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Abstract

My dissertation solves three theoretical problems on optimizing and estimating information mea-

sures, and it also builds on this theory to introduce novel practical algorithms for: 1) Optimal

mechanism design for differential privacy (DP); 2) Optimal group-fair enhancement in machine

learning; and 3) Estimation of information measures from data using sample moments. Informa-

tion measures (in particular, f -divergences) provide a rigorous way to tackle several real-world

problems. Examples include: 1) Quantifying the degree of privacy afforded by data releasing

mechanisms—using the hockey-stick divergence; 2) Correcting machine learning (ML) trained classi-

fiers for group-fairness—via optimizing cross-entropy; and 3) Detecting new dependencies between

pairs of natural phenomena—via estimating mutual information from data. Herein, we put forth

mathematically grounded approaches for the above three practical problems. In the first third

of the dissertation, we design optimal DP mechanisms in the large-composition regime, and we

also derive a fast and accurate DP accountant for the large-composition regime via the method of

steepest descent from mathematical physics. We prove that the privacy parameter is equivalent to a

KL-divergence term, then we provide solutions to the ensuing minmax KL-divergence problem. In

the second third of the dissertation, we generalize the ubiquitous concept of information projection to

the case of conditional distributions—which we term model projection. We derive explicit formulas

for model projection, as well as a parallelizable algorithm to compute it efficiently and at scale. We

instantiate our model projection theory to the domain of group-fair ML, thereby obtaining an optimal

multi-class fairness enhancement method that runs in the order of seconds on datasets of size more

than 1 million samples. In the last third of the dissertation, we derive the functional form of the

relationship between information measures and the underlying moments. Plugging in the sample

moments of data into our new moments-based formulas, we are able to estimate mutual information

and differential entropy efficiently and robustly against affine-transformations of the samples.
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Chapter 1

Introduction

Automated decision making has been increasingly integrated in practice, and that has been observed

to sometimes come at a cost on the individual. Examples of such unwanted consequences include

facing discrimination from predictions made by machine learning (ML) models [ALMK16, BDH+18],

and having private data exposed [DMNS06, ACG+16]. Several algorithmic interventions for these

problems have been introduced in the literature and deployed in practice, e.g., methods for training

group-fairness aware classifiers [FSV+19] and optimized private data-release mechanisms [DMNS06].

Our approach is a disciplined framework to tackle the underlying mathematical problems via solving

a variety of information-measures based optimization problems.

Information measures lie at the heart of the field of information theory. Similar to how norms

in the usual Euclidean spaces quantify sizes of vectors, so do information measures provide a

mathematically rigorous description of how much information a random event contains. For

example, it is intuitive that one is more uncertain about the outcome of the roll of a fair die than

they would be about the outcome of the toss of a fair coin. In this sense, rolling a die contains more

information than tossing a coin. Entropy is an information measure that captures exactly this intuition,

and it tells us that the former random event has log 6 bits of information, which is greater than log 2

bits, the entropy of the latter random event. The Kullback-Leibler (KL) divergence goes a step further, as

it measures how dissimilar two random events are. For example, in coding theory, the KL-divergence

measures the additional number of bits when encoding randomly sampled data using a codebook

optimized for their underlying distribution.

Generalizing the concepts of entropy and KL-divergence, one arrives in information theory to a
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class of information measures that concretely quantify dissimilarity between probability measures: f -

divergences [AS66, Csi67]. With f : (0, ∞)→ R being a convex function, one defines the f -divergence

of a measure µ from another measure ν by

D f (µ ∥ ν) := Eν

[
f
(

dµ

dν

)]
− f (1), (1.1)

where dµ/dν is the Radon-Nikodym derivative. The KL-divergence is a concrete example of f -

divergences, where it is defined by DKL(P ∥ Q) := D f (P ∥ Q) for the convex function f (t) := t log t.

Explicitly, if P and Q are discrete probability measures supported over {1, · · · , n}, then the KL-

divergence is given by

DKL(P ∥ Q) =
n

∑
i=1

P(i) log
P(i)
Q(i)

. (1.2)

It is true that DKL(P ∥ Q) ≥ 0 with equality if and only if P = Q. Thus, the KL-divergence quantifies

how dissimilar P is from Q: the larger DKL(P ∥ Q) is, the further P is from Q.

The appeal of f -divergences is that they give us a handle on modeling real-world problems,

thereby opening the door for solving those concrete problems. Such solutions aid in, e.g., revealing

optimal design models and estimating desirable figures of merit. The expressability via f -divergences

of many real-world phenomena is true in virtue of them being best described using probabilities.

Consider for example the problem of achieving private data release. Differential Privacy

(DP) [DMNS06] is the widely adopted standard in the practice of privacy-preserving machine

learning algorithms [EPK14, Dif17, KMR+20]. A mechanism, i.e., randomized algorithm (viewed as

a channel PY|X), is considered differentially private if its output distributions PY|X=x and PY|X=x′ do

not vary significantly with small deviation of the inputs (i.e., small d(x, x′) for some metric d). The

input X is considered the true response to a query on a dataset containing sensitive information, and

Y is its privatized version. Whether X = x or X = x′ could be determined, for example, by whether

a certain fixed individual is included in the queried dataset. When Y is a DP version of the query, an

observer of Y cannot determine with high confidence whether Y came from x or x′, thus they cannot

associate any fixed individual to the publicly released data Y. Mathematically, DP can be expressed

using the maximum of an f -divergence: PY|X is (ε, δ)-DP for ε ≥ 0 and δ ∈ [0, 1] if

sup
d(x,x′)≤s

D fε
(PY|X=x ∥ PY|X=x′) ≤ δ (1.3)

where fε(t) = max(0, t− eε), D f is as defined in (1.1), and d(x, x′) ≤ s is some preset condition

capturing “neighboring” inputs. This special case of f -divergence is known as the hockey-stick
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divergence [PPV10]. Hence, the DP condition (1.3) puts a uniform bound on how dissimilar a pair of

publicly released data are when they come from similar true queries. From this definition of DP, one

sees that a smaller value of the bound δ corresponds to more privacy. The definition of DP in (1.3)

not only gives us a rigorous nd practical way to measure privacy, but this f -divergence expression

also allows us to study the important problem of optimal DP mechanism design. Specifically, as

lower values of δ are desirable, the optimal DP mechanism (for the single-shot setting) is the one that

minimizes the maximal hockey-stick divergence in (1.3). Trivially, one could pick Y to be independent

of X and attain a value of δ = 0 for every ε. However, this choice is evidently impractical since it

ignores the utility side: the released data Y tell us nothing about the desired query X. Generally,

any given random mechanism PY|X will decrease the utility. Thus, a sensible DP mechanism-design

optimization problem would take the minmax form

inf
PY|X∈U

sup
d(x,x′)≤s

D fε
(PY|X=x ∥ PY|X=x′), (1.4)

where belonging to U means that a certain prescribed utility measure is attained. In words,

solving (1.4) amounts to finding the mechanism P⋆
Y|X that optimizes the privacy-utility trade-off.

