

Microfossils from the lower Mesoproterozoic Kaltasy Formation, East European Platform

Citation

Sergeev, Vladimir N., Andrew H. Knoll, Natalya G. Vorob'eva, and Nina D. Sergeeva. 2016. "Microfossils from the Lower Mesoproterozoic Kaltasy Formation, East European Platform." Precambrian Research 278 (June): 87–107. doi:10.1016/j.precamres.2016.03.015.

Published Version

doi:10.1016/j.precamres.2016.03.015

Permanent link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:33973833

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#0AP

Share Your Story

The Harvard community has made this article openly available. Please share how this access benefits you. <u>Submit a story</u>.

Accessibility

1	Microfossils from the lower Mesoproterozoic Kaltasy Formation, East European
2	Platform
3	
4	Vladimir N. Sergeev ¹ , Andrew H. Knoll ² , Natalya G. Vorob'eva ¹ , and Nina D. Sergeeva ³
5	1. Geological Institute, Russian Academy of Sciences, Pyzhevskii per., 7, Moscow, 119017,
6	Russia
7	2. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge,
8	MA, USA
9	3. Institute of Geology, Ufimian Scientific Center, Russian Academy of Sciences, Ufa,
10	Russia
11	* Corresponding author: Sergeev V.N., Tel. 7-495-959-2923; Fax: 7-495-953-0760; E-mail:
12	sergeev-micro@rambler.ru; Vsergeevfossil@gmail.com
13	
14	
15	Abstract
16	Basinal shales of the lower Mesoproterozoic Kaltasy Formation, sampled from three
17	boreholes drilled into the southeastern East European Platform, Russia, contain abundant
18	and moderately well preserved microfossils. 34 distinct entities have been identified, most
19	assigned to simple sphaeromorphic or small filamentous taxa found widely and
20	characterized by long stratigraphic ranges. Ornamented microfossils found in coastal
21	successions of other lower Mesoproterozoic basins are absent, but large filamentous
22	microfossils interpreted as possible benthic photosynthetic eukaryotes are recorded,
23	drawing comparisons to relatively deep water shales in Siberia. In overall aspect, the
24	Kaltasy microfossils are consistent with other broadly coeval assemblages, but they

	2
25	highlight the importance of environment, as well as age, in determining the distributions of
26	remains that record the early diversification of marine eukaryotes. Rectia magna is
27	described as a new species.
28	
29	Keywords: Mesoproterozoic, microfossils, biostratigraphy, eukaryotes, East European
30	Platform
31	
32	
C	

34

1. Introduction

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Recent paleontological and biogeochemical research has sharpened our understanding of late Paleoproterozoic and early Mesoproterozoic marine ecosystems. Silicified coastal carbonate facies offer a view of benthic microbes, including abundant and diverse cyanobacteria (e.g., Zhang, 1981; Sergeev et al., 1995, 2007; Kumar and Srivastava, 1995), while carbonaceous compressions in fine-grained siliciclastic lithologies record both benthic and planktonic microorganisms across a range of lagoonal to basinal environments (e.g., Prasad et al., 2005; Nagovitsin, 2009; Agić et al., 2015; Vorob'eva et al., 2015). In many basins of this age, microfossils thought to be eukaryotic are largely restricted to coastal waters (Javaux et al., 2001), and an explanation for this may lie in the physical nature of mid-Proterozoic oceans. Geochemical data on iron-speciation, nitrogen isotopes, and trace metal abundances and isotopes concur in suggesting the surface mixed layer of mid-Proterozoic oceans lay above widespread and persistent anoxic water masses; episodic upward mixing of these subsurface waters may have inhibited eukaryotic diversification in open shelf environments (Anbar and Knoll, 2002; Johnston et al., 2009; Stueeken, 2013; Guildbaud et al., 2015). Although widespread, subsurface anoxia was not universal in mid-Proterozoic oceans. Basinal shales in the lower Mesoproterozoic Kaltasy Formation, southeastern East European Platform, preserve geochemical evidence that, at least to the depth recorded by maximum flooding, water masses were oxic (Sperling et al., 2014). Here we report on microfossils preserved in Kaltasy shales. The Kaltasy microfossil assemblage preserves both cyanobacteria and eukaryotic microorganisms over a wider range of environments than is typical for microfossils of this age. At the same time, conspicuously ornamented

taxa well known from other, broadly coeval basins are absent, prompting questions abou
the spatial as well as the time distribution of early eukaryotic microfossils.

PLACE FIGURE 1 NEAR HERE

2. Geological setting

2.1. Tectonic and stratigraphic framework

For many years, Russian geologists have discussed Meso- and early Neoproterozoic stratigraphy in terms of a Riphean stratotype located in the Bashkirian meganticlinorium, a large structure on the western slope of the southern Ural Mountains (Chumakov and Semikhatov, 1981; Keller and Chumakov, 1983; Fig. 1). The term Riphean, currently a formal unit of Russian Stratigraphic Scale, was originally established to encompass a large scale tectonic cycle, comparable to the Phanerozoic Caledonian or Hercynian orogenies (Shatskii, 1964). Later, largely on the basis of stromatolitic assemblages, strata of comparable age were recognized across much of Siberia and the term acquired its present stratigraphic meaning. The Meso-Neoproterozoic succession in the Bashkirian meganticlinorium records the eastern flank of an extensive sedimentary basin that probably graded eastward into a continental margin; it can be correlated with confidence to strata in platform aulacogen (graben, or rift) sections of the adjacent East European Platform. The Uralian part of the basin, representing the margin *per se*, belongs to external part of the Timanian orogeny, deformed in Ediacaran (Vendian) and Late Paleozoic time (Puchkov, 2013).

Regionally, the Mesoproterozoic to lower Neoproterozoic (Tonian and Cryogenian) succession contains up to 15 km of weakly altered sedimentary and subordinate

volcanogenic rocks, divided into the Burzyan, Yurmata, Karatau and Arsha groups, separated by unconformities (the Arsha Group, which occurs only on the eastern limb of the Bashkirian meganticlinorium, was recently added to the Riphean as a result of new isotopic data; Puchkov, 2005, 2013). The entire succession is overlain unconformably by the Ediacaran (Vendian) Asha Group (Fig. 2).

On the western limb of the Bashkirian meganticlinorium, the lower Mesoproterozoic (Lower Riphean) is represented by the Burzyan Group, traditionally divided into the Ai (siliciclastic and volcanogenic rocks, 1500–2000 m thick), Satka (predominantly carbonates 900–1800 m to 2000–2400 m thick, but thinning significantly to the west), and Bakal (shale–carbonate unit, 900–1800 m thick) formations, in ascending stratigraphic order. Their counterparts on the Bashkirian Meganticlinorian eastern limb are the Bolshoi Inzer, Suran and Yusha formations, respectively.

In the Volgo-Ural region to the west, sub-surface Riphean stratigraphy is known from core and geophysical data. The Kyrpy, Serafimovka and Abdulino groups correlate with the Burzyan, Yurmata and Karatau groups, respectively (Fig. 2). The Kaltasy Formation occurs within the Or'ebash Subgroup of the Kyrpy Group (Kozlov et al., 2009, 2011; Kozlov and Sergeeva, 2011). Kaltasy strata include mixed carbonates and shales, correlated with the Satka Formation in the Ural Mountains (Keller and Chumakov, 1983; Kah et al., 2007; Kozlov et al., 2009); the 1230 to 3600 m succession has been subdivided into three conformable members: Sauzovo, Arlan and Ashit. The Sauzovo Member (105 to 816 m thick) consists largely of dolostones that locally contain stromatolites, along with interlayers of dark gray to black shales and less frequent feldspar-quartz siltstones near its base. The overlying Arlan Member (535 to 1216 m thick) is comprised of carbonaceous shales (some of them fossiliferous) and subordinate siltstones, carbonates and dolomitic marls. The Ashit Member (230 to 1550 m thick) consists of dolostones with stromatolite horizons and thin interbedded shales. Fossiliferous samples come from shales of the Arlan

and Ashit members in three cores: 133	3 Azino-Pal'nikovo,	, 203 Bedryazh and	1 East Askino
(Figs. 1 and 2; Kozlov et al., 2011).			

113

110

111

PLACE FIGURE 2 NEAR HERE

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

As described by Sperling et al. (2014), the Arlan Member in the 203 Bedryazh core (and in 1 East Askino) consists almost entirely of dark, parallel laminated shales with minor, commonly diagenetic micrite/dolomicrite. Clay-rich laminae predominate, with thin intercalations that contain appreciable quartz silt. Fine sand grains of angular quartz occur in some laminae; commonly these float in a finer matrix and may have been transported into the basin by wind. No wave- or current-generated sedimentary structures are present in more than a kilometer of stratigraphic thickness, suggesting persistent deposition below storm wave-base. Consistent with this view, Kah et al. (2007) argued that the 203 Bedryazh drill core penetrates some of deepest Arlan facies found in the entire basin. Kah et al. (2007) also suggested that the cyclic granular dolostones and fine-grained sandstones recovered by the 133 Azino-Pal'nikovo borehole record shallow water, highenergy platform environments near the western limit of the Kama–Belaya aulacogen. Although basinal environments in many lower Mesoproterozoic basins were anoxic, and sometimes euxinic (Sperling et al., 2015, and references therein), Fe-speciation geochemistry of the Kaltasy succession indicates oxic water throughout the range of depths recorded by the succession (Sperling et al., 2014).

131

132

2.2. Age of the Kaltasy Formation.

133

134

135

The age of Kaltasy correlatives in the southern Ural Mountains is constrained by the ~1380 Ma Mashak volcanics in the overlying Middle Riphean (Mesoproterozoic) Yurmata

136	Group (Puchkov et al., 2013; Krasnobaev et al., 2013a) and by ~1750 Ma basalts 200
137	meters above the base of the Ai Formation (Puchkov et al., 2012, Krasnobaev et al.,
138	2013b). More directly, a series of K-Ar dates obtained for glauconite from the Arlan
139	Member provides ages of 1510, 1520 and 1425 Ma in Borehole 3, Buranovo area; 1488 and
140	1469 Ma in Borehole 36, Arlan area; and 1358 and 1334 Ma in Borehole 191, Urustamak
141	area (Keller and Chumakov, 1983; all age estimates have an uncertainty of approximately
142	3%; Gorozhanin, personal communication, 2015). Illite from mudstone of the underlying
143	Norkino Formation penetrated by Borehole 20005 in the Karachevo area, is dated at
144	1400±42Ma by K-Ar (Gorozhanin, 1995), and K-Ar dates of 1368, 1377 and 1310 Ma
145	were obtained for whole-rock samples of gabbroids that intruded the overlying Nadezhdino
146	Formation (Keller and Chumakov, 1983). Recently Arlan shales were dated using
147	Rhenium-Osmium (Re-Os) geochronology, yielding depositional ages of 1414±40 Ma and
148	1427±43 Ma for two horizons near the base of the succession (Sperling et al., 2014). In
149	summary, all available geochronological data are consistent with early Mesoproterozoic
150	deposition.
151	Stromatolites in more proximal facies of the Kaltasy Formation are consistent with
152	geochronological data, recording forms found previously in lower Mesoproterozoic (Lower
153	Riphean) carbonates in the Southern Urals and Siberia (Kozlov et al., 1995).
154	Chemostratigraphic data likewise support an early Mesoproterozoic age (Kah et al., 2007).
155	Microfossils, however, were originally interpreted as supporting a younger age of
156	deposition. Veis et al. (2000) discovered an assemblage of large and relatively complex
157	microfossils in Kaltasy rocks that they termed the Pal'nikov microbiota. As the
158	assemblage differed from known microbiotas of the contemporaneous Satka and Omachta
159	formations, more closely resembling, at least broadly, younger assemblages from Siberia
160	and the southern Ural Mountains, Veis et al. (2000) proposed a Neoproterozoic age of
161	deposition. Since that time, however, both the longer stratigraphic range of many simple

162	Neoproterozoic microfossils and the importance of facies in Proterozoic micropaleontology
163	have become more fully appreciated (e.g., Sergeev, 1992, 2009; Sergeev et al., 1995, 2010;
164	Kah et al., 2007). Thus, as discussed below, Kaltasy microfossils are fully consistent with
165	an early Mesoproterozoic age.
166	
167	3. Materials and methods
168	
169	3.1. Fossiliferous localities.
170	
171	Microfossils reported in this study occur in shale samples of the Arlan and Ashit
172	members of the Kaltasy Formation collected in 2011 by V.N. Sergeev during joint research
173	with A.H. Knoll, E.A. Sperling, N.D. Sergeeva and the late V.I. Kozlov. The samples were
174	taken from the 203 Bedryazh borehole core extracted near Bedryazh village in the Cis-Ural
175	area (Fig. 1; Google Map Coordinates, decimal degrees latitude and longitude,
176	56.340809°N, 55.475973°E) and reposited in the BIPiNeft' core storage facility near
177	Kungur; sample depth is shown in Fig. 2. Further Arlan samples come from the 1 East
178	Askino borehole drilled near Askino village in the Cis-Ural area (Fig. 1; 56.093889°N,
179	56.702778°E) and reposited in the Kuraskovo core storage facility on the outskirts of Ufa;
180	again, sample depths are shown in Fig. 2. Additionally, we examined nine samples of
181	Ashit shale collected by the late A.F. Veis from the 133 Azino-Pal'nikovo borehole (Fig. 1;
182	56.523374°N, 53.529541°E) obtained from southern Udmurtia, near Izhevsk and partially
183	described by Veis et al.(2000); sample depths are marked in Fig. 2.
184	
185	3.2. Methods of slide preparation and investigation.

Microfossils were extracted from the shales by low agitation processing. After
standard sample processing using approximately 10% concentration (roughly one
tablespoon per 100 ml of water) of caustic potash, the shales were dissolved in hydrofluoric
acid (100%). Then, acritarchs and other microfossils were collected manually from the
residue by a needle using a stereomicroscope. This simple and effective technique avoids
the requirement for centrifugation and heavy liquid treatment, facilitating the intact
preservation of large microfossils (e.g., Grey, 1999, 2005; Willman and Moczydłowska,
2008; Sergeev et al., 2011). Slide-preparation methods were similar to those described in
many previous publications; permanent strew mounts were made using Canada balsam
mixed with polypropylene ether to inhibit recrystallization. Microfossils in the maceration
slides prepared by A.F. Veis were extracted from rock samples by chemical processing
using hydrochloric and hydrofluoric acids in a conventional palynological maceration
method, filtering the residue on a 90-μm sieve mesh.

Transmitted-light photomicrographs were acquired using a RME-5 microscope (Rathenower, Germany) equipped with a Canon EOS 300D digital camera (Canon, Tokyo, Japan) and a Zeiss Axio Imager A1 microscope (#3517002390) equipped with an AxioCamMRc 5 digital camera (both Carl Zeiss, Germany).

The microfossils reported in this study were measured using Zeiss Axio Imager A1 microscope Axiovision software. Where appropriate, taxonomic descriptions indicate the mean (" μ ") and standard deviation (" σ ") for sample populations, the relative standard deviation ("RSD", or standard deviation as a percent of the mean) and number of measured specimens ("n") using SigmaPlot softwear.

3.3. Repository of illustrated specimens.

All specimens discussed and illustrated in this study are reposited in the Paleontological Collection of the Geological Institute of the Russian Academy of Sciences (PCGIN of RAS), Collection # 14712. The sample numbering from the 133 Azino-Pal'nikovo borehole by the late A.F. Veis corresponds to the borehole depth from which samples were taken (Veis et al., 2000).

217

212

213

214

215

216

4. Kaltasy microfossils: taxonomy and biological interpretation

219

220

218

4.1. General characteristics.

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

The Kaltasy Formation contains abundant organic-walled microfossils of moderate diversity. We recognize 34 distinct entities, largely of sphaeromorph, disphaeromorph and netromorph acritarchs and filamentous forms (Fig. 3). Large and distinctive filamentous and morphologically simple spheroidal fossils dominate the assemblage, including taxa previously described from both lower Mesoproterozoic (e.g., the Lower Member of the Kotuikan Formation, Anabar Uplift, Siberia, Vorob'eva et al., 2015) and upper Mesoproterozoic to lower Neoproterozoic successions (e.g., the Lakhanda Group of the Uchur-Maya Uplift, the Derevnya and Miroedikha formations of the Turukhansk Uplift, and the Inzer Formation of the southern Ural Mountains; Yankauskas, 1989). Most of these taxa have simple morphologies and long stratigraphic ranges, and so they are consistent with radiometric constraints without further constraining depositional age. Ornamented acritarchs found in upper Paleoproterozoic and lower Mesoproterozoic formations elsewhere (e.g., Yin, 1997; Prasad et al., 2005; Nagovitsin, 2009; Adam, 2014; Singh and Sharma, 2014; Agić et al., 2015) have not been identified in the Kaltasy assemblage. Thus, not surprisingly, environment as well as age played a role in determining the composition of Mesoproterozoic microfossil assemblages.

239

PLACE FIGURE 3 NEAR HERE

240

4.2. Sphaeromorph, disphaeromorph and netromorph acritarchs.

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

241

Unornamented spheroidal microfossils assigned to the form genus *Leiosphaeridia* are abundant constituents of the Kaltasy assemblage. The simple observation that leiosphaerid sizes range from a few microns to more than a millimeter indicates that diversity existed within this component of the assemblage, but formalizing this by recognizing distinct populations and assigning them to discrete species can be challenging because so few characters are available. Yankauskas (1989) addressed this problem by classifying Proterozoic Leiosphaeridia according to diameter and wall thickness, inferred on the basis of folding and color pattern. Both color and folding geometry during compression can reflect wall composition as well as thickness, and, of course, color varies as a function of diagenetic temperature. Nonetheless, Yankauskas's framework has found widespread use and we adopt it here as it captures much of the apparent diversity among these populations; we recognize L. jacutica (Figs. 4.1, 4.6, 4.7; diameter 285-800 μm, wall more than 2 μm thick), L. crassa (Fig. 4.2, the smaller fossil; diameter 65-70 μm, robust wall with a limited number of large folds), L. tenuissima (Fig. 4.2, the larger fossil; diameter 125-135 μm, wall less than 0.5 μm thick), L. atava (Fig. 4.5; diameter 360-365 µm, wall 1.5 µm thick), L. minutissima (diameter 10-60 μm, wall less than 0.5 μm thick; illustrated in Sperling et al., 2014, Fig. 4.14) and Leiosphaeridia sp. (Figs. 4.8-4.10, diameter 135-410 μm, wall about 2 μm thick). We also recognize L. ternata (Figs. 4.3, 4.4; diameter 120-190 µm) as a distinctive taxon based on its nearly opaque wall and characteristic radial cracks. Both features are arguably diagenetic in origin, but they appear to reflect a distinctive original wall composition.

