiolepis Cuba grass-bush 21.145 Solid red

A. paternus Cuba twig 0.02 Unique pink, yellow, & black

A. porcatus Cuba trunk-crown 20.388 Solid red

A. pumilis Cuba unique 20.265 Solid peach

A. sagrei Cuba trunk-ground 0.222 Marginal red & yellow

A. vandicus Cuba grass-bush 0.199 Solid yellow

A. vermiculatus Cuba unique 21.407 – –

A. aliniger Hispaniola trunk-crown 20.402 Solid green

A. bahorucoensis Hispaniola grass-bush 21.217 Marginal black & yellow

A. brevirostris Hispaniola trunk 20.256 Basal/Solid/Marginal yellow & red/orange/yellow/brown/gray/red/orange & yellow

A. chlorocyanus Hispaniola trunk-crown 20.242 Lateral gray & black, greenish-yellow & black

A. christophei Hispaniola unique 0.481 Striped purple & pink

A. distichus Hispaniola trunk 20.279 Solid/Marginal/Spotted/Basal yellow, orange/red & yellow/red & yellow/red & yellow

A. etheridgei Hispaniola unique 20.125 Solid white/gray

A. insolitus Hispaniola twig 0.914 Solid yellow/orange/brown

A. longitibalis Hispaniola trunk-ground 0.425 Solid orange

A. olssoni Hispaniola grass-bush 0.579 Solid orange

A. semilineatus Hispaniola grass-bush 0.361 Solid white

A. garmani Jamaica crown-giant 0.086 Solid yellow

A. grahami Jamaica trunk-crown 20.024 Marginal orange & yellow

A. lineatopus Jamaica trunk-ground 0.704 Marginal/Lateral/Unique/Spotted orange & gray/gray & orange/green, white, orange/yellow & orange

A. opalinus Jamaica trunk-crown 0.466 Unique red & yellow

A. reconditus Jamaica unique 0.685 Unique orange & gray

A. valencienni Jamaica twig 0.46 Solid purple

A. cooki Puerto Rico trunk-ground 0.16 Solid orange

A. cristatellus Puerto Rico trunk-ground 0.036 Marginal/Solid/Basal greenish-yellow & red/greenish-yellow/yellow

A. cuvieri Puerto Rico crown-giant 0.233 Solid yellow

A. evermanni Puerto Rico trunk-crown 20.127 Solid yellow/green

A. gundlachi Puerto Rico trunk-ground 0.425 Solid brown/yellow

A. krugi Puerto Rico grass-bush 0.225 Solid yellow

A. occultus Puerto Rico twig 0.169 Lateral gray & red

A. poncensis Puerto Rico grass-bush 20.948 Solid white/yellow

A. pulchellus Puerto Rico grass-bush 0.05 Basal red & purple

A. stratulus Puerto Rico trunk-crown 0.338 Solid red/orange

Abbreviations as follows: Community: C = Cuba, H = Hispaniola, J = Jamaica, and PR = Puerto Rico; Ecomorph:, CG = crown-giant, GB = grass-bush, TC = trunk-crown,
TG = trunk-ground, TR = trunk, TW = twig; and U = unique. Dewlap size data comes from [16]. Species polymorphic for pattern (e.g., basal/solid/marginal) are indicated in
the next to last column and the corresponding colors exhibited by each pattern for each species is indicated in the far right column. Polymorphism in color is similarly
indicated (e.g., may have a solid pattern only but may vary in coloration, red/yellow/orange).
doi:10.1371/journal.pone.0000274.t004
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based [47], and carotenoids are generally obtained from the

environment. Yet there is no evidence that diet plays any role in

anole dewlap color and dewlap colors do not change seasonally

(personal observation from all authors, no known citation

reporting observed seasonal change).

Phylogenetic Signal of Dewlap Configurations
Dewlap morphology is not phylogenetically informative. Dewlap

patterns, colors, and sizes appear to be convergent features; that is,

no relationship exists between how closely related two species are

and how similar they are in any feature of the dewlap. This result

parallels patterns of evolution in other aspects of anole

morphology and ecology, which also show extensive convergence

and lack of phylogenetic signal [18–19,48].