A number of recent works tackle this optimization problem in a variety of settings [GRS12, GS10,

GV15, GKOV15, SCDF13, GV16, GDGK20, GDGK19], but they all consider only the settings of

single-shot private data release and scalar-valued queries. In this dissertation, we address the more

complicated setting of optimal DP mechanism design under composition and with vector-valued

queries. In other words, we consider X to be Rm-valued, and we apply the mechanism PY|X to k > 1

different queries. In this case, the probability measure PY|X=x is replaced in (1.4) by the product of

measures PY|X=x1
× · · · × PY|X=xk

. The composition setting yields an intractable expression for the

DP parameters, and our work in Chapter 2 addresses this challenge.

Challenge 1. Given the intractability of the value supd(xj ,x′j)≤s;1≤j≤k D fε
(∏k

j=1 PY|X=xj
∥ ∏k

j=1 PY|X=x′j
)

of the privacy parameter δ, how can we find mechanisms PY|X with favorable privacy-utility trade-off after

a large number of compositions? In addition, how can we quantify privacy in the large-composition regime

accurately and efficiently?

Another f -divergence based optimization considered in this thesis is model projection. In contrast

to the maximal f -divergence considered in (1.3)–(1.4), we now consider minimizing the average

f -divergence of an arbitrary conditional distribution from another fixed one. Consider the following

“abstract” experiment. We have a random event X, which is inaccessible to us, and that we believe
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causes another random event Y, which is observable by us. We collect many samples of Y and we

build a model PY|X that captures the transition probabilities from X to Y using a desired method M .

However, we observe, after the fact, that this model PY|X violates some other necessary properties.

For example, we might know—or postulate—via some other physical law L that we must have

PY|X ∈ F for some feasible set of models F but it so happens that PY|X ̸∈ F . It is natural then to ask:

what is the closest member of F to the fitted model PY|X? Mathematically, closeness of a candidate

QY|X ∈ F to PY|X can be captured via an f -divergence. Taking an averaged penalty, i.e., the penalty

D f (QY|X=x ∥ PY|X=x) is weighted by P(dx), we arrive thus at the optimization problem

minimize
QY|X

EZ∼PX

[
D f (QY|X=Z ∥ PY|X=Z)

]
subject to QY|X ∈ F .

(1.5)

In words, we want to change the fitted model from data, PY|X, as least as possible so that the

new model—the Q⋆
Y|X that minimizes (1.5)—satisfies the new information (here, belonging to the

feasible set F ). Thus, in an f -divergence sense, we are projecting the model PY|X onto the set F ,

hence the name model projection. A concrete example of this model projection setup is correcting ML

models for group-fairness. Here, the method M to train the model PY|X could be ML (e.g., applying

logistic-regression on the collected data); the desired property L is a group-fairness constraint

(e.g., the accuracy of PY|X is independent of, say, the race of individuals). The model projection

formulation (1.5) is naturally inscribed within the information projection literature [Che68, Csi75].

However, the practical prior results on information projection (e.g., explicit formulas and numerical

methods) are inapplicable to the model projection setup when the input random variable X has

an infinite support (as this amounts to a constrained information projection with infinitely many

constraints). We address this challenge in Chapter 3.

Challenge 2. Given the model projection formulation in (1.5), what is the explicit formula for the projected

model Q⋆
Y|X (i.e., the minimizer in (1.5))? And can we compute such a formula efficiently?

The final chapter of this dissertation reveals the functional relation between information measures

and the underlying moments, then uses these new formulas to introduce a new moments-based

estimator of information measures that is robust to affine transformations of the samples. As

the degree of dependence between random variables X and Y is conceptually equivalent to the

dissimilarity between the joint probability measure PX,Y and the product measure PX × PY, the
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mutual information I(X; Y) := DKL(PX,Y ∥ PX × PY) is a popular measure of independence. In view

of this definition, we have I(X; Y) ≥ 0 (whenever the integration is well-defined), X and Y are

independent if and only if I(X; Y) = 0, and the larger I(X; Y) is the more dependence there is

between X and Y. Furthermore, the mutual information is invariant to one-to-one transformations,

because it is determined by the underlying probability measures rather than the values the induced

random variables take. A closely related information measure is differential entropy, defined as

h(Z) := −DKL(PZ ∥ λ), where λ denotes the Lebesgue measure. In very general situations, one

has the equality I(X; Y) = h(X) + h(Y)− h(X, Y). The appealing properties of mutual information

and differential entropy have led to their adoption of in practice as metrics for quantifying asso-

ciations between data [GNO+12, CLA+10, Fle04]. However, in a practice, one has access to only

finitely many samples drawn from the underlying distributions, which makes the task of reliably

estimating these information measures a difficult task. Several estimators of mutual information

and differential entropy have recently been proposed within the information theory and computer

science communities [KSG04, VV11, JVHW15, WY16, GKOV17]. Still, the state-of-the-art k-nearest-

neighbors (k-NN) based estimators [GKOV17] do not capture some of the desirable properties of

the estimated information measures, such as invariance to affine transformations. In addition, it is

well-known that a probability measure is completely determined by its moments if, e.g., it has a

finite moment-generating function around the origin. In such case, information measures that are

defined in terms of distributions should, in principle, be expressible in terms of moments. Such

a functional relation between information measures and moments are potentially helpful in the

estimation task, as estimation of moments is a far easier task than that of probability measures (e.g.,

faster convergence). We address these challenges in Chapter 4.

Challenge 3. Given probability measures whose moment-generating functions are finite, what is the ex-

act functional form of the relationship between information measures and the moments of the underlying

distributions? Also, how can we estimate information measures from data using sample moments?

We address Challenges 1–3 in Chapters 2–4, respectively, of this dissertation. In the remainder of

this introduction below, we give a brief overview of our contributions.
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1.1 Optimal Differential Privacy in the Large-Composition Regime

In practical application, privacy mechanisms are composed (i.e., repeatedly applied) hundreds of

times on private data, and it is known that DP guarantees degrade under composition [ACG+16].

In addition, the expression for the DP parameters in (1.3) becomes unwieldy after composition

of mechanisms. This is not surprising in view of the important result in [MV16, Theorem 1.5]

showing the #P-completeness of the general problem of computing optimal privacy parameters

under composition. This leads to a central question in DP:

How can one optimize and quantify privacy under composition?