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

Additionally, we consider a population of unusually large sphaeromorphs (diameter 800-1000 µm; Fig. 4.11-4.13; see Section 7). Such large spheroids are commonly lumped together in *Chuaria circularis*, but the Kaltasy fossils differ in key characters from the Grand Canyon populations, including the lectotype designated by Ford and Breed (1973; see discussion in Vidal and Ford, 1985). Specifically, the type population is characterized by an unusually thick wall, with large, thick folds (Butterfield et al., 1994; see also Vidal, 1976), whereas the Kaltasy fossils, while large, had thin walls marked by numerous fine folds. For this reason, we assign the Kaltasy population to Leiosphaeridia (?) wimanii, reflecting a combination established by Butterfield (in Butterfield et al., 1994) for large, smooth, thinwalled sphaeromorphs. Rare, dark sphaeromorphs with a spongy wall texture are assigned to Spumosina rubiginosa (Fig. 5.1, diameter 150-250 µm; Hofmann and Jackson, 1994). The spongy texture is likely to reflect diagenetic alteration. There is consensus that *Leiosphaeridia* species reflect a variety of biological origins, nonetheless, leiosphaerids have commonly been interpreted as green algae, either the phycomata of prasinophyte green algae (Tappan, 1980) or chlorophyte cell walls (Moczydłowska, 2010; Moczydłowska et al., 2010). Leiosphaerids generally lack ultrastructural features known to be associated with prasinophytes, but a distinctive TLS (trilaminar sheath structure) ultrastructure has been recognized in TEM images of Cambrian and Neoproterozoic specimens, supporting their interpretation as chlorophytes (Talyzina and Moczydłowska, 2000; and, with less certainty, Moczydłowska et al., 2010). This, however, does not mean that all spheroidal acritarchs were sourced by green algae, as potentially preservable spheroidal envelopes are made by organisms ranging from cyanobacteria (e.g., Fairchild, 1985; Sun, 1987; Sergeev, 1992) to ciliates (e.g., Villalobo et al., 2003). Questions of systematic affinity become more challenging in older successions, where the probability of encountering extinct stem group lineages increases substantially. Mesoproterozoic

leiosphaerids examined to date do not show recognizably chlorophyte ultrastructures (Javaux

et al., 2004) and so, informed by molecular clocks (e.g., Parfrey et al., 2011; Eme et al., 2014), the range of potential eukaryotic sources for these fossils must include undiagnostic crown group green algae, stem group greens, stem group archaeoplastids (the photosynthetic group that includes green, red, and glaucocystophyte algae), or stem group eukaryotes. In principle, any or all could be represented in the Kaltasy assemblage. C29 steranes, widely accepted as biomarkers for green algae, first become significant constituents of sedimentary organic matter in Ediacaran strata (Knoll et al., 2007; Bhattacharya and Dutta, 2015); thus, if greens are represented among Kaltasy and other early Mesoproterozoic microfossil assemblages, they would appear to have played only a minor role in marine primary production. [Many prasinophytes synthesize mainly C28 sterols, but C28 steranes are also rare or absent in Mesoproterozoic rocks (Kodner et al., 2008).] Aggregates of relatively small (20-35 µm) spheroidal vesicles are identified as *Synsphaeridium* sp. (Figs. 5.2 and 5.3, diameter 20-40 µm). The biological interpretation of this taxon is uncertain and could include cyanobacteria as well as either planktonic or benthic eukaryotes.

PLACE FIGURE 4 NEAR HERE

Three more, broadly sphaeromorphic, disphaeromorphic and netromorphic populations bear mention. First is *Pterospermopsimorpha pileiformis*, a form taxon applied to spheroidal microfossils where one vesicle is encompassed by another. In Figs. 5.4, 5.5 and 5.7, this organization is clearly evident, and it supports the interpretation of these fossils as photosynthetic. In all likelihood, at least one of the preserved walls was vegetative, and living eukaryotes with continuous vegetative walls are nearly all photosynthetic or osmotrophic (Margulis et al., 1990; Teyssèdre, 2006; Moczydłowska et al., 2011). Fig. 5.6 is also tentatively assigned to *P. pileiformis*, but the internal body may represent shrunken cell

contents rather than a distinct wall layer. Found separately, if poorly preserved, the two vesicles of *P. pileiformis* would be assigned to distinct *Leiosphaeridia* species.

We also note the presence of rare elongated vesicles with surfaces that include strips twisted into spiral structures: *Spiromorpha* aff. *S. segmentata* (Figs. 5.8 and 5.9). Similar forms were previously reported from lower Mesoproterozoic shales in China (Yin et al., 2005) and India (Prasad and Asher, 2001), where they were compared to conjugating green algae (Yin et al., 2005). The comparison, however, is broad, and molecular clocks suggest a much later origin of conjugating streptophyte greens (Becker, 2013). Given its rarity and relatively poor preservation, we leave the Kaltasy specimen in open nomenclature.

There are the rare, but distinctive microfossils assigned here to (?) Moyeria (Figs. 5.10, 5.11 and possibly 5.12). These large (nearly 200 µm in maximum dimension) vesicles have a strikingly pleated surface of biological origin. The genus Moyeria was erected for distinctive Ordovician and Silurian microfossils recovered from fluviatile successions and interpreted as the preserved pellicle of a euglenid protist (Gray and Boucot, 1989). Broadly similar microfossils with longitudinal folds have been figured from nonmarine shales of the 1.1 Ga Oronto Group, Michigan (Wellman and Strother, 2015). Whether these late Mesoproterozoic fossils are euglenids or reflect broad morphologic convergence remains to be established. Given that the Kaltasy fossils are both rare and still further removed from unambiguous Moyeria by both time and environment, we remain uncertain of both their formal taxonomic assignment and phylogenetic interpretation. Quite possibly, this fossil represents a new genus and species, but formal evaluation of this awaits the discovery of additional specimens.

Finally, *Navifusa* is a genus name applied to elongate, or netromorph, acritarchs (Hofmann and Jackson, 1994). These fossils are much larger than ellipsoidal fossils called *Archaeoellipsoides*, generally found in silicified carbonates and interpreted as the akinetes of nostocalean cyanobacteria (Horodyski and Donaldson, 1980; Golubic et al., 1995; Sergeev et al., 1995), as well as their at least partial counterpart in shales *Brevitrichoides* (Yankauskas,

1980). The specimen illustrated in Fig. 5.15 closely approximates *N. actinomorpha* from the upper Mesoproterozoic Bylot Supergroup in Baffin Island (Hofmann and Jackson, 1994). The partial specimen in Fig. 5.13 may also fit within this species, but the elongate form in Fig. 5.14 is distinct and can plausibly be interpreted as representing elongation at an early stage of binary cell division. If correct, this would relate the specimen to *Leiosphaeridia* and provide further evidence of a vegetative cell wall.

PLACE FIGURE 5 NEAR HERE

4.3. Large filamentous forms.

Large filamentous forms comprise large, relatively complex microfossils plausibly interpreted as the remains of eukaryotic algae because they exceed the maximal width of known cyanobacterial filaments (~100 µm; Schopf, 1992). Moreover, the constituent cells of the filaments have continuous cell walls, strongly suggesting that the organisms were photosynthetic or osmotrophic. Among living eukaryotes, filaments made of cells with dimensions like those observed in the fossils tend to be photosynthetic, as osmotrophy would be far more efficient with thin filaments such as those of fungial mycelia. They also tend to be benthic. There is no inherent conflict between our interpretation of the environmental setting as basinal and the hypothesis of photosynthesis. Today, benthic multicellular algae grow beneath storm wave base, indeed, at depths greater than 200 m (Littler et al., 1985).

Most important are two groups of large, broadly tubular microfossils with transverse ribs or septa assigned to *Eosolena minuta* (Vorob'eva et al., 2015) and *Rectia magna* sp. nov. Originally described from the upper Mesoproterozoic Lakhanda

Formation, the type species of *Eosolena*, *E. loculosa* (Hermann and Timofeev, 1985)

consists of uniseriate filaments, several millimeters long, with constituent cells up to 150
μm wide and variably constricted at prominent septum-like transverse walls (Yankauskas,
1989; Hermann, 1990; Hermann and Podkovyrov, 2009, 2014; Vorob'eva et al., 2015).
Eosolena minuta, originally described from the lower Mesoproterozoic Kotuikan
Formation, has smaller cells (up to 200 µm wide) but similar organization (Figs. 6.7-6.9;
Vorob'eva et al., 2015). For the reasons outlined above, these forms may record benthic
photoautotrophs (which does not necessarily make them crown group green algae; see
discussion of Leiosphaeridia).
Rectia magna sp. nov., is also large, exhibiting a broadly filamentous organization
that widens distally before tapering sharply at its terminus; the wall has thick transverse
annulations, ca. 5-7 μm wide (Fig. 6.1-6.6). The size of this population approaches the
maximum observed for cyanobacterial filaments, but its overall morphology suggests that
R. magna, like E. minuta, could have been eukaryotic and benthic. A few fossils (Fig.
6.10) exhibit broad features comparable to those of <i>Rectia</i> but also have a thin surface
covering that deforms into tight, thin folds, as observed in the genus Plicatidium
(Yankauskas, 1989). These may be taphonomic variants of Rectia magna; here we
differentiate them as <i>Plicatidium latum</i> following Veis et al.'s (2000) earlier identification.
Rugosoopsis sp. (Figs. 6.11 and 6.12) is the name given to non-branching, rigid tubes that
bear numerous cross ribs, in contrast to Plicatidium, which features elastic tubes bearing
cross ribs that are often folded along the primary axis. The affinities of all these fossils
remain obscure; however, their large size and relatively complex morphology support an

PLACE FIGURE 6 NEAR HERE

4.4. Filamentous microfossils.

eukaryotic origin.

The Kaltasy microfossil assemblage contains abundant and moderately diverse
filamentous microfossils less than 100 μm in diameter, most of which can be interpreted in
light of the biology and taphonomy of cyanobacteria. Traditionally, uniseriate trichomes
with no cell differentiation were placed in the Oscillatoriales (Elenkin, 1949) or Subgroup
III (Rippka et al., 1979) of the Cyanobacteria. Molecular phylogenies now make it clear
that, as circumscribed, this group is not monophyletic (e.g., Giovannoni et al., 1988;
Schirrmeister et al., 2015), but whether simple filamentous multicellularity evolved once
within the cyanobacteria and was lost several times (Schirrmeister et al., 2015) or evolved
multiple times convergently (Ishida et al., 2001) remains a topic of debate. In either event,
the microfossil record of Subgroup III cyanobacteria is one of cellular trichomes, variously
well preserved, and extracellular sheaths, and so extant species assigned to Lyngbya,
Oscillatoria, and related genera provide a morphological basis for interpretation.
Polytrichoides aff. P. lineatus Hermann, 1974 (Fig. 7.1), which are bundles of
trichomes bound within a common cylindrical sheath, are usually compared with
polytrichomous filaments of the oscillatorian genera Microcoleus, Hydrocoleum or
Schizothrix (Hermann, 1990; Vorob'eva et al., 2015).
Trichomes composed of disc-like medial cells and rounded terminal cells without
encompassing sheaths comparable to extant Oscillatoria are placed in the genus
Oscillatoriopsis, represented in the Kaltasy assemblage by O. longa (Timofeev and
Hermann, 1979; Figs. 7.2, 7.6 and 7.7; 22.0-30.0 μm in cross-sectional diameter).
As exemplified by extant Lyngbya, simple trichomes can be encompassed by an
extracellular polysaccharide sheath. Sheaths can bear the imprint of trichome cells they
once contained, either as distinct collar-like annulations (<i>Cephalonyx</i> sp.; Fig. 7.4, 7.8) or
as regularly spaced pseudosepta (<i>Tortunema patomica</i> , Butterfield et al., 1994; Figs. 7.3,

7.5). Whether each of the form species recognized in the Kaltasy assemblage corresponds

to a distinct biological entity is uncertain; differing taphonomic circumstances could easily
account for some observed distinctions. Moreover, the boundaries between form genera
are porous; all tubular sheaths once contained trichomes and while the distinction between
sheaths containing well-preserved trichomes and empty tubes is straightforward, trichomes
exhibit a continuum of intermediate preservational states. Nonetheless, classification
adopted here captures the morphological variation found within the assemblage.
Taphonomic observation and experiments show that cyanobacterial sheaths
preserve better than the trichomes they contain (Sergeev and Krylov, 1986; Bartley, 1996),
and so tubular sheaths are more common in the Proterozoic fossil record than are
trichomes, including in the Kaltasy assemblage. Smooth, non-septate tubes are assigned to
the genus Siphonophycus (Schopf, 1968; Knoll et al., 1991) and partitioned into species on
the basis of size frequency distribution (Butterfield et al., 1994); on this basis, we recognize
five species (S. robustum, S. typicum, S. kestron, S. solidum, and S. punctatum; Fig.3),
found as individual fragments or loosely intertwined populations (Figs. 8.4-8.7).
Some cyanobacteria form true or false branches, and this can be recorded by
branched sheaths; in the Kaltasy assemblage we find scattered fragments of <i>Pseudodendron</i>
anteridium (Butterfield et al., 1994; Figs. 8.1-8.3) that arguably record nostocalean
cyanobacteria.
In general, then, filamentous microfossils record a diversity of cyanobacteria, many
of which lived on the oxic seafloor of the Kaltasy basin, but some of which could have
inhabited overlying surface waters.

PLACE FIGURE 7 NEAR HERE

4.5. Miscellaneous forms.

PLACE FIGURE 8 NEAR HERE

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

444

The Kaltasy assemblage contains additional populations that do not fit into the aforementioned categories. Miscellaneous microfossils include Pellicularia tenera (Yankauskas, 1980), relatively large and problematic fusiform vesicles with longitudinal, intertwined thread-like filaments within the body (Figs. 8.8 – 8.10), as well as five populations left in open nomenclature. Unnamed Form 1 (Figs. 9.1-9.3) includes translucent, irregular, elongated vesicles with a reticulate surface probably formed during diagenesis. Unnamed Form 2 (Figs. 9.4-9.6) consists of opaque spheroidal vesicles with irregular outlines. Vesicles appear to exhibit blunt conical processes, but we interpret these as products of diagenesis. Unnamed Form 3 (Figs. 9.7 and 9.10) also appears to exhibit small conical spines of uncertain and possibly diagenetic origin. Unnamed Form 4 (Figs. 9.8, 9.9, 9.11 and 9.12) is applied to elongate vesicles often arranged *en echelon*, with two or three connected individuals. Vesicles are translucent to opaque, with a chagrinate surface and, commonly, perpendicular cracks or transverse annulations in the equatorial region. These morphological features are shared by *Pololeptus rugosus*, recently described from Neoproterozoic deposits in China (Tang et al., 2013, see above). Nonetheless, we have chosen to treat these microfossils informally because the transverse annulations could be of diagenetic origin. And finally, Unnamed Form 5 (Figs. 9.13 and 9.14) consists of elongated translucent solitary vesicles composed of two or three segments communicating freely each to other and bearing elongated horn-like protrusions.

465

PLACE FIGURE 9 NEAR HERE

467

466

5. The Kaltasy microbiota in the Mesoproterozoic world

469

468

470	All microfossil assemblages found in upper Paleoproterozoic to lower
471	Mesoproterozoic shales contain simple spheroidal acritarchs and most also contain
472	cyanobacteria-like filaments. Beyond this, however, they can be divided into three broad
473	groupings, based on fossil types not shared among all contemporaneous formations
474	(Vorob'eva et al., 2015). Type I assemblages lack conspicuously ornamented acritarchs
475	but contain abundant small coccoidal (e.g. Ostiana, Myxococcoides, Synsphaeridium) and
476	filamentous (e.g., Siphonophycus, Leiotrichoides, Brevitrichoides) microfossils not
477	exceeding a hundred microns in diameter; prokaryotic microorganisms account for much of
478	this diversity, as recorded in the Satka and Bakal formations of the southern Ural
479	Mountains and the Omachta and Svetly formations of the Uchur-Maya Region, Siberia
480	(Yankauskas, 1982; Veis and Semikhatov, 1989; Veis et al., 1990; Sergeev and Lee Seong-
481	Joo, 2001, 2004; Sergeev, 2006). Type II assemblages are characterized by the presence of
482	eukaryotic remains with processes or other conspicuous ornamentation, for example,
483	Shuiyousphaeridium, Tappania, Valeria, Dictyosphaera and Satka favosa. These taxa have
484	a wide geographic distribution, being reported from the Beidajiang and Baicaoping
485	formations of the Ruyang Group, China (Xiao et al., 1997; Pang et al., 2013; Agić et al.,
486	2015); the Roper Group, Australia (Javaux et al., 2001, 2004); the Chitrakut, Rampur and
487	Deonar formations of the Semri Group and the Bahraich Group, India (Prasad and Asher,
488	2001; Prasad et al., 2005; Singh and Sharma, 2014); the Newland Formation of the Belt
489	Supergroup, USA (Adam, 2014), and the Dalgokta and Dzhelindukon formations of the
490	Kamo Group, Central Angara Basin, Siberia (Nagovitsin, 2009). Type III microbiotas may
491	share some of the simple coccoids and filaments found in Type I biotas, but additionally
492	include large structures such as Eosolena, Elatera, and Rectia magna, as observed in the
493	Kotuikan and Ust'-Il'ya formations of the Anabar Uplift, Siberia (Veis et al., 2001;
494	Vorob'eva et al., 2015), and the McMinn Formation of the Roper Group, Australia (Peat et
495	al., 1978).

The Kaltasy assemblage clearly belongs to the Type III grouping. Morphologically
complex acritarchs are conspicuously absent, while large filaments like Eosolena and
Rectia magna are equally conspicuously present. The assemblages noted in the previous
paragraph are constrained by radiometric dating to fall within a single ca. 200 million year
time bloc, but we do not know that they are strictly coeval, leaving open the possibility that
differences among assemblages reflect evolutionary change. That said, we think it more
likely that differences among assemblages mainly reflect environmental distinctions.
Where assemblage composition has been tied to sedimentology and sequence stratigraphy
(e.g., Javaux et al., 2001; Vorob'eva et al., 2015), assemblages rich in ornamented
acritarchs tend to cluster in near-shore facies. The absence of such fossils in the Kaltasy
assemblage could thus reflect the open marine setting of these fossils. The large
microfossils that characterize Type III assemblages reflect benthos, probably
photosynthetic, growing on the seafloor. In many Paleoproterozoic and Mesoproterozoic
basins, basinal shales accumulated beneath anoxic and sometimes sulfidic waters,
restricting the environmental amplitude of benthic eukaryotes. In the Kaltasy basin,
however, basinal environments were oxic (Sperling et al., 2014), allowing eukaryotes to
flourish. Perhaps, then, these assemblages reflect a co-occurrence of moderate depth and
oxic waters not broadly observed in basins of this age. Consistent with this interpretation,
Type III assemblages of the Kotuikan Formation, Siberia, were deposited during maximum
flooding in shales that drape large stromatolitic bioherms; according to Vorob'eva et al.
(2015), deposition took place between storm and fair weather wave base. Iron speciation
chemistry is not available for this basin but the presence of large, apparently eukaryotic
benthos in shales deposited during maximum flooding implies oxic waters in relatively
basinal environments.

Sedimentological constraints for Type I assemblages are little explored, but it is likely that all three major assemblage types and variations on these themes reflect

deposition along a gradient from near-shore, predominantly lagoonal facies to basinal marine environments deposited beneath tens to more than a hundred meters of seawater. Ecological variation along environmental depth gradients is characteristic of modern oceans, and it has been documented previously in both younger and contemporaneous Proterozoic basins (Knoll, 1984; Butterfield and Chandler, 1992; Javaux et al., 2001). Diversity is commonly highest in mid-shelf environments that are neither restricted by coastal environmental variation nor inhibited by anoxic subsurface waters that mix upward in open marine settings (Veis, Petrov, 1994 a,b; Petrov, Veis, 1995). The hypothesis proposed by Veis et al. (2000) that Kaltasy microfossils are distinct because of their Neoproterozoic age is falsified by radiometric age constraints as well as chemostratigraphic data. Our work, however, helps to explain why Veis could have been misled (see also Sergeev et al., 1995), including a greater appreciation that many Proterozoic acritarchs have long stratigraphic ranges and the local, environmentally mediated absence in Veis' assemblages of those few morphologically complex taxa that do seem to be restricted to lower Mesoproterozoic rocks. Paradoxically, associations of evolutionarily conserved cyanobacteria may prove biostratigraphically informative in some Mesoproterozoic successions, because they are closely tied to physical environments that themselves are limited in time (Knoll and Sergeev, 1995; Sergeev et al., 1995; Sergeev, 2006, 2009).

540

541

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

6. Conclusion

542

543

544

545

546

547

The microbiota of the lower Mesoproterozoic Kaltasy Formation, Cis-Ural Area, East European Platform contains a moderately diverse assemblage of (cyano)bacterial and eukaryotic microorganisms. Kaltasy shales are unusual among Mesoproterozoic strata in recording a depositional environment that was both basinal (but within the photic zone) and oxic, and this helps to explain the distinctive features of Kaltasy microfossils. Thus, the

Kaltasy microfossils provide a fresh reminder that Proterozoic microfossils vary as a function of both time and space, and inferences about evolution or biostratigraphy cannot be drawn in the absence of information about the physical and chemical dimensions of depositional setting. That relatively large multicellular remains occur in basinal, oxic environments indicates that aspects of early eukaryotic evolution may have occurred in environments not commonly sampled by paleontologists (a similar argument has been made concerning early evolution in non-marine environments; Wellman and Strother, 2015). In general, sharper paleoenvironmental and radiometric constraints on informative microfossil assemblages will help us to build a better evolutionary and biostratigraphic understanding of life in mid-Proterozoic oceans

7. Systematic paleontology

7.1. Location of specimens within maceration slides

Figure legends identify the slide containing the fossil, borehole and sample number, location of the specimen within the fossiliferous maceration slide (denoted by the number of the point above the specimen on an overlay-map attached to the palynological slide and by England Finder Slide coordinates for the specimen), and the catalog number of the specimen in the GIN paleontological collection. Thus, for the specimen of *Pseudodendron anteridium* shown in Fig. 8.3, (203B)-40-3, p. 1, E57[3], 14712-86 indicates that the illustrated fossil is from 203 Bedryazh borehole (for borehole index abbreviations see caption to Fig. 1) and occurs in maceration slide 40-3, prepared from rock sample 40 obtained from the Kaltasy Formation (Fig. 2); that within this maceration slide, the fossil occurs at location point 1 and within the England Finder Slide E57[3] area; and that the specimen itself is cataloged as GINPC 14712-86. For the samples collected by the late

- A.F. Veis from the 133 Azino-Pal'nikovo borehole, sampled intervals are indicated by
- sample number. Thus, for the specimen of *P. anteridium* shown in Fig. 8.2, (133AP)-2760-
- 576 2765-1, p. 4, H36[3], 14712-2764, the sampled interval is 2760-2765.
- In this study, we provide the descriptions of new and key importance for Proterozoic
- 578 paleobiology and biostratigraphy as well as for the taxonomy of the Kaltasy taxa. Well-
- known and broadly distributed/ long-ranging taxa are not described in detail; however, their
- morphometric characteristics are briefly provided above.

- 582 7.2. Sphaeromorph, disphaeromorph and netromorph acritarchs
- 583 Genus Leiosphaeridia Eisenack, 1958, emend. Downie and Sarjeant, 1963
- 584 Type species: Leiosphaeridia baltica Eisenack, 1958
- Leiosphaeridia (?)wimanii Brotzen, 1941, emend. and comb. Butterfield (in Butterfield et al.,
- 586 1994)
- 587 Figures 4.11, 4.12, and 4.13
- Das Fossil aus der Visingsögruppe Wiman, 1894, pl. 5, Figs. 1-5.
- 589 *Chuaria wimani* Brotzen, 1941, p. 258-259.
- 590 *Kildinella magna* Timofeev, 1969, p. 14, pl. 6, Figs. 4-5.
- 591 Chuaria circularis Walcott, 1899 (partim): Ford and Breed, 1973, pl. 62, Fig. 3.
- 592 Shouhsienia shouhsienensis Xing (Hsing) in Zhang et al., 1991 p. 120, pl. 1, Figs. 16-26.
- 593 Chuaria wimanii Butterfield in Butterfield et al., 1994, p. 42-43, Figs. 13D-13F (see Zhang et al., 1991, for
- additional synonymy).
- 595 Description: Spheroidal vesicles 800-1000 µm in diameter; walls translucent, about 0.5-1.0
- 596 µm thick; surface texture smooth or fine-grained, with numerous fine folds oriented
- subparallel to cell margin.
- 598 *Material examined*: Nine well-preserved specimens.
- 599 *Occurrence*: Widely distributed in Proterozoic rocks.
- 600 Remarks: Chuaria is a formal taxon incorporating large spherical microfossils with robust
- opaque walls that are the remains of either unicellular eukaryotic cells or empty envelopes

602 of prokaryotic colonies (See Vidal and Ford, 1985; Fairchild, 1985; Yankauskas, 1989; 603 Butterfield et al., 1994; Sergeev, 2006; Sergeev et al., 2012 for additional discussion). 604 Based on SEM observations of material from the type locality, Butterfield in Butterfield et 605 al., 1994, suggested that *Chuaria* should be restricted to spheroidal fossils with wall thicker 606 than 2 µm. We follow the Butterfield et al., 1994, classification here; uncertainty about 607 species attribution reflects a broader uncertainty about how many species of exceptionally 608 large Leiosphaeridia may exist. 609 610 Leiosphaeridia sp. 611 Figures 4.8 - 4.10612 Description: Solitary, spheroidal, single-walled vesicles 140 to 390 µm in diameter with 613 robust, translucent, chagrinate walls 2 µm thick that are commonly ruptured and exhibit 614 what may be biological openings (n = 8, μ = 225 μ m, σ = 103, RSD = 45%). Some vesicles 615 contain a spheroidal cyst-like inclusion up to 350-370 µm in diameter, with a translucent 616 wall 0.5-1.0 µm thick (Fig. 4.9). Vesicle surface fine-grained and smooth, with occasional 617 possible striations. 618 Material examined: Eight well-preserved specimens. 619 Discussion: Members of the genus Leiosphaeridia are among the most commonly 620 occurring sphaeromorph acritarchs known from Precambrian sediments. Like Valeria, this 621 population shows both medial splits and, occasionally, a striation-like surface pattern. 622 Recently Pang et al. (2015) suggested that in Valeria the striation-like surface functioned as 623 a mechanism to guide biologically programmed excystment through medial split. In our 624 specimens, however, possible striations could be diagenetic, and so we prefer to classify 625 this form as Leiosphaeridia sp. 626

627

(?) Genus *Moyeria* Thusu, 1973

628 Type species: Moyeria cabottii (Cramer, 1970), emend. Miller and Eames, 1982 629 (?)Moyeria sp. 630 Figures 5.10, 5.11 and 5.12? Leiosphaerid with multiple folds: Sperling et al., 2014, Figs. 4.4 and 4.4a 631 632 Description: Vesicle ellipsoidal, fusiform or spindle-shaped; wall consisting of 14 well 633 developed pleats twisted spirally and oriented parallel to the vesicle's longitudinal axis. 634 Pleats overlapping without intermediate space, but also without septa or diaphragm. 635 Vesicle 240 µm long and 200 µm wide; pleats 5-18 µm wide. Vesicle translucent, with 636 psilate surface; wall about 1 µm thick. 637 Material examined: One well-preserved specimen and another problematic vesicle. 638 Remarks: This form is similar to Moyeria species described from the Paleozoic deposits 639 (Molyneux et al., 2008; Le Hèrissè et al., 2013) and interpreted as euglenid pellicles. 640 However, only one well-preserved specimen has been found and therefore we defined it as 641 (?) Moyeria sp. Whether it bears any close phylogenetic relationship to Paleozoic 642 populations is unclear. 643 644 Genus Navifusa Combaz et al., 1967 645 Type species: Navifusa bacilla (Deunff, 1955). 646 Navifusa sp. Figures 5.13 – 5.15 647 648 Description: Solitary single-layered nonseptate ellipsoidal vesicles with rounded ends. 649 Vesicle walls translucent to opaque, coarse-grained, 1.0-2.0 µm thick. Ellipsoids 300-550 µm 650 long and 190-375 μ m wide (n=3); length/width ratio 1.7-1.5. 651 *Material examined*: Nine variously preserved specimens. 652 Remarks: These ellipsoidal microfossils from the Kaltasy Formation were identified in open 653 nomenclature as *Navifusa* sp. They are larger than ellipsoidal akinetes of nostocalean

cyanobacteria Archaeoellipsoides (= Brevitrichoides), which can be abundant in 654 655 Mesoproterozoic peritidal facies (Sergeev et al., 1995); most likely, the Kaltasy specimens are 656 the remains of eukaryotic microorganisms. We cannot exclude the possibility that some 657 specimens assigned to Navifusa sp. (e.g., Fig. 5.14) are sphaeromorphic vesicles elongated in 658 an early stage of binary cell division. 659 Genus Pterospermopsimorpha Timofeev, 1966, emend. Mikhailova and Yankauskas, in 660 661 Yankauskas, 1989 Type species: Pterospermopsimorpha pileiformis Timofeev, 1966 662 663 Pterospermopsimorpha pileiformis Timofeev, 1966, emend. Mikhailova, in Yankauskas, 1989 664 Figures 5.4 - 5.7665 666 Pterospermopsimorpha pileiformis Timofeev, 1966, p. 34, pl. 5, Fig. 12; Mikhailova in Yankauskas, 1989, p. 667 49-50, pl. 3, Figs. 7 and 8; Veis and Petrov, 1994a, pl. 3, Fig. 15; Sergeev and Lee Seong-Joo, 2004, p. 18, pl. 668 3, Figs. 1-3, and 9; Sergeev, 2006, p. 231, pl. 30, Figs. 1-3, and 8; Sergeev et al., 2008, pl. 7, Figs. 1 and 2; 669 Sergeev and Schopf, 2010, p. 395, 396, Figs. 15.1, 15.2, 15.4, and 15.5; Vorob'eva et al., 2015, p. 217, 218, 670 Figs. 8.7, 8.9, and 8.10. 671 Description: Solitary spheroidal vesicles 110 to 315 μ m in diameter (n = 7, μ = 130 μ m, σ = 96, RSD = 74%), defined by single-layered, 0.5- to 1.0- μ m-thick, medium-grained walls, 672 673 which contain a large, opaque, more or less spheroidal body 95-180 μ m in diameter (n = 8, 674 μ = 123 μ m, σ = 38, RSD = 30%), with a chagrinate superficial texture. 675 *Material examined*: Fifteen moderately well-preserved specimens. 676 Occurrence: Widely distributed in Meso- and Neoproterozoic microfossil assemblages. 677 Remarks: A well-known disphaeromorph acritarch, Pterospermopsimorpha, differs from 678 sphaeromorph acritarchs by the presence a dark robust cyst-like inner body approximately 679 2/3 of the outer vesicle diameter. Pterospermopsimorpha pileiformis differs from other 680 species of *Pterospermopsimorpha* by its vesicle size and by the chagrinate surface of the

681 inner body (Yankauskas, 1989). The specimen illustrated to Fig. 5.7 is similar to Simia, 682 with a flap-like membrane surrounding an inner translucent body, but it also could turn out 683 to be poorly preserved *Leiosphaeridia* with a collapsed inner envelope layer. 684 Pterospermopsimorpha and the morphologically similar, predominantly Paleozoic 685 taxon Pterospermella are commonly interpreted as phycomata of prasynophyte algae 686 (Teyssédre, 2006; Moczydłowska et al., 2011). This is reasonable for Paleozoic forms, but 687 morphology in Proterozoic populations assigned to *Pterospermopsimorpha* is generally quite simple and so might have been generated by a number of distinct groups (e.g., 688 689 amoebas, see Margulis et al., 1983, Figs. 5D, 5H and 20B). Teyssédre (2006) considered 690 that the name *Pterospermopsimorpha* was a waste-basket for many Precambrian acritarchs 691 in which the so called wings are actually degraded protoplasmic residues. Not surprisingly, 692 Pterospermopsimorpha has been reported from numerous silicilastic units ranging in age 693 from early Mesoproterozoic through late Neoproterozoic. Disphaeromorphic 694 Pterospermopsimorpha-like morphologies are common among Proterozoic silicified 695 chroococcacean cyanobacteria where a central translucent sphere formed as a result of an 696 inner sheath layer during post-mortum alteration (e.g., Knoll and Golubic, 1979, Fig. 6A-E; 697 Sergeev, 2006, pl. 26, Figs. 1-9; pl. 40, Figs. 11, 12 and 15; pl. 41, Figs. 2 and 3; Sergeev et 698 al., 2012, pl. 7, Figs. 1-6; pl. 8, Figs. 9, 10 and 13). 699 700 Genus Spiromorpha Yin et al., 2005 701 Type species: Spiromorpha segmentata (Prasad and Asher, 2001) 702 Spiromorpha aff. S. segmentata (Prasad and Asher, 2001) emend. and comb. Yin et al., 703 2005 704 Figures 5.8 and 5.9 705 Navifusa segmentatus Prasad and Asher, 2001, p. 77, pl. 5, Figs. 4, 5, 14 and 15. 706 Spiromorpha segmentata Yin et al., 2005, p. 57, 60, Figs. 5.1, 5.4-5.8.

707 Description: Vesicle ellipsoidal, straight, empty inside, consisting of 7-12 strips twisted 708 helically from one end to the other. Strips connected closely without any intermediate 709 space and without septa or diaphragm in the vesicle interior, but with prominent connecting 710 welds forming upraised crescent-like structures (Fig. 5.9, marked by arrows). Vesicle 711 length about 125 μm, vesicle width 45-55; spiral strips 7.5–9.5μm wide, welds 0.5-1.5 μm 712 and upraised 1.5-2.5 µm above main vesicle body. Vesicle surface smooth; wall fine 713 grained about 1 µm thick. 714 Material examined: One indifferently preserved specimen. Remarks: The Kaltasy form is similar to S. segmentata, but differs slightly in the presence 715 716 of upraised welded zones connecting adjacent strips. Spiromorpha segmentata has been 717 reported from the middle part of the Beidajian Formation, upper Mesoproterozoic Ruyang 718 Group, Shanxi Province, China, and the Sarda and Avadh formations of the Ganga Basin, 719 India (Prasad and Asher, 2001). Spiromorpha has compared to modern conjugating green 720 algae, but this comparision is superficial, and molecular clock inferences suggest that 721 conjugating algae diverged as much as 700 million years after the time of Kaltasy 722 deposition (Becker, 2013). We previously identified this Kaltasy specimen as 723 Brevitrichoides bashkiricus, misled by its poor preservation (Sperling et al., 2014, Figs. 4.6 724 and 4.6a). 725 726 7.3. Large filamentous forms 727 Genus Eosolena Hermann in Hermann and Timofeev, 1985 728 Type species: Eosolena loculosa Hermann (in Hermann and Timofeev, 1985). 729 Eosolena minuta Vorob'eva and Sergeev in Vorob'eva et al., 2015 730 Figures 6.7 – 6.9 731 Eosolena loculosa Hermann in Hermann and Timofeev, 1985 (partim): Veis et al., 2001, Fig. 2 ж. 732 Large trichome-like fossils: Veis and Petrov, 1994a, pl. 3, Figs. 1-3, 8, 10, 11, and 13; Veis et al., 2001, Fig. 2 T. 733 Eosolena minuta Vorob'eva and Sergeev in Vorob'eva et al., 2015, p. 215, Figs. 6.3-6.5.

734 Description: Compressed, unbranched tubes separated by cross-ribs into partially isolated 735 isometric chambers that communicate freely each with each other. Tubes with 90-160 µm 736 cross-sectional diameters, up to 360 µm long (incomplete specimen); tube walls translucent, 737 variably constricted at prominent transverse walls, medium-grained, ca. 1-2 µm thick. Cross-738 ribs opaque, 3-5 μm (possibly up to 9 μm, but this isn't clearly visible) wide and 2-10 μm 739 high; distance between cross-ribs ranges from 20 to 30 µm. 740 *Material examined*: Five variously preserved specimens. Occurrence: Early Mesoproterozoic: Kotuikan Formation, Anabar Uplift, Siberia; Kaltasy 741 742 Formation, Cis-Urals area, East European Platform. 743 Remarks: Eosolena minuta differs from E. loculosa and from E. anisocyta Hermann (in 744 Hermann and Timofeev, 1985) in the smaller cross-sectional diameter of tubes: 75-205 μm 745 vs. 200-800 and 450-750 µm, respectively, and from *E. anisocyta* in a lack of clear 746 separation of the thallus into chambers (Yankauskas, 1989). 747 748 Genus Plicatidium Yankauskas, 1980 749 Type species: Plicatidium latum Yankauskas, 1980 750 Plicatidium latum Yankauskas, 1980 751 Figure 6.10 752 Plicatidium latum Yankauskas, 1980, p. 109, 110, pl. 12, Fig. 15; Yankauskas, 1989, p. 139, pl. 41, Figs. 3 753 and 4; Veis et al., 2000, pl. 2, Fig. 10; Sergeev et al., 2007, pl. 1, Fig. 19; Pang et al., 2015, Figs. 2A and 2B; 754 Vorob'eva et al., 2015, p. 216, Figs. 6.6-6.9. 755 Description: Compressed, unbranched tubes with thin elastic walls bearing numerous elastic 756 cross-ribs or fine folds broadly perpendicular to the tube axis. Tubes 160-170 µm in cross-757 sectional diameter, up to 135 µm long (incomplete specimen); tube walls translucent, 758 medium-grained, ca. 1 μm thick. Ribs opaque, 1.0-2.0 to 3-4 μm wide and 0.5-1.5 μm high; 759 distance between ribs ranges from 5.5 to 7.5 µm.

760 Material examined: Two well-preserved specimens. 761 Occurrence: Widely distributed in Proterozoic microfossil assemblages. 762 Remarks: We do not accept the emendation and merging of *Plicatidium* and *Rugosoopsis* 763 suggested by Pyatiletov, 1988 and Butterfield et al., 1994, as both the details of 764 morphology and mechanical properties of the two entities differ (rigid vs. elastic tubes; see 765 Sergeev et al., 2007 and Vorob'eva et al., 2015, their Figs. 4C and 4D). Recently Pang et 766 al., 2015 suggested a secondary origin for *Plicatidium* folds. 767 PLACE FIGURE 10 NEAR HERE 768 769 770 Genus Rectia Yankauskas, 1989 771 Type species: Rectia costata (Yankauskas, 1980) comb. Yankauskas, 1989 772 Remarks: Rectia was erected by Yankauskas in 1989 on the basis of sheaths with 773 annulations earlier described as Siphonophycus costatus (Yankauskas, 1980, 1982). The 774 genus suffered many subsequent revisions and was considered as a junior synonym of 775 Cephalonyx (Butterfield et al., 1994) or Rugosoopsis (as Siphonophycus costatus, 776 Moczydlowska, 2008). We consider *Rectia* to be a distinct morphological entity, differing 777 from Rugosoopsis by its pseudocellular, filamentous nature (in contrast to rugose surface of 778 Rugosoopsis and Plicatidium) and by its paired ring-like annulation (in contrast to large 779 isometric cells or cell-casts of *Cephalonyx*). Earlier, similarly large pseudocellular 780 filaments were described as Striatella coriaceae Asseeva (in Asseeva and Velikanov, 781 1983), but an earlier homonym (Mädler, 1964) renders this generic name illegitimate (see 782 Butterfield et al., 1994). Botuobia Pyatiletov, 1979 is another genus of morphologically 783 similar filamentous microfossils embracing mainly sheaths with trichome cell imprints of 784 large diameter. Botuobia magna (Tynni and Donner, 1980) exceeds 100 µm in diameter 785 but is still smaller than *Rectia magna*; moreover, its surface is covered with septate cell

786 casts without doubled annulations. Veis et al. (2000) identified these microfossils as 787 Botuobia, a taxon now considered to be a junior synonym of Tortunema (Butterfield in 788 Butterfield et al., 1994). Therefore, we have chosen describe the Kaltasy remains as a new 789 species of *Rectia*. *Rectia magna* is probably the remains of eukaryotic filamentous 790 microorganisms (Fig. 10). Some *Rectia* specimens superficially resemble the tightly coiled 791 filaments of *Obruchevella* or *Spiromorpha*, but the bispiral pattern observed in these genera 792 is not traceable in the tubes with prominent doubled annulations. Nor does it appear that the 793 annulations originated as tubes rather than as reinforced sheets. 794 795 Rectia magna Sergeev, Knoll and Vorob'eva new species 796 Figures 6.1-6.6 Botuobia spp.: Veis et al., 2000, pl. 2, Figs. 9, 11, 13 and 20. 797 798 Ex gr. Botuobia: Veis et al., 2000, pl. 3, Fig. 5. 799 Diagnosis: A species of Rectia with cross-sectional diameter 70-200 μm. 800 Description: Compressed, unbranched tubes tapering sharply at its terminus, with prominent doubled annulations separated by thin-walled intervals. Cross sectional diameter 70-200 µm 801 802 $(n = 7, \mu = 132\mu m, \sigma = 43, RSD = 32.5\%)$; tubes up to 250 μ m long (incomplete specimens); 803 tube walls translucent, medium-grained, ca. 1-2 µm thick. Pseudocellular, opaque, granulated, 804 double annulations 3.0-10.5 μ m wide (n = 37, μ = 6.5 μ m, σ = 2.3, RSD = 35%) and possibly 805 2-3 µm high with intervening areas 1.5-3.5 µm and 0.5-2.0 µm wide between doubled 806 annulations and within pairs of annulations (when visible), respectively. 807 Etymology: From Latin magna – large, great, with reference to the taxon's large size 808 compared with previously described species of *Rectia*. 809 Type: Figure 6.3, GINPC 14712-5408, borehole 133 Azino-Pal'nikovo, 2052 m depth (See 810 Veis et al., 2000, pl. 3, Fig. 5). 811 *Material examined*: Seven well-preserved and additionally poorly preserved specimens.

Occurrence: Lower Mesoproterozoic, Kaltasy Formation, Cis-Urals area, East European
Platform.
Remarks: Rectia magna is closely similar to R. costata Yankauskas (1980) in morphology
and, in principle, the two could reflect a single biological entity. Two considerations
prompt us to diagnose a new species of <i>Rectia</i> : the ages of the Kaltasy <i>Rectia</i> and <i>R</i> .
costata do not overlap (500 million year difference), and the size distributions of the two
populations do not overlap (70-200 μm for <i>R. magna</i> vs. 35 μm for <i>R. costata</i>). These
considerations are challenging for the hypothesis of biological uniformity, and so we prefe
keep these species separate, following common practice in paleobotany.
Genus Rugosoopsis Timofeev and Hermann, 1979
Type species: Rugosoopsis tenuis Timofeev and Hermann, 1979
Rugosoopsis sp.
Figures 6.11, 6.12
Rugosoopsis sp.: Sperling et al., 2014, Fig. 4.13.
Description: Compressed, unbranched rigid tubes containing numerous cross-ribs. Tubes 45-
$350~\mu m$ in cross-sectional diameter (significantly large variance) and up to $550~\mu m$ long
(incomplete specimen); tube walls translucent, medium-grained, ca. 1-2 μm thick. Ribs
opaque, 1-2 μm wide; distance between ribs ranges from 6-10 to 20 μm .
Material examined: Two moderately well preserved specimens.
Remarks: This form differs from R. tenuis in its larger tube and thinner wall. Therefore, we
have chosen to identify this form as Rugosoopsis sp.
7.4. Filamentous microfossils
Genus <i>Cephalonyx</i> A. Weiss, in Veis, 1984 emend. Butterfield, in Butterfield et al., 1994
Type species: Cephalonyx coriaceus (Asseeva) (in Asseeva and Velikanov, 1983)

838	Cephalonyx sp.
839	Figures 7.4 and 7.8
840	Oscillatoriopsis spp.: Veis et al., 2000, pl. 2, Fig. 8.
841	Description: Unbranched tubes with prominent doubled annulations separated by thin-walled
842	intervals. Pseudocellular opaque granulated annulations 25-50 μm wide and 5-10 μm long
843	tapering toward apices to 9-14 μm and separated by translucent intervening areas 2.5-4.5 μm
844	long. Length of tube is about 100 μm (incomplete specimen preserved).
845	Remarks: Here we follow the emended diagnosis of genus Cephalonyx suggested by
846	Butterfield in Butterfield et al., 1994, who interpreted these fossils as pseudocellular fossil
847	sheaths. It may be that some specimens interpreted as sheaths are in fact compressed
848	ensheathed trichomes in which cross walls have been lost (Golubic and Barghoorn, 1977;
849	Gerasimenko and Krylov, 1983; Hofmann and Jackson, 1994; Sergeev et al., 1995);
850	however, the Kaltasy population exhibits features best interpreted in terms of pseudocellular
851	sheaths, especially the ripped ends of preserved filaments, where irregular edges cut across
852	cell-like features (Fig. 7.8). This is expected if the fossils are sheaths, unexpected it they were
853	actually trichomes. [See also <i>Cephalonyx</i> as, described by Veis (1984), which tapers toward
854	apices and has large discoidal and S-like cell shapes probably preserved as casts with
855	cyanobacterial sheaths.] Tapering toward apices may be original, but can also reflect post-
856	mortem shrinkage of filaments (Golubic and Barghoorn, 1977; Gerasimenko and Krylov,
857	1983; Sergeev, 1992; Knoll and Golubic, 1992). In its morphometric characteristics
858	Cephalonyx sp. resembles Cephalonyx sibiricus A.Weiss (in Veis, 1984), but in general is
859	smaller.
860	Material examined: Two moderately well-preserved specimens.
861	
862	Genus Polytrichoides Hermann, 1974, emend. Hermann, in Timofeev et al., 1976
863	Type species: Polytrichoides lineatus Hermann, 1974

864 Polytrichoides aff. P. lineatus Hermann, 1974, emend. Hermann in Timofeev et al., 1976 865 Figure 7.1 866 Polytrichoides lineatus Hermann, 1974, p. 8, pl. 6, Figs. 3 and 4; Timofeev et al., 1976, p. 37, pl. 14, Fig. 7; 867 Yankauskas, 1989, p.119-120, pl. 30, Figs. 5a, 56, 6, and 7; Hermann, 1990, pl. 9, Figs. 8 and 8a; Schopf, 868 1992, pl. 27, Figs. A₁ and A₂; Gnilovskaya et al., 2000, pl. 2, Figs. 16 and 17; Veis and Petrov, 1994a, pl. 2, 869 Figs. 25 and 27; Vorob'eva et al., 2006, Fig. 2e; Vorob'eva et al., 2009, p.188, Figs. 15.13 and 15.14; Sergeev et 870 al., 2012, p. 342, pl. 29, Figs. 6-8; Tang et al., 2013, p. 178, Fig. 14; Vorob'eva et al., 2015, p. 218, Figs, 9.5 and 9.7-871 9.11. 872 Majaphyton antiquam Timofeev and Hermann, 1979 (partim): Veis et al., 2000, pl. 3, Fig. 14. 873 Non Polytrichoides lineatus: Veis et al., 2000, pl. 2, Figs. 14 and 15 (For additional synonymy see Sergeev et 874 al., 2012 and Tang et al., 2013). Description: Bundles of tubular structures closely grouped within a common cylindrical 875 sheath that tapers toward ends. Tubular structures 1.5-4.5 µm in diameter, walls translucent, 876 877 hyaline, 0.5-1.0 thick. The surrounding sheath is cylindrical, commonly tapering toward both 878 closed and open ends, 25-45 µm wide and up to 350 µm long. Sheath walls translucent, hyaline or fine grained, 1-2 µm thick 879 880 Material examined: A few poorly preserved specimens. 881 Occurrence: Widely distributed in Proterozoic microfossil assemblages. 882 Remarks: Like the broadly similar taxa Eoschizothrix Lee Seong-Joo and Golubic, 1998 and 883 Eomicrocoleus Horodyski and Donaldson 1980, filaments of Polytrichoides are commonly 884 compared with the modern polytrichomous hormogonian cyanobacteria *Microcoleus*, 885 *Hydrocoleum* or *Schizothrix* (See Sergeev et al., 2012). 886 887 Genus Pseudodendron Butterfield, in Butterfield et al., 1994 888 Type species: Pseudodendron anteridium Butterfield (in Butterfield et al., 1994). 889 Pseudodendron anteridium Butterfield, in Butterfield et al., 1994 890 Figures 8.1 - 8.3

891 Pseudodendron anteridium Butterfield, in Butterfield et al., 1994, p. 70, 72, Figs. 28A-28G, and 28J; Butterfield, 892 2009, Figs. 3A and 3B; Vorob'eva et al., 2015, p. 218, 219, Figs. 9.1-9.4. 893 A broad filamentous sheath: Veis and Vorob'eva, 1992, pl. 1, Figs. 12, 15, and 20; Veis and Petrov, 1994a, pl. 3, 894 Fig. 5; Veis et al., 2001, Fig. 2o. 895 A branching filament: Veis and Petrov, 1994a, pl. 3, Fig. 22. 896 Archaeoclada sp.: Veis et al., 2000, pl. 3, Figs. 16 and 17. 897 Pseudodendron aff. P. anteridium: Sperling et al., 2014, Fig. 4.11 898 Description: Heterogeneous branching thalli sometime tapering toward apices with an outer 899 sheath and terminal expansion. Branching is lateral or dichotomous, and two levels of 900 branching are clearly present. Thalli are translucent to opaque, with spumose texture. Sheath 901 translucent but not always visible; conspicuous at branch junctions where the sheath can occur 902 on the inside angle as a prominent subtriangular gusset. Thalli 25-125 µm in cross-sectional 903 diameter, up to 1000 µm long (incomplete specimen); sheath wall medium-grained, ca. 1-2 904 µm thick. *Material examined*: Approximately fifty well-preserved specimens. 905 906 Occurrence: Widely distributed in Proterozoic microfossil assemblages. 907 *Remarks*: This form is compared with either branching filaments of cyanobacteria 908 (Butterfield et al., 1994) or eukaryotic algae. 909 910 Genus Siphonophycus Schopf, 1968, emend. Knoll and Golubic, 1979, emend. Knoll et al., 1991 911 912 Type species: Siphonophycus kestron Schopf, 1968. 913 Siphonophycus punctatum Maithy, 1975, emend. Buick and Knoll, 1999 914 Figure 8.7 915 Siphonophycus punctatus Maithy, 1975, p. 137, pl. 1, Fig. 5. 916 Siphonophycus punctatum Buick and Knoll, 1999, p. 761, Figs. 6.2-6.4 and 6.6.

917 Asperatofilum experatus Hermann, in Yankauskas, 1989, p. 100, pl. 26, Fig. 16; Veis and Petrov, 1994a, pl. 918 1, Figs. 25 and 26, pl. 2, Fig. 26, pl. 3, Fig. 17; Veis et al., 2000, pl. 2, Figs. 5, 7, 17 and 21 (for additional 919 synonymy see Buick and Knoll, 1999). 920 Description: Unbranched solitary nonseptate tubes, cylindrical to slightly compressed and 921 32.0 to 64.0 µm broad, that rarely contain degraded trichomic thread-like amorphous 922 fragments; tube walls range from smooth to fine-or medium-grained, 0.5 to 1.0 thick, 923 Occurrence: Widely distributed in Proterozoic microfossil assemblages. 924 *Material examined*: About a hundred well-preserved specimens. 925 926 Genus Tortunema Hermann, in Timofeev et al., 1976, emend. Butterfield, in Butterfield et 927 al., 1994 928 Type species: Tortunema Wernadskii (Schepeleva, 1960) 929 Tortunema patomica (Kolosov, 1982), emend. and comb. Butterfield (in Butterfield et al., 930 1994) 931 Figures 7.3 and 7.5 932 Palaeolyngbya patomica Kolosov, 1982, p. 72, pl. 10, Fig. 1. 933 Botuobia patomica Kolosov, 1984, p. 48-49, pl. 9, Fig. 2; Yankauskas, 1989, p. 101, pl. 43, fig. 3. 934 Botuobia angustata Kolosov, 1984, p. 49-50, pl. 10, Fig. 1. 935 Botuobia diversa Kolosov, 1984, p. 50, pl. 11, Fig. 1. 936 Palaeolyngbya sphaerocephala Hermann and Pylina in Hermann, 1986 (partim): Veis et al., 2000, pl. 2, Fig. 937 6. 938 Description: Unbranched solitary cylindrical compressed tubes 45 to 50 μm broad (20 μm 939 in narrowest part) and tapering toward both ends; contains degraded opaque thread-like 940 fragments 10-15 µm wide. Tubes transparent or translucent, prominent, non-lamellated, 941 about 0.5 μm thick and up to 400 μm long with clear annular lines 1-2 μm long separated 942 by intervening regions 5-7 µm long. 943 *Material examined*: One well-preserved and a few medium to poorly preserved specimens.

944 Age and distribution: Mesoproterozoic: Kaltasy Formation, 203 Bedryazh and 133 Azino-945 Pal'nikovo boreholes; Ediacaran, Kursov Formation, Siberia. 946 Remarks: Tortunema was originally erected to describe septate (pseudoseptate) sheaths that 947 taper toward both ends. We follow here the formal classification of Butterfield in 948 Butterfield et al., 1994, accepting *Botuobia* as a junior synonym of *Tortunema* and 949 separating the latter into species on the basis of tube diameter, much like the convention for 950 Siphonophycus sheaths (Butterfield et al., 1994, p. 69). Although generally interpreted as pseudosepatate sheaths, Tortunema might alternatively be considered trichomes which lost 951 952 septa during diagenesis. This interpretation is unlikely for the Kaltasy population, both 953 because ripped ends cut across "septa" (Fig. 7.3; see discussion of Cephalonyx) and 954 because some specimens contain remnants of shrunken cells (Fig. 7.5), obviating 955 interpretation of the entire specimen as a trichome. 956 957 7.5. Miscellaneous microfossils 958 Genus Pellicularia Yankauskas, 1980 Type species: *Pellicularia tenera* Yankauskas, 1980 959 960 Pellicularia tenera Yankauskas, 1980 Figures 8.8, 8.9 and 8.10 961 962 Pellicularia tenera Yankauskas, 1980, p. 110, pl. 12, Fig. 9; Yankauskas, 1989, p. 139, pl. 42, Figs. 3-5; Veis 963 et al., 2000, pl. 3, Fig. 6. 964 Description: Fusiform-like and ribbon-like structures 25-70 µm across and up to 350 µm 965 long, with longitudinal intertwined thread-like filaments 1-2 µm in diameter incorporated 966 inside the main body. Walls translucent, about 1 µm thick, with folds 1-2 µm wide; surface 967 granular to shagrinate. 968 Remarks: Yankauskas (1980) described this taxon from the Neoproterozoic (Upper 969 Riphean) Schtanda Formation of Cis-Urals area, but his treatment has not been broadly

970	recognized. Veis et al. (2000) described it from the Kaltasy Formation, using this to argue
971	for a Neoproterozoic age. The affinities of the microfossils are uncertain.
972	Material examined: Four well-preserved specimens.
973	Age and distribution: Mesoproterozoic: Kaltasy Formation, 203 Bedryazh and 133 Azino-
974	Pal'nikovo boreholes; Neoproterozoic: Schtanda Formation, 62 Kabakovo borehole, Cis-
975	Urals area, East European Platform.
976	
977	Unnamed Form 1 Figures 9.1, 9.2 and 9.3
978	Figures 9.1, 9.2 and 9.3
979	Description: Translucent irregular ellipsoidal or elongated vesicles arranged in clusters
980	from a few individuals joined each other by their walls. Vesicles 100-265 μm across and
981	$240\text{-}390~\mu m$ long; surface reticulated, with a granulated wall 1.0-1.5 μm thick.
982	Material examined: Five well-preserved specimens.
983	Remarks: Unnamed Form 1 exhibits a reticulated surface that could reflect post-mortem
984	alteration. Clusters of vesicles could also formed by secondary aggregation of the dead cells.
985	Originally, therefore, these microorganisms could have been smooth-walled vesicles similar to
986	Leiosphaeridia. Given the large uncertainties in basic interpretation, we prefer to describe it
987	informally, noting only that it contributes to the overall diversity recorded by the Kaltasy
988	assemblage.
989	
990	Unnamed Form 2
991	Figures 9.4, 9.5 and 9.6
992	Envelopes with problematic spines or pseudospines: Sperling et al., 2014, Fig. 4.5.
993	Description: Solitary, translucent to opaque vesicles of spherical and subspherical shape
994	150-785 µm across, but irregular in outlines. Vesicles bear blunt conical and elongated
995	spine-like structures $40\text{-}130~\mu m$ wide (near base) and $15\text{-}65~\mu m$ long. Walls translucent,

996	medium-grained, 1.0-2.0 μm thick and sometime are surrounded by outer translucent
997	membrane about $0.5 \mu m$ thick.
998	Material examined: Five relatively poorly preserved specimens.
999	Remarks: The origin of spine-like structures that cover the vesicle surface is uncertain;
1000	given their irregular shape, we suspect that these originated during diagenesis.
1001	
1002	Unnamed Form 3
1003	Figures 9.7 and 9.10
1004	Description: Solitary, single-layered translucent spheroidal or ellipsoidal vesicles with
1005	rounded ends. Vesicle surface is covered with small spine-like structures sometimes
1006	surrounded by a halo- or membrane-like transparent structure. Vesicle diameter 35-100
1007	μm ; walls translucent, medium-grained, less than 1 μm thick; spine-like structures 1.5-5
1008	μm wide and 2-4 μm long.
1009	Material examined: Twenty three variously preserved specimens.
1010	Remarks: The genesis of spine-like structures covering surfaces of Unnamed Form 3 is
1011	uncertain. They are probably of secondary origin, similar to many pseudospines
1012	observed on originally smooth surfaces of cyanobacteria (e.g., Sergeev et al., 1995,
1013	Fig. 7.10; 2012, pl. 7, Figs. 8-10, pl. 27, Fig. 5; Sergeev, 2006, pl. 1, Fig. 10, pl. 21,
1014	Figs. 10-13, pl. 23, Figs. 1-8). However, as in all previous cases (Unnamed Forms 1 and
1015	2) we cannot rule out an option that these structures are of primarily origin and so describe
1016	them here only informally.
1017	
1018	Unnamed Form 4
1019	Figures 9.8, 9.9, 9.11 and 9.12
1020	Paired envelopes of Leiosphaeridia jacutica: Sperling et al., 2014, Fig. 4.9

1021	Description: Elongated translucent to opaque vesicles, solitary, in pairs, or arranged in an
1022	echelon style 2 or 3 together. Vesicles translucent to opaque 100-350 µm wide and 180-
1023	$500~\mu m$ long, with wall up to $2~\mu m$ thick (when visible), with a shagrinate surface and
1024	typically a system of perpendicular cracks or transverse annulations 1-3 μm wide in the
1025	equatorial regions.
1026	Remarks: These microfossils resemble microfossils recently described from Neoproterozoid
1027	deposits of China as <i>Pololeptus rugosus</i> (Tang et al., 2013). Similarities, however, could
1028	reflect diagenetic convergence.
1029	Material examined: Twenty well-preserved specimens.
1030	
1031	Unnamed Form 5
1032	Figures 9.13 and 9.14
1033	Description: Elongated translucent solitary vesicles composed of two or three segments
1034	that communicate freely each to other, but with constrictions at conjunctions. Some
1035	vesicles exhibit elongated, blunt, horn-like protrusions. Vesicle surface fine-grained and
1036	covered with small dark irregular grains. Vesicle width 100-700 μm , length 135-815 μm ;
1037	protrusions 10-15 μm wide and 15-20 μm long; walls 0.5-1.0 μm thick.
1038	Material examined: Eight variously preserved specimens.
1039	Remarks: The morphology of the microfossils is quite unusual for Proterozoic
1040	microfossils. Upon recovery of better preserved samples, this population could deserve
1041	recognition as a new genus, but given the quality of our specimens and lingering
1042	uncertainty about diagenetic alteration, we describe it here only informally.
1043	

Acknowledgements.

We thank the late V.I. Kozlov, who facilitated this research and Heda Agić and an anonymous reviewer for comments that materially improved our paper. We also thank the NASA Astrobiology Institute (AHK) and RFBR Grants 13-05-00127, 14-05-00323 and the Program of the Presidium of Russian Academy of Sciences 30 (VNS and NGV) for research support.

1050	References
1051	
1052	Adam, Z.R., 2014. Microfossil Paleontology and Biostratigraphy of the Early
1053	Mesoproterozoic Belt Supergroup, Montana. Unpublished Ph.D. thesis, Montana
1054	State University.
1055	Agić, H., Moczydłowska, M., Yin, L., 2015. Affinity, life cycle, and intracellular
1056	complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi,
1057	China. Journal of Paleontology 89, 28-50.
1058	Anbar, A.D., Knoll, A.H., 2002. Proterozoic ocean chemistry and evolution: a bioinorganic
1059	bridge? Science 297, 1137-1142.
1060	Asseeva, E.A., Velikanov, V.A., 1983. New finds of the fossilized plant remains in the
1061	Vendian Layadovskaya layers of Podolia (Upper Precambrian), in: Fossil fauna and
1062	flora of Ukraine. Naukova Dumka, Kiev, pp. 3-8 (In Russian).
1063	Bartley, J. K., 1996. Actualistic taphonomy of cyanobacteria: implications for the
1064	Precambrian fossil record. Palaios 11, 571-586.
1065	Becker, B., 2013. Snow ball Earth and the split of Streptophyta and Chlorophyta. Trends in
1066	Plant Science 18, 180-183.
1067	Bhattacharya, S., Dutta, S., 2015. Neoproterozoic-Early Cambrian biota and ancient niche:
1068	A synthesis from molecular markers and palynomorphs from Bikaner-Nagaur
1069	Basin, western India. Precambrian Research 266, 361-374.
1070	Brotzen, F., 1941. Några bidrag till visingsöformationens stratigrafi och tektonik. Geologiska
1071	Foreningens Forhandlingar 63, 245-261.
1072	Buick, R., Knoll, A.H., 1999. Acritarchs and microfossils from the Mesoproterozoic
1073	Bangemall Group, Northwestern Australia. Journal of Paleontology 73, 744-764.

1074	Butterfield, N.J., 2009. Modes of pre-Ediacaran multicellularity. Precambrian Research
1075	173, 201-211.
1076	Butterfield, N.J., Chandler, F.W., 1992. Paleoenvironmental distribution of Proterozoic
1077	microfossils, with an example from the Agu Bay Formation, Baffin Island.
1078	Palaeontology 35, 943–957.
1079	Butterfield, N.J., Knoll, A.H., Swett, K., 1994. Paleobiology of the Neoproterozoic
1080	Svanbergfjellet Formation, Spitsbergen. Fossils and Strata 34, 1-84.
1081	Combaz, A., Lange, F.W., Pansart, J., 1967. Les "Leiofusidae" Eisenack, 1938. Review
1082	of Palaeobotany and Palynology 1, 207–307.
1083	Cramer, F.H., 1970. Distribution of selected Silurian acritarchs; an account of the
1084	palynostratigraphy and paleogeography of selected Silurian acritarch taxa. Revista
1085	Espanola de Micropaleontologia (numero extraordinario), 1-203, pis I-XXIII.
1086	Chumakov, N.M., Semikhatov, M.A. 1981. Riphean and Vendian of the USSR.
1087	Precambrian Research 15, 229–253.
1088	Deunff, J., 1955. Un microplancton fossile Dévonien a Hystrichosphéres du Continent
1089	Nord-Américain. Bulletin de la Microscopie Appliqué, Séries 2, 5, 138-149.
1090	Downie, C., Sarjeant, W.A.S., 1963. On the interpretation and status of some
1091	Hystrichosphere genera. Palaeontolgy 6, 83-96.
1092	Eisenack, A., 1958. Microfossilien aus dem Ordovizium des Baltikums. 1. Markasitschicht
1093	Dictyonema-Scheifer, Glaukonitsand, Glaukonitkalk. Senckenbergian Lethaea 39,
1094	389–404.
1095	Elenkin, A.A., 1949. Monographia algarum Cyanophycearum aquidulcium et terrestrium ir
1096	finibus URSS inventarum. Pars specialis (Systematica), Fasc. II. III. Hormogoneae
1097	(Geitl.) Elenk. Sumptibus Academiae Scientarum URSS, Moscow and Leningrad,
1098	pp. 985-1908 (In Russian).

1099	Eme, L., Sharpe, S.C., Brown, M.W., Roger, A.W., 2014. On the age of eukaryotes:
1100	Evaluating evidence from fossils and molecular clocks. Cold Spring Harbor
1101	Perspectives in Biology, doi: 10.1101/cshperspect.a016139.
1102	Fairchild, T.R., 1985. Size as a criterion for distinguishing probable eukaryotic unicells in
1103	silicified Precambrian microfloras. 8th Congresso Brasileiro de Paleontologia, Rio
1104	de Janeiro. Sociedade Brasileira de Paleontologia. Anais (MME-DNPM. Sèrie
1105	Geologia n. 27), pp. 1-8.
1106	Ford, T.D., Breed, W., 1973. The problematical Precambrian fossil <i>Chuaria</i> . Palaeontology
1107	16, 535-550.
1108	Gerasimenko, L.M., Krylov, I.N., 1983. Post-Mortem changes in cyanobacteria from the
1109	algal-bacterial mats of thermal springs. Doklady Akademii Nauk SSSR 172(1),
1110	201–203 (In Russian).
1111	Giovannoni, S.J., Turner, S., Olsen, G.J., Barns, S., Lane, D.J., Pace, N.R., 1988.
1112	Evolutionary relationships among cyanobacteria and green chloroplasts. Journal of
1113	Bacteriology 170, 3584-3592.
1114	Gnilovskaya, M.B., Veis, A.F., Bekker, Y.R., Olovyanishnikov, V.G., Raaben, M.E., 2000.
1115	Pre-Ediacaran fauna from Timan (Annelidomorphs of the Late Riphean).
1116	Stratigraphy and Geological Correlation 8, 11-39.
1117	Golubic, S., Barghoorn, E.S., 1977. Interpretation of microbial fossils with special
1118	reference to the Precambrian, in: Flügel, E. (Ed.), Fossil algae. Berlin-Heidelberg-
1119	N.Y., Springer-Verlag, pp. 1–14.
1120	Golubic, S., Sergeev, V.N., Knoll, A.H., 1995. Mesoproterozoic Archaeoellipsoides:
1121	akinetes of heterocystous cyanobacteria. Lethaia 28, 285–298.
1122	Gorozhanin, V.M., 1995. Candidate's Dissertation in Geology and Mineralogy
1123	(Yekaterinburg, 1995).

1124	Gray, J., Boucot, A.J., 1989. Is <i>Moyeria</i> a euglenoid? Lethaia 22, 447–456. DOI
1125	10.1111/j.1502-3931.1989.tb01449.x
1126	Grey, K., 1999. A modified palynological preparation technique for the extraction of large
1127	Neoproterozoic acanthomorphic acritarchs and other acid insoluble microfossils.
1128	Gelogical Survey of Western Australia Record 10, 1-23.
1129	Grey, K., 2005. Ediacaran palynology of Australia. Memoir of the Association of
1130	Australasian Palaeontologists 31, 1-439.
1131	Guilbaud, R., Poulton, S.W., Butterfield, N.J., Zhu, M.Y., Shields-Zhou, G.A., 2015. A
1132	global transition to ferruginous conditions in the early Neoproterozoic oceans.
1133	Nature Geoscience 8, 466-468.
1134	Le Hérissé, A., Paris, F., Steemans, P., 2013. Late Ordovician-earliest Silurian
1135	palynomorphs from northern Chad and correlation with contemporaneous deposits
1136	of southeastern Libya. Bulletin of Geosciences 88(3), 483–504.
1137	Hermann, T.N., 1974. Finds of massive accumulations of trichomes in the Riphean, in:
1138	Timofeev, B.V. (Ed.), Microfossils of Proterozoic and early Paleozoic of the USSR.
1139	Nauka, Leningrad, pp. 6-10 (In Russian).
1140	Hermann, T.N., 1986. The finds of filamentous blue-green algae in the Upper Precambrian
1141	(the Miroedikha Formation), in: Actual problems of modern paleoalgology.
1142	Naukova Dumka, Kiev, pp. 37-40 (In Russian).
1143	Hermann, T.N., 1990. Organic world a billion years ago. Nauka, Leningrad (In Russian,
1144	with English summary).
1145	Hermann, T.N., Podkovyrov, V.N., 2009. New insights into the nature of the Late Riphean
1146	Eosolenides. Precambrian Research 173, 154-162.
1147	Hermann, T.N., Podkovyrov, V.N., 2014. Formation of an unusual form of Riphean
1148	Eosolenides. Paleontological Journal 48, 345–352.

1149	Hermann, I.N., Timofeev, B.V., 1985. <i>Eosolenides</i> , a new group of problematic
1150	organisms from the Late Precambrian, in: Problematics of the Late Precambrian and
1151	Paleozoic. Nauka, Novosibirsk, pp. 9-15 (In Russian).
1152	Hofmann, H.J., Jackson, G.D., 1994. Shale-facies microfossils from the Proterozoic Bylot
1153	Supergroup, Baffin Island, Canada. Palaeontological Society Memoir 37, 1-39.
1154	Horodyski, R.J., Donaldson, J.A., 1980. Microfossils from the Middle Proterozoic Dismal
1155	Lakes Group, Arctic Canada. Precambrian Research 11, 125-159.
1156	Ishida, T., Watanabe M.K., Sugiyama J., Yokota, A., 2001. Evidence for polyphyletic
1157	origin of the members of the orders of Oscillatoriales and Pleurocapsales as
1158	determined by 16S rDNA analysis. FEMS Microbiology Letters 201, 79-82.
1159	Javaux, E.J., Knoll, A.H., Walter, M.R., 2001. Morphology and ecological complexity in
1160	early eukaryotic ecosystems. Nature 412 (6872), 66–69.
1161	Javaux, E.J., Knoll, A.H., Walter, M.R., 2004. TEM evidence for eukaryotic diversity in
1162	mid-Proterozoic oceans. Geobiology 2, 121–132.
1163	Johnston, D.T, Wolfe-Simon, F., Pearson, A., Knoll. A.H., 2009. Anoxygenic
1164	photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age.
1165	Proceedings of the National Academy of Sciences, USA 106, 16925–16929.
1166	Kah, L.C., Crawford, D.C., Bartley, J.K., Kozlov, V.I., Sergeeva, N.D., Puchkov, V.N.
1167	2007. C- and Sr-isotope chemostratigraphy as a tool for verifying age of Riphean
1168	deposits in the Kama-Belaya Aulacogen, the East European Platform. Stratigraphy
1169	and Geological Correlation 15, 12–29.
1170	Keller, B.M., Chumakov, N.M. (Eds.), 1983. Stratotype of the Riphean, Stratigraphy,
1171	Geochronology. Nauka, Moscow (In Russian).
1172	Knoll, A.H., 1984. Microbiotas of the Late Precambrian Hunnberg Formation,
1173	Nordaustlandet, Svalbard. Journal of Paleontology 58, 131–162.

1174	Knoll, A.H., Golubic, S., 1979. Anatomy and taphonomy of a Precambrian algal
1175	stromatolite. Precambrian Research 10, 115–151.
1176	Knoll, A.H., Golubic, S., 1992. Living and Proterozoic cyanobacteria, in: Schidlowski, M.,
1177	et al. (Eds.), Early organic evolution: Implication for mineral and energy resources.
1178	Springer-Verlag, Berlin, pp. 450–462.
1179	Knoll, A.H., Sergeev, V.N., 1995. Taphonomic and evolutionary changes across the
1180	Mesoproterozoic-Neoproterozoic transition. Neues Jabrbuch für Geologie und
1181	Paläontologie Abhandlungen 195 (1/3), 289-302.
1182	Knoll, A.H., Sweet, K., Mark, J., 1991. Paleobiology of a Neoproterozoic tidal
1183	flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen. Journal
1184	of Paleontology 65, 531-570.
1185	Knoll, A.H., Summons, R.E., Waldbauer, J., Zumberge, J., 2007. The geological
1186	succession of primary producers in the oceans, in: Falkowski, P., Knoll, A.H.
1187	(Eds.), The evolution of primary producers in the sea. Elsevier, Burlington, pp. 133-
1188	163.
1189	Kodner, R.B., Summons, R.E., Pearson, A., Knoll, A.H., 2008. Sterols in red and green
1190	algae: quantification, phylogeny and relevance for the interpretation of geologic
1191	steranes. Geobiology 6, 411-420.
1192	Kolosov, P.N., 1982. Upper Precambrian paleoalgological residues from the Siberian
1193	Platform. Nauka, Moscow (In Russian).
1194	Kolosov, P.N., 1984. Late Precambrian microorganisms from the Eastern Siberian Platform.
1195	Yakutskii Filial AN SSSR, Yakutsk (In Russian).
1196	Kozlov, V.I., Muslimov, R. Kh., Gatiyatullin, N.S. et al., 1995. Upper Precambrian of
1197	Eastern Tatarstan: Implications for Oil and Gas Prospecting. Institute of Geology,
1198	Ufa (in Russian).

1199	Kozlov, V.I., Sergeeva, N.D., 2011. Upper Proterozoic of the Volgo-Ural region.
1200	Stratigraphy and composition, Geology. Proceedings on the Earth Sciences and
1201	Mineral Resources of the Academy of Sciences of Bashkirian Republic 17, 58-80
1202	(In Russian).
1203	Kozlov, V.I., Sergeeva, N.D., Mikhailov, P.N., 2009. Stratgraphic subdivision of the
1204	boundary Upper Riphean, Vendian and Paleozoic deposits of western
1205	Bashkortostan. Bulletin of the Regional Interdepartmental Stratigraphic
1206	Commission on the Central and Southern Parts of the Russian Plate 4, 40-44 (In
1207	Russian).
1208	Kozlov, V.I., Puchkov, V.N., Sergeeva, N.D., 2011. New Chart of Geological Succession
1209	Revealed by the Parametric Borehole 1 Kulguninskaya. Institute of Geology, Ufa,
1210	(In Russian).
1211	Krasnobaev, A., Kozlov, V.I., Puchkov, V.N., Busharina, S.V., Sergeeva, N.D., Paderin,
1212	I.P., 2013a. Zircon geochronology of the Mashak volcanic rocks and the problem of
1213	the age of the lower-middle Riphean boundary (Southern Urals). Stratigraphy and
1214	Geological Correlation 21, 465–481.
1215	Krasnobaev, A.A., Puchkov, V.N., Kozlov, V.I., Sergeeva, N.D., Busharina, S.V.,
1216	Lepekhina, E.N., 2013b. Zirconology of Navysh volcanic rocks of the Ai suite and
1217	the problem of the age of the Lower Riphean boundary in the Southern Urals.
1218	Doklady Earth Sciences 448, 185-190.
1219	Kumar, S., Srivastava, P., 1995. Microfossils from the Kheinjua Formation,
1220	Mesoproterozoic Semri Group, Newari area, central India. Precambrian Research
1221	74,91-117
1222	Lee Seong-Joo, Golubic, S., 1998. Multi-trichomous cyanobacterial microfossils from the
1223	Mesoproterozoic Gaoyuzhuang Formation, China: Paleontological and taxonomic
1224	implications. Lethaia 31,169-184.

1225	Littler, M.M., Littler D.S, Blair, S.M. Norris, J.N., 1985. Deepest known plant life
1226	discovered on an uncharted seamount. Science 227, 57-59.
1227	Mädler, K., 1964. Bemerkenswerte Sporenformen aus dem Keuper und unteren Lias.
1228	Fortschritte in der Geologie von Rheinland and Westfalen 12, 169-170.
1229	Maithy, P.K., 1975. Micro-organisms from the Bushimay System (Late Precambrian) of
1230	Kanshi, Zaire. Palaeobotanist 22,133-149.
1231	Margulis, L., Grosovski, B.D.D., Stolz, J.F., Gong-Collins, E.J., Lenk, S., Read, D., Lopèz-
1232	Cortès, A., 1983. Distinctive microbial structure and the pre-Phanerozoic fossil
1233	record. Precambrian Research 20, 443–478.
1234	Margulis, L., Corliss, J.O., Melkonnian, M. Chapman, D.J. (eds.), 1990. Handbook of
1235	Protoctista. Jones and Barlett, Boston.
1236	Miller, A., Eames, L., 1982. Palynomorphs from the Silurian Medina Group (Lower
1237	Llandovery) of the Niagara Gorge, Lewiston, New York, U.S.A. Palynology 6,
1238	221–254.
1239	Moczydłowska, M., 2008. New records of late Ediacaran microbiota from Poland.
1240	Precambrian Research 167, 71-92.
1241	Moczydłowska, M., 2010. Life cycle of Early Cambrian microalgae from the Skiagia-
1242	plexus acritarchs. Journal of Paleontology 84, 216-230.
1243	Moczydłowska, M., 2015. Algal affinities of the Ediacaran and Cambrian organic-walled
1244	microfossils with internal reproductive bodies: <i>Tanarium</i> and other morphotypes.
1245	Palynology 40, 83-121 doi: 10.1080/01916122.2015.1006341.
1246	Moczydłowska, M., Schopf, J.W., Willman, S., 2010. Micro- and nano-scale ultrastructure
1247	of cell walls in Cryogenian microfossils: revealing their biological affinity. Lethaia
1248	43, 129-136.
1249	Moczydłowska, M., Landing, E., Zhang, W., Palacios, T., 2011. Proterozoic phytoplankton
1250	and timing of chlorophyte algae origin. Palaeontology 54, 721–733.

1251	Molyneux, S.G., Barron, H.F., Smith R.A., 2008. Upper Llandovery-Wenlock (Silurian)
1252	palynology of the Pentland Hills inliers, Midland Valley of Scotland. Scottish
1253	Journal of Geology 44, 151-168.
1254	Nagovitsin, K., 2009. <i>Tappania</i> -bearing association of the Siberian platform: Biodiversity,
1255	stratigraphic position and geochronological constraints. Precambrian Research 173,
1256	137-145.
1257	Pang, K., Tang, Q., Schiffbauer, J.D., Yao, J., Yuan, X., Wan, B., Chen, L., Ou, Z., Xiao,
1258	S., 2013. The nature and origin of nucleus-like intracellular inclusions in
1259	Paleoproterozoic eukaryote microfossils. Geobiology 11, 499-510.
1260	Pang, K., Tang, Q., Yuan, X., Wan, B., Xiao, S., 2015. A biomechanical analysis of the
1261	early eukaryotic fossil Valeria and new occurrence of organic-walled microfossils
1262	from the Paleo-Mesoproterozoic Ruyang Group. Palaeoworld 24, 251-262.
1263	Parfrey, L., Lahr, D., Knoll, A.H., Katz, L.A., 2011. Estimating the timing of early
1264	eukaryotic diversification with multigene molecular clocks. Proceedings of the
1265	National Academy of Sciences, USA 108, 13624-13629.
1266	Peat, C.J., Muir, M.D., Plumb, K.A., McKirdy, D.M., Norvick, M.S., 1978. Proterozoic
1267	microfossils from the Roper Group, Northern Territory, Australia. BMR Journal of
1268	Australian Geology and Geophysics 3, 1-17.
1269	Petrov, P.Yu., Veis, A.F., 1995. Facial-ecological structure of the Derevnya Formation
1270	microbiota: Upper Riphean, Turukhansk Uplift, Siberia. Stratigraphy and
1271	Geological Correlation 3, 18-51.
1272	Prasad, B., Asher, R. 2001. Biostratigraphy and lithostratigraphic classification of
1273	Proterozoic and Lower Paleozoic sediments (Pre-Unconformity Sequence) of
1274	Ganga Basin, India. Paleontographica Indica 5, 1-151.

1275	Prasad, B., Uniyal, S.N., Asher, R., 2005. Organic walled microfossils from the Proterozoic
1276	Vindhyan Supergroup of Son Valley, Madhya Pradesh, India. Palaeobotanist 54,
1277	13-60.
1278	Puchkov, V.N., 2005. Evolution of lithosphere: from the Pechora ocean to Timanian
1279	orogen, from the Paleouralian ocean to Uralian orogeny, in: Leonov, Y.G. (Ed.),
1280	Problems of Tectonics of the Central Asia. GEOS, Moscow, pp. 309–342 (In
1281	Russian).
1282	Puchkov, V.N., 2013. Structural stages and evolution of the Urals. Mineralogy and
1283	Petrology 106, 3–37.
1284	Puchkov, V.N., Bogdanova, S.V., Ernst, R.E., Kozlov, V.I., Krasnobaev, A.A., Soderlund,
1285	U., Wingate, M.T.D., Postnikov, A.V., Sergeeva, N.D., 2013. The ca. 1380 Ma
1286	Mashak igneous event of the Southern Urals. Lithos 174, 109-124.
1287	Puchkov, V.N., Krasnobaev, A.A., Kozlov, V.I., Sergeeva N.D., 2012. New isotope ages
1288	of volcanics in the standard section of the Riphean and Vendian of the Southern
1289	Urals: consequences for stratigraphy and tectonics, in: Materials for the 435 IX-th
1290	Republican Conference on Geology and Environment. Institute of Geology, Ufa,
1291	pp. 52–56.
1292	Pyatiletov, V.G., 1979. On finds of blue-green algae Yudoma deposits of Yakutia
1293	(Vendian). Doklady Academii Nauk SSSR 249, 714-716 (In Russian).
1294	Pyatiletov, V.G., 1988. Microfossils of the Late Proterozoic of the Uchur-Maya Region, in:
1295	Khomentovsky, V.V., Schenfil', V.Y. (Eds.), Late Precambrian and Early Paleozoic of
1296	Siberia. IGiG SO AN SSSR, Novosibirsk, pp. 47-104 (In Russian).
1297	Rippka, R., Deuellesj, J., Waterbury, J., Herdman, M., Stanier, R.Y., 1979. Generic
1298	assignments, strain histories, and properties of pure cultures of cyanobacteria.
1299	Journal of General Microbiology 111, 1-61.

1300	Schirrmeister, B.E., Gugger, M., Donoghue, P.C.J., 2015. Cyanobacteria and the Great
1301	Oxidation Event: evidence from genes and fossils. Palaeontology 58, 769-785.
1302	Schepeleva, E.D., 1960. Finds of blue-green algae in Lower Cambrian deposits of the
1303	Leningrad region, in: Problemy Neftyanoi Geologii i Voprosy Metodiki Laboratornykh
1304	Issledovanij. Nauka, Moscow, pp. 170-172 (In Russian).
1305	Schopf, J.W., 1968. Microflora of the Bitter Springs Formation, Late Precambrian, central
1306	Australia. Journal of Paleontology 42, 651–688.
1307	Schopf, J.W., 1992. Atlas of representative Proterozoic microfossils, in: Schopf, J.W.,
1308	Klein, C. (Eds.), The Proterozoic Biosphere. Cambridge University Press,
1309	Cambridge, 1055-1118.
1310	Sergeev, V.N., 1992. Silicified microfossils of the Precambrian and Cambrian of the Urals
1311	and Central Asia. Nauka, Moscow (in Russian).
1312	Sergeev, V.N., 2006. Precambrian microfossils in cherts: their paleobiology, classification,
1313	and biostratigraphic usefulness. Geos, Moscow (in Russian).
1314	Sergeev, V.N., 2009. The distribution of microfossil assemblages in Proterozoic rocks.
1315	Precambrian Research 173, 212–222.
1316	Sergeev, V.N., Lee Seong-Joo, 2001. Microfossils from cherts of the Middle Riphean
1317	Svetlyi Formation, the Uchur-Maya Region of Siberia and their stratigraphic
1318	significance. Stratigraphy and Geological Correlation 9, 1-10.
1319	Sergeev, V.N., Lee Seong-Joo, 2004. New data on silicified microfossils from the Satka
1320	Formation of the Lower Riphean Stratotype, the Urals. Stratigraphy and Geological
1321	Correlation 12, 1-21.
1322	Sergeev, V.N., Krylov, I.N., 1986. Microfossils of the Min'yar Formation from the Basin
1323	of Inzer River. Paleontological Journal 1, 84-95 (In Russian).

1324	Sergeev, V.N., Schopf, J.W., 2010. Taxonomy, paleoecology and biostratigraphy of the
1325	Late Neoproterozoic Chichkan Microbiota of South Kazakhstan: The Marine
1326	biosphere on the eve of metazoan radiation. Journal of Paleontology 84, 363-401.
1327	Sergeev, V.N., Knoll, A.H., Grotzinger, J.P., 1995. Paleobiology of the Mesoproterozoic
1328	Billyakh Group, Anabar Uplift, northeastern Siberia. Palaeontological Society
1329	Memoir 39, 1-37.
1330	Sergeev, V.N., Vorob'eva, N.G., Petrov, P.Yu., 2007. New Riphean microbiotas of the
1331	Billyakh Group, the North Anabar region (Fomich River Basin): Riphean
1332	biostratigraphy of the Siberian Platform. Stratigraphy and Geological Correlation
1333	15, 1-11.
1334	Sergeev, V.N., Semikhatov, M.A., Fedonkin, M.A., Vorob'eva, N.G., 2010. Principal
1335	stages in evolution of Precambrian organic world: Communication 2. The Late
1336	Proterozoic. Stratigraphy and Geological Correlation 18, 561-592.
1337	Sergeev, V.N., Knoll, A.H., Vorob'eva, N.G., 2011. The organic-wall compression-
1338	preserved microfossils from the Ediacaran Ura Formation of the Baikal-Patom
1339	Uplift, Siberia: taxonomy and biostratigraphic significance. Journal of
1340	Paleontology 85, 987-1011.
1341	Sergeev, V.N., Sharma, M., Shukla, Y., 2008. Mesoproterozoic silicified microbiotas of
1342	Russia and India – characteristics and contrasts. Palaeobotanist 57, 323-358.
1343	Sergeev, V.N., Sharma, M., Shukla, Y., 2012. Proterozoic fossil cyanobacteria.
1344	Palaeobotanist 61, 189-358.
1345	Shatsky, N.S., 1964. Selected works 2. Nauka, Moscow (In Russian).
1346	Singh, V.K., Sharma, M., 2014. Morphologically complex organic-walled microfossils
1347	(OWM) from the late Paleoproterozoic – early Mesoproterozoic Chitrakut
1348	Formation, Vindhyan Supergroup, Central India and their implications on the
1349	antiquity of eukaryotes. Journal of the Paleontological Society of India 59, 89-102.

1350	Sperling, E.A., Rooney, A.D., Hays, L., Sergeev, V.N., Vorob'eva, N.G., Sergeeva, N.D.,
1351	Selby, D., Johnston, D.T., Knoll, A.H., 2014. Redox heterogeneity of subsurface
1352	waters in the Mesoproterozoic ocean. Geobiology 12, 373–386.
1353	Sperling, E.A., Wolock, C.J., Morgan, A.S., Gill, B.C., Kunzmann, M., Halverson, G.P.,
1354	Macdonald, F.A., Knoll, A.H., Johnston, D.T., 2015. Statistical analysis of iron
1355	geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451-
1356	454.
1357	Stueeken, E.E., 2013. A test of the nitrogen-limitation hypothesis for retarded eukaryote
1358	radiation: nitrogen isotopes across a Mesoproterozoic basinal profile. Geochimica
1359	et Cosmochimica Acta 120, 121-139.
1360	Sun, W.G., 1987. Palaeontology and biostratigraphy of Late Precambrian macroscopic
1361	colonial algae: Chuaria Walcott and Tawuia Hofmann. Palaeontographica B 203,
1362	109-134.
1363	Talyzina, N., Moczydłowska, M., 2000. Morphological and ultrastructural studies of some
1363 1364	Talyzina, N., Moczydłowska, M., 2000. Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lukati Formation, Estonia. Review of
1364	acritarchs from the Lower Cambrian Lukati Formation, Estonia. Review of
1364 1365	acritarchs from the Lower Cambrian Lukati Formation, Estonia. Review of Palaeobotany and Palynology 112, 1-21.
1364 1365 1366	acritarchs from the Lower Cambrian Lukati Formation, Estonia. Review of Palaeobotany and Palynology 112, 1-21. Tang, Q., Pang, K., Xiao, S., Yuan, X., Oua, Z., Wan, B., 2013. Organic-walled
1364 1365 1366 1367	acritarchs from the Lower Cambrian Lukati Formation, Estonia. Review of Palaeobotany and Palynology 112, 1-21. Tang, Q., Pang, K., Xiao, S., Yuan, X., Oua, Z., Wan, B., 2013. Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan
1364 1365 1366 1367 1368	acritarchs from the Lower Cambrian Lukati Formation, Estonia. Review of Palaeobotany and Palynology 112, 1-21. Tang, Q., Pang, K., Xiao, S., Yuan, X., Oua, Z., Wan, B., 2013. Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance. Precambrian
1364 1365 1366 1367 1368 1369	acritarchs from the Lower Cambrian Lukati Formation, Estonia. Review of Palaeobotany and Palynology 112, 1-21. Tang, Q., Pang, K., Xiao, S., Yuan, X., Oua, Z., Wan, B., 2013. Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance. Precambrian Research 236, 157–181.
1364 1365 1366 1367 1368 1369	acritarchs from the Lower Cambrian Lukati Formation, Estonia. Review of Palaeobotany and Palynology 112, 1-21. Tang, Q., Pang, K., Xiao, S., Yuan, X., Oua, Z., Wan, B., 2013. Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance. Precambrian Research 236, 157–181. Tappan, H., 1980. The Paleobiology of Plant Protists. WH Freeman, San Francisco.
1364 1365 1366 1367 1368 1369 1370	acritarchs from the Lower Cambrian Lukati Formation, Estonia. Review of Palaeobotany and Palynology 112, 1-21. Tang, Q., Pang, K., Xiao, S., Yuan, X., Oua, Z., Wan, B., 2013. Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance. Precambrian Research 236, 157–181. Tappan, H., 1980. The Paleobiology of Plant Protists. WH Freeman, San Francisco. Teyssèdre, B., 2006. Are the green algae (phylum Viridiplantae) two billion years old?
1364 1365 1366 1367 1368 1369 1370 1371	acritarchs from the Lower Cambrian Lukati Formation, Estonia. Review of Palaeobotany and Palynology 112, 1-21. Tang, Q., Pang, K., Xiao, S., Yuan, X., Oua, Z., Wan, B., 2013. Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance. Precambrian Research 236, 157–181. Tappan, H., 1980. The Paleobiology of Plant Protists. WH Freeman, San Francisco. Teyssèdre, B., 2006. Are the green algae (phylum Viridiplantae) two billion years old? Carnets de Geologie 3, 1–21.

1376	Timofeev, B.V., Herman, T.N., 1979. Precambrian microbiota of the Lakhanda Formation,
1377	in: Sokolov, B.S. (Ed.), Paleontology of the Precambrian and Early Cambrian.
1378	Nauka, Leningrad, pp. 137-147 (in Russian).
1379	Timofeev, B.V., Herman, T.N., Mikhailova, N.S., 1976. Microphytofossils from the
1380	Precambrian, Cambrian and Ordovician. Nauka, Leningrad (In Russian).
1381	Thusu, B., 1973. Acritarches provenant de l'Ilion Shale (Wenlockian), Utica, New York.
1382	Revue de Micropaléontologie 16, 137-146.
1383	Tynni, R., Donner, J., 1980. A microfossil and sedimentation study of the late Precambrian
1384	formation of Hailuoto, Finland. Geological Survey of Finland 311, 1-27.
1385	Veis, A.F., 1984. Microfossils from the Upper Riphean of the Turikhansk region.
1386	Paleontological Journal 2, 102-108 (In Russian).
1387	Veis, A.F., Vorob'eva, N. G., 1992. Riphean and Vendian microfossils from the Anabar
1388	Uplift. Izvestiya AN SSSR, Seriya Geologicheskaya 1, 114-130 (In Russian).
1389	Veis, A.F., Petrov, P.Yu., 1994a. The main peculiarities of the environmental distribution
1390	of microfossils in the Riphean Basins of Siberia. Stratigraphy and Geological
1391	Correlation 2, 397-425.
1392	Veis, A.F., Petrov, P.Yu., 1994b. Taxonomic diversity of Riphean organic-walled
1393	microfossils as dependent on their origination settings (the Bezymyannyi Formation
1394	of Turukhansk Region as an example), in: Ecosystem Reorganizations and
1395	Evolution of Biosphere 1. Nedra, Moscow, pp. 32–42.
1396	Veis, A.F., Semikhatov, M.A., 1989. The Lower Riphean Omakhta microfossil assemblage of
1397	Eastern Siberia: composition and depositional environments. Izvestiya AN SSSR,
1398	Seriya Geologicheskaya 5, 36–55 (In Russian).
1399	Veis, A.F., Kozlova, E.V., Vorob'eva, N.G., 1990. Organic-walled microfossils from the type
1400	section of the Riphean (Southern Urals). Izvestiya AN USSR, Seria Geologicheskaya 9,
1401	20-36 (In Russian).

1402	Veis, A.F., Petrov, P.Yu., Vorob'eva, N.G., 2001. Geochronological and biostratigraphic
1403	approaches to reconstruction of Precambrian biota evolution: new finds of microfossils
1404	in Riphean sections on the Western Slope of the Anabar Uplift. Doklady Earth
1405	Sciences 378(4), 413-419.
1406	Veis, A.F., Larionov, N.N., Vorob'eva, N.G., Lee Seong-Joo, 2000. Significance of
1407	microfossils for Riphean stratigraphy of the Southern Urals (Bashkirian
1408	Meganticlinorium) and adjacent region (Kama-Belaya Aulacogen). Stratigraphy
1409	and Geological Correlation 8, 33–50.
1410	Vidal., G., 1976. Late Precambrian microfossils from the Visingsö Beds in southern
1411	Sweden. Fossils and Strata 9, 1-56.
1412	Vidal, G., Ford, T.D., 1985. Microbiotas from the Late Proterozoic Chuar Group (Northern
1413	Arizona) and Uinta Group (Utah) and their chronostratigraphic implications.
1414	Precambrian Research 28, 349–389.
1415	Villalobo, E., Moch, C., Fryd-Versavel, G., Fleury-Aubusson, A., Morin, L., 2003.
1416	Cysteine proteases and cell differentiation: excystment of the ciliated protist
1417	Sterkiella histriomuscorum. Eukaryotic Cell 2, 1234–1245
1418	Vorob'eva, N.G., Sergeev, V.N., Semikhatov, M.A., 2006. Unique Lower Vendian
1419	Kel'tma microbiota, Timan Ridge: new evidence for the paleontological essence
1420	and global significance of the Vendian System. Doklady Earth Sciences 410, 1038-
1421	1043.
1422	Vorob'eva, N.G., Sergeev, V.N., Knoll, A.H., 2009. Neoproterozoic microfossils from the
1423	northeastern margin of the East European Platform. Journal of Paleontology 83,
1424	161-192.
1425	Vorob'eva, N.G., Sergeev, V.N., Petrov, P.Yu., 2015. Kotuikan Formation assemblage: A
1426	diverse organic-walled microbiota in the Mesoproterozoic Anabar succession,
1427	northern Siberia. Precambrian Research 256, 201-222.

1428	Walcott, C.D., 1899. Precambrian fossiliferous formations. Geological Society of America
1429	Bulletin 10, 199-244.
1430	Wellman, C.H., Strother, P.K., 2015. The terrestrial biota prior to the origin of land plants
1431	(embryophytes): a review of the evidence. Palaeontology 58, 601-627.
1432	Willman, S., Moczydlowska, M., 2008. Ediacaran acritarch biota from the Giles 1 drillhole,
1433	Officer Basin, Australia, and its potential for biostratigraphic correlation.
1434	Precambrian Research 162, 498-530.
1435	Wiman, C., 1894. Ein prakambrisches Fossil. Bulletin of the Geological Institution of the
1436	University of Uppsala 2, 109-113.
1437	Xiao, S., Knoll, A.H., Kaufman, A.J., Yin, L., Zhang, Y., 1997. Neoproterozoic fossils in
1438	Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic
1439	conundrum from the North China Platform. Precambrian Research 84, 197-220.
1440	Yankauskas, T.V., 1980. On the micropaleontlogical characteristic of the Middle and
1441	Upper Cambrian in the north-west of the East European Platform. Izvestiya
1442	Akademiya Nauk Estonskoyi SSR, Geology 19(4), 131-135 (In Russian).
1443	Yankauskas, T.V., 1982. Microfossils of the Riphean in the Southern Urals, in: Keller, B.M.
1444	(Ed.), Stratotype of the Riphean. Palaeontology, Palaeomagnetism. Nauka, Moscow, pp.
1445	84–120 (In Russian).
1446	Yankauskas, T.V. (Ed.), 1989. Precambrian microfossils of the USSR. Trudy Instituta
1447	Geologii i Geochronologii Dokembria SSSR Akademii Nauk, Leningrad (In
1448	Russian).
1449	Yin, L., 1997. Acanthomorphic acritarchs from Meso-Neoproterozoic Shales of the Ruyang
1450	Group, Shanxi, China. Review of Palaeobotany and Palynology 98, 15–25.
1451	Yin, L., Yuan, X., Meng, F., Hu, J., 2005. Protista of Upper Mesoproterozoic Ruyang
1452	Group in Shanxi Province, China. Precambrian Research 141, 49-60.

	ACCEPTED MANUSCRIPT	
		59
1453	Zhang, R., Feng, S., Ma, G., Xu, G., Yan, D., 1991. Late Precambrian macroscopic fossil	
1454	algae from Hainan Island. Acta Palaeontologica Sinica 30, 1 15-125.	
1455	Zhang, Y., 1981. Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation	
1456	(Early Sinian: Riphean), Hebei, China. Journal of Paleontology 55, 485–506.	
1457		

Figure captions

1459

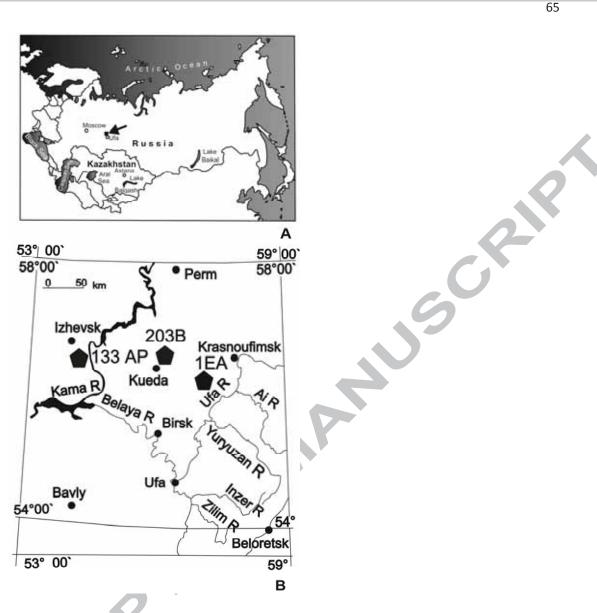
1458

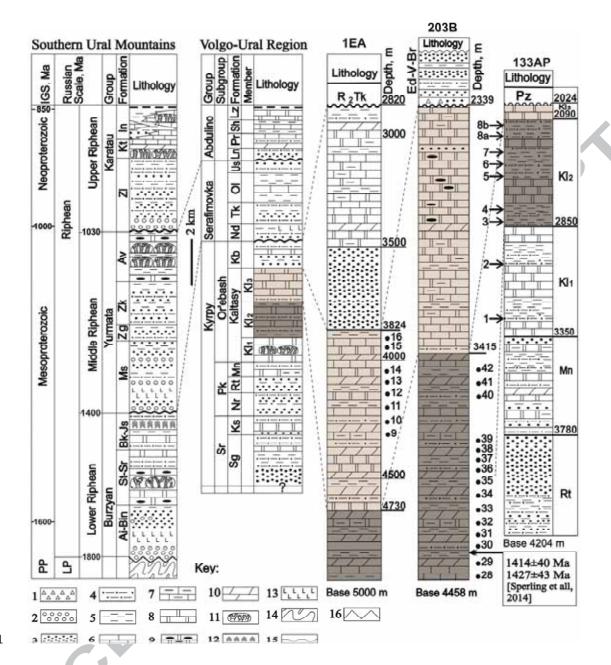
1460 Fig. 1. A – Index map of North Eurasia, indicating the location of the studied area (filled 1461 square at arrow). B – Map of the southern Ural Mountains and Volgo-Ural region showing 1462 the locations of the microfossiliferous boreholes of the Kaltasy Formation (filled pentagons; 1463 see section 3.1 for details), abbreviations: 203B – 203 Bedryazh, 133AP – 133 Azino-1464 Pal'nikovo, and 1EA – 1 East Askino boreholes. 1465 1466 Fig. 2. Generalized Proterozoic stratigraphy of the Bashkirian meganticlinorium (southern 1467 Ural Mountains) and Volga-Ural region (upper Neoproterozoic part of the successions not shown) with 1 East Askino (1EA), 203 Bedryazh (203B) and 133 Azino-Pal'nikovo 1468 (133AP) boreholes (modified after Keller and Chumakov, 1983; Sergeev, 2006; Kah et al., 1469 1470 2007; Kozlov et al., 2011). Abbreviations, formations and members: Ai-Bin – Ai-Bolshoi Inzer, St-Sr – Satka-Suran, Bk-Js – Bakal-Yusha, Ms – Mashak, Zg – Zigal'ga, Zk – 1471 1472 Zigazy-Komarovo, Av – Avzyan, Zl – Zilmerdak, Kt – Katav, In – Inzer, Sg - Sigaevo, Ks - Kostino, Nr - Norkino, Rt - Rotkovo, Mn - Minaevo, Kl - Kaltasy, Kl₁ - Sauzovo, Kl₂ -1473 1474 Arlan, Kl₃ – Ashit, Kb – Kabakovo, Nd – Nadezhdino, Tk – Tukaevo, Ol – Ol'khovka, Us 1475 – Usa, Ln – Leonidovo, Pr – Priyutovo; Sh – Shikhan, Lz – Leuznovo; groups and 1476 subgroups: Sr – Sarapul, Pk – Prikamskii, Br –Borodulino; other geological units: PP – 1477 Paleoproterozoic, LP – Lower Proterozoic, Pz – Paleozoic, R₂ – Middle Riphean, Ed – 1478 Ediacaran, V – Vendian. Key, 1 – tillites, 2 – conglomerates, 3 – sandstones, 4 – siltstones, 5 1479 – shales, 6 – limestone, 7 – clay limestone, 8 – dolomite, 9 – dolomites with cherts, 10 – 1480 marls, 11 – stromatolites, 12 – Conophyton stromatolites, 13 – tuff, tuffaceous sandstone, and 1481 diabase; 14 – basement gneiss, 15 – disconformities, 16 – angular unconformities. New Re-1482 Os age estimates from 203 Bedryazh core (Sperling et al., 2014) indicated by arrow (see section 2.3 for details). The numbers of the collected samples are shown to the right of the 1483

1EA and 203B cores (indicated by dots); fossiliferous levels of the samples collected by 1484 Veis et al., 2000 are indicated to the left of 133AP core (arrows). The fossiliferous Arlan 1485 1486 (Kl_2) and Ashit (Kl_3) members of the Kaltasy Formation are shown with different shades of grey. 1487 1488 Fig. 3. Microfossil taxa reported from the Kaltasy Formation, indicating their morphological 1489 grouping, relative abundance (R = rare, C = common, D = dominant), and size range 1490 (displayed on a logarithmic scale in which the arrows denote taxa larger than 550 µm in 1491 1492 diameter). 1493 1494 Fig. 4. Sphaeromorph acritarchs. 1, 6, 7, Leiosphaeridia jacutica; 1, (1EA)-11-3, p. 6, 1495 P55[3], 14712-117; 6, (1EA)-15-1, p. 2, M52[3], 14712-191; 7, (1EA)-11-4, p. 5, R50[0], 1496 14712-124; 2, Leiosphaeridia tenuissima (large light disc) and L. crassa (smaller darker disk), (1EA)-12-3, p. 2, N59[2], 14712-154a and 14712-154b, respectively; 3, 4, 1497 Leiosphaeridia ternata; 3, (1EA)-16-1, p. 2, M54[0], 14712-196; 4, (203B)-40-1, p. 4, 1498 N70[2], 14712-70; 5, Leiosphaeridia atava, (203B)-40-3, p. 7, K66[0], 14712-92; 8 – 10, 1499 Leiosphaeridia sp.; 8, (1EA)-16-6, p. 2, M49[4], 14712-228; 9, (1EA)-12-2, p. 2, M46[2], 1500 14712-147; 10, (1EA)-11-3, p. 3, M62[1], 14712-114; 11 – 13, *Leiosphaeridia* (?) 1501 wimanii; 11, (203B)-34-20, p. 1, R27[3], 14712-297; 12, (203B)-34-19, p. 2, M61[2], 1502 14712-296; 13, (203B)-34-19, p. 1, L62[4], 14712-298. 1503 For all illustrated specimens, the single scale bar = $10 \mu m$ and the double bar = $100 \mu m$. 1504 All specimens are from the Arlan and Ashit members of the Kaltasy Formation; sample 1505 1506 location and explanation are provided in sections 3.1 and 7.1, respectively. 1507

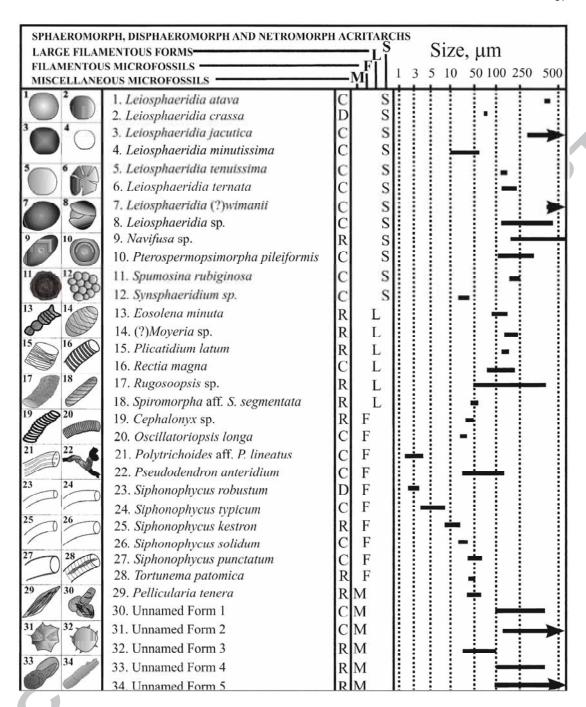
- 1508 Fig. 5. Sphaeromorph and netromorph acritarchs.1, *Spumosina rubiginosa*, (133AP)-2560-
- 2568, p. 1, K38[2], 14712-287; 2, 3, Synsphaeridium sp.; 2, (203B)-31-1, p. 2, Q59[3],
- 1510 14712-8; 3, (1EA)-18-1, p. 4, N59[4], 14712-243; 4-7, Pterospermopsimorpha pileiformis;
- 4, (1EA)-11-1, p. 3, N53[4], 14712-104; 5, (1EA)-11-4, p. 1, K51[2], 14712-120; 6, (1EA)-
- 1512 14-1, p. 1, L48[0], 14712-186; 7, (1EA)-12-4, p. 4, Q58[4], 14712-165; 8, 9, Spiromorpha
- aff. S. segmentata, (203B)-34-6, p. 1, M64[3],14712-32; 9, detail of 8, arrows indicate
- crescent-like connecting wields; 10-12, (?) Moyeria sp.; 10, 11, (203B)-34-6, p. 3, S59[2],
- 1515 14712-34, 11, detail of 10, arrows indicate overlapping of bispiral bands each to other;12,
- 1516 (1EA)-12-4, p. 3, O57[2], 14712-164, arrows indicate possible initial cleavage of vesicle;
- 1517 13-15, Navifusa sp.; 13, (1EA)-16-8, p. 3, M58[4], 14712-235; 14, (1EA)-11-2, p. 4,
- 1518 N58[4], 14712-110; 15, (1EA)-12-1, p. 3, O53[1], 14712-136.

- 1520 Fig. 6. Large filamentous forms. 1-6, *Rectia magna*; 1, (133AP)-2064-2068-1, p. 2,
- 1521 H40[3], 14712-6802; 2, (133AP)-2052-2054-1, p. 3, J36[1], 14712-5084; 3, holotype,
- 1522 (133AP)-2052-2054-1, p. 8, Q33[2], 14712-5408; 4, (133AP)-2056-2058-1, p. 4, Q47[2],
- 1523 14712-269; 5, (133AP)-2058-2060-1, p. 2, K38[2], 14712-6002; 6, (133AP)-2052-2054-1,
- p. 9, Y40[4], 14712-265; 7–9, Eosolena minuta; 7, (1EA)-11-5, p. 1, L46[0], 14712-125, 8,
- 9, details of 9; 10, *Plicatidium latum*, (133AP)-2044-2046-1, p. 6, O41[1], 14712-4618;
- 11, 12, Rugosoopsis sp.; 11, (133AP)-2073-2077-1, p. 3, K44[4], 14712-279; 12, (203B)-
- 1527 34-7, p. 1, L67[2], 14712-35.

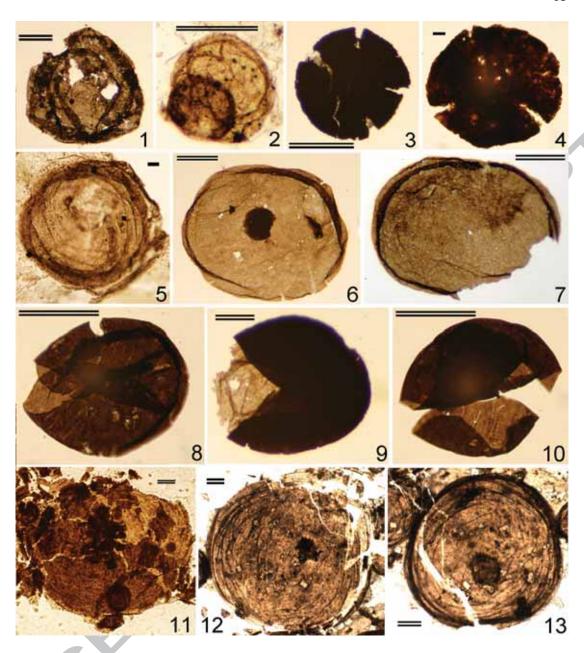

- Fig. 7. Filamentous microfossils. 1, *Polytrichoides* aff. *P. lineatus*, (133AP)-2060-2064-1,
- p. 1, D36[3], 14712-6401; 2, 6, 7, Oscillatoriopsis longa; 2, (133AP)-2044-2046-1, p. 2,
- 1531 D45[3], 14712-258; 6, (1EA)-11-5, p. 3, J45[4], 14712-131; 7, (203B)-39-3, p. 2, L68[1],
- 1532 14712-60; 3, 5, Tortunema patomica; 3, (1EA)-11-3, p. 4, N59[3], 14712-115; 5, (133AP)-

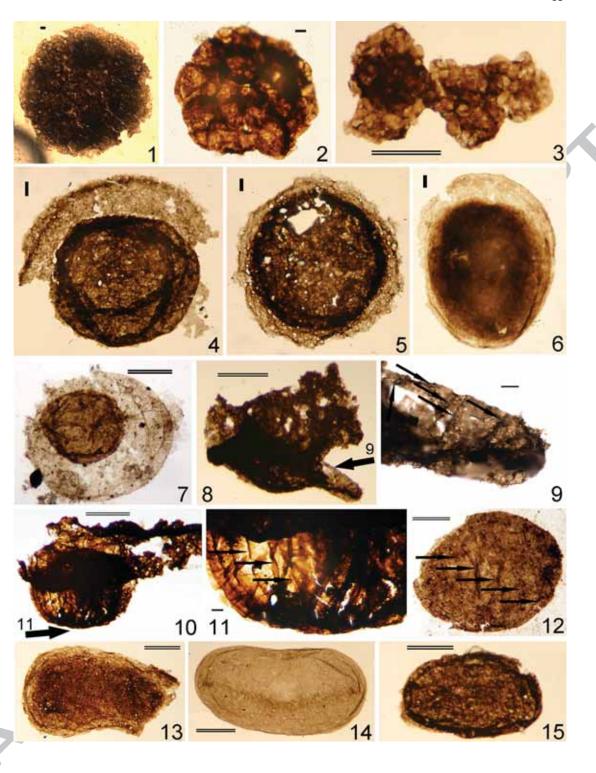

- 2058-2060-1, p. 12, K39[2], 14712-271; 4, 8, Cephalonyx sp.; 4, (133AP)-2568-2572-1, p.
- 1534 6, N40[2], 14712-6003; 8, (133AP)-2073-2077-1, p. 1, G36[3], 14712-278, arrow indicates
- a probable mechanically displaced trichome fragment.

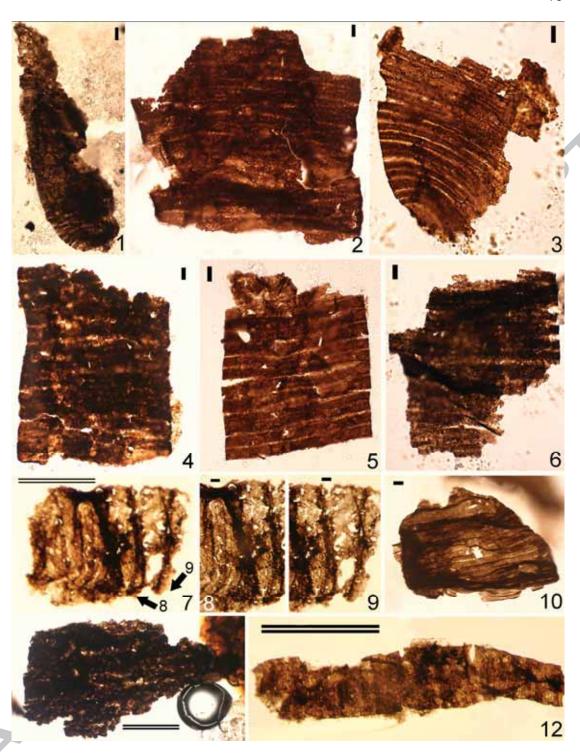
- 1537 Fig. 8. Filamentous and miscellaneous microfossils. 1-3, *Pseudodendron anteridium*;
- 1538 1,(133AP)-2817-2822-1, p. 2, V20[1], 14712-2801; 2, (133AP)-2760-2765-1, p. 4, H36[3],
- 1539 14712-2764; 3, (203B)-40-3, p. 1, E57[3], 14712-86; 4, Siphonophycus robustum (thin
- threads) and poorly preserved filaments of *Polytrichoides* aff. *P. lineatus* or *Pellicularia*
- tenera (larger threads), (203B)-34-3, p. 4, Q59[1], 14712-24; 5, Siphonophycus typicum,
- 1542 (1EA)-12-7, p. 1, M53[3], 14712-184; 6, Siphonophycus solidum, (1EA)-11-3, p. 2, L57[3],
- 1543 14712-113; 7, Siphonophycus punctatum, (133AP)-2046-2048-1, p. 1, F35[4], 14712-4803;
- 8-10, *Pellicularia tenera*; 8, (133AP)-2353-2355-1, p. 1, W44[2], 14712-551; 9, (203B)-
- 1545 34-9, p. 2, K66[4], 14712-43; 10, (203B)-34-8, p. 3, P68[4], 14712-41.

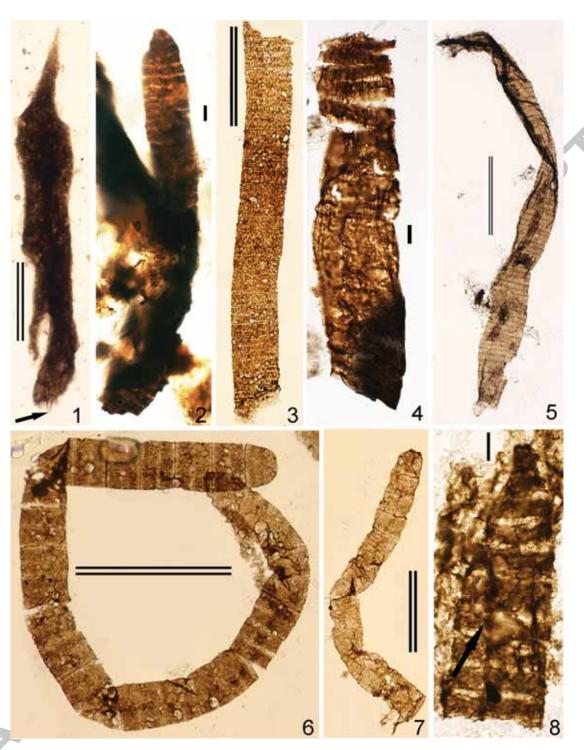

- 1547 Fig. 9. Miscellaneous microfossils. 1–3, Unnamed form 1; 1, (1EA)-12-6, p. 2, N46[3],
- 1548 14712-182; 2, (1EA)-12-2, p. 5, K57[3], 14712-150; 3, (1EA)-12-3, p. 1, F60[4], 14712-
- 1549 153; 4 6, Unnamed form 2; 4, (203B)-31-1, p. 3, S60[1], 14712-9; 5, (203B)-39-3, p. 3,
- 1550 M69[4], 14712-61; 6, (203B)-34-3, p. 3, K60[4], 14712-23; 7, 10, Unnamed form 3; 7,
- 1551 (203B)-40-2, p. 7, R53[4], 14712-83; 10, (203B)-40-2, p. 8, S58[3], 14712-85; 8, 9, 11, 12,
- 1552 Unnamed form 4; 8, (1EA)-16-7, p. 2, N22[3], 14712-232; 9, (1EA)-16-2, p. 3, P55[4],
- 1553 14712-205; 11, (203B)-34-3, p. 2, K62[0], 14712-22; 12, (1EA)-11-5, p. 1a, K47[3],
- 1554 14712-126; 13, 14, Unnamed form 5; 13, (1EA)-12-3, p. 5, N53[4], 14712-158; 14, (1EA)-
- 1555 18-1, p. 6, O54[0], 14712-245.

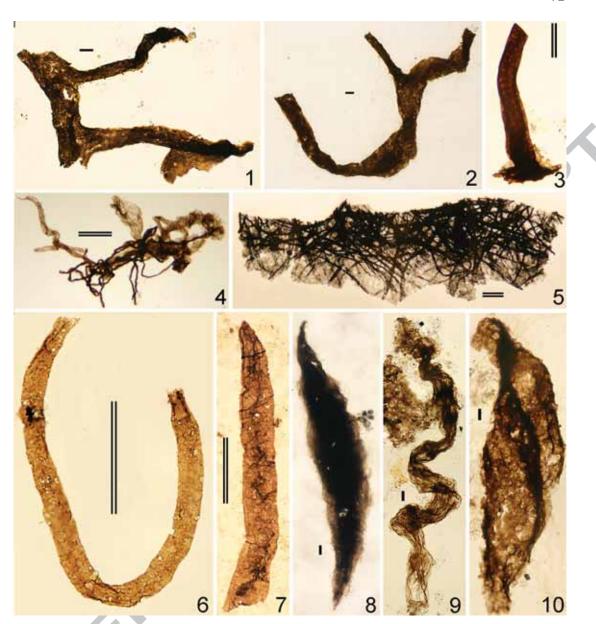
1557	Fig. 10. Three morphological groups (genera) of filamentous microfossils: A – <i>Rectia</i> tubes
1558	with a rounded closed end bearing double annulations, B – Cephalonyx tubes bearing
1559	numerous annulations, C – elastic tubes of <i>Tortunema</i> with numerous cross-ribs tapering
1560	toward both ends and poorly preserved trichome remains. The double scale bar is $100 \ \mu m$
1561	and single bar is 10 µm.
1562	
1563	
1564	

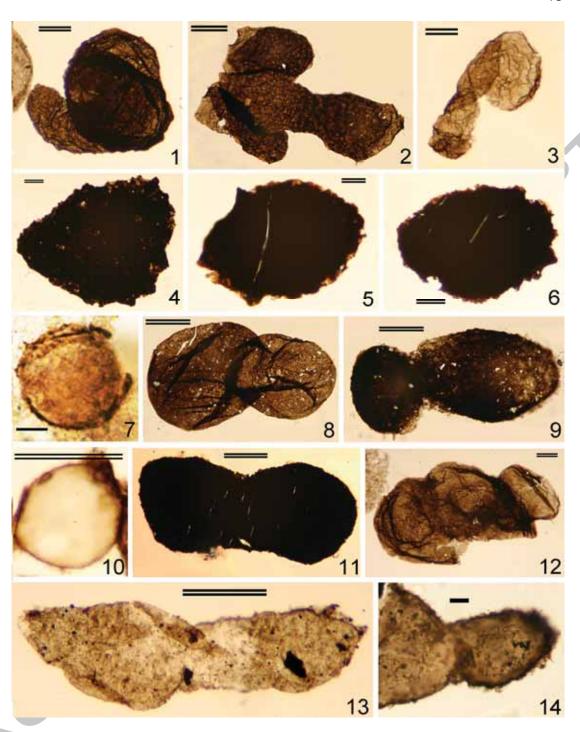


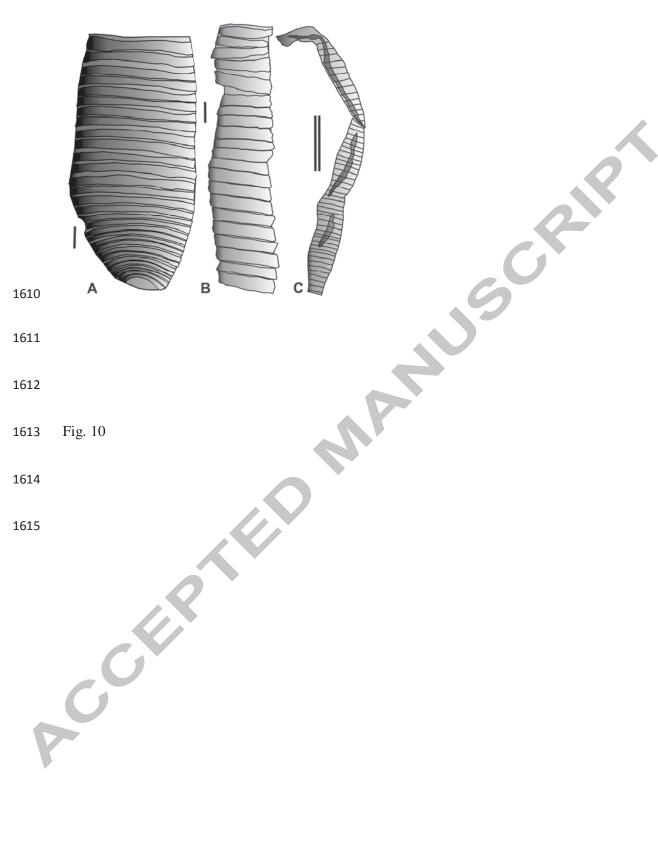

1573 Fig. 2


1579 Fig. 3


1584 Fig. 4


1590 Fig. 5


1594 Fig. 6


1597 Fig. 7

1602 Fig. 8

1607 Fig. 9

1618 Graphical abstract

• The ~1450-Ma-old Kaltasy Formation contains compressed organic-walled microfossils
• The fossils record life in basinal but oxic environments.
• The assemblage includes large and moderately complex eukaryotic microorganisms.
• The microbiota differs from many coeval deposits in its absence of acanthomorphs.
• The fossils document morphological conservatism among early eukaryotes.