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Stringy ER = EPR

Abstract

The ER = EPR correspondence asserts that quantum entanglement and geometric spa-

tial connection are closely related. A two-sided black hole, for example, is equivalent to

an entangled superposition of disconnected geometries. In this dissertation, we construct

perturbative string dualities that give explicit examples of this equivalence.

The string dualities are obtained by continuation in the sense of the target time coordinate

of CFT dualities for the SL(2,R)k/U(1) and Z\SL(2,C)k/SU(2) coset WZW models. For

large k, these CFTs admit a weakly-coupled description as a string in a Euclidean black

hole target space of two-dimensional dilaton-gravity and three-dimensional AdS gravity,

respectively. They also admit dual, strongly-coupled descriptions with a non-contractible

target Euclidean time circle and a condensate of winding strings that wrap it. The latter

description is the sine-Liouville background of Fateev, Zamolodchikov, and Zamolodchikov

in the case of SL(2,R)k/U(1), and a similar dual that we propose for Z\SL(2,C)k/SU(2). By

continuing the target Euclidean time coordinate on both sides of these dual backgrounds, we

obtain Lorentzian dualities relating an ER description of a string in a connected black hole

and an EPR description in a disconnected target with a condensate of entangled strings.

The first part of the dissertation is devoted to a study of the SL(2,R)k/U(1) CFT itself in

the semi-classical limit. We construct the saddle-point expansion for the functional integral

iii



that computes the reflection coefficient of the CFT. To do so requires that we complexify the

target space and sum over complex-valued saddles, which, remarkably, include configurations

that hit the singularity of the Lorentzian black hole within the complexified target.

The second part of the dissertation proposes the sine-Liouville dual description of the

Z\SL(2,C)k/SU(2) CFT, and develops the tools necessary to establish the string dualities

for ER = EPR by continuation. Part of the construction relies on understanding string

perturbation theory in different spacetime states—the Hartle-Hawking state in the connected

ER description of the black hole and the thermofield-double state in the disconnected EPR

description. The state dependence is encoded in the choice of Schwinger-Keldysh contour for

the worldsheet functional integral. We show that the sine-Liouville Euclidean time winding

condensate leads in the Lorentzian continuation to a condensate of pairs of entangled folded

strings, one on each side of the disconnected target and emanating from a strong-coupling

region in place of a horizon. Each pair of strings is prepared in the worldsheet thermofield-

double state in the sense of angular quantization, and a related angular deformation of the

string moduli contour of integration is required to define string perturbation theory in the

thermal EPR microstates. Finally, we discuss an infinitesimal interpretation of the dualities

that gives equivalent semi-classical descriptions of a conformal perturbation that shifts the

mass of the black hole.

iv



Contents

Title Page i

Copyright ii

Abstract iii

Table of Contents v

Citations to Previously Published Work vii

Acknowledgements viii

Dedication ix

1 Introduction 1

2 Semi-Classical Analysis of the 2D Black Hole 24
2.1 Review of the Free Linear Dilaton . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 A Family of Free Bosons . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 Lagrangian Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.3 Asymptotic Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Liouville Reflection in the Semi-Classical Limit . . . . . . . . . . . . . . . . . 38
2.2.1 Review of Liouville CFT . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.2 Asymptotic Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.3 Saddle-Point Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Review of the SL(2,R)k/U(1) CFT . . . . . . . . . . . . . . . . . . . . . . . 62
2.3.1 The Cigar Sigma-Model . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.2 The 2D Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.3.3 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3.4 Asymptotic Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.4 Cigar Reflection in the Semi-Classical Limit . . . . . . . . . . . . . . . . . . 81
2.4.1 Quantum Mechanics on the Cigar . . . . . . . . . . . . . . . . . . . . 87
2.4.2 Complexified Quantum Mechanics . . . . . . . . . . . . . . . . . . . . 96
2.4.3 Reflection Coefficient on the Complex r-Plane . . . . . . . . . . . . . 104
2.4.4 Transmission Coefficient on the Complex r-Plane . . . . . . . . . . . 115

2.5 sine-Liouville Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.5.1 The FZZ Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.5.2 sine-Liouville Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3 State Dependence of String Perturbation Theory 131
3.1 Review of the SL(2,R)k and SL(2,C)k/SU(2) CFTs . . . . . . . . . . . . . . 133

3.1.1 Geometry of AdS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.1.2 SL(2,R)k Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.1.3 SL(2,C)k/SU(2) Spectrum . . . . . . . . . . . . . . . . . . . . . . . . 150

3.2 SL(2,R)k/U(1) From SL(2,R)k . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.3 Schwinger-Keldysh Contours for Lorentzian String Theory . . . . . . . . . . 158

v



3.3.1 AdS3 in the Vacuum State . . . . . . . . . . . . . . . . . . . . . . . . 164
3.3.2 AdS3 in a Thermal State . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.3.3 The BTZ Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
3.3.4 The 2D Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4 Stringy ER = EPR 189
4.1 3D FZZ Dualities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.2 ER = EPR in 2D Dilaton-Gravity . . . . . . . . . . . . . . . . . . . . . . . . 201

4.2.1 Angular Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
4.2.2 Mutual Locality and the String Moduli Contour . . . . . . . . . . . . 225

4.3 ER = EPR in Asymptotic AdS3 Gravity . . . . . . . . . . . . . . . . . . . . . 229
4.4 Infinitesimal FZZ Dualities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

4.4.1 The Winding Condensate . . . . . . . . . . . . . . . . . . . . . . . . 239
4.4.2 The Dilaton-Shifting Operator . . . . . . . . . . . . . . . . . . . . . . 246
4.4.3 Infinitesimal Lorentzian Dualities . . . . . . . . . . . . . . . . . . . . 250

References 253

vi



Citations to Previously Published Work

The work described in this dissertation was completed in collaboration with Daniel Jaf-

feris. Much of the content of Ch. 2 has appeared previously in

D. L. Jafferis and E. Schneider, “Semi-Classical Analysis of the String Theory
Cigar,” April 2020, arXiv:hep-th/2004.05223,

and much of the content of Chs. 3-4 has appeared previously in

D. L. Jafferis and E. Schneider, “Stringy ER = EPR,” April 2021, arXiv:hep-
th/2104.07233.

vii

https://arxiv.org/abs/2004.05223
https://arxiv.org/abs/2104.07233
https://arxiv.org/abs/2104.07233


Acknowledgements

I could not have completed this degree without the help of a great many people to whom

I am deeply grateful.

Foremost, I must thank my advisor, Daniel Jafferis, for sharing so much of his time,

insight, and ideas with me. Daniel has some of the most remarkable intuition for physics of

anyone that I have ever encountered, and I consider myself extremely fortunate to have had

the opportunity to learn with him these past years. Thank you so much.

I have also learned an enormous amount from the many faculty members, post-docs,

graduate students, and undergraduate students I have had the chance to interact with, both

in graduate school and when I was an undergraduate at Caltech. Thank you all for everything

you have taught me.

Thank you so much to the many staff members at Harvard who keep our department

running. I would like to single out in particular Jacob Barandes and Lisa Cacciabaudo,

whose support over the years has been invaluable.

I owe an immeasurable debt of gratitude to the many teachers who have inspired me

throughout my life—far too many than I can name and thank properly here. But I would

especially like to thank Andy Bramante, David Proctor, and Joe Wesney for nurturing my

scientific curiosity as a high school student long ago.

Finally, thank you so much to my parents for making everything possible, and to my

entire family for your continual love and support.

viii



For Dad & Mom,
Allison, Jeff, & Rebecca,

Harrison & Ruby,
and even Mae

ix



1 Introduction

The remarkable relationship between quantum entanglement and geometric spatial con-

nection is a profound feature of quantum gravity [1–6]. The link between these two naively

disparate subjects goes by the moniker “ER = EPR” [4]—ER for Einstein and Rosen [7],

whose Einstein-Rosen bridge connects the left and right regions of a two-sided black hole,

and EPR for Einstein, Podolsky, and Rosen [8], whose famous thought experiment was one

of the early works that considered the consequences of entanglement in quantum mechan-

ics. The prototypical example of this correspondence is that a pair of black holes that are

entangled with one another are joined in their interiors by an Einstein-Rosen bridge, as in

the two-sided Schwarzschild black hole shown in Fig. 1.1a. The principal goal of the work

described in this dissertation is to construct examples of this equivalence of entanglement

and spatial connection in string theory.

Black holes play fascinating dual roles in the landscape of physics. Our understanding

of the laws of nature is organized, both historically and practically, by scale. At the very



1 INTRODUCTION

(a) (b)

Figure 1.1: Schwarzschild Black Hole. The Schwarzschild black hole is a solution of Einstein gravity in asymptotically
flat space (left). It is a two-sided geometry, asymptoting to one Minkowski-space universe to the right, and to another on the
left. Spatial slices of these two universes corresponding to the horizontal dashed lines are shown on the right. The two sides
are joined at the horizon bifurcation point where the diagonal dotted lines intersect on the left, which corresponds to the black
band gluing together the two throats on the right. The connection is called a wormhole or an Einstein-Rosen bridge. They are
not causally connected, however, because no signal can pass from the left region to the right or vice-versa without exceeding
the speed of light. The region behind the horizons is the interior of the black hole, ending at the past and future singularities
represented by the zigzag lines.

largest distance scales—equivalently, the lowest energy scales—gravity is the dominant force

in the universe, dictating the behavior of galaxies, and the stars, planets, and black holes

that comprise them. Being the densest objects in the universe, black holes play a major

role in this arena. At smaller distance scales, however, gravity becomes far less important

than the other forces. For colliding protons at the Large Hadron Collider, for example, at

energy scales of order 10 TeV, the gravitational force is so feeble compared to the strong

and electroweak forces that gravity is typically ignored altogether in the study of particle

physics at these energy scales. Above the Planck scale of order 1016 TeV, however, far beyond

any energy scale ever likely to be accessed in a particle accelerator built on Earth, gravity

reasserts itself: colliding particles with such enormous energies would form black holes.

Black holes therefore tie high and low energy physics together in an intricate way, and

they serve as an essential guidepost in our efforts to understand the laws of physics at all
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1 Introduction

scales. Although we do not know the fully quantum theory of gravity that describes our

universe, the fact that in the vicinity of the horizon of a large black hole—the point-of-no-

return beyond which nothing, not even light, can escape its gravitational pull—spacetime is

only weakly curved enables us to learn a great deal by applying the lower-energy physics we

already understand. This line of reasoning has driven much research in theoretical physics

in recent decades. It lead to Hawking’s discovery that black holes radiate like blackbodies

[9], which in turn spawned the information paradox [10] that to this day remains one of

the overarching questions informing research on quantum gravity. Namely, if a black hole

eventually evaporates away, how is the data of the quantum state of whatever matter had

fallen into it encoded in the outgoing radiation?

Hawking’s calculations, together with the work of Bekenstein [11, 12], showed that black

holes behave as ordinary thermodynamic objects. In particular, they carry entropy—a great

deal of it, in fact—given by the Bekenstein-Hawking formula S = A
4GN

, with A the area of

the horizon surface. In classical general relativity, black hole solutions are uniquely labeled

by their mass, angular momentum, and charge [13, 14], meaning that the data of the initial

configuration of collapsing matter that formed the black hole is not encoded in the classical

solution. Instead, one concludes that a black hole has a huge number eS of quantum-

mechanical microstates which reflect the large number of initial configurations that may

have formed it. A complete theory of quantum gravity should therefore be able to account

for these black hole microstates.

The fact that the black hole entropy scales with the area of the horizon is quite surprising

3



1 INTRODUCTION

at first. In field theory, for example, one has degrees of freedom associated to each point in

space, and thus the entropy in a given region is proportional to its volume. Once gravity is

taken into account, however, one arrives at an unexpected consequence: there is an upper

bound on the amount of entropy that can be packed into any volume—the Bekenstein-

Hawking entropy of a black hole whose horizon area is the boundary of that volume [15,16].

For if that were not the case, by piling more junk into the volume until it collapses into a

black hole, the entropy would suddenly drop to the Bekenstein-Hawking level, down from

its supposedly larger initial value, in violation of the second law of thermodynamics. One

concludes that the maximum entropy in a region of space is proportional not to its volume

where the degrees of freedom were assumed to live, but to its boundary area. This leads to

the idea of holography [15, 17], which claims that the degrees of freedom in a gravitational

system in fact live on the boundary, i.e. in one lower dimension than the bulk.

Over the past twenty years, the idea of holography has been borne out through the

gauge/gravity correspondence [18–20], which has transformed the way we think about quan-

tum gravity. The correspondence says that gravity in a d + 1 dimensional spacetime1 is

equivalent to a field theory living in d dimensions. The best known special case is the

AdS/CFT correspondence, which relates gravity in an asymptotically Anti de Sitter (AdS)

spacetime to a conformal field theory (CFT) on its boundary. A CFT is a special kind of

quantum field theory which is invariant under local rescalings of the metric, while AdS is

a particular manifold that solves Einstein’s equations with negative cosmological constant

while preserving as many symmetries as possible. AdS3, for example, may be thought of as

1Potentially together with some additional compact manifold.
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1 Introduction

a solid cylinder, with Lorentzian time running along its length. Its dual, two-dimensional

CFT description therefore naturally lives on the cylindrical surface at its boundary.2 In

other words, the dual CFT is quantized on a circle S1 times time R. In fact, at present the

duality is elevated to a definition of the bulk theory of quantum gravity by equating it to the

boundary CFT. At low energies, the bulk theory is described by Einstein gravity, coupled

to additional light fields.

The two-sided black hole referenced in the description of ER = EPR at the beginning of

the introduction and pictured in Fig. 1.1a is not an example of an astrophysical black hole

formed by collapsing matter. It is an eternal solution of Einstein’s equations that exists for

all time. It is ER = EPR that captures the physical significance of this solution: it describes

two black holes in separate universes that have been entangled with one another, and the

entanglement is responsible for the Einstein-Rosen bridge that forms between them.

Each side of the black hole approaches a copy of its own asymptotically Minkowski-space

universe, causally disconnected from the universe on the opposite side. However, the two

sides are spatially connected at the horizon bifurcation point, where the two diagonal dotted

lines in the figure intersect, and they share common past and future interior regions behind

these horizons that terminate in the past and future singularities. This spatial connection

is the Einstein-Rosen bridge, also known as a (non-traversable) wormhole. A spatial slice of

the wormhole is shown in Fig. 1.1b, corresponding to the zero-time slice of the two-sided

black hole indicated by the horizontal dashed line in Fig. 1.1a. Although the two sides are

2More precisely, the conformal boundary surface—the cylinder is at infinite distance in the AdS metric.

5



1 INTRODUCTION

spatially connected, no signal can pass from one to the other, because it is impossible to cross

the bridge without exceeding the speed of light. In particular, as time evolves upward on

the Schwarzschild diagram, the wormhole grows ever-longer, and any signal one attempts to

send from one side to the other becomes trapped in the interior region behind the horizons.

Two intrepid astronauts who jump into the black hole from either side could meet in the

interior, but they cannot transmit the content of their conversation back to their home space

stations before they meet their unfortunate end in the singularity.

Each side of the geometry may be thought of as a black hole living in its own universe. If

the black holes were not entangled with one another, there would be no connection between

them, corresponding to erasing the black band in middle of Fig. 1.1b. For the two-sided

black hole, however, the left and right sides are entangled, and the horizons of the black

holes are glued together. According to ER = EPR, it is this entanglement that leads to the

wormhole that connects the two.

To make this idea concrete, let us discuss the analogous two-sided black hole in asymptotic

AdSd+1 space, so that we may apply the technology of AdS/CFT. Choose d = 2 for simplic-

ity; the asymptotically AdS3 black hole is also known as BTZ after its discoverers [21, 22].

This two-sided AdS3 black hole has two asymptotically AdS3 regions, and is therefore related

to two copies of the dual CFT, one on the left and one on the right. The two-sided black hole

is dual to a particular state in these two copies of the CFT, known as the thermofield-double

(TFD) state [23,24].3

3Above the Hawking-Page transition temperature [25].
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1 Introduction

To understand this statement, consider first a thermal state of a single CFT on a circle.

It is a mixed state in the Hilbert space H(S1), described by a density matrix ρ = e−βH ,

where 1/β is the temperature of the state. A thermal state on a spatial manifold Σ is in

general prepared by the Euclidean functional integral on Σ × S1
β. β is the circumference of

the Euclidean time circle, corresponding to the evolution by e−βH , and the Euclidean time

is periodic because a thermal correlation function is computed by tr(e−βH · · · ). Then the

thermal state for the CFT on Σ = S1 is prepared by a Euclidean functional integral on a

torus S1 × S1
β. By cutting the Euclidean torus at a single spatial slice S1 and gluing it to

the S1 cross-section of the Lorentzian cylinder, one prepares the thermal state in the Hilbert

space of the CFT on the circle.

Alternatively, one may make multiple cuts on the torus to prepare states in the product

Hilbert space of multiple copies of the CFT. For the TFD, one slices the torus in half,

preparing a state in HL(S1)⊗HR(S1) describing two copies of the CFT. In other words, the

TFD state is prepared by the Euclidean functional integral on [0, β/2]× S1, consisting of an

interval times a circle.

If one were to sew the second cut in the torus back up, one would recover the thermal state

in the single copy of the CFT on the remaining circle. Thus, the thermal density matrix e−βH

on HR(S1) corresponds to the reduced density matrix of the TFD state in HL(S1)⊗HR(S1)

with respect to HL: e−βH ∝ trHL
|TFD〉 〈TFD|. |TFD〉 is therefore called a purification of

the thermal state, because it lifts the mixed state e−βH in one copy of the CFT to a pure

state in two copies.

7



1 INTRODUCTION

One may show that |TFD〉 as defined by this Euclidean functional integral is equivalently

expressed as a sum over energy eigenstates of the two CFT copies:4

|TFD〉 ∝
∑
n

e−βEn/2 |n〉L ⊗ |n〉R . (1.1)

Each term is simply a product of a state |n〉L from HL and a state |n〉R from HR. The sum,

however, is an entangled state in HL ⊗HR. In other words, |TFD〉 cannot be written as a

product of a single state in HL with a single state in HR—it gives the state of the whole

system, but not the state of the left and right CFTs individually. Such entangled states are

ubiquitous in quantum mechanics; a familiar example is the spin singlet |↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉

of the two-state system encountered in a first quantum mechanics course. The two Hilbert

spaces are not coupled and are completely independent of one another, but the entanglement

of the state ties them together in an intricate way.

The assertion of [23] is that the TFD state of the two CFT copies is dual to the two-sided

black hole in its Hartle-Hawking (HH) state (Fig. 1.2) [26, 27]. The latter may likewise

be prepared by a Euclidean functional integral, now in the sense of bulk quantum gravity.

Namely, one takes the Euclidean continuation of the black hole, which has the topology of

a solid torus, cuts it in half to form a manifold in the shape of a half-bagel, and glues this

Euclidean cap to the zero-time slice of the black hole to prepare the HH state.5 This state is

4One should more properly include the action of CPT conjugation on one factor, which we omit here for simplicity of
exposition.

5More precisely, the Hartle-Hawking state may be regarded as a wavefunctional defined by the bulk gravity Euclidean
functional integral with thermal boundary conditions at infinity and ending on a spatial slice bounded by the two circles. Then
the claim is that above the Hawking-Page temperature, this wavefunctional is sharply peaked on the black hole background,
whose zero-time slice is an annulus. Below the Hawking-Page temperature, the same wavefunctional instead peaks on two
disconnected copies of AdS3 in the bulk TFD state.

8



1 Introduction

(a) (b)

Figure 1.2: The AdS3 HH State and the Dual TFD. The conformal diagram of the asymptotic AdS3 two-sided black
hole (or, rather, its top half) is shown on the left. Over each point is an additional circle, which is suppressed in the figure. The
left and right asymptotic AdS3 regions are causally separated by the horizons, represented by the diagonal dotted lines. The
future singularity is the zigzag line at the top of the diagram. The Hartle-Hawking state is prepared by halving the Euclidean
continuation of the black hole, shown by the half-disk, and gluing it to the zero-time slice of the black hole on the horizontal
dashed line. The Euclidean time periodicity is β, the inverse Hawking temperature of the black hole. The zero-time slice has the
topology of an annulus and the halved Euclidean black hole resembles a half-bagel, obtained by revolving the dashed line and
half-disk around the suppressed circle. Above the Hawking-Page temperature, this bulk state is dual to the thermofield-double
state in two copies of the boundary CFT on a circle (times time), shown on the right. The yellow half-torus prepares the state
on its two circle boundaries, which then evolve forward in Lorentzian time along the two blue cylinders. The Hartle-Hawking
cap that prepared the bulk state corresponds to the solid half-torus obtained by filling in the interior of the yellow surface.

pictured in Fig. 1.2a, with the non-contractible circle direction of the solid torus suppressed.

The “crust” of the half-bagel is a half-torus [0, β/2]×S1, which coincides with the boundary

Euclidean cap that prepares the dual TFD state (Fig. 1.2b).

In this correspondence, the temperature 1/β defining the TFD state is set to the Hawking

temperature [9] of the black hole. Upon reducing to a single side of the geometry and a single

copy of the dual CFT, one obtains a thermal state at this temperature in the bulk and on

the boundary. In this way, it is very natural that the two-sided black hole should be dual

to a purification of a thermal state of the CFT at that temperature. Moreover, that the

two-sided black hole is dual to a state in two independent copies of the CFT is a boundary

manifestation of the fact that the left and right regions in the bulk are causally separated

by the horizons.

9



1 INTRODUCTION

Figure 1.3: Schematic of ER = EPR. The connected, two-sided, asymptotically AdS black hole admits a dual description
as an entangled superposition of disconnected spacetimes, represented schematically by the wedges on the left, each of which
is dual to an energy eigenstate |n〉L , |n〉R of the two copies of the boundary CFT. The ER = EPR correspondence asserts that
this equivalence of entangled quantum states to connected spacetimes holds more generally. We find examples of string dualities
of this type, relating a string in a connected target space to a string in an entangled superposition of disconnected targets.

At the same time, it is very surprising that a superposition of product states in two

uncoupled CFTs as in |TFD〉 ∝
∑
e−βEn/2 |n〉L ⊗ |n〉R should admit a bulk description as a

single connected spacetime [1,2]. Each CFT state |n〉L is dual to some spacetime, as is each

|n〉R, and so the product state |n〉L ⊗ |n〉R from these two uncoupled CFTs corresponds to

a pair of disconnected spacetimes. Thus, the linearity of quantum mechanics would seem

to imply that their superposition would in turn be dual to a superposition of disconnected

geometries. And yet, the superposition admits a connected description as a two-sided black

hole due to the entanglement6 between the two sides, so the existence of an Einstein-Rosen

bridge is a non-linear property of the state. Here then is an example of ER = EPR: the

two-sided black hole is equivalent to an entangled superposition of disconnected geometries

(Fig. 1.3).

This quantum equivalence of connected and disconnected geometries is quite unexpected

from the perspective of classical gravity [28–30]. It can be traced [31] to the fact that

the naive field basis {|g〉} of the Hilbert space of the effective quantum gravity theory is

6Below the Hawking-Page temperature, the boundary TFD state is instead dual to the bulk TFD in two disconnected copies
of AdS (Fig. 3.3a). Then the boundary TFD, and likewise the bulk disconnected superposition, is not sufficiently entangled to
admit a dual semi-classical connected description.
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overcomplete. In other words, a state prepared by a Euclidean functional integral like the

HH state may be written as a wavefunctional Ψ[g] = 〈g|Ψ〉, defined by performing the

integral over spacetime metrics ending on a slice with spatial metric g and with thermal AdS

boundary conditions at infinity. For the HH state, the claim is that this wavefunctional is

sharply peaked on the connected black hole metric at sufficiently high temperatures. g here

represents a gauge equivalence class of metrics on the spatial slice with respect to spatial

coordinate reparameterizations. The temporal coordinate redundancy is not fixed, however,

and as a result the field eigenstates {|g〉} form an overcomplete set. The outcome is that

the HH state, which is peaked on the connected black hole, can equivalently be expressed as

a sum over kets |g〉 with disconnected topologies.

Thus, there is no linear operator of the quantum theory that measures the “spatial con-

nectedness” of a state [28–31], and there is no grading of the Hilbert space of quantum gravity

by the number of spatial connected components. Likewise, as required for consistency with

ER = EPR, there is no linear operator that measures the entanglement of a state. For an

entangled state such as |TFD〉 may be written as a sum over product states, each of which

is unentangled, and thus a linear operator cannot return “1” on an entangled state and “0”

on an unentangled state.

All this suggests that there should exist examples of quantum gravity dualities, relating

a connected spacetime to an entangled superposition of disconnected spacetimes. In this

work, we exhibit exact string theory dualities of this type. The form of the relations is

between string theory in a two-sided black hole7 made of fundamental strings in the HH

7Or more simply in a two-sided Rindler decomposition of AdS3, with asymptotic AdS3 regions separated by coordinate

11
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state (Fig. 1.2a), and string theory in a pair of disconnected spacetimes in the TFD state

(in the bulk sense), with an entangled condensate of folded strings (Fig. 1.5a). Expanding

the condensate, one indeed finds a dual EPR-like description of the black hole given by a

superposition of disconnected geometries, each with a number of entangled strings. These

entangled string backgrounds describe the thermal microstates that build up the black hole.

These ER = EPR string dualities are defined by Lorentzian continuation of CFT dualities

for Euclidean black hole target spaces in two and three dimensions. Here we are referring to

dualities of the worldsheet CFT of a string theory, not to be confused with the CFT that

lives on the boundary of spacetime in the sense of the AdS/CFT duality. The worldsheet

CFTs we will discuss are the SL(2,R)k/U(1) and Z\SL(2,C)k/SU(2) coset WZW models.

They describe a string propagating in a two-dimensional asymptotically flat Euclidean black

hole and three-dimensional Euclidean AdS black hole, respectively.

Before coming to that construction of the ER = EPR dualities, the first part of the

dissertation is devoted to a study of the SL(2,R)k/U(1) CFT in its own right. This CFT has

been a subject of great interest for thirty years, since it was shown to describe a Euclidean

black hole for large k [32]. The Lie group SL(2,R) is equivalent to the manifold AdS3,

and thus the SL(2,R)k WZW model describes a string in AdS3, where k = l2AdS/l
2
s sets the

length scale of the geometry. The coset by U(1) gauges the time-translation isometry along

the length of the AdS3 cylinder, yielding a target space with the topology of a disk. At

large k, it admits a weakly-coupled Lagrangian description given by a sigma-model into a

horizons.

12
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(a) The Cigar Background. The cigar sigma-
model is a weakly-coupled Lagrangian description of
the SL(2,R)k/U(1) CFT when k is large. For large

r, the geometry is a cylinder of radius
√
α′k, and as

r → 0 the cylinder smoothly caps off. The dilaton
is a monotonically decreasing function of r. Its max-
imal value Φ0 is attained at the tip, and at large r it
falls off linearly as −r and the string coupling goes to
zero. Although a string in the weak-coupling region
appears to be able to wind around the cylinder, there
is no conserved topological charge because the string
can unwind at the tip.

(b) The sine-Liouville Background. According
to the FZZ duality, the sine-Liouville sigma-model is
a dual description of the SL(2,R)k/U(1) CFT, better
suited when k is small (compared to 2). The geometry

is an infinite cylinder of radius
√
α′k. The dilaton is

Φ = −Qr̂, so that the string coupling eΦ diverges as
r̂ → −∞ and vanishes as r̂ → ∞. The sine-Liouville

potential e−
√

(k−2)/α′r̂Re ei
√
k/α′(θ̂L−θ̂R) includes a

pure-winding mode of θ̂ (represented by the circles
wrapping the middle of the cylinder), times a linear-
dilaton primary (represented by the gradient).

Figure 1.4

cigar-shaped geometry with an asymptotically linear dilaton (Fig. 1.4a) [32].

The large k limit where this cigar description is best corresponds to the semi-classical

limit of the CFT, and we study the functional integral in this limit by applying saddle-point

methods. We focus on the simplest interesting observable: the reflection coefficient that

describes the amplitude for a string sent in from infinity to reflect off the tip of the cigar

and return to infinity.

In order to compute the saddle-point expansion of a functional integral one must, in

general, complexify the integral and sum over complex saddles [33–42]. The necessity of

complexification is familiar from the analogous problem for finite-dimensional integrals. For

example, when evaluating the asymptotic expansion of a real integral
∫
C=R dX e−kS[X], one

typically continues S[X] to a holomorphic function on the complex X-plane, identifies its

saddle points S ′[Xn] = 0, constructs the steepest-descent contours Cn attached to each

saddle, and deforms the original integration contour into the sum of steepest-descent contours

13
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C =
∑

n∈D Cn that is Cauchy-equivalent. In the k →∞ limit, the integral along a steepest-

descent contour Cn is dominated by the contribution from its saddle, e−kS[Xn]. Thus, in

such favorable circumstances the asymptotic expansion of the original integral is given by

the sum
∑

n∈D e
−kS[Xn] of contributions from the subset of saddles that lie on the deformed

integration contour.8

One may apply analogous methods to extract the asymptotic expansions of functional

integrals [33–37]. The main complication in the infinite-dimensional case is that it is chal-

lenging to derive from first principles which sum of steepest-descent contours is equivalent to

the original contour, and therefore which subset of saddles one should sum over in computing

the asymptotic expansion [34]. In the case of the SL(2,R)k/U(1) CFT, however, the exact

reflection coefficient is known [43–46], and one may therefore take its semi-classical limit and

identify the set of saddles that reproduce it. That is the approach we take here. A similar

analysis of the Liouville CFT reflection coefficient was performed in [35].

We again find that one must sum over complex saddles to reproduce the SL(2,R)k/U(1)

reflection coefficient. In fact, as has long been known in Liouville CFT [47] and is also the

case in the SL(2,R)k/U(1) CFT, the functional integral over real fields for the two-point

function is divergent.9 Instead, the functional integral for these and related (asymptotic)

linear-dilaton backgrounds should in general be defined by an integral over a contour in

complexified field space [35]. By identifying the complex saddles that contribute to the

functional integral, one may in fact define the appropriate integration cycle by the sum of

8And the integral along each steepest-descent contour is equal to the Borel resummation of the perturbative expansion
around the corresponding saddle.

9As is the partition function.
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steepest-descent contours attached to the contributing saddles [35].

Part of the increased difficulty of the SL(2,R)k/U(1) problem compared to Liouville is

due to the existence of bound states in the spectrum of the former CFT, which manifest as

poles of its reflection coefficient. To reproduce these poles in the saddle-point expansion, we

find that we must sum over configurations that hit the singularity of the black hole in the

complexified target space.10

The SL(2,R)k/U(1) CFT admits a dual description, due to Fateev, Zamolodchikov, and

Zamolodchikov (FZZ) [48, 49], given by a sigma-model into a cylinder, now with an infinite

linear-dilaton direction, plus a condensate of winding strings (Fig. 1.4b). It is known as the

sine-Liouville background, and the condensate is called the sine-Liouville potential. Whereas

the cigar description is weakly coupled for large k in the sense of α′ perturbation theory

of the field theory, the sine-Liouville description is strongly coupled. Both backgrounds

asymptote to identical cylinders in the region where the linear dilaton Φ goes to minus

infinity and the string coupling eΦ subsequently vanishes. But while the cigar geometry

terminates at finite string coupling at its tip, in sine-Liouville the cylinder extends forever

and the string coupling diverges. In this description it is instead the sine-Liouville potential

that is responsible for suppressing string configurations that extend into the strong-coupling

region. In both backgrounds the apparent winding number conservation law of the common

asymptotic cylinder region is violated—in the cigar because a wound string may unwind at

the tip, and in sine-Liouville because the winding potential explicitly breaks the symmetry.

10Similar complex contours hitting the black hole singularity were considered in Hartle and Hawking’s path integral derivation
of Hawking radiation [26].
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(a) (b)

Figure 1.5: The Bulk TFD State. The infinite cylinder geometry of the sine-Liouville background has the topology of an
annulus (right). The linear dilaton implies that the string coupling vanishes at one asymptotic boundary and diverges at the
other, represented by the solid and dotted circles. When the annulus is halved and glued to the Lorentzian continuation, it
prepares the TFD state in two disconnected copies of flat linear-dilaton spacetime (left). The state prepared by halving the dual
EBTZ background is similar but with an additional circle suppressed. Also pictured is the embedding of a string worldsheet
with a pair of Euclidean time winding operator insertions from the sine-Liouville potential. The image of the worldsheet wraps
the Euclidean time circle, extending out from the dotted strong-coupling boundary toward finite coupling, before folding back
on itself and falling back to strong coupling. When the worldsheet is sliced in angular quantization, each spatial slice is then
mapped to a folded string, shown in red, that comes in and out of the strong-coupling region. The full sine-Liouville potential
adds a condensate of such folded strings on top of the disconnected union of linear-dilaton× time backgrounds. Expanding the
condensate, one obtains an EPR description of a string in a superposition of entangled disconnected spacetimes, dual to string
theory in the connected black hole.

These are the essential features a Euclidean duality must exhibit in order to realize

ER = EPR upon continuation. The contractible Euclidean time circle on one side of the

duality leads to the HH state in a two-sided black hole when the target time coordinate is

continued (Fig. 1.2a). The non-contractible Euclidean time circle in the dual description,

meanwhile, yields a state in a disconnected geometry when its Euclidean annulus topology is

cut in half and glued to the Lorentzian continuation (Fig. 1.5)—this is another TFD state,

now in the bulk sense. By consistency, the non-contractible description must feature a mech-

anism that violates the winding number conservation law around the Euclidean time circle,

since the string can unwind in the contractible dual. In the FZZ duality, this is accomplished

by the condensate of Euclidean time winding strings.

In three-dimensional spacetime, we propose a similar duality of the Z\SL(2,C)k/SU(2)
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CFT that describes a string in the asymptotic Euclidean AdS3 black hole, known as Euclidean

BTZ (EBTZ), which, as mentioned earlier, has the topology of a solid torus (Fig. 1.6a). The

duality in fact applies as well to SL(2,C)k/SU(2) itself, prior to the Z quotient. The latter

describes a string in Euclidean AdS3 (EAdS3), which is equivalent to the SL(2,C)/SU(2)

coset manifold. EAdS3 is again a solid cylinder, and compactifying its length yields the

EBTZ solid torus Z\SL(2,C)/SU(2), where the circumference 4π2/β of the compactification

is fixed by the inverse Hawking temperature β of the black hole. In the dual description, the

radial direction of the torus or cylinder is replaced by an infinite linear-dilaton direction as

in the sine-Liouville background, and a condensate of winding strings wrapping the resulting

non-contractible cycle is again added (Fig. 1.6b).11 The original description is weakly

coupled for large k while the dual description is strongly coupled, and once again gs diverges

at the strong-coupling boundary of the dual geometry.12 Gauging the translation symmetry

around the original non-contractible cycle of the torus or the length of the cylinder in the two

descriptions reproduces the cigar and sine-Liouville backgrounds. Thus, this duality may be

thought of as a three-dimensional uplift of the FZZ duality.131415

These dualities share the essential feature that the two related target spaces are of different

11As we explain in Sec. 4.1, the duality requires that we express the boundary cylinder or torus variables of SL(2,C)k/SU(2)
or Z\SL(2,C)k/SU(2) in the first-order formalism.

12 For small k (relative to its minimal value k = 2), on the other hand, the original description of SL(2,C)k/SU(2) is strongly
coupled. Then we expect that the dual sigma-model is the better description of the AdS3 vacuum for small k. It would be
interesting to understand the connection between the sine-Liouville description and recent work on string theory in AdS3 at
small k [50–53].

13SL(2,C)/SU(2) is a Euclidean continuation of SL(2,R) = AdS3, and the two-dimensional black hole may equivalently be
thought of as a coset of the former.

14Potentially related work on a three-dimensional uplift of the FZZ duality was discussed in [54].

15We expect there is also a supersymmetric version of this duality, as in the supersymmetric FZZ duality of [55]. We focus on
the bosonic string in this work for simplicity, though we expect similar examples of ER = EPR would hold for the superstring
in the cigar and the supersymmetric AdS3 × S3 background.
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(a) The Euclidean AdS3 Black Hole. EAdS3 may
be described as a solid cylinder. Compactifying the
length of the cylinder to form a solid torus yields the
Euclidean continuation of the asymptotic AdS3 black
hole, where the continuation is performed with respect
to the contractible cycle. The inverse Hawking tem-
perature β of the black hole fixes the periodicity 4π2/β
of the non-contractible cycle of the torus. The coset
manifold SL(2,C)/SU(2) is equivalent to EAdS3, and
a string in EAdS3 may therefore be described by the
SL(2,C)k/SU(2) coset WZW model, where α′k = l2AdS
sets the AdS length. The quotient Z\SL(2,C)k/SU(2)
thus describes a string in the asymptotic EAdS3 black
hole, known as Euclidean BTZ (EBTZ).

(b) The 3D sine-Liouville Background. In the
dual description we propose for the SL(2,C)k/SU(2)
CFT and its black hole quotient Z\SL(2,C)k/SU(2),
the radial direction of the cylinder or solid torus is
replaced by an infinite linear-dilaton direction, and
a condensate of strings winding the resulting non-
contractible cycle is added. Gauging the translation
symmetry along the length of the cylinder produces the
two-dimensional sine-Liouville background (Fig. 1.4b),
whereas gauging the same symmetry in the first de-
scription yields the two-dimensional cigar (Fig. 1.4a).
Thus, this duality is an uplift of the FZZ duality to a
three-dimensional target space.

Figure 1.6

topologies. In the cigar description of SL(2,R)k/U(1), the geometry has the topology of a

disk, with the asymptotic cylinder capping off at the origin. In the sine-Liouville description,

the cylinder is infinite, and the topology is an annulus. Thus, the circle direction of the

two geometries, which is defined as the Euclidean time, is contractible on one side of the

duality and non-contractible on the other. Similarly, in the Z\SL(2,C)k/SU(2) duality the

contractible cycle of the torus in the original description is replaced by a non-contractible

cycle in the dual, exchanging the disk × S1 topology with an annulus × S1. It is again this

cycle that one defines as the Euclidean time in order to obtain the Lorentzian black hole

upon continuation.16

When the dual sine-Liouville background is cut and continued, one obtains the bulk TFD

16In the three-dimensional case one may alternatively continue with respect to the other cycle, which prepares a thermal
state in AdS3, or simply the vacuum state prior to the Z quotient. See Ft. 12.
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state in the disconnected union of two copies of R1,1 in the two-dimensional case and R1,1×S1

in the three-dimensional case (Fig. 1.5). On each copy of the spatial slice R one has a linear

dilaton, with one asymptotic boundary at weak string coupling and the other at strong

coupling, represented by the solid and dotted lines in the figure. On top of each free-field

background, one has the condensate of strings that wind the non-contractible Euclidean

time circle, which by the duality is equivalent to the connected black hole. A winding

string worldsheet is also shown in the figure. An important aspect of our construction is

to explain the interpretation of these winding strings in the Lorentzian continuation, which

we will argue produce pairs of entangled folded strings emanating from the strong-coupling

boundaries.

Complexified spacetimes such as Fig. 1.2a and 1.5a are familiar in quantum field theory.

The Euclidean cap specifies the domain on which the fields in the functional integral are

defined, and by gluing two Euclidean caps together with a Lorentzian excursion in between,

one obtains a Schwinger-Keldysh contour on which the functional integral computes expec-

tation values in the states specified by the caps [56, 57]. Such expectation values may be

obtained by computing the Euclidean correlation function and then continuing the operator

insertions to the Lorentzian section.

From the point of view of string theory, the Schwinger-Keldysh contour is now interpreted

as the integration cycle in a complexification of the target space over which the worldsheet

functional integral is evaluated. Note that it is imprecise to merely ask for a string amplitude

in e.g. the black hole background—one must also specify a state in order to define a string
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perturbation theory. For example, one could ask for a string amplitude in AdS3 in the

vacuum state or in a thermal state; the Lorentzian section is the same in both cases, but the

string perturbation theories are different. The state is fixed by the incoming and outgoing

Euclidean segments of the target space Schwinger-Keldysh contour. Thus, the target space

contour obtained by gluing together two copies of Fig. 1.2a produces string amplitudes

for the black hole background in the HH state. Similarly, the contour obtained by gluing

together two copies of Fig. 1.5a—prior to adding the condensate—computes amplitudes for

string theory in R1,1∪R1,1 in the TFD state, or R1,1×S1∪R1,1×S1 in the three-dimensional

case.

In this way, cutting and continuing the dual descriptions of the SL(2,R)k/U(1) and

Z\SL(2,C)k/SU(2) CFTs yield Schwinger-Keldysh contours for the ER = EPR dual string

theories. The condensate is the most subtle aspect of the continuation; it is built of strings

that wind the Euclidean time circle, and therefore its interpretation in the Lorentzian con-

tinuation is not obvious. In two dimensions, it takes the form VsL ∝ W+ + W−, where

W± = e−2bsLr̂e±ik(θL−θR) are linear-dilaton × S1 vertex operators for a string with unit

winding around the Euclidean time circle θ, times a Liouville-like factor in the linear-

dilaton direction r̂ (Fig. 1.4b). The latter serves to reflect strings away from the strong-

coupling region r̂ → −∞, where bsL is a positive real number chosen such that these ver-

tex operators are marginal. Let us treat the condensate as a large deformation of the

free linear-dilaton × S1 background; one obtains a series of W+W− insertions of the form

e−
∫
VsL ∼

∑
1

(N !)2

(∫
W+W−

)N
.17 Note that only paired operators W+W− contribute to the

17This expansion is formal and requires regularization in the strong-coupling region. Our aim, however, is to give an abstract
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(a) (b)

Figure 1.7: The TFD State of a Pair of Folded Strings. With insertions of Euclidean time winding operators W+, W−,
the worldsheet should be treated in angular quantization to discuss the continuation to Lorentzian target time. One foliates
the worldsheet in radial lines, such as the two dashed semi-circles shown on the left, with the angular direction interpreted
as Euclidean time. The resulting Hilbert space H+−(R) lives on a line, labeled by asymptotic conditions associated to the
operator insertions at either end. The functional integral over the halved worldsheet shown prepares the TFD state in two
copies of H+−(R). The asymptotic conditions for W± send r̂ → −∞ with winding ±1. A schematic of the spacetime image
of the halved worldsheet is shown on the right. In particular, the two dashed spatial slices map to the folded strings bounding
the blue figure, emanating from the strong-coupling region.

expansion due to the winding number conservation law of the undeformed cylinder. We

emphasize that it is only after resumming the series that one recovers the black hole CFT.

Consider therefore the effect of a pair of W+, W− insertions in the Lorentzian continuation

of the linear-dilaton × S1 string theory. Let W+ be inserted at the origin and W− at the

point-at-infinity on the worldsheet (Fig. 1.7a). These operators insert sources in the world-

sheet equations of motion that dictate the behavior of the string in their vicinity. As one

approaches the W± insertion point on the worldsheet, the image of the string in the target

is mapped to the strong-coupling region with winding ±1. In angular gauge θ = φ then,

where θ is the compact target Euclidean time coordinate and φ is the worldsheet angular

coordinate, the slices at φ = 0 and π that bound the diagram in Fig. 1.7a map to folded

strings in spacetime at θ = 0 and π emanating from the strong-coupling region (Fig. 1.7b).

The Lorentzian interpretation of the pair of Euclidean time winding insertions is thus that,

picture of the EPR string background, not a practical scheme for computing amplitudes.
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atop the disconnected union of R1,1 backgrounds in the bulk TFD state, a pair of folded

strings is added, one in the left and one in the right, with their ends at strong coupling.

The strings are entangled with one another, being prepared by the Euclidean cap Fig. 1.7a,

which is a TFD state on the worldsheet in the sense of angular quantization. In angular

quantization, one interprets the angle φ as the worldsheet Euclidean time coordinate, so

that the boundaries of the cap at φ = 0 and π are spatial slices on which the TFD state is

prepared. The sine-Liouville potential introduces a condensate of these entangled pairs of

folded strings on top of the disconnected target.18

Thus, the Lorentzian string dualities we propose are as follows. The weakly-coupled side

(in the α′ sense) is string theory in the connected two-dimensional linear-dilaton (or three-

dimensional AdS) black hole in the HH state. The strongly-coupled side is string theory in

the disconnected union of two copies of linear-dilaton× time (or linear-dilaton× time× S1)

in the bulk TFD state, with a condensate of pairs of entangled folded strings emanating

from the strong-coupling boundaries, themselves in the worldsheet TFD state of angular

quantization.19 By expanding the condensate, one obtains a superposition of entangled

disconnected microstates. The dualities are therefore explicit examples of ER = EPR, each

relating a connected, two-sided spacetime to an entangled superposition of disconnected

geometries.

18Recent potentially related work involving a condensate of folded strings behind the black hole horizon and the Lorentzian
continuation of the FZZ duality has appeared in [58–65]. It would be very interesting to establish the precise connection between
these results.

19By continuing the duality of SL(2,C)k/SU(2) with respect to the same cycle, but prior to the Z quotient that makes the
Euclidean black hole, one likewise obtains an even simpler duality between string theory in a connected Rindler decomposition
of AdS3 and the analogous EPR theory in linear-dilaton× time×R. The quotient replaces the ER side with the black hole and
compactifies R to S1 on the EPR side.
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The outline of the remainder of the dissertation is as follows. In Ch. 2 we study the

large k limit of the SL(2,R)k/U(1) CFT. We show that local operators of the CFT may be

described by asymptotic conditions that cut out the neighborhood of an insertion and replace

it by a boundary term in the cigar action. We then construct the saddle-point expansion of

the functional integral for the two-point function of operators described by these asymptotic

conditions.

In Ch. 3 we discuss the Schwinger-Keldysh contours that enable the definition of string

perturbation theory in various states, including the TFD and HH states that appear in the

statement of our ER = EPR dualities. We focus here on examples of string perturbation

theory in AdS3, which is the best understood case.

Having developed the necessary tools, in Ch. 4 we construct our examples of Lorentzian

string dualities for ER = EPR. We begin by establishing the uplift of the FZZ duality to

SL(2,C)k/SU(2) and Z\SL(2,C)k/SU(2). Then we introduce the angular quantization of

Euclidean time winding operators, and a related deformation of the string moduli integra-

tion contour, that explain the Lorentzian meaning of the sine-Liouville condensate. After

discussing the remaining details of the Lorentzian dualities, we conclude by describing an

infinitesimal interpretation of these dualities in terms of conformal perturbation theory.
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2 Semi-Classical Analysis of the 2D Black Hole

In this chapter, we investigate the semi-classical limit of the SL(2,R)k/U(1) CFT. For

large k, this CFT describes a string propagating in a cigar-shaped two-dimensional Euclidean

black hole [32]. In the following chapters, we will be interested in the Lorentzian continua-

tion of this background with respect to the target time coordinate, which therefore describes

a string in a two-dimensional Lorentzian black hole. Then the continued theory will yield

the ER description in one of our examples of ER = EPR string dualities. An important role

in that discussion is played by “asymptotic conditions” that enable a convenient functional

integral description of local operator insertions in the CFT. In preparation for those applica-

tions, and because the analysis of the cigar in the semi-classical limit is interesting in its own

right, in this chapter we compute the saddle-point expansion of the SL(2,R)k/U(1) func-

tional integral for the simplest interesting observable: the reflection coefficient that describes

the amplitude for a string sent in from infinity to reflect off the tip of the cigar.

The chapter is organized as follows. In Sec. 2.1 we review the free linear-dilaton back-



2.1.1 A Family of Free Bosons

ground, which will play a ubiquitous role throughout the entirety of this dissertation. In

Sec. 2.2 we review the Liouville CFT, which consists of the linear-dilaton background plus an

exponential potential, and we perform the saddle-point expansion of its reflection coefficient.

In Sec. 2.3 we review the SL(2,R)k/U(1) CFT, its cigar description, and the asymptotic

conditions that describe operator insertions in the associated functional integral. In Sec.

2.4 we come to the saddle-point expansion of the cigar reflection coefficient. Finally, in Sec.

2.5 we discuss the dual formulation of the SL(2,R)k/U(1) CFT known as the sine-Liouville

background due to Fateev, Zamolodchikov, and Zamolodchikov [48, 49], and we consider

what may be said about the saddle-point expansion in the dual limit. This FZZ duality will

also play an essential role in the discussion of ER = EPR string dualities in the remainder

of the dissertation.

2.1 Review of the Free Linear Dilaton

Much of the work described in this dissertation will involve sigma-models into target

geometries with a linear, or asymptotically-linear, dilaton along one direction. It is therefore

useful to begin by reviewing some relevant details of the free linear-dilaton theory.

2.1.1 A Family of Free Bosons

The linear-dilaton conformal field theory (CFT) is a generalization of the free-boson CFT,

labeled by a positive number20 Q called the background charge. Namely, one considers a

20When we consider the bosonization of the bc ghost CFT in Eqn. 4.38 we will need to allow for imaginary Q, but for now
we take Q real.
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2 SEMI-CLASSICAL ANALYSIS OF THE 2D BLACK HOLE

non-compact boson X(z, z̄) with the usual operator-product expansion (OPE),

X(z, z̄)X(0) ∼ −α
′

2
log |z|2, (2.1)

but with the modified holomorphic stress tensor

T (z) = − 1

α′
(∂X)2 −Q∂2X, (2.2)

and similarly for the anti-holomorphic stress tensor T̄ (z̄). The deformed stress tensor obeys

the usual Virasoro OPE,

T (z)T (0) ∼ c/2

z4
+

2

z2
T (0) +

1

z
∂T (0), (2.3)

but with the free-boson central charge c = 1 modified as

cLD = 1 + 6α′Q2. (2.4)

The deformation also modifies the OPE of T and X, with the consequence

T (z)j(0) ∼ −iQ
z3

+
1

z2
j(0) +

1

z
∂j(0), (2.5)

where j(z) = i
α′
∂X(z) is the holomorphic component of the current for the translation

symmetry in X of the free boson. The addition of the z−3 term implies that j(z) is no

longer a Virasoro primary when Q is turned on, and the symmetry becomes anomalous

in the linear-dilaton background. In particular, under the conformal transformation z = ew
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between the plane and the cylinder, the current transforms not as jw(w) = zjz(z), but rather

jw(w) = zjz(z)− iQ

2
. (2.6)

The charges under the symmetry (i.e. the target momenta) of states on the cylinder as

measured by
∮
jw and local operators on the plane as measured by

∮
jz will therefore differ

by a shift proportional to Q, as spelled out below.

Exponential operators, conveniently written as Vα(z, z̄) = e−2αX(z,z̄), remain Virasoro

primary, however:

T (z)Vα(0) ∼ hα
z2
Vα(0) +

1

z
∂Vα(0), (2.7)

where

hα = h̄α = α′α(Q− α). (2.8)

Compared to the conventional notation eipX(z,z̄) for the ordinary free-boson vertex operators,

one has α = −1
2
ip, and hα|Q=0 = α′

4
p2 reproduces the familiar free-boson weight. The weights

hα, h̄α are real when α ∈ R or α ∈ Q
2

+ iR, which are referred to as the real and complex

branches of vertex operators. On the complex branch, hα = α′|α|2 ≥ α′Q
2

4
is always positive.

On the real branch, the weight is only positive in the window 0 < α < Q, its maximal

value coinciding with the minimal weight on the complex branch. We will consider the

continuation of α to general complex values, however, regardless of whether the weights are
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real and positive. Note also that the conformal weights are symmetric under reflection about

α = Q
2

: hα = hQ−α. In the free theory, α and Q − α label independent operators, though

in the interacting theories we will eventually be interested in they will in fact correspond to

two components of the same operator.

Whereas the operator e−2αX carries momentum p = 2iα as measured on the plane, due to

the anomalous transformation law Eqn. 2.6 the state
∣∣e−2αX

〉
∈ H(S1) prepared by inserting

the operator in the far past on the cylinder carries momentum p− iQ:

P
∣∣e−2αX

〉
= 2i

(
α− Q

2

) ∣∣e−2αX
〉
. (2.9)

In particular, a state of momentum s, with zero-mode wavefunction

Ψ(X0) = eisX0 = e−2(α−Q2 )X0 , (2.10)

is prepared by inserting the operator with α = Q
2
− i s

2
. Note that the wavefunction is of the

form eQXVα. The additional factor may be thought of as an insertion of the “background-

charge operator” V−Q/2 fixed in the far past, as further explained below.

The delta-function normalizable scattering states of the linear-dilaton background there-

fore correspond to the complex branch operators α ∈ Q
2

+ iR, and carry positive conformal

weights. Away from this line, the wavefunction is non-normalizable, exponentially diverging

either at X → ∞ for Re(α) < Q
2

, or X → −∞ for Re(α) > Q
2

. Although they prepare

non-normalizable states, such operators are nevertheless interesting.
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2.1.2 Lagrangian Formulation

It is also useful to understand how these properties of the linear-dilaton CFT follow from

its Lagrangian formulation. The deformation −Q∂2X of the free-boson stress tensor in

Eqn. 2.2 arises from a coupling
∫
RΦ between the worldsheet curvature and a linear dilaton

Φ(X) = −QX, hence the CFT’s name. The action on a worldsheet Σ with metric h is

S[X;h] =
1

4πα′

∫
Σ

d2σ
√
h hab∂aX∂bX +

1

4π

∫
Σ

d2σ
√
hRΦ +

1

2π

∫
∂Σ

dφ
√
γKΦ. (2.11)

We allow here for the possibility of a boundary ∂Σ, where K is the trace of the extrinsic

curvature of the boundary, γ is the induced metric of the boundary, and dφ
√
γ is the induced

volume form.