We tackle this problem in Chapter 2 [AAC+a, AAC+b, AAC+c, AAC+22].

In contrast to previous works on optimal DP mechanism design in the literature [GRS12, GS10,

GV15, GKOV15, SCDF13, GV16, GDGK20, GDGK19], we consider the large-composition regime

instead of the single-shot setting. The starting point of our approach is reducing the mechanism

design problem into one about minimizing the KL-divergence. Specifically, we derive the following

limit as the number of compositions k grows without bound: for each fixed δ ∈ (0, 1/2), under mild

conditions on the mechanism PY|X , we have that

1
k
· inf{ε ≥ 0 : the k-fold composition of PY|X is (ε, δ)-DP} → sup

d(x,x′)≤s
D(PY|X=x ∥ PY|X=x′) (1.6)

As smaller values of ε correspond higher DP, it suffices by the above limit to minimize the maximal

KL-divergence term on the right-hand side (subject to a utility constraint). The first part of Chapter 2

is devoted to solving this constrained minmax KL-divergence problem in the settings of scalar

queries, vector queries, and in the small-sensitivity regime (i.e., s→ 0+). Our result lead to new DP

mechanisms, namely, the Cactus, isotropic, and Schrödinger mechanisms, that are optimal in the

large-composition regime in some precise senses.

The other part of Chapter 2 is devoted to the problem of quantifying DP in the large-composition

regime in an efficient and accurate way. Several privacy accountants have been introduced in

the literature, e.g., [DRS22, KJH20, KH21, KJPH21, GLW21, GKKM22, DGK+22], which compute

upper bounds on the privacy budget parameters (ε, δ) in DP (see (1.3)). However, there are still

limitations to those accountants. First, the closed-form accountants, while attaining the theoretically

optimal runtime, suffer from either overestimating or underestimating the privacy parameters. In

addition, FFT-based approaches, while working well in practice, do not have constant runtimes,
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cannot generate the full privacy curve, and their current implementations cannot estimate the privacy

parameters for very small δ (e.g., below 10−10). To circumvent these issues, we introduce the saddle-

point accountant (SPA), which is a lightweight and accurate DP accountant for the large-composition

regime. Specifically, using Parseval’s identity we derive a new formula for the privacy curve (i.e., the

function ε 7→ δ(ε) where δ(ε) is the least value of δ for which the mechanism is (ε, δ)-DP), expressing

it as a contour integral over a line running parallel to the imaginary axis and with a free positive

real-intercept. Then, the saddle-point method from mathematical physics yields a preferable choice

of this real-intercept, referred to as the saddle-point.

Our main contributions in Chapter 2 include: (Here, we assume an ℓ2 sensitivity, i.e., d(x, x′) =

∥x− x′∥ is the ℓ2 norm in (1.3).)

1. We prove a tight composition theorem for the large-composition regime showing the asymptotic

equivalence between the privacy parameter ε and the following maximal KL-divergence term

sup∥x−x′∥≤s D(PY|X=x ∥ PY|X=x′). Therefore, we reduce the problem of optimizing a DP

mechanism in the large-composition regime to the following minmax KL-divergence problem:

inf
PY|X

sup
∥x−x′∥≤s

D(PY|X=x ∥ PY|X=x′)

subject to sup
x∈Rm

E[c(Y− x) | X = x] ≤ C,
(1.7)

where c : Rm → R+ is a preset cost function (e.g., a variance cost).

2. We prove that additive, continuous, spherically-symmetric mechanisms are optimal in the

KL-divergence problem (1.7).

3. We derive a finite-dimensional convex program whose solutions are arbitrarily close to optimal

for (1.7), thereby introducing the Cactus mechanism (for scalar queries) and the isotropic

mechanisms (for vector queries and monotone mechanisms).

4. In the small-sensitivity regime, i.e., s → 0+, we show that the square of the ground-state

eigenfunction of the Schrödinger operator yields optimal mechanisms. We call those the

Schrödinger mechanisms.

5. We introduce the saddle-point (SPA), a closed-form DP accountant that has the theoretically

optimal runtime (e.g., constant runtime for self-composition), estimates the privacy parameters

accurately with provable error bounds, and works for arbitrarily small values of δ.
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The results of Chapter 2 are based on the following papers:

• [AAC+b]: Wael Alghamdi, Shahab Asoodeh, Flavio P. Calmon, Juan Felipe Gomez, Oliver

Kosut, and Lalitha Sankar. Optimal Multidimensional Differentially Private Mechanisms in

the Large-Composition Regime. Accepted in 2023 IEEE International Symposium on Information

Theory (ISIT), 2023.

• [AAC+a]: Wael Alghamdi, Shahab Asoodeh, Flavio P. Calmon, Juan Felipe Gomez, Oliver

Kosut, and Lalitha Sankar. Schrödinger Mechanisms: Optimal Differential Privacy Mechanisms

for Small Sensitivity. Accepted in 2023 IEEE International Symposium on Information Theory (ISIT),

2023.

• [AAC+c]: Wael Alghamdi, Shahab Asoodeh, Flavio P. Calmon, Juan Felipe Gomez, Oliver

Kosut, and Lalitha Sankar. The Saddle-Point Method in Differential Privacy. Under review.

• [AAC+22]: Wael Alghamdi, Shahab Asoodeh, Flavio P. Calmon, Oliver Kosut, Lalitha Sankar,

and Fei Wei. Cactus mechanisms: Optimal differential privacy mechanisms in the large-

composition regime. In 2022 IEEE International Symposium on Information Theory (ISIT), pages

1838–1843, 2022.

1.2 Model Projection and Optimal Group-Fairness Intervention

In Chapter 3, we generalize the ubiquitous concept of information projection [Che68, Csi75, CM03,

DZ96, YB17, Csi84, Top79, Csi84, Bar00, Slo02, BC80, AS16, KS15a, KS15b, Csi95a, Csi95b] to the

case of conditional distributions. Specifically, we derive the explicit solution to the model projection

problem (1.5) for any Rm-valued input X (under mild regularity assumptions on the other given

quantities). In addition, we derive an efficient and provably convergent numerical procedure to

compute the solution to the model projection problem in the presence of only finitely many samples

from the underlying distributions. Thus, the main question we are considering here is the following:

How can we solve model projection (1.5) explicitly and efficiently?

Chapter 3 provides theoretical and practical solutions to the above question [AHJ+22, AAW+20].