Ecomorph Convergence Hypothesis
For the Ecomorph Convergence hypothesis, the question we

addressed was whether anoles living in similar structural habitats

possessed similar dewlap configurations compared to those living

in different habitats. We found that species using the same

Table 5. Data used to test the Species Recognition hypothesis.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Species Community Relative Size Pattern Color

A. allogus Cuba 1.065 Striped yellow & red

A. alutaceus Cuba 0.396 Solid yellow

A. angusticeps Cuba 20.206 Solid pink

A. homolechis Cuba 0.71 Solid white/gray

A. loysiana Cuba 0.863 Unique yellow & red

A. luteogularis Cuba 20.49 Solid orange/pink/yellow

A. mestrei Cuba 0.925 Unique red, yellow, & white

A. porcatus Cuba 20.388 Solid red

A. sagrei Cuba 0.222 Marginal red & yellow

A. vermiculatus Cuba 21.407 – –

A. aliniger Hispaniola 20.402 Solid green

A. chlorocyanus Hispaniola 20.242 Lateral gray & black, greenish-yellow & black

A. christophei Hispaniola 0.481 Striped purple & pink

A. distichus Hispaniola 20.279 Solid/Marginal/Spotted/Basal yellow, orange/red & yellow/red & yellow/red & yellow

A. etheridgei Hispaniola 20.125 Solid white/gray

A. insolitus Hispaniola 0.914 Solid yellow/orange/brown

A. semilineatus Hispaniola 0.361 Solid white

A. garmani Jamaica 0.086 Solid yellow

A. grahami Jamaica 20.024 Marginal orange & yellow

A. lineatopus Jamaica 0.704 Marginal/Lateral/Unique/Spotted orange & gray/gray & orange/green, white, orange/yellow & orange

A. opalinus Jamaica 0.466 Unique red & yellow

A. cristatellus Puerto Rico 0.036 Marginal/Solid/Basal greenish-yellow & red/greenish-yellow/yellow

A. cuvieri Puerto Rico 0.233 Solid yellow

A. evermanni Puerto Rico 20.127 Solid yellow/green

A. gundlachi Puerto Rico 0.425 Solid brown/yellow

A. krugi Puerto Rico 0.225 Solid yellow

A. occultus Puerto Rico 0.169 Lateral gray & red

A. poncensis Puerto Rico 20.948 Solid white/yellow

A. pulchellus Puerto Rico 0.05 Basal red & purple

A. stratulus Puerto Rico 0.338 Solid red/orange

Not included in this analysis due to missing data were A. cybotes (Hispaniola), and A. ricordii (Hispaniola). Patterns and colors are as in Table 3.
doi:10.1371/journal.pone.0000274.t005..
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Table 6. Number of pairs of identical dewlaps in the four
anole communities, compared to communities assembled
randomly without replacement from all anole species used in
this study.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Island
Number of
Included Species Identical Pairs P

Hispaniola 7 0 0.8651

Cuba 10 0 0.7313

Jamaica 5 0 0.9299

Puerto Rico A 8 1 0.9818

Puerto Rico B 8 1 0.9822

Puerto Rico C 8 2 0.9922

Puerto Rico D 8 1 0.9848

P-values represent the proportion of randomly assembled communities with
the same or fewer identical pairs of species. The four results from Puerto Rico
reflect the inclusion of four different dewlap forms for A. cristatellus.
doi:10.1371/journal.pone.0000274.t006..
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structural habitat (i.e., members of a specific ecomorph category)

were no more similar in dewlap configuration than expected by

chance. Losos and Chu [16] focused only on dewlap size and came

to the same conclusion.

An issue in considering any negative result is whether the test

employed had sufficient power to detect a real relationship, if one

existed. In a comparable study with a smaller sample size (n = 21

species; no more than one representative of any ecomorph per

island) using identical statistical methods was able to detect

resoundingly significant ecomorph convergence for several sets of

morphological characters, including body size, body shape, head

shape, lamellae counts, and sexual size dimorphism [18],

suggesting that these results are not merely a reflection of low

statistical power. Consequently, we believe that the lack of

significance in this case is unlikely to be a result of lack of power.

Our results thus indicate that, unlike other morphological

characteristics, dewlap configuration is not related to structural

habitat use. In other words, dewlap features have clearly not

evolved in concert with the suite of characteristics that define the

anole ecomorphs [cf. 21, 49].

In retrospect, this result is not surprising. Members of the same

ecomorph category are often found in very different light

environments, ranging from dark forest to open sunlight [27;

49]. Thus, the light environment differs among species in the same

structural habitat, and, as would be expected, dewlap configura-

tions differ as well. These results thus agree with studies that have

shown that species’ dewlaps have evolved to optimize their

visibility/detectability in the habitats in which the species occur

[24–25,27–28]. Once data become available regarding specific

light environments for each species perhaps this hypothesis could

be investigated again to determine if ecomorphs in similar light

environments have converged in dewlap morphologies.

Species Recognition Hypothesis
The lack of support for the Species Recognition hypothesis was

surprising. The results were not only not significant, but nowhere

near significant (p-values ranged from 0.87 to 0.99). Support for

the function of color in species recognition has been demonstrated

in lab experiments between species pairs [e.g., 29, 50–51], and,

while not tested directly, several other studies have indicated

support for this hypothesis [24–26, 28; 30]. Rand and Williams

[17] applied this hypothesis to larger communities of anoles and

proposed it as a general explanation for dewlap diversity.

Our study is the first to address this question across a broad

sampling of anoles while analyzing the data within a phylogenetic

context, and we find that, although the data within each

community are consistent with the Species Recognition hypoth-

esis, they do not provide statistical corroboration. In other words,

the reason we fail to find support for this hypothesis is not because

such a pattern does not exist, but simply because such a pattern is

not unlikely. Given the great variety of dewlap configurations that

exist across each island, our findings indicate that even

communities in which no dewlaps co-occur is rather likely to

occur by chance. For this reason, enormous sample sizes would

probably be needed to distinguish real patterns from random

expectations. Consequently, we conclude that comparative studies

such as this are extremely unlikely to provide evidence that

sympatric species do not share dewlap configurations as a result of

species recognition problems. We suggest, instead, that workers

interested in such questions focus on experimental approaches to

assess the role of dewlap configuration in species recognition

[29,50].

Our sampling scheme involved choosing species-rich commu-

nities as exemplars for each island in the Greater Antilles. However,

great variation exists in community composition across each of

these islands. For example, some species are widespread, whereas

many others have more local distributions (see range maps in

[12]). Moreover, some ecomorphs are absent from some areas, for

reasons that are often unclear [52]. One alternative approach that

would be worth further investigation would be to include

a geographic component in studies of dewlap diversity. It is

possible, for example, that the dewlaps of widespread species have

evolved to be particularly distinct from other species with which

they co-occur widely, as opposed to species which they overlap

only in a portion of their range. Moreover, it is also possible that

species exhibit geographic variation in dewlap configuration that

results from the different ensemble of species with which they

coexist at different localities. Such a study would require much

more detailed information than is currently available, but would

be well worth the effort.

Future Directions
Studies on dewlap evolution could be further developed in several

other ways. First, we classified colors subjectively because literature

descriptions and personal observations did not follow standardized

color charts [e.g., 38] or measure dewlap reflectance [sensu 25 and

Figure 4. A histogram depicting the frequency of dewlap pattern and color combinations. *Data were weighted by the proportion of polymorphism
exhibited by each species. For example, if a species exhibited four dewlap morphs and one was a solid yellow dewlap, a score of 0.25 was recorded
for the solid yellow dewlap category.
doi:10.1371/journal.pone.0000274.g004
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references therein, 27–28]. Our approach has the effect of

underestimating the amount of variation that exists in dewlap

color, both by lumping color variation into several categories and

by overlooking the existence of ultraviolet reflectance, which has

been reported in some anoles [46]. From the studies of Fleishman

and colleagues it is known that the vision of some (and perhaps all)

anole vision extends into the ultraviolet and that some anole

dewlaps reflect UV [24–28,46].

In addition, our preliminary approach to color quantification

could be improved by collecting reflectance data and would likely

reveal even more variation. But given the large number of species,

and the inaccessibility of some of them, such studies are not likely

to be possible in the near future. In any case, our approach here is

conservative because recognizing greater variation in dewlap color

would lead to even less support for the hypotheses we investigated.

In other words, our study found substantial variation in dewlap

morphology and the hypotheses we tested lacked significant

support because so much variation exists; increased variation

would only render results less significant (where that is possible).

One alternative explanation for dewlap diversity may be sexual

selection. Fitch and Hillis [15] presented evidence that suggests

sexual selection could explain, in part, an association between

dewlap morphology, habitat, and breeding season length in

mainland anoles. They found that seven anoles in seasonal

habitats had large, brightly colored dewlaps relative to ten species

living in wetter, less seasonal habitats. They hypothesized that this

might be due to the shorter breeding season in seasonal habitats in

which competition for mates might be more intense. While sample

sizes were small and not analyzed within a phylogenetic context,

their study reveals an interesting pattern, but is limited in its ability

to explain dewlap configuration diversity because it only shows an

association between bright (vs. dull) coloration, size (large vs.

small), and habitat (dry vs. wet). More direct measures of the effect

of dewlap color on male-male competition and female mate choice

are needed to assess the sexual selection hypothesis.

In this study we have only compared the dewlaps of male

anoles, but the females of some species also possess dewlaps [12].

Explaining variation in female dewlaps—both whether they are

present and, if so, how they compare to the dewlap configurations

of their male conspecifics—would be a topic of considerable

interest. Our review of the literature indicates that the females of

20 species of Caribbean anoles possess dewlaps. Of these,

approximately half exhibit dewlaps identical to those of their

male counterparts, whereas the others differ in some way,

primarily in color, but sometimes also in pattern. All 20 of the

species in which females possess dewlaps are arboreal (e.g., crown-

giant, trunk-crown, or twig).

Why some females possess dewlaps and others do not has never

been examined. One possibility is that the presence of a dewlap in

females may correlate with the degree of female territoriality.

Perhaps the social system of arboreal anoles is different from more

terrestrial species, but this topic has not yet been studied with

respect to females. Another possibility is that sexual selection

pressures are different in different habitats and have led to reduced

sexual dimorphism in particular instances. Two studies [22–23]

examined size and shape dimorphism in anoles, but our

comparison of these studies with our review of female dewlap

information suggests that neither size nor shape dimorphism

correspond with female dewlap possession (Nicholson et al.,

unpubl.). The functional significance of female dewlap possession

therefore remains an interesting subject for future research.

A plethora of studies has demonstrated the importance of the

dewlap for anole behavior [e.g., 4, 13–15, 24–25, 50, 53–55], yet

several recent studies have failed to show that experimental

disabling of the dewlap has any effect on territory ownership or

mating rate, at least in one species, A. sagrei [56–58]. These results

are surprising, although they involve only one species and have

been of short duration with relatively small sample sizes. Further

work is needed to investigate the functional role of dewlaps in

extant species.

This study provides a characterization of dewlap diversity for

Caribbean anoles and serves as a foundation for other studies

seeking to address questions of dewlap evolution. Dewlap

configurations are diverse, but clearly much remains to be learned

regarding Anolis dewlap evolution and function. Numerous aspects

of signal communication and evolution remain to be explained,

including the relationship between dewlap configurations and

reflectance, and how these characters are adapted to suit their

backgrounds.
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