Note that with Q real and positive the effective string coupling eΦ(X) decays at X →∞

and diverges at X → −∞, which we refer to as the weak and strong-coupling regions. The

divergence of the string coupling implies that the free linear dilaton is not a well-behaved

background for string perturbation theory, and must be modified in a way that regulates the

strong-coupling region.

The free-boson action alone is of course Weyl invariant under hab → e2ωhab. With the

addition of the linear dilaton, using R → e−2ω(R − 2∇2ω) and K → e−ω(K + na∂aω), one

finds that the deformed action is Weyl invariant up to a field-independent anomaly, provided
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that X simultaneously transforms as a Goldstone boson,

S
[
X + α′Qω; e2ωh

]
= S [X;h]− S [−α′Qω;h] . (2.12)

By varying the action with respect to X and hab, one obtains the bulk equation of motion

∇2X = −1

2
α′QR, (2.13)

and the stress tensor

Tab =− 1

α′

(
∇aX∇bX −

1

2
hab (∇X)2

)
+
(
∇a∇b − hab∇2

)
Φ. (2.14)

The trace of the stress tensor is habTab = Q∇2X, which, using the equation of motion, may

be written

habTab = − 1

12
(6α′Q2)R. (2.15)

Combined with the c = 1 Weyl anomaly of the ordinary free boson, we reproduce the Q-

corrected Weyl anomaly

habTab|quantum = −cLD

12
R, (2.16)

where cLD = 1 + 6α′Q2 as in Eqn. 2.4.

The curvature coupling in Eqn. 2.11 makes evident that the target translation symmetry
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of the free boson (∇X)2 is violated in the linear-dilaton background:

S[X + ε;h] = S[X;h]− εQχ, (2.17)

where

χ =
1

4π

∫
Σ

d2σ
√
hR+

1

2π

∫
∂Σ

dφ
√
γK, (2.18)

is the Euler characteristic of Σ. It follows that a correlation function of operators
∏

j Vαj

obeys the anomalous conservation law

∑
j

αj =
1

2
Qχ, (2.19)

since

〈∏
j

Vαj(zj, z̄j)

〉
=

∫
DX e−S[X,h]

∏
j

e−2αjX(zj ,z̄j)

=

∫
DX e−S[X+ε,h]

∏
j

e−2αjX(zj ,z̄j)−2αjε

=e2ε( 1
2
Qχ−

∑
j αj)

∫
DX e−S[X,h]

∏
j

e−2αjX(zj ,z̄j). (2.20)

Equivalently, the integral
∫

dx e2( 1
2
Qχ−

∑
j αj)x over the zero-mode of X is a Lagrange multi-

plier that imposes the constraint Eqn. 2.19.

With the flat metric ds2 = dzdz̄, Eqn. 2.11 apparently reduces to the familiar free-boson
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action

S =
1

2πα′

∫
d2z ∂X∂̄X. (2.21)

However, we are interested in the theory at string tree-level, for which Σ has the topology

of a sphere, and there does not exist a globally flat metric on the sphere. In particular, the

coordinate z does not cover the neighborhood of the point-at-infinity, and the “flat” metric

is singular there: ds2 = dudū
(uū)2 , with a local coordinate u = 1

z
. This singularity contributes a

delta-function source of curvature, R = 16π(uū)2δ(u, ū) = 16πδ(z− z∞, z̄− z̄∞), as required

by the Gauss-Bonnet to reproduce the Euler characteristic of the sphere:

χ =
1

4π

∫
d2z

2
16πδ(z − z∞, z̄ − z̄∞) = 2. (2.22)

The effect of the curvature singularity in Eqn. 2.11 is to shift the free-boson action Eqn.

2.21 on the plane by −2QX(z∞, z̄∞), which amounts to an insertion of V−Q at the point-at-

infinity in the functional integral. Thus, one can study the linear-dilaton background in flat

coordinates, provided that one keeps track of this background-charge operator. It inserts a

fixed source in the equation of motion at the point-at-infinity:

∂∂̄X = −2πα′Qδ(z − z∞, z̄ − z̄∞), (2.23)

which likewise reflects the anomalous conservation of the currents ∂X and ∂̄X.

One could avoid this singular behavior at the point-at-infinity by instead choosing the
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round metric ds2 = 4
(1+zz̄)2 dzdz̄, for which R = 2 is a constant. However, the dilaton term

then produces a linear potential, which is slightly awkward. It is instead common practice in

studying the linear-dilaton CFT to work with the plane metric dzdz̄ or the cylinder metric

dzdz̄
zz̄

, which are related to the round metric by singular Weyl transformations that push all

the curvature of the sphere to the point-at-infinity or the two ends of the cylinder.

With the cylinder metric, R = 8πzz̄ (δ(z, z̄) + δ(z − z∞, z̄ − z̄∞)), the background charge

is now split symmetrically between the two ends with insertions of V−Q/2(0) and V−Q/2(z∞, z̄∞),

and the equation of motion becomes

∂∂̄X = −πα′Q (δ(z, z̄) + δ(z − z∞, z̄ − z̄∞)) . (2.24)

The background-charge insertion V−Q/2(0) is responsible for the factor eQX that appears in

the zero-mode wavefunction prepared by inserting e−2αX on the cylinder (Eqn. 2.10).

With either the plane or cylinder metric, the anomalous conservation law
∑
αj = Q at

genus zero amounts to requiring that the operator insertions
∏
Vαj offset the fixed contribu-

tion V−Q(z∞, z̄∞) or V−Q/2(0), V−Q/2(z∞, z̄∞) from the background-charge insertions. Note

also that the 1-point function of the operator VQ(z, z̄) is not required to vanish, which is

compatible with conformal symmetry because hQ = h̄Q = 0.
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2.1.3 Asymptotic Conditions

As in Eqns. 2.23-2.24, when a general primary Vα(z′, z̄′) is inserted in the functional

integral,

∫
DX e−SVα(z′, z̄′) (2.25)

=

∫
DX exp

{
− 1

2πα′

∫
d2z

(
∂X∂̄X + 4πα′αδ(z − z′, z̄ − z̄′)X(z, z̄) + · · ·

)}
,

a source term is introduced in the bulk equation of motion,

∂∂̄X = 2πα′αδ(z − z′, z̄ − z̄′). (2.26)

Recalling the Green function for the two-dimensional wave equation, ∂∂̄ log(zz̄) = 2πδ(z, z̄),

one finds that in the neighborhood of the insertion point on the worldsheet the solution of

the equation of motion is

X(z, z̄)
|z−z′|→0
−→ 2α′α log |z − z′|+O(1). (2.27)

Evaluating the stress tensor Eqn. 2.2 on this solution one finds

z2T (z)→ α′α(Q− α), (2.28)
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reproducing the conformal weight Eqn. 2.8. In local cylinder coordinates z − z′ ≡ eρ+iφ,

Eqn. 2.27 reads

X(ρ, φ)
ρ→−∞
−→ 2α′αρ+O(1). (2.29)

Thus, the operator insertion imposes the asymptotic condition that X be linear in ρ, with

∂ρX → 2α′α as ρ→ −∞.

The saddles in the presence of the source are singular at the insertion point. This singular

behavior may be regulated by cutting out the neighborhood of the insertion from the world-

sheet and introducing an appropriate boundary action there. Let us cut out a small disk dε

of radius |z − z′| = ε surrounding z′ and deform the action by a boundary term [35,66]:

S(ε) = S + 2α

∫
∂dε

dφ

2π
X − 2α′α2 log(ε), (2.30)

where dφ = 1
2i

(
dz
z−z′ −

dz̄
z̄−z̄′

)
. Then the boundary variation − 1

2πα′

∫
∂dε

dφ δX ∂ρX of S and

the variation of the boundary term 2α
∫
∂dε

dφ
2π
δX yield the desired boundary equation of

motion,

∂ρX
∣∣
ρ=log(ε)

= 2α′α. (2.31)

In the limit ε → 0, one expects the functional integral weighted by the deformed action

e−S(ε) to reproduce the functional integral weighted by e−Se−2αX(z′,z̄′). The counterterm

−2α′α2 log(ε) is included to render the on-shell action finite.
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On the plane, the background-charge source V−Q(z∞, z̄∞) imposes the asymptotic condi-

tion at infinity

X(z, z̄)
|z|→∞
−→ 2α′Q log |z|+O(1). (2.32)

In the presence of additional insertions
∏
Vαj(zj, z̄j), the Green function 2α′

∑
j αj log |z−zj|

satisfies the asymptotic condition only provided

∑
j

αj = Q, (2.33)

again reproducing Eqn. 2.19.

As in Eqn. 2.30, the background-charge insertion at the point-at-infinity may be replaced

by excising its neighborhood and introducing a boundary term. The action for the linear-

dilaton on the plane is therefore given by the R→∞ limit of [35,66,67]

S =
1

2πα′

∫
DR

d2z ∂X∂̄X − 2Q

∫
∂DR

dφ

2π
X + 2α′Q2 log(R), (2.34)

with DR a disk of radius R. Note that the prescription amounts to cutting out the source and

doubling the extrinsic curvature term in Eqn. 2.11 on the resulting boundary, which ensures

that 2× 1
2π

∫
∂Σ

dφ
√
γK = 2 produces the Euler characteristic of the sphere rather than the

disk. Additional insertions Vαj(zj, z̄j) may be included by cutting out disks at (zj, z̄j) and

supplying additional boundary terms there.

For the most part, we will actually work on the cylinder rather than the plane, and the
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asymptotic conditions at the ends of the cylinder satisfying Eqn. 2.24 are

X(ρ, φ)
ρ→±∞
−→ ±α′Qρ+O(1), (2.35)

where z = eρ+iφ. The cylinder action is then given by the L→∞ limit of

S =
1

4πα′

L∫
−L

dρ

2π∫
0

dφ
(
(∂ρX)2 + (∂φX)2

)
−Q

2π∫
0

dφ

2π
(X|L +X|−L) + α′Q2L. (2.36)

Suppose a primary e−2αX is inserted in the far past on the cylinder. The asymptotic

condition is the combination of Eqns. 2.29 and 2.35:

X(ρ, φ)
ρ→−∞
−→ 2α′

(
α− Q

2

)
ρ+O(1). (2.37)

Equivalently, the cylinder asymptotic condition Eqn. 2.37 follows from the asymptotic

condition Eqn. 2.27 on the plane and the anomalous transformation law Eqn. 2.12 with

e2ω =
∣∣∂z′
∂z

∣∣2 = 1
|z|2 ,

X ′(z′, z̄′) = X(z, z̄) + α′
Q

2
log

∣∣∣∣∂z′∂z
∣∣∣∣2 , (2.38)

where z′ = ρ + iφ = log z, and we drop the prime on X ′. The effect is again to shift

α→ α− Q
2

.

Note that for Re(α) < Q
2

, Eqn. 2.37 sends X to the weak-coupling region, whereas

for Re(α) > Q
2

it is mapped to the strong-coupling region. Comparing to the usual mode

expansion X = X0− iα′sρ+ · · · , one again finds that the operator insertion e−2αX prepares
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a state Ψ(X0) = eisX0 on the cylinder of momentum s = 2i
(
α− Q

2

)
.

Finally, we point out that the background-charge factor V−Q/2 = eQX that appears in

the zero-mode wavefunction may alternatively be understood from the target space string-

frame effective action, which includes an overall factor of e−2Φ. Extracting the target space

wavefunction from the kinetic term e−2Φ(∇XΨ̃(X))2 requires rescaling Ψ̃(X) → Ψ(X) =

e−ΦΨ̃(X). For the linear-dilaton, the necessary factor is again e−Φ = eQX .

The preceding discussion has been confined to the free linear-dilaton theory. Our interest

in much of the work described in this dissertation will concern the cigar and sine-Liouville

sigma-model backgrounds, and three-dimensional cousins thereof, that describe interacting

CFTs. However, these backgrounds include limiting regions where the interactions turn off

and the free linear dilaton is recovered. Much of the machinery of the free theory therefore

continues to be relevant. Before discussing those backgrounds, however, we first consider

the Liouville CFT in the next section, which exhibits in a simpler context several features

common to these asymptotic linear-dilaton theories.

2.2 Liouville Reflection in the Semi-Classical Limit

In this section, we review relevant details of the Liouville CFT, and we compute the saddle-

point expansion of its reflection coefficient in the semi-classical limit as a warm-up to the

analogous problem in the SL(2,R)/U(1) CFT that we will come to in Sec. 2.4. This saddle-

point expansion was originally understood by the authors of [35]. Here, we reproduce the

same result using the methods of [68], which reduce the calculation to a quantum mechanics
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2.2.1 Review of Liouville CFT

problem.

2.2.1 Review of Liouville CFT

The free linear-dilaton CFT reviewed in the previous section is ill-defined as a background

for string perturbation theory because the effective string coupling eΦ(X) = e−QX diverges as

X → −∞. It is moreover a non-unitary CFT; the delta-function normalizable spectrum is

confined to the complex branch of primaries α ∈ Q
2

+ iR, whose OPE will generate operators

outside this set that are non-normalizable.

The strong-coupling region may be regulated by turning on a potential barrier µe−2bLX ,

with µ > 0 and Re(bL) > 0. Then string configurations for which X becomes large and

negative have large actions, and therefore configurations extending too deeply into the strong-

coupling region are suppressed in the functional integral. The momentum bL is fixed by

demanding that the potential be marginal:21

bL(Q− bL) = 1, (2.39)

whose solution is

bL =
Q

2

(
1−

√
1− 4

Q2

)
. (2.40)

21In this section we set α′ = 1 to be consistent with the standard Liouville convention.
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The result is the Liouville CFT:22

S =
1

4π

∫
Σ

d2σ
√
h
{

(∇X)2 −QR[h]X + 4πµe−2bLX
}
. (2.41)

Deforming the linear dilaton by the Liouville potential not only cures the problematic

behavior of the string coupling at X → −∞, but also yields a unitary CFT. The potential

completely breaks the anomalous target translation symmetry of the free theory, and the

OPE now closes on the complex branch of delta-function normalizable states.

As X →∞, the Liouville potential vanishes and the free linear dilaton is recovered. One

therefore again has scattering solutions of the zero-mode quantum mechanics that behave

as plane waves e±isX in the free-field region. They are no longer independent, however; the

solutions which decay under the potential in the strong-coupling region behave as a linear

combination of an incoming wave to the left and a reflected wave to the right in the free-field

region,

Ψ(X)
X→∞
−→ e−isX +R(s)eisX , (2.42)

with R(s) the reflection coefficient.

22For Q > 2, bL ∈
(

0, Q
2

)
lies on the real branch, while for 0 < Q < 2 bL ∈ Q

2
+ iR sits on the complex branch. In the

latter case VL is complex and oscillatory. However, as an abstract CFT defined by its three-point function (which is known
exactly [66,69]), one may analytically continue bL to the right-half of the complex plane [35,66]. The continuation makes sense
for Q < 2 because bL always has positive real part.
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In more detail, consider the zero-mode limit X = X0(ρ) of Eqn. 2.41:

S[X0] =

∫
dρ

(
1

2
Ẋ2

0 + 2πµe−2bLX0

)
, (2.43)

describing the Euclidean mechanics of a particle in the potential

V (X0) = 2πµe−2bLX0 . (2.44)

The zero-mode wavefunctions are the solutions of the Schrödinger equation,

−1

2
Ψ′′(X0) + 2πµe−2bX0Ψ(X0) =

s2

2
Ψ(X0). (2.45)

The solutions that obey the boundary conditions

Ψs(X0)→


e−isX0 +R(s)eisX0 X0 →∞

0 X0 → −∞,
(2.46)

are Bessel functions

Ψs(X0) =
2

Γ
(
− is
bL

) (πµ
b2

L

)− is
2bL

K− is
bL

(√
4πµ

b2
L

e−bLX0

)
. (2.47)

Ψs(X0) obeys Eqn. 2.46 with

R(s) =

(
πµ

b2
L

)− is
bL

Γ
(
is
bL

)
Γ
(
− is
bL

) . (2.48)
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R(s) and Ψs(X0) satisfy the properties R(s)R(−s) = 1 and

Ψs(X0) = R(s)Ψ−s(X0). (2.49)

One therefore finds vertex operators Vα = e−QXΨs of the CFT, where s = −2i
(
α− Q

2

)
,

behaving asymptotically as

Vα
X→∞
−→ e−2αX +R(α)e−2(Q−α)X , (2.50)

with the same conformal weights as in Eqn. 2.8. Note that the reflection α → Q − α of α

about Q
2

corresponds to s→ −s, and Eqn. 2.49 implies

Vα = R(α)VQ−α. (2.51)

The reflection coefficient written as a function of α becomes

R(α) =

(
πµ

b2
L

) 2
bL

(Q2 −α) Γ
(
− 2
bL

(
Q
2
− α

))
Γ
(

2
bL

(
Q
2
− α

)) . (2.52)

Eqn. 2.52 is the Liouville reflection coefficient in the quantum-mechanics limit. The exact

reflection coefficient of the CFT is known to be [66,69]

R(α) = −
(
πµ

Γ(b2
L)

Γ(1− b2
L)

) 2
bL

(Q2 −α) Γ
(

1− 2
bL

(
Q
2
− α

))
Γ
(

1 + 2
bL

(
Q
2
− α

)) Γ
(
1− 2bL

(
Q
2
− α

))
Γ
(
1 + 2bL

(
Q
2
− α

)) . (2.53)

It satisfies R(α)R(Q − α) = 1. Note that the first two factors of Eqn. 2.53 coincide with
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Eqn. 2.52 as bL → 0, which we will see is the semi-classical limit.

Thus, whereas the free linear-dilaton background contained independent primaries e−2αX

and e−2(Q−α)X of identical conformal weights, in Liouville one finds a single vertex operator

Vα that behaves as a superposition of the two in the free-field region. The reflection coefficient

is the relative weight of the two terms, and gives the semi-classical amplitude for a string

sent in from the weak-coupling region to reflect off the potential and return to weak coupling.

As an abstract CFT quantity, the reflection coefficient characterizes a redundancy in

the continued space of CFT operators on the complex α-plane. For Re(α) < Q
2

, the first

term e−2αX dominates the second e−2(Q−α)X in the X → ∞ limit of Vα. For Re(α) > Q
2

,

it is the second term that dominates. However, Eqn. 2.51 shows that the CFT operators

labeled by α and Q − α are identical, up to rescaling by R. To avoid double-counting, one

conventionally labels Liouville vertex operators by α satisfying Re(α) < Q
2

, known as the

Seiberg bound [47], such that e−2αX is the dominant contribution at infinity. It is impossible

to have an operator that asymptotes to e−2αX with Re(α) > Q
2

because it is sub-dominant

to its reflection e−2(Q−α)X , and both terms are necessarily present to obtain a non-singular

solution in the interior.

On the complex branch Re(α) = Q
2

, on the other hand, neither exponential dominates the

other. The reflection α → Q − α flips the sign of Im(α), and one restricts to Im(α) > 0 to

avoid the double-counting. The complex and real branches of operators with non-negative

conformal weights are then labeled by α ∈ Q
2

+ iR+ and α ∈
[
0, Q

2

]
.
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The asymptotic zero-mode wavefunction for the state prepared by Vα,

Ψα(X)
X→∞
−→ e2(Q2 −α)X +R(α)e−2(Q2 −α)X , (2.54)

is oscillatory and delta-function normalizable on the complex branch α ∈ Q
2

+ iR+, corre-

sponding to a scattering state with asymptotic momentum s. On the real branch it is expo-

nentially divergent at weak-coupling and therefore non-normalizable. The Liouville Hilbert

space of normalizable states is then spanned by the complex branch α ∈ Q
2

+ iR+ [47].

The anomalous momentum conservation law of the free theory is completely broken by the

potential, and one obtains a closed OPE algebra and a unitary CFT. The real branch oper-

ators with α ∈
[
0, Q

2

]
, which includes the identity, are nevertheless good local operators of

non-negative conformal weight. One can in fact consider the analytic continuation of α to

general complex values [35].

Note that with the choice of operator normalization in Eqn. 2.50, the two-point function of

Vα is not canonically normalized, but rather proportional to R(α). A canonically normalized

primary would be obtained by rescaling by R(α)−1/2.

The coefficient µ of the Liouville potential is not a meaningful coupling of the CFT since it

may be rescaled by a field redefinition of X. In particular, under the shift X → X+ 1
2bL

log µ,

one finds µe−2bLX → e−2bLX , and thus µ is rescaled to one. The only cost in doing so is that

a constant mode of the dilaton Φ = −QX → −QX − Q
2bL

log µ is introduced. A constant

dilaton merely contributes a term Φ0χ to the action, however. It is a trivial improvement
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term of the CFT, and its only effect is to rescale correlation functions.23 In an action with

a given µ and Φ0, only the combination µe−2bLΦ0/Q is unambiguous.

Relatedly, although the Liouville action takes the form of the free linear-dilaton action

deformed by a potential with coefficient µ, Liouville is not a small perturbation of the free

theory. The freedom to rescale µ by a field redefinition of X implies that correlation functions

are not analytic functions of µ, and one cannot in general write a Liouville correlator as a

Taylor expansion in µ with coefficients given by free-theory correlators.

The µ dependence of a correlation function of Liouville primaries may be seen in several

ways. By the field redefinition X = X ′ − 1
2bL

log µ one finds

〈∏
j

e−2αjX

〉
µ

=

∫
DX ′ e−Sµ[X′]

∏
j

e−2αjX
′

=

∫
DX e

−Sµ=1[X]+ Q
2bL

χ log µ
∏
j

e−2αjXe
−2αj

1
2bL

log µ

=µ
1
bL

( 1
2
χQ−

∑
j αj)

〈∏
j

e−2αjX

〉
µ=1

. (2.55)

The µ dependence of a correlation function with primary momenta {αj} is therefore given

by µκ, where [70]

κ =
1

bL

(
1

2
χQ−

∑
j

αj

)
. (2.56)

In particular, the correlator is analytic in µ only for κ = N ∈ N.

23The scale factor may depend on the insertions in the correlator, however, if as for Liouville primaries they depend on the
zero-mode.
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Suppose we attempt to expand the Liouville potential around the linear-dilaton back-

ground,

〈∏
j

e−2αjX

〉
L

=
∞∑
N=0

(−µ)N

N !

〈∏
j

e−2αjXVL[X]N

〉
LD

, (2.57)

where VL[X] =
∫

d2σ
√
h e−2bLX . The anomalous conservation law of the free theory allows

at most one non-zero term in the expansion for compatible values of {αj},

NbL +
∑
j

αj =
1

2
Qχ, (2.58)

which is again the condition that κ = N is a natural number. In other words, for a Liouville

correlation function of primaries labeled by {αj}, if the quantity Eqn. 2.56 is a natural num-

ber then the Liouville correlator is equal to the linear-dilaton correlator with that number

of copies of the integrated potential inserted. The zero-mode integral
∫

dx e2bL(κ−N)x =
∫

dx

diverges with the target volume, however, and so more precisely the linear-dilaton correlation

function with the zero-mode measure omitted computes the residue of the Liouville correla-

tion function at the pole. One could use these data to determine the Liouville correlator with

general momenta by “continuation,” in the sense that one finds the meromorphic function

of {αj} with the given pole structure at those discrete values satisfying κ ∈ N [66,67,69,71].

For generic {αj}, Eqn. 2.58 need not be satisfied, and so every term on the right-hand-

side of Eqn. 2.57 would seem to vanish. And yet the Liouville correlator on the left need not

be zero. The source of the trouble is the strong-coupling region. Namely, Eqn. 2.57 should

be understood more properly as a perturbative expansion in the weak-coupling region of the
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Liouville measure in powers of µe−2bLX0 [67]:

DX e−SL[X]
∏
j

e−2αjX
X0→∞
−→ DX ′ e−SLD[X′]

∏
j

e−2αjX
′

(2.59)

× dX0 e
2bLκX0

∞∑
N=0

1

N !

(
−µe−2bLX0

)N
VL[X ′]N ,

where we have separated the measure into its zero and non-zero-mode contributions, X(z, z̄) =

X0 +X ′(z, z̄). Note that whereas µ itself was not uniquely defined, the combination µe−2bLX0

is invariant under X0 → X0 + δ, µ→ e2bLδµ and so is a sensible parameter. The expansion is

good in the weak-coupling region where the parameter is small, but it does not describe the

measure in the strong-coupling region well. To proceed with the expansion for general mo-

menta one would need to introduce a cut-off that regulates the strong-coupling region. The

regulator would break the target translation symmetry and eliminate the spurious constraint

Eqn. 2.58.

Rather than expanding the potential, one may also study a Liouville correlator by per-

forming the functional integral over the zero-mode outright:

〈∏
j

e−2αjX

〉
µ

=

∫
DX ′ e−SLD[X′]

∏
j

e−2αjX
′
∫

dX0 e
2bLκX0−(µVL[X′])e−2bLX0

. (2.60)

The zero-mode integral is a gamma function,

∞∫
−∞

dξ eκξ−βe
−ξ

= βκΓ(−κ), Re(κ) < 0, Re(β) > 0. (2.61)
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Then for Re(κ) < 0, i.e.
∑

j Re(αj) >
1
2
Qχ, one obtains

〈∏
j

e−2αjX

〉
µ

=
µκ

2bL

Γ(−κ)

〈
VL[X ′]κ

∏
j

e−2αjX
′

〉
LD,/0

, (2.62)

where the latter correlation function is evaluated in the free theory with the zero-mode

measure omitted. Since κ is in general a complex number, this expression does not admit

an obvious interpretation as a correlation function of local operators, and is defined by the

functional integral. When Re(κ) > 0, the zero-mode integral over the real line diverges [47],

and the integration contour should be deformed to an appropriate complex contour that

preserves convergence and analyticity [35], as further discussed below. In particular, for

κ ∈ N Eqns. 2.57 and 2.62 are consistent, the divergence of Γ(−κ) at its pole coinciding

with the target volume divergence of the linear-dilaton zero-mode.

2.2.2 Asymptotic Conditions

Next let us discuss the formulation of asymptotic conditions in Liouville. Much of the

machinery of the free theory discussed in Sec. 2.1 continues to apply, with a few caveats.

Consider the worldsheet neighborhood of an operator insertion Vα(z′, z̄′). Suppose Re(α) <

Q
2

, such that the operator at large Re(X) is dominated by e−2αX , as in the free theory. If

one further requires Re(α) < 0, then the free-field Green function Eqn. 2.29 remains a

self-consistent solution of the Liouville equation of motion, since it maps the neighborhood

of the insertion to Re(X) → ∞ where the potential is sub-leading. As before, one can cut

out the insertion and replace it with the boundary action Eqn. 2.30.
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The same considerations as in the free theory require the asymptotic conditions Eqn. 2.32

on the plane or Eqn. 2.35 on the cylinder due to the background charge. These likewise map

the insertion point to the weak-coupling region, and the free-field results remain consistent.

When Vα is inserted in the far past on the cylinder, the condition Re(α) < 0 may be

relaxed to the Seiberg bound Re(α) < Q
2

; the combined effect of Vα and the background

charge yield the asymptotic condition Eqn. 2.37, which sends Re(X) → ∞. One may

describe a complex branch insertion similarly by shifting α → α − ε with a small regulator

ε > 0.

With, for example, insertions of Vα at both ends of the cylinder, with Re(α) < Q
2

, one

obtains the following action

Sα =
1

4π

L∫
−L

dρ

2π∫
0

dφ
(
(∂ρX)2 + (∂φX)2 + 4πµe−2bLX

)
(2.63)

− 2

(
Q

2
− α

) 2π∫
0

dφ

2π
(X|ρ=L +X|ρ=−L) + 4

(
Q

2
− α

)2

L,

with which the functional integral computes the Liouville reflection coefficient R(α) in the

limit L→∞,

R(α) =

∫
C(α)

DX e−Sα . (2.64)

We discuss the appropriate choice of integration contour C(α) in the next sub-section.

We wish to investigate the semi-classical limit of Eqn. 2.64. To do so, it is convenient to
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define

X̃ ≡ bLX, µ̃ ≡ b2
Lµ, η ≡ bLα. (2.65)

Then the action Eqn. 2.63 for the two-point function of Vα may be written as Sα = 1
b2L
S̃,

where

S̃ =
1

4π

L∫
−L

dρ

2π∫
0

dφ
(

(∂ρX̃)2 + (∂φX̃)2 + 4πµ̃e−2X̃
)

(2.66)

− 2

(
1

2
− η +

1

2
b2

L

) 2π∫
0

dφ

2π

(
X̃|ρ=L + X̃|ρ=−L

)
+ 4

(
1

2
− η +

1

2
b2

L

)2

L.

In the functional integral,

R(η) =

∫
C(η)

DX̃ e
− 1

b2
L

S̃
, (2.67)

b2
L plays the role of ~, with S̃ being order one or higher. Thus, the semi-classical limit is

bL → 0 with µ̃ held fixed. Moreover, by choosing α = η
bL

with η of order one, we have

restricted our attention to the reflection coefficient of “heavy” operators, which enter at

the same order (namely 1
b2L

) as the leading terms in the action. Note that the constraint

Re(α) < Q
2

implies that Re(η) < 1
2

in the bL → 0 limit.
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2.2.3 Saddle-Point Expansion

The semi-classical limit of Eqn. 2.67 was computed by a saddle-point expansion in [35]

and matched to the limit of the exact reflection coefficient (Eqn. 2.53). Here, we reproduce

the same result using the methods of [68], which are convenient because the calculation is

reduced to a particle mechanics problem. In Sec. 2.4 we will apply the same methods to

understand the semi-classical limit of the reflection coefficient in the cigar CFT.

We first write down the limit of the exact reflection coefficient [35]. Eqn. 2.53, with the

definitions Eqn. 2.65, may be written

R(η) = −b2
L

(
πµ̃

γ(b2
L)

b2
L

) 1

b2
L
(1−2η+b2L) γ

(
− 1
b2L

(1− 2η)
)
γ (2η − b2

L)

(1− 2η + b2
L)

2 , (2.68)

where γ(x) = Γ(x)/Γ(1− x).

The asymptotic behavior of the gamma function for large complex values of its argument

depends on the direction in the complex plane in which the limit is taken. To eO(z−1), it is

given by [35,72,73]

Γ(z)
|z|→∞
−→


e(z−

1
2) log(z)−z+ 1

2
log(2π)+O(z−1) Re(z) > 0

csc(πz)e(z−
1
2) log(−z)−z+ 1

2
log(π2 )+O(z−1) Re(z) < 0.

(2.69)

The first line is the usual Stirling approximation, and the second follows from the first in
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combination with the identity Γ(z)Γ(−z) = −π
z

csc(πz). The asymptotics of γ(z) are then

γ(z)
|z|→∞
−→


2 sin(πz)

z
e2z(log(z)−1)+O(z−1) Re(z) > 0

−csc(πz)

2z
e2z(log(−z)−1)+O(z−1) Re(z) < 0.

(2.70)

We obtain, for Re(η) < 1
2
,24

R(η)
bL→0
−→ πµ̃

16
γ(2η)

e4Γ′(1)( 1
2
−η)(

1
2
− η
)3 (2.71)

×
(
e2πµ̃

4

) 2

b2
L
( 1

2
−η)(1

2
− η
)− 4

b2
L
( 1

2
−η)

csc

(
2π

b2
L

(
1

2
− η
))

.

In the saddle-point expansion, we expect the second line to arise from the leading order 1
b2L

action evaluated on its saddles, and the first line to arise from the fluctuation determinant

as well as the order one corrections to the action.

The leading saddle-point expansion is of the form

R(η)
bL→0
−→

∑
X̃i

e
− 1

b2
L

(S̃[X̃i]+O(b2L))
. (2.72)

Here, {X̃i} are a subset of solutions to the equations of motion, which are

(
∂2
ρ + ∂2

φ

)
X̃ = Ṽ ′(X̃) (2.73)

24−Γ′(1) is the Euler-Mascheroni constant.
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in the bulk and

∂ρX̃|ρ=±L = ±2

(
1

2
− η
)

(2.74)

on the boundaries, where Ṽ (X̃) = 2πµ̃e−2X̃ .

Since we allow for complex values of η, clearly the saddles of the functional integral will

in general be complex. However, even for real values of η one must sum over complex

saddles [35]. The necessity of complexification is familiar from applications of the saddle-

point method to asymptotic expansions of ordinary integrals over real variables, where the

original real integration contour is typically deformed into a homotopically equivalent sum

of steepest-descent contours passing through complex critical points.

The asymptotic expansion of the Gamma function in Eqn. 2.69 may itself be understood

as a finite-dimensional example of the saddle-point expansion, since Γ(z) may be defined by

the integral

Γ(z) =

∫
C(z)

dX e−(−zX+eX). (2.75)

We refer the reader to Appendix C of [35] for a self-contained review, because the problem for

the functional integral is in many ways analogous. Briefly, the saddle-points of the “action”

S[X] = −zX + eX are given by XN = log(z) + 2πiN , with N ∈ Z. The contour C(z) is

given by the real axis for Re(z) > 0, though it must be deformed for Re(z) < 0 to preserve

convergence of the integral, as in the discussion of the Liouville zero-mode integral Eqn.
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2.61. For Re(z) > 0, C(z) is homotopic to the steepest-descent contour C0 through X0, and

one recovers the Stirling formula e−S[X0] = ez log(z)−z.

Along the imaginary z-axis, however, one encounters what is known as a Stokes wall.

There the steepest-descent contour of any saddle-point, which otherwise varies smoothly

with z, collides with a neighboring saddle-point. As a result, for values of z just to either side

of the imaginary axis, the steepest-descent contour jumps discontinuously. The integration

contour C(z) itself varies smoothly with z, but its expansion in steepest-descent contours

changes abruptly upon crossing the Stokes wall, and therefore its asymptotic expansion

changes as well. For Re(z) < 0 and Im(z) > 0, C(z) is instead homotopic to the sum of

steepest-descent contours
∑∞

N=0 CN passing through the saddles XN . Then the saddle-point

expansion yields

∞∑
N=0

e−S[XN ] =e−S[X0]

∞∑
N=0

e2πizN

= csc(πz)ez log(−z)−z+O(z0), (2.76)

as in Eqn. 2.69. For Im(z) < 0, the relevant contours are instead
∑∞

N=0 C−N , as required for

the geometric series to converge.

Thus, the poles of the Gamma function on the negative real axis may be understood as

the divergence of the geometric series
∑∞

N=0 e
2πizN that results from summing over a family

of saddles related by complex shifts X → X + 2πi. The poles of csc
(

2π
b2L

(
1
2
− η
))

in Eqn.

2.71 will arise from a complex shift symmetry in a similar way [35].
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As in the finite-dimensional problem, the saddle-point expansion of a functional integral

is performed by deforming the integration contour into a sum of complex cycles [34, 35].

Unlike for a finite-dimensional integral, however, for a functional integral it is in general very

challenging to determine the set of steepest-descent cycles that are homotopic to the original

contour. In other words, it is at present a hard problem to derive from first principles which

complex saddles one should sum over in computing the saddle-point expansion of a functional

integral, especially since the necessary set of saddles can jump upon crossing Stokes walls

in the parameter space. Since for the problem at hand we know the exact answer and its

semi-classical limit, one may identify the set of solutions on which the saddle-point expansion

reproduces the known answer [35].

Finally, we have not yet specified the contour C(η) in field space along which the functional

integral Eqn. 2.67 is to be performed. In the example of the Gamma function, one starts

with a contour along the real axis when z is a positive real number. Then one deforms it

as necessary for complex values of z to preserve convergence of the integral and produce an

analytic function of z.

By contrast, even for real η the functional integral Eqn. 2.67 over real fields diverges

[35, 47]. In the notation of Eqn. 2.61, κ = 2
b2L

(
1
2
− η
)

+ O(1) is positive, and therefore the

zero-mode integral over the real axis diverges. Another argument comes from [35]: let X̃ be

a real, finite-action configuration, and let X̃ + a be another configuration shifted by a large,
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positive real number. Then the action of the latter configuration is given by

S̃[X̃ + a]
a→∞
−→ −4a

(
1

2
− η
)

+ S̃[X̃]− µ̃
∫

dρ dφ e−2X̃ +O(e−2a, b2). (2.77)

Since Re(η) < 1
2
, by making a arbitrarily large the real part of the action may be made

arbitrarily negative. This is a region of real field space where e−S → ∞, and therefore the

functional integral over real fields cannot converge.

Instead, C(η) must be chosen to be an appropriate complex cycle. By identifying the set

of saddles with which the semi-classical limit of the exact result is reproduced, the authors

of [35] identified the necessary contour as the sum of steepest-descent contours associated to

these complex saddles.

We now proceed with the saddle-point expansion. One must identify the appropriate

set of solutions {Xi} to the bulk and boundary equations of motion such that Eqn. 2.72

reproduces Eqn. 2.71. It will prove sufficient to consider φ-independent trajectories X̃(ρ),

which reduces the question to a mechanics problem with action

S̃[X̃] =

L∫
−L

dρ

(
1

2
˙̃X2 + Ṽ (X̃)

)
− 2

(
1

2
− η
)(

X̃(L) + X̃(−L)
)

(2.78)

+ 4

(
1

2
− η
)2

L+O(b2
L).

The bulk equation of motion Eqn. 2.73,

d2X̃

dρ2
= Ṽ ′(X̃), (2.79)
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(a) (b)

Figure 2.1: Inverted Potentials. The equation of motion for a zero-mode X̃(ρ) of the action S̃[X̃] describes a particle in
an unstable potential with a cliff as X̃ → −∞ (left). After complexification, however, one finds simple solutions with constant
imaginary part πi

2
+ πiN , on which the potential becomes a stable, repulsive wall (right). The freedom to shift the solutions

by πiN reflects the complex shift symmetry of the potential, Ṽ (X̃ + πi) = Ṽ (X̃).

describes a particle in the inverted potential −Ṽ (X̃) = −2πµ̃e−2X̃ . In the limit L→∞, the

boundary equations of motion Eqn. 2.74 become the expected asymptotic conditions

X̃(ρ)
ρ→±∞
−→ ±2

(
1

2
− η
)
ρ+ a± + · · · , (2.80)

demanding that the particle comes in from and returns to the weak-coupling region with

fixed momentum. The sub-leading constants a± specify the asymptotic separation X̃(∞)−

X̃(−∞) = a+ − a−.

Note that the inverted potential is unstable, and a real particle trajectory simply rolls

down the hill to X̃ → −∞ (Fig. 2.1a). Rather, as already mentioned, one must allow for

complex-valued saddle points, even for real η. That is, one continues S̃[X̃] to a holomorphic

functional of maps X̃ : R→ C into the complex X̃-plane and identifies its critical points.

The simplest solutions have constant imaginary part. Indeed, notice that under the shift

X̃ → X̃ + πi
2

the potential flips sign. Then the unstable cliff is replaced by a repulsive

hill, and one finds solutions describing a particle that rolls up and down the hill (Fig. 2.1b).
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Moreover, the potential is invariant under the imaginary shift symmetry Ṽ (X̃+πi) = Ṽ (X̃).

There will consequently be a discrete moduli space of solutions with constant imaginary part

πi
2

+ πiN for each N ∈ Z.

One may obtain these solutions explicitly, but note that it is not necessary to do so in

order to evaluate their on-shell action. Integrating the equation of motion once produces the

energy conservation equation

1

2
˙̃X2 − Ṽ (X̃) = 2

(
1

2
− η
)2

, (2.81)

with the conserved energy being fixed by the asymptotic condition. Using this equation, we

may eliminate Ṽ (X̃) from the action,

S̃[X̃] =

L∫
−L

dρ ˙̃X2 − 2

(
1

2
− η
)(

X̃(L) + X̃(−L)
)
. (2.82)

Letting C denote the contour traced by a saddle X̃(ρ), we arrive at

S̃[X̃] =

∫
C

dX̃

√
4

(
1

2
− η
)2

+ 2Ṽ (X̃)− 2

(
1

2
− η
)(

X̃(L) + X̃(−L)
)
, (2.83)

the integrand being the velocity function. Note that the square-root has branch points at

the turning points of the energy conservation equation, where −Ṽ (X̃∗ + πiN) = 2
(

1
2
− η
)2

and the velocity vanishes:

X̃∗ = − log

(
1

2
− η
)

+
1

2
log (πµ̃) +

πi

2
. (2.84)
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One must choose an appropriate branch of the square-root such that the velocity has the

correct sign. Then the on-shell action may be computed by evaluating the contour integral

for any convenient contour connecting X̃(L) and X̃(−L) that avoids the chosen branch cuts.

The explicit solutions may be obtained by separating and integrating the energy conser-

vation equation:

X̃N(ρ) = log cosh

(
2

(
1

2
− η
)

(ρ+ iρ0)

)
+ X̃∗ + πiN. (2.85)

Once again, the discrete modulus N reflects the shift symmetry of the potential. The inte-

gration constant ρ0, on the other hand, is a continuous modulus. In the L → ∞ limit, the

real part of iρ0 merely amounts to a reparameterization of ρ, and we therefore take iρ0 to be

pure imaginary. For a given N , by varying ρ0 one obtains a continuous family of trajectories,

such as those with N = 0 pictured in Fig. 2.2. The trajectory with ρ0 = 0 is the solution

with constant imaginary part π
2

that rolls up and down the potential hill. As ρ0 is increased,

the asymptotic imaginary parts of the trajectories separate. Within such a family, each sad-

dle necessarily yields the same on-shell action, and the divergent sum over ρ0 is attributed

to the delta-function δ(α− α) in the two-point function [35]. In varying ρ0, the action may

only change if the trajectory becomes singular, as it does when the asymptotic imaginary

separation reaches π. Indeed, we have seen that on the slice Im(X̃) = 0, and all shifts thereof

by πiZ, the inverted potential is an unstable cliff −e−2X̃ . In the limit 2
(

1
2
− η
)
ρ0 → π

2
, the

solution approaches a singular trajectory describing a particle with constant imaginary part

π that falls down the infinite well and is then ejected from the well with constant imaginary
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π
2

- π
2

Figure 2.2: Liouville Trajectories. Several examples of solutions in the N = 0 family of Eqn. 2.85 are shown, with different
values of the continuous modulus ρ0. The solution with ρ0 = 0 is the simple solution with constant imaginary part π/2 that
rolls up and down the potential shown in Fig. 2.1b—the nearby blue trajectory plotted has a small value of ρ0. As 2(1/2−η)ρ0

approaches π/2, as it almost has for the green curve, the trajectory becomes singular, falling down and climbing back up the
cliff at Im(X̃) = 0 and π shown in Fig. 2.1a.

part 0.

The on-shell action does depend on N , however, due to the shift of the boundary terms:

S̃[X̃N ] = S̃[X̃0]− 4πi

(
1

2
− η
)
N. (2.86)

Let us compute the action S̃[X̃0] of the trajectory with constant imaginary part π
2

as in Fig.

2.3. The disks indicate the turning points X̃∗ + πiN , and the dashed lines are a convenient

choice of branch cuts of the square-root. The contour has been deformed slightly away from

the slice πi
2

, so as to avoid the branch cut.

Either by evaluating the contour integral Eqn. 2.83 or by plugging the explicit solution

into Eqn. 2.82, one obtains

S̃[X̃0] =− 4

(
1

2
− η
)(

X̃∗ − log(2) + 1
)
. (2.87)
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π
2

3π
2

- π
2

Figure 2.3: Liouville Contours. The on-shell action of a solution X̃N (ρ) may be computed by evaluating the contour
integral Eqn. 2.83 around the contours shown. The dots represent the turning points X̃∗+πiN , which are branch points of the
velocity function, and the dashed lines represent a convenient choice of branch cuts. For Im(η) < 0, one sums over the contours
in the upper-half plane (N ≥ 0), and for Im(η) > 0 one sums over the contours in the lower-half plane (N ≤ −1).

Its contribution to the saddle-point expansion at order e1/b2L is then

e
− 1

b2
L

S̃[X̃0]
= e

2πi

b2
L

( 1
2
−η)
(
e2πµ̃

4

) 2

b2
L
( 1

2
−η)(1

2
− η
)− 4

b2
L
( 1

2
−η)

, (2.88)

partly reproducing the second line of Eqn. 2.71. The remaining csc factor is accounted for

by summing over the shifted saddles X̃N [35]. Observe that, for Im(η) < 0,

∑
N∈Z≥0

e
4πi

b2
L

( 1
2
−η)N

=
i

2
e
− 2πi

b2
L

( 1
2
−η)

csc

(
2π

b2
L

(
1

2
− η
))

, (2.89)

the condition on Im(η) ensuring convergence of the sum. In other words, one sums over the

contours in the upper-half X̃ plane. The phase in Eqn. 2.89 cancels the unwanted phase in

Eqn. 2.88. Together one obtains

∑
N∈Z≥0

e
− 1

b2
L

S̃[X̃N ]
=

(
e2πµ̃

4

) 2

b2
L
( 1

2
−η)(1

2
− η
)− 4

b2
L
( 1

2
−η)

csc

(
2π

b2
L

(
1

2
− η
))

eO(1), (2.90)
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reproducing the semi-classical limit Eqn. 2.71 at order e1/b2L .

For Im(η) > 0, one instead sums over contours in the lower-half plane,

∑
N∈Z≤−1

e
4πi

b2
L

( 1
2
−η)N

= − i
2
e
− 2πi

b2
L

( 1
2
−η)

csc

(
2π

b2
L

(
1

2
− η
))

, (2.91)

again reproducing the expected result. Note that one should give η a non-zero phase in

evaluating the saddle-point expansion to avoid the poles on the real axis.

The order one correction given in the first line of Eqn. 2.71 is expected to arise from

the fluctuation determinant around the leading saddles, as well as the order one corrections

to the action. It was suggested in [67] that the Liouville potential at small but finite bL

should include both e−2bLX and its reflection e−2(Q−bL)X , the latter being a non-perturbative

correction. It would be interesting to understand if this correction contributes to the order

one factor of the saddle-point expansion, especially the factor of γ(2η). More recent work

has argued that the action Eqn. 2.41 is not modified, however [74].

In Sec. 2.4, we will investigate the analogous saddle-point expansion of the reflection

coefficient for the SL(2,R)k/U(1) CFT. Before coming to that calculation, we first present

a review of the CFT in the next section.

2.3 Review of the SL(2,R)k/U(1) CFT

In this section, we review the SL(2,R)k/U(1) CFT that will feature heavily in the re-

mainder of the dissertation. This CFT is a coset of the SL(2,R)k WZW model. The group
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SL(2,R) is equivalent to Lorentzian AdS3, and the WZW model describes a string propagat-

ing on that manifold, with the WZW level k corresponding to the AdS length, l2AdS = kl2s .

AdS3 may be described as a solid cylinder with time running along its length, and the coset

is defined by gauging this timelike isometry. The result is the unitary SL(2,R)k/U(1) CFT,

of central charge

c =
3k

k − 2
− 1, (2.92)

the first term being the central charge of the SL(2,R)k WZW model, less one for the quotient.

k is a real number greater than two, which need not be an integer.

In Sec. 3.2 we will review how the SL(2,R)k/U(1) CFT is obtained from the SL(2,R)k

WZW model by gauging the appropriate symmetry. For now, we will take as given that

there exists a CFT of central charge Eqn. 2.92, described by the sigma-model and Virasoro

primary spectrum discussed below, and investigate its properties.

2.3.1 The Cigar Sigma-Model

The SL(2,R)k/U(1) CFT admits a sigma-model description, weakly coupled for large k,

given by the following metric and dilaton [75]:

ds2 = α′(k − 2)

(
dr2 +

1

coth2(r)− 2
k

dθ2

)
(2.93a)

Φ = Φ0 −
1

2
log

(
1

2
sinh(2r)

√
coth2(r)− 2

k

)
. (2.93b)
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The target space is two-dimensional and has the topology of a disk, with coordinates r ∈

[0,∞) and θ ∼ θ + 2π. The dilaton is a monotonically-decreasing function of r, with the

constant Φ0 setting its maximal value at the origin: Φ|r=0 = Φ0. In that neighborhood the

geometry is simply R2 in polar coordinates:

ds2 = α′(k − 2)
(
dr2 + r2dθ2

)
+O(r3) (2.94a)

Φ = Φ0 −
1

2

k − 1

k
r2 +O(r3). (2.94b)

At large r, on the other hand, the geometry approaches a cylinder of radius
√
α′k, with

the dilaton decreasing linearly along its length:

ds2 = α′(k − 2)dr2 + α′kdθ2 +O
(
e−2r

)
(2.95a)

Φ = −r + Φ0 +
1

4
log

(
16k

k − 2

)
+O

(
e−2r

)
. (2.95b)

The target space therefore resembles a cigar (Fig. 1.4a), with an asymptotic cylinder at

large r that caps off at the tip r = 0, hence the background is known as the cigar sigma-

model. The leading O (e−2r) correction to the cylinder metric is −4α′k2

k−2
e−2rdθ2, and the

corresponding operator e−2r∂θ∂̄θ is the leading correction to the cylinder background as one

heads back toward finite r. It is important to note that although the asymptotic cylinder

suggests the sigma-model has a topological winding number, there is no conserved charge

because a string that appears to wind the cylinder can unwind at the tip.
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2.3.2 The 2D Black Hole

For large k the cigar is large and weakly curved,

R =
4

cosh2(r)

1

α′k
+O

(
k−2
)
, (2.96)

and the sigma-model is weakly coupled in the α′ sense. In this limit the background is [32]

ds2 = α′k
(
dr2 + tanh2(r)dθ2

)
+O(k0) (2.97a)

Φ = − log cosh(r) + Φ0 +O
(
k−1
)
. (2.97b)

The action in the weak-coupling limit is then

Scigar =
k

4π

∫
Σ

d2σ
√
h

{
(∇r)2 + tanh2(r)(∇θ)2 +

1

k
R[h] (− log cosh r + Φ0)

}
(2.98)

on a closed worldsheet Σ of metric hab.

The effective string coupling gs = eΦ is determined by the dilaton. The unusual profile

Φ(r) is required by conformal invariance of the curved background. One can check, for

example, that Eqn. 2.97 satisfies the leading-order beta function equation

βIJ = α′(RIJ + 2∇I∇JΦ) +O(α′2) = O(α′2). (2.99)

Since the dilaton is monotonically decreasing, the string coupling attains its maximum

eΦ0 at the tip and decays to zero at large r, which we refer to as the weak-coupling region.

The parameter Φ0 is a modulus of the theory. It reflects the usual freedom to shift the

dilaton by a constant, the only effect being to shift the action by Φ0χ, with χ the Euler
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characteristic of Σ.

2.3.2 The 2D Black Hole

The background Eqn. 2.97 is remarkable because it describes a string in a Euclidean

black hole of two-dimensional dilaton-gravity [32]. Namely, from the spacetime perspective,

the background is a solution of

Sspacetime = − 1

2κ2

∫
drdθ

√
g e−2Φ

(
R[g] + 4 (∇Φ)2 +

4

α′k

)
, (2.100)

whose equations of motion may be written

RIJ + 2∇I∇JΦ = 0 (2.101a)

(∇Φ)2 − 1

2
∇2Φ− 1

α′k
= 0. (2.101b)

The first is again the leading-order beta function equation from the perspective of the world-

sheet. The second computes the central charge c = 2 + 6α′
(
(∇Φ)2 − 1

2
∇2Φ

)
at large k,

3k
k−2
− 1 = 2 + 6

k
+O(k−2).

The interpretation of Eqn. 2.97 as a Euclidean black hole follows by defining the compact

coordinate θ as the Euclidean time. Then continuing θ = it gives the Lorentzian metric in

the right wedge of a two-sided black hole (Fig. 2.4a):

ds2 = α′k
(
dr2 − tanh2(r)dt2

)
. (2.102)
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(a) (b)

Figure 2.4: The Two-Dimensional Black Hole. The Lorentzian continuation of the Euclidean cigar is a two-sided, eternal
black hole. The horizons are the diagonal dotted lines, and the past and future singularities are the zigzag hyperbolas at the
bottom and top. The geometry is invariant under time reflection about the dashed line, which enables the construction of the
Hartle-Hawking state. The cigar, which has the topology of a disk, is cut in half and glued to the black hole along the fixed
line of the reflection symmetry, similar to Fig. 1.2a but resembling the Schwarzschild causal diagram rather than BTZ. This
Euclidean cap prepares the state on the dashed line, which is then evolved forward in Lorentzian time.

The geometry approaches flat space at large r, ds2 → α′k(dr2 − dt2), together with the

asymptotically-linear dilaton. The coordinate patch parameterized by r and t ends at the

horizon r = 0, where the coefficient of dt2 vanishes. The complete, two-sided black hole may

be described in Kruskal coordinates

u = e−t sinh(r), v = −et sinh(r), (2.103)

in terms of which the metric reads

ds2 = α′k
du dv

uv − 1
, (2.104)

and the dilaton is Φ = −1
2

log(1 − uv) + Φ0. The horizon is the locus uv = 0, and the

singularity is the hyperbola uv = 1, whose two branches correspond to the future and past

singularities. Note that the singularities correspond to the poles of tanh2(r) at r = ±πi
2

in
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(a) (b)

Figure 2.5: Rindler Decomposition. When R2 in polar coordinates (left) is continued with respect to the angular direction,
the result is a wedge of the Rindler decomposition of Minkowski spacetime (right). The Euclidean functional integral over the
half-plane prepares the Minkowski vacuum on the dashed line. In angular quantization, the Minkowski vacuum is identified
with the thermofield-double state in the two copies of the Hilbert space on the left and right Rindler wedges. The reduced
density matrix in a single wedge is a thermal state at the Unruh temperature.

the complexification of the original coordinates.25 There the coefficient of dt2 diverges, as

does the scalar curvature in Eqn. 2.96, and likewise the dilaton and string coupling. The

extended black hole geometry is pictured in Fig. 2.4a. There is of course a second asymptotic

boundary in the left wedge. The mass of the black hole is [32]

M =
1√
α′k

e−2Φ0 . (2.105)

In the Euclidean black hole, the horizon bifurcation point corresponds to the tip r = 0,

where the θ circle shrinks. The geometry in that neighborhood is R2 (Eqn. 2.94), whose

continuation with respect to angular Euclidean time yields Rindler spacetime—the near-

horizon geometry of the black hole. Rindler is obtained simply by continuing θ = it in the

plane metric ds2 = dr2 + r2dθ2 for R2 in polar coordinates. The resulting Lorentzian metric

ds2 = dr2 − r2dt2 describes the right wedge of a two-sided decomposition of Minkowski

spacetime, bounded by the Rindler horizon at r = 0 where the coefficient of dt2 vanishes

25 We point out that the 1/k corrections to the k → ∞ metric shift the singularity off the imaginary axis to r =

± coth−1
(√

2
k

)
+ πiZ = πi

2
±
√

2
k

+O(k−3/2) + πiZ.
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(Fig. 2.5).

2.3.3 Spectrum

Returning to the Euclidean theory, we now review its spectrum of Virasoro primaries,

which is known exactly thanks to the coset construction from the SL(2,R)k WZW model

(Sec. 3.2) [75–77]. The Virasoro primaries Ojnw(z, z̄) of the coset are labeled by integers n

and w and a complex number j, taking the following values:

(i) j ∈ 1

2
+ iR+ (2.106a)

(ii) jN =
k|w| − |n|

2
−N ∈

(
1

2
,
k − 1

2

)
, N ∈ N. (2.106b)

These two sets are referred to as the complex and real branches of primaries based on the

value of j. As in the free linear dilaton and Liouville theories reviewed in Secs. 2.1-2.2, the

complex branch primaries correspond to delta-function normalizable scattering states on the

cigar with momentum proportional to Im(j). The integers n and w, meanwhile, correspond

to the momentum and winding numbers around the asymptotic cylinder at large r. The real

branch primaries with j = jN , on the other hand, correspond to bound states living at the

tip of the cigar. These have no analog in the free theory or Liouville. One may also consider

the continuation of j to general complex values, including real branch operators for which j

is not valued in the discrete set jN . The latter map to non-normalizable states.

Note that on the complex branch the value of j is independent of the integers n and w,

whereas on the real branch n and w determine the allowed values of j up to shifts by the
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natural number N , constrained to lie within the interval 1
2
< j < k−1

2
. The upper bound

jN < k−1
2

ensures positivity of the conformal weights, while the lower bound jN > 1
2

ensures

normalizability of the wavefunctions. That lower bound implies there may only exist real

branch primaries with k|w| − |n| ≥ 1. In particular, there are none with w = 0.

These primaries carry conformal weights

hjnw = −j(j − 1)

k − 2
+

(n− kw)2

4k
, h̄jnw = −j(j − 1)

k − 2
+

(n+ kw)2

4k
. (2.107)

Note that the quantity −j(j − 1) is a real number not only on the real branch, but also

on the complex branch where −j(j − 1) = |j|2. On the real branch, it is non-negative for

1
2
≤ j ≤ 1 and negative thereafter, its maximal value coinciding with the minimal value on

the complex branch. The total conformal weight is non-negative, however. Note also that

the spin hjnw − h̄jnw = −nw is appropriately quantized.

Since the sigma-model reduces to the free linear-dilaton×S1 background at large r (Eqn.

2.95), the abstract primaries Ojnw may be expanded in free-field primaries in that limit.

Define canonically-normalized coordinates,

r̂ =
1

Q
r, θ̂ =

√
α′kθ, (2.108)
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in terms of which the asymptotic background is

ds2 = dr̂2 + dθ̂2 (2.109a)

Φ = −Qr̂, (2.109b)

where

Q =
1√

α′(k − 2)
. (2.110)

θ̂ is periodic in 2π
√
α′k. Note that Q goes to zero in the large k limit, in contrast to Liouville

where Q
bL→0
−→ 1

bL
diverged in the semi-classical limit. In the semi-classical limit of the cigar,

the dilaton contribution is sub-leading to the metric.

The Virasoro primaries of the free theory, considered in its own right with r̂ permitted to

range over the entire real line, are

VαpLpR
(z, z̄) = e−2αr̂(z,z̄)eipLθ̂L(z)+ipRθ̂R(z̄), (2.111)

where pL, pR are valued in the lattice

pL =
n√
α′k
−
√
k

α′
w, pR =

n√
α′k

+

√
k

α′
w, n, w ∈ Z. (2.112)

n is the momentum number around the cylinder and w is (minus) the winding number.26

26We let w denote the negative of the winding number so that it coincides with the spectral-flow number in SL(2,R)k, as
explained in Sec. 3.2.
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Their conformal weights with respect to the free-theory stress tensor

T (z) = − 1

α′
(∂r̂)2 −Q∂2r̂ − 1

α′
(∂θ̂)2 (2.113)

are

hαpLpR
= α′α(Q− α) + α′

p2
L

4
, h̄αpLpR

= α′α(Q− α) + α′
p2

R

4
. (2.114)

The central charge of the Virasoro algebra is

cLD×S1 = 2 + 6α′Q2, (2.115)

which reproduces the exact central charge of the coset Eqn. 2.92 when evaluated on Eqn.

2.110.

In the asymptotic region the CFT primary Ojnw may then be expanded in the free-field

primaries VαpLpR
[75]:

Ojnw
r̂→∞
−→

(
e−2Q(1−j)r̂ +R(j, n, w)e−2Qjr̂

)
eipLθ̂L+ipRθ̂R . (2.116)

pL and pR are as in Eqn. 2.112; namely, the operator labels n and −w correspond to the

momentum and winding numbers around the asymptotic cylinder. j is meanwhile related to
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the asymptotic linear-dilaton momentum. R(j, n, w) is the reflection coefficient [44–46]:

R(j, n, w) = (ν(k))2j−1 Γ
(
1− 2j−1

k−2

)
Γ
(
1 + 2j−1

k−2

) (2.117)

× 42j−1 Γ (1− 2j)

Γ (2j − 1)

Γ
(
j + |n|−kw

2

)
Γ
(
j + |n|+kw

2

)
Γ
(

1− j + |n|−kw
2

)
Γ
(

1− j + |n|+kw
2

) .

Semi-classically, as in Liouville, R is the amplitude for a string sent from the weak-coupling

region to reflect and return to infinity. As an abstract CFT quantity, it characterizes a

redundancy in the space of CFT operators Ojnw when analytically continued to the complex

j-plane: operators labeled by j and 1 − j are identical, up to rescaling by the reflection

coefficient. To avoid double-counting operators, one restricts the domain to Re(j) > 1
2

or

j ∈ 1
2

+ iR+ as in Eqn. 2.106.

R satisfies R(1 − j, n, w)R(j, n, w) = 1. ν(k) is a j-independent function, analogous to

the prefactor πµΓ(b2
L)/Γ(1 − b2

L) appearing in the Liouville reflection coefficient Eqn. 2.53.

We will set it to one in what follows.

As recalled at the end of Sec. 2.1, the zero-mode wavefunction for the state prepared by in-

serting Ojnw in the far past on the cylinder is obtained after rescaling by e−Φ = e−Φ0 cosh(r).

For large r, the radial wavefunction is then

Ψjnw(r̂)
r̂→∞
−→ 1

2
e−Φ0

(
e2Q(j− 1

2)r̂ +R(j, n, w)e−2Q(j− 1
2)r̂
)
. (2.118)

With j ∈ 1
2
+iR, neither exponential dominates the other, the asymptotic radial wavefunction
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is oscillatory, and one obtains a delta-function normalizable state. These are the scattering

states of Eqn. 2.106a, the two terms in the asymptotic wavefunction describing the incoming

and reflected waves at infinity. The asymptotic operator is identified with the linear-dilaton

primary e−2αr̂ with α = Q(1 − j) plus its reflection e−2(Q−α)r̂, together with the compact-

boson primary of momentum n and winding −w. The corresponding free-field weights (Eqn.

2.114), which are invariant under α→ Q− α, reproduce the exact weights (Eqn. 2.107).

Away from the complex branch, the first exponential in Eqns. 2.116 and 2.118 dominates

the second for Re(j) > 1
2
. Then, generically, the operator approaches VαpLpR

with α =

Q(1− j) at weak coupling, the wavefunction diverges exponentially, and the associated state

is non-normalizable.

There is an important exception, however, when R(j, n, w) is singular, and this is the

manifestation of the bound states. Indeed, on the real branch with j = jN given by Eqn.

2.106b, one of the two Gamma functions Γ
(
j + |n|±kw

2

)
in Eqn. 2.117 has a simple pole,

depending on the sign of w. For w > 0 one has

jN +
|n| − kw

2
= −N (2.119)

and therefore

Γ

(
j +
|n| − kw

2

)
j→jN
−→ 1

j − jN
(−)N

N !
+O(1). (2.120)

Γ
(
jN + |n|+kw

2

)
is similarly singular for w < 0. The remaining Gamma functions have
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additional singularities, but they are not associated to bound states [78].

Thus, for j = jN , it is the reflected component R(jN , n, w)e−2QjN r̂ that dominates in the

asymptotic region. One obtains a discrete set of operators ÕjNnw defined as the residue of

Ojnw as j → jN [78]. The zero-mode radial wavefunction decays in the weak-coupling region,

corresponding to a normalizable bound state with wavefunction proportional to

ΨjNnw(r̂0)
r̂0→∞
−→
∝

e−2Q(jN− 1
2)r̂0 . (2.121)

In this way, one finds a discrete spectrum of normalizable bound states on Eqn. 2.106b, the

lower bound jN > 1
2

ensuring the wavefunction decays at infinity.

The simplest bound states have n = 0, w = ∓1, and j = k
2
− 1, which satisfies the upper

bound j < k−1
2

automatically, and satisfies the lower bound j > 1
2

for k > 3. The asymptotic

form of these operators, which we will denote by W±, is

W± ≡
1

R
Oj= k

2
−1,n=0,w=∓1

r̂→∞
−→ e−

√
k−2
α′ r̂e±i

√
k
α′ (θ̂L−θ̂R), (2.122)

with radial wavefunction Ψ±(r̂)→ e−Q(k−3)r̂. Their sum,

OsL ≡ W+ +W−, (2.123)

is called the sine-Liouville operator [79], and will be important in what follows. It is of

conformal weight (1, 1), and one may therefore consider the effect of deforming the CFT by

this operator, which we will take up in Sec. 4.4. The wavefunction is normalizable for k > 3,
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consistent with the lower bound j > 1
2
. For k < 3, on the other hand, j = k

2
− 1 falls below

1
2
, and the wavefunction becomes non-normalizable.

2.3.4 Asymptotic Conditions

The equations of motion following from the action Eqn. 2.98 are

∇2r − tanh(r)sech2(r)(∇θ)2 +
1

2k
R[h] tanh(r) = 0 (2.124a)

∇2θ + 2sech(r)csch(r)hab∇ar∇bθ = 0. (2.124b)

As in the free linear dilaton and Liouville, the curvature coupling contributes source terms on

a worldsheet with the plane or cylinder metric. Focusing on the cylinder, the radial equation

of motion in the absence of any insertions becomes

∂∂̄r − tanh(r)sech2(r)∂θ∂̄θ = −π
k

(δ(z, z̄) + δ(z − z∞, z̄ − z̄∞)) tanh(r). (2.125)

At large r, we recover the free linear-dilaton equation of motion (Eqn. 2.24),

∂∂̄r̂ = −πα′Q (δ(z, z̄) + δ(z − z∞, z̄ − z̄∞)) , (2.126)

with Green functions

r̂(ρ, φ)
ρ→±∞
−→ ±α′Qρ+O(1). (2.127)
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These free Green functions are self-consistent solutions of the full cigar equations of motion

in the neighborhood of the source terms because the ends of the cylinder are mapped to the

asymptotic region, where the corrections to the linear-dilaton × S1 equations of motion are

exponentially sub-leading. Then just as before we may write a regulated action for the cigar

on a cylinder worldsheet with linear boundary terms at its ends:

S =
k

4π

L∫
−L

dρ

2π∫
0

dφ
(
(∂ρr)

2 + (∂φr)
2 + tanh2(r)

(
(∂ρθ)

2 + (∂φθ)
2
))

(2.128)

−
2π∫

0

dφ

2π
(r|ρ=L + r|ρ=−L) +

L

k
.

Next consider the equations of motion in the neighborhood of an insertion Ojnw(z′, z̄′)

away from the curvature singularities. Suppose Re(j) > 1
2
, with R(j, n, w) regular, such

that the operator is dominated by VQ(1−j),pL,pR
(z′, z̄′) at large r̂. The Green functions of the

asymptotic linear-dilaton× S1 background in the presence of this source are

r̂(z, z̄)
|z−z′|→0
−→ 2α′Q(1− j) log |z − z′|+O(1) (2.129a)

θ̂(z, z̄)
|z−z′|→0
−→ − i

2

√
α′

k

(
2n log |z − z′| − kw log

z − z′

z̄ − z̄′

)
+O(1). (2.129b)

Suppose furthermore that Re(j) > 1. Then the neighborhood of the insertion is mapped

to r̂ → ∞, and once again one obtains a self-consistent solution of the cigar equations of

motion.

By contrast, if j = jN , such that R(j, n, w) is singular and the operator approaches

VQj,pLpR
at large r̂, then the free radial Green function in the neighborhood of the (appro-
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priately normalized) operator insertion is

r̂(z, z̄)
|z−z′|→0
−→ 2α′Qj log |z − z′|+O(1). (2.130)

In this case, even if r̂ begins in the asymptotic region, as one approaches the insertion

point on the worldsheet r̂ is mapped out of the free-field region, and one no longer has a

self-consistent solution.

Away from these discrete values, however, the appropriate asymptotic conditions are

obtained from the free-field Green functions, and correlation functions with bound state

insertions may be obtained by computing the functional integral for generic j and then

taking the residue of the result as j → jN . It is nevertheless interesting to identify an

asymptotic condition that describes a bound state insertion directly, rather than as the

residue of an ordinary insertion. We return to this problem in Sec. 4.4.1.

If a generic operator is inserted in the far past on the cylinder, then the asymptotic

conditions including the effect of the background charge are

r̂(ρ, φ)
ρ→−∞
−→ −2α′Q

(
j − 1

2

)
ρ+O(1) (2.131a)

θ̂(ρ, φ)
ρ→−∞
−→ −i

√
α′

k
(nρ− ikwφ) +O(1). (2.131b)

For Re(j) > 1
2
, the solution is consistent. A complex branch operator may be similarly

described by perturbing j → j + ε by a small positive regulator.

The ρ dependence of the asymptotic conditions may be enforced as before by linear
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2.3.4 Asymptotic Conditions

boundary terms. The φ dependence of θ̂, on the other hand, may be implemented using

Lagrange multipliers σ±. For example, the regulated action for the two-point function of

Ojnw and Oj,−n,−w is given by

Sjnw =
k

4π

L∫
−L

dρ

2π∫
0

dφ

(
(∂ρr)

2 + (∂φr)
2 + tanh2(r)

(
(∂ρθ)

2 + (∂φθ)
2
))

(2.132)

+ 2

(
1

2
− j
) 2π∫

0

dφ

2π
(r|ρ=L + r|ρ=−L) + in

2π∫
0

dφ

2π
(θ|ρ=L − θ|ρ=−L)

+ k

2π∫
0

dφ

2π

(
σ+ (∂φθ|ρ=L + w) + σ− (∂φθ|ρ=−L + w)

)

+ 4
L

k

(
j − 1

2

)2

− kw2L− L

k
n2.

Note that the imaginary boundary term for the momentum mode of θ ensures invariance of

e−Sjnw under θ ∼ θ + 2π, where n ∈ Z.

The boundary equations of motion obtained by varying r and σ± are

∂ρr|ρ=±L = ±2

k

(
j − 1

2

)
(2.133a)

∂φθ|ρ=±L = −w, (2.133b)

while the variation of θ gives

± ∂φσ±|ρ=±L =
in

k
+ tanh2(r)∂ρθ|ρ=±L. (2.134)

79



2 SEMI-CLASSICAL ANALYSIS OF THE 2D BLACK HOLE

In the large L limit, Eqn. 2.133a implies the asymptotic condition

r
ρ→±∞
−→ ±2

k

(
j − 1

2

)
ρ, (2.135)

as in Eqn. 2.131a. Eqn. 2.133b requires that θ → −wφ+θ0(ρ), where θ0(ρ) is the zero-mode

in the Fourier expansion of θ(ρ, φ) around the φ circle. This zero-mode is meanwhile fixed

by the integral of Eqn. 2.134,

2π∫
0

dφ tanh2(r)∂ρθ|ρ=±∞ = −2πin

k
. (2.136)

Note that tanh2(r)|ρ=±∞ goes to one in large L limit. The asymptotic condition on θ is then

θ
ρ→±∞
−→ −in

k
ρ− wφ, (2.137)

reproducing Eqn. 2.131b.

In other words, Eqn. 2.133b is a Dirichlet condition that requires the non-zero-modes of

θ to vanish at the boundaries, while the integral of Eqn. 2.134 is a Neumann condition on

the zero-mode. One solves the bulk equations of motion with these boundary conditions,

together with the Neumann condition Eqn. 2.133a on r. The Lagrange multipliers are then

determined by Eqn. 2.134 up to a zero-mode, which we discard.

The functional integral weighted by e−Sjnw computes the reflection coefficient R(j, n, w)

in the L → ∞ limit. In the next section, we compute the saddle-point expansion of this

integral, restricted to the pure-winding sector for simplicity, and show that there exists a set
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of saddles that reproduces the semi-classical limit of the exact reflection coefficient.

2.4 Cigar Reflection in the Semi-Classical Limit

In this section we compute the semi-classical limit of the cigar reflection coefficient by a

saddle-point expansion and compare to the large k limit of the exact reflection coefficient

(Eqn. 2.117). As in the analogous calculation for Liouville (Sec. 2.2), doing so requires

summing over complex saddles, even for real branch operators. We will also find that saddles

which hit the black hole singularity contribute to the saddle-point expansion with finite

action, and are important for recovering the real branch bound states.

As reviewed in the previous section, the exact reflection coefficient R(j, n, w) of the

SL(2,R)k/U(1) CFT is known thanks to work on the SL(2,R)k WZW model (and its Eu-

clidean continuation SL(2,C)k/SU(2)), and its relation to SL(2,R)k/U(1) via the coset con-

struction [44–46]. R(j, n, w) defines the normalization of the two-point function of the coset

primaries Ojnw and Oj,−n,−w, with the operator normalization chosen in Eqn. 2.116. Physi-

cally, it is the amplitude for a string sent from the weak-coupling region to reflect off the tip

of the cigar.

We will focus for simplicity on the pure-winding sector, where n = 0. Then Eqn. 2.117

simplifies to

R(j, w) =42j−1 k − 2

γ
(

2j−1
k−2

) 1

γ(2j)
γ

(
j +

1

2
kw

)
γ

(
j − 1

2
kw

)
, (2.138)
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where γ(z) ≡ Γ(z)/Γ(1− z).

The cigar-sigma model description of the CFT is weakly coupled for large k, and our goal

in this section is to compute R(j, w) by a saddle-point expansion in the k → ∞ limit. In

order to compare with the same limit of the exact result, let us first determine the large

k asymptotics of Eqn. 2.138. To do so, we must first decide how j scales with k. As in

the Liouville discussion, we will restrict our attention to heavy operators, whose insertions

contribute at the same order in k as the leading terms in the action. We therefore define

j =
kη

2
, (2.139)

with η = O(k0). Imposing Re(j) > 1
2

requires Re(η) > 1
k
, which relaxes to Re(η) > 0 in the

large k limit.

Using the gamma function asymptotics Eqns. 2.69-2.70, and assuming without loss of

generality that w > 0, we obtain

R(η, w)
k→∞
−→η−2kη(w + η)k(w+η) csc (πkη) sin

(π
2
k(w + η)

)
(2.140)

×


1

2
(w − η)k(η−w) csc

(π
2
k(w − η)

)
0 < Re(η) < w

2(η − w)k(η−w) sin
(π

2
k(η − w)

)
Re(η) > w

× η

(η2 − w2)γ(η)
.

We have kept terms to order k0 in the exponent. Note that the bound states now correspond

to the poles of csc
(
π
2
k(w − η)

)
at ηN = w − 2N

k
. When we compute the saddle-point
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expansion, we expect the contribution
∑
e−S+O(k0) from the order k action evaluated on

its saddles to reproduce the first two lines. The last line is order ek
0
, which we expect to

arise from the fluctuation determinant, as well as the order k0 corrections to the on-shell

action.27

The reflection coefficient is computed by the functional integral

R(η, w) =

∫
C(η)

DrDθDσ± e
−kS̃jw , (2.141)

with action kS̃jw ≡ Sj,0,w (c.f. Eqn. 2.132):

S̃jw =
1

4π

L∫
−L

dρ

2π∫
0

dφ

(
(∂ρr)

2 + (∂φr)
2 + tanh2(r)

(
(∂ρθ)

2 + (∂φθ)
2
))

(2.142)

−
(
η − 1

k

) 2π∫
0

dφ

2π
(r|ρ=L + r|ρ=−L) + L (η − 1/k)2 − w2L

+

2π∫
0

dφ

2π

(
σ+ (∂φθ|ρ=L + w) + σ− (∂φθ|ρ=−L + w)

)
.

As discussed in the previous sub-section, the maps r and θ ∼ θ + 2π are defined on a

worldsheet cylinder [−L,L] × S1 whose length 2L is taken to infinity. In this limit, the

boundary terms insert the operators Oj= kη
2
,n=0,±w, as well as the background-charge contri-

butions, on opposite ends of the cylinder, and the functional integral computes the reflection

27It has been suggested that the cigar sigma-model is supplemented even at large k by a potential that modifies the background
in the neighborhood of the tip [80–82]. It would be interesting to see if the third line of Eqn. 2.140, in particular the factor

of γ(η) which originated in the factor of γ
(

2j−1
k−2

)
in Eqn. 2.138, is correctly reproduced by the 1-loop calculation in the pure

cigar background. We have not attempted to compute this determinant, however. As mentioned in Sec. 2.2.3, an analogous
non-perturbative correction has been proposed in the Liouville background, but recent work [74] has argued that no such
modifications are present.
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coefficient. In the k → ∞ limit, we would like to evaluate this integral by a saddle-point

expansion

R(η, w)
k→∞
−→

∑
ri,θi

e−kS̃jw+O(k0), (2.143)

where {ri, θi} are a subset of solutions of the equations of motion

(∂2
ρ + ∂2

φ)r − tanh(r)sech2(r)
(
(∂ρθ)

2 + (∂φθ)
2
)

= 0 (2.144a)

(∂2
ρ + ∂2

φ)θ + 2sech(r)csch(r) (∂ρr∂ρθ + ∂φr∂φθ) = 0 (2.144b)

in the bulk and

∂ρr|ρ=±L = ±η (2.145a)

∂φθ|ρ=±L = −w (2.145b)

2π∫
0

dφ tanh2(r)∂ρθ|ρ=±L = 0 (2.145c)

on the boundaries.28 We have discarded here the contributions from the O(k−1) terms in

S̃jw, which contribute to the order one corrections to the saddle-point expansion.

In the limit L → ∞, the boundary equations of motion for r impose the asymptotic

28As explained in the previous sub-section, the Lagrange multipliers are then determined on-shell from ∂φσ± =

± tanh2(r)∂ρθ|ρ=±L up to a φ zero-mode, which we discard. Evaluated on θ = −wφ, one obtains ∂φσ± = 0, and we then
gauge-fix σ± = 0.
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conditions

r
ρ→±∞
−→ ±ηρ+ a±, (2.146)

which sends r to the weak-coupling region since Re(η) > 0. The integration constants a±

are sub-leading, but control the asymptotic separation r(∞)− r(−∞) = a+ − a−.

Applying Eqn. 2.146 in the boundary θ equations of motion allows us to discard the

factor of tanh2(r) in the large L limit. Then these equations imply the asymptotic condition

θ
ρ→±∞
−→ −wφ, (2.147)

which demands that θ have winding −w around the ends of the cylinder. The simplest

solution sets θ = −wφ everywhere, on which the equations of motion reduce to

∂2
ρr − w2 tanh(r)sech2(r) = 0 (2.148a)

∂φr = 0 (2.148b)

∂ρr|ρ=±L = ±η. (2.148c)

Thus, in this pure-winding sector the theory reduces to a quantum mechanics problem

for r(ρ) with action

S̃[r] =

L∫
−L

dρ

(
1

2

(
dr

dρ

)2

+ V (r)

)
− η(r(L) + r(−L)) + η2L, (2.149)
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r

-V(r)

w2

2

η2

2

Figure 2.6: Inverted Potential. Restricted to a pure-winding solution θ = −wφ, the cigar equations of motion describe
the mechanics of a particle moving in the inverted potential shown. For η real and less than w, there is a real solution that
describes a particle that comes in from r →∞, rolls partway up the potential hill until it stops at the turning point, and then
rolls back out to infinity. The cigar geometry is defined for r ≥ 0, but to compute the saddle-point expansion of the functional
integral we will continue r to the complex plane. Here we draw the potential for the real r slice.

where

V (r) = −1

2
w2sech2(r). (2.150)

The bulk equation of motion Eqn. 2.148a may be written

d2r

dρ2
= V ′(r), (2.151)

describing the mechanics of a particle in the inverted potential −V (r), pictured in Fig. 2.6.

The quantum mechanics of a particle in this potential can in fact be solved exactly, as

we review in the next sub-section. We will show that the semi-classical limit of the exact

reflection coefficient for the quantum mechanics reproduces that of the CFT at order ek.

We conclude that the saddles with θ(φ) = −wφ and r = r(ρ) are sufficient for reproducing

the saddle-point expansion of the coset reflection coefficient, and we do not need to consider

more complicated solutions θ(ρ, φ) and r(ρ, φ). Then in the following sub-section we proceed

with the saddle-point expansion using these pure-winding configurations.
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x

-
1

2
α2 l(l-1)

V(x)

Figure 2.7: The Cigar Quantum Mechanics Potential. The potential for the quantum mechanics that describes the
pure-winding sector of the cigar is a well, sometimes called the modified Pöschl-Teller potential.

2.4.1 Quantum Mechanics on the Cigar

The quantum mechanics of a particle in the potential Eqn. 2.150 is exactly solvable.29 In

the literature the potential is usually written in the form

V (x) = −1

2
α2l(l − 1)sech2(αx). (2.152)

with α > 0 and l > 1. It is a symmetric well of depth 1
2
α2l(l−1), and it vanishes as x→ ±∞

(Fig. 2.7). It therefore admits both bound states and scattering states. To begin we consider

the quantum mechanics on an infinite line, x ∈ R. The cigar is related to its Z2 quotient

x ∼ −x.

Consider first the scattering states. We look for solutions of

−1

2
ψ′′(x) + V (x)ψ(x) =

p2

2
ψ(x), (2.153)

29See, for example, Landau and Lifshitz’s Quantum Mechanics (Second Edition), Sections 23 and 25. We set ~ and the mass
to one. The potential is often referred to as the modified Pöschl-Teller potential.
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behaving asymptotically as

ψ(x)→


eipx +R(p)e−ipx x→ −∞

T (p)eipx x→∞.
(2.154)

The two linearly independent solutions of this equation are the associated Legendre polyno-

mials P
ip/α
l−1 (tanh(αx)) and Q

ip/α
l−1 (tanh(αx)). The asymptotics of the P function are

P
ip/α
l−1 (tanh(αx)) (2.155)

→


iπcsch

(
πp
α

)
Γ
(
1 + ip

α

)
Γ
(
l − ip

α

)
Γ
(
1− l − ip

α

)eipx − i sin(πl)csch
(
πp
α

)
Γ
(
1− ip

α

) e−ipx x→ −∞

1

Γ
(
1− ip

α

)eipx x→∞.

The asymptotics of the Q function, on the other hand, contain eipx and e−ipx at both limits,

and must be discarded.

The normalized scattering wavefunction is then

ψ(x; p) = − i
π

sinh
(πp
α

)
Γ

(
1 +

ip

α

)
Γ

(
l − ip

α

)
Γ

(
1− l − ip

α

)
P
ip/α
l−1 (tanh(αx)), (2.156)

yielding the reflection and transmission coefficients

R(p) = − 1

π
sin(πl)

Γ
(
1 + ip

α

)
Γ
(
1− ip

α

)Γ

(
l − ip

α

)
Γ

(
1− l − ip

α

)
(2.157)
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and

T (p) = − i
π

sinh
(πp
α

) Γ
(
1 + ip

α

)
Γ
(
1− ip

α

)Γ

(
l − ip

α

)
Γ

(
1− l − ip

α

)
. (2.158)

Note this potential has the remarkable property that it is reflectionless when l is an

integer; R(p) vanishes due to the factor of sin(πl). In that case, the transmission coefficient

may be written

T (p)

∣∣∣∣
l∈Z

=
l−1∏
n=1

l − n− ip
α

n− l − ip
α

(2.159)

by repeatedly applying the factorial property of the Gamma function, Γ(z + 1) = zΓ(z). In

particular, T (p) is a pure phase,

|T (p)|2
∣∣∣∣
l∈Z

=
l−1∏
n=1

(l − n)2 + p2

α2

(n− l)2 + p2

α2

= 1, (2.160)

as required by probability conservation, |R|2 + |T |2 = 1.

Meanwhile, the bound states are solutions of

−1

2
ψ′′(x) + V (x)ψ(x) = Eψ(x), (2.161)

with −1
2
α2l(l − 1) < E < 0. They may be obtained from the scattering solutions by

continuing p = i
√

2|E| ∈ iR+, so that ψ(x; i
√

2|E|)
x→∞
−→ Te−

√
2|E|x decays. As x→ −∞,

ψ(x; i
√

2|E|)
x→−∞
−→ e−

√
2|E|x +Re

√
2|E|x, (2.162)
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which generically diverges, unless p = i
√

2|E| is such that R has a pole. At those discrete

points, one may hope to find a normalizable bound state proportional to 1
R
ψ(x; i

√
2|E|).

R(p) has three sets of simple poles due to the three Gamma functions in its numerator.

The first, Γ
(
1 + ip

α

)
, has poles for p = iα(n + 1), with n a natural number. These do not

correspond to bound states, however, because in the x → −∞ limit of the P function it is

the ratio csch
(
πp
α

)
/Γ
(
1 + ip

α

)
that appears, which is regular. The second Gamma function

in R(p), Γ
(
l − ip

α

)
, has poles for p = −iα(l+n), but these do not belong to the domain iR+,

which was necessary for convergence at large x.

It is instead the last Gamma function which is responsible for the bound states, Γ
(
1− l − ip

α

)
.

The poles are found at

pn = iα(l − 1− n), (2.163)

which belong to iR+ provided n < l− 1. Thus we find the spectrum of bound state energies

En =
p2
n

2
= −α

2

2
(l − 1− n), 0 ≤ n < l − 1, (2.164)

with wavefunctions

ψn(x) = P
−(l−1−n)
l−1 (tanh(αx)). (2.165)
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Next consider the semi-classical limit. Define

x̃ ≡ αx, l̃ ≡ α2
√
l(l − 1), (2.166)

in terms of which the Hamiltonian may be written

H =
1

α2

(
1

2

(
dx̃

dt

)2

+ Ṽ (x̃)

)
, (2.167)

where

Ṽ (x̃) ≡ −1

2
l̃2sech2(x̃). (2.168)

Comparing to Eqn. 2.150, we find the same quantum mechanics as the pure-winding sector

of the cigar CFT, with the dictionary w = l̃ and k = 1
α2 .

The semi-classical limit is α→ 0 with l̃ fixed. In this limit the bound state spectrum is

En → −
α2

2

(
n− l̃

α2

)2

. (2.169)

The same semi-classical spectrum may be obtained from the WKB approximation, which

says that

∫ x∗

−x∗
dx
√

2(En − V (x)) = πn, (2.170)
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where

x∗ =
1

α
cosh−1

√ 1
2
α2l(l − 1)

−En

 (2.171)

is the classical turning point, V (±x∗) = En. The integral is

∫ x∗

−x∗
dx
√

2(En − V (x)) = π

(√
l(l − 1)− 1

α

√
−2En

)
, (2.172)

from which we obtain

En ≈ −
α2

2

(
n−

√
l(l − 1)

)2

, (2.173)

reproducing the semi-classical limit of the exact spectrum.

As for the scattering states, define

p ≡ i
η

α
, (2.174)

in terms of which the exact reflection and transmission coefficients may be written

R(η) =
1

π

l̃ − η
η

sin(πkl̃)

γ(kη)
Γ(k(l̃ + η))Γ(−k(l̃ − η)) (2.175)

and

T (η) = − 1

π

l̃ − η
η

sin(πkη)

γ(kη)
Γ(k(l̃ + η))Γ(−k(l̃ − η)), (2.176)
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where again k ≡ 1
α2 . Applying Eqns. 2.69-2.70 we find in the semi-classical limit

R(η)
k→∞
−→η−2kη(l̃ + η)k(l̃+η) sin(πkl̃) csc (πkη) (2.177)

×


−1

2
(l̃ − η)k(η−l̃) csc

(
πk(l̃ − η)

)
0 < Re(η) < l̃

−i(η − l̃)k(η−l̃) Re(η) > l̃

×

√
l̃ − η
l̃ + η

and

T (η)
k→∞
−→η−2kη(l̃ + η)k(l̃+η) (2.178)

×


1

2
(l̃ − η)k(η−l̃) csc

(
πk(l̃ − η)

)
0 < Re(η) < l̃

i(η − l̃)k(η−l̃) Re(η) > l̃

×

√
l̃ − η
l̃ + η

.

The bound states now correspond to the poles of the csc(πk(l̃ − η)) factors.

So far we have considered the quantum mechanics on a fully-infinite line. However, the

cigar quantum mechanics in Eqn. 2.149 obtained by setting θ = −wφ was defined on a

half-line. Returning to Eqn. 2.153, the scattering solutions on a half-line are now the linear
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combinations of Legendre polynomials that vanish at the origin:

ψ1/2(x; p) =2
Γ
(
l − ip

α

)
Γ
(
1− l − ip

α

)
Γ
(
− ip

α

) cos2

(
π

2

(
l +

ip

α

))
(2.179)

×
(
P
ip/α
l−1 (tanh(αx))− 2

π
tan

(
π

2

(
l +

ip

α

))
Q
ip/α
l−1 (tanh(αx))

)
.

They behave as

ψ1/2(x; p)
x→−∞
−→ eipx +R1/2(p)e−ipx, (2.180)

where the reflection coefficient for the half-line problem is

R1/2(p) =2
Γ
(
l − ip

α

)
Γ
(
1− l − ip

α

)
Γ
(
1− ip

α

)
Γ
(
− ip

α

) (2.181)

× sin

(
π

2

(
l − ip

α

))
cos

(
π

2

(
l +

ip

α

))
csc

(
πip

α

)
.

Alternatively, having already solved the theory on a line, the solution on the half-line

is given by its quotient with respect to the reflection symmetry x ∼ −x. The reflection

coefficient R1/2(p) is then the difference of the reflection and transmission coefficients R(p)

and T (p),

R1/2(p) = R(p)− T (p), (2.182)

as can be checked for Eqns. 2.157, 2.158, and 2.181, and the bound state spectrum is given
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by the odd solutions

En = −α
2

2
(l − 1− n)2, n = 1, 3, 5, . . . < l − 1. (2.183)

Previously, we identified the bound states with the poles pn = iα(l−1−n) of Γ
(
1− l − ip

α

)
.

Now we find

R1/2(pn) =
Γ (2l − 1− n)

Γ(l − n)Γ (l − 1− n)
Γ (−n) ((−)n − 1) . (2.184)

Whereas R(pn) ⊃ Γ(−n) was singular for all n = 0, 1, 2, . . ., the additional factor of (−)n−1

in R1/2(pn) eliminates the poles with even n.

Finally, let us compute the semi-classical limit of R1/2. With the same notation as before

we may write

R1/2(η) =2
l̃ − η
η

Γ(k(l̃ + η))Γ(−k(l̃ − η))

Γ(kη)2
(2.185)

× sin
(π

2
k(l̃ + η)

)
cos
(π

2
k(l̃ − η)

)
csc (πkη) .
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At large k we obtain

R1/2(η)
k→∞
−→η−2kη(l̃ + η)k(l̃+η) csc (πkη) sin

(π
2
k(l̃ + η)

)
(2.186)

×


−1

2
(l̃ − η)k(η−l̃) csc

(π
2
k(l̃ − η)

)
0 < Re(η) < l̃

−2i(η − l̃)k(η−l̃) cos
(π

2
k(l̃ − η)

)
Re(η) > l̃

×

√
l̃ − η
l̃ + η

.

Compared to Eqn. 2.177, the factor of csc(πk(l̃− η)) has been replaced by csc
(
π
2
k(l̃ − η)

)
,

reflecting the smaller set of bound states.

Looking back at the large k limit of the exact coset reflection coefficient Eqn. 2.140, we

find agreement with Eqn. 2.186 to order ek.30 We conclude that the restriction to the cigar

quantum mechanics r = r(ρ), θ = −wφ is sufficient to extract the saddle-point expansion of

the reflection coefficient, i.e. θ = −wφ is the only saddle of the θ equations of motion that

contributes to the expansion.

2.4.2 Complexified Quantum Mechanics

The saddle-point expansion of the coset reflection coefficient has thus reduced to a problem

in the quantum mechanics defined by Eqn. 2.149. We wish to identify the appropriate set

of solutions of this mechanics that reproduce the semi-classical limit of the exact reflection

coefficient (Eqn. 2.140). As in Liouville, the relevant saddles will again be complex, even

30Note that the discrepancy between cos
(
π
2
k(l̃ − η)

)
and sin

(
π
2
k(l̃ − η)

)
is order ek

0
.
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when η is real.

Moreover, in light of the abrupt change in Eqn. 2.140 across the line Re(η) = w, we

anticipate that a Stokes wall in the η-plane is found there. This is not unreasonable, since

for η real and less than w there exists a real solution of the equations of motion describing

a particle that comes in from r → ∞, rolls partway up the potential until it stops at the

turning point, and then rolls back out to infinity. For η greater than w, on the other hand,

the particle rolls over the potential and continues to r → −∞ in the continued field space.

At the crossover point, the particle has just enough energy to (asymptotically) reach the top

of the hill.

Thus, in computing the saddle-point expansion we expect that we will need to address

the domains for 0 < Re(η) < w and Re(η) > w separately, and that we will find a different

set of contributing saddles in each.

Once again we must specify the contour C(η) in field space along which the functional

integral Eqn. 2.141 is to be performed. As in Liouville, even for real η the functional integral

over real fields diverges. Repeating the same argument as lead to Eqn. 2.77, consider a finite-

action configuration of (r, θ, σ±). Now consider another configuration with r → r+ a shifted

by a large, positive real number. Then the action of the latter configuration is given by

S̃jw[r + a]
a→∞
−→ −2ηa+ S̃jw[r] +

1

4π

∫
dρ dφ sech2(r)(∇θ)2 +O(e−2a, k−1). (2.187)

Since Re(η) > 0, by making a arbitrarily large the action may be made arbitrarily negative.

Thus, the functional integral over real fields cannot converge.
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Instead, C(η) must be chosen to be an appropriate complex cycle, which we take to be the

sum of the steepest-descent contours that reproduce the correct semi-classical limit. Away

from the Stokes walls, the steepest-descent contours themselves vary smoothly with η, as does

C(η) in turn. As in the finite-dimensional case, even though the steepest-descent contours

jump when η crosses a Stokes wall, C(η) is expected to vary smoothly. Its expansion as a

sum of steepest-descent contours changes across the Stokes wall, but the summed contours

on either side of the wall should be equivalent up to Cauchy deformation.

Since the original real coordinate r ≥ 0 of Eqn. 2.149 was valued in a half-line, the

relevant complexification is the complex r-plane quotiented by r ∼ −r. Note that this is

a symmetry of the potential Eqn. 2.150. Alternatively, one may compute the saddle-point

expansion for the reflection and transmission coefficients of the quantum mechanics before

the quotient, and then take their difference to obtain the reflection coefficient in the half-

space as in Eqn. 2.182. This is the approach that we will take here. Thus, we regard the

action S̃[r] in Eqn. 2.149 as a holomorphic functional of maps r : R → C into the complex

r-plane and identify its critical points.31

The semi-classical limits Eqns. 2.177- 2.178 of the reflection and transmission coefficients

31The transmission coefficient is computed similarly, but with r(L) replaced by −r(L) to fix the momentum at late times to
−η rather than η.
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for the infinite-space quantum mechanics are, in the current notation,

RQM(η)
k→∞
−→
∝



η−2kη(w + η)k(w+η)(w − η)k(η−w) 0 < Re(η) < w

× sin(πkw) csc (πkη) csc (πk(w − η))

η−2kη(w + η)k(w+η)(η − w)k(η−w) Re(η) > w

× sin(πkw) csc (πkη)

(2.188)

and

TQM(η)
k→∞
−→
∝


η−2kη(w + η)k(w+η)(w − η)k(η−w) csc (πk(w − η)) 0 < Re(η) < w

η−2kη(w + η)k(w+η)(η − w)k(η−w) Re(η) > w.

(2.189)

Their difference reproduces the cigar reflection coefficient at order ek. Thus, our task is

reduced to reproducing Eqns. 2.188 and 2.189 by saddle-point expansions for the infinite-

space quantum mechanics.

The bulk equation of motion Eqn. 2.151 describes a particle moving in an inverted

potential −V (r). One therefore obtains the energy conservation equation,

1

2
ṙ2 − V (r) =

η2

2
, (2.190)

where ṙ = dr
dρ
. The conserved energy is indeed η2

2
, as is clear by evaluating the equation at

ρ→ ±∞ and imposing the asymptotic conditions.

Observe that, as a holomorphic function on the complex r-plane, the potential is periodic
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in πi:

V (r + πi) = V (r). (2.191)

The turning points, where −V (r±) = η2

2
and therefore ṙ = 0, are given by

r± = ± cosh−1

(
w

η

)
, (2.192)

as well as all shifts thereof by πiZ.

There are also singular points where the potential diverges. V (r) has a double-pole at

r = πi
2

,

V (r)
r→πi

2−→ w2

2

1(
r − πi

2

)2 +O(1), (2.193)

and likewise at all points πi
2

+ πiZ. We point out that r = ±πi
2

coincide with the physical

singularities of the Lorentzian black hole after continuing θ to Lorentzian time.

Using the energy conservation equation, we may write Eqn. 2.149 as

S̃[r] =

∫ L

−L
dρ

(
dr

dρ

)2

− η(r(L) + r(−L)). (2.194)

Letting C denote the contour traced by the solution in the complex r-plane, we may write

the action as a contour integral:

S̃[r] =

∫
C

dr
√
η2 + 2V (r)− η(r(L) + r(−L)). (2.195)
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Note that the integrand
√
η2 + 2V (r) = ṙ is the velocity function, and one should pick

an appropriate branch of the square-root such that the velocity has the correct sign. The

turning points r± + πiZ are branch points of the square-root. The double-poles of the

potential, meanwhile, lead to simple-poles of the integrand of residue ±w:

±
√
η2 + 2V (r)

r→πi
2−→ ± w

r − πi
2

+O(1). (2.196)

The explicit solutions of the bulk equation of motion may be obtained by separating and

integrating the energy conservation equation. One finds

r(ρ) = sinh−1

(√
w2

η2
− 1 cosh(η(ρ+ iρ0))

)
+ πiN1, (2.197)

where ρ0 is a complex number and N1 is an integer. ρ0 is the integration constant that arises

in integrating the energy conservation equation. In the limit L→∞, the real part of iρ0 is

merely a reparameterization of ρ; we therefore take iρ0 to be pure imaginary. The freedom

to shift any solution by πiN1 arises from the periodicity of the potential. For each N1, the

continuous modulus ρ0 parameterizes a family of solutions. The on-shell action is necessarily

the same for all trajectories in such a family, unless in varying ρ0 one encounters a singular

solution.32 The on-shell action does depend on the discrete parameter N1, however, through

the boundary terms.

Since sinh−1(z) = log
(
z +
√
z2 + 1

)
is a multi-valued function, one has to pick a branch

to define the trajectory. The
√
z2 + 1 term leads to square-root branch points at z = ±i, and

32The divergent sum over ρ0 is attributed to the infinite δ(j− j) factor in the two-point function of Ojnw and Oj,−n,−w. [35]
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Figure 2.8: A Family of Reflected Solutions. Pictured here are several solutions with η real and less than w, 0 < ρ0 <
π
2η

,

and N1 = 0, obtained from Eqn. 2.197 with the principal branch of sinh−1. The solid disks indicate the turning points and
the open circles indicate the singularities. The solution hugging the real axis has ρ0 just above zero, corresponding to the real
solution that rolls up and down the same side of the inverted-potential. All trajectories related by continuously dialing ρ0 have
the same action, unless one hits a singular trajectory in the process. The green solution pictured is nearly singular, with ρ0

just below π
2η

. At that value the trajectory will hit the poles of the potential.

there is a logarithmic branch point at infinity. On the principal branch, the cuts extend along

the imaginary axis from i to i∞ and from −i to −i∞, though other choices are convenient

depending on the values of the parameters.33

Eqn. 2.197 solves the bulk equation of motion, but it remains to check if it satisfies the

boundary equations. The velocity function is

ṙ = η

√
w2

η2 − 1 sinh(η(ρ+ iρ0))√(
w2

η2 − 1
)

cosh2(η(ρ+ iρ0)) + 1

, (2.198)

which indeed asymptotes to ±η as |ρ| → ∞. The sign, however, depends on the branch

of the square-root in the denominator, which coincides with the branch of the square-root

in sinh−1(z). Depending on the values of the parameters, one obtains either a reflected or

33 In particular, for complex η the argument of the sinh−1 in Eqn. 2.197 behaves as a spiral at large |ρ| since cosh(ηρ) ∼ eη|ρ|.
In that case one has to pick more complicated spiral branch cuts.
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x

-Vx+πi
2
)

(a)

π
2

- π
2

y

V(iy)

(b)

Figure 2.9: Singular Potentials. On the slices Im(r) = π
2

(left) and Re(r) = 0 (right), the potential experienced by the
particle falls to −∞ at the singular points.

transmitted solution.

For example, several trajectories with η real and less than w, 0 < ρ0 <
π
2η

, and N1 = 0 are

plotted in Fig. 2.8. The solid disks indicate the turning points r±+πiZ, and the open circles

indicate the singularities πi
2

+πiZ. The blue trajectory that hugs the real axis corresponds34

to the real solution with ρ0 = 0 for a particle that rolls up and down the potential hill,

turning around at r+. For the green trajectory nearly hitting the poles, on the other hand,

ρ0 is just below π
2η

.

Upon reaching ρ0 = π
2η

, the asymptotic imaginary part of the trajectory reaches ±π
2
, and

the saddle becomes singular. The argument of the sinh−1 in Eqn. 2.197 hits the branch

points at ±i at finite ρ. Indeed, the inverted potential on the real slice Im(r) = ±π
2

is an

infinite well, −V
(
x± πi

2

)
= −1

2
w2csch2(x), pictured in Fig. 2.9a, and a particle kicked to the

left from x > 0 falls down the well and hits the singularity. Similarly, on the imaginary axis

34In the figure, ρ0 is deformed slightly away from 0 so that the incoming and outgoing segments of the trajectory do not
overlap.
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r = iy, the potential experienced by y is35 V (iy) = −1
2
w2 sec2(y), which is again singular,

as pictured in Fig. 2.9b. Remarkably, we will see that the singular trajectories carry finite

action and must be included in the saddle-point expansion to correctly reproduce the semi-

classical reflection coefficient. The importance of singular saddles was discussed in closely

related contexts in [35,40].

As explained above, our task is to reproduce the semi-classical reflection and transmission

coefficients (Eqns. 2.188-2.189) by saddle-point expansions for the infinite-space quantum

mechanics. We address these in turn in the following two sub-sections.

2.4.3 Reflection Coefficient on the Complex r-Plane

We begin with the saddle-point expansion of the reflection coefficient for the complex

quantum mechanics on the full r-plane. Let us first compute the action of the real saddle

that exists for 0 < η < w. We need to evaluate Eqn. 2.195 for the contour around the

positive real axis in Fig. 2.10, which has been slightly deformed away from the real axis so

that its incoming and outgoing legs do not overlap. The dashed lines represent a convenient

choice of branch cuts of the square-root in the integrand. As before, the solid disks indicate

the turning points and the open circles indicate the singularities.

The contribution to the contour integral of the small arc around the turning point vanishes

because the integrand is zero there. The contributions of the remaining half-lines above and

below the real axis are identical because they sit on opposite sides of the branch cut and

35Note that the potential for the imaginary part of the complex coordinate has a relative minus sign, due to the combined
factors of i. The equation of motion is ÿ = d

dy

(
1
2
w2 sec2(y)

)
.
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Figure 2.10: Reflected Saddles with Constant Imaginary Part. For η real and less than w, there is a real saddle
corresponding to a particle that comes in from r → ∞, rolls partway up the hill until it stops at the turning point, and then
rolls back out to infinity. The corresponding contour in the complex r-plane is pictured here, slightly deformed away from being
pure real so that the incoming and outgoing segments of the contour do not overlap. Due to the r → r + πi shift symmetry of
the complexified problem, one likewise has shifted contours with constant imaginary part πN1, such as the second contour in
the figure with N1 = 1. The dashed lines represent branch cuts of the square-root in Eqn. 2.195.

have opposite orientations, corresponding to the particle coming in from infinity and then

going back out to infinity. Each of these two integrals contributes

r(L)∫
r+

dr
√
η2 + 2V (r) = η log(η) +

w − η
2

log(w − η)− w + η

2
log(w + η) + ηr(L), (2.199)

in the limit L → ∞. Combined with the boundary term that cancels the linear divergence

ηr(L), we obtain the on-shell action

S̃0 = 2η log(η) + (w − η) log(w − η)− (w + η) log(w + η). (2.200)

The contribution of this solution to the saddle-point expansion is then

e−kS̃0 = η−2kη(w + η)k(w+η)(w − η)k(η−w). (2.201)

This accounts for the first half of Eqn. 2.188 with 0 < Re(η) < w, leaving the three
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trigonometric factors still to be explained.

The simplest of these three factors to understand is csc(πkη), which arises by the same

mechanism as seen earlier in Liouville due to the shift symmetry of the potential. Even when

η is real, one has complex solutions shifted by πiN1, for any integer N1. The contour with

N1 = 1 is also shown in Fig. 2.10. Each of these shifted saddles has action S̃0 − 2πiηN1,

due to the shift of the boundary terms. One should not sum over all of them, however;

the appropriate set depends on the sign of Im(η), which determines whether one obtains a

convergent geometric series when N1 ∈ Z≥0 or when N1 ∈ Z≤0. For Im(η) > 0 one finds

∑
N1∈Z≥0

e2πikηN1 =
i

2
e−πikη csc(πkη), (2.202)

while for Im(η) < 0

∑
N1∈Z≤0

e2πikηN1 = − i
2
eπikη csc(πkη). (2.203)

Since the reflection coefficient has poles on the real η-axis, one should always give η a non-

zero phase in computing the saddle-point expansion. Depending on whether η lies above or

below the real axis, we must pick one or the other half-infinite set of shifted saddles.

Next consider the factor of csc(πk(w − η)), which accounts for the bound states of the

infinite-space quantum mechanics. We now argue that it is the singular saddles that are

responsible for this factor. This requires some explanation, since one ordinarily expects

singular configurations to have infinite action and therefore to make no contribution to the
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(a) (b)

Figure 2.11: Singular Contours. When the asymptotic imaginary part of the reflected contour shown in Fig. 2.8 reaches
±π

2
, the contour hits the poles of the potential and becomes singular (left). The singular contour must be deformed around the

poles of the potential in order to define the action integral Eqn. 2.195. The action of the singular saddle then differs from Eqn.
2.200 by residues. The deformation is not unique, and one must sum over an appropriate set of singular saddles to reproduce
the correct semi-classical limit. An example deformation is shown on the right, with action S̃0 − 2πiw.

functional integral. In contrast, the singular saddles in this complexified problem have finite

action, and are essential to reproducing the correct semi-classical limit [35,40].

Consider the singular saddle discussed in the previous sub-section, obtained as the ρ0 → π
2η

limit of Eqn. 2.197, with N1 = 0. The contour is shown in Fig. 2.11a. As pictured in Fig

2.9, on the real and imaginary slices Im(r) = ±π
2

and Re(r) = 0, the effective 1-dimensional

potential is an infinite well in the neighborhood of the singular points. The speed of the

particle subsequently diverges there. However, the remarkable feature of the complexified

problem is that the divergent contributions to the action are equal-but-opposite on the real

and imaginary segments of the trajectory, the speed of the particle being pure real and pure

imaginary in the two cases. One may therefore define the total action by a principal-value

type limit.

More precisely, let z = r− πi
2

be a local coordinate in the neighborhood of the singularity

at r = πi
2

. From Eqn. 2.193, the potential has a double-pole there, V (z) = w2

2
1
z2 +O(1), and
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therefore the energy conservation equation in this neighborhood becomes

dz

dρ
= −w

z
+ · · · , (2.204)

the minus sign corresponding to the orientation chosen in Fig. 2.11a. The solution near the

upper pole is then z(ρ) = −i
√

2w(ρ+ ρ1), hitting the pole at ρ = −ρ1. The speed-squared

is

(
dz

dρ

)2

= −w
2

1

ρ+ ρ1

+ · · · . (2.205)

The integrand of the on-shell action thus has a 1
ρ

type singularity near r = πi
2

, and the

integral is36

∫ −ρ1+ε

−ρ1−ε
dρ

(
dz

dρ

)2

= −w
2

(πi+ 2πiN2) , (2.206)

with N2 an integer. The ambiguity in 2πiZ amounts to the choice of branch of log ρ =
∫

dρ
ρ
.

One likewise has a 1
ρ

singularity in the neighborhood of the lower pole. ṙ2 for the complete

singular solution with real η is plotted in Fig. 2.12.

36The integral
∫ a
−a

dρ
ρ

may be defined by continuing ρ to the complex plane and deforming the contour off the real axis:

The integral over the counter-clockwise semi-circle about the pole is πi. Discarding it defines the principal-value of the
integral, which is zero in this symmetric case. Of course, the deformation of the contour is not unique. One could just as
well have deformed it into a clockwise arc above the pole which would instead yield −πi, or an arc that encircles the pole any
number of times. The integral is therefore only defined up to shifts by 2πiZ, which is equivalently the ambiguity in the choice
of branch of

∫ dρ
ρ

= log(ρ).
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ρ

r'(ρ)2

Figure 2.12: Singular Speed-Squared. The speed-squared ṙ2 is plotted here for the singular saddle shown in Fig. 2.11a.
It has 1

ρ
type singularities where the contour hits the poles of the potential. The action, which is the integral of ṙ2, is finite

because
∫ ε
−ε

dρ
ρ

may be defined by continuation around the pole. The imaginary part of the integral is ambiguous up to shifts

by 2πiZ, however, corresponding to the choice of how to deform the contour around the poles.

In the formulation of the action as a contour integral in the r-plane, the ambiguity in the

action of the singular saddle arises because one must deform the contour in Fig. 2.11a away

from the poles at r = ±πi
2

, and the deformation is not unique. The same integral Eqn. 2.206

in the neighborhood of the pole may be written

∫ −ρ1+ε

−ρ1−ε
dρ

(
dz

dρ

)2

= −
∫

Cε

dz
w

z
(2.207)

where Cε is a contour that avoids the pole. For example, the integral around the pole at πi
2

along the contour deformation shown in Fig. 2.11b is −3πi
2
w, corresponding to N2 = 1 in

Eqn. 2.206.

The outcome of this discussion is that, in addition to the saddles accounted in Eqns. 2.201-

2.203, one has singular saddles of finite action corresponding to contours in the r-plane that

wrap the singularities an integer number of times and so differ from S̃0 by residues. They may

be thought of as asymptotic saddles in a fixed topological sector of the functional integral,

where the singular points of the potential are excised from the plane, and the configuration

space of maps r : [−L,L] → {C − poles} is divided into homotopy classes labeled by their
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(a) (b)

Figure 2.13: Singular Reflected Saddles (Re(η) < w). η should be shifted off the real axis for the saddle-point expansion
to be well-defined. Compared to Fig. 2.11, η has been given a small positive phase on the left and a small negative phase on
the right.

winding numbers around the punctures. As the deformations of the contour around the poles

shrink away, one asymptotically approaches an exact solution of the equations of motion,

whose action differs from S̃0 in its imaginary part.

A singular saddle that wraps N2 times around the pole at r = πi
2

+ πiN1 has action

S̃0 − 2πiηN1 − 2πiwN2. Figs. 2.13a and 2.13b illustrate such saddles with N1 = −1 and 0,

N2 = −1 and 1, and η having a small positive and negative phase, respectively. By summing

over saddles with action of the form S̃0− 2πiη(N1 +N2) + 2πiwN2 = S̃0− 2πiηN1− 2πi(η−

w)N2, one may obtain both factors of csc(πkη) and csc(πk(w − η)) required in Eqn. 2.188.

We give the precise list of saddles momentarily.

Finally, one must account for the factor of sin(πkw) in Eqn. 2.188. It is again associated

to the singular saddles, but it is qualitatively different from the csc factors, corresponding

to a two-fold degeneracy of saddles rather than an infinite geometric series. Written in the
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form

sin(πkw) ∝ eπikw(1− e−2πikw), (2.208)

we see that we must sum over two sets of singular saddles, identical except that each contour

in one set winds an extra time around the pole. The relative minus sign is due to the

orientation of the integration contours, which we will not attempt to determine.

Having explained the mechanism by which each factor in Eqn. 2.188 comes about, let us

finally give the list of saddles that reproduces the semi-classical limit for 0 < Re(η) < w.

For Im(η) > 0, the contributing saddles have action

S̃N1N2 = S̃0 − 2πiη(N1 +N2) + 2πiwN2, (2.209)

N1 = 0, 1, 2, . . . , N2 = 1, 2, 3, . . . ,

corresponding to a contour that wraps N2 times around the pole at r = −πi
2

+ πi(N1 +N2).

Note that N1 + N2 ≥ 1, meaning that all the contours are in the upper-half plane. In

addition, one has a second set of saddles with action

S̃ ′N1N2
= S̃0 − 2πiη(N1 +N2) + 2πiw(N2 − 1), (2.210)

N1 = 0, 1, 2, . . . , N2 = 1, 2, 3, . . . ,

which wrap N2 − 1 times instead. The two sets are weighted with a relative minus sign.
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Their contribution to the saddle-point expansion yields at leading order

∑
N1∈Z≥0

N2∈Z≥1

(
e−kS̃N1N2 − e−kS̃

′
N1N2

)
(2.211)

= e−kS̃0

∑
N1∈Z≥0

e2πikηN1

∑
N2∈Z≥1

e2πik(η−w)N2
(
1− e2πikw

)
∝ η−2kη(w + η)k(w+η)(w − η)k(η−w) sin(πkw) csc (πkη) csc (πk(w − η)) ,

reproducing Eqn. 2.188. Note that the geometric series converge for Im(η) > 0. For

Im(η) < 0, the required sum is instead

e−kS̃0

∑
N1∈Z≤0

e2πikηN1

∑
N2∈Z≤−1

e2πik(η−w)N2
(
1− e−2πikw

)
, (2.212)

with the same result. These are contours that wrap N2 or N2 + 1 times around the pole

at r = πi
2

+ πi(N1 + N2). Note that N1 + N2 ≤ −1 implies all of the contours are in the

lower-half plane.

As forewarned at the beginning of this section, we have not attempted to explain why

these are the saddles that contribute to the functional integral, but merely demonstrated that

this is the necessary list to reproduce the semi-classical limit of the exact answer. In fact,

we take this list as the definition of the contour of the functional integral that computes the

reflection coefficient for the quantum mechanics, being given by the sum of the corresponding

steepest-descent contours.

So far we have considered the case 0 < Re(η) < w. Next suppose that Re(η) > w. In Eqn.
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(a) (b)

Figure 2.14: Reflected Saddles (Re(η) > w). When η is real and greater than w, the only reflected solutions are singular.
But one finds non-singular solutions for complex η. On the left η has a small positive phase and on the right it has a small
negative phase. The contour is deflected in opposite directions by the pole in the two cases.

2.188, the bound state factor now disappears, because η2

2
exceeds the height of the potential.

As discussed previously, in light of this abrupt change in the asymptotic expansion of the

reflection coefficient, we expect that Re(η) = w corresponds to a Stokes wall, and that the

set of contributing saddles jumps for Re(η) > w.

When η is real and larger than w, one no longer has a real solution of the equations of

motion. The energy of the particle is greater than the height of the potential hill and it rolls

over from r → ∞ to r → −∞, satisfying the boundary conditions for transmission rather

than reflection. The only reflected trajectories with η real and greater than w are singular.

Once again, η should be given a phase, in which case one finds non-singular trajectories.

Figs. 2.14a and 2.14b illustrate reflected solutions for η with a small positive and a small

negative phase. As is by now familiar, the set of contributing saddles will depend on whether

η lies above or below the real axis.
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The action for the contour with Im(η) > 0 pictured in Fig. 2.14a is

S̃0 = 2η log(η)− (η + w) log(η + w)− (η − w) log(η − w)− πi(η + w). (2.213)

The contributing saddles for Im(η) > 0 are the shifted saddles of this form in the upper-half

plane,

S̃N1 = S̃0 − 2πiηN1, N1 = 0, 1, 2, . . . , (2.214)

as well as a second set that wraps the pole at r = πi
2

+ πiN1 once,

S̃ ′N1
= S̃N1 + 2πiw, N1 = 0, 1, 2, . . . . (2.215)

The two sets are weighted with a relative minus sign, for a total of

∑
N1∈Z≥0

(
e−kS̃N1 − e−kS̃

′
N1

)
= e−kS̃0

∑
N1∈Z≥0

e2πikηN1
(
1− e−2πikw

)
(2.216)

∝ η−2kη(η + w)k(η+w)(η − w)k(η−w) sin(πkw) csc(πkη).

For Im(η) < 0, the necessary saddles are of the form in Fig. 2.14b, but in the lower-half

plane. The action for the contour in Fig. 2.14b is

S̃0 = 2η log(η)− (η + w) log(η + w)− (η − w) log(η − w)− πi(η − w), (2.217)
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and the saddle-point expansion is

e−kS̃0

 ∑
N1∈Z≤−1

e2πikηN1

(1− e2πikw
)
. (2.218)

This completes the saddle-point expansion of the reflection coefficient for the infinite-space

quantum mechanics. Next we turn to the transmission coefficient.

2.4.4 Transmission Coefficient on the Complex r-Plane

The action for the transmission coefficient of the infinite-space quantum mechanics is as

in Eqn. 2.195, but with r(L)→ −r(L) so that the velocity at late times is fixed to −η rather

than η:

S̃[r] =

∫
C

dr
√
η2 + 2V (r)− η(−r(L) + r(−L)). (2.219)

The simplest saddle of Eqn. 2.219 is the real trajectory of a particle with η real and greater

than w that rolls over the potential hill, pictured in Fig. 2.15.

The action for this saddle is37

S̃0 = 2η log(η)− (η + w) log(η + w)− (η − w) log(η − w), (2.220)

37Note that the appropriate branch of the square-root in the integrand of the action should be negative on the real axis, the
velocity of the particle always being to the left for this trajectory.
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Figure 2.15: Transmitted Saddle (η > w). For η real and greater than w, there is a real saddle for the transmission
coefficient, corresponding to a particle that rolls over the inverted potential from r →∞ to r → −∞.

yielding

e−kS̃0 = η−2kη(η + w)k(η+w)(η − w)k(η−w). (2.221)

This reproduces the transmission coefficient Eqn. 2.189 for Re(η) > w. Note that although

one again has shifted saddles with constant imaginary part πN1, the action is invariant

under the shift. For the same reason, note that the functional integral over real r no longer

diverges for the transmission coefficient. Indeed, given that the semi-classical limit of the

transmission coefficient is reproduced by a single real saddle for real η, we expect that the

contour of integration is real in this case.

When η is real and less than w, the only saddles for the transmission coefficient are

singular. Non-singular saddles are obtained for complex η, as pictured in Fig. 2.16.
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(a) (b)

Figure 2.16: Transmitted Saddles (Re(η) < w). When η is real and less than w, the only transmitted saddles are singular.
Non-singular solutions are found for complex η. On the left η has a small positive phase and on the right it has a small negative
phase.

The action for the contour pictured in Fig. 2.16a, where Im(η) > 0, is

S̃0 = 2η log(η)− (w + η) log(w + η) + (w − η) log(w − η) + πi(w − η), (2.222)

which gives

e−kS̃0 = e−πik(w−η)η−2kη(η + w)k(η+w)(w − η)k(η−w). (2.223)

The necessary sum is now

e−kS̃0

∑
N∈Z≥0

e2πik(η−w)N ∝ η−2kη(η + w)k(η+w)(w − η)k(η−w) csc (πk(w − η)) , (2.224)

corresponding to saddles with S̃N = S̃0− 2πiηN + 2πiwN . As in the reflected case, the shift

by 2πiwN is accounted for by singular saddles that wrap the pole N times. The shift by

2πiηN was previously explained by the change in the boundary action under r → r + πiN.

As noted a moment ago, however, the boundary action for transmission is invariant under
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Figure 2.17: Shifted Transmitted Contour. When Re(η) < w, one must sum over contours with r(L)→ r(L)− 2πiN in
order to reproduce the semi-classical limit of the transmission coefficient.

this shift.

Instead, one must consider contours with only one end shifted by 2πiN , as pictured in Fig.

2.17. The integral along the shifted contour is identical to that of Fig. 2.16a; their actions

differ only by the shift of the boundary term. By summing over contours of this form, where

r(L) → r(L) − 2πiN , together with the N -fold wrapping, we obtain the required lattice of

actions for Eqn. 2.224.

For Im(η) < 0, the action of the saddle pictured in Fig. 2.16b is

S̃0 = 2η log(η)− (w + η) log(w + η) + (w − η) log(w − η)− πi(w − η), (2.225)

and the saddle-point expansion is

e−kS̃0

∑
N∈Z≤0

e2πik(η−w)N . (2.226)
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One has analogous contours as in Fig. 2.17, now with r(L)→ r(L)− 2πiN shifted upward.

We do not have a clear rationale for why contours of this form contribute to the saddle-

point expansion. Although the contour pictured in Fig. 2.17 is constructed out of the same

components as the singular saddles discussed previously, it is not obtained from a limit of

smooth saddles, which are always confined to an interval of width πi. For now we merely

observe that this is the set which reproduces the semi-classical limit of the exact transmission

coefficient, and leave it as an open question to better understand the rules for determining

the set of contours that contribute to the saddle-point expansion.

2.5 sine-Liouville Reflection

We conclude this chapter by reviewing the FZZ duality, which gives an alternate La-

grangian description of the SL(2,R)k/U(1) CFT, known as the sine-Liouville background,

that is better suited than the cigar description when k is small compared to two. Then we

briefly consider what can be said about the saddle-point expansion of the reflection coefficient

given by the sine-Liouville functional integral in the limit k → 2.

2.5.1 The FZZ Duality

The SL(2,R)k/U(1) CFT is defined for k > 2. We have focused so far on the k → ∞

limit, where the cigar sigma-model provides a weakly-coupled Lagrangian description of the
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CFT. In the opposite limit, namely k − 2→ 0, the scalar curvature of the cigar diverges,

Rcigar = − 2

α′
1

k − 2
+O((k − 2)0), (2.227)

and that description becomes strongly coupled. However, there exists a dual description of

the CFT that is better suited at small k known as the sine-Liouville background, and the

equivalence of the two Lagrangians is known as the Fateev-Zamolodchikov-Zamolodchikov

(FZZ) duality [48,49].

In the weak-coupling region, the cigar sigma-model approaches the free linear-dilaton×S1

background in Eqn. 2.109. As previously discussed, the linear-dilaton × S1 itself, with

r̂ ∈ (−∞,∞) permitted to range over the entire line, is ill-defined because the string coupling

diverges as r̂ → −∞. This strong-coupling region is eliminated in the cigar background by

ending the geometry at r = 0.

In Sec. 2.2, we recalled that the free linear dilaton may alternatively be regulated by

turning on the Liouville potential VL ∝ e−2bLr̂ that serves as a barrier, suppressing string

configurations which extend too deeply into the strong-coupling region. The Liouville mo-

mentum bL was chosen such that the potential is marginal.

The cigar and Liouville× S1 backgrounds are identical at large r̂ and reproduce the same

central charge (Eqn. 2.92). One might ask if they are dual descriptions of the same CFT. The

answer is no, as is clear, for example, from the fact that the Liouville× S1 theory conserves

the string winding number around the cylinder, which is broken in the cigar. There is,

however, a close relative of the Liouville× S1 background, called sine-Liouville, that is dual
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to the cigar, and this is the content of the FZZ duality.

In sine-Liouville, the linear-dilaton×S1 is instead deformed by VsL ∝ e−2bsLr̂Re ei
√

k
α′ (θ̂L−θ̂R).

The potential consists of a Liouville-like radial factor e−2bsLr̂, together with the unit-winding

operator around the S1 direction. The presence of the winding operator explicitly breaks the

winding number conservation law of the free theory, consistent with winding non-conservation

in the cigar. The momentum of the linear-dilaton factor,

bsL =
1

2

√
k − 2

α′
, (2.228)

is again chosen such that the potential is weight (1, 1),

α′bsL(Q− bsL) +
k

4
= 1, (2.229)

k/4 being the contribution of the unit-winding operator. At large r̂, the potential decays

and one recovers the same asymptotic linear-dilaton×S1 theory as for the cigar. One thinks

of the sine-Liouville background as being built up of a condensate of winding strings on top

of the cylinder, as pictured in Fig. 1.4b.

The sine-Liouville action on a closed worldsheet Σ is thus

SsL =
1

4πα′

∫
Σ

d2σ
√
h
{

(∇r̂)2 + (∇θ̂)2 + 4πλ(W+ +W−)− α′QR[h]r̂
}
, (2.230)
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where

W± = e−2bsLr̂e±i
√

k
α′ (θ̂L−θ̂R) (2.231)

are the winding ±1 components of the sine-Liouville potential. λ is a positive constant,

analogous to µ in Liouville (Eqn. 2.41).

Note that the duality relates two target spaces of different topologies. In the cigar descrip-

tion the target space is a disk, whose contractible Euclidean time circle lead to the two-sided

black hole described in Sec. 2.3.2. In the sine-Liouville description the target space is an

annulus, and the analogous continuation with respect to the now non-contractible Euclidean

time circle will produce a disconnected Lorentzian geometry. The equivalence of string the-

ory in these two target spacetimes, one connected and one disconnected, is an example of

ER = EPR, and is the subject of the second half of the dissertation. Both descriptions share

the same asymptotic linear-dilaton× S1 region. The leading departure from the free theory

at finite r in the cigar is the metric deformation e−2r∂θ∂̄θ, while sine-Liouville results from

the potential deformation e−2bsLr̂ cos
(√

k/α′(θ̂L − θ̂R)
)
.

One is again free to add a constant mode Φ0 to the dilaton, but it may be eliminated by

the field redefinition r̂ → r̂ + Φ0

Q
, up to a rescaling of λ by e−(k−2)Φ0 . In particular, only the

combination e−2Φ0λ
2

k−2 is a meaningful parameter of the string theory, which sets the mass

of the black hole; we can therefore choose Φ0 = 0 in the sine-Liouville description.

As in Liouville, although the action Eqn. 2.230 takes the form of the free linear-dilaton×S1

deformed by the sine-Liouville potential with coefficient λ, the sine-Liouville background
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is not a small perturbation of the free theory due to the freedom to rescale λ by a field

redefinition. Correlation functions once again are not analytic functions of λ, and one

cannot in general write a sine-Liouville correlator as a Taylor expansion in λ with coeffi-

cients computed from the free theory. The non-analytic λ dependence may be evaluated

by performing the zero-mode integral over the linear-dilaton coordinate as in Eqn. 2.61.

Separating r̂(z, z̄) = r̂0 + r̂′(z, z̄), the functional integral with asymptotic primary insertions∏
N e
−2Q(1−jN )r̂SN(θ̂), where SN are S1 primaries, may be written

∫
Dr̂Dθ̂ e−SsL[r̂,θ̂]

∏
N

e−2Q(1−jN )r̂SN (2.232)

=

∫
Dr̂′Dθ̂ e−SLD[r̂′]−SS1 [θ̂]

∏
N

e−2Q(1−jN )r̂′SN

×
∫

dr̂0 e
Q(χ−2

∑
N (1−jN ))r̂0−( λ

α′ VsL[r̂′,θ̂])e−2bsLr̂0
,

where VsL[r̂′, θ̂] = 2
∫

d2σ
√
he−2bsLr̂

′
cos
(√

k/α′(θ̂L − θ̂R)
)

.

For Re(κ) < 0, one obtains

∞∫
−∞

dr̂0 e
2bsLκr̂0−( λ

α′ VsL[r̂′,θ̂])e−2bsLr̂0
=

1

2bsL

(
λ

α′
VsL[r̂′, θ̂]

)κ
Γ (−κ) , (2.233)

where now

κ =
Q

2bsL

(
χ− 2

∑
N

(1− jN)

)
. (2.234)

When Re(κ) > 0, the zero-mode integral over the real line diverges, and must be deformed

to a complex contour that preserves convergence and analyticity.
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Thus, the sine-Liouville correlation function is reduced to a linear-dilaton×S1 correlation

function, with the linear-dilaton zero-mode measure omitted, plus κ powers of the integrated

sine-Liouville potential:

〈∏
N

e−2Q(1−jN )r̂SN

〉
sL

(2.235)

=
1

2bsL

(
λ

α′

)κ
Γ (−κ)

〈
VsL[r̂, θ̂]κ

∏
N

e−2Q(1−jN )r̂SN

〉
LD×S1,/0

.

On a genus g Riemann surface, one obtains the scaling λ
2

k−2(1−g+
∑
N (jN−1)). The answer

is analytic in λ only when κ is a natural number, in which the case the κ insertions of the

potential VsL
κ is most straightforward. The subsequent divergence of the prefactor Γ(−κ) is

attributable to the volume of the non-compact target space.

Observe that the sine-Liouville potential W+ +W− coincides with the weak-coupling limit

of the previously defined coset operator OsL = W+ +W− (Eqns. 2.122-2.123), hence the

common terminology. A conformal perturbation of SL(2,R)k/U(1) by the marginal operator

OsL is trivial at the level of the CFT—the deformation merely shifts the coefficient λ of

the sine-Liouville potential, which may be undone by a field redefinition of r̂ at the cost

of introducing a dilaton zero-mode. The latter is a trivial improvement term from the

perspective of the CFT. As a string background, on the other hand, the deformation by OsL

is important because it shifts the mass of the black hole. We will explore this point further

in Sec. 4.4.

In light of the winding operator in the sine-Liouville potential, it is natural to employ the
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T-dual coordinate ϑ̂ ∼ ϑ̂+ 2π
√

α′

k
. The action may then be written

SsL =
1

4πα′

∫
Σ

d2σ
√
h

{
(∇r̂)2 + (∇ϑ̂)2 + 8πλe−2bsLr̂ cos

(√
k

α′
ϑ̂

)
− α′QR[h]r̂

}
. (2.236)

As in Liouville, the linear-dilaton factor of the potential e−2bsLr̂ is weakly coupled when bsL is

small, i.e. when k is near 2. However, neither the original cylinder radius
√
α′k nor its T-dual√

α′/k is large in that limit, and so the sine-Liouville background is not strictly-speaking

weakly coupled there. It is a far better description of the coset for k near 2 than the cigar,

however, which becomes infinitely strongly coupled in the limit.

Because the asymptotic conditions for the coset operators discussed in Sec. 2.3.4 in the

cigar description mapped the neighborhood of the insertion to the free-field region where the

cigar and sine-Liouville backgrounds coincide, the same apply in sine-Liouville. T-dualizing

Eqn. 2.131, the asymptotic conditions for an insertion of Ojnw in the far past on the cylinder

are

r̂(ρ, φ)
ρ→−∞
−→ 2α′Q

(
1

2
− j
)
ρ+O(1) (2.237a)

ϑ̂(ρ, φ)
ρ→−∞
−→ iw

√
α′kρ+ n

√
α′

k
φ+O(1). (2.237b)

In the previous discussion on the cigar, the (asymptotically) linear dilaton played little role

as k → ∞ because Q vanished in the limit. By contrast, Q diverges as k − 2 → 0. The

background-charge operators, responsible for the shift by 1
2

in Eqn. 2.237a, now behave as

heavy operators, scaling with the leading-order terms in the action as in the semi-classical

125



2 SEMI-CLASSICAL ANALYSIS OF THE 2D BLACK HOLE

limit of Liouville. Similarly, the Ojnw insertion is itself a heavy operator for j of order one

in the k − 2→ 0 limit.

As an aside, we point out that although Liouville × S1, with Q = 1/
√
α′(k − 2) and

radius
√
α′k, is not equivalent to SL(2,R)k/U(1), it has been conjectured that they are

connected by a conformal manifold for 2 < k < 3 [49]. A generic point on this conformal

manifold would be described by a potential given by the superposition of the Liouville and

sine-Liouville potentials. Only the ratio µ/λ of their coefficients is meaningful because one

or the other may be scaled away by a field redefinition, so the conformal manifold would be

one-dimensional, with Liouville× S1 at one end (µ/λ =∞) and SL(2,R)k/U(1) at the other

(µ/λ = 0).

At the pure Liouville×S1 point, one expects to find a marginal operator e−2bsLr̂Re ei
√

k
α′ (θ̂L−θ̂R)

which drives one along the conformal manifold toward SL(2,R)k/U(1) under a conformal per-

turbation. The sine-Liouville momentum bsL = 1
2

√
k−2
α′

is a positive real number and, for

2 < k < 3, it satisfies the Seiberg bound bsL <
Q
2

. Thus, one indeed has a non-normalizable

real-branch Liouville×S1 primary operator labeled by bsL that approaches the sine-Liouville

potential in the weak-coupling region. For k > 3, however, bsL violates the Seiberg bound.

Then it is instead the reflected component e−2(Q−bsL)r̂ that dominates in the weak-coupling

region, and does not reproduce the sine-Liouville asymptotics.

On the SL(2,R)k/U(1) side, one would similarly expect to find a marginal Liouville op-
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2.5.2 sine-Liouville Limit

erator e−2bLr̂, where

bL =
1

2

(
1−
√

9− 4k√
α′(k − 2)

)
, (2.238)

corresponding to a primary Ojnw with

jL =
1

2

(
1 +
√

9− 4k
)

(2.239)

and n = w = 0. For k > 9/4, one finds jL ∈ 1
2
+iR, and the Liouville operator is thus a delta-

functional normalizable primary on the complex branch of the SL(2,R)k/U(1) Hilbert space.

Though this operator exists even for k > 3, beyond that value the SL(2,R)k/U(1) CFT (and

its parent SL(2,R)k WZW model) undergoes a phase transition [54, 83]. For 2 < k < 9
4
, on

the other hand, one finds 1
2
< j < 1, and the Liouville operator is a non-normalizable real

branch primary.38 The cross-over point k = 9/4 corresponds to the critical string theory for

which c = 26.

2.5.2 sine-Liouville Limit

We now comment on to what extent one may understand the k → 2 limit of the

SL(2,R)k/U(1) reflection coefficient by a saddle-point expansion of the sine-Liouville func-

tional integral.

38Presumably it descends from a non-normalizable complementary series primary |j,m = 0, m̄ = 0〉 ∈ Ej,α=0 of SL(2,R)k, in
the terminology of [76].
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2 SEMI-CLASSICAL ANALYSIS OF THE 2D BLACK HOLE

The action with insertions of Ojnw in the far past and Oj,−n,−w in the far future is

Sjnw =
1

4πα′

L∫
−L

dρ

2π∫
0

dφ

(
(∂ρr̂)

2 + (∂φr̂)
2 + (∂ρϑ̂)2 + (∂φϑ̂)2 + 8πλe−2bsLr̂ cos

(√
k

α′
ϑ̂

))

− 2√
α′(k − 2)

(
j − 1

2

) 2π∫
0

dφ

2π
(r̂|ρ=L + r̂|ρ=−L)− iw

√
k

α′

2π∫
0

dφ

2π

(
ϑ̂|ρ=L − ϑ̂|ρ=−L

)

+

2π∫
0

dφ

2π

(
σ+

(
∂φϑ̂|ρ=L − n

√
α′

k

)
+ σ−

(
∂φθ̂|ρ=−L − n

√
α′

k

))

+
4

k − 2

(
j − 1

2

)2

L− kw2L− L

k
n2. (2.240)

Note that the boundary action for ϑ̂ is well-defined because w ∈ Z.

Let us again restrict our attention to the n = 0 sector, where the k − 2→ 0 limit of the

exact reflection coefficient Eqn. 2.138 yields

R(j, w)
k−2→0
−→ 24(j− 1

2)
(
j − 1

2

)
γ(j + w)γ(j − w)

γ(2j)
(2.241)

×
(
e

2

k − 2

j − 1
2

) 4
k−2(j− 1

2)
csc

(
2π

k − 2

(
j − 1

2

))
,

where j = O(k0) and Re(j) > 1
2
. Note that the second line, which is the dominant contribu-

tion, is independent of w.

In this limit, the most interesting factor in Eqn. 2.138 is γ
(

2j−1
k−2

)
, which leads to the csc

factor of Eqn. 2.241. The latter arises in the saddle-point expansion from the following shift
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2.5.2 sine-Liouville Limit

symmetry of the sine-Liouville potential:

r̂ → r̂ +
πi

2bsL

(2.242a)

ϑ̂→ ϑ̂+ π

√
α′

k
, (2.242b)

under which the linear-dilaton and compact-boson factors of the potential each transform

by a sign. By the same argument as before, the functional integral over real r̂ diverges

and should instead be defined over an appropriate complex cycle. We expect that the cycle

will consist of a sum of steepest-descent contours associated to saddles related by the shift

symmetry. Under the shift, the action changes by

S → S − 4πi

k − 2

(
j − 1

2

)
, (2.243)

due to the boundary terms. Summing over this discrete moduli space will contribute

∑
N∈Z≥0

e
4πi
k−2(j− 1

2)N =
i

2
e−

2πi
k−2(j− 1

2) csc

(
2π

k − 2

(
j − 1

2

))
(2.244)

for Im(j) > 0, reproducing the csc in Eqn. 2.241. For Im(j) < 0, one sums over N ∈ Z≤0.

Because the sine-Liouville Lagrangian is not actually weakly coupled, it is more challeng-

ing to reproduce the rest of Eqn. 2.241 by the saddle-point expansion. To attempt to extract

the 1
k−2

scaling from the action, one would define

r̃ =

√
k − 2

α′
r̂, ϑ̃ =

√
k − 2

α′
ϑ̂, λ̃ =

k − 2

α′
λ, (2.245)
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in terms of which

Sjw =
1

k − 2

{
1

4π

L∫
−L

dρ

2π∫
0

dφ

(
(∂ρr̃)

2 + (∂φr̃)
2 + (∂ρϑ̃)2 + (∂φϑ̃)2 + 8πλ̃e−r̃ cos

(√
k

k − 2
ϑ̃

))

− 2

(
j − 1

2

) 2π∫
0

dφ

2π
(r̃|ρ=L + r̃|ρ=−L)− iw

√
k(k − 2)

2π∫
0

dφ

2π

(
ϑ̃|ρ=L − ϑ̃|ρ=−L

)

+ 4

(
j − 1

2

)2

L− k(k − 2)w2L

}
. (2.246)

Were the functional in braces O((k−2)0), one could proceed with the saddle-point expansion

as in the preceding sections. However, the sine-Liouville potential oscillates rapidly in this

limit, reflecting the fact that the description is not weakly coupled.

We will not attempt to reproduce the rest of the semi-classical limit using the sine-Liouville

description. We point out, however, that the second line of Eqn. 2.241 coincides with the

leading terms in the semi-classical limit of the Liouville reflection coefficient (Eqn. 2.71). It

was shown in [84] that winding-preserving n-point functions in the SL(2,R)k/U(1) CFT are

reproduced by a sum of 2n − 2 point correlation functions in Liouville. In particular, the

two-point function of the coset is simply related to the two-point function of Liouville, with

a certain dictionary described in [84], and one correspondingly finds that their semi-classical

limits are closely related.
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3 State Dependence of String Perturbation
Theory

Our principal goal in the remainder of this work is to construct examples of string duali-

ties that realize ER = EPR. That is, we will give examples where the theory of a string in

a connected target spacetime, such as a two-sided black hole, is equivalent to the theory of

a string in a disconnected, but entangled, spacetime. We will describe these dualities in the

next chapter. Their formulation, however, requires some lesser-known types of string theo-

ries, such as string perturbation theory around a thermofield-double state. In this chapter,

we lay the groundwork for constructing such string perturbation theories, emphasizing the

case of asymptotic AdS3 about which the most is understood.

String perturbation theory is often phrased as an expansion around a Lorentzian space-

time solution. However, this is not entirely precise. Even in the non-linear sigma-model

approximation at leading order in α′, the target space time direction has wrong-sign kinetic

terms, and so the definition of the worldsheet functional integral requires the specification



3 STATE DEPENDENCE OF STRING PERTURBATION THEORY

of an appropriate contour in a complexification of the target space. Such contours are string

theory analogues of the Schwinger-Keldysh contours familiar from field theory. They consist

of Euclidean caps that specify the spacetime state, with the Lorentzian background glued

between them.

It is important to emphasize that one needs to specify a spacetime state, and not merely

a classical Lorentzian solution, in order to formulate a string perturbation theory. In many

applications, it is implicit that one has chosen the spacetime vacuum and so the choice of state

may not be stressed. In the examples of ER = EPR we describe in the next chapter, however,

that will not be the case. The EPR string theories will be defined around the thermofield-

double state in two disconnected copies of the target space. That string perturbation theory

is of course different from string theory in the same pair of Lorentzian spacetimes in the

factorized vacuum. The choice of state is encoded by the Euclidean caps of the Schwinger-

Keldysh contour or, more abstractly, by the unitary CFT one uses to define the Lorentzian

theory, and the choice of continuation one makes in doing so.

We begin in Sec. 3.1 by reviewing the geometry of AdS3 itself, as well as its Euclidean

continuation, and the SL(2,R)k and SL(2,C)k/SU(2) CFTs that describe a string propagat-

ing on those manifolds. Having done so, we then follow-up on the discussion of the cigar

background from Sec. 2.3 by describing the coset construction of the SL(2,R)k/U(1) CFT

from SL(2,R)k in Sec. 3.2. In Sec. 3.3 we come to the formulation of Lorentzian string

perturbation theory in various states.
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3.1.1 Geometry of AdS3

3.1 Review of the SL(2,R)k and SL(2,C)k/SU(2) CFTs

In this section we review the SL(2,R)k and SL(2,C)k/SU(2) CFTs that describe a string

propagating in AdS3 and Euclidean AdS3.

3.1.1 Geometry of AdS3

Let us first review the geometry of AdS3. Anti de Sitter (AdS) spacetime is the maximally-

symmetric vacuum solution of Einstein gravity with negative cosmological constant. Namely,

one considers the theory defined by the action

S =
1

2κ2

∫
dDX

√
−g(R− 2Λ), (3.1)

whose equations of motion are

Rµν =
2Λ

D − 2
gµν . (3.2)

When the cosmological constant Λ is a negative number, one writes Λ = −1/l2AdS. Special-

izing to D = 3, which will be the case of interest, one obtains

Rµν = − 2

l2AdS

gµν . (3.3)
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3 STATE DEPENDENCE OF STRING PERTURBATION THEORY

(a) AdS3 in Cylinder Coordinates. (b) EAdS3 in Poincaré Coordinates.

Figure 3.1

AdS3 is the simplest solution, given by

ds2
AdS = l2AdS

(
− cosh2(r)dt2 + dr2 + sinh2(r)dθ2

)
. (3.4)

In these coordinates, it may be thought of as a solid cylinder (Fig. 3.1a), with radial

coordinate r ∈ [0,∞), angular coordinate θ ∼ θ + 2π, and Lorentzian time coordinate

t ∈ (−∞,∞) running along its length.

AdS3 is equivalent to the Lie group SL(2,R), as may be seen from the parameterization39

g =ei(t+θ)T3e2irT2ei(t−θ)T3 ∈ SL(2,R), (3.5)

39e±2πiT3 = −1, and therefore g is invariant under both t → t + 2π and θ → θ + 2π. By AdS3 = SL(2,R), we mean the
covering space where t is decompactified.
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3.1.1 Geometry of AdS3

which yields

g =

 sinh(r) cos(θ) + cosh(r) cos(t) − sinh(r) sin(θ) + cosh(r) sin(t)

− sinh(r) sin(θ)− cosh(r) sin(t) − sinh(r) cos(θ) + cosh(r) cos(t)

 , (3.6)

where T1 = − i
2
σ1, T2 = − i

2
σ3, and T3 = 1

2
σ2 are a basis of sl(2,R), satisfying [Ti,Tj] =

iεijkη
klTl, with metric ηij = 2tr(TiTj) = Diag(−1,−1, 1)ij. The AdS3 metric Eqn. 3.4 is

then reproduced by the usual group metric

ds2
SL(2,R) =

1

2
l2AdStr

(
g−1dgg−1dg

)
. (3.7)

The obvious symmetries of Eqn. 3.4 are translations in t and θ. The group structure makes

it evident that the full isometry algebra is sl(2,R)⊕ sl(2,R), which is six-dimensional. AdS3

is therefore maximally symmetric, meaning it has as many isometries as R3.

The Lie algebra sl(2,R)⊕sl(2,R) is equivalent to so(2, 2). The latter is the Lorentz algebra

of R2,2, and indeed AdS3 may be identified with a hyperboloid embedded in R2,2, just as a

sphere S2 in R3 inherits the rotation algebra so(3) of the embedding space. To understand

the embedding, let X−1, X0, X1, and X2 denote coordinates on R2,2, with metric

1

l2AdS

ds2
R2,2 = −(dX−1)2 − (dX0)2 + (dX1)2 + (dX2)2. (3.8)

As four-dimensional real vector spaces, we may define an isomorphism of R2,2 and GL(2,R)
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by

g =

X−1 +X1 X2 +X0

X2 −X0 X−1 −X1

 . (3.9)

Note that

−det(g) = −(X−1)2 − (X0)2 + (X1)2 + (X2)2, (3.10)

and therefore AdS3 = SL(2,R) is the subspace of R2,2 laying on the hyperboloid

−(X−1)2 − (X0)2 + (X1)2 + (X2)2 = −1. (3.11)

The SO(2, 2) isometries of the hyperboloid coincide with the [SL(2,R)× SL(2,R)]/Z2 trans-

formations g → ΓLgΓ−1
R of GL(2,R) that preserve det(g) = 1. The cylinder coordinates of

Eqn. 3.5 correspond to the parameterization40

X−1 = cos(t) cosh(r) (3.12a)

X0 = sin(t) cosh(r) (3.12b)

X1 = cos(θ) sinh(r) (3.12c)

X2 = − sin(θ) sinh(r), (3.12d)

with the pullback of the R2,2 metric Eqn. 3.8 reproducing Eqn. 3.4.

40Again, the invariance of this parameterization under t → t + 2π reflects the periodicity of t in SL(2,R), which is decom-
pactified in the covering space AdS3.
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Consider next the Euclidean continuation of AdS3, obtained from Eqn. 3.4 by continuing

ξ = it,

ds2
EAdS = l2AdS

(
cosh2(r)dξ2 + dr2 + sinh2(r)dθ2

)
, (3.13)

with ξ ∈ (−∞,∞). This is the manifold Euclidean AdS3 (EAdS3), and it is the maximally

symmetric solution of Einstein’s equations in Euclidean signature.

Performing the same continuation in Eqn. 3.5 yields not a group, but a parameterization

of the vector space of 2×2 Hermitian matrices with unit determinant and positive eigenvalues.

Likewise, the parameterization Eqn. 3.12 becomes

X−1 = cosh(ξ) cosh(r) (3.14a)

X1 = cos(θ) sinh(r) (3.14b)

X2 = − sin(θ) sinh(r) (3.14c)

X3 = sinh(ξ) cosh(r), (3.14d)

where X3 = iX0, and

g =

X−1 +X1 X2 − iX3

X2 + iX3 X−1 −X1

 (3.15)

defines an isomorphism of R1,3 and the space of Hermitian matrices. The unit determinant
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condition restricts to the hyperboloid

− det(g) = −(X−1)2 + (X1)2 + (X2)2 + (X3)2 = −1, (3.16)

and the constraint of positive eigenvalues picks out the sheet X−1 ≥ 1. Thus, EAdS3 is

identified with the upper sheet of a hyperboloid embedded in R1,3. The SO(1, 3) Lorentz

symmetry of the hyperboloid now coincides with the SL(2,C)/Z2 action g → ΓgΓ† on the

space of matrices that preserves the determinant, required to act by conjugation to preserve

Hermiticity. This is the familiar identification of SL(2,C) = Spin(1, 3) with the double cover

of the four-dimensional Lorentz group.41

In particular, we find that so(1, 3) ' sl(2,C) is the isometry algebra of EAdS3, where

sl(2,C) is regarded as a real six-dimensional Lie algebra. Note also that the so(1, 3) and

so(2, 2) isometry algebras of EAdS3 and AdS3 are two real forms of the same complexification

sl(2,C) ⊕ sl(2,C). In AdS/CFT, the former are identified with the boundary CFT2 global

conformal algebras in Euclidean and Lorentzian signature, and the latter is the complexified

global conformal algebra.

The action g → ΓgΓ† of SL(2,C) on the space of 2 × 2 Hermitian matrices with unit

determinant and positive eigenvalues is transitive. The stabilizer of, say, g = Diag(1, 1) is

SU(2). Thus, the vector space, and equivalently EAdS3, is identified with the coset manifold

SL(2,C)/SU(2), analogous e.g. to the identification S2 = SO(3)/SO(2).

Another convenient coordinate system on EAdS3 is related to the cylinder coordinates of

41Or rather its connected component.
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Eqn. 3.13 by

σ = −ξ + log cosh r (3.17a)

γ = tanh(r)eξ+iθ (3.17b)

γ̄ = tanh(r)eξ−iθ, (3.17c)

in terms of which the metric becomes

ds2
EAdS = l2AdS

(
dσ2 + e2σdγdγ̄

)
. (3.18)

These are called Poincarè coordinates (Fig. 3.1b). γ is a complex coordinate, γ̄ is its complex

conjugate, and σ ∈ (−∞,∞). At the conformal boundary r → ∞, note that γ → eξ+iθ is

the usual conformal map between the boundary sphere with complex coordinate γ and the

boundary cylinder with complex coordinate W ≡ ξ + iθ.

Having reviewed the geometry of AdS3 = SL(2,R) and EAdS3 = SL(2,C)/SU(2), we next

discuss the SL(2,R)k WZW model and SL(2,C)k/SU(2) coset model that describe a string

on these manifolds.

3.1.2 SL(2,R)k Spectrum

In light of the equivalence AdS3 = SL(2,R), it is natural to describe a string propagating in

AdS3 by the SL(2,R)k WZW model [46,76,85–88]. The WZW level k, which is a real number

greater than 2, sets the AdS length scale, l2AdS = α′k = l2sk. AdS3 has constant negative
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curvature R = −6/l2AdS, meaning the background defined by the metric Eqn. 3.4 alone is

certainly not conformal invariant. In the SL(2,R)k WZW model, conformal symmetry on

the worldsheet is supported by a B-field that is contributed by the Wess-Zumino term in the

WZW action, tr
(

(g−1dg)
∧3 ) ∝ dB, with B ∝ sinh2(r)dt ∧ dθ. The dilaton, meanwhile, is a

constant, and the central charge is

c =
3k

k − 2
. (3.19)

One must be careful, however, to define what one means by the SL(2,R)k WZW model.

The usual WZW action is inadequate; since the metric is Lorentzian, the WZW action

includes wrong-sign kinetic terms:

S =
k

2π

∫
d2z
{
− cosh2(r)∂t∂̄t+ ∂r∂̄r + sinh2(r)∂θ∂̄θ (3.20)

− sinh2(r)(∂t∂̄θ − ∂̄t∂θ)
}
.

The naive functional integral is therefore divergent and must be defined by a more careful

prescription. The ambiguity is meaningful and corresponds to the need to choose a state in

spacetime around which one wishes to build a string perturbation theory. The ER = EPR

string dualities that we describe in the next chapter will refer to string perturbation theories

in various states. The appropriate worldsheet theories are defined by analytic continuation

from unitary CFTs, which encode the choice of state. By the SL(2,R)k WZW model we mean

the theory of a string in AdS3 in the spacetime vacuum state, which is defined by continuation

from the theory with target EAdS3. We elaborate on this procedure and discuss examples
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of different choices of states in Sec. 3.3. Before addressing those generalizations, we first

review the spectrum of a string in the AdS3 vacuum, as constructed in [76].

Observe from Eqn. 3.5 that the obvious isometries of the AdS3 metric in cylinder coor-

dinates, namely time translations t → t + δt and rotations θ → θ + δθ, are implemented in

SL(2,R) by g → eiδtT3geiδtT3 and g → eiδθT3ge−iδθT3 . The time translation and rotation gen-

erators in the WZW model are therefore the charges J3
0 +J̄3

0 and J3
0−J̄3

0 , whose eigenvalues are

the spacetime energy and angular momentum. The full list of generators {J3
0 , J

±
0 }∪{J̄3

0 , J̄
±
0 }

of the sl(2,R)L ⊕ sl(2,R)R isometry algebra, written in the raising/lowering basis, satisfy

[J3
0 , J

±
0 ] = ±J±0 , [J+

0 , J
−
0 ] = −2J3

0 , (3.21)

and similarly for J̄a0 , with [Ja0 , J̄
b
0 ] = 0.

As is usual in WZW models, the target isometry algebra sl(2,R)L⊕ sl(2,R)R is extended

to a current algebra ŝlk(2,R)L ⊕ ŝlk(2,R)R:

[J3
A, J

3
B] = − k

2
AδA+B (3.22a)

[J3
A, J

±
B ] = ± J±A+B (3.22b)

[J+
A , J

−
B ] = − 2J3

A+B + kAδA+B, (3.22c)

JaA being the modes of the currents {Ja(z)}a=3,±, Ja(z) =
∑

A∈Z J
a
A/z

A+1. Likewise one

has anti-holomorphic modes J̄aA of the currents J̄a(z̄), which satisfy the same algebra and

commute with the holomorphic modes. The isometry algebra corresponds to the global
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sub-algebra generated by the zero-modes Ja0 , J̄
a
0 .

The SL(2,R)k Hilbert space is organized in representations of this current algebra [76].

These representations come in two varieties. The first are the familiar sort of current algebra

representation: one begins with a unitary representation of the global sub-algebra generated

by
{
Ja0 , J̄

a
0

}
, demands it is annihilated by the positive modes

{
JaA, J̄

a
A

}
A>0

, and then builds

the current-algebra representation by action of the negative modes
{
JaA, J̄

a
A

}
A<0

. Unlike

the compact case, these representations include states of negative, though bounded-below,

conformal weights, as well as states of negative norm. The second variety of representations

is less familiar, owing to the non-compactness of SL(2,R). They arise due to an automor-

phism of the current algebra, called the spectral-flow automorphism. They again include

negative norm states, and in this case the conformal weights need not even be bounded

below. These peculiarities are to be expected, in light of the Lorentzian signature of the

target space. Combined with an internal CFT of appropriate central charge to cancel the

conformal anomaly, one obtains a unitary string spectrum, aside from the usual tachyon,

after imposing the Virasoro constraints [76].

The Virasoro modes {LA, L̄A} are built as usual using the Sugawara construction, and

satisfy the Virasoro algebra with central charge Eqn. 3.19. Their commutation relations

with the currents modes are

[LA, J
a
B] = −BJaA+B, (3.23)

and likewise for the anti-holomorphic modes. Ja−A with A > 0 is a raising operator for L0

142



3.1.2 SL(2,R)k Spectrum

by A units, [L0, J
a
−A] = AJa−A, and J±−A is a raising/lowering operator for J3

0 by one unit,

[J3
0 , J

±
−A] = ±J±−A.

Let us first describe the ordinary representations. They are labeled by the global sl(2,R)L⊕

sl(2,R)R representation on which they are built. An sl(2,R) representation is labeled by its

spin, j, which is related to the quadratic Casimir,

c2 =
1

2

(
J+

0 J
−
0 + J−0 J

+
0

)
− (J3

0 )2, (3.24)

by c2 = −j(j − 1). The sl(2,R) representations that appear in the SL(2,R)k WZW model

are called the discrete series, for which j is a positive real number, and the continuous

series, for which j ∈ 1
2

+ iR. We will write the states in a J3
0 -diagonal basis |j,m〉, where

J3
0 |j,m〉 = m |j,m〉.

The discrete-series representations come in two flavors, denoted by D±j , where the +

indicates a lowest-weight representation and the − a highest-weight representation. In the

former case, one begins with a lowest-weight state |j, j〉 annihilated by J−0 , and constructs

the remaining states by action of J+
0 :

D+
j = {|j,m〉 : m = j, j + 1, j + 2, . . .} . (3.25)

Similarly, the highest-weight representation D−j is built on a highest-weight state |j,−j〉
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annihilated by J+
0 , with the remaining states constructed by action of J−0 :

D−j = {|j,m〉 : m = −j,−j − 1,−j − 2, . . .} . (3.26)

The continuous-series representations, denoted by Cj,α, consist of an infinite tower of

states:

Cj,α = {|j,m〉 : m = α, α± 1, α± 2, . . .} . (3.27)

α is an additional parameter valued in [0, 1). Note that for the discrete-series states, the J3
0

eigenvalue is equal to j modulo an integer, whereas for the continuous-series states the J3
0

eigenvalue is unrelated to j.

On a global sl(2,R) representation D±j or Cj,α consisting of states |j,m〉, an ŝlk(2,R)

current-algebra representation is obtained by demanding that these states are primary:

JaA>0 |j,m〉 = 0. (3.28)

The remaining states of the current-algebra representation are then obtained by action of

the negative modes JaA<0. We denote by D̂±j and Ĉj,α the current-algebra representations

built on the primaries D±j and Cj,α. The current-algebra primaries |j,m〉 are also Virasoro
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primary,

L0 |j,m〉 = hj |j,m〉 (3.29a)

LA>0 |j,m〉 = 0, (3.29b)

with conformal weight

hj = −j(j − 1)

k − 2
. (3.30)

Note that the quadratic Casimir c2 = −j(j − 1), and by extension hj, is a positive real

number in the continuous series, c2 = |j|2, whereas it is positive in the discrete series only

in the window between zero and one. c2 is a constant of the representation, and so every

primary state |j,m〉 carries the same conformal weight hj, independent of m.

The ŝlk(2,R)L ⊕ ŝlk(2,R)R representations of this form that appear in the spectrum of

the SL(2,R)k WZW model are [76]

HSL(2,R)k ⊃
⊕
j,α


D̂+
j ⊗ D̂+

j j ∈
(

1

2
,
k − 1

2

)
Ĉj,α ⊗ Ĉj,α j ∈ 1

2
+ iR+, α ∈ [0, 1).

(3.31)

It will become clear shortly why the highest-weight discrete-series representations are not

included here. As usual in WZW models, the relevant representations carry the same spin

j on the left and right, as well as the same α in the continuous series. It follows that the

difference of the J3
0 and J̄3

0 eigenvalues is an integer, consistent with the quantization of
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angular momentum around the compact cycle of the AdS3 cylinder, which is generated by

J3
0 − J̄3

0 .

Next we discuss the less familiar spectral-flowed representations of the current algebra,

denoted by D̂±,wj and Ĉw
j,α with an additional integer label w. These arise due to an auto-

morphism of the ŝlk(2,R) current algebra called the spectral-flow automorphism. This is a

map JaA → JaA[w] that preserves Eqn. 3.22:

J3
A[w] = J3

A −
k

2
wδA (3.32a)

J±A [w] = J±A±w. (3.32b)

It is additive, (JaA[w1])[w2] = JaA[w1 + w2], and JaA[0] = JaA.

States in spectral-flowed representations transform as ordinary representations under

JaA[w], with the action of JaA then determined by the inverse automorphism

J3
A = J3

A[w] +
k

2
wδA (3.33a)

J±A = J±A∓w[w]. (3.33b)

The Virasoro modes, being obtained from the currents by the Sugawara construction, in

turn transform under spectral flow:

LA = LA[w]− wJ3
A[w]− 1

4
kw2δA. (3.34)
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Thus, the spectral flow of a primary state |j,m;w〉 transforms under JaA[w] as an ordinary

primary,

J3
0 [w] |j,m;w〉 =m |j,m;w〉 (3.35a)

J±0 [w] |j,m;w〉 ∝ |j,m± 1;w〉 (3.35b)

JaA>0[w] |j,m;w〉 = 0, (3.35c)

with

L0[w] |j,m;w〉 =hj |j,m;w〉 (3.36a)

LA>0[w] |j,m;w〉 = 0. (3.36b)

The action of JaA and LA on the same state is then determined by Eqns. 3.33-3.34. In

particular, the J3 and conformal weights are

J3
0 |j,m;w〉 =

(
m+

k

2
w

)
|j,m;w〉 (3.37a)

L0 |j,m;w〉 =

(
hj − wm−

1

4
kw2

)
|j,m;w〉 . (3.37b)

We will denote by M = m + k
2
w the eigenvalue of J3

0 to distinguish it from the eigenvalue

m of J3
0 [w]. If w is allowed to be arbitrarily large, as it is in the SL(2,R)k spectrum, the

conformal weights of these states are unbounded below. This instability is rectified in the

full string theory. w may roughly be thought of as a winding number of the string around

the θ circle of AdS3 [76]. Of course, since this cycle is contractible, w is not conserved.
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A current algebra primary |j,m〉 is also Virasoro primary, and from Eqns. 3.33-3.34

it follows that the spectral-flowed state |j,m;w〉 remains Virasoro primary. With respect

to the global sub-algebra, on the other hand, |j,m;w〉 transforms as a lowest-weight state

|J,M = J〉 for w > 0:

J3
0 |j,m;w〉 = J |j,m;w〉 (3.38a)

J−0 |j,m;w〉 = 0 (3.38b)

c2 |j,m;w〉 = − J(J − 1) |j,m;w〉 . (3.38c)

Thus, |j,m;w〉 sits at the bottom of a lowest-weight representation D+
J of spin J = m+ k

2
w.

For w < 0, |j,m;w〉 ∈ D−J ′ is a highest-weight state |J ′,M ′ = −J ′〉 of spin J ′ = −
(
m+ k

2
w
)
.

The complete spectrum of the SL(2,R)k WZW model consists of the current-algebra

representations built on the lowest-weight discrete-series representations D+
j ⊗ D+

j for 1
2
<

j < k−1
2

and on the continuous-series representations Cj,α ⊗ Cj,α for j ∈ 1
2

+ iR+, as well as

their associated spectral-flowed representations for all w ∈ Z [76]:

HSL(2,R)k =
⊕
j,α,w


D̂+,w
j ⊗ D̂+,w

j j ∈
(

1

2
,
k − 1

2

)
, w ∈ Z

Ĉw
j,α ⊗ Ĉw

j,α j ∈ 1

2
+ iR+, α ∈ [0, 1), w ∈ Z.

(3.39)

The spectrum does not explicitly list both the lowest-weight and highest-weight discrete-

series representations D̂±,wj ⊗ D̂±,wj because they are not independent. Rather, one has the

following isomorphism, which exchanges lowest and highest-weights, shifts the spectral flow
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by one unit, and reflects j → k
2
− j [76]:

D̂−,wj ' D̂+,w−1
k
2
−j . (3.40)

Note that the interval j ∈
(

1
2
, k−1

2

)
is mapped to itself under the reflection j → k

2
− j, so that

if j lies in the interval then so does k
2
− j and vice-versa.

For example, the representation D̂−,1j with one unit of spectral flow is in fact equivalent

to the ordinary representation D̂+
k
2
−j. Under this isomorphism, the spectral-flowed primary

states |j,−j −N ;w = 1〉 in D̂−,1j map to descendent states in D̂+
k
2
−j:

|j,−j −N ;w = 1〉 ' (J−−1)N
∣∣∣∣k2 − j, k2 − j

〉
, N = 0, 1, 2, . . . . (3.41)

The right-hand-side is an sl(2,R) lowest-weight state of spin k
2
− j − N , consistent with

the fact that |j,m;w > 0〉 is lowest-weight state of spin m + k
2
w. Likewise, their conformal

weights

hj − (−j −N)− 1

4
k = h k

2
−j +N (3.42)

are identical.

Having now summarized the SL(2,R)k WZW model, in the next sub-section we briefly

do the same for the SL(2,C)k/SU(2) coset.
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3.1.3 SL(2,C)k/SU(2) Spectrum

In light of the identification EAdS3 = SL(2,C)/SU(2), a string in EAdS3 may be described

by the unitary SL(2,C)k/SU(2) coset WZW model [43, 44, 86–89]. Its action is simplest in

Poincaré coordinates [87],

S =
k

2π

∫
d2z

(
∂σ∂̄σ + e2σ∂γ̄∂̄γ

)
. (3.43)

By the change of variables Eqn. 3.17, one finds in cylinder coordinates42

S =
k

2π

∫
d2z
{
∂r∂̄r + ∂ξ∂̄ξ + (∂ξ − i∂θ)(∂̄ξ + i∂̄θ) sinh2(r)

}
. (3.44)

Eqn. 3.20 is obtained by setting ξ = it.

The isometry algebra of EAdS3 is sl(2,C), which is extended to an ŝlk(2,C) current algebra

of the CFT.43 Its spectrum is then organized in representations of this current algebra, and

consists of ordinary representations built atop sl(2,C) primaries labeled by their spin j. The

spectrum is spanned the complex branch primaries j ∈ 1
2

+ iR+ [43, 44,89].

For applications to string theory, it is convenient to write these representations not in a

momentum space basis as in the previous sub-section, but in a function space basis, with the

generators implemented by differential operators acting on functions of a complex coordinate

42We drop an additional total derivative term i tanh(r)(∂r∂̄θ − ∂̄r∂θ) that corresponds to an exact B-field d(log cosh(r)dθ).

43Prior to the quotient, one has an ŝlk(2,C)L ⊕ ŝlk(2,C)R current-algebra corresponding to the independent symmetries

g → ΩLgΩ
†
R on the left and right. After the quotient, one is left with a single copy of the symmetry to preserve Hermiticity,

g → ΩgΩ†.
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x [43, 44]:

D3 = x
∂

∂x
+ j, D+ =

∂

∂x
, D− = x2 ∂

∂x
+ 2jx. (3.45)

These are the usual global conformal generators familiar from 2D CFT, except that x is not

a worldsheet coordinate—indeed, x will be interpreted as a spacetime boundary coordinate

in string theory. The primary vertex operators may be written Φj(z, z̄;x, x̄), where (z, z̄)

are worldsheet coordinates and (x, x̄) parameterize the representation. Their OPEs with the

currents are

Ja(z)Φj(z
′, z̄′;x, x̄) ∼ D

aΦj(z
′, z̄′;x, x̄)

z − z′
, a = 3,±, (3.46)

and they are again worldsheet scalars of conformal weight hj. The m basis states described

in the previous sub-section are related to the states prepared by these x basis operators via

Fourier transformation and continuation.

Near the σ →∞ boundary of EAdS3, the vertex operators behave for large k as [44,88]

Φj(z, z̄;x, x̄)
σ→∞
−→ e−2(1−j)σδ2(γ − x) +

1

π
(2j − 1)e−2jσ|γ − x|−4j. (3.47)

Accounting for the measure factor
√
g = l2AdSe

2σ from the metric Eqn. 3.18, observe that

the target wavefunction is delta-function normalizable only for Re(j) = 1
2
, consistent with

the preceding statement that the SL(2,C)k/SU(2) Hilbert space contains only the complex

branch states.
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Much is known about the SL(2,C)k/SU(2) CFT, as discussed in the references cited. The

above are only the essential details that we will require for the applications to follow.

3.2 SL(2,R)k/U(1) From SL(2,R)k

In Sec. 2.3 we wrote down the cigar sigma-model Lagrangian for the SL(2,R)k/U(1) CFT

without justification. In this section we review the coset construction of the CFT by gauging

the SL(2,R)k WZW model.

The coset is defined by gauging the time-translation isometry along the length of the AdS3

cylinder generated by J3
0 + J̄3

0 in the WZW model. Promoting ∂t→ ∂t+A, ∂̄t→ ∂̄t+ Ā in

Eqn. 3.20, one obtains the gauged action

S → S +
k

2π

∫
d2z

(
J3Ā+ J̄3A− cosh2(r)AĀ

)
, (3.48)

where

J3(z) = −∂t− sinh2(r) (∂t− ∂θ) (3.49)

is the holomorphic component of the current for translations in t, and J̄3 is the anti-

holomorphic component. Solving the auxiliary equations of motion for A, Ā and evaluating

the action on the solution one obtains

Scigar =
k

2π

∫
d2z

(
∂r∂̄r + tanh2(r)∂θ∂̄θ

)
. (3.50)
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Thus, classically gauging the length of the cylinder produces a disk topology with the cigar

metric ds2 = α′k(dr2 + tanh2(r)dθ2), as in Eqn. 2.97a. Quantum mechanically, integrating

out the gauge fields produces the dilaton, as necessitated by conformal invariance (Eqn.

2.99), as well as the additional finite k corrections to the background organized in Eqn.

2.93 [75].

We now reproduce the coset spectrum Eqn. 2.106 from the SL(2,R)k spectrum Eqn. 3.39.

The Virasoro primaries of SL(2,R)k/U(1) descend from those SL(2,R)k states which are (i)

Virasoro primary, (ii) J3 and J̄3 primary, and (iii) satisfy the projection J3
0 + J̄3

0 = 0.

Consider first a current-algebra primary state |j,m, m̄〉, or more generally its spectral flow

|j,m, m̄;w〉. These states are automatically Virasoro, J3, and J̄3 primary, with weights given

in Eqn. 3.37. Then one need only enforce the projection condition in order for |j,m, m̄;w〉

to descend to the coset:

(
J3

0 + J̄3
0

)
|j,m, m̄;w〉 = (m+ m̄+ kw) |j,m, m̄;w〉 = 0. (3.51)

For a given w, the weights m and m̄ must therefore satisfy

m+ m̄ = −kw. (3.52)

Recall that the difference of eigenvalues J3
0 − J̄3

0 is always an integer, which we will denote
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by n, by angular momentum quantization around the AdS3 cylinder:

m− m̄ = n. (3.53)

Together, we find the allowed values of m and m̄ labeled by w, n ∈ Z:

m =
−kw + n

2
, m̄ =

−kw − n
2

. (3.54)

Among the spectral-flowed primaries, we are therefore looking for states of the form

∣∣∣∣j, −kw + n

2
,
−kw − n

2
;w

〉
(3.55)

in Eqn. 3.39. In the continuous series Ĉw
j,α ⊗ Ĉw

j,α one may always find such a state for any

w, n ∈ Z and j ∈ 1
2

+ iR+ by selecting the appropriate value of α. The discrete series is

more restrictive, however. We must identify values of j which lie in the physical spectrum

1
2
< j < k−1

2
and are such that |j,m, m̄〉 ∈ D+

j ⊗ D+
j prior to the spectral flow fits in a

lowest-weight representation for the given values of m, m̄. The latter demands that m − j

and m̄− j are natural numbers.

Note first of all that if w ≥ 0 it is impossible to satisfy the constraint m + m̄ + kw = 0,

because m and m̄ are positive numbers for j > 1
2
. If w is negative, one finds solutions of the

form [75]

∣∣∣∣j =
k|w| − |n|

2
−N, −kw + n

2
,
−kw − n

2
;w

〉
∈ D̂+,w

j ⊗ D̂+,w
j , w < 0, (3.56)

154



3.2 SL(2,R)k/U(1) From SL(2,R)k

where N is a natural number such that

1

2
<
k|w| − |n|

2
−N <

k − 1

2
. (3.57)

Note that this bound implies there only exist solutions when |n| < k|w| − 1.

For states of this form, one finds

m− j = −kw + |w|
2

+
n+ |n|

2
+N (3.58)

and

m̄− j = −kw + |w|
2

− n− |n|
2

+N, (3.59)

and thus for w < 0

m− j =


n+N n ≥ 0

N n ≤ 0

m̄− j =


N n ≥ 0

−n+N n ≤ 0

(3.60)

As required, the states are such that m− j, m̄− j ∈ N.

From the perspective of the cigar sigma-model, it would be strange to find asymptotic

winding states with only one sign of the winding number. Were we to take w > 0, note

that the state in Eqn. 3.56 would in fact fit in a highest-weight representation D̂−,wj ⊗ D̂−,wj ,
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which demands −m− j,−m̄− j ∈ N. Indeed, we find

−m− j = k
w − |w|

2
+
|n| − n

2
+N (3.61)

and

−m̄− j = k
w − |w|

2
+
|n|+ n

2
+N, (3.62)

and so for w > 0

−m− j =


N n ≥ 0

−n+N n ≤ 0

− m̄− j =


n+N n ≥ 0

N n ≤ 0,

(3.63)

as required. These states do not appear explicitly in the SL(2,R)k spectrum, Eqn. 3.39.

However, in light of the isomorphism Eqn. 3.40, they are equivalent to descendent states in

D̂+,w−1
k
2
−j ⊗ D̂+,w−1

k
2
−j . Their images under the isomorphism are

(
J−−1[w − 1]

)N+
|n|−n

2
(
J̄−−1[w − 1]

)N+
|n|+n

2

∣∣∣∣k2 − j, k2 − j, k2 − j;w − 1

〉
. (3.64)

In summary, we have identified three sets of Virasoro primaries of the SL(2,R)k WZW

model that descend to Virasoro primaries of the SL(2,R)k/U(1) coset:

• Continuous-series spectral-flowed primary states,

∣∣∣∣j =
1

2
+ is,m =

−kw + n

2
, m̄ =

−kw − n
2

;w

〉
∈ Ĉw

j,α ⊗ Ĉw
j,α, (3.65)
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where w, n ∈ Z, and α ∈ [0, 1) takes the value necessary for m, m̄ = α mod Z.

• Discrete-series spectral-flowed primary states in lowest-weight representations (w < 0)

and highest-weight representations (w > 0),

∣∣∣∣jN ,m =
−kw + n

2
, m̄ =

−kw − n
2

;w

〉
∈


D̂+,w
jN
⊗ D̂+,w

jN
w < 0

D̂−,wjN
⊗ D̂−,wjN

w > 0,

(3.66)

where jN = k|w|−|n|
2
−N ∈

(
1
2
, k−1

2

)
, N ∈ N, and w, n ∈ Z.

These are the SL(2,R)k parents of the coset states enumerated in Eqn. 2.106. As seen in

Sec. 2.3.3, the sl(2,R) spin j is related to the linear-dilaton momentum in the asymptotic

cylinder region of the cigar, the quantized angular momentum n around the AdS3 cylinder

becomes the momentum around the asymptotic cylinder, and the spectral flow parameter

w, which roughly corresponds to the winding number around AdS3 likewise becomes the

winding number around the asymptotic cylinder. The conformal weights of these states with

respect to the coset stress tensor are as in Eqn. 2.107, obtained from the SL(2,R)k weights

Eqn. 3.37b less the U(1) contribution.

We have not proven that this is the complete list of SL(2,R)k states which descend to

Virasoro primaries of the coset, but this is assured given the independent construction of the

coset spectrum from the one-loop partition function in [77].

Finally, we point out that the components W± = Oj= k
2
−1,n=0,w=∓1 of the sine-Liouville
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operator OsL =W+ +W− (Eqn. 2.123) descend from the states [79]

W± =

∣∣∣∣k2 − 1,±k
2
,±k

2
;∓1

〉
∈ D̂±,∓1

k
2
−1
⊗ D̂±,∓1

k
2
−1
, (3.67)

or, under the isomorphism,

J±−1J̄
±
−1 |1,∓1,∓1〉 ∈ D̂∓1 ⊗ D̂∓1 . (3.68)

In fact, since the J3
0 , J̄

3
0 eigenvalues of these states independently vanish (as opposed to merely

their sum), the coset states and SL(2,R)k states are identical, there being no U(1) factors

to strip away. Thus the weights Eqns. 2.107 and 3.37b are identical—namely, (1, 1)—and

OsL defines a marginal operator of both SL(2,R)k and SL(2,R)k/U(1).

3.3 Schwinger-Keldysh Contours for Lorentzian String Theory

Suppose one wishes to construct a string perturbation theory around a Lorentzian geom-

etry M . Roughly speaking, one often thinks of the worldsheet CFT as a sigma-model44 into

M . However, not only do the target time kinetic terms imply that the functional integral over

the real target fields diverges,45 but moreover the Lorentzian manifold alone is insufficient

data—one must also choose a state of semi-classical quantum gravity in spacetime around

44Combined with background fields to support conformal symmetry, and a unitary internal CFT to cancel the conformal
anomaly.

45As we have seen in Ch. 2, the functional integral over real spatial directions can also diverge, such as along the asymptotic
linear-dilaton directions encountered there. Along such directions the functional integral should again be defined over a complex
cycle in the target space. But that issue is distinct from the divergence of the functional integral over the time coordinate in
Lorentzian backgrounds.
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which one wishes to construct the perturbation theory.46 In constructing string perturbation

theory in AdS3, for example, one can choose from a variety of states, such as the global AdS

vacuum, an excited state above the vacuum, a thermal or thermofield-double (TFD) state,

and so on.

The divergence of the functional integral over Lorentzian target fields and the ambiguity

in the choice of state are closely related. The functional integral should instead be defined

by continuation from a sigma-model with Euclidean target.47 Such a continuation is not

unique, and the choice one makes encodes the state around which the perturbation theory is

defined. Thus, the divergence of the functional integral and the necessity of choosing a state

are reconciled by defining the functional integral along a contour in a complexification of the

target space. The contour consists of Euclidean caps at either end, which ensure convergence

of the functional integral, joined along a Lorentzian excursion in the middle [92–96].

Several such contours in the complex target time plane are pictured in Fig. 3.2. The first

computes expectation values in a pure state such as the vacuum, the second in a thermal

state, and the third in a TFD state. They share a common Lorentzian section (with two

copies thereof in the last example), but correspond to different complexifications of the

target time tE + it, tE being non-compact in the first and compact in the second and third.

Moreover, the periodicity tE ∼ tE + β in the latter cases is an additional choice, specifying

46When computing the string S-matrix in Minkowski spacetime, it is usually implicit that one has chosen the vacuum state.
But one could also consider, for example, string perturbation theory in Minkowski spacetime in a thermal state [90,91], or the
HH state of a black hole in asymptotic Minkowski spacetime, and so on.

47In this section, we always choose a Euclidean metric on the worldsheet. When we speak of continuing between Lorentzian
and Euclidean signatures, we mean with respect to the time coordinate of the target space M .
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(a) (b) (c)

Figure 3.2: Schwinger-Keldysh Contours. A Schwinger-Keldysh contour is a contour in the complex time plane that
consists of Euclidean caps joined to Lorentzian excursions. The functional integral defined along such a contour computes the
expectation value of operators inserted on the Lorentzian section between the initial and final states specified by the Euclidean
caps. In field theory, the contour defines the domain on which the fields are defined. In string theory, it is the contour in target
space over which the worldsheet functional integral is to be performed. The first contour pictured computes expectation values
in a pure state such as the vacuum. The second computes expectation values in a thermal state, and the third in a TFD state.

the inverse temperature of the thermal state.48

The continuation is real when the Lorentzian geometry has a Z2 time-reflection isometry.

Moreover the Euclidean and Lorentzian sections share a common zero-time slice—the fixed-

point locus of the symmetry—along which they may be glued together to define the contour.

Complex time contours of this form are familiar from ordinary field theory, where they

are known as Schwinger-Keldysh contours. In that context, they are contours in the base

spacetime, rather than in the target space. Then the contour specifies the domain on which

the fields are defined, and the functional integral computes expectation values between the

states specified by the caps. The functional integral over the incoming Euclidean cap prepares

a state in the Hilbert space of the quantum field theory on the spatial slice to which it is

glued. Then the state is evolved forward in Lorentzian time and any desired local operators

are inserted. Finally, the Lorentzian segment is reversed and glued to the outgoing Euclidean

cap which prepares the outgoing state.

48For a black hole, the periodicity of the Euclidean continuation is fixed to obtain a smooth geometry. Then the black hole
in the HH state has a fixed temperature. However, a thermal state in e.g. AdS can have any temperature (at least, until the
Hagedorn limit).
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Such complexified functional integrals may be computed by starting from a Euclidean

correlation function and moving the operators to the Lorentzian section by continuing the

insertion times in the Euclidean answer. One thinks of cutting open the Euclidean mani-

fold on one or more constant Euclidean time slices and gluing in the Lorentzian excursion.

Moreover, one need not continue all of the operator insertions to the Lorentzian section.

Operators left on the Euclidean caps prepare different states in which the expectation value

is computed.

In string theory, the Schwinger-Keldysh contour becomes a contour in the target space,

over which the functional integral that defines the worldsheet CFT is to be performed. Again,

one may proceed by starting from a worldsheet correlation function with the Euclidean

target and then continuing the vertex operator insertions to the Lorentzian section. Of

course, it is not the location of the vertex operator insertion on the worldsheet that one

wishes to continue in this case, but rather the quantum numbers that label how the operator

transforms under the spacetime symmetries. The Euclidean caps define the state in which

the string perturbation theory is constructed, and in the case of AdS3, the string amplitudes

compute expectation values of the boundary CFT2 in the dual state associated to the caps.49

One may also construct string theories with different initial and final states, e.g. by fixing

different operator insertions on the incoming and outgoing Euclidean sections.

In fact, regarded as a deformation of the Euclidean integration contour in target space, the

Lorentzian excursion is contractible. It does not alter the homology cycle of the Euclidean

49More precisely, the string amplitudes compute contributions to the boundary CFT expectation values. Depending on
whether or not the background is the dominant bulk saddle for a given boundary CFT observable, the corresponding string
amplitudes will be the dominant contribution or a sub-dominant correction.
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functional integral, and therefore inserting the excursion does not change the integral. One

merely takes the Euclidean answer and continues the labels to Lorentzian time.

Although we have phrased the above discussion in the sigma-model approximation, which

is convenient for visualizing the target geometry as a complex contour for the functional

integral, it is not necessary to resort to a Lagrangian description of the worldsheet CFT.

One may begin from an abstract definition of the CFT by its three-point function and

OPE, and continue the operator labels to define the Lorentzian string theory. In AdS3,

for example, string theory in various states is constructed by continuation from the unitary

SL(2,C)k/SU(2) coset CFT, and various orbifolds thereof, without requiring any reference

to a Lagrangian, as we now describe.

In Eqns. 3.4 and 3.13 we defined EAdS3 by the continuation ξ = it from AdS3, with

ξ ∈ (−∞,∞). The Lorentzian metric is time-independent, and so one may cut it along any

spatial slice and glue in a Euclidean cap to prepare a state. Cutting and gluing the two

cylinders at ξ = t = 0 prepares the global AdS3 vacuum state.

Alternatively, one could define the Euclidean continuation with compact ξ ∼ ξ + β. The

resulting manifold is known as thermal AdS3 (TAdS3|β = EAdS3/βZ), and has the topology

of a solid torus whose non-contractible cycle is parameterized by ξ. Cutting the torus at

ξ = 0 and gluing in the Lorentzian cylinder prepares a thermal state in AdS3 at inverse

temperature β. More generally, one may slice the torus in half by making cuts at both ξ = 0

and ξ = β/2, and then glue a copy of AdS3 at each cut. The result is the TFD state in two

disconnected copies of AdS3 (Fig. 3.3a). Tracing over one slice returns the thermal state on
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3.3.1 AdS3 in the Vacuum State

(a) (b)

Figure 3.3: TFD and Factorized Vacuum States in AdS3 ∪ AdS3. Thermal AdS3, obtained from Euclidean AdS3 by
compactifying the global time coordinate ξ ∼ ξ + β, has the topology of a solid torus. Cutting the torus in half at ξ = 0 and
ξ = β/2 and gluing a copy of Lorentzian AdS3 at each prepares the TFD state in two disconnected copies of AdS3 (left). By
contrast, the factorized vacuum (right) is an unentangled state prepared by cutting EAdS3 in half and gluing it to each copy
of AdS3. In the figure, the EAdS3 half-cylinder has been compactified to a half-ball.

the other, corresponding to sewing one of the cuts back up. Fig. 3.3b shows the same two

copies of AdS3, now with each in its vacuum state. In the figure we have compactified the

half-cylinder to the half-ball.

As reviewed in Sec. 3.1, AdS3 is equivalent to SL(2,R), and to describe a bosonic string in

AdS3 it is natural to take the SL(2,R)k WZW model for the worldsheet CFT [46,76,85–88].

The SL(2,R)k WZW action is an inadequate definition of the worldsheet CFT, however, for

the reasons explained above. Instead one must choose a state, and define the theory by the

corresponding continuation from a unitary CFT. The simplest choice is the vacuum state,

corresponding to continuation from EAdS3 = SL(2,C)/SU(2). The SL(2,C)k/SU(2) coset

was studied in [43,44,89]. Its continuation to Lorentzian signature, constructed in [46,76,85],

defines string perturbation theory in AdS3 in the spacetime vacuum state, as we review in

the next sub-section. In the following two sub-sections, we explain the formulation of string

theory in AdS3 in a thermal state and in the asymptotically AdS3 black hole in the Hartle-

Hawking state.
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3.3.1 AdS3 in the Vacuum State

Consider the theory of a string in AdS3 in the spacetime vacuum state. As reviewed in

Sec. 3.1, the isometry algebra of AdS3 = SL(2,R) is sl(2,R)L⊕ sl(2,R)R ' so(2, 2), which is

extended to an ŝlk(2,R)L⊕ ŝlk(2,R)R current algebra of the worldsheet CFT (Eqn. 3.22). As

usual in AdS/CFT, the isometry algebra of the bulk is identified with the global conformal

algebra of the dual CFT (BCFT) defined on the spacetime conformal boundary. Namely,

the BCFT global conformal generators50 {L0, L∓1} ∪ {L̄0, L̄∓1} satisfy the same algebra as

the current zero-modes {J3
0 , J

±
0 } ∪ {J̄3

0 , J̄
±
0 } (Eqn. 3.21): [L0, L∓1] = ±L∓1, [L−1, L1] = −2L0,

and similarly for the anti-holomorphic sector.

Likewise, the SL(2,C)k/SU(2) coset is equipped with an ŝlk(2,C) current algebra, whose

global sub-algebra sl(2,C) ' so(1, 3) is the isometry algebra of EAdS3 and the global

conformal algebra of the BCFT in Euclidean signature. The two current algebras share

a common complexification, ŝlk(2,C)L ⊕ ŝlk(2,C)R. The complexified global sub-algebra

sl(2,C)L ⊕ sl(2,C)R is the standard complexification of the global conformal algebra from

the perspective of the BCFT, wherein the complex coordinate x and its complex-conjugate

x̄ on the boundary sphere are promoted to independent complex coordinates, on which the

holomorphic and anti-holomorphic dual Virasoro generators act independently.

Whereas string amplitudes in asymptotically flat space compute S-matrix elements, the

most natural string amplitudes in AdS compute correlation functions of local operators of the

50We denote the worldsheet Virasoro generators by Ln and the BCFT Virasoro generators by Ln.
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BCFT, or expectation values thereof in Lorentzian signature. The spectrum of the BCFT is

organized in unitary representations of its Virasoro algebra,

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m, (3.69)

and similarly for L̄n, with [Ln, L̄m] = 0. The central charge is, at large k, [97]

c =
3

2

lAdS

lp
. (3.70)

where lAdS = ls
√
k.

The representations are built on Virasoro primary states labeled by their spins (J, J̄),

which are positive real numbers. Focusing on the holomorphic factor, a Virasoro primary

state |J,M = J〉 is annihilated by the positive modes Ln>0 and is an eigenstate of L0 with

eigenvalue M = J . Being annihilated by L1, it sits at the bottom of a lowest-weight discrete-

series representation D+
J = {|J,M〉 : M ∈ J + N} of the global conformal algebra sl(2,C)L,

the descendent states being obtained by action of L−1, |J,M〉 ∝ (L−1)M−J |J, J〉.

To each global representation D+
J , one associates by the state-operator map a primary

operator OJ(x) that transforms under sl(2,C)L according to

[L−1,OJ(x)] = ∂OJ(x) (3.71a)

[L0,OJ(x)] = (x∂ + J)OJ(x) (3.71b)

[L1,OJ(x)] = (x2∂ + 2Jx)OJ(x). (3.71c)
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OJ(x) prepares the lowest-weight state when inserted at the origin, OJ(0) |0〉 = |J, J〉 . By

the AdS/CFT dictionary, there is a dual state of a string in AdS3, which likewise transforms

as a lowest-weight state in D+
J , now with respect to the global sl(2,C)L sub-algebra of the

worldsheet current algebra. The descendent states |J,M〉 ∈ D+
J are prepared in the boundary

by inserting derivatives of OJ(x), which are dual to excited string states in the bulk.

Similarly, when inserted at the point-at-infinity, OJ(∞) = lim
x→∞

x2JOJ(x) prepares a

highest-weight state |J,M = −J〉 ∈ D−J . Thus, lowest-weight states may be interpreted

as in-states and highest-weight states as out-states.

The string amplitudes, which compute correlation functions of such BCFT operators, are

defined by continuation from the SL(2,C)k/SU(2) coset CFT. Recall that the primary oper-

ators of SL(2,C)k/SU(2) may be written in a function space basis Φj(z, z̄;x, x̄), transforming

under the current algebra according to Eqn. 3.46. As far as the CFT is concerned, (x, x̄)

are labels parameterizing the spin j representation of the sl(2,C) symmetry inherited from

the target isometry algebra. In string theory, (x, x̄) are interpreted as the insertion point on

the spacetime boundary sphere of a dual BCFT operator Oj(x, x̄) of dual conformal weight

(j, j), the transformations Eqn. 3.45 of Φj(z, z̄;x, x̄) under the isometry algebra coinciding

with the transformations Eqn. 3.71 of Oj(x, x̄) under the global BCFT conformal alge-

bra. Although the coset Hilbert space consists only of the complex branch representations

j ∈ 1
2

+ iR+ [43, 44, 89], j may be continued away from this line [44, 46]. Indeed, these are

not the representations of interest for string theory in AdS3—they correspond to the bosonic

string tachyon, and would map to dual representations with complex conformal weights.
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3.3.1 AdS3 in the Vacuum State

Recall from the σ → ∞ expansion Eqn. 3.47 that the complex branch was selected by

demanding normalizability of the SL(2,C)k/SU(2) wavefunction. For Re(j) < 1
2
, the second

exponential dominates, and the operator is spread over the boundary sphere. For Re(j) >

1
2
, however, the first term dominates, and the non-normalizability of the wavefunction is

localized at γ = x, interpreted as a source for an operator of the BCFT on the boundary

S2. Eqn. 3.47 is the standard asymptotic expansion of a solution to the AdS3 wave equation

for a scalar of mass l2AdSm
2 = ∆(∆ − 2), with a delta-function source at (x, x̄) for the dual

operator of dimension ∆ = 2j. The leading term inserts the source and the sub-leading term

is e−2jσ/(2∆− d) times the two-point function of the dual operator [98].

Thus, for j > 1
2

one has a map from the worldsheet vertex operator Φj(z, z̄;x, x̄) to a

primary scalar BCFT operator Φ̂j(x, x̄) of real conformal weight (j, j) inserted at (x, x̄).51 A

string amplitude with many insertions Φji(zi, z̄i;xi, x̄i) computes a BCFT correlation function

on S2 with operator insertions at (xi, x̄i) of dual conformal weights (ji, ji).
52 The vertex

operators with j > 1
2

are non-normalizable from the perspective of the SL(2,C)k/SU(2)

coset, as appropriate for operators that insert delta-function sources on the boundary of

Euclidean AdS, and are defined by analytic continuation in j [44, 46]. String amplitudes of

two, three, and four primaries were studied in this way in [46].

From BCFT correlation functions on S2, the boundary insertion points (x, x̄) may be

continued in the usual way from the Euclidean sphere to the Lorentzian cylinder in order to

51More precisely, one has a map from Φj(z, z̄;x, x̄) ⊗ Oh(z, z̄), where Oh is a primary of the internal CFT such that the
combined vertex operator is marginal. The construction of the full BCFT Virasoro algebra was discussed in [86–88].

52In fact, the string partition function is related to the BCFT generating functional in an ensemble in which the BCFT
central charge fluctuates. To obtain a standard CFT with fixed central charge one must perform a Legendre transform of the
string partition function, as explained in [99].
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(a)

X

X

(b)

Figure 3.4: AdS3 Vacuum Schwinger-Keldysh Contour. String amplitudes for AdS3 in the spacetime vacuum state
compute vacuum expectation values of the dual CFT and are defined by continuation from SL(2,C)k/SU(2). The Euclidean
amplitudes compute BCFT correlation functions on the S2 conformal boundary of EAdS3, with insertions at the points (x, x̄)
which labeled the worldsheet vertex operators. The spacetime is complexified and the insertions continued to the Lorentzian
section to obtain vacuum expectation values. Though the procedure does not rely on a Lagrangian, one may think of these
amplitudes as defined by a worldsheet functional integral along the Schwinger-Keldysh contour in target space shown. A
Euclidean cap (in yellow) prepares the AdS3 vacuum, which is glued to a Lorentzian excursion (in blue) that flows forward
and backward in time, and is then glued to the outgoing vacuum cap. String vertex operators insert dual operators on the
conformal boundary, indicated by the red ×’s. Operators may also be left on the Euclidean caps to define string perturbation
theory in AdS3 in different excited pure states.

define expectation values of the BCFT in the vacuum state (Fig. 3.4). The conformal trans-

formation (x = eξ+iθ, x̄ = eξ−iθ) maps the sphere to the Euclidean cylinder, and continuing

ξ → it yields the Lorentzian cylinder (x = ei(t+θ), x̄ = ei(t−θ)). In doing so, one has contin-

ued (x, x̄) to independent complex coordinates, and in turn the vertex operator Φj(z, z̄;x, x̄)

is continued to a representation of the complexified current algebra ŝlk(2,C)L ⊕ ŝlk(2,C)R.

The original boundary S2 and the Lorentzian cylinder correspond to two real sections of

the complexification. On the worldsheet, one transitions between vertex operators for inser-

tions on the Euclidean sphere or Lorentzian cylinder by restricting the complexified primary

Φj(z, z̄;x, x̄) to the appropriate section.

For example, the two-point amplitude of Φj(z, z̄;x, x̄) is [46]

〈
Φ̂j(x1, x̄1)Φ̂j(x2, x̄2)

〉
=

1

Vconf

〈Φj(z = 0;x1, x̄1)Φj(z = 0;x2, x̄2)〉 ∝ |x12|−4j, (3.72)
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3.3.1 AdS3 in the Vacuum State

as appropriate for a BCFT scalar of dimension 2j. Making the boundary conformal transfor-

mation Φj(z, z̄;x, x̄)→ e−2jξΦj(z, z̄; ξ, θ), one obtains the standard CFT two-point function

for a scalar on the cylinder:

〈
Φ̂j(ξ1, θ1)Φ̂j(ξ2, θ2)

〉
∝ (cosh(ξ12)− cos(θ12))−2j . (3.73)

As expected for a Euclidean correlation function, this expression is non-singular as long as

the two insertions are not coincident.

To obtain a Lorentzian expectation value, one slides each insertion to the zero-time slice

and then onto the Lorentzian section:

〈0| Φ̂j(t1, θ1)Φ̂j(t2, θ2) |0〉 ∝ (cos(t12)− cos(θ12))−2j . (3.74)

In doing so, one encounters singularities when one operator hits the lightcone of the other,

t12 = ±θ12. Following the usual iε prescription to avoid the singularity and obtain a time-

ordered expectation value, one replaces t → t(1 − iε). We mostly suppress the iε’s for

notational simplicity.

The perturbative string states of Eqn. 3.39 may be identified with the modes of the

boundary position basis vertex operators. For example, the vertex operators Φjmm̄(z, z̄)

for the string states |j,m, m̄〉 are formally given by the spacetime Fourier transform of
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Φj(z, z̄; t, θ):

Φjmm̄(z, z̄) ∝
∞∫

−∞

dt

2π∫
0

dθ e−i(m+m̄)te−i(m−m̄)θΦj(z, z̄; t, θ), (3.75)

where m+m̄ is the spacetime energy and m−m̄ is the angular momentum, and similarly for

the spectral-flowed operators reviewed below. One may likewise compute string amplitudes

of such momentum-basis insertions [46].

When inserted at the origin of the Euclidean section, Φj(z, z̄;x, x̄) prepares the lowest-

weight state |j, j, j〉 in the representation D+
j ⊗D+

j of the global sub-algebra:

Φj(z = 0;x = 0) |0〉 = |j, j, j〉 . (3.76)

This is the bulk string state dual to the BCFT Virasoro primary state of conformal weight

(j, j), the latter prepared by the dual operator Φ̂j(x = 0), both transforming as lowest-weight

states of sl(2,C)L ⊕ sl(2,C)R.53 The global descendent states |j,m, m̄〉 ∈ D+
j ⊗D+

j , related

to the lowest-weight state by the action of J+
0 , J̄

+
0 , are prepared by inserting x derivatives

of Φj(z, z̄;x, x̄), and are dual to the global conformal descendents of the BCFT Virasoro

primary. In the bulk effective field theory, |j, j, j〉 is the lowest-energy state of a scalar

field of mass54 l2AdSm
2 = ∆(∆− 2) dual to the BCFT scalar primary operator of dimension

∆ = 2j.

Of course, the Virasoro primaries of the dual CFT are not all scalars. In addition to the

53Again, once combined with an internal operator such that the Virasoro constraints are satisfied.

54It is hopefully clear from context when we use m to refer to the mass as opposed to the J3
0 eigenvalue.
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current-algebra primaries Φj(z, z̄;x, x̄) that prepare lowest-weight states |j, j, j〉 ∈ D̂+
j ⊗ D̂+

j ,

one has vertex operators denoted ΦJJ̄
jw(z, z̄;x, x̄) that prepare the spectral-flowed states of

Eqn. 3.39 [46]:

ΦJJ̄
jw(z = 0;x = 0) |0〉 =

∣∣j,m = J − kw/2, m̄ = J̄ − kw/2;w
〉
, w > 0. (3.77)

These operators are worldsheet Virasoro—but not current-algebra—primaries of conformal

weights as in Eqn. 3.37b:

hJJ̄jw = −j(j − 1)

k − 2
− wJ +

1

4
kw2, h̄JJ̄jw = −j(j − 1)

k − 2
− wJ̄ +

1

4
kw2. (3.78)

They carry the additional labels55 (J, J̄) specifying their spins with respect to the global

sl(2,C)L ⊕ sl(2,C)R, as well as the spectral-flow label w.

Recall from Eqn. 3.38 that, for w > 0, the spectral flow |j,m, m̄;w〉 of a current-

algebra primary carries J3
0 weight M = m + k

2
w and transforms as a lowest-weight state

|J,M = J〉 ∈ D+
J with respect to sl(2,C)L, and similarly for sl(2,C)R with M̄ = J̄ = m̄+ k

2
w.

Thus, each spectral-flowed primary |j,m, m̄;w〉 with w > 0 sits at the bottom of a discrete-

series representation56 D+
J ⊗ D+

J̄
of the global sub-algebra, and is dual to a BCFT Vi-

rasoro primary state of spin (J, J̄).57 Associated to each such lowest-weight string state

55For unflowed operators one has Φj = ΦJ=J̄=j
j,w=0 .

56Note that, with respect to the global sub-algebra, one obtains a lowest-weight discrete-series representation regardless of
whether |j,m, m̄;w〉 came from a spectral-flowed discrete-series D̂+,w

j ⊗ D̂+,w
j or continuous-series Ĉwj,α ⊗ Ĉwj,α representation

of the current-algebra, as appropriate for a primary of the BCFT. In a continuous-series representation, J and j (and J̄ and j)
are unrelated, whereas in a lowest-weight discrete-series representation they are related by j = J − k

2
w − N.

57Once combined with the internal CFT and subjected to the constraints. In particular, J = m + k
2
w is not guaranteed to

be positive on the spectrum of the SL(2,R)k WZW model. It is only after applying the Virasoro constraints that one obtains
a physical state of positive J, J̄ , which maps to a primary of the BCFT.
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one has a vertex operator ΦJJ̄
jw(z, z̄;x, x̄) that prepares it. The global descendent states

(J+
0 )N(J̄+

0 )N̄ |j,m, m̄;w〉 are as before prepared by insertions with derivatives.58

For w < 0, on the other hand, |j,m, m̄;w〉 transforms as a highest-weight state |J ′,−J ′〉⊗∣∣J̄ ′,−J̄ ′〉 ∈ D−J ′ ⊗ D
−
J̄ ′

of spin J ′ = −
(
m+ k

2
w
)
, J̄ ′ = −

(
m̄+ k

2
w
)
. As recalled earlier, a

lowest-weight state is interpreted as an in-state in the dual CFT, prepared by a spin (J, J̄)

primary insertion at the origin, whereas a highest-weight state is interpreted as an out-state,

prepared by an insertion at infinity. ΦJJ̄
jw(z, z̄;x, x̄), which likewise transforms as a local

operator of spin (J, J̄) in x-space with respect to the global sub-algebra, also prepares a

lowest-weight in-state, and should therefore be labeled by w > 0 as in Eqn. 3.77. When in-

serted at infinity, it prepares the highest-weight out-state
∣∣j,− (J − k

2
w
)
,−
(
J̄ − k

2
w
)

;−w
〉

in D−J ⊗D
−
J̄

.

The complete spectrum of the SL(2,R)k WZW model given in Eqn. 3.39, when combined

with a unitary internal CFT and subjected to the Virasoro constraints, yields the unitary

spectrum of strings in AdS3 in the vacuum state [76]. The upper bound on the real branch,

j < k−1
2

, is required to obtain a unitary on-shell spectrum, and ensures compatibility with the

spectral-flow isomorphism, which exchanges the upper and lower bounds under j → k
2
− j.

The spectrum also includes the unflowed complex branch representations Ĉj= 1
2

(1+is),α, whose

vertex operators Φj(z, z̄;x, x̄) do not map to well-defined local operators of the BCFT. These

are the bosonic string tachyons, whose spacetime mass l2AdSm
2 = −1 − s2 falls below the

58Note that (J+
0 )N (J̄+

0 )N̄ |j,m, m̄;w〉 = (J+
−w[w])N (J̄+

−w[w])N̄ |j,m, m̄;w〉 transforms as a current-algebra descendent with

respect to the unflowed generators, and should not be confused with the state
∣∣j,m+N, m̄+ N̄ ;w

〉
. The latter is the lowest-

weight state of its own discrete-series representation, and carries a different worldsheet conformal weight besides.
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tachyonic BF bound l2AdSm
2 < −1 for a scalar in AdS3 [76, 100].59

String amplitudes with spectral-flowed vertex operators were also computed in [46], and

may similarly be continued to BCFT expectation values by continuing the boundary insertion

points to the Lorentzian cylinder.

For a primary ΦJJ̄
jw ⊗Ohh̄, with Ohh̄ a contribution from the internal CFT, the Virasoro

constraint L0 − 1 = 0 may be written

J =
1

4
kw +

1

w

(
−j(j − 1)

k − 2
+ h− 1

)
. (3.79)

On the complex branch, j and J are unrelated, and this equation gives a continuous spectrum

of spacetime conformal weights parameterized by Im(j).60 These are known as “long string”

states. They are heavy in the semi-classical limit, J being of order k, and are believed to be

a peculiarity of the pure NS background. For the real branch, on the other hand, j and J

are related by j = J − k
2
w−N , with N ∈ N. Solving the on-shell condition for J then yields

a discrete spectrum of spacetime conformal weights [76],

J = N + w +
1

2
+

√
1

4
+ (k − 2)

(
h− 1−Nw − 1

2
w(w + 1)

)
. (3.80)

59We point out that below k = 3, at which point it has been argued that the SL(2,R)k WZW model undergoes a phase

transition [54, 83], the real branch spectrum 1
2
< j < k−1

2
falls within the BF window −1 < l2AdSm

2 < 0 in which two
normalizable fall-offs are admissible.

60The constraint guarantees J is positive, −j(j − 1) ≥ 1
4

being bounded below on the complex branch and h ≥ 0 being
positive by unitarity of the internal CFT. Then Eqn. 3.79 is positive with k > 2 and w > 0. Note that the constraint,

m + k
2
w = 1

4
kw + 1

w

(
− j(j−1)

k−2
+ h− 1

)
, is invariant under w → −w and m → −m. Namely, if ΦJJ̄jw (z, z̄;x, x̄) ⊗ Oh,h̄(z, z̄)

prepares a physical lowest-weight in-state
∣∣∣j, J − k

2
w, J̄ − k

2
w;w

〉
⊗
∣∣h, h̄〉 when inserted at the origin, then the highest-weight

out-state
∣∣∣j,−(J − k

2
w
)
,−
(
J̄ − k

2
w
)

;−w
〉
⊗
∣∣h, h̄〉 obtained by inserting the operator at infinity is likewise physical.
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These, by constrast, are known as “short string” states, and are the more typical vertex

operators.

Next we describe how string perturbation theory in AdS3 is defined for other choices of

the state. Note first of all that one need not continue all the operator insertions in x-space

to the Lorentzian section. Leaving an insertion on the Euclidean cap prepares the associated

state on the cylinder from the perspective of the BCFT, and defines string perturbation

theory in an excited pure state from the perspective of the worldsheet theory.

3.3.2 AdS3 in a Thermal State

Suppose now that one wishes to study string perturbation theory in AdS3 in a thermal

state. In the BCFT, thermal expectation values are obtained by continuation from Euclidean

correlation functions on T2, the periodicity of the Euclidean time circle fixing the inverse

temperature of the state. One constructs the Schwinger-Keldysh contour by cutting the

torus at a single time-slice and gluing in the Lorentzian cylinder, or by cutting the torus in

half to prepare the TFD state in two copies of the BCFT Hilbert space on a circle.

The TFD state for a theory with Hilbert space H(Σ) is in general defined by

|TFD〉 =
1

TrH(Σ)(e−βH)

∑
n

e−βEn/2 |n∗〉 ⊗ |n〉 ∈ H(Σ)⊗H(Σ), (3.81)

where {|n〉} is the spectrum of the Hamiltonian H, and the star denotes the action of CPT.

It may be prepared by a Euclidean functional integral on Σ× [0, β/2], with the two copies of
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3.3.2 AdS3 in a Thermal State

Σ at the interval boundaries corresponding to the two zero-time slices. Expectation values

in this state are computed by the contour sketched in Fig. 3.2c. If we sew up the second cut

at tE = β/2, we reproduce the thermal state in the single copy of H(Σ) at tE = 0. Indeed,

sewing the additional cut corresponds to taking the reduced density matrix in one copy,

TrH(Σ) |TFD〉 〈TFD| = 1

TrH(Σ)(e−βH)

∑
n

e−βEn |n〉 〈n| , (3.82)

which is the thermal state e−βH in H(Σ). The TFD state is a purification of the thermal

state, which lifts the mixed thermal state in H(Σ) to a pure state in H(Σ)⊗H(Σ).

In the bulk, the BCFT state |TFD〉 ∈ H(S1) ⊗ H(S1) is dual to the Hartle-Hawking

wavefunctional defined by the gravitational functional integral with thermal boundary con-

ditions at infinity and ending on a spatial slice (or slices) bounded by two circles. Depending

on the temperature β−1, this state of bulk gravity is sharply peaked on one of two config-

urations. For low temperatures one obtains two disconnected copies of AdS3 (Fig. 3.3a),

while for high temperatures one obtains the two-sided, asymptotically-AdS3 black hole (Fig.

1.2) [23,25,101]. The crossover occurs at the Hawking-Page temperature THP = 1
2π

(in AdS

units), where there is a first-order phase transition. In other words, below the Hawking-

Page temperature the dominant bulk Euclidean saddle with thermal boundary conditions

is TAdS3, whose Euclidean time circle is non-contractible, while at higher temperatures the

bulk saddle is the Euclidean black hole, which has the same solid-torus topology but whose

Euclidean time direction is now identified with the contractible cycle. The former describes
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3 STATE DEPENDENCE OF STRING PERTURBATION THEORY

a thermal gas of strings in AdS3, which collapses to the black hole at high temperatures.61

Thus, depending on β one may think of the bulk dual to the BCFT TFD state as either

the bulk TFD state in two disconnected copies of AdS3 or the Hartle-Hawking (HH) state

in the AdS3 black hole.

Recall that TAdS3|β is the quotient of EAdS3 that compactifies the cylinder, ξ ∼ ξ + β.

The worldsheet theory for a string in TAdS3|β is then the J3
0 +J̄3

0 orbifold βZ\SL(2,C)k/SU(2).

String perturbation theory in a thermal state in AdS3 is defined by continuation from this

orbifold. Its string amplitudes compute the dominant contribution to BCFT T2 correlation

functions below the Hawking-Page temperature. Above the Hawking-Page temperature, the

black hole becomes the dominant contribution, which we discuss in the next sub-section.

The quotient preserves two of the six isometries of EAdS3, corresponding to ξ and θ

translations. The orbifold projection is

eiβ(J3
0 +J̄3

0 )Φj(z, z̄;x, x̄)e−iβ(J3
0 +J̄3

0 ) = Φj(z, z̄;x, x̄). (3.83)

After the boundary conformal transformation x = eξ+iθ from the sphere to the cylinder under

which Φj(z, z̄;x, x̄)→ e−2jξΦj(z, z̄; ξ, θ), the projection condition simply enforces periodicity

in ξ:

Φj(z, z̄; ξ, θ) = Φj(z, z̄; ξ + β, θ). (3.84)

61Until one reaches the Hagedorn temperature, where the theory becomes unstable. Of course, the bosonic string theory is
already unstable because of the tachyon. But as the temperature is increased, the thermal circle becomes small and the modes
that wind it become lighter. At the Hagedorn temperature, the circle becomes so small that the lightest winding mode becomes
tachyonic [54,90].
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3.3.2 AdS3 in a Thermal State

Each unflowed primary Φj of SL(2,C)k/SU(2) may be projected to an operator in the un-

twisted sector of the orbifold by summing over images,

Φj(z, z̄; ξ, θ)→
∑
n∈Z

Φj(z, z̄; ξ + βn, θ). (3.85)

For spectral-flowed operators, one may likewise sum over images of ΦJJ̄
jw(z, z̄;x, x̄) →

e−J(ξ+iθ)e−J̄(ξ−iθ)ΦJJ̄
jw(z, z̄; ξ, θ) to obtain a projection-invariant operator:

ΦJJ̄
jw(z, z̄; ξ, θ)→

∑
n∈Z

ΦJJ̄
jw(z, z̄; ξ + βn, θ). (3.86)

We emphasize that the projection acts on the Euclidean SL(2,C)k/SU(2) vertex operators

and not on the spectrum of Lorentzian string states |j,m, m̄;w〉 ⊗
∣∣h, h̄〉. The string states

are particle-like excitations on top of the AdS3 background—whether the background is in

the vacuum or thermal state does not affect the spectrum of particles.

The correlation functions of the projected primaries Eqns. 3.85-3.86 in the orbifold are

obtained by summing over images in the original SL(2,C)k/SU(2) correlators, and their

amplitudes produce the T2 correlation functions of the BCFT for β > 2π. Correspondingly,

the BCFT local operators and correlation functions on T2 may independently be obtained

from the cylinder by summing over images.

The continuation to Lorentzian expectation values in the thermal state is as before. If one

cuts the torus at ξ = 0 and continues the operators to the Lorentzian section, one obtains

string amplitudes in AdS3 in the thermal state at inverse temperature β. If one makes cuts at
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3 STATE DEPENDENCE OF STRING PERTURBATION THEORY

both ξ = 0 and ξ = β/2, one can continue the operator labels to either ξ = itR or ξ = β
2

+itL.

The resulting string amplitudes compute expectation values of the continued insertions in

two copies of AdS3 in the TFD state. The corresponding Schwinger-Keldysh contour is

obtained by gluing together two copies of Fig. 3.3a. One may also leave insertions on the

T2 Euclidean section to define perturbation theory in a thermal or TFD state deformed by

sources.

For example, the two-point amplitude of Φj is obtained by summing over images in Eqn.

3.73,62

〈
Φ̂j(ξ1, θ1)Φ̂j(ξ2, θ2)

〉
∝
∑
n∈Z

{cosh(ξ12 + nβ)− cos(θ12)}−2j . (3.87)

By cutting the torus at ξ = 0 and continuing both insertions to the Lorentzian cylinder one

obtains the amplitude in a thermal state, [23,102,103]

tr
(
e−βHΦ̂j(t1, θ1)Φ̂j(t2, θ2)

)
∝
∑
n

{cos(t12 + inβ)− cos(θ12)}−2j , (3.88)

again suppressing the iε’s. Alternatively, one could cut the torus at both ξ = 0 and ξ = β/2

preparing the TFD state, and e.g. continue one operator to each side

〈TFD| (1L⊗Φ̂j(tR,1, θ1))(Φ̂j(tL,2, θ2)⊗ 1R) |TFD〉 (3.89)

∝
∑
n∈Z

{cos (tR,1 − tL,2 + i (n− 1/2) β)− cos(θ12)}−2j .

62Note that by simply replacing each operator by its sum over images, e.g.
∑
n,m∈Z 〈O(ξ + nβ)O(ξ′ +mβ)〉 =∑

n−m∈Z
n+m∈Z

〈O(ξ − ξ′ + (n−m)β)O(0)〉, one obtains an extraneous divergent sum
∑
n+m, which should be discarded.
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3.3.3 The BTZ Black Hole

One may also consider twisted-sector operators of the orbifold, but these are not expected

to map to local operators of the BCFT.

3.3.3 The BTZ Black Hole

Above the Hawking-Page temperature, the asymptotically-AdS3 black hole, known also as

BTZ, is the dominant contribution to thermal BCFT expectation values [21–23, 101]. BTZ

is a particularly simple black hole because it is a quotient of AdS3, performed with respect

to the J2
0 + J̄2

0 isometry. The parameterization Eqn. 3.5 diagonalized the action of J3
0 ± J̄3

0 .

To describe the BTZ orbifold, it is therefore more natural to diagonalize J2
0 ± J̄2

0 via

g = ei(Θ̃+T̃ )T2e2iR̃T1ei(Θ̃−T̃ )T2 ∈ SL(2,R), (3.90)

where T̃ , Θ̃ ∈ (−∞,∞) and R̃ ∈ (0,∞), yielding

g =

 eΘ̃ cosh(R̃) eT̃ sinh(R̃)

e−T̃ sinh(R̃) e−Θ̃ cosh(R̃)

 . (3.91)

The group metric on Eqn. 3.90 evaluates to

ds2
AdS-Rindler = l2AdS

(
− sinh2(R̃)dT̃ 2 + dR̃2 + cosh2(R̃)dΘ̃2

)
. (3.92)

Whereas Eqn. 3.5 covered all of AdS3, however, these coordinates clearly cover only a

patch, which we refer to as AdS3-Rindler in analogy with the Rindler patch of Minkowski
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3 STATE DEPENDENCE OF STRING PERTURBATION THEORY

space. The latter is obtained from flat Euclidean space by continuing with respect to an-

gular Euclidean time, yielding the right wedge of a two-sided decomposition of Minkowski

spacetime separated by a coordinate horizon (Fig. 2.5). The metric Eqn. 3.92 is likewise

related to the EAdS3 metric Eqn. 3.13 by continuation not in the length direction of the

cylinder but in the angular direction. The result is a wedge of AdS3 bounded by a coordinate

horizon at R̃ = 0, where the coefficient sinh2(R̃) of dT̃ 2 vanishes.

T̃ translations are implemented in Eqn. 3.90 by g → eiδT̃T2ge−iδT̃T2 , and Θ̃ translations

by g → eiδΘ̃T2geiδΘ̃T2 . These isometries are therefore generated in SL(2,R)k by J2
0 − J̄2

0 and

J2
0 + J̄2

0 , respectively. The (non-rotating) BTZ black hole of radius Rs is defined by the

J2
0 + J̄2

0 orbifold that compactifies

Θ̃ ∼ Θ̃ + 2πRs/lAdS. (3.93)

In SL(2,R), this is the identification g ∼ hgh, with

h = e2πiRsT2/lAdS =

eπRs/lAdS 0

0 e−πRs/lAdS

 . (3.94)

h is a hyperbolic element of SL(2,R), meaning that tr(h) = 2 cosh(πRs/lAdS) > 2. The

quotient preserves the translation isometries in T̃ and Θ̃.

The BTZ metric may be expressed in a more Schwarzschild-like form by the coordinate
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3.3.3 The BTZ Black Hole

transformation

R = Rs cosh(R̃), T =
lAdS

Rs

T̃ , Θ =
lAdS

Rs

Θ̃, (3.95)

in terms of which Eqn. 3.92 becomes

ds2
BTZ = −(R2 −R2

s )dT 2 +
l2AdS

R2 −R2
s

dR2 +R2dΘ2, (3.96)

with the BTZ identification Θ ∼ Θ + 2π. These coordinates cover the right wedge R > Rs of

the black hole, which may as usual be extended to a two-sided geometry with left and right

asymptotically-AdS3 regions separated by the horizon (Fig. 3.5a). The mass of the black

hole mass is [21,22]

M =
1

8GN

R2
s

l2AdS

. (3.97)

The states of a string in BTZ are given by the J2
0 + J̄2

0 orbifold of the SL(2,R)k spectrum

(Eqn. 3.39) with the projection e2πiRs/lAdS(J2
0 +J̄2

0 ) = 1, combined with the twisted sectors that

wind the compactified Θ cycle [104–106]. As in Eqn. 3.90, one therefore chooses a basis of

SL(2,R)k that diagonalizes J2
0 , J̄

2
0 , which have continuous spectrum. The spectrum of the

Hamiltonian Rs

lAdS
(J2

0− J̄2
0 ) with respect to the Schwarzschild time T is likewise continuous, as

is expected from the bulk effective field theory in the black hole background in the Mp →∞

limit.

Note that in BTZ there is no simple relationship between the perturbative string states
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and BCFT primary operators, in contrast to the vacuum theory. In the latter case, for

example, the lowest-weight string state |j, j, j〉 ∈ D̂+
j ⊗ D̂+

j is prepared on the worldsheet

by inserting Φj(z = 0; x = 0) (Eqn. 3.76). It is dual to the BCFT Virasoro primary state

|j, j, j〉 ∈ D+
j ⊗D+

j , likewise transforming in the lowest-weight discrete-series representation

of the boundary global conformal algebra, and itself prepared by inserting the dual operator

Φ̂j(x = 0) at the origin of the boundary hemisphere. Both states are eigenstates of the

respective bulk and boundary Hamiltonians, global AdS3 time translations being generated

by J3
0 + J̄3

0 , which maps to L0 + L̄0 in the dual. In BTZ, by contrast, a boundary local

operator insertion does not prepare an eigenstate of the bulk Hamiltonian J2
0 − J̄2

0 , and one

should not expect a simple relationship between bulk string states and BCFT primaries.

The BTZ string theory is again defined by continuation from its Euclidean counterpart.

Setting T̃E = iT̃ in Eqn. 3.92 defines the Euclidean BTZ black hole (EBTZ):

ds2
EBTZ = l2AdS

(
sinh2(R̃)dT̃ 2

E + dR̃2 + cosh2(R̃)dΘ̃2
)
. (3.98)

Near R̃ = 0, the metric R̃2dT̃ 2
E + dR̃2 + dΘ̃2 + · · · describes the plane in polar coordinates

times a circle, and the angle T̃E must be 2π periodic to obtain a smooth solution; the near-

horizon Lorentzian geometry is then Rindler × S1. Eqn. 3.90 is likewise invariant under

T̃ → T̃ + 2πi, as e±2πT2 = −12×2. The Euclidean Schwarzschild time TE is periodic in

β = 2πlAdS/Rs, which is identified as the inverse Hawking temperature of the black hole in

AdS units.

EBTZ at inverse temperature β is therefore a solid torus, with contractible cycle T̃E ∼
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3.3.3 The BTZ Black Hole

(a) The BTZ Black Hole. The BTZ black hole
is the two-sided, asymptotically AdS3 solution of three-
dimensional gravity with negative cosmological constant.
It is a quotient of AdS3, obtained by compactifying Θ̃ ∼
Θ̃ + 2πRs/lAdS in the coordinates of Eqn. 3.90. The Θ̃
circle is suppressed in the figure. The geometry is time-
dependent, but Z2 symmetric with respect to the dashed
line. This line is the wormhole between the left and right
causally disconnected regions. It has the topology of an
annulus, with the two circle boundaries corresponding to
slices of the asymptotic AdS3 boundaries.

(b) The Hartle-Hawking Cap. The Euclidean contin-
uation of the BTZ black hole is a solid torus, whose con-
tractible cycle is identified with the Euclidean time. Slicing
the torus in half across this cycle produces a manifold in the
shape of a halved bagel. Its annular boundary is identical
to the zero-time slice of the Lorentzian black hole, indi-
cated by the dashed line on the left. Gluing the Euclidean
cap to this slice prepares the Hartle-Hawking state in the
black hole background, whose reduced density matrix in
a single wedge is a thermal state of inverse temperature
2πlAdS/Rs. The purple boundary of the torus prepares
the TFD state of the BCFT on the two circle boundaries
of the annulus.

Figure 3.5

T̃E + 2π and non-contractible cycle Θ̃ ∼ Θ̃ + 4π2/β. It is identical to the TAdS3|β̃ solid torus

at inverse temperature β̃ = 2πRs/lAdS = 4π2/β. When referring to TAdS3, however, it is the

non-contractible cycle that one identifies with the Euclidean time as in the previous sub-

section. Whereas cutting the solid torus in half across its non-contractible cycle prepared the

TFD state in two disconnected copies of AdS3 (Fig. 3.3a), cutting across its contractible cycle

produces a Euclidean cap in the shape of a halved bagel, which prepares the Hartle-Hawking

(HH) state in the connected black hole (Figs. 3.5b and 1.2a) [23,26,27].

The zero-time slice of the two-sided black hole is a wormhole passing between the left

and right asymptotically-AdS3 regions. Topologically, it is an annulus, with the two circle

boundaries corresponding to slices of the two AdS3 boundary cylinders. Although Fig. 3.5a is

time dependent with respect to the global Kruskal time that flows vertically, it is symmetric
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under time reversal, which is a reflection about the horizontal dashed line in the figure. The

existence of this Z2 symmetry ensures that the Euclidean continuation of the geometry is

real, and that the fixed-point locus is common to both the Lorentzian and Euclidean sections.

Thus, the two may be cut in half and glued together along this annulus locus to prepare the

HH state [23, 26, 27]. This state is a generalized notion of a vacuum for the black hole, and

its existence is due to the Z2 time-reversal symmetry.

Alternatively, the HH state may be thought of as a TFD state with respect to the left

and right wedges of the black hole, entangled by the Euclidean cap that evolves between

them in angular time (Fig. 4.1a). The reduced density matrix in a single wedge is a thermal

state at inverse temperature β = 2πlAdS/Rs. In this sense, both slicings of the TAdS3/EBTZ

solid torus prepare TFD states, the distinction being that in the first case the spacetime is

disconnected while in the second it is connected.

The worldsheet theory for a string in BTZ in the HH state is then similarly obtained

by continuation from the 4π2

β
Z\SL(2,C)k/SU(2) orbifold, but with the continuation now

performed with respect to the contractible cycle [104–106]. The equivalence of EBTZ|β and

TAdS|4π2/β shows that the J3
0 + J̄3

0 and J2
0 + J̄2

0 orbifolds are identical in the Euclidean case,

and we may proceed as in the previous sub-section but with the temperature inverted.

Thus, the projection to the untwisted sector of the orbifold is

ei
4π2

β
(J3

0 +J̄3
0 )Φj(z, z̄;x, x̄)e−i

4π2

β
(J3

0 +J̄3
0 ) = Φj(z, z̄;x, x̄). (3.99)

After the boundary conformal transformation x = e
2π
β

(Θ+iTE), the projection demands peri-
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odicity in Θ,

Φj (z, z̄;TE,Θ + 2π) = Φj (z, z̄;TE,Θ) , (3.100)

and likewise for ΦJJ̄
jw(z, z̄;TE,Θ). Their correlation functions in the orbifold are again obtained

by summing over images, and their string amplitudes compute T2 correlation functions of

the BCFT for β < 2π. For example,

〈
Φ̂j(TE,1,Θ1)Φ̂j(TE,2,Θ2)

〉
(3.101)

∝
∑
n∈Z

{
cosh

(
2π

β
(Θ12 + 2πn)

)
− cos

(
2π

β
TE,12

)}−2j

.

Cutting the torus at TE = 0 and gluing in the Lorentzian cylinder prepares the thermal

state. Continuing both operators gives their thermal expectation value [23,102,103]

tr
(
e−βHΦ̂j(T1,Θ1)Φ̂j(T2,Θ2)

)
(3.102)

∝
∑
n∈Z

{
cosh

(
2π

β
(Θ12 + 2πn)

)
− cosh

(
2π

β
T12

)}−2j

.

Or, making cuts at both TE = 0 and β/2 and e.g. continuing an operator to each side,63

〈TFD| (1L ⊗ Φ̂j(TR,1,Θ1))(Φ̂j(TL,2,Θ2)⊗ 1R) |TFD〉 (3.103)

∝
∑
n∈Z

{
cosh

(
2π

β
(Θ12 + 2πn)

)
+ cosh

(
2π

β
(TR,1 + TL,2)

)}−2j

.

63We flip the sign of TL here because the Schwarzschild time Killing vector points in opposite directions on the left and right
sides of the black hole.
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As in Eqn. 3.75, one may Fourier transform the boundary position space basis of vertex

operators to obtain operators of definite BTZ energy and angular momentum. For example,

ΦjKK̄(z, z̄) ∝
∞∫

−∞

dT

2π∫
0

dΘe−
2πi
β

(K−K̄)T e−
2πi
β

(K+K̄)Θ
∑
n∈Z

Φj(z, z̄;T,Θ + 2πn), (3.104)

where 2π
β

(K ∓ K̄) are the energy and angular momentum. Examples of string amplitudes in

this basis are computed in [106]. Absent the sum over images n, one would instead obtain a

mode of AdS3-Rindler.

3.3.4 The 2D Black Hole

Finally, we briefly discuss string perturbation theory in the two-dimensional black hole in

the HH state. The two-dimensional Euclidean black hole (Eqn. 2.97) followed from SL(2,R)k

(or SL(2,C)k/SU(2)) by gauging the J3
0 + J̄3

0 isometry that generates translations along the

length of the cylinder (Eqn. 3.50). The Lorentzian black hole is then obtained by continuing

in the compact coordinate θ = it (Eqn. 2.102). Alternatively, recalling the BTZ coordinates

on SL(2,R) describe an AdS3-Rindler patch (Eqns. 3.90-3.92), likewise related to EAdS3 by

continuation in the compact cycle, one may arrive directly at the two-dimensional Lorentzian

black hole by gauging the J2
0 + J̄2

0 symmetry of SL(2,R)k that generates translations in Θ.

Then whereas the two-dimensional Euclidean black hole spectrum (Eqn. 2.106) followed

from the SL(2,R)k spectrum (Eqn. 3.39) by the coset construction that gauged J3
0 + J̄3

0 , the

Lorentzian spectrum is obtained by the coset construction with respect to J2
0 + J̄2

0 .

String perturbation theory in the two-dimensional black hole in the HH state is again de-
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fined by continuation from the Euclidean black hole. For example, continuing the Euclidean

vertex operators Ojn,w=0 with j = 1
2
(1 + is) by sending n → iE yields scattering states in

the right wedge.64 From Eqn. 2.116 one obtains

OjE
r→∞
−→

(
e−2(1−j)r +R(j, E)e−2jr

)
e−iEt, (3.105)

with wavefunction

ΨjE

r→∞
−→
∝

(
eisr +R(j, E)e−isr

)
e−iEt, (3.106)

describing an incoming particle in the right wedge that scatters off the black hole horizon.

One may likewise construct by continuation vertex operators describing outgoing modes, as

well as similar modes in the left wedge, and modes behind the past and future horizons [75].

In the Euclidean theory, one found normalizable bound states at poles of the reflection

coefficient. Now R(j, E) is non-singular on the real branch, and one finds only these delta-

function normalizable scattering states on the complex branch.65 These modes do not form

a complete set, however. The reason is tied to non-unitarity of the scattering matrix—

strings can fall behind the horizon. One can close the OPE by including additional modes,

including the operators with w 6= 0, but at the cost of sacrificing mutual locality of the

vertex operators.

String amplitudes of such scattering operators in the HH state may be obtained by con-

64Here E is the energy measured in units of 1/
√
α′k, and is conjugate to t = −iθ. The proper time in the large r limit of the

metric (Eqn. 2.102) is −α′kdt2.

65As in Rindler, the modes are singular at the horizon, ΨjE ∝ r−iEe−iEt(1 +O(r2)).
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3 STATE DEPENDENCE OF STRING PERTURBATION THEORY

tinuation from the corresponding Euclidean amplitudes. The Schwinger-Keldysh contour

consists of the two Euclidean caps obtained by halving the cigar (Fig. 2.4b), glued to the

zero-time slice of the Lorentzian black hole (Fig. 2.4a), which evolves forward and backward

in Lorentzian time. The continuation is more technically challenging than in AdS3 where

one simply continued the boundary insertion point in x-basis worldsheet vertex operators.

In momentum basis, one instead computes the Euclidean amplitude as a function of the

discrete Matsubara frequencies n, and then continues the result to continuous Lorentzian

energies E [75]. The analogous objects in three dimensions are the Fourier modes Eqns.

3.75, 3.104.
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4 Stringy ER = EPR

Finally, we apply the machinery developed in the previous chapters to construct exam-

ples of string dualities for ER = EPR. The examples are obtained by continuation from

the FZZ duality of the SL(2,R)k/U(1) CFT that describes a string in the two-dimensional

Euclidean black hole, and similar dualities that we will propose for the SL(2,C)k/SU(2) and

Z\SL(2,C)k/SU(2) CFTs that describe a string in EAdS3 and EBTZ.

Each of the three Euclidean dualities shares the essential feature that the Euclidean time

circle is contractible in one description and non-contractible in the other, with Euclidean time

winding conservation violated in the latter case by a condensate of winding strings. Upon

continuation then, each gives a string duality realizing ER = EPR. On one side is string

theory in a connected spacetime with a horizon in its Hartle-Hawking state, and on the

other is string theory in a disconnected union of entangled spacetimes in the thermofield-

double state. In the semi-classical limit, the ER description is weakly coupled in the α′

sense, and the EPR description is strongly coupled. Both sides may be taken at weak string
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coupling, however.66

The principal remaining challenge in formulating these continuations is the Lorentzian

interpretation of the Euclidean time winding operators that play a critical role in each of the

examples. We will argue that these insertions should be treated in angular quantization on

the worldsheet—with a corresponding deformation of the moduli space integration contour

where necessary—giving rise to a condensate of pairs of entangled, folded strings emanating

from the strong-coupling region.

Note that although one could T-dualize the sine-Liouville background, and thereby replace

the winding potential with a momentum potential whose Lorentzian interpretation is more

straightforward, its continuation would not be dual to the Lorentzian black hole. To obtain

a Lorentzian duality, one must continue with respect to the same Z2 symmetry on both

sides of the Euclidean duality. The continuation of the T-dualized sine-Liouville background

would instead be dual to the continuation of the so-called trumpet geometry [75], which has

a naked singularity where the θ circle of the cigar shrinks.

It may also be possible to construct stringy ER = EPR examples where the winding

violation in the non-contractible frame is accomplished by the inclusion of D-branes. Their

presence would allow closed strings wrapping the Euclidean time direction to break into

pairs of open strings ending on the brane. Given that the EPR side of the duality can be

interpreted as describing the constituent objects that make up the black hole, in backgrounds

66In the sense that the boundary correlators or scattering amplitudes can be computed in string perturbation theory since
they are governed by regions of the target space with tunably-weak string coupling. The target space in the EPR side of the
dualities includes a strong-coupling region, however.
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4.1 3D FZZ Dualities

with Ramond-Ramond fluxes one would indeed expect to find D-branes. In our examples,

however, the dualities only involve closed strings, corresponding to black holes that are made

of fundamental strings, and it is the winding potential that is responsible for breaking the

symmetry.

In Sec. 4.1 we propose the three-dimensional uplifts of the FZZ duality to the SL(2,C)k/SU(2)

and Z\SL(2,C)k/SU(2) CFTs. In Sec. 4.2 we construct the ER = EPR duality of two-

dimensional dilaton-gravity obtained by continuation from the FZZ duality. Here we discuss

the idea of angular quantization of the worldsheet CFT, which is essential to understand

the state of the folded strings produced by the continuation of the Euclidean time winding

condensate. We also discuss the related angular deformation of the contour of integration

over the string moduli space that is necessary in the background of Euclidean time winding

operators. In Sec. 4.3 we similarly continue the uplifted dualities of asymptotic AdS3 gravity

to obtain two more examples of ER = EPR. Lastly, in Sec. 4.4 we discuss an infinitesimal

version of the various dualities in the sense of conformal perturbation theory, which gives

two equivalent pictures of shifting the mass of the black hole.

4.1 3D FZZ Dualities

In Secs. 2.3 and 2.5 we reviewed the cigar and sine-Liouville descriptions of the SL(2,R)k/U(1)

CFT; the equivalence of the two backgrounds is the content of the FZZ duality. In this sec-

tion we propose a new duality that may be considered the uplift of FZZ to the EAdS3 CFT

SL(2,C)k/SU(2) (Sec. 3.1), or its EBTZ quotient Z\SL(2,C)k/SU(2) (Secs. 3.3.2-3.3.3).
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4 STRINGY ER = EPR

The cigar topology, being obtained from EAdS3 by gauging the translation isometry along

the length of the cylinder, may be thought of as a disk sliced from the cylinder (Fig. 1.6a). In

the FZZ dual description, the disk topology of the cigar is replaced by the annulus topology

of the sine-Liouville cylinder, plus the condensate of winding strings. The two descriptions

share the same free linear-dilaton× S1 limit in the weak-coupling region. Whereas the cigar

geometry terminates at the origin of the disk r = 0, the sine-Liouville cylinder continues

into the strong-coupling region r̂ → −∞, the potential wall instead taking responsibility for

reflecting strings away.

It is natural to wonder if there exists a similar duality of the SL(2,C)k/SU(2) and

Z\SL(2,C)k/SU(2) CFTs in which the solid cylinder or torus target space of Eqn. 3.13 with

its semi-infinite radial coordinate r ∈ [0,∞) is replaced by a fully infinite radial direction

r̂ ∈ (−∞,∞) and a condensate of winding strings that wrap the resulting non-contractible

cycle (Fig. 1.6b). If such a description existed, such that gauging the translation symmetry

reproduced the sine-Liouville sigma-model, one would obtain a three-dimensional uplift of

the FZZ duality.

One immediately encounters a problem with the above proposal, however, on examining

the SL(2,C)k/SU(2) action (Eqn. 3.44). Whereas the cigar and sine-Liouville Lagrangians

approach the same free theory at infinity, which may then be deformed by either the cigar-

capping or sine-Liouville operators, the EAdS3 Lagrangian is singular at r →∞.

This singular asymptotic behavior may be remedied by applying the first-order formal-
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4.1 3D FZZ Dualities

ism.67 Classically, one has the identity of Lagrangians

f∂W̄ ∂̄W = χ∂̄W + χ̄∂W̄ − 1

f
χχ̄, (4.1)

the auxiliary equations of motion for χ, χ̄ setting χ = f∂W̄ and χ̄ = f∂̄W , which recover the

left-hand-side upon substitution. Quantum mechanically, the change of variables introduces

a dilaton log
√
f from the transformation of the functional integral measure. Thus, the action

Eqn. 3.44 may be replaced by

S =
k

2π

∫
d2z

{
∂r∂̄r + ∂ξ∂̄ξ + χ(∂̄ξ + i∂̄θ) + χ̄(∂ξ − i∂θ)− 1

sinh2(r)
χχ̄

}
, (4.2)

together with a dilaton Φ = − log sinh r + Φ0. This is the cylinder version of the standard

Wakimoto form of the action Eqn. 3.43 in Poincarè coordinates [87].68 χ is a (1, 0) form, set

to χ = sinh2(r)∂W̄ by the equations of motion, where W = ξ+ iθ is the complex coordinate

on the asymptotic cylinder, W ∼ W + 2πi.

Gauging the ξ translation symmetry in Eqn. 3.44 produced the cigar action at leading

order (Eqn. 3.50). In the form Eqn. 4.2, the current for ξ translations is J3(z) = ∂ξ + χ.

Then the gauged first-order action becomes

S → S +
k

2π

∫
d2z

(
J3Ā+ J̄3A+ AĀ

)
. (4.3)

67See e.g. [107,108] for reviews.

68We use χ and W to denote the cylinder-valued first-order coordinates rather than the typical β and γ to avoid confusion
with the first-order formalism in Poincarè coordinates.
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4 STRINGY ER = EPR

Classically integrating out A, Ā yields a first-order description of the cigar,69

Scigar =
k

2π

∫
d2z

(
∂r∂̄r + iχ∂̄θ − iχ̄∂θ − coth2(r)χχ̄

)
, (4.4)

and integrating out χ, χ̄ again reproduces the cigar action.

The presentation Eqn. 4.2 is advantageous because it is non-singular at r → ∞, where

the potential χχ̄/ sinh2(r) goes to zero. In that limit, the gauged action after classically

integrating out the gauge fields is then as in Eqn. 4.4 but with coth2(r) → 1, and further

integrating out the auxiliaries yields the expected asymptotic cylinder background,

Scigar

r→∞
−→ k

2π

∫
d2z

(
∂r∂̄r + ∂θ∂̄θ

)
. (4.5)

Thus, Eqn. 4.2 is a preferable description of SL(2,C)k/SU(2) for the purposes of uplifting

the FZZ duality because the free theory it approaches at r →∞ is transparently the uplift

of the same limit of the cigar background.

This large r limit of Eqn. 4.2 is a linear-dilaton plus first-order cylinder system. One may

define canonically normalized fields

r̂ =
1

Q
r, Ŵ =

√
α′kW, χ̂ =

√
α′k

(
χ+

1

2
∂ξ

)
, (4.6)

69In this description one has contributions to the dilaton both from the first-order formalism and from integrating out A, Ā.
Further integrating out χ, χ̄ eliminates the former contribution, leaving the expected dilaton profile Eqn. 2.97b of the cigar.
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4.1 3D FZZ Dualities

such that the asymptotic action appears

SLD×F(C/Z) =
1

2πα′

∫
d2z

(
∂r̂∂̄r̂ + χ̂∂̄Ŵ + ˆ̄χ∂ ˆ̄W

)
, Φ(r̂) = −Qr̂. (4.7)

We denote by F(X) the first-order system valued in X; in this case X = C/Z is the cylinder

Ŵ ∼ Ŵ +2πi
√
α′k. As before, Q = 1/

√
α′(k − 2) after accounting for quantum corrections.

The asymptotic potential e−2rχχ̄ in Eqn. 4.2 is the leading correction to the free theory at

finite r, analogous to e−2r∂θ∂̄θ in the cigar.

It is important to understand once more how the gauging of the translation symmetry

along the length of the EAdS3 boundary cylinder is implemented in the description Eqn.

4.7. The holomorphic current ∂ξ + χ in the unhatted variables becomes J3(z) = χ̂ +

1
4
(∂Ŵ +∂ ˆ̄W ) (after rescaling by

√
α′k for convenience).70 Gauging this symmetry of the free

linear-dilaton×F(C/Z) system is then implemented by

SLD×F(C/Z) → SLD×F(C/Z) +
1

2πα′

∫
d2z

(
J3Ā+ J̄3A+ AĀ

)
, (4.8)

which is invariant under Ŵ → Ŵ+ε, ˆ̄W → ˆ̄W+ε, A→ A−∂ε, Ā→ Ā−∂̄ε, χ̂→ χ̂+ 1
2
∂ε, and

ˆ̄χ→ ˆ̄χ+ 1
2
∂̄ε. Integrating out A, Ā and χ, χ̄, we recover the linear-dilaton× S1 background.

70 Note that the appropriate current is not simply χ̂, as might be suggested from the coefficient of ∂̄Ŵ in Eqn. 4.7. In
writing Eqn. 4.7, we have dropped a term − i

2
(∂ξ̂∂̄θ̂ − ∂̄ξ̂∂θ̂), which is total derivative in EAdS3, though one should include it

in EBTZ where it contributes a non-trivial B-field. It does not contribute to the equations of motion, but it does contribute
i
2
∂θ̂ = 1

4
(∂Ŵ −∂ ˆ̄W ) to the holomorphic current for translations in ξ̂ = Re(Ŵ ). The correction is important in order to identify

the appropriate current whose gauging reproduces the linear-dilaton× S1 background.
The same subtlety arises in the ordinary complex boson, ∂X∂̄X + ∂Y ∂̄Y = ∂Z̄∂̄Z − i(∂X∂̄Y − ∂̄X∂Y ), where Z = X + iY .

The usual holomorphic current for translations in X is ∂X. In the complex description, the corresponding current including
the contribution from the exact B-field is ∂Z̄ + i∂Y = 1

2
(∂Z + ∂Z̄) = ∂X, as desired.

Note that the current in the hatted variables, 1√
α′k

(
χ̂+ i

2
∂θ̂
)

= χ+ 1
2
∂W , differs from the current χ+∂ξ = χ+ 1

2
(∂W+∂W̄ )

in the unhatted variables by 1
2
∂W̄ , which vanishes by the equations of motion. The discrepancy arises because the change of

variables Eqn. 4.6 shifts χ by ∂ξ, preserving the translational symmetry of ξ under which both χ and χ̂ are invariant, while
producing currents that differ by irrelevant terms proportional to the equations of motion.
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4 STRINGY ER = EPR

The χ̂Ŵ system is the familiar (c = 2) bosonic ghost “βγ” system, except that Ŵ ∼

Ŵ + 2πi
√
α′k is cylinder-valued. The holomorphic stress tensor is

T (z) = − 1

α′
(∂r̂)2 −Q∂2r̂ − 1

α′
χ̂∂Ŵ , (4.9)

whose central charge 3+6α′Q2 reproduces the exact central charge 3k/(k−2) of SL(2,C)k/SU(2).

χ̂(z) carries conformal weight (1, 0) and Ŵ (z) is dimensionless, where the equations of motion

imply ∂̄Ŵ = ∂̄χ̂ = 0. Their OPE is

Ŵ (z)χ̂(0) ∼ α′

z
, (4.10)

with Ŵ (z)Ŵ (0) and χ̂(z)χ̂(0) non-singular. The anti-holomorphic sector is analogous.

Having obtained the free-field limit Eqn. 4.7 at the conformal boundary of EAdS3, we now

follow FZZ and attempt to define a dual description by taking the free theory over the infinite

r̂ line and deforming it by an appropriate uplift of the sine-Liouville potential. As explained

following Eqn. 3.67, SL(2,R)k and SL(2,R)k/U(1) contain an identical marginal operator

OsL, whose weak-coupling limit in the coset is the sine-Liouville potential (Eqn. 2.122). One

may identify the same operator in the continued space of SL(2,C)k/SU(2) operators. We

wish to find the asymptotic form of this operator in the linear-dilaton×F(C/Z) description

of the EAdS3 boundary. We will therefore search for a marginal operator of the free theory

that carries unit winding around Im(Ŵ ) and no momentum, such that it reduces to the

familiar sine-Liouville potential upon gauging the symmetry.
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The winding operators of the first-order cylinder system are less familiar than those of

the ordinary compact boson [109]. From Eqn. 4.10 one obtains

Ŵ (z)e∓
√

k
α′
∫ 0 dz′ χ̂+dz̄′ ˆ̄χ ∼ ±

√
α′k log(z)e∓

√
k
α′
∫ 0 dz′ χ̂+dz̄′ ˆ̄χ, (4.11)

and likewise for ˆ̄W (z̄). Thus, e∓
√

k
α′
∫ 0 dz′ χ̂+dz̄′ ˆ̄χ carries winding ±1 with respect to θ̂ =

1
2i

(Ŵ − ˆ̄W ), while ξ̂ = 1
2
(Ŵ + ˆ̄W ) is single-valued. The integral

∫ 0
dz′ χ̂+ dz̄′ ˆ̄χ is evaluated

along a contour ending at the origin, where the winding operator is inserted. Demanding

that observables be independent of the choice of contour constrains the spectrum of the

CFT, such that the integrated expression defines a local operator [109].

This winding operator alone is not annihilated by the current J3 = χ̂ + 1
4
(∂Ŵ + ∂ ˆ̄W ),

however:71

(
χ̂(z) +

1

4
∂Ŵ (z)

)
e∓
√

k
α′
∫ 0 dz′ χ̂+dz̄′ ˆ̄χ ∼ ±

√
α′k

4z
e∓
√

k
α′
∫ 0 dz′ χ̂+dz̄′ ˆ̄χ. (4.12)

To obtain a winding operator with no momentum along the cylinder one must append the

factor e±
1
4

√
k
α′ (Ŵ+ ˆ̄W ), which cancels against the OPE Eqn. 4.12. The OPE of Ŵ with itself

being non-singular, the inclusion of this factor preserves the winding OPE Eqn. 4.11.

Thus, the combination

e±
1
4

√
k
α′ (Ŵ+ ˆ̄W )e∓

√
k
α′
∫

dz′ χ̂+dz̄′ ˆ̄χ, (4.13)

71The last term ∂ ˆ̄W in the current is trivial by the equations of motion, and does not contribute to any OPEs.
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or more simply e∓k
∫

dz′χ+dz̄′χ̄ in the unhatted variables, carries zero momentum and winding

±1, as desired. Its conformal weight is k/4 on the left and right due to the double-contraction

with the stress tensor Eqn. 4.9, just as for the ordinary winding operators e±i
√

k
α′ (θ̂L−θ̂R) of

the two-dimensional cylinder (Eqn. 2.229).

In fact, Eqn. 4.13 is precisely the dimensional uplift of these ordinary winding operators.

Gauging the translation symmetry as in Eqn. 4.8 and solving the auxiliary equations of

motion, one finds χ̂ = 1
2
∂ξ̂ − i∂θ̂. Evaluating Eqn. 4.13 on this solution yields

e±
1
2

√
k
α′ ξ̂e∓

1
2

√
k
α′
∫

(dz′∂ξ̂+dz̄′∂̄ξ̂)e±i
√

k
α′
∫

(dz′∂θ̂−dz̄′∂̄θ̂) = e±i
√

k
α′ (θ̂L−θ̂R), (4.14)

the equations of motion of the gauged action implying ∂∂̄(Ŵ − ˆ̄W ) = 0 and therefore

θ̂(z, z̄) = θ̂L(z) + θ̂R(z̄).

Finally, to this unit winding operator we append the same linear-dilaton primary e−
√

k−2
α′ r̂

as in Eqn. 2.231 to obtain a marginal operator. The three-dimensional sine-Liouville poten-

tial is then VsL ∝ W+ +W−, where

W±(z, z̄) = e−
√

k−2
α′ r̂(z,z̄)e±

1
4

√
k
α′ (Ŵ (z)+ ˆ̄W (z̄))e∓

√
k
α′
∫ z,z̄ dz′ χ̂+dz̄′ ˆ̄χ, (4.15)

and which reduces to the original two-dimensional sine-Liouville potential upon gauging.

The proposal is that the deformation of the linear-dilaton × F(C/Z) background (Eqn.

4.7) by VsL yields a dual description of SL(2,C)k/SU(2), which is a better description of

the CFT when k − 2, and therefore the linear-dilaton momentum, is small. If one further
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4.1 3D FZZ Dualities

identifies Ŵ ∼ Ŵ + 4π2
√
α′k/βBH (corresponding to compactifying ξ ∼ ξ + 4π2/βBH), the

same deformation of the linear-dilaton × F(C/(Z × Z)) yields a dual description of the

Euclidean black hole CFT Z\SL(2,C)k/SU(2).

Eqn. 4.15 gives the limiting form of the components W± of the SL(2,C)k/SU(2) sine-

Liouville operator near the conformal boundary of EAdS3. Recall from Eqn. 3.67 thatW± is

obtained from the primary |k/2− 1,±k/2,±k/2〉 by applying w = ∓1 units of spectral flow.

The asymptotic limit of the former is e−(k−2)re±kξ. Spectral flow is meanwhile implemented

by the operator ekw
∫ z dz′J3+dz̄′J̄3

= ekwξekw
∫ z dz′χ+dz̄′χ̄, where J3(z) = ∂ξ+χ [110]. Together,

one obtainsW± → e−(k−2)re∓k
∫

dz′χ+dz̄′χ̄, which is identical to Eqn. 4.15 with the coordinate

transformation Eqn. 4.6.

In summary, the proposed duality of SL(2,C)k/SU(2), or its asymptotically-EAdS3 black

hole quotient Z\SL(2,C)k/SU(2), is as follows. On the one hand one has the familiar de-

scription, weakly coupled for large k, of a string propagating in a solid cylinder or torus

supported by a B-field:

SEAdS3 =
k

4π

∫
Σ

d2σ
√
h

{
(∇r)2 + cosh2(r)(∇ξ)2 + sinh2(r)(∇θ)2 (4.16)

− 2εab sinh2(r)∇aξ∇bθ +
Φ0

k
R[h]

}
,

where
√
hεzz̄ = −

√
hεz̄z = −i. In first-order variables (Eqn. 4.2), this background approaches

a free linear-dilaton times first-order cylinder system in the r → ∞ limit (Eqn. 4.7). The

dual sine-Liouville description is given by the same free theory, defined now with an infinite

linear-dilaton direction extending into the strong-coupling region, deformed by the marginal
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potential with unit winding and zero momentum,

SsL =
1

4πα′

∫
Σ

d2σ
√
h

{
(∇r̂)2 + 2hab(χ̂a∇bŴ + ˆ̄χa∇b

ˆ̄W ) (4.17)

+ 4πλ(W+ +W−)− α′QR[h]r̂

}
.

Gauging the translation symmetry in the two descriptions recovers the cigar and two-

dimensional sine-Liouville backgrounds, reproducing the original FZZ duality and strongly

suggesting the validity of this three-dimensional proposal. We expect there is an analogous

supersymmetric duality given by the uplift of the supersymmetric FZZ duality of Hori and

Kapustin [55].

This three-dimensional sine-Liouville background shares many similarities with its two-

dimensional counterpart. For example, by integrating over the zero-mode one obtains a

relation analogous to Eqn. 2.235, where now SN denote operators of the first-order system

rather than the compact boson. In particular, the correlation functions obey the scaling

relation λκ, where κ is given in Eqn. 2.234. The same type of scaling is predicted by the

dual Wakimoto description of the SL(2,C)k/SU(2) CFT [99,111,112]. Once again the lack of

analyticity is due to the freedom to rescale λ by field redefinitions up to shifts of the dilaton

zero-mode. In an action with a given coefficient λ and zero-mode Φ0, the latter may always

be eliminated with the former rescaled to e−2bsLΦ0/Qλ.

The SL(2,C)k/SU(2) CFT may alternatively be described in Poincarè coordinates by the

linear-dilaton×F(C) system deformed by the Wakimoto potential ββ̄e−2σ [87]. We relabel
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here the linear-dilaton field as σ and the first-order fields as β and γ to be consistent with

the notation in Eqn. 3.43, which is reproduced upon integrating out β, β̄. If one were to

quotient γ ∼ γ+ 2πi in this description, i.e. replacing F(C) by F(C/Z), one would obtain a

singular background with a cusp at σ → −∞ where the transverse Poincarè metric e2σdγdγ̄

shrinks. Continuing with respect to the compact Euclidean time Im(γ) would then yield a

thermal state in the Poincarè patch at inverse temperature 2π.

If one deforms this cusp theory by the spectral flow of the Wakimoto operator around

the compactified cycle, it is natural to conjecture that an RG flow is initiated back to the

SL(2,C)k/SU(2) CFT. The spectral flow in this case preserves the marginal conformal weight

of the operator, and introduces winding one around Im(γ). One may further deform the

cusp theory by any number of such spectral-flowed operators with any values of spectral flow

without changing the endpoint of the RG flow. These flows are reminiscent of discussions

of closed string tachyon condensation in string theory [113–120]. By adding all the spectral-

flowed operators with particular coefficients, one expects to obtain another description of the

SL(2,C)k/SU(2) CFT, as a condensate of winding strings on the thermal Poincarè orbifold.

In principle, smoothness of the interior, as encoded in conformal invariance of the worldsheet

theory, would determine the coefficients of all of the spectral-flowed operators.

4.2 ER = EPR in 2D Dilaton-Gravity

With our examples of Euclidean ER = EPR CFT dualities in hand—relating a con-

tractible Euclidean time circle in one description to a non-contractible circle plus a con-
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densate in the other—we now construct the Lorentzian string theory dualities that follow by

continuation.

We begin with the SL(2,R)k/U(1) CFT. For large k this CFT admits a weakly-coupled

description given by a string in the cigar-shaped Euclidean black hole of two-dimensional

dilaton-gravity, with an asymptotically-linear dilaton (Eqn. 2.98). Cutting the cigar across

its contractible θ cycle and continuing yields the conventional description of a string in the

2D Lorentzian black hole in the HH state [75]. String amplitudes computing the S-matrix

of particles scattering off the black hole horizon may be obtained by continuation from the

Euclidean amplitudes of vertex operators Ojn,w=0 under n → iE, where n is the discrete

Matsubara frequency of the mode around the compact Euclidean time circle and E is the

continuous Lorentzian energy. This is the ER description of the string theory (Fig. 1.2a).

We now turn to the EPR description, corresponding to the string background obtained by

continuation from the dual, sine-Liouville description of SL(2,R)k/U(1) (Eqn. 2.230). The

sine-Liouville background consists of the free linear-dilaton×S1 background (Eqn. 2.109) plus

the sine-Liouville potential 4πλ(W+ + W−), where W± are the marginal linear-dilaton× S1

operators with winding ±1 (Eqn. 2.231). It is a strongly-coupled description of the CFT at

large k.

In the asymptotic region r, r̂ → ∞ of the cigar and sine-Liouville, the two backgrounds

are identical, with the coordinates related by Eqn. 2.108. In that limit, the SL(2,R)k/U(1)

Virasoro primaries Ojnw behave as the superposition of linear-dilaton × S1 primaries given

in Eqn. 2.116. To compute an SL(2,R)k/U(1) correlation function of such operators in the
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4.2 ER = EPR in 2D Dilaton-Gravity

sine-Liouville description, one would insert the corresponding free-field superpositions in the

sine-Liouville functional integral.

Let us consider the sine-Liouville potential as a large deformation of the linear-dilaton×S1

background, expanding the condensate in powers of the winding operators,

〈
e−

λ
2α′

∫
d2z (W++W−) · · ·

〉
LD×S1

(4.18)

=
∞∑
N=0

1

(N !)2

(
λ

2α′

)2N
〈(∫

d2z W+(z, z̄)

)N (∫
d2z′W−(z′, z̄′)

)N
· · ·

〉
LD×S1

,

where the ellipses stand for additional operator insertions
∏

i e
−2Q(1−ji)r̂einiθ. Note that the

winding conservation law of the free background demands that an equal number of W+ and

W− factors contribute in each term.72 We wish to understand the Lorentzian string theory

defined by continuation from each term in this expansion, which we refer to as the EPR

microstate string backgrounds.73

Note that Eqn. 4.18 is not a perturbative expansion around the linear-dilaton× S1 back-

ground, however. As recalled in Sec. 2.5.1, and as discussed in the analogous context of Liou-

ville in Sec. 2.2.1, because λ may be rescaled by field redefinitions, there is no sense in which

it is a small parameter. As a result, sine-Liouville correlation functions are not in general

analytic in λ, but rather scale with λκ as in Eqn. 2.235, where κ is the function of the pri-

mary momenta {ji} given in Eqn. 2.234. In the special case that κ ∈ 2N, however, one does

72We restrict our attention here to non-winding S1 primaries that, with j = 1
2

(1 + is), continue to ordinary scattering states
of the black hole.

73Note, however, that these continued backgrounds describe the thermally entangled microstates. We will not discuss string
backgrounds for the pure EPR microstates, though it would be interesting to do so.
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obtain an analytic function74 proportional to λκΓ(−κ)〈
(∫

W+

)κ/2 (∫
W−
)κ/2 · · · 〉LD×S1,/0.

Correspondingly, for compatible values of the momenta {ji}, one finds in Eqn. 4.18 a

single term consistent with the anomalous momentum conservation law of the linear dilaton

(Eqn. 2.19),

2NbsL +Q
∑
i

(1− ji) =
1

2
Qχ. (4.19)

This is simply the condition that κ = 2N , reproducing the preceding result. The zero-mode

integral collapses to
∫

dr̂0, which diverges with the volume of the target and is reflected in

the pole of the gamma function. The free-theory correlators therefore compute the residues

of sine-Liouville correlation functions at these poles [121]. Correlation functions for general

momenta could be in principle be obtained by continuation from these residues computed

from the free theory, by determining the meromorphic function with the corresponding pole

structure, as in Liouville [66,67,69,71].

For generic values of {ji}, including the scattering states of interest for the black hole, the

anomalous conservation law need never be satisfied, and each linear-dilaton× S1 correlation

function on the right-hand-side of Eqn. 4.18 appears to vanish. Yet sine-Liouville admits

no such anomalous conservation law, the translation symmetry of the target linear-dilaton

direction being completely broken by the potential, and exact CFT correlation functions of

operators that violate Eqn. 4.19 certainly need not vanish.

The same puzzle arose in the discussion surrounding Eqn. 2.57 for Liouville. As explained

74Or, rather, the residue at the pole of the gamma function is an analytic function of λ.
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4.2 ER = EPR in 2D Dilaton-Gravity

there, the source of the trouble is the strong-coupling region, and Eqn. 4.18 should more

properly be interpreted as defining a perturbative expansion of the sine-Liouville measure in

powers of λe−2bsLr̂0 , where r̂0 is the zero-mode of r̂:

Dr̂Dθ e−SsL[r̂,θ]
∏
i

e−2Q(1−ji)r̂einiθ (4.20)

r̂0→∞
−→ Dr̂′Dθ e−SLD×S1 [r̂′,θ]

∏
i

e−2Q(1−ji)r̂′einiθ

× dr̂0 e
2bsLκr̂0

∞∑
N=0

1

(N !)2

(
λe−2bsLr̂0

2α′

)2N (∫
W+[r̂′, θ]

)N (∫
W−[r̂′, θ]

)N
.

Whereas λ itself is not a small parameter, the combination λe−2bsLr̂0 is invariant under

r̂0 → r̂0 + δ, λ → e2bsLδλ, and gives a perturbative expansion about the weak-coupling

region.

To proceed more carefully for general momenta, one should introduce a regulator that

controls the strong-coupling region. In the zero-mode integral Eqn. 2.233 that lead to Eqn.

2.235, one could introduce a hard cut-off r̂c on the lower bound of the integral and attempt

to understand the limit as r̂c → −∞. The regulator will break the anomalous momentum

conservation law of the free background, eliminating the spurious constraint Eqn. 4.19.

Alternatively, rather than this hard cut-off step function Θ(r̂0− r̂c), one could employ a soft

cut-off by inserting exp
(
−e−2bsL(r̂0−r̂c)

)
in the integral, which behaves similarly but varies

smoothly. Then Eqn. 2.233 becomes

∞∫
−∞

dr̂0 e
2bsLκr̂0−( λ

α′ VsL[r̂′,θ̂]+e2bsLr̂c)e−2bsLr̂0
=

1

2bsL

(
λ

α′
VsL[r̂′, θ̂] + e2bsLr̂c

)κ
Γ (−κ) . (4.21)
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Writing ε = e2bsLr̂c , such that ε→ 0 when r̂c → −∞ meaning that the regulator is removed,

the regulated version of Eqn. 2.235 is

〈∏
N

e−2Q(1−jN )r̂SN

〉
sL,ε

(4.22)

=
1

2bsL

Γ (−κ)

〈(
λ

α′
VsL[r̂, θ̂] + ε

)κ∏
N

e−2Q(1−jN )r̂SN

〉
LD×S1,/0

.

One may now attempt to expand the free-field correlator in powers of 1
ε

by writing

(
λ

α′
VsL + ε

)κ
= εκ

∞∑
M=0

(
κ

M

)(
λ

α′
VsL

ε

)M
, (4.23)

where
(
κ
M

)
is the generalized binomial coefficient. In this way, one more properly obtains as

in Eqn. 4.18 an expansion for sine-Liouville correlation functions as a sum over free-theory

correlators with integer powers of the integrated potential inserted. This expansion may

diverge, in general. The situation is similar to conformal perturbation theory, where one

expands an exactly marginal deformation e−λ
∫
O, obtaining a series with finite radius of

convergence. In that case the expansion is suppressed by factors of 1
M !

, whereas the binomial

coefficients in Eqn. 4.23 fall off less rapidly. Thus, the above expansion may only be an

asymptotic series, which we speculate may be Borel resummable. We have not attempted

to verify this, however.

We will not pursue further the explicit implementation of the regulator here. Our goal

is not to offer a new computational framework for obtaining string amplitudes in the black

hole, but to give an abstract understanding of the string backgrounds corresponding to the
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4.2 ER = EPR in 2D Dilaton-Gravity

thermal EPR microstates. To that end, we now consider the Lorentzian continuation of the

string background defined by each term in Eqn. 4.18.

Consider first the free linear-dilaton× S1 itself, i.e. N = 0. This is the flat space solution

of the dilaton-gravity equations of motion (Eqn. 2.101). The target cylinder has the topology

of an annulus, which, when halved and glued to its Lorentzian continuation with respect to

the S1, prepares a Schwinger-Keldysh contour for the disconnected union of two copies of

linear-dilaton× time in the TFD state (Fig. 1.5a).

As in the Euclidean background, each Lorentzian spatial slice extends from a weak-string-

coupling limit at r̂ → ∞ to a strong-coupling region r̂ → −∞. The two asymptotic weak-

coupling regions are identical to the left and right asymptotic regions of the two-sided black

hole. But whereas the left and right regions of the black hole are connected in the interior

at the horizon, the two copies of linear-dilaton× time are disconnected, with strong-coupling

boundaries in their interiors instead of horizons.

Each remaining term in the expansion Eqn. 4.18 inserts N pairs of W+,W− operators

on top of the linear-dilaton × S1 background. Thus, upon continuation they will introduce

deformations of the TFD state in the disconnected union of linear-dilaton × time. Because

the W± are winding operators around the Euclidean time circle, however, the Lorentzian

interpretation of these deformations is not immediately obvious.

Moreover, there is a problem of mutual locality that arises in attempting to continue

n→ iE in the insertions represented by the ellipses in Eqn. 4.18. Namely, the winding and
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momentum operators of the compact boson obey an OPE

einθ(z,z̄)e±ikθ̃(0) ∼
(z
z̄

)±n/2
einθ(0)±ikθ̃(0). (4.24)

When the momentum operator circles the winding insertion at the origin (z → e2πiz, z̄ →

e−2πiz̄), the OPE coefficient transforms by a factor e±2πin. Then the operator algebra is

well-defined only for n ∈ Z, which is of course the expected momentum quantization of

the compact boson. It follows that by continuing the momentum labels n → iE in a

linear-dilaton × S1 correlator with a given number of W± insertions, one will in general

obtain a multi-valued function on the worldsheet. In order to define string perturbation

theory in the EPR microstates obtained by continuation from each term in the expanded

background, we must establish how to compute a well-defined string amplitude by integrating

such an apparently multi-valued expression over the moduli space.

We address these questions in the following two sub-sections. We first show that each pair

of W+,W− insertions introduces on top of the disconnected linear-dilaton × S1 background

a pair of strings in a TFD state in the sense of angular quantization on the worldsheet

(Fig. 1.7a). Each string is folded, with its ends in the strong-coupling region, and each

folded string is entangled with its pair, with one in the left and one in the right copy of the

spacetime (Fig. 1.5a). We then argue that the multi-valued correlation functions obtained

by continuation from the linear-dilaton × S1 should be integrated over a deformed contour

in a complexification of the string moduli space on which they are single-valued in order to

obtain amplitudes in the background of such entangled, folded strings.
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4.2.1 Angular Quantization

One sometimes obtains a target space picture in string theory by adopting the “static”

gauge after choosing a flat metric on the worldsheet, in order to fix the residual conformal

gauge redundancy that remains within the full diffeomorphism×Weyl gauge redundancy

of the functional integral. In static gauge, the target Euclidean time coordinate is fixed to

the worldsheet time coordinate ρ in the sense of radial quantization, where z = eρ+iφ. This

choice is unacceptable in the background of Euclidean time winding operators, however. For

example, in the neighborhood of a winding ±1 insertion at the origin on the worldsheet, the

target Euclidean time θ ∼ θ + 2π should obey

θ
ρ→−∞
−→ ±φ. (4.25)

Rather than the static gauge θ = ρ, one may instead adopt an angular gauge condition

θ = ±φ, in which the compact coordinate φ is viewed as the worldsheet Euclidean time

direction.

We are therefore motivated to treat the neighborhood of Euclidean time winding insertions

on the worldsheet in angular rather than the usual radial quantization. In this section we

elaborate on this quantization scheme. In fact, the following is a pure CFT discussion,

independent of the application to Lorentzian string theory that we ultimately have in mind,

and which we return to at the end of the sub-section.
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(a) (b)

Figure 4.1: The Minkowski Vacuum and the Rindler TFD. The Euclidean functional integral over the lower-half plane
prepares the Minkowski vacuum state on the tE = 0 slice (left). The same functional integral may be interpreted as a Euclidean
transition amplitude between states on the negative and positive x-axis, with the angular direction φ interpreted as Euclidean
time (right). Then the Minkowski vacuum is equivalent to the TFD state in the angularly quantized Hilbert space HL ⊗HR.
In the same way, the HH state for the two-sided black hole may be interpreted as a TFD state with respect to the left and right
wedges. The reduced density matrix in a single wedge is a thermal state of inverse Hawking temperature βBH.

The basic idea of angular quantization is familiar75 from the functional integral derivation

of the Unruh effect in Rindler spacetime [124]. Consider a field theory on R2, with the flat

metric ds2 = dt2E + dx2. The functional integral over the lower-half plane prepares the

Minkowski vacuum state |Ω〉 in the Hilbert space of the theory on the x-axis (Fig. 4.1a).

It is a wavefunctional, ΨΩ[Φ(x)] = 〈Φ|Ω〉, that takes field data Φ(x) on the fixed tE slice

and returns the value of the functional integral over the lower-half plane with that boundary

condition.

Let x = eρ cos(φ), tE = eρ sin(φ) define cylinder coordinates, in terms of which ds2 =

e2ρ (dρ2 + dφ2) . The lower-half plane may be foliated by radial lines at fixed φ, rather than

horizontal lines at fixed tE. Then the same functional integral admits an alternative Hilbert

space interpretation as a transition amplitude between a state on the negative x-axis and

a state on the positive x-axis, with Euclidean time evolution given by rotation in φ (Fig.

75See e.g. [122,123] for useful reviews.
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4.1b):

〈Φ|Ω〉 = 〈ΦR| e−πRΞ |ΦL〉 . (4.26)

We have divided the field data Φ(x) into ΦL(x) on the negative x-axis and ΦR(x) on the

positive x-axis. R generates rotations in φ, and Ξ is the CPT operator which maps the

Hilbert space on the left to the Hilbert space on the right.

Inserting a complete set of eigenstates of R, the transition amplitude may be written

〈ΦR| e−πRΞ |ΦL〉 = 〈ΦL| ⊗ 〈ΦR|

(∑
i

e−πωi |i∗〉 ⊗ |i〉

)
, (4.27)

where |i∗〉 = Ξ† |i〉. Thus, the Minkowski vacuum |Ω〉 on the slice tE = 0 is equivalent to the

TFD state in HL ⊗HR:

|Ω〉 =
∑
i

e−πωi |i∗〉 ⊗ |i〉 . (4.28)

More precisely, the Hilbert space on the line does not factorize into a product of left and

right Hilbert spaces due to divergences associated to degrees of freedom in the neighborhood

of the origin. The vacuum in the full spacetime does define a state on the von Neumann

operator algebra in both Rindler wedges.

When R2 is continued with respect to tE = it, one obtains standard coordinates on

Minkowski space, with metric ds2 = −dt2 + dx2. Then expectation values in the vacuum
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state may be computed by cutting the Euclidean functional integral on R2 at tE = 0, gluing

in the Minkowski plane, and continuing operator insertions to the Lorentzian section.

Instead continuing with respect to φ = it, one obtains the right wedge of the Rindler

decomposition of Minkowski spacetime (Fig. 2.5b). In particular, x = eρ cosh(t) and t =

eρ sinh(t), and therefore the coordinates ρ and t cover the region x > |t|, bounded by the

Rindler horizon. The relation between the Rindler coordinates on the right wedge and the

full Minkowski spacetime is analogous to the relation between Schwarzschild coordinates on

the right wedge of a black hole and the extended two-sided black hole. One may similarly

define Rindler coordinates in the remaining wedges. Lines of constant ρ are hyperbolas

x2 − t2 = const., and lines of constant t are straight lines through the origin, t/x = const.

Translation in t is an isometry, timelike in the right and left wedges (though with opposite

orientations), and spacelike in the top and bottom wedges. It corresponds to the boost

isometry in the original Minkowski coordinates.

Because φ is 2π periodic, when a Euclidean functional integral on R2 is cut at φ = 0 (i.e.

the positive x-axis) and operator insertions are continued to the right Rindler wedge φ→ it,

one obtains an expectation value in a thermal state at inverse temperature 2π. This is

the Unruh effect: the reduced density matrix of the Minkowski vacuum in the right (or left)

Rindler wedge is a thermal state. Indeed, from Eqn. 4.28 one obtains trHL
(|Ω〉 〈Ω|) = e−2πR.

By slicing the Euclidean functional integral at both φ = 0 and φ = π, one may continue

operators to either the left or right Rindler wedges, and so obtain expectation values in

HL ⊗HR in the TFD state.
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(a) (b)

Figure 4.2: Radial and Angular Slicings. The same Euclidean functional integral on a sphere may be assigned different
Hilbert space interpretations by choosing different foliations. In radial quantization (left), one slices the sphere into circles
centered at the poles. Each circle is a spatial slice, and Euclidean time flows along the radial direction transverse to the slices.
Then the functional integral over the sphere computes the inner-product of the states prepared by the operator insertions at
the poles in the Hilbert space e.g. on the equatorial circle. In angular quantization, the spatial slices are instead radial lines
connecting the poles, and Euclidean time flows along the angular direction. Then the same two-point function on the sphere
computes the thermal trace in the angularly quantized Hilbert space on the dashed line. Given a point on the sphere, its spatial
slice in radial quantization is the orbit of the rotation generator, and its Euclidean time evolution is the orbit of the dilation
generator. In angular quantization, the roles of the two symmetries are exchanged.

The thermal state e−2πR and its TFD purification are simple examples of states in an

angularly quantized Hilbert space. The angular quantization that we propose in what fol-

lows generalizes this construction by allowing operator insertions at one or both asymptotic

endpoints of the spatial slices.

CFTs are usually treated in radial quantization. That is, when one refers to the Hilbert

space of a 2D CFT, one typically means the Hilbert space H(S1) on a circle, corresponding

to a slice of the cylinder S1 × R with Lorentzian time running along its length. One has an

isomorphism between this Hilbert space and the space of local operators at a point. Each

local operator is mapped to a state on the circle by the Euclidean functional integral over

a hemisphere glued to the circle slice, with the operator inserted at the pole. And each

state may be mapped to its corresponding local operator by a conformal transformation

that shrinks the circle to a point.

Thus, a Euclidean CFT correlation function on S2, such as the two-point function illus-
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trated in Fig. 4.2a, may be cut, e.g. on the equator, and interpreted as an inner-product in

the radially quantized Hilbert space on that circle:

〈O(0)O′(∞)〉S2 = 〈O′|O〉H(S1) . (4.29)

The Euclidean functional integral over the southern hemisphere prepares the state associated

to the operator insertion at the south pole, and the integral over the northern hemisphere

prepares the state associated to the operator at the north pole. By sewing up the cut

on the dashed circle, the functional integral on the sphere computes the inner-product of

these two states. One may also insert the Lorentzian cylinder at the cut, and by continuing

additional operator insertions to the Lorentzian section one may compute their expectation

value between the two states.

In that continuation, Euclidean time evolution is defined by the dilation symmetry of the

CFT, which scales the local complex coordinate z → λz centered at the operator insertion at

the pole (and therefore translates the cylinder time coordinate log |z| → log |z|+ log λ). The

slices of the sphere at fixed Euclidean time are circles centered at the poles. In this foliation,

given a point on the sphere, its spatial slice is the orbit of the rotation generator around the

poles, and its Euclidean time evolution flows along the orbit of the dilation generator.

This foliation is not unique, however. Let us instead slice the sphere in radial lines

connecting the poles as in Fig. 4.2b, and define Euclidean time evolution by rotation. In

this slicing, the roles of the dilation and rotation generators are exchanged: the spatial slice

on which a point lies is its orbit under dilation, and Euclidean time runs along the orbit of
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rotation.

Then the Euclidean functional integral over the sphere with the radial cut prepares a

thermal state e−2πR ∈ HOO′(R) in the Hilbert space of angular quantization on the dashed

line, where the subscripts label the operator insertions at the poles. The same two-point

function, obtained by sewing up the cut, is therefore assigned a different interpretation in

this quantization scheme—it is a thermal trace in HOO′(R):

〈O′|O〉H(S1) = trHOO′ (R)

(
e−2πR

)
. (4.30)

One may continue additional operator insertions with respect to φ → it, corresponding

to gluing in a Rindler wedge at the cut, and so obtain expectation values of operators in

Rindler spacetime in this thermal state. And one may cut the sphere in half to define the

TFD state in two copies ofHOO′(R) (Fig. 1.7a). By continuing additional operator insertions

via φ → itR or φ → π + itL, one obtains an expectation value in the TFD state in the left

and right Rindler wedges.

One way to regulate the UV divergences associated to the left/right split of the Hilbert

space here is to end the Rindler wedges at a boundary with appropriate boundary conditions.

In the Euclidean functional integral this corresponds to excising a small neighborhood of the

insertion point of the operator being treated in angular quantization [125], as in the discussion

of asymptotic conditions in Ch. 2. In the limit that the regulator is removed, the boundary

conditions become the asymptotic conditions associated to the inserted operator. Of course,

the regulator breaks conformal symmetry, which is only restored in the limit.
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Let us now apply this machinery to the linear-dilaton× S1 background with insertions of

W± operators in order to understand the deformations they introduce on top of the R1,1∪R1,1

string theory upon continuation. The Hilbert space HOO′(R) is defined by the asymptotic

conditions imposed by the insertions O,O′ at the ends of the line. For a W± insertion, these

asymptotic conditions follow from Eqn. 2.131 with α = bsL,76

r̂
ρ→−∞
−→

√
α′(k − 2)ρ, (4.31)

together with the winding condition Eqn. 4.25. Note in particular that the neighborhood of

the insertion point is mapped to the strong-coupling region r̂ → −∞ in spacetime.77

Consider the leading term N = 1 on top of the linear-dilaton × S1 string background in

Eqn. 4.18, with a pair of winding operators W+,W− inserted on CP1. Let W+(0) be fixed at

the origin and W−(∞) at the point-at-infinity using the global conformal redundancy of the

string worldsheet (Fig. 1.7a). In the neighborhood of each of the two insertions, the string

is mapped to the strong-coupling region as it wraps the Euclidean spacetime cylinder with

unit winding. In between, the worldsheet extends along the cylinder toward finite string

coupling before folding back on itself (Figs. 1.5b and 1.7b).

When the Euclidean spacetime annulus is halved to prepare the TFD state on the two

zero-time slices tR = 0 at θ = 0 and tL = 0 at θ = π, one finds a pair of entangled folded

76When the operator insertion coincides with a curvature singularity, the asymptotic condition is modified by a contribution
from the linear-dilaton background charge. But the correction is sub-leading in the large k limit because Q ∼ 1√

k
.

77More precisely, the asymptotic condition fixes the derivative ∂ρr̂ in the neighborhood of the operator insertion, and Eqn.
4.31 may be shifted by a constant. This constant shift may be an imaginary number, since in general the saddles of the
functional integral may be complex. The asymptotic condition nevertheless implies Re(r̂) → −∞, meaning that the string is
sent to the strong-coupling region.
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strings, one on each spatial slice, emanating from the strong-coupling region (Fig. 1.5a).

The respective folded strings are the images of the worldsheet spatial slices—in the sense

of angular quantization—at φ = 0 and φ = π. The pre-image of the halved embedded

worldsheet that connects the two folded strings across the target Euclidean cap is the halved

worldsheet shown in Fig. 1.7a, bounded by φ = 0 and π. Thus, the pair of folded strings

are prepared in the worldsheet TFD state in two copies of the angularly quantized Hilbert

space, H+−(R)⊗H+−(R).

When the angular gauge condition θ = φ is continued with respect to the target and

angularly quantized worldsheet (i.e. θ = itR and φ = itR, and θ = π + itL and φ = π + itL),

one may think of the folded strings as evolving along their respective Lorentzian spacetimes,

with both ends continuing to asymptote to the strong-coupling boundaries.78

Ideas relating Euclidean time winding operators and folded string solutions were previ-

ously explored in [126]. In that context, the folded strings emanated from the weak-coupling

region. Here we extend the connection between Euclidean time winding operators and folded

strings from the c = 1 analysis of [126,127] to the true black hole regime of k > 3.

Using the tools described in Ch. 2, the asymptotic conditions can be implemented by a

boundary condition on an excised neighborhood of the operator insertion, in the limit that

the boundary shrinks away. The linear-dilaton×S1 with W+ and W− insertions at the origin

78For an ordinary insertion einθ, on the other hand, the asymptotic condition θ → −i α
′

R2 nρ becomes t→ Et after continuing

θ = it, ρ = it, and n = iR
2

α′ E in the usual sense of radial quantization.
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and point-at-infinity is described by the L→∞ limit of the action79

S =
1

4πα′

L∫
−L

dρ

2π∫
0

dφ
{

(∂ρr̂)
2 + (∂φr̂)

2 + (∂ρθ̂)
2 + (∂φθ̂)

2
}

(4.32)

+ 2

(
bsL −

Q

2

) 2π∫
0

dφ

2π
(r̂|L + r̂|−L) +

2π∫
0

dφ

2π

{
σ+(∂φθ̂|L −R) + σ−(∂φθ̂|−L −R)

}
.

Then the boundary equations of motion,

∂ρr̂|ρ=±L = ∓2α′
(
bsL −

Q

2

)
(4.33a)

∂φθ̂|ρ=±L = R, (4.33b)

imply the asymptotic conditions in the L → ∞ limit. σ± are Lagrange multipliers that

implement the winding condition around S1.

Similarly, for N > 1 each pair of W+,W− insertions may be thought of as introducing an

additional pair of folded strings to the background in the TFD state of angular quantization

(Fig. 4.4a). Then the exponentiated sine-Liouville potential amounts in the Lorentzian

continuation to a condensate of folded strings emanating from strong coupling on top of the

disconnected union of two copies of linear-dilaton× time.

Angular quantization should be understood as applying to the neighborhood of each pair

of winding operators, and a genus-zero string diagram with 2N such insertions is analogous

to a diagram with 2N loops of open strings (i.e. 2N holes). The associated process is

79Here we choose the cylinder metric, which is responsible for the background-charge shifts of the boundary terms by −Q/2.
These terms are unimportant in the large k limit, however. One should also add an L-dependent counterterm to render the
on-shell action finite.
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the amplitude of ordinary closed string scattering states to interact with N pairs of folded

strings in a state defined by the associated Euclidean functional integral. This also includes

interactions by string exchange between the folded strings.

The folded string worldsheets we describe here are somewhat formal in the sense that

there is no such saddle of the linear-dilaton × S1 functional integral—e.g. the two-point

function of W+ and W− alone vanishes by the anomalous conservation law. To obtain

interesting saddles one must of course insert additional operators, which will connect to the

folded string asymptotic conditions at strong coupling and fill in the solution in the interior.

As discussed earlier, in general one must also regulate the linear-dilaton to suppress its

strong-coupling region.

Alternatively, one may consider the continued sine-Liouville background itself without

expanding the condensate. Here it is the sine-Liouville potential that regulates the strong-

coupling region. In this context, one may interpret the physics of the condensate by con-

sidering the effect of introducing an additional pair of W± insertions on top of it. Then

the asymptotic conditions associated to these insertions must be modified from Eqns. 4.25

and 4.31 because those map the string out of the weak-coupling region where the free-field

description is no longer valid. However, the free-field asymptotic conditions do show that a

string initially found at large r̂ will head toward strong coupling at the rate
√
α′(k − 2) and

with winding ±1 as one begins to approach the insertion point on the worldsheet. Then in

the weak-coupling regions one will again find a pair of folded strings, with their ends headed

toward strong coupling. The state of the pair of strings is again the TFD state of angular
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quantization on the worldsheet, formally defined by the Euclidean functional integral on a

hemisphere with insertions of W+ and W− on its boundary. In other words, one has added

another pair of folded strings on top of the full EPR background, whose ends dissolve into

the condensate at strong coupling.

To properly define the state of the folded strings, one should include the contribution

from the bc gauge-fixing ghost system. Given a weight (1, 1) Virasoro primary operator of

the matter CFT such asW±, one forms a physical operatorW±cc̄ of the full string background

by including a factor cc̄ from the ghosts. In radial quantization, this operator prepares the

BRST invariant state |W±cc̄〉 = |W±〉 ⊗ |↓↓〉 ∈ H(S1) of the linear-dilaton × S1 × bc × b̄c̄

CFT, where |↓〉 is the bc vacuum state of ghost number −1/2 prepared by c(0).

In angular quantization, with W+cc̄ and W−cc̄ inserted at the poles of CP1, one obtains

the TFD state in two copies of H+−(R) ⊗Hcc(R) ⊗Hc̄c̄(R), where Hcc(R) is the angularly

quantized Hilbert space of the bc CFT with c insertions at either end, and likewise forHc̄c̄(R).

To define the latter Hilbert spaces, it is convenient to recall that the bc × b̄c̄ CFT is itself

equivalent to a linear-dilaton of complex background charge QX = 3i/
√

2α′ [128]. On the

one hand, one has the ghost CFT of central charge cbc = −26, with holomorphic stress tensor

Tbc(z) = −(∂b)c− 2b∂c, (4.34)

and with OPEs

b(z)c(0) ∼ 1

z
, b(z)b(0), c(z)c(0) ∼ 0, (4.35)
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and the analogous anti-holomorphic formulas. The dual description is a linear dilaton

X(z, z̄) = X(z) + X̄(z̄) with holomorphic stress tensor

TX(z) = − 1

α′
(∂X)2 −QX∂

2X (4.36)

and OPE

X(z)X(0) ∼ −α
′

2
log z. (4.37)

The fields are related by the identifications

b(z) = ei
√

2
α′X(z), c(z) = e−i

√
2
α′X(z), (4.38)

and similarly for the anti-holomorphic fields. In particular, the linear-dilaton central charge

cX = 1+6α′Q2
X reproduces −26. b and c transform with conformal weights (2, 0) and (−1, 0)

with respect to Tbc, and e±i
√

2
α′X carry the same weights with respect to TX .

To ensure fractional powers of b and c do not appear, X must be compact with periodicity

2π
√
α′/2 [129]. There is no contradiction with the presence of the linear dilaton, however,

because the background charge QX is complex; though the dilaton action −QX
4π

∫
d2σ
√
hRX

is not invariant under the shift, its variation is a multiple of 2πi, and therefore the functional

integral measure is well-defined.

The bc equations of motion imply the classical conservation of the ghost-number current

J(z) = −bc, with respect to which c carries ghost number +1 and b carries ghost number
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−1. Then the identifications Eqn. 4.38, taking care to account for the implied normal

ordering, yield J = −i
√

2
α′
∂X. X therefore corresponds to the bosonization of the ghost-

number current, the ghost-number symmetry of the bc description mapping to the translation

symmetry in X of the linear-dilaton description.

The ghost-number symmetry is anomalous due to the mismatch in the number of c and b

zero-modes on a worldsheet of genus g, which, by the Riemann-Roch theorem, is dim{c0} −

dim{b0} = 3−3g. Then the functional integral measure DcDb ⊃
∏
{dc0}{db0} carries charge

−(3− 3g) under the symmetry, and the charges of any insertions must sum to 3− 3g = 3
2
χ

to obtain a non-zero correlation function, where χ = 2 − 2g is the Euler characteristic

of the worldsheet. Correspondingly, the target translation symmetry of X in the linear-

dilaton background is anomalous (Eqn. 2.19). With αb = −i/
√

2α′ for a b insertion and

αc = +i/
√

2α′ for a c insertion, the linear-dilaton anomalous conservation law likewise

ensures that a correlator with Nc insertions of e−i
√

2
α′X and Nb insertions of ei

√
2
α′X may be

non-zero only if Nc −Nb = 3
2
χ.

The anomaly also implies that the ghost-number current is not a Virasoro primary, and

therefore under the conformal map z = ew between the plane and cylinder, the transformed

current is given not by J̃(w) = zJ(z) but by J̃(w) = zJ(z) − 3
2
. Then the ghost-number

charges of a state on the cylinder and a local operator on the plane differ by −3/2, accounting

for the discrepancy between the ghost-number 1 operator c and the ghost-number −1/2

vacuum state |↓〉 it prepares. The corresponding anomaly in the linear-dilaton current was

likewise responsible for the shifted momentum of states proportional to the background
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Figure 4.3: BRST Invariance. The physical vertex operator W±cc̄ is BRST invariant and prepares a BRST invariant state
in the sense of radial quantization. The thermal state of angular quantization prepared with an asymptotic insertion of W±cc̄ is
likewise BRST invariant. With the neighborhood of the insertion excised from the worldsheet and replaced by the appropriate
asymptotic conditions on the resulting boundary circle, the BRST current vanishes on the circle in the limit that it shrinks
away. Because the line integral of the current around the dashed loop shown vanishes by current conservation, it follows that
the BRST charges measured on the two radial slices are identical.

charge (Eqn. 2.6).

The equivalence of the bc × b̄c̄ CFT and the linear-dilaton X makes the construction of

the TFD state in two copies of the Hilbert space Hcc(R) ⊗ Hc̄c̄(R) of angular quantization

analogous to the TFD in two copies of H+−(R). The asymptotic condition Eqn. 4.31 for a

W± insertion at the end of the line is replaced by

X
ρ→−∞
−→ i

√
2α′ρ, (4.39)

or X → −i
√

α′

2
ρ when combined with the background-charge contribution in the far past

on the cylinder. Along with the linear-dilaton× S1 action Eqn. 4.32, one has the bosonized

ghost action

SX =
1

4πα′

L∫
−L

dρ

2π∫
0

dφ
{

(∂ρX)2 + (∂φX)2
}

+ 2

(
αc −

QX

2

) 2π∫
0

dφ

2π
(X|L +X|−L) . (4.40)

The combination W±cc̄ is BRST invariant in the operator sense, and prepares a BRST
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invariant state on the circle in the sense of radial quantization. The thermal (and TFD)

state in the Hilbert space of angular quantization is likewise BRST invariant. Indeed,

consider the integral of jBRST around the dashed loop shown in Fig. 4.3, where jBRST =

e−i
√

2
α′X (Tr̂ + Tθ̂ + TX) [130]. The grey annulus represents the worldsheet with the neigh-

borhood of the origin and point-at-infinity excised and replaced by the asymptotic conditions

on their boundaries. The integral around the closed loop vanishes by conservation of the

current, and therefore the difference in the charges evaluated along the two radial line seg-

ments equals the integrals of the current over the two circular arcs. The latter vanish in the

limit L→∞ because the conformal weight of the excised insertion was zero. That is, when

the linear-dilaton × S1 stress tensor Tr̂ + Tθ̂ (Eqn. 2.113) is evaluated on the asymptotic

conditions Eqns. 4.25, 4.31 one obtains

Tr̂ + Tθ̂
z→0
−→ 1

z2
, (4.41)

whereas on the ghost asymptotic condition Eqn. 4.39 one finds

TX
z→0
−→ − 1

z2
. (4.42)

Together therefore, jBRST → 0. It follows that the BRST charge in the sense of angular

quantization commutes with the Hamiltonian (i.e. the rotation generator), and therefore the

thermal state of angular quantization associated to W±cc̄ is BRST invariant.80

80In principle, a trace defined with the BRST invariant density matrix we construct here should be computable by summing
over BRST invariant states in the angularly quantized Hilbert space. In the classical limit, [126] found there were no solutions
with vanishing stress energy. However, the T = 0 condition in the linear-dilaton theory is not itself a classically conformally
invariant equation, necessitating a fully quantum treatment.
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4.2.2 Mutual Locality and the String Moduli Contour

4.2.2 Mutual Locality and the String Moduli Contour

We now address the question of mutual locality that arises in attempting to continue the

labels of vertex operator insertions in a given term in the expansion Eqn. 4.18 from their

Euclidean Matsubara frequencies n to Lorentzian energies E. Namely, the OPE Eqn. 4.24

of a compact boson primary operator einθ(z,z̄) of momentum n with a unit-winding operator

e±ikθ̃(z,z̄) is single-valued on the z-plane only for integral n. It follows that a correlation

function where these insertions approach one another will behave as (z/z̄)±n/2 = e±inφ,

whose continuation e∓Eφ is a multi-valued function of φ. Thus, a correlation function with

a given number of winding operators and scattering operators will generically yield a multi-

valued function of z upon continuation. This multi-valuedness appears to be an obstacle to

defining Lorentzian string perturbation theory for the EPR thermal microstates obtained by

continuation from each term of Eqn. 4.18.

On the one hand, one could evaluate a Lorentzian string amplitude for a given N by first

computing the Euclidean amplitude with n ∈ Z—i.e. integrating the Euclidean correlation

function over the moduli space—and only then continuing n → iE in the final answer. In

principle, this is a satisfactory definition of string perturbation theory in each of the EPR

microstates. However, we would like to give a fully Lorentzian prescription for computing

EPR string amplitudes directly from the apparently multi-valued correlation functions of

winding operators and scattering operators.

The multi-valuedness of the continued linear-dilaton × S1 correlation functions is not in
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and of itself problematic, as these are not the objects of interest in string perturbation theory.

Rather, the worldsheet CFT correlation functions serve to produce a measure on the string

moduli space, which, when integrated, yields the desired string amplitude. The relevant

conditions on the measure are then that it should be single-valued along the integration

contour and such that the integral converges.

We will argue that the continued correlation functions should be integrated along a de-

formed contour in a complexification of the moduli space for which these conditions are

satisfied.

The necessity of complexification and deformation of the integration contour is in fact

encountered already in ordinary string backgrounds, though it is not always described in that

language [131]. The deformation is required to avoid divergences that appear at points in

the moduli space corresponding to the collision of two operator insertions on the worldsheet.

For example, the Virasoro-Shapiro amplitude for tree-level 2→ 2 tachyon scattering in flat

spacetime is typically expressed as an integral over the complex plane with three marked

points, corresponding to summing over the insertion point (z, z̄) of one operator, with the

other three being fixed at arbitrary points using the conformal redundancy. The integral

over the z-plane diverges whenever the momenta are above the threshold set by the tachyon

mass, due to singularities when the integrated operator approaches the fixed insertions [132].

In this example, it so happens that the amplitude may be defined by evaluating the integral

over z in an unphysical region where it does converge and then continuing the answer to

the physical region. But more generally, the naive integral over the moduli space may never
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converge, and so a more systematic approach is necessary.

As explained in [131], to obtain a finite string amplitude one complexifies the moduli

space, corresponding in the 2→ 2 example to treating the coordinates (z, z̄) of the integrated

operator as independent complex coordinates (z, z̃). The original moduli space is the section

z̃ = z̄ on which z̃ coincides with the complex conjugate of z. An appropriate integration

contour for the sum over moduli may then be taken to be the usual cycle z̃ = z̄ almost

everywhere, but with a small disk neighborhood of each of the fixed insertions where the

original integral diverged replaced by the Lorentzian cylinder of radial quantization. In

general one must also ascend to a cover of the complexified moduli space on which the

integrand is single-valued.

In the neighborhood of the origin, for example, one continues (z = eρ+iφ, z̄ = eρ−iφ) to

independent complex coordinates, and replaces the original contour (on which ρ and φ were

real) by continuing ρ = ρ0 + it in a small neighborhood |z| < eρ0 of the insertion. t is

the worldsheet Lorentzian time in the sense of radial quantization, and so the deformation

effectively glues the Lorentzian cylinder at t = 0 to the z-plane with an excised disk along the

boundary circle |z| = eρ0 . The singular neighborhood of the collision point at the origin is

thereby removed from the integration contour, and one instead integrates along t ∈ (−∞, 0].

φ remains real on this contour.

In a string background with Euclidean time winding operator insertions, we conjecture

that Lorentzian string amplitudes should be defined with an analogous angular rather than

radial contour deformation. That is, in the neighborhood of a point on the moduli space
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(a) (b)

Figure 4.4: The Contour of Angular Quantization. Near any pair of W+,W− insertions on the worldsheet of a
linear-dilaton × S1 string diagram, one may slice their neighborhood as shown on the left. The upper cap prepares a pair
of folded strings in the TFD state of angular quantization, which is glued to the rest of the worldsheet below. In computing a
string amplitude of linear-dilaton × time including Euclidean time winding insertions, one must choose a deformed contour of
integration in evaluating the sum over moduli. On the right is sketched the contour used to evaluate the integral of a Lorentzian
scattering operator. When the integrated insertion approaches another ordinary operator, the contour is deformed along the
Lorentzian cylinder of radial quantization according to the prescription of [131]. When it approaches a winding operator, the
Euclidean cap that prepared the TFD state of folded strings is replaced by the pair of Rindler diamonds shown and glued along
the red zero-time slice. The radial deformation prevents two scattering insertions from colliding, while the angular deformation
prohibits a scattering operator from looping around a winding operator.

where a momentum operator and a winding operator collide, the original contour is replaced

not with the Lorentzian cylinder of radial quantization, but with a Rindler wedge (or wedges)

of angular quantization. In this case it is ρ that remains real while φ = it is continued.81

The contour is sketched in Fig. 4.4b, referring to the portion of the moduli integral over

the insertion point of an ordinary scattering operator. Whereas the radial deformation pre-

vents two scattering insertions from colliding, the angular deformation prevents a scattering

insertion from looping around a winding insertion.

With this deformation, the measure obtained from a linear-dilaton× S1 correlation func-

tion after continuing n → iE, which was multi-valued on the original moduli space z̃ = z̄,

becomes single-valued on the new contour in the complexification. In particular, the con-

81It would also be interesting to understand the appropriate contour deformation when two Euclidean time winding operators
collide.
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tinuation of the problematic OPE coefficient e∓Eφ that followed from Eqn. 4.24 is now a

single-valued and oscillatory function e∓iEt of t.

For example, consider the two-point function in the N = 1 background of e−2Q(1−j)r̂einθOh

and e−2Q(1−j)r̂e−inθOh, where Oh is an internal primary of weight h. Using the conformal

gauge redundancy, fix the winding operators at the origin and point-at-infinity, and fix one

of the momentum operators at z = 1. The insertion point of the remaining momentum

operator is to be integrated. To avoid the need for a regulator, let us for simplicity pick

j = k−1
2

, such that Eqn. 4.19 is satisfied.82 Continuing n → iE, the internal weight h is

chosen to satisfy the on-shell condition,

−j(j − 1)

k − 2
− E2

4k
+ h = 1. (4.43)

The moduli space contour over which the location of the unfixed momentum operator is

to be integrated is shown in Fig. 4.4b.

4.3 ER = EPR in Asymptotic AdS3 Gravity

Next we consider the examples of ER = EPR for asymptotic AdS3 gravity obtained by

continuation from the dual descriptions of the SL(2,C)k/SU(2) and Z\SL(2,C)k/SU(2)

CFTs. These examples are in several respects simpler than in two-dimensional dilaton-

gravity.

82Albeit this is not a scattering operator, for which j would lie on the complex branch. When we discuss the AdS3 duality
in the next section, however, it will be the real branch j’s that are of physical interest.
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For large k, the weakly-coupled description of SL(2,C)k/SU(2) is of a string in a solid

cylinder geometry (Eqn. 3.13) supported by a B-field (Eqn. 4.16). A Virasoro primary

operator ΦJJ̄
jw(z, z̄; ξ0, θ0) is labeled by a point (ξ0, θ0) on the spacetime conformal boundary,

where a delta-function source for the dual BCFT primary operator of conformal weight (J, J̄)

is inserted. Because EAdS is effectively a box, string amplitudes do not compute an S-matrix,

but rather correlation functions in the dual CFT of such operator insertions [46, 86–88].

In the weakly-coupled description of Z\SL(2,C)k/SU(2), the length ξ ∼ ξ + β̃ is com-

pactified to form a solid torus geometry. Untwisted vertex operators of the orbifold may be

obtained from the primaries ΦJJ̄
jw(z, z̄; ξ0, θ0) by summing over images in ξ0 to enforce peri-

odicity, and the string amplitudes of such operators compute BCFT correlation functions on

the spacetime boundary T2.

In the dual description of SL(2,C)k/SU(2) (Eqn. 4.17), which is strongly coupled for

large k, the EAdS3 solid cylinder is replaced by the first-order cylinder system F(C/Z)

and an infinite linear-dilaton direction (Eqn. 4.7), deformed by the three-dimensional sine-

Liouville potential 4πλ(W+ + W−), where W± wind the now non-contractible θ cycle of

the W = ξ + iθ ∈ C/Z cylinder (Eqn. 4.15). After writing the EAdS3 action in first-order

form (Eqn. 4.2), the two backgrounds coincide in the weak-coupling region, where the vertex

operators ΦJJ̄
jw(z, z̄; ξ0, θ0) asymptote to a superposition of linear-dilaton×F(C/Z) operators.

For an unflowed operator, for example, transforming Eqn. 3.47 to cylinder coordinates one
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finds for j > 1/2,83

Φj(z, z̄; ξ0, θ0)→ e−2Q(1−j)r̂δ(ξ − ξ0)
∑
n∈Z

δ(θ − θ0 − 2πn) + sub-leading. (4.44)

Inserting these linear-dilaton × F(C/Z) operators in the sine-Liouville functional integral,

one may in principle compute SL(2,C)k/SU(2) correlation functions in the dual description.

The dual description of Z\SL(2,C)k/SU(2) is the same, but with the first-order cylinder

F(C/Z) replaced by the torus F(C/(Z× Z)), corresponding to compactifying ξ = Re(W ).

When the EAdS3 cylinder is cut and continued with respect to the Euclidean time coordi-

nate ξ along its length, the Schwinger-Keldysh contour prepares the spacetime vacuum state

in AdS3. Then continuing the operator labels ξ0 → it0 in the Euclidean string amplitudes

yields BCFT expectation values of local operator insertions on the Lorentzian boundary

cylinder in the dual vacuum state of radial quantization. When ξ ∼ ξ + β̃ is compactified,

continuing with respect to ξ defines string theory two copies of AdS3 in the bulk TFD state

of inverse temperature β̃.

Performing the same continuation in the sine-Liouville background yields a dual descrip-

tion of string perturbation theory in AdS3 in the vacuum or thermal state. This is the better

description of these theories when k − 2 is a small number.

Our interest in the context of ER = EPR, however, is the continuation with respect

to the compact Euclidean time coordinate θ—contractible in the original description and

non-contractible in the dual, where the condensate is responsible for breaking the winding

83Here ξ, θ are sigma-model fields of the first-order system and ξ0, θ0 are labels for the boundary insertion point.
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symmetry.

When the original description of SL(2,C)k/SU(2) is continued with respect to θ → iT ,

the Schwinger-Keldysh contour prepares the TFD state in a connected pair of AdS3-Rindler

wedges (Eqn. 3.92), and the continued string amplitudes compute expectation values of the

BCFT in its TFD state in two copies of the angularly quantized Hilbert space on a line.

After the ξ ∼ ξ + β̃ orbifold, the same continuation of Z\SL(2,C)k/SU(2) prepares the HH

state in the two-sided BTZ black hole of inverse Hawking temperature β = 4π2/β̃.84 In both

cases, one obtains the theory of a string in a connected, two-sided geometry with a horizon.

These are the ER descriptions of string theory in AdS3-Rindler and BTZ.

The θ continuation of the dual backgrounds defines the EPR description of each of these

two string theories. As in Eqn. 4.18, we treat the sine-Liouville potential as a large deforma-

tion of the free theory, now being the linear-dilaton×F(C/Z), or F(C/(Z×Z)), background.

At leading order, continuing θ = Im(W ) yields the Schwinger-Keldysh contour for the TFD

state in two copies of linear-dilaton×F(R1,1) or F(R× S1) (Fig. 1.5a).

The remaining terms in the expansion insert pairs of W+,W− operators on top of the

free-field Euclidean background, and in turn introduce deformations of the spacetime TFD

state upon continuation. As in the two-dimensional case, we interpret each set as inserting a

pair of folded strings emanating from the strong-coupling region in the TFD state of angular

quantization on the worldsheet. The asymptotic conditions defining a W± insertion are as

84The black hole coordinates from Sec. 3.3.3 are obtained by rescaling Θ = β
2π
ξ, which is the non-contractible cycle of

periodicity 2π, and TE = β
2π
θ, which is the contractible cycle of periodicity β.
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in Eqn. 4.31 in the linear-dilaton direction, and, from Eqn. 4.11,

W (z)
z→0
−→ ± log(z) (4.45a)

W̄ (z̄)
z̄→0
−→ ± log(z̄). (4.45b)

Or, in terms of ξ = 1
2
(W + W̄ ) and θ = 1

2i
(W − W̄ ),

ξ
ρ→−∞
−→ ±ρ (4.46a)

θ
ρ→−∞
−→ ±φ. (4.46b)

Thus, with W+(0) and W−(∞) fixed on CP1, the worldsheet is mapped to the strong-

coupling region with unit winding in the neighborhood of each insertion, while ξ → ∓∞.

In between, the string formally extends partway toward finite r̂ before folding back toward

strong-coupling, while ξ ranges over the real line. When the target is halved to prepare

the spacetime TFD state, one finds on the left and right zero-time slices a folded string

emanating from the strong-coupling region and extended along the ξ direction (Fig. 4.5).

The same asymptotic conditions describe the sine-Liouville potential in the Euclidean

black hole. Although Eqn. 4.46a may at first appear to be in tension with the compacti-

fication of ξ, recall that in these variables the current with respect to which the orbifold is

performed is not simply ξ’s conjugate variable χ, but χ+∂ξ, and the second term introduces

an additional twist. As a result it is not obvious at a glance that the asymptotic condition

respects the orbifold projection, but one is guaranteed as much because the operators W±
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Figure 4.5: Folded Strings in EAdS3. The spacetime image of the halved worldsheet from Fig. 1.7a with a pair of W±
insertions is shown. The inner semicircles correspond to the strong-coupling region r̂ → −∞ of the linear-dilaton, the θ direction
winds around these circles, and the ξ direction extends along the depth of the figure. The left and right boundaries are folded
strings extending from the strong-coupling region partway toward finite r̂ before falling back to strong coupling, while ξ ranges
from minus infinity to infinity. The folded strings live on the zero-time slices θ = tR = 0, θ = itL + π = π of the Lorentzian
continuation.

are invariant.

Unlike the two-dimensional linear-dilaton × S1 background, where the winding and con-

tinued scattering operator insertions were mutually non-local (Eqn. 4.24) and required the

Rindler deformation of the moduli contour discussed in the previous section, the boundary

position basis vertex operators admitted by the AdS3 asymptotics do not suffer from this

issue of mutual locality with the winding operators that appear in the expanded background.

Indeed, the Euclidean boundary position basis vertex operators are manifestly periodic in

Euclidean time, and the Lorentzian vertex operators, being defined by continuation, likewise

respect the imaginary time periodicity. Explicitly, the relevant OPE to check is between85 the

winding operators e∓
√

k
α′
∫ (z,z̄) dz′χ̂(z′)+dz̄′ ˆ̄χ(z̄′) of the first-order system and the delta-function

85The additional factors of Eqns. 4.15 and 4.44 are not relevant to the mutual locality question.
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operators

∑
n∈Z

δ2
(
Ŵ (z)− Ŵ0 − 2πi

√
α′kn

)
(4.47)

∝
∑
n∈Z

∫
dp e

i
2

(
p−i n√

α′k

)
(Ŵ (z)−Ŵ0)e

i
2

(
p+i n√

α′k

)(
ˆ̄W (z̄)− ˆ̄W0

)
,

which are conveniently expressed via their inverse Fourier transform. Using Eqn. 4.10, one

finds the OPE

e
i
2

(
p−i n√

α′k

)
(Ŵ (z)−Ŵ0)e∓

√
k
α′
∫ 0 dz′χ̂(z′) (4.48)

= z
± i

2

√
α′k
(
p−i n√

α′k

)
e
i
2

(
p−i n√

α′k

)
(Ŵ (0)−Ŵ0)∓

√
k
α′
∫ 0 dz′χ̂(z′)

(1 +O(z)),

and similarly for the anti-holomorphic factors. Together, the z, z̄ dependence of the pre-

factors is

z
± i

2

√
α′k
(
p−i n√

α′k

)
z̄
± i

2

√
α′k
(
p+i n√

α′k

)
= |z|±i

√
α′kp

(z
z̄

)±n/2
, (4.49)

which is single-valued and oscillatory, regardless of whether Ŵ0,
ˆ̄W0 sit on the Euclidean

or Lorentzian section. Then the only iε prescription necessary to define Lorentzian string

amplitudes with vertex operator insertions in the boundary position basis is the usual pre-

scription that replaces the target Lorentzian time insertion point T → T (1− iε), as expected

from the perspective of the dual CFT, and required to identify the branch of the continued

of Euclidean string amplitudes appropriate for time-ordered expectation values.

Of course, if one wishes to compute string amplitudes in the momentum basis rather than
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the boundary position basis (Eqns. 3.75, 3.104), an analogous mutual locality issue as in

the two-dimensional case will arise, and the Rindler deformation of the moduli integration

contour will again be necessary.

Unlike the two-dimensional black hole, in AdS3 the short-string vertex operators of in-

terest include the real branch of j, and the unregulated expansion Eqn. 4.18 is of greater

practical utility. For the two-point function of Φj(z, z̄; ξ0, θ0), for example, the solution of

the compatibility condition Eqn. 4.19 at genus zero is

jN =
1

2
((k − 2)N + 1) . (4.50)

In e.g. the N = 1 background, one finds a compatible correlator for j = k−1
2

.86 Then one

could compute

〈Φj(z0, z̄0; ξ0, θ0)Φj(z1, z̄1; ξ1, θ1)〉SL(2,C)k/SU(2) (4.51)

=

(
λ

2α′

)2〈
Vj,ξ0,θ0(z0, z̄0)Vj,ξ1,θ1(z1, z̄1)

∫
d2z+d2z− W+(z+, z̄+)W−(z−, z̄−)

〉
LD×F(C/Z)

,

where Vj,ξi,θi is given by the right-hand-side of Eqn. 4.44. To extract the correlator for general

j one would, as in Liouville, determine the meromorphic function whose poles coincide with

the free-theory correlators of jN .

To compute the string amplitude obtained from Eqn. 4.51, one would fix z+ = 0, z− =∞,

and z1 = 1, and integrate over z0. No contour deformation is necessary in this basis. One

must also tensor the operators with an internal CFT scalar primary Oh of conformal weight

86Curiously, this coincides with the upper bound of the discrete-series spectrum.
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h, chosen such that the on-shell condition is satisfied,

−j(j − 1)

k − 2
+ h = 1. (4.52)

4.4 Infinitesimal FZZ Dualities

We end by discussing an “infinitesimal” interpretation of the FZZ duality, its three-

dimensional uplift, and their Lorentzian continuations. This interpretation is based on the

isomorphism Eqn. 3.40 that relates the spectral-flowed componentsW± of the sine-Liouville

operator (Eqn. 3.67) to unflowed current-algebra descendents (Eqn. 3.68), as identified by

the authors of [79]. We apply their identification of these vertex operators to discuss an

infinitesimal version of each duality in the sense of conformal perturbation theory around

the SL(2,R)k/U(1) or Z\SL(2,C)k/SU(2) CFTs: there are two semi-classical descriptions

of perturbations by the sine-Liouville operator which shift the mass of the black hole. In

the unflowed description of the perturbation, the value of the dilaton zero-mode is shifted.

In the flowed description, the perturbation introduces a condensate of strings that wrap the

horizon. These strings are the constituent objects that make up the black hole, and so its

mass is shifted under the deformation.

As reviewed in Secs. 2.3.3 and 3.2, the SL(2,R)k and SL(2,R)k/U(1) CFT spectra share

a marginal operator OsL = W+ +W−, normalizable87 for k > 3 and non-normalizable for

2 < k < 3. One may likewise identify OsL in the continued spectrum of SL(2,C)k/SU(2)

87Delta-function normalizable in the SL(2,R)k case.
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operators, again (delta-function) normalizable for k > 3. The sine-Liouville potential is the

limiting form of OsL near the weak-coupling boundary in the various sigma-model descrip-

tions of these CFTs.

The sine-Liouville Lagrangians for these CFTs make evident that a conformal perturba-

tion by OsL is trivial at the CFT level. The deformation merely shifts the coefficient λ of

the sine-Liouville potential, which may be undone by a field redefinition that shifts r̂ by a

constant. Then the perturbation leaves the same sine-Liouville background, except that the

dilaton has been shifted by a constant, resulting from the linear-dilaton in r̂. The latter

is a trivial improvement term of the CFT, the only effect being to multiply the functional

integral by e−δΦ0χ, where χ is the worldsheet Euler characteristic.

In the string theory, however, e−2Φ0λ
2

k−2 controls the mass of the black hole, which is

deformed under the perturbation. That the perturbation is normalizable for k > 3 implies

that the black hole mass may fluctuate [133,134].88

Consider first the SL(2,R)k/U(1) case. The infinitesimal duality will equate two descrip-

tions of the perturbation by OsL in the cigar sigma-model at large k. In one description,

the deformation shifts the value Φ0 of the dilaton at the tip of the cigar, and in the other it

introduces a condensate of strings that wrap the tip. The next two sub-sections explain the

origins of these two equivalent descriptions of the sine-Liouville deformation.

88For 2 < k < 3 the CFTs likely no longer admit a black hole interpretation [83].
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4.4.1 The Winding Condensate

4.4.1 The Winding Condensate

Consider a perturbation of the SL(2,R)k/U(1) CFT by the sine-Liouville operator, ε
∫

d2zOsL.

In conformal perturbation theory, the deformation is expanded in powers of ε:

e−ε
∫

(W++W−) =
∞∑

N1,N2=0

(−ε)N1+N2

N1!N2!

(∫
W+

)N1
(∫
W−
)N2

. (4.53)

At large k,W± is a heavy operator that changes the behavior of the saddles of the functional

integral. To understand the behavior of the saddles in the neighborhood of these insertions,

we wish to identify an asymptotic condition for W± in the cigar description of the CFT.

As discussed in Sec. 2.3.4, the asymptotic conditions in Eqn. 2.131 describing an operator

insertion Ojnw of SL(2,R)k/U(1) in the far past on the cylinder assume a generic value of

j, with Re(j) > 1
2
, on which R(j, n, w) is non-singular. The string is mapped to the free-

field region in the neighborhood of the operator insertion, and thus the free-field asymptotic

condition is a self-consistent solution of the cigar equations of motion. On the bound state

spectrum jN , however, which includes the sine-Liouville operator, R has simples poles, and

one must be more careful. In that case, it is the reflected term in Eqn. 2.116 that dominates

in the weak coupling region, 1
R
Ojnw → VQj,pL,pR

, and the free-field asymptotic condition flips

sign,

r
ρ→−∞
−→ 2

k

(
j − 1

2

)
ρ. (4.54)

This asymptotic condition maps the string out of the free-field region and is inconsistent.

239



4 STRINGY ER = EPR

This agrees with the fact that the bound states are normalizable, and do not extend out to

infinity in r.

The linear solution (Fig. 4.6) is a saddle for the two-point function of the linear-dilaton

primaries e−2(1−j)r and e−2jr, sending the string to r →∞ and r → −∞ in the neighborhoods

of the two respective operators. In the cigar, of course, the geometry ends at r = 0, and in

the vicinity of the tip the free cylinder equations of motion are modified by the curvature of

the cigar. One would like to understand how the free trajectory is corrected once the string

leaves the free-field region, and thereby obtain an asymptotic condition for the bound state

insertion. We will argue that the string worldsheet asymptotically wraps the tip of the cigar.

Because the neighborhood of the bound state insertion is mapped out of the free-field

region, the large r expansion e−2jr of the operator is insufficient to determine the requisite

asymptotic condition. The radial dependence of the vertex operator on the full cigar was

obtained in [75]:89 90

4j−1

Γ(2j − 1)

Γ(j +m)Γ(j − m̄)

Γ(1 +m− m̄)
(4.55)

× sinhm−m̄(r) cosh−(m+m̄)(r)2F1(j − m̄, 1− j − m̄; 1 +m− m̄;− sinh2(r))

r→∞
−→ e−2(1−j)r + 42j−1 Γ(1− 2j)

Γ(2j − 1)

Γ(j +m)Γ(j − m̄)

Γ(1− j +m)Γ(1− j − m̄)
e−2jr,

where m = 1
2
(−kw + n) and m̄ = 1

2
(−kw − n), as in Eqn. 3.66. Note that the reflection

89This expression holds for m ≥ m̄ (i.e. n ≥ 0). Note that the reflection coefficient is invariant under w → −w. For m ≤ m̄
one sends m→ −m and m̄→ −m̄, which is equivalent to flipping the signs of n and w. Then it is the absolute value of n that
appears in the reflection coefficient, as in Eqn. 2.117.

90To obtain the wavefunction, one would multiply by cosh(r) as described in Sec. 2.3.3.
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coefficient reproduces the second line of Eqn. 2.117.91

Recalling that the hypergeometric series terminates when its first or second argument is

a non-positive integer, we find that the hypergeometric function is a finite order polynomial

in sinh2(r) on the bound state spectrum. On the lowest-weight states, j − m̄ = −N , this is

evident from Eqn. 4.55, where the hypergeometric function yields an order N polynomial in

sinh2(r). On the highest-weight states, j + m = −N, it becomes evident after applying the

hypergeometric fractional transformation rule

2F1(j − m̄, 1− j − m̄; 1 +m− m̄;− sinh2(r)) (4.56)

= cosh2(m+m̄)(r)2F1(j +m, 1− j +m; 1 +m− m̄;− sinh2(r)).

In the pure-winding sector (n = 0) one obtains on the bound state spectrum jN = k|w|
2
−N ,

OjN ,n=0,w ∝ sechk|w|(r)2F1

(
−N,−k|w|+N + 1; 1;− sinh2(r)

)
. (4.57)

For N = 0 the hypergeometric function is 1, for N = 1 it is 1 + (−k|w|+ 2) sinh2(r), and so

on.

These operators consist of a heavy factor sechk|w|(r), which enters at the same order

as the leading terms in the action, times a light factor, which is sub-leading. The heavy

factor inserts a source in the leading equations of motion and therefore affects the form of

91It is unclear to us if the missing factor from the first line of Eqn. 2.117, which is of order one in the large k limit, is due to
a non-perturbative correction to the cigar background as has been suggested in the literature [80–82], or if it is a perturbative
correction. See Ft. 27.

241



4 STRINGY ER = EPR

the saddles. The light factor, by constrast, is merely evaluated on the leading saddles and

contributes to the sub-leading correction in the saddle-point expansion. Moreover, since the

heavy factor is independent of N , the behavior of the saddle for any bound state insertion

is independent of N .92 Our principal interest is in the components of the sine-Liouville

operator, for which N = 1 and w = ±1. Let us choose w = −1; the case w = 1 is analogous.

Since the asymptotic condition for Oj= k
2
−N,n=0,w=−1 is independent of N , we may in fact

set N = 0. This state is not part of the physical spectrum, of course. In fact, it is rather

special in the continued space of states; it is in a sense a reflection of the identity operator [76].

Note first of all that its conformal weight is zero. In the coset construction from SL(2,R)k,

Oj= k
2
,n=0,w=−1 descends from the state

∣∣∣∣j =
k

2
,m =

k

2
, m̄ =

k

2
;w = −1

〉
∈ D̂+,w=−1

k
2

⊗ D̂+,w=−1
k
2

. (4.58)

∣∣j = k
2
,m = k

2
, m̄ = k

2

〉
is known as the spectral flow operator [46, 76] because its product

with another operator imparts one unit of spectral flow. By flowing this state backward

by one unit as in Eqn. 4.58, one obtains a trivial operator of J3
0 , J̄3

0 , and conformal

weight zero. Under the isomorphism Eqn. 3.40, it maps to the trivial highest-weight state

|j′ = 0,m′ = 0, m̄′ = 0;w′ = 0〉 .

To understand the asymptotic condition associated to this operator, return to the cigar

quantum mechanics Eqn. 2.149, obtained after choosing a pure-winding configuration θ = φ.

The inverted potential −V (r) = 1
2
sech2(r) is a hill of height 1

2
, as shown in Fig. 2.6. For

92We have assumed here that N is of order one in the large k limit, else the order N polynomial in sinh2(r) would no longer
be a light operator.
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ρ

r

Figure 4.6: The Cigar Wrapping Saddle. When j = jN lies on the bound state spectrum Eqn. 2.106b, the reflection
coefficient is singular, and it is the otherwise sub-leading term e−2jr in Eqn. 2.116 that describes the operator Ojnw in the
asymptotic region. The free field Green function, shown by the dashed line, maps the string out of the free field region and
must be modified. The complete solution for |w| = 1 and n = 0 is θ = ±φ, r = sinh−1(eρ). The neighborhood of the bound
state insertion wraps the tip of the cigar, with r → eρ asymptotically approaching r = 0. The leading saddle is independent of
N , which enters in the sub-leading correction to the saddle-point approximation.

generic real values of η < 1, one obtained real solutions describing a particle that comes

in from infinity with speed η, rolls partway up the hill to a height of 1
2
η2, and then rolls

back to infinity. For η = 1, corresponding to j = k
2
, the particle has just enough energy to

asymptotically approach the top of the potential at r = 0. It does not return to infinity, but

rather wraps the tip of the cigar, taking infinite time to do so.

This cigar wrapping solution is

r(ρ) = sinh−1(eρ), (4.59)

shown in Fig. 4.6, with limiting behavior

r(ρ)→


eρ ρ→ −∞

ρ ρ→∞.
(4.60)

As expected from Eqn. 4.54 with j = k
2
, in the asymptotic region the solution approaches

the free-field Green function r → ρ. Eqn. 4.59 gives the completion of the solution beyond
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the free-field region.

The asymptotic conditions

r
ρ→−∞
−→ eρ (4.61)

θ
ρ→−∞
−→ φ, (4.62)

describe a string that wraps the tip of the cigar. Since the bound state operators for N 6= 0

differ at sub-leading order, we claim that this is the appropriate asymptotic condition for

any N of order one, including W+. The asymptotic condition for W− is the same, but

with θ → −φ. Observe that this is simply the holomorphic map that sends the worldsheet

coordinate z = eρeiφ to the target coordinate Z = reiθ in the neighborhood of the tip of the

cigar, where the geometry is R2. As usual, one may shift ρ by a continuous modulus iρ0 that

changes the angle at which the trajectory approaches the origin in the complex r-plane, and

one may moreover consider solutions shifted by πiZ.

Note that ṙ → r as ρ → −∞ and ṙ → 1 as ρ → ∞. This configuration is therefore a

saddle of the action

S =
k

4π

L∫
−L

dρ

2π∫
0

dφ

(
(∂ρr)

2 + (∂φr)
2 + tanh2(r)

(
(∂ρθ)

2 + (∂φθ)
2
))

(4.63)

+ k

2π∫
0

dφ

2π

(
−r|ρ=L +

1

2
r2|ρ=−L

)

+ k

2π∫
0

dφ

2π

(
σ+ (∂φθ|ρ=L − 1) + σ− (∂φθ|ρ=−L − 1)

)
+O(k0),

244



4.4.2 The Dilaton-Shifting Operator

with radial boundary equations of motion

∂ρr|ρ=L = 1 (4.64a)

∂ρr|ρ=−L = r|ρ=−L. (4.64b)

The on-shell action is S = −k log(2).

Thus, one may interpret the cigar-wrapping configuration as a saddle for the two-point

function of Oj= k
2
−N,n=0,w=±1. In the special case when N = 0, this is a trivial operator.

Then the r2 boundary term yields the identity operator in the limit that it shrinks away,

and one may alternatively interpret the configuration as a saddle for the one-point function.

For N 6= 0, one inserts the light factor of the operator at the boundary and the insertion

becomes non-trivial.

Since the reflection coefficient is singular, the sum over complex saddles may diverge with

the free-field boundary condition specified by the linear boundary term at ρ = L. Our

primary interest is not in the cigar wrapping saddle itself, however, but in the tip wrapping

asymptotic condition ṙ → r for the bound states.

Having established the asymptotic conditions that describe W± insertions in the cigar

sigma-model, we may now return to the interpretation of the sine-Liouville deformation in

conformal perturbation theory (Eqn. 4.53). In the neighborhood of each W± insertion, the

asymptotic condition implies that the image of the string worldsheet asymptotically wraps

the tip of the cigar with winding ±1 (Fig. 4.7a). In this way, the conformal perturbation by
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(a) (b)

Figure 4.7: sine-Liouville Asymptotic Conditions. The spacetime image of the string worldsheet in the neighborhood
of a W+ insertion is shown in the cigar description of SL(2,R)k/U(1) (left) and the cylinder description of SL(2,C)k/SU(2)
(right).

OsL introduces a condensate of strings that wrap the horizon.

4.4.2 The Dilaton-Shifting Operator

The dual semi-classical description of the perturbation follows from the isomorphism

(Eqns. 3.67-3.68) [79]

∣∣∣∣k2 − 1,±k
2
,±k

2
;∓1

〉
' J±−1J̄

±
−1 |1,∓1,∓1; 0〉 . (4.65)

For example, J−−1 |j = 1,m = 1;w = 0〉 carries zero J3
0 charge, is of holomorphic confor-

mal weight one, and is a lowest-weight state of sl(2,R)L, consistent with the properties

of |k/2− 1,−k/2; 1〉. The latter belongs to the normalizable spectrum for k > 3, such that

j = k/2− 1 satisfies the lower bound j > 1/2. The former likewise belongs to the spectrum

for k > 3, such that j = 1 satisfies the upper bound j < k−1
2
, the spectral-flow isomorphism

j → k/2− j exchanging the upper and lower bounds.
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4.4.2 The Dilaton-Shifting Operator

The sine-Liouville operator OsL is the sum of the w = ∓1 operators on the left of Eqn.

4.65. Let us denote by OΦ the sum on the right.93 The isomorphism identifies the two. On

a flat worldsheet, the vertex operator for OΦ in the cigar description is, at large k [55],

OΦ(z, z̄)
∣∣
flat

=
k

2π
sech2(r)

(
∂r∂̄r + tanh2(r)∂θ∂̄θ

)
. (4.66)

Recalling the cigar metric Eqn. 2.97a, this operator is evidently a metric deformation.

Namely, adding to the cigar action ε
∫

d2zOΦ results in a sigma-model with shifted metric

ds2[ε] = α′k
(
dr2 + tanh2(r)dθ2

) (
1 + εsech2(r)

)
. (4.67)

The deformed metric is in fact related to the original metric by a reparameterization r̃ =

r + 1
2
ε tanh(r):

ds2[ε] = α′k
(
dr̃2 + tanh2(r̃)dθ2

)
+O(ε2). (4.68)

On a curved worldsheet, the deformation by OΦ must simultaneously transform the dila-

ton Φ→ Φ[ε] = − log cosh(r̃) + Φ̃0 +O(ε2) so as to preserve the conformal symmetry of the

background:

Φ[ε] =− log cosh(r) + Φ0 −
1

2
ε tanh2(r) + εδΦ0 +O(ε2). (4.69)

We have also allowed for the deformation to shift the zero-mode Φ0 → Φ̃0 = Φ0 + εδΦ0,

93One could also consider the marginal operator defined by the differences of these operators, but this deformation breaks
worldsheet parity [55].
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Eqn. 2.99 placing no constraint on the constant mode of the dilaton. Since the operator is

normalizable at large k, one expects the deformation to vanish at large r, from which we

infer that δΦ0 = 1
2
. Then the vertex operator for OΦ is given by

OΦ(z, z̄) = sech2(r)

(
k

2π

(
∂r∂̄r + tanh2(r)∂θ∂̄θ

)
+

1

16π
R[h]

)
. (4.70)

The deformation of the cigar sigma-model by ε
∫

d2zOΦ is thus again almost trivial. By

the field redefinition r → r̃ one may undo the deformation, up to a shift Φ0 → Φ0 + ε
2

of

the value of the dilaton at the tip. This is a trivial improvement term from the perspective

of the CFT. In the string theory, however, Φ0 sets the mass of the black hole (Eqn. 2.105),

which is shifted under the perturbation, δM = −εM .

Thus, the identification Eqn. 4.65 leads to an infinitesimal form of the FZZ duality,

relating superficially different marginal deformations of the cigar that shift the mass of the

black hole. One description simply shifts the value of the dilaton at the tip of the cigar,

while the dual description introduces a condensate of winding strings that wrap the tip.

For a black hole of a given mass M , one may formally apportion the mass between the

value of the dilaton at the tip and the strength of the condensate—as for Φ0 and λ in the

sine-Liouville description, neither of the two parameters is independently meaningful. One

may always trade away the contribution from the condensate in favor of a shifted value of

the dilaton by applying the duality. The black hole may therefore be described by the pure

cigar background Eqn. 2.97 of mass Eqn. 2.105 with the condensate turned off, just as

one may set the constant mode of the dilaton to zero in the sine-Liouville background Eqn.
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2.230. Alternatively, one may trade Φ0 in favor of the condensate. Then as in the sine-

Liouville description one may think of the black hole as being made up of winding strings.

The conformal perturbation adds additional strings and so increases the black hole mass.

The same isomorphism Eqn. 4.65 between OsL and OΦ holds in three dimensions, and

therefore the duality of SL(2,C)k/SU(2) and its black hole quotient Z\SL(2,C)k/SU(2) ad-

mits a similar infinitesimal interpretation. The BTZ black hole mass (Eqn. 3.97) scales with

1/GN, which, in three-dimensional gravity goes as GN ∝ lp ∝ g2
s ls. Thus, M ∝ e−2Φ0 as in

the two-dimensional black hole. A conformal perturbation by OΦ again shifts the constant

mode of the dilaton, and in turn the mass. To understand the dual interpretation, one needs

the asymptotic conditions for W± in EAdS3. The asymptotic conditions Eqn. 4.61 in the

cigar followed from the ρ→ −∞ limit of the cigar-wrapping saddle r = sinh−1(eρ), θ = ±φ.

This configuration may be uplifted to a solution of the SL(2,C)k/SU(2) equations of motion

with

ξ = ±1

2
log(1 + e2ρ). (4.71)

We conjecture that the asymptotic condition forW± in EAdS3 and the Euclidean black hole

is then as in Eqn. 4.61, together with ξ → ±1
2
e2ρ, up to shifts by a constant. Then the

perturbation by OsL again introduces a condensate of horizon-crossing strings, the horizon

now corresponding to the one-dimensional locus r = 0 (Fig. 4.7b).
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4.4.3 Infinitesimal Lorentzian Dualities

Lastly, we briefly consider the Lorentzian continuation of these infinitesimal dualities.

Each identifies two equivalent descriptions of the effect of a conformal perturbation by the

sine-Liouville operator OsL =W+ +W− (Eqn. 2.123) in the ER description of the respective

CFTs. In one description, the deformation introduces a condensate of strings that wrap the

Euclidean horizon r = 0, and in the other the constant mode of the dilaton is shifted. The

black hole mass is in turn shifted under the deformation, in the case of SL(2,R)k/U(1) and

Z\SL(2,C)k/SU(2).

The conformal perturbation deforms the Euclidean background that defines the Lorentzian

string theory upon continuation. Expanding the perturbation as in Eqn. 4.53, a superposi-

tion of W± insertions is introduced on the worldsheet. Note that, in contrast to Eqn. 4.18,

we are now treating the perturbation as an expansion around the exact CFT background

as opposed to the free-field background. In particular, the winding number need not be

conserved.

In the cigar, the asymptotic conditions Eqn. 4.61 for W± map the neighborhood of the

insertion point to the tip as pictured in Fig. 4.7a. On the θ = 0 fixed-time slice, one finds a

string with one end at the tip of the cigar, and likewise on the θ = π slice. When the cigar

is cut in half across its θ cycle to prepare the HH state of the black hole, the W± insertion

therefore adds a pair of entangled strings in the TFD state of H±,1(R) ⊗ H±,1(R), one in

the left wedge and one in the right, each with one end pinned at the horizon bifurcation
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(a) (b)

Figure 4.8: The Infinitesimal Duality. When the SL(2,R)k/U(1) or Z\SL(2,C)k/SU(2) Euclidean black hole CFT is
deformed by a marginal operator known as the sine-Liouville operator—so-called because its free-field limit is the sine-Liouville
potential—a condensate of strings that wrap the Euclidean horizon is introduced (right). The red loop is a spatial slice of string,
corresponding to the image of the dashed line in Fig. 1.7a bounding the worldsheet TFD state with a pair of winding insertions.
It may be thought of as a pair of folded strings emanating from the horizon, contrasted with the disconnected folded strings
emanating from the strong-coupling region in the EPR description (Fig. 1.5b and 1.7b). When continued to the Lorentzian ER
string theory, one finds a pair of folded strings joined at the horizon bifurcation point in an entangled state. The deformation
introduces a condensate of such strings, and the infinitesimal duality asserts that the same effect is described by shifting the
constant mode of the dilaton. In both descriptions the mass of the black hole is in turn shifted.

point. Or, with a pair of W+,W− insertions as in Fig. 1.7a, one finds on the spacetime

zero-time slice a pair of folded strings emanating from the horizon in the TFD state of

H+−(R)⊗H+−(R), as sketched in Fig. 4.8a. These folded strings should be compared with

those emanating from the strong-coupling region of the EPR background (Fig. 1.5a)—in the

ER description they end on the horizon while in the EPR description they dissolve into the

condensate. One may think of the deformation as adding to the condensate of strings that

make up the black hole and thus shifting the mass. The dual dilaton-shifting description of

course shifts the mass as well.

In SL(2,C)k/SU(2) or Z\SL(2,C)k/SU(2) the picture is similar. TheW± insertions again

add pairs of strings to the AdS3-Rindler or BTZ backgrounds with one or both ends on the

horizon bifurcation locus, the strings now extending in the ξ direction as well due to the

additional asymptotic condition ξ → ±1
2
e2ρ+const. (Eqn. 4.71). The conformal perturbation

251



4 STRINGY ER = EPR

by OsL introduces a condensate of such strings.

These horizon-bound strings, and their strong-coupling-bound EPR counterparts, resem-

ble the open strings conjectured in [135,136] to account for the black hole entropy. It would

be very interesting to understand how to compute the entropy in these string backgrounds.

Our work may also be relevant to understanding entanglement entropy in string theory,

related to ideas discussed in [137,138].

252



REFERENCES

References

[1] M. Van Raamsdonk, “Comments on quantum gravity and entanglement,”
arXiv:0907.2939 [hep-th].

[2] M. Van Raamsdonk, “Building up spacetime with quantum entanglement,” Gen. Rel.
Grav. 42 (2010) 2323–2329, arXiv:1005.3035 [hep-th]. [Int. J. Mod.
Phys.D19,2429(2010)].

[3] V. E. Hubeny, M. Rangamani, and T. Takayanagi, “A Covariant holographic
entanglement entropy proposal,” JHEP 07 (2007) 062, arXiv:0705.0016 [hep-th].

[4] J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,” Fortsch.
Phys. 61 (2013) 781–811, arXiv:1306.0533 [hep-th].

[5] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from
AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602, arXiv:hep-th/0603001.

[6] S. Ryu and T. Takayanagi, “Aspects of Holographic Entanglement Entropy,” JHEP
08 (2006) 045, arXiv:hep-th/0605073.

[7] A. Einstein and N. Rosen, “The Particle Problem in the General Theory of
Relativity,” Phys. Rev. 48 (1935) 73–77.

[8] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum mechanical description of
physical reality be considered complete?,” Phys. Rev. 47 (1935) 777–780.

[9] S. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43 (1975)
199–220. [Erratum: Commun.Math.Phys. 46, 206 (1976)].

[10] S. W. Hawking, “Breakdown of Predictability in Gravitational Collapse,” Phys. Rev.
D 14 (1976) 2460–2473.

[11] J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7 (1973) 2333–2346.

[12] J. D. Bekenstein, “Generalized second law of thermodynamics in black hole physics,”
Phys. Rev. D 9 (1974) 3292–3300.

[13] W. Israel, “Event horizons in static vacuum space-times,” Phys. Rev. 164 (1967)
1776–1779.

[14] W. Israel, “Event horizons in static electrovac space-times,” Commun. Math. Phys. 8
(1968) 245–260.

[15] L. Susskind, “The World as a hologram,” J. Math. Phys. 36 (1995) 6377–6396,
arXiv:hep-th/9409089.

253

http://arxiv.org/abs/0907.2939
http://dx.doi.org/10.1007/s10714-010-1034-0, 10.1142/S0218271810018529
http://dx.doi.org/10.1007/s10714-010-1034-0, 10.1142/S0218271810018529
http://arxiv.org/abs/1005.3035
http://dx.doi.org/10.1088/1126-6708/2007/07/062
http://arxiv.org/abs/0705.0016
http://dx.doi.org/10.1002/prop.201300020
http://dx.doi.org/10.1002/prop.201300020
http://arxiv.org/abs/1306.0533
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://arxiv.org/abs/hep-th/0605073
http://dx.doi.org/10.1103/PhysRev.48.73
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1103/PhysRevD.14.2460
http://dx.doi.org/10.1103/PhysRevD.14.2460
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1103/PhysRevD.9.3292
http://dx.doi.org/10.1103/PhysRev.164.1776
http://dx.doi.org/10.1103/PhysRev.164.1776
http://dx.doi.org/10.1007/BF01645859
http://dx.doi.org/10.1007/BF01645859
http://dx.doi.org/10.1063/1.531249
http://arxiv.org/abs/hep-th/9409089


REFERENCES

[16] J. D. Bekenstein, “A Universal Upper Bound on the Entropy to Energy Ratio for
Bounded Systems,” Phys. Rev. D 23 (1981) 287.

[17] G. ’t Hooft, “Dimensional reduction in quantum gravity,” Conf. Proc. C 930308
(1993) 284–296, arXiv:gr-qc/9310026.

[18] J. M. Maldacena, “The Large N limit of superconformal field theories and
supergravity,” Int. J. Theor. Phys. 38 (1999) 1113–1133, arXiv:hep-th/9711200
[hep-th]. [Adv. Theor. Math. Phys.2,231(1998)].

[19] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from
noncritical string theory,” Phys. Lett. B428 (1998) 105–114, arXiv:hep-th/9802109
[hep-th].

[20] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998)
253–291, arXiv:hep-th/9802150 [hep-th].

[21] M. Banados, C. Teitelboim, and J. Zanelli, “The Black hole in three-dimensional
space-time,” Phys. Rev. Lett. 69 (1992) 1849–1851, arXiv:hep-th/9204099
[hep-th].

[22] M. Banados, M. Henneaux, C. Teitelboim, and J. Zanelli, “Geometry of the (2+1)
black hole,” Phys. Rev. D48 (1993) 1506–1525, arXiv:gr-qc/9302012 [gr-qc].
[Erratum: Phys. Rev.D88,069902(2013)].

[23] J. M. Maldacena, “Eternal black holes in anti-de Sitter,” JHEP 04 (2003) 021,
arXiv:hep-th/0106112 [hep-th].

[24] W. Israel, “Thermo field dynamics of black holes,” Phys. Lett. A 57 (1976) 107–110.

[25] S. W. Hawking and D. N. Page, “Thermodynamics of Black Holes in anti-De Sitter
Space,” Commun. Math. Phys. 87 (1983) 577.

[26] J. B. Hartle and S. W. Hawking, “Path Integral Derivation of Black Hole Radiance,”
Phys. Rev. D13 (1976) 2188–2203.

[27] J. B. Hartle and S. W. Hawking, “Wave Function of the Universe,” Phys. Rev. D28
(1983) 2960–2975. [Adv. Ser. Astrophys. Cosmol.3,174(1987)].

[28] N. Bao, J. Pollack, and G. N. Remmen, “Wormhole and Entanglement
(Non-)Detection in the ER=EPR Correspondence,” JHEP 11 (2015) 126,
arXiv:1509.05426 [hep-th].

[29] D. Berenstein and A. Miller, “Can Topology and Geometry be Measured by an
Operator Measurement in Quantum Gravity?,” Phys. Rev. Lett. 118 no. 26, (2017)
261601, arXiv:1605.06166 [hep-th].

[30] D. Berenstein and A. Miller, “Superposition induced topology changes in quantum

254

http://dx.doi.org/10.1103/PhysRevD.23.287
http://arxiv.org/abs/gr-qc/9310026
http://dx.doi.org/10.1023/A:1026654312961, 10.4310/ATMP.1998.v2.n2.a1
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802109
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://arxiv.org/abs/hep-th/9802150
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://arxiv.org/abs/hep-th/9204099
http://arxiv.org/abs/hep-th/9204099
http://dx.doi.org/10.1103/PhysRevD.48.1506, 10.1103/PhysRevD.88.069902
http://arxiv.org/abs/gr-qc/9302012
http://dx.doi.org/10.1088/1126-6708/2003/04/021
http://arxiv.org/abs/hep-th/0106112
http://dx.doi.org/10.1016/0375-9601(76)90178-X
http://dx.doi.org/10.1007/BF01208266
http://dx.doi.org/10.1103/PhysRevD.13.2188
http://dx.doi.org/10.1103/PhysRevD.28.2960
http://dx.doi.org/10.1103/PhysRevD.28.2960
http://dx.doi.org/10.1007/JHEP11(2015)126
http://arxiv.org/abs/1509.05426
http://dx.doi.org/10.1103/PhysRevLett.118.261601
http://dx.doi.org/10.1103/PhysRevLett.118.261601
http://arxiv.org/abs/1605.06166


REFERENCES

gravity,” JHEP 11 (2017) 121, arXiv:1702.03011 [hep-th].

[31] D. L. Jafferis, “Bulk reconstruction and the Hartle-Hawking wavefunction,”
arXiv:1703.01519 [hep-th].

[32] E. Witten, “On string theory and black holes,” Phys. Rev. D44 (1991) 314–324.

[33] E. Witten, “A New Look At The Path Integral Of Quantum Mechanics,”
arXiv:1009.6032 [hep-th].

[34] E. Witten, “Analytic Continuation Of Chern-Simons Theory,” AMS/IP Stud. Adv.
Math. 50 (2011) 347–446, arXiv:1001.2933 [hep-th].

[35] D. Harlow, J. Maltz, and E. Witten, “Analytic Continuation of Liouville Theory,”
JHEP 12 (2011) 071, arXiv:1108.4417 [hep-th].

[36] R. Balian, G. Parisi, and A. Voros, “Quartic Oscillator,” in Feynman Path Integrals,
pp. 337–360. 1978.

[37] A. Voros, “The return of the quartic oscillator. the complex wkb method,” Annales de
l’I.H.P. Physique thorique 39 no. 3, (1983) 211–338. http://eudml.org/doc/76217.

[38] A. Cherman, D. Dorigoni, and M. Unsal, “Decoding perturbation theory using
resurgence: Stokes phenomena, new saddle points and Lefschetz thimbles,” JHEP 10
(2015) 056, arXiv:1403.1277 [hep-th].

[39] A. Behtash, G. V. Dunne, T. Schfer, T. Sulejmanpasic, and M. nsal, “Complexified
path integrals, exact saddles and supersymmetry,” Phys. Rev. Lett. 116 no. 1, (2016)
011601, arXiv:1510.00978 [hep-th].

[40] A. Behtash, G. V. Dunne, T. Schfer, T. Sulejmanpasic, and M. nsal, “Toward
PicardLefschetz theory of path integrals, complex saddles and resurgence,” Ann.
Math. Sci. Appl. 02 (2017) 95–212, arXiv:1510.03435 [hep-th].

[41] T. Fujimori, S. Kamata, T. Misumi, M. Nitta, and N. Sakai, “Nonperturbative
contributions from complexified solutions in CPN−1models,” Phys. Rev. D94 no. 10,
(2016) 105002, arXiv:1607.04205 [hep-th].

[42] A. Behtash, G. V. Dunne, T. Schaefer, T. Sulejmanpasic, and M. nsal, “Critical
Points at Infinity, Non-Gaussian Saddles, and Bions,” JHEP 06 (2018) 068,
arXiv:1803.11533 [hep-th].

[43] J. Teschner, “On structure constants and fusion rules in the SL(2,C) / SU(2) WZNW
model,” Nucl. Phys. B546 (1999) 390–422, arXiv:hep-th/9712256 [hep-th].

[44] J. Teschner, “Operator product expansion and factorization in the H+(3) WZNW
model,” Nucl. Phys. B571 (2000) 555–582, arXiv:hep-th/9906215 [hep-th].

255

http://dx.doi.org/10.1007/JHEP11(2017)121
http://arxiv.org/abs/1702.03011
http://arxiv.org/abs/1703.01519
http://dx.doi.org/10.1103/PhysRevD.44.314
http://arxiv.org/abs/1009.6032
http://arxiv.org/abs/1001.2933
http://dx.doi.org/10.1007/JHEP12(2011)071
http://arxiv.org/abs/1108.4417
http://eudml.org/doc/76217
http://dx.doi.org/10.1007/JHEP10(2015)056
http://dx.doi.org/10.1007/JHEP10(2015)056
http://arxiv.org/abs/1403.1277
http://dx.doi.org/10.1103/PhysRevLett.116.011601
http://dx.doi.org/10.1103/PhysRevLett.116.011601
http://arxiv.org/abs/1510.00978
http://dx.doi.org/10.4310/AMSA.2017.v2.n1.a3
http://dx.doi.org/10.4310/AMSA.2017.v2.n1.a3
http://arxiv.org/abs/1510.03435
http://dx.doi.org/10.1103/PhysRevD.94.105002
http://dx.doi.org/10.1103/PhysRevD.94.105002
http://arxiv.org/abs/1607.04205
http://dx.doi.org/10.1007/JHEP06(2018)068
http://arxiv.org/abs/1803.11533
http://dx.doi.org/10.1016/S0550-3213(99)00072-3
http://arxiv.org/abs/hep-th/9712256
http://dx.doi.org/10.1016/S0550-3213(99)00785-3
http://arxiv.org/abs/hep-th/9906215


REFERENCES

[45] A. Giveon and D. Kutasov, “Comments on double scaled little string theory,” JHEP
01 (2000) 023, arXiv:hep-th/9911039 [hep-th].

[46] J. M. Maldacena and H. Ooguri, “Strings in AdS(3) and the SL(2,R) WZW model.
Part 3. Correlation functions,” Phys. Rev. D65 (2002) 106006,
arXiv:hep-th/0111180 [hep-th].

[47] N. Seiberg, “Notes on quantum Liouville theory and quantum gravity,” Prog. Theor.
Phys. Suppl. 102 (1990) 319–349.

[48] “V. Fateev, A. Zamolodchikov and Al. Zamolodchikov, unpublished,”.

[49] V. Kazakov, I. K. Kostov, and D. Kutasov, “A Matrix model for the two-dimensional
black hole,” Nucl. Phys. B622 (2002) 141–188, arXiv:hep-th/0101011 [hep-th].

[50] L. Eberhardt, M. R. Gaberdiel, and R. Gopakumar, “Deriving the AdS3/CFT2

correspondence,” JHEP 02 (2020) 136, arXiv:1911.00378 [hep-th].

[51] M. R. Gaberdiel and R. Gopakumar, “Tensionless string spectra on AdS3,” JHEP 05
(2018) 085, arXiv:1803.04423 [hep-th].

[52] L. Eberhardt, M. R. Gaberdiel, and R. Gopakumar, “The Worldsheet Dual of the
Symmetric Product CFT,” JHEP 04 (2019) 103, arXiv:1812.01007 [hep-th].

[53] G. Giribet, C. Hull, M. Kleban, M. Porrati, and E. Rabinovici, “Superstrings on
AdS3 at ‖ = 1,” JHEP 08 (2018) 204, arXiv:1803.04420 [hep-th].

[54] M. Berkooz, Z. Komargodski, and D. Reichmann, “Thermal AdS(3), BTZ and
competing winding modes condensation,” JHEP 12 (2007) 020, arXiv:0706.0610
[hep-th].

[55] K. Hori and A. Kapustin, “Duality of the fermionic 2-D black hole and N=2 liouville
theory as mirror symmetry,” JHEP 08 (2001) 045, arXiv:hep-th/0104202
[hep-th].

[56] J. S. Schwinger, “Brownian motion of a quantum oscillator,” J. Math. Phys. 2 (1961)
407–432.

[57] L. Keldysh, “Diagram technique for nonequilibrium processes,” Zh. Eksp. Teor. Fiz.
47 (1964) 1515–1527.

[58] N. Itzhaki, “Stringy instability inside the black hole,” JHEP 10 (2018) 145,
arXiv:1808.02259 [hep-th].

[59] A. Giveon and N. Itzhaki, “Stringy Black Hole Interiors,” JHEP 11 (2019) 014,
arXiv:1908.05000 [hep-th].

[60] A. Giveon and N. Itzhaki, “Stringy Information and Black Holes,” JHEP 06 (2020)

256

http://dx.doi.org/10.1088/1126-6708/2000/01/023
http://dx.doi.org/10.1088/1126-6708/2000/01/023
http://arxiv.org/abs/hep-th/9911039
http://dx.doi.org/10.1103/PhysRevD.65.106006
http://arxiv.org/abs/hep-th/0111180
http://dx.doi.org/10.1143/PTPS.102.319
http://dx.doi.org/10.1143/PTPS.102.319
http://dx.doi.org/10.1016/S0550-3213(01)00606-X
http://arxiv.org/abs/hep-th/0101011
http://dx.doi.org/10.1007/JHEP02(2020)136
http://arxiv.org/abs/1911.00378
http://dx.doi.org/10.1007/JHEP05(2018)085
http://dx.doi.org/10.1007/JHEP05(2018)085
http://arxiv.org/abs/1803.04423
http://dx.doi.org/10.1007/JHEP04(2019)103
http://arxiv.org/abs/1812.01007
http://dx.doi.org/10.1007/JHEP08(2018)204
http://arxiv.org/abs/1803.04420
http://dx.doi.org/10.1088/1126-6708/2007/12/020
http://arxiv.org/abs/0706.0610
http://arxiv.org/abs/0706.0610
http://dx.doi.org/10.1088/1126-6708/2001/08/045
http://arxiv.org/abs/hep-th/0104202
http://arxiv.org/abs/hep-th/0104202
http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/10.1007/JHEP10(2018)145
http://arxiv.org/abs/1808.02259
http://dx.doi.org/10.1007/JHEP11(2019)014
http://arxiv.org/abs/1908.05000
http://dx.doi.org/10.1007/JHEP06(2020)117
http://dx.doi.org/10.1007/JHEP06(2020)117


REFERENCES

117, arXiv:1912.06538 [hep-th].

[61] A. Giveon, N. Itzhaki, and U. Peleg, “Instant Folded Strings and Black Fivebranes,”
JHEP 08 (2020) 020, arXiv:2004.06143 [hep-th].

[62] K. Attali and N. Itzhaki, “The Averaged Null Energy Condition and the Black Hole
Interior in String Theory,” Nucl. Phys. B 943 (2019) 114631, arXiv:1811.12117
[hep-th].

[63] N. Itzhaki and L. Liram, “A stringy glimpse into the black hole horizon,” JHEP 04
(2018) 018, arXiv:1801.04939 [hep-th].

[64] K. P. Yogendran, “Horizon strings and interior states of a black hole,” Phys. Lett. B
750 (2015) 278–281, arXiv:1808.05748 [hep-th].

[65] K. P. Yogendran, “Closed Strings in the 2D Lorentzian Black Hole,”
arXiv:1808.10109 [hep-th].

[66] A. B. Zamolodchikov and A. B. Zamolodchikov, “Structure constants and conformal
bootstrap in Liouville field theory,” Nucl. Phys. B477 (1996) 577–605,
arXiv:hep-th/9506136 [hep-th].

[67] J. Teschner, “Liouville theory revisited,” Class. Quant. Grav. 18 (2001) R153–R222,
arXiv:hep-th/0104158 [hep-th].

[68] D. L. Jafferis and E. Schneider, “Semi-Classical Analysis of the String Theory Cigar,”
arXiv:2004.05223 [hep-th].

[69] H. Dorn and H. J. Otto, “Two and three point functions in Liouville theory,” Nucl.
Phys. B429 (1994) 375–388, arXiv:hep-th/9403141 [hep-th].

[70] V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, “Fractal Structure of 2D
Quantum Gravity,” Mod. Phys. Lett. A 3 (1988) 819.

[71] P. Di Francesco and D. Kutasov, “World sheet and space-time physics in
two-dimensional (Super)string theory,” Nucl. Phys. B 375 (1992) 119–170,
arXiv:hep-th/9109005.

[72] M. V. Berry, “Infinitely many stokes smoothings in the gamma function,”
Proceedings of the Royal Society: Mathematical and Physical Sciences (1990-1995)
434 no. 1891, (1991) 465–472.

[73] S. Pasquetti and R. Schiappa, “Borel and Stokes Nonperturbative Phenomena in
Topological String Theory and c=1 Matrix Models,” Annales Henri Poincare 11
(2010) 351–431, arXiv:0907.4082 [hep-th].

[74] A. Kupiainen, R. Rhodes, and V. Vargas, “The DOZZ Formula from the Path
Integral,” JHEP 05 (2018) 094, arXiv:1803.05418 [hep-th].

257

http://dx.doi.org/10.1007/JHEP06(2020)117
http://dx.doi.org/10.1007/JHEP06(2020)117
http://arxiv.org/abs/1912.06538
http://dx.doi.org/10.1007/JHEP08(2020)020
http://arxiv.org/abs/2004.06143
http://dx.doi.org/10.1016/j.nuclphysb.2019.114631
http://arxiv.org/abs/1811.12117
http://arxiv.org/abs/1811.12117
http://dx.doi.org/10.1007/JHEP04(2018)018
http://dx.doi.org/10.1007/JHEP04(2018)018
http://arxiv.org/abs/1801.04939
http://dx.doi.org/10.1016/j.physletb.2015.08.057
http://dx.doi.org/10.1016/j.physletb.2015.08.057
http://arxiv.org/abs/1808.05748
http://arxiv.org/abs/1808.10109
http://dx.doi.org/10.1016/0550-3213(96)00351-3
http://arxiv.org/abs/hep-th/9506136
http://dx.doi.org/10.1088/0264-9381/18/23/201
http://arxiv.org/abs/hep-th/0104158
http://arxiv.org/abs/2004.05223
http://dx.doi.org/10.1016/0550-3213(94)00352-1
http://dx.doi.org/10.1016/0550-3213(94)00352-1
http://arxiv.org/abs/hep-th/9403141
http://dx.doi.org/10.1142/S0217732388000982
http://dx.doi.org/10.1016/0550-3213(92)90337-B
http://arxiv.org/abs/hep-th/9109005
http://dx.doi.org/10.1007/s00023-010-0044-5
http://dx.doi.org/10.1007/s00023-010-0044-5
http://arxiv.org/abs/0907.4082
http://dx.doi.org/10.1007/JHEP05(2018)094
http://arxiv.org/abs/1803.05418


REFERENCES

[75] R. Dijkgraaf, H. L. Verlinde, and E. P. Verlinde, “String propagation in a black hole
geometry,” Nucl. Phys. B371 (1992) 269–314.

[76] J. M. Maldacena and H. Ooguri, “Strings in AdS(3) and SL(2,R) WZW model 1.:
The Spectrum,” J. Math. Phys. 42 (2001) 2929–2960, arXiv:hep-th/0001053
[hep-th].

[77] A. Hanany, N. Prezas, and J. Troost, “The Partition function of the two-dimensional
black hole conformal field theory,” JHEP 04 (2002) 014, arXiv:hep-th/0202129
[hep-th].

[78] O. Aharony, A. Giveon, and D. Kutasov, “LSZ in LST,” Nucl. Phys. B691 (2004)
3–78, arXiv:hep-th/0404016 [hep-th].

[79] A. Giveon, N. Itzhaki, and D. Kutasov, “Stringy Horizons II,” JHEP 10 (2016) 157,
arXiv:1603.05822 [hep-th].

[80] D. Kutasov, “Accelerating branes and the string/black hole transition,”
arXiv:hep-th/0509170 [hep-th].

[81] A. Giveon, N. Itzhaki, and D. Kutasov, “Stringy Horizons,” JHEP 06 (2015) 064,
arXiv:1502.03633 [hep-th].

[82] A. Giveon and N. Itzhaki, “String theory at the tip of the cigar,” JHEP 09 (2013)
079, arXiv:1305.4799 [hep-th].

[83] A. Giveon, D. Kutasov, E. Rabinovici, and A. Sever, “Phases of quantum gravity in
AdS(3) and linear dilaton backgrounds,” Nucl. Phys. B719 (2005) 3–34,
arXiv:hep-th/0503121 [hep-th].

[84] S. Ribault and J. Teschner, “H+(3)-WZNW correlators from Liouville theory,” JHEP
06 (2005) 014, arXiv:hep-th/0502048 [hep-th].

[85] J. M. Maldacena, H. Ooguri, and J. Son, “Strings in AdS(3) and the SL(2,R) WZW
model. Part 2. Euclidean black hole,” J. Math. Phys. 42 (2001) 2961–2977,
arXiv:hep-th/0005183 [hep-th].

[86] J. de Boer, H. Ooguri, H. Robins, and J. Tannenhauser, “String theory on AdS(3),”
JHEP 12 (1998) 026, arXiv:hep-th/9812046 [hep-th].

[87] A. Giveon, D. Kutasov, and N. Seiberg, “Comments on string theory on AdS(3),”
Adv. Theor. Math. Phys. 2 (1998) 733–782, arXiv:hep-th/9806194 [hep-th].

[88] D. Kutasov and N. Seiberg, “More comments on string theory on AdS(3),” JHEP 04
(1999) 008, arXiv:hep-th/9903219 [hep-th].

[89] K. Gawedzki, “Noncompact WZW conformal field theories,” in
New symmetry principles in quantum field theory., pp. 0247–274. 1991.

258

http://dx.doi.org/10.1016/0550-3213(92)90237-6
http://dx.doi.org/10.1063/1.1377273
http://arxiv.org/abs/hep-th/0001053
http://arxiv.org/abs/hep-th/0001053
http://dx.doi.org/10.1088/1126-6708/2002/04/014
http://arxiv.org/abs/hep-th/0202129
http://arxiv.org/abs/hep-th/0202129
http://dx.doi.org/10.1016/j.nuclphysb.2004.05.015
http://dx.doi.org/10.1016/j.nuclphysb.2004.05.015
http://arxiv.org/abs/hep-th/0404016
http://dx.doi.org/10.1007/JHEP10(2016)157
http://arxiv.org/abs/1603.05822
http://arxiv.org/abs/hep-th/0509170
http://dx.doi.org/10.1007/JHEP06(2015)064
http://arxiv.org/abs/1502.03633
http://dx.doi.org/10.1007/JHEP09(2013)079
http://dx.doi.org/10.1007/JHEP09(2013)079
http://arxiv.org/abs/1305.4799
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.015
http://arxiv.org/abs/hep-th/0503121
http://dx.doi.org/10.1088/1126-6708/2005/06/014
http://dx.doi.org/10.1088/1126-6708/2005/06/014
http://arxiv.org/abs/hep-th/0502048
http://dx.doi.org/10.1063/1.1377039
http://arxiv.org/abs/hep-th/0005183
http://dx.doi.org/10.1088/1126-6708/1998/12/026
http://arxiv.org/abs/hep-th/9812046
http://dx.doi.org/10.4310/ATMP.1998.v2.n4.a3
http://arxiv.org/abs/hep-th/9806194
http://dx.doi.org/10.1088/1126-6708/1999/04/008
http://dx.doi.org/10.1088/1126-6708/1999/04/008
http://arxiv.org/abs/hep-th/9903219


REFERENCES

arXiv:hep-th/9110076 [hep-th].

[90] J. J. Atick and E. Witten, “The Hagedorn Transition and the Number of Degrees of
Freedom of String Theory,” Nucl. Phys. B310 (1988) 291–334.

[91] G. T. Horowitz and J. Polchinski, “Selfgravitating fundamental strings,” Phys. Rev.
D 57 (1998) 2557–2563, arXiv:hep-th/9707170.

[92] P. Horava and C. J. Mogni, “String Perturbation Theory on the Schwinger-Keldysh
Time Contour,” Phys. Rev. Lett. 125 no. 26, (2020) 261602, arXiv:2009.03940
[hep-th].

[93] P. Horava and C. J. Mogni, “Large-N Expansion and String Theory Out of
Equilibrium,” arXiv:2008.11685 [hep-th].

[94] P. Horava and C. J. Mogni, “Keldysh Rotation in the Large-N Expansion and String
Theory Out of Equilibrium,” arXiv:2010.10671 [hep-th].

[95] K. Skenderis and B. C. van Rees, “Real-time gauge/gravity duality: Prescription,
Renormalization and Examples,” JHEP 05 (2009) 085, arXiv:0812.2909 [hep-th].

[96] K. Skenderis and B. C. van Rees, “Real-time gauge/gravity duality: Prescription,
Renormalization and Examples,” JHEP 05 (2009) 085, arXiv:0812.2909 [hep-th].

[97] J. Brown and M. Henneaux, “Central Charges in the Canonical Realization of
Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Commun.
Math. Phys. 104 (1986) 207–226.

[98] I. R. Klebanov and E. Witten, “AdS / CFT correspondence and symmetry
breaking,” Nucl. Phys. B 556 (1999) 89–114, arXiv:hep-th/9905104.

[99] J. Kim and M. Porrati, “On the central charge of spacetime current algebras and
correlators in string theory on AdS3,” JHEP 05 (2015) 076, arXiv:1503.07186
[hep-th].

[100] P. Breitenlohner and D. Z. Freedman, “Stability in Gauged Extended Supergravity,”
Annals Phys. 144 (1982) 249.

[101] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge
theories,” Adv. Theor. Math. Phys. 2 (1998) 505–532, arXiv:hep-th/9803131
[hep-th].

[102] E. Keski-Vakkuri, “Bulk and boundary dynamics in BTZ black holes,” Phys. Rev. D
59 (1999) 104001, arXiv:hep-th/9808037.

[103] D. Birmingham, I. Sachs, and S. N. Solodukhin, “Relaxation in conformal field
theory, Hawking-Page transition, and quasinormal normal modes,” Phys. Rev. D 67
(2003) 104026, arXiv:hep-th/0212308.

259

http://arxiv.org/abs/hep-th/9110076
http://dx.doi.org/10.1016/0550-3213(88)90151-4
http://dx.doi.org/10.1103/PhysRevD.57.2557
http://dx.doi.org/10.1103/PhysRevD.57.2557
http://arxiv.org/abs/hep-th/9707170
http://dx.doi.org/10.1103/PhysRevLett.125.261602
http://arxiv.org/abs/2009.03940
http://arxiv.org/abs/2009.03940
http://arxiv.org/abs/2008.11685
http://arxiv.org/abs/2010.10671
http://dx.doi.org/10.1088/1126-6708/2009/05/085
http://arxiv.org/abs/0812.2909
http://dx.doi.org/10.1088/1126-6708/2009/05/085
http://arxiv.org/abs/0812.2909
http://dx.doi.org/10.1007/BF01211590
http://dx.doi.org/10.1007/BF01211590
http://dx.doi.org/10.1016/S0550-3213(99)00387-9
http://arxiv.org/abs/hep-th/9905104
http://dx.doi.org/10.1007/JHEP05(2015)076
http://arxiv.org/abs/1503.07186
http://arxiv.org/abs/1503.07186
http://dx.doi.org/10.1016/0003-4916(82)90116-6
http://dx.doi.org/10.4310/ATMP.1998.v2.n3.a3
http://arxiv.org/abs/hep-th/9803131
http://arxiv.org/abs/hep-th/9803131
http://dx.doi.org/10.1103/PhysRevD.59.104001
http://dx.doi.org/10.1103/PhysRevD.59.104001
http://arxiv.org/abs/hep-th/9808037
http://dx.doi.org/10.1103/PhysRevD.67.104026
http://dx.doi.org/10.1103/PhysRevD.67.104026
http://arxiv.org/abs/hep-th/0212308


REFERENCES

[104] M. Natsuume and Y. Satoh, “String theory on three-dimensional black holes,” Int. J.
Mod. Phys. A13 (1998) 1229–1262, arXiv:hep-th/9611041 [hep-th].

[105] S. Hemming and E. Keski-Vakkuri, “The Spectrum of strings on BTZ black holes and
spectral flow in the SL(2,R) WZW model,” Nucl. Phys. B626 (2002) 363–376,
arXiv:hep-th/0110252 [hep-th].

[106] S. Hemming, E. Keski-Vakkuri, and P. Kraus, “Strings in the extended BTZ
space-time,” JHEP 10 (2002) 006, arXiv:hep-th/0208003 [hep-th].

[107] A. S. Losev, A. Marshakov, and A. M. Zeitlin, “On first order formalism in string
theory,” Phys. Lett. B 633 (2006) 375–381, arXiv:hep-th/0510065.

[108] N. A. Nekrasov, “Lectures on curved beta-gamma systems, pure spinors, and
anomalies,” arXiv:hep-th/0511008.

[109] E. Frenkel and A. Losev, “Mirror symmetry in two steps: A-I-B,” Commun. Math.
Phys. 269 (2006) 39–86, arXiv:hep-th/0505131.

[110] R. Argurio, A. Giveon, and A. Shomer, “Superstrings on AdS(3) and symmetric
products,” JHEP 12 (2000) 003, arXiv:hep-th/0009242.

[111] A. Giveon and D. Kutasov, “Notes on AdS(3),” Nucl. Phys. B 621 (2002) 303–336,
arXiv:hep-th/0106004.

[112] G. Giribet and C. A. Nunez, “Correlators in AdS(3) string theory,” JHEP 06 (2001)
010, arXiv:hep-th/0105200.

[113] J. L. F. Barbon and E. Rabinovici, “Remarks on black hole instabilities and closed
string tachyons,” Found. Phys. 33 (2003) 145–165, arXiv:hep-th/0211212.

[114] J. L. F. Barbon and E. Rabinovici, “Closed string tachyons and the Hagedorn
transition in AdS space,” JHEP 03 (2002) 057, arXiv:hep-th/0112173.

[115] G. T. Horowitz and E. Silverstein, “The Inside story: Quasilocal tachyons and black
holes,” Phys. Rev. D 73 (2006) 064016, arXiv:hep-th/0601032.

[116] J. A. Harvey, D. Kutasov, E. J. Martinec, and G. W. Moore, “Localized tachyons and
RG flows,” arXiv:hep-th/0111154.

[117] G. T. Horowitz, “Tachyon condensation and black strings,” JHEP 08 (2005) 091,
arXiv:hep-th/0506166.

[118] E. Silverstein, “Singularities and closed string tachyons,” in
23rd Solvay Conference in Physics: The Quantum Structure of Space and Time. 2,
2006. arXiv:hep-th/0602230.

[119] A. Adams, X. Liu, J. McGreevy, A. Saltman, and E. Silverstein, “Things fall apart:

260

http://dx.doi.org/10.1142/S0217751X98000585
http://dx.doi.org/10.1142/S0217751X98000585
http://arxiv.org/abs/hep-th/9611041
http://dx.doi.org/10.1016/S0550-3213(02)00021-4
http://arxiv.org/abs/hep-th/0110252
http://dx.doi.org/10.1088/1126-6708/2002/10/006
http://arxiv.org/abs/hep-th/0208003
http://dx.doi.org/10.1016/j.physletb.2005.12.010
http://arxiv.org/abs/hep-th/0510065
http://arxiv.org/abs/hep-th/0511008
http://dx.doi.org/10.1007/s00220-006-0114-1
http://dx.doi.org/10.1007/s00220-006-0114-1
http://arxiv.org/abs/hep-th/0505131
http://dx.doi.org/10.1088/1126-6708/2000/12/003
http://arxiv.org/abs/hep-th/0009242
http://dx.doi.org/10.1016/S0550-3213(01)00573-9
http://arxiv.org/abs/hep-th/0106004
http://dx.doi.org/10.1088/1126-6708/2001/06/010
http://dx.doi.org/10.1088/1126-6708/2001/06/010
http://arxiv.org/abs/hep-th/0105200
http://dx.doi.org/10.1023/A:1022823926674
http://arxiv.org/abs/hep-th/0211212
http://dx.doi.org/10.1088/1126-6708/2002/03/057
http://arxiv.org/abs/hep-th/0112173
http://dx.doi.org/10.1103/PhysRevD.73.064016
http://arxiv.org/abs/hep-th/0601032
http://arxiv.org/abs/hep-th/0111154
http://dx.doi.org/10.1088/1126-6708/2005/08/091
http://arxiv.org/abs/hep-th/0506166
http://arxiv.org/abs/hep-th/0602230


REFERENCES

Topology change from winding tachyons,” JHEP 10 (2005) 033,
arXiv:hep-th/0502021.

[120] A. Adams, J. Polchinski, and E. Silverstein, “Don’t panic! Closed string tachyons in
ALE space-times,” JHEP 10 (2001) 029, arXiv:hep-th/0108075.

[121] T. Fukuda and K. Hosomichi, “Three point functions in sine-Liouville theory,” JHEP
09 (2001) 003, arXiv:hep-th/0105217.

[122] D. Harlow, “Jerusalem Lectures on Black Holes and Quantum Information,” Rev.
Mod. Phys. 88 (2016) 015002, arXiv:1409.1231 [hep-th].

[123] E. Witten, “APS Medal for Exceptional Achievement in Research: Invited article on
entanglement properties of quantum field theory,” Rev. Mod. Phys. 90 no. 4, (2018)
045003, arXiv:1803.04993 [hep-th].

[124] W. G. Unruh and N. Weiss, “Acceleration Radiation in Interacting Field Theories,”
Phys. Rev. D29 (1984) 1656.

[125] K. Ohmori and Y. Tachikawa, “Physics at the entangling surface,” J. Stat. Mech.
1504 (2015) P04010, arXiv:1406.4167 [hep-th].

[126] J. M. Maldacena, “Long strings in two dimensional string theory and non-singlets in
the matrix model,” JHEP 09 (2005) 078, arXiv:hep-th/0503112.

[127] B. Balthazar, V. A. Rodriguez, and X. Yin, “Long String Scattering in c = 1 String
Theory,” JHEP 01 (2019) 173, arXiv:1810.07233 [hep-th].

[128] D. Friedan, E. J. Martinec, and S. H. Shenker, “Conformal Invariance,
Supersymmetry and String Theory,” Nucl. Phys. B 271 (1986) 93–165.

[129] E. P. Verlinde and H. L. Verlinde, “Chiral Bosonization, Determinants and the String
Partition Function,” Nucl. Phys. B 288 (1987) 357.

[130] A. D’Adda, M. A. Rego Monteiro, and S. Sciuto, “BRST Invariant N - Reggeon
Vertex With Bosonized Ghosts,” Nucl. Phys. B 294 (1987) 573–594.

[131] E. Witten, “The Feynman iε in String Theory,” JHEP 04 (2015) 055,
arXiv:1307.5124 [hep-th].

[132] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string.
Cambridge Monographs on Mathematical Physics. Cambridge University Press, 12,
2007.

[133] N. Seiberg and S. H. Shenker, “A Note on background (in)dependence,” Phys. Rev.
D 45 (1992) 4581–4587, arXiv:hep-th/9201017.

[134] J. L. Karczmarek, J. M. Maldacena, and A. Strominger, “Black hole non-formation in

261

http://dx.doi.org/10.1088/1126-6708/2005/10/033
http://arxiv.org/abs/hep-th/0502021
http://dx.doi.org/10.1088/1126-6708/2001/10/029
http://arxiv.org/abs/hep-th/0108075
http://dx.doi.org/10.1088/1126-6708/2001/09/003
http://dx.doi.org/10.1088/1126-6708/2001/09/003
http://arxiv.org/abs/hep-th/0105217
http://dx.doi.org/10.1103/RevModPhys.88.015002
http://dx.doi.org/10.1103/RevModPhys.88.015002
http://arxiv.org/abs/1409.1231
http://dx.doi.org/10.1103/RevModPhys.90.045003
http://dx.doi.org/10.1103/RevModPhys.90.045003
http://arxiv.org/abs/1803.04993
http://dx.doi.org/10.1103/PhysRevD.29.1656
http://dx.doi.org/10.1088/1742-5468/2015/04/P04010
http://dx.doi.org/10.1088/1742-5468/2015/04/P04010
http://arxiv.org/abs/1406.4167
http://dx.doi.org/10.1088/1126-6708/2005/09/078
http://arxiv.org/abs/hep-th/0503112
http://dx.doi.org/10.1007/JHEP01(2019)173
http://arxiv.org/abs/1810.07233
http://dx.doi.org/10.1016/0550-3213(86)90356-1
http://dx.doi.org/10.1016/0550-3213(87)90219-7
http://dx.doi.org/10.1016/0550-3213(87)90598-0
http://dx.doi.org/10.1007/JHEP04(2015)055
http://arxiv.org/abs/1307.5124
http://dx.doi.org/10.1017/CBO9780511816079
http://dx.doi.org/10.1103/PhysRevD.45.4581
http://dx.doi.org/10.1103/PhysRevD.45.4581
http://arxiv.org/abs/hep-th/9201017


REFERENCES

the matrix model,” JHEP 01 (2006) 039, arXiv:hep-th/0411174.

[135] L. Susskind, “Some speculations about black hole entropy in string theory,”
arXiv:hep-th/9309145.

[136] L. Susskind and J. Uglum, “Black hole entropy in canonical quantum gravity and
superstring theory,” Phys. Rev. D 50 (1994) 2700–2711, arXiv:hep-th/9401070.

[137] E. Witten, “Open Strings On The Rindler Horizon,” JHEP 01 (2019) 126,
arXiv:1810.11912 [hep-th].

[138] A. Dabholkar, “Strings on a cone and black hole entropy,” Nucl. Phys. B 439 (1995)
650–664, arXiv:hep-th/9408098.

[139] Y. Hikida and V. Schomerus, “The FZZ-Duality Conjecture: A Proof,” JHEP 03
(2009) 095, arXiv:0805.3931 [hep-th].

[140] A. Maloney, A. Strominger, and X. Yin, “S-brane thermodynamics,” JHEP 10 (2003)
048, arXiv:hep-th/0302146 [hep-th].

[141] A. Almheiri, X. Dong, and B. Swingle, “Linearity of Holographic Entanglement
Entropy,” JHEP 02 (2017) 074, arXiv:1606.04537 [hep-th].

[142] P. Gao, D. L. Jafferis, and A. C. Wall, “Traversable Wormholes via a Double Trace
Deformation,” JHEP 12 (2017) 151, arXiv:1608.05687 [hep-th].

[143] S. Collier, P. Kravchuk, Y.-H. Lin, and X. Yin, “Bootstrapping the Spectral
Function: On the Uniqueness of Liouville and the Universality of BTZ,”
arXiv:1702.00423 [hep-th].

[144] N. Vilenkin and A. Klimyk, Representation of Lie Groups and Special Functions,
Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms. 1991.

[145] G. Giribet, “Scattering of low lying states in the black hole atmosphere,” Phys. Rev.
D94 no. 2, (2016) 026008, arXiv:1606.06919 [hep-th]. [Addendum: Phys.
Rev.D94,no.4,049902(2016)].

[146] R. Ben-Israel, A. Giveon, N. Itzhaki, and L. Liram, “On the black hole interior in
string theory,” JHEP 05 (2017) 094, arXiv:1702.03583 [hep-th].

262

http://dx.doi.org/10.1088/1126-6708/2006/01/039
http://arxiv.org/abs/hep-th/0411174
http://arxiv.org/abs/hep-th/9309145
http://dx.doi.org/10.1103/PhysRevD.50.2700
http://arxiv.org/abs/hep-th/9401070
http://dx.doi.org/10.1007/JHEP01(2019)126
http://arxiv.org/abs/1810.11912
http://dx.doi.org/10.1016/0550-3213(95)00050-3
http://dx.doi.org/10.1016/0550-3213(95)00050-3
http://arxiv.org/abs/hep-th/9408098
http://dx.doi.org/10.1088/1126-6708/2009/03/095
http://dx.doi.org/10.1088/1126-6708/2009/03/095
http://arxiv.org/abs/0805.3931
http://dx.doi.org/10.1088/1126-6708/2003/10/048
http://dx.doi.org/10.1088/1126-6708/2003/10/048
http://arxiv.org/abs/hep-th/0302146
http://dx.doi.org/10.1007/JHEP02(2017)074
http://arxiv.org/abs/1606.04537
http://dx.doi.org/10.1007/JHEP12(2017)151
http://arxiv.org/abs/1608.05687
http://arxiv.org/abs/1702.00423
http://dx.doi.org/10.1007/978-94-011-3538-2
http://dx.doi.org/10.1007/978-94-011-3538-2
http://dx.doi.org/10.1103/PhysRevD.94.049902, 10.1103/PhysRevD.94.026008
http://dx.doi.org/10.1103/PhysRevD.94.049902, 10.1103/PhysRevD.94.026008
http://arxiv.org/abs/1606.06919
http://dx.doi.org/10.1007/JHEP05(2017)094
http://arxiv.org/abs/1702.03583

	Title Page
	Copyright
	Abstract
	Table of Contents
	Citations to Previously Published Work
	Acknowledgements
	Dedication
	Introduction
	Semi-Classical Analysis of the 2D Black Hole
	Review of the Free Linear Dilaton
	A Family of Free Bosons
	Lagrangian Formulation
	Asymptotic Conditions

	Liouville Reflection in the Semi-Classical Limit
	Review of Liouville CFT
	Asymptotic Conditions
	Saddle-Point Expansion

	Review of the SL(2,R)k/U(1) CFT
	The Cigar Sigma-Model
	The 2D Black Hole
	Spectrum
	Asymptotic Conditions

	Cigar Reflection in the Semi-Classical Limit
	Quantum Mechanics on the Cigar
	Complexified Quantum Mechanics
	Reflection Coefficient on the Complex r-Plane
	Transmission Coefficient on the Complex r-Plane

	sine-Liouville Reflection
	The FZZ Duality
	sine-Liouville Limit


	State Dependence of String Perturbation Theory
	Review of the SL(2,R)k and SL(2, C )k/SU(2) CFTs
	Geometry of AdS3
	SL(2,R)k Spectrum
	SL(2, C )k/SU(2) Spectrum

	SL(2, R )k/U(1) From SL(2,R)k
	Schwinger-Keldysh Contours for Lorentzian String Theory
	AdS3 in the Vacuum State
	AdS3 in a Thermal State
	The BTZ Black Hole
	The 2D Black Hole


	Stringy ER=EPR
	3D FZZ Dualities
	ER=EPR in 2D Dilaton-Gravity
	Angular Quantization
	Mutual Locality and the String Moduli Contour

	ER=EPR in Asymptotic AdS3 Gravity
	Infinitesimal FZZ Dualities
	The Winding Condensate
	The Dilaton-Shifting Operator
	Infinitesimal Lorentzian Dualities


	References