We also showcase the practicality of our theoretical results on model projection by applying them

to the domain of group-fair machine-learning (ML). In this setting, the relevant quantities in the
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model projection formulation (1.5) are a given biased model PY|X and a set of group-fair models F .

For example, PY|X could be a model predicting the recidivism risk Y of an individual with prior

criminal record X, but it exhibits very different accuracies in its prediction when assessed on different

protected groups (e.g., determined by race). Here, F would be the set of models that have very

similar accuracies across the different protected groups. Then, the solution to the model projection

problem (1.5) is the unique group-fair model that is constructed via the least possible amount of

changes (in the sense of a preset f -divergence) to the score assignments of the given biased model

PY|X . This makes model projection a principled method for achieving optimal group-fairness in wide

range of practical scenarios.

Several group-fairness intervention methods have been introduced in recent literature, e.g., [WRC20,

WRC21, JN20, ABD+18, CHKV19, YCK20, CJG+19, ZVRG17, CDPF+17, MW18, KGZ19, LPB+21,

BNBR19, PQC+19], and extensive comparisons between such group-fairness intervention methods

can be found in [BDH+18, FSV+19, WRC21]. One can see from these studies that we do not have

a universally optimal group-fairness intervention method. More importantly, almost all available

implementations are tailored to binary classification, whereas there are many cases where the

predicted variable is not binary. For example, in education, grading algorithms assign one out of

several grades to students; in healthcare, predicted outcomes are frequently not binary (e.g., severity

of disease). In addition, group-fairness intervention methods are often benchmarked on overused

and small datasets, such as UCI Adult [Lic13] and COMPAS [ALMK16]. We address these issues by

using our theoretical results on model projection to introduce FairProjection, a group-fairness

enhancement method that works for any number of prediction classes or protected groups. Further,

we benchmark FairProjection on a new dataset containing more than one million samples.

In summary, our contributions in Chapter 3 include:

1. We derive the explicit solution to the model projection problem (1.5).

2. We derive a parallelizable algorithm that computes the projected model in the presence of only

finitely many samples, and we show convergence and sample-complexity guarantees.

3. We introduce FairProjection, the application of model projection to the group-fairness

domain. FairProjection is applicable for multi-class prediction and for any number of

protected groups.

4. We show in extensive comparisons on real-world datasets that FairProjection can achieve
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competitive performance while running in a fraction of the time required for other state-of-the-

art group-fairness intervention methods.

5. We benchmark FairProjection on a new dataset of size more than 1 million samples.

This dataset is derived from open and anonymized data from Brazil’s national high school

exam, and benchmarking on it answer recent calls [BZZ+21, DHMS21] for moving away from

overused datasets including UCI Adult [Lic13] and COMPAS [ALMK16].

Chapter 3 is based on work that appeared in the following papers:

• [AHJ+22]: Wael Alghamdi,⋆ Hsiang Hsu,⋆ Haewon Jeong,⋆ Hao Wang, Peter Winston Michalak,

Shahab Asoodeh, and Flavio Calmon. Beyond adult and COMPAS: Fair multi-class prediction

via information projection. In Advances in Neural Information Processing Systems, 2022. (Selected

as Oral Presentation; ⋆ = equal contribution.)

• [AAW+20]: Wael Alghamdi, Shahab Asoodeh, Hao Wang, Flavio P. Calmon, Dennis Wei, and

Karthikeyan Natesan Ramamurthy. Model projection: Theory and applications to fair machine

learning. In 2020 IEEE International Symposium on Information Theory (ISIT), pages 2711–2716,

2020.

1.3 Measuring Information from Moments

We consider the problem of expressing information measures in terms of moments. Suppose X is a

random variable whose moment-generating function exists, i.e., E[etX ] < ∞ over some nontrivial

interval t ∈ (−δ, δ). Then, it is well-known that the moments of X determine its distribution uniquely,

i.e., if Y is a random variable with E[Yk] = E[Xk] for all k ∈N then we must have PY = PX . Then, in

principle, it should be possible to express any distribution functional with such input X using only

its moments. However, no such functional relationship between information measures and moments

existed before. In addition too being a theoretically intriguing problem, finding moments-based

formulas for information measures are potentially helpful in estimating those information measures

from data, since estimating moments is a task that we know how to do well. Thus, we tackle the

following question:

What is the functional relationship between information measures and moments?
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We derive in Chapter 4 the functional relationship between information measures and moments [AC22,

AC21c, AC19].

We show, for example, that the differential entropy of a random vector X whose moment-

generating function is finite is given by

h(X) = lim
n→∞

∫ ∞

0
ρ
(n)
X (t) dt, (1.8)

where each t 7→ ρ
(n)
X (t) is a rational function whose coefficients are multivariate polynomials in the

moments of X (and we give explicit formulas for those coefficients). We develop our moments-based

formulas by first studying polynomial approximations of the conditional expectation.

Viewing the conditional expectation E[X | Y] as the minimum mean-square error (MMSE) in

estimating X using Y, we introduce the best-polynomial approximations. The n-th polynomial

MMSE (PMMSE) is defined as the best degree-n polynomial in Y when estimating X. We study

when the PMMSE converges to the MMSE, and quantify the convergence rate. We also develop

the PMMSE formulas further for the special case of a Gaussian channel Y =
√

tX + N for standard

normal N and constant t ≥ 0. This helps us derive the moments-based formulas for information

measures with the aid of the I-MMSE relationship [GSV05], which expresses information measures

in terms of the MMSE in Gaussian channels. Thus, our work is inscribed within literature on the

I-MMSE relation, its extensions, and its applications [GSV05, Zak05, Guo09, Ver10, GWSV11, WV12,

AVW14, HJW15, DBPS17, DV20, LTV06, TV06]

The moments-based formulas, such as (1.8), can help when estimating information measures

from data. Indeed, truncating the limit in (1.8) at a fixed n, we define the n-th order approximation

of differential entropy as

hn(X) =
∫ ∞

0
ρ
(n)
X (t) dt. (1.9)

This formula can be computed using only the first 2n moments of X. Further, h1(X) ≥ h2(X) ≥

· · · ≥ h(X) and hn(X) ↘ h(X) as n → ∞. Then, in the presence of only samples of X, we may

replace the moments in (1.9) by sample moments, thereby introducing an approximation ĥn(X) of

h(X) from data. Writing the mutual information I(X; Y) in terms of differential entropy, we also

obtain moments-based formula, approximations In, and estimators În.

The moments-based estimators we introduce have desirable physical properties. They behave

under affine transformations exactly like the information measures they estimate, e.g., ĥn and h both

are shifted by log |a| is the underlying random variable is scaled by a nonzero constant a. This stems
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from the fact that the PMMSE we introduce behaves like the MMSE under affine transformations.

Also, the mutual information estimator În detects independence exactly: if X and Y are independent,

then În(X; Y) = 0.

We summarize our contributions in Chapter 4 below:

1. We introduce the polynomial MMSE and show its convergence to the MMSE.

2. We derive the functional form of the relationship between information measures and moments.

3. We introduce new moments-based estimators of information measures from data.

4. We show experimentally that the proposed estimators can outperform the state-of-the-art

estimators of information measures. We also prove that the proposed estimators are consistent

and derive their sample complexity.

The presented work in Chapter 4 is based on the following papers:

• [AC22]: Wael Alghamdi and Flavio P. Calmon. Measuring information from moments. In

IEEE Transactions on Information Theory, 2022, doi: 10.1109/TIT.2022.3202492.

• [AC21c]: Wael Alghamdi and Flavio P. Calmon. Polynomial approximations of conditional

expectations in scalar gaussian channels. In 2021 IEEE International Symposium on Information

Theory (ISIT), pages 420–425, 2021.

• [AC19]: Wael Alghamdi and Flavio P. Calmon. Mutual information as a function of moments.

In 2019 IEEE International Symposium on Information Theory (ISIT), pages 3122—3126, 2019.
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Chapter 2

Optimal Differential Privacy in the

Large-Composition Regime

Differential Privacy (DP) [DMNS06] has become the de-facto standard for designing privacy-

preserving machine learning algorithms (including in practice [EPK14, Dif17, KMR+20]). Intuitively,

a randomized algorithm (or mechanism), viewed as a channel PY|X , is said to be differentially private

if its output does not vary significantly with small perturbations of the input. Here, PY|X models a

randomized query response mechanism in which the input X = x is the true response to a query

on a dataset containing sensitive information and Y is its privatized version. There are several

variants of DP that formalize this intuition. For instance, consider the original variant of DP, defined

in [DMNS06, DKM+06] as follows.

Definition 2.1 ((ε, δ)-DP [DMNS06, DKM+06]). A mechanism PY|X is said to be (ε, δ)-differentially

private (or (ε, δ)-DP for short) for ε ≥ 0 and δ ∈ [0, 1] if

sup
∥x−x′∥≤s

sup
A⊂Y

PY|X=x(A)− eεPY|X=x′(A) ≤ δ, (2.1)

where Y := supp(Y), A varies over measurable subsets of Y , ∥ · ∥ is some norm, and s is the

corresponding sensitivity of the query, i.e., the maximum change of the query’s response over all

pairs of “neighboring” datasets (e.g., differing in one entry). The case δ = 0 is typically referred to as

pure DP and denoted by ε-DP.

Any random mechanism will therefore introduce distortion on the query’s output, reducing
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utility. Thus, it is natural to ask how to design mechanisms that achieve the optimal trade-off

between privacy and utility. In addition, it is known that DP guarantees degrade if one composes

(i.e., repeatedly applies) a privacy mechanism a large number of times [ACG+16]. Hence, it is

important to have efficient and accurate procedures to keep track of the afforded privacy budget.

This chapter tackles both of these questions, where we propose DP mechanisms (dubbed the Cactus,

isotropic, and Schrödinger mechanisms) that are optimal in the large-composition regime, and we

also introduce the saddle-point method which is a lightweight and accurate DP accountant for the

large-composition regime.

2.1 Optimizing Differentially-Private Mechanisms

A number of works [GRS12, GS10, GV15, GKOV15, SCDF13, GV16, GDGK20, GDGK19] have sought

optimal DP mechanisms in a variety of settings. However, these works all focus on the single-shot

setting, in which a single mechanism is applied to a single query. This chapter departs from previous

work in that we focus on the large-composition regime instead of optimizing (2.1).

Most practical differentially-private mechanisms are applied several times on sensitive data. In

this case, quantifying privacy guarantees turns out to be a challenging problem. We tackle the

problem of designing DP mechanisms in the large-composition regime in this work by reducing the

DP problem to a KL-divergence minmax problem. We start by proving a tight composition theorem

for the large-composition regime showing the asymptotic equivalence between the privacy parameter

ε and a maximal KL-divergence term. Then, we introduce new mechanisms (both for the scalar

and vector query cases, and also for the small-sensitivity regime in the scalar case) that optimize

such maximal KL-divergence terms. We also present numerical experiments showing that the new

mechanisms outperform the Gaussian and Laplace mechanisms.

2.2 Accounting for Differential Privacy

Quantifying the privacy loss after a large number of compositions of DP mechanisms is a central

challenge in privacy-preserving ML. A key result by [MV16, Theorem 1.5] states that computing exact

privacy parameters under composition is in general #P-complete, hence infeasible. This challenge has

spurred several follow-up works on privacy accounting, e.g., [DRS22, KJH20, KH21, KJPH21, GLW21,
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GKKM22, DGK+22], which compute upper bounds on the privacy budget parameters (ε, δ) in DP

(see (2.1)).

The currently available accountants have several limitations. The accountants that have closed-

form formulas—thereby attaining constant (in composition) runtimes—such as the moments ac-

countant [ACG+16, Mir17] and the CLT-based Gaussian-DP accountant [BDLS20], suffer from

either overestimating or underestimating, respectively, the privacy parameters. On the other hand,

convolution-based accountants, such as FFT-based approaches [KJH20, GLW21], while working well

in practice, do not have constant runtimes, cannot generate the full privacy curve, and are limited by

machine precision due to their purely numerical nature.1 For example, FFT-based approaches fail to

estimate values of δ below 10−10 [GLW21, Appendix B] or 10−12 [DGK+22, Appendix C].

We overcome these challenges by introducing a new approach for estimating DP parameters

using complex analysis. Our approach is based on the method of steepest descent for integral

approximation—a well-known method in mathematical physics [JJ99]. We derive the saddle-point

accountant (SPA), which:

1) has a computable closed-form formula, hence enjoys constant runtime complexity in the

number of compositions for self-composition;

2) estimates the privacy parameters accurately and with provable error bounds; and

3) works for any value of δ, however small, thus describing the full range of (ε, δ) guarantees.

2.3 Chapter Organization

This chapter is organized as follows. The next section gives a brief overview of how the DP

optimization problem reduces to a KL-divergence optimization problem in the large-composition

regime. Then, we give a brief overview of our main contributions, review the relevant literature, and

state our notation and assumptions.

We present our large-composition theorem in Section 2.9, reducing the DP problem to one about

KL-divergence. Then, we show that designing optimal DP mechanisms for the large-composition

regime can be significantly reduced to the case of additive, continuous, and spherically-symmetric

1Of course, this limitation can be alleviated by using custom implementations and arbitrary float-point precision libraries.
Our point is that closed-form formulas do not have this limitation.
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mechanisms in Section 2.10. After that, we give the mathematical construction of our three proposed

families of mechanisms in Section 2.11 (Cactus, isotropic, and Schrödinger mechanisms), followed

by proofs of their respective optimalities in the next three sections. Specifically, we treat the

1-dimensional Cactus mechanism in Section 2.12, where we show that this mechanism can get

arbitrarily close to optimal; the multidimensional case is treated in Section 2.13, where we prove

optimality of the proposed monotone isotropic mechanisms; and in Section 2.14, we go back to the

1-dimensional setting, where we show that eigenfunctions of the Schrödinger operator yield the

optimal mechanisms in the small-sensitivity regime. We demonstrate via numerical experiments in

Section 2.15 how our proposed mechanisms outperform the Gaussian or Laplace mechanisms.

In Sections 2.16–2.19, we turn to the DP accounting problem, where we introduce and analyze

the saddle-point-accountant. The method of steepest descent is recalled in Section 2.16.3. We derive

a new contour-integral formula and an asymptotic expansion for the privacy curve in Section 2.17.

This asymptotic expansion gives rise to heuristics for approximating the privacy curve, which leads

to the the SPA-MSD method in Section 2.17.3. Then, we derive a tight composition theorem and the

decay rate of the saddle-point in Section 2.18. In Section 2.19, we introduce the SPA-CLT (the second

version of the SPA) and apply the results from Section 2.18 to derive rigorous bounds on the privacy

curve.

2.4 Concentration of DP: From DP to KL-Divergence

The definition of (approximate) DP can be cast in terms of properties of the privacy loss random

variable (PLRV), defined as

Lx,x′ := log
dPY|X=x

dPY|X=x′
(Y), (2.2)

where Y ∼ PY|X=x and x, x′ ∈ Rm. Namely, it can be shown that (2.1) is equivalently expressed as

sup
∥x−x′∥≤s

E

[(
1− eε−Lx,x′

)+]
≤ δ, (2.3)

where a+ := max{0, a}. In the simplest case of composition in DP, where the same mechanism PY|X

is independently applied k times on data X generating output Yk, i.e., PYk |X = ∏k
i=1 PYi |X , the PLRV

is given by

Lk
x,x′ :=

k

∑
i=1

log
dPYi |X=x

dPYi |X=x′
(Yi), (2.4)
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where Yi ∼ PYi |X=x. Thus, analogous to (2.1)–(2.3), the composed mechanism is (ε, δ)-DP if

sup
∥x−x′∥≤s

E

[(
1− eε−Lk

x,x′
)+
]
≤ δ. (2.5)

From the law of large numbers, the distribution of Lk
x,x′/k will concentrate around its mean, the

KL-divergence, as
1
k

E
[

Lk
x,x′

]
= D

(
PY|X=x ∥ PY|X=x′

)
. (2.6)

Since the function f (u) := (1− eε−ku)+ is non-decreasing, in the limit of large compositions, privacy

mechanisms with lower values of D(PY|X=x ∥ PY|X=x′) will enjoy stronger (ε, δ)-DP guarantees.

Thus, regardless of the exact distribution of the privacy loss random variable, its mean (2.6) plays

a central role in the privacy guarantees offered after many compositions. In applications such as

privacy-ensuring machine learning, the number of compositions frequently exceeds k = 103.

Inspired by the above observation on concentration of the PLRV, our first main contribution is

proving the following limit:

1
k
· inf{ε ≥ 0 : k compositions of PY|X are (ε, δ)-DP} → sup

∥x−x′∥≤s
D(PY|X=x ∥ PY|X=x′) (2.7)

as the number of compositions k grows without bound. We prove three versions of this limit in

Theorem 2.1 under mild regularity assumptions on the mechanism PY|X , where we also quantify the

rate of convergence as −Φ−1(δ)
√

V/
√

k, where Φ is the standard-normal cumulative distribution

function and V is a constant related to the variance of the PLRV of PY|X .

Equipped with the limit (2.7), we dedicate the bulk of this chapter to designing privacy mecha-

nisms with favorable (ε, δ)-DP guarantees under a large number of compositions via minimizing

the maximal KL-divergence term on the right-hand side of (2.7). Since after many compositions,

privacy will be mostly determined by the mean of the privacy loss random variable (2.6), we solve

the optimization problem

inf
PY|X∈R

sup
∥x−x′∥≤s

D(PY|X=x ∥ PY|X=x′)

subject to sup
x∈Rm

E[c(Y− x) | X = x] ≤ C,
(2.8)

where c : Rm → [0, ∞) is a pre-specified cost function, s, C > 0 are constants, and R is the set of

all Markov kernels on Rm. Note that the cost function is critical: without the constraint, (2.8) can

be trivially solved by any mechanism that is independent of X. In this chapter, we introduce new
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DP mechanisms that can solve (2.8) to arbitrary accuracy under various setups, namely, (i) Cactus

mechanisms for the scalar case (m = 1), (ii) isotropic mechanisms for the vector (m > 1) and monotone

case, and (iii) Schrödinger mechanisms for the scalar and small-sensitivity regime (s→ 0+).

2.5 Main Contributions

The main contributions of the work underlying this chapter are as follows:

1. We prove the limit (2.7) in Theorem 2.1, thereby showing the asymptotic equivalence between the

ε parameter of DP and the associated maximal KL-divergence term.

2. We show (Theorem 2.3) that additive, continuous, spherically-symmetric mechanisms—i.e., where

Y = X + Z for a noise vector Z independent of X and with probability density function pZ that is

constant on every sphere centered around the origin—suffice to solve (2.8).

3. Even restricting to additive mechanisms, (2.8) is an infinite-dimensional optimization problem,

so it cannot be solved directly. Instead, we formulate an approximate problem that is finite

dimensional and can be solved efficiently. We prove (Theorem 2.8) that this approximate problem

can get arbitrarily close to optimal for solving (2.8) in the scalar case (m = 1).

4. We solve the approximate scalar problem to derive (near) optimal mechanisms for the quadratic

cost function, i.e., c(x) = x2. We dub the resulting mechanism the “Cactus mechanism” due to

the shape of the distribution (see Figure 2.1). Surprisingly, the Gaussian distribution is strictly

sub-optimal for (2.8), as the Cactus mechanism achieves a smaller KL-divergence for the same

variance.

5. Similarly, for the vector-valued case (m > 1), we formulate an approximate problem that is finite

dimensional and can be solved efficiently. We restrict attention here to monotone mechanisms, as

these are the ones for which current DP accounting can be extended. We prove (Theorem 2.10)

that this approximate problem can get arbitrarily close to optimal for solving (2.8) in the vector

case (m > 1) when restricted to monotone mechanisms.

6. We fully characterize the small-sensitivity regime, i.e., where s ≪ 1, in which case we derive

closed-form optimal distributions that we call the Schrödinger mechanism. In this case, the

minimax optimization of KL-divergence in (2.8) reduces to finding a unique minimizer of the
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Fisher information I(P) over all probability measures P satisfying the utility constraint (see

Section 2.14). This reduced formulation reveals a remarkable characterization of the optimizer

P⋆: its square root is the eigenfunction of the Schrödinger operator corresponding to the smallest

eigenvalue (Theorem 2.14).

7. In the small-sensitivity and scalar case, we identify closed-form DP mechanisms with the optimal

privacy-utility trade-off where the utility is measured via the cost function c. In particular, we

show that P⋆ is the Gaussian measure for the L2 cost function (Proposition 2.4), thereby proving

that the Gaussian mechanism is optimal in this sense in the small-sensitivity regime. Our results

also show that P⋆ for the L1 cost is given by the Airy function, leading to the introduction of a

new optimal DP mechanism, which we call the Airy mechanism (see Definition 2.7).

8. We provide numerical benchmarks that demonstrate that the proposed isotropic and Schrödinger

mechanisms achieve a favorable privacy-utility trade-off under a large number of compositions

when compared to the Gaussian or Laplace mechanisms (Section 2.15).

9. We derive a new formula for the DP curve, expressing it as a contour integral with integrand

expressible in terms of the cumulant-generating function of the PLRV and with a contour running

parallel to the imaginary axis and of free positive real-axis intercept (Theorem 2.15).

10. We apply the method of steepest descent from mathematical physics to choose the real-axis inter-

cept in our new DP formula as the saddle-point, thereby giving rise to the saddle-point accountant

(SPA), a lightweight and accurate closed-form DP accountant that works for even vanishingly

small values of δ.

2.6 Related Work

Identifying optimal mechanisms is a fundamental and challenging problem in the domain of

differential privacy. There have been several works in the literature that have attempted to address

this problem. For instance, within the class of additive noise mechanisms and under the single

shot setting (i.e., no composition), Ghosh et al. [GRS12] showed that the geometric mechanism is

universally optimal for (ε, 0)-DP in a Bayesian framework, and Gupte and Sundararajan [GS10]

derived the optimal noise distribution in a minimax cost framework. For a rather general cost
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function, the optimal noise distribution was shown to have a staircase-shaped density function [GV15,

GKOV15, SCDF13].

Geng and Viswanath [GV16] showed that for (ε, δ)-DP and integer-valued query functions, in

the single-shot setting, the discrete uniform noise distribution and the discrete Laplacian noise

distribution are asymptotically optimal (for L1 and L2 costs) within a constant multiplicative gap

in the high privacy regime (i.e., both ε and δ approach zero). Geng et al. [GDGK20] studied the

same setting except for real-valued query functions and identified truncated Laplace distribution is

asymptotically optimal in various high privacy regimes. Finally, Geng et al. [GDGK19] showed that

the optimal noise distribution for real-valued query and (0, δ)-DP is uniform with probability mass

at the origin. Our work differs from these works in that we focus on the optimal mechanisms under

a large number of compositions, rather than the single shot setting.

When considering a composition of n mechanisms, an important line of research has been

to derive tighter composition results: relationships between the DP parameters of the composed

mechanism and the parameters of each constituent mechanism. There are several composition

results in the literature, such as [DRV10, MV16, KOV15, ACG+16, ALC+21, MM18]. More recently,

Dong et al. [DRS22] have proposed a composition result for large n and for a new variant of DP,

called Gaussian-DP, that leverages the central limit theorem. These results can be sub-optimal

(see, for example, [GLW21, Fig. 1]). Consequently, numerical composition results have gained

increasing traction as they lead to easier, yet powerful, methods for accounting the privacy loss

in composition [KJH20, GLW21, KJPH21, ZDW21]. In particular, Koskela et al. [KJH20] obtained

a numerical composition result based on a numerical approximation of an integral that gives the

DP parameters of the composed mechanism. The approximation is carried out by discretizing

the integral and by evaluating discrete convolutions via the fast Fourier transform algorithm. The

running time and memory needed for this approximation were subsequently improved [GLW21].

While our work shares the focus on the large composition regime, we are primarily interested in

synthesizing optimal mechanisms rather than analyzing existing mechanisms.

The connection we put forth starting from DP and leading to the Schrödinger equation is new.

The component connections, however, have been noted in some form in the literature. Nevertheless,

our work serves to make the existing results into one coherent unit, fills some existing gaps rigorously,

and extends existing setups. Specifically, for the problem of minimizing the Fisher information, we:

1. work with a larger class of cost functions,
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2. do not restrict the support of the PDFs we optimize over,

3. do not require any regularity assumptions whatsoever on the PDFs we optimize over.

We circumvent imposing any assumptions on the PDFs, and are able to extend the class of cost

constraints, by introducing a novel proof technique for minimizing Fisher information that does not

depend on the theory of calculus of variation, and also by deriving an estimate of the logarithmic

derivative of the ground-state eigenfunction of the Schrödinger operator (which is of independent

interest).

The statistics literature is rife with results on Fisher-information-minimizing distributions. The

Cramér-Rao bound implies that Gaussian measures have the smallest Fisher information among all

densities with a given variance. The minimizer over compactly-supported distributions or over those

supported on R+ were characterized in [UK95] and [BV09], respectively. Kagan [Kag86] studied the

same problem for densities on R with fixed first and second moments, which was later extended

to other moments by Ernst [Ern17]. A connection between minimizing Fisher information and the

Schrödinger equation has been established in [HR09, Example 5.1]. Formulating a privacy problem

in terms of minimizing Fisher information has appeared in [FS18, FS19], but not in a DP sense; rather,

the analyses therein pertain to privacy-preserving battery charging methods to obfuscate household

information, and the Fisher information itself is proposed as a privacy metric. Fisher information

minimization in [FS18] is done for PDFs of compact support, and that is extended to unbounded

support in [FS19] but for only a quadratic cost. Further, the PDFs considered in [FS18, FS19] are

assumed a priori to be twice continuously differentiable. Therefore, none of these previous works has

a setup encompassing ours, namely, they minimize Fisher information: over PDFs supported over a

compact set [UK95, FS18] or over R+ [BV09]; assuming regularity of the PDFs [HR09, FS18, FS19];

or under a strictly smaller or different class of constraint functions [Kag86, Ern17, FS19].

We discuss in more detail how our work differs from the existing literature closest to ours [HR09,

Ern17, FS18, FS19] regarding the Fisher information minimization problem in Appendix A.1.

2.7 Notation

We fix a Euclidean space Rm throughout, and an m-dimensional random vector X, whose induced

Borel probability measure is denoted by PX. Denote by λ and ∥ · ∥ the Lebesgue measure and ℓ2
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norm, respectively, on Rm. The open ball around x ∈ Rm of radius r is denoted by Br(x). The shift

operator is denoted by Tx, i.e., (Txr)(A) := r(A− x).

For a probability measure P on Rm and c : Rm → R, the expectation is denoted by EP[c] :=∫
Rm c(x) dP(x). For probability measures P, Q over Rm, the KL-divergence is denoted by D(P ∥Q),

the variance of the information density is denoted by

V(P ∥Q) := EP

[(
log

dP
dQ
− D(P ∥Q)

)2
]

, (2.9)

and the Eγ-divergence is defined for γ ≥ 0 as

Eγ(P ∥Q) := sup
A Borel

P(A)− γQ(A) = EQ

[( dP
dQ
− eε

)+]
,

where a+ := max(0, a). We write F(p ∥ q) or F(X ∥ Y) if P, Q ≪ λ with densities p and q or

X ∼ P and Y ∼ Q, where F ∈ {D, V,Eγ}. We also denote the expectation by Ep[g] := EP[g] if

P ≪ λ has probability density function (PDF) p. A probability measure P over Rm is said to be

spherically-symmetric if P({Ux : x ∈ B}) = P(B) for any Borel B ⊂ Rm and every orthogonal

matrix U ∈ Rm×m.

We denote by R the set of all Markov kernels2 on Rm, i.e., conditional distributions PY|X for

Rm-valued X and Y such that x 7→ PY|X=x(B) is a Borel function for all Borel sets B ⊂ Rm. The set

B denotes all Borel probability measures on Rm. The set of all probability density functions on R is

denoted by P . The Fisher information of p ∈ P is denoted by I(p), i.e., if p is absolutely continuous

then

I(p) :=
∫
{x∈R ; p(x)>0}

p′(x)2

p(x)
dx, (2.10)

and I(p) = ∞ otherwise.

For a random variable L, the moment-generating function (MGF) is denoted by ML(t) := E[etL],

and the cumulant-generating function (CGF) by KL(t) := log ML(t). The standard normal cumulative

density function is denoted by Φ. The Q function is defined by Q(x) := 1−Φ(x). We also denote

the function q : R→ (0, ∞) by

q(z) := Q(z) ·
√

2π ez2/2. (2.11)

2It is true that any conditional distribution from Rm into Rm has a version that is a Markov kernel [Ç11, Chapter 4,
Theorem 2.10].
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The (m, k)-th partial Bell polynomial is denoted by (with x = (x1, · · · , xm))

Bm,k(x) := ∑
k1+···+km=k

1·k1+···+m·km=m

(
m

k1, · · · , km

) m

∏
j=1

( xj

j!

)kj

(2.12)

and the m-th complete Bell polynomial by Bm(x) := ∑m
k=1 Bm,k(x). We will use the standard

Bachmann-Landau notations O, Ω, Θ, o, ω. The notation ak ∼ bk means ak/bk → 1 as k→ ∞.

2.8 Assumptions

Any assumption required for a particular result to hold will be explicitly invoked in the statement

of the same result. We collect the various assumptions needed for this chapter in this section for

reference.

2.8.1 Assumption for Optimal Mechanism Design

Sensitivity

Throughout this chapter, we consider only the ℓ2 sensitivity.

Cost Function

For the results of this chapter we will require the cost function c to satisfy some assumptions, and

we will always explicitly invoke such assumptions clearly in the relevant context. For Sections 2.10

and 2.12–2.13, we will require the following assumption on the cost function c.

Assumption 2.1. The cost function c : Rm → R satisfies:

(a) Growing from 0 to ∞: c(0) = 0; c(u) ≤ c(v) if ∥u∥ ≤ ∥v∥; and c(x)→ ∞ as ∥x∥ → ∞.

(b) Spherical symmetry: there is a function c̃ : R+ → R such that c(x) = c̃(∥x∥) for all x ∈ Rm.

(c) Lower-semicontinuity: c is continuous at the origin, and it is lower semicontinuous over Rm.

A natural choice of cost function satisfying Assumption 2.1 is positive multiples and powers of

the the quadratic cost c(x) = β∥x∥α for α, β > 0, but we allow c(x) to be any function that satisfies

the above assumptions. For the optimality results in Sections 2.12–2.13, we also require c(x) ∼ β∥x∥α

as ∥x∥ → ∞, which will be explicitly invoked when needed.
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The results of Section 2.14 hold for the class of cost functions c satisfying the following properties.

We note that this class includes functions such as c(x) = β|x|α and c(x) = β log(|x|+ 1)α for any

α, β > 0.

Assumption 2.2. The cost function c : R→ R satisfies:

(a) Growing from 0 to ∞: c(0) = 0; c(u) ≤ c(v) if |u| ≤ |v|; and c(x)→ ∞ as |x| → ∞.

(b) Evenness: c(x) = c(−x) for all x ∈ R.

(c) Continuity: c is continuous over R.

(d) Controlled derivative: c′(x) = o
(

c(x)3/2
)

as x→ ∞.

(e) Tail regularity:
∫ ∞

x0
|c′|2/|c|5/2,

∫ ∞
x0
|c′′|/|c|3/2 < ∞ for some x0 ∈ R.

(f) Moderate growth: x 7→
√

c(x)/exp(γ
∫ |x|

0

√
c(t) dt) is integrable for all γ > 0.

(g) Additive/Multiplicative regularity: there is a locally bounded strictly positive function ρ on R such

that c(x− t), c(tx) ≤ ρ(t)(c(x) + 1) for all x, t ∈ R.

Remark 2.1. In the assumptions involving c′ or c′′, it is to be understood that c is required to be

differentiable (or twice differentiable) only at large enough values.

Mechanism

We prove optimality of additive, continuous, spherically-symmetric mechanisms in Section 2.10

(Theorems 2.3–2.6) without any assumption at all on the considered mechanisms PY|X . Similarly, for

the Fisher information minimization result in Theorem 2.13, we do not impose any restriction at all

on the considered PDFs p.

For proving the limit (2.7) in Theorem 2.1, we use the CLT, so we will impose a subset of the

following properties on the variance of the PLRV.

Assumption 2.3. The Markov kernel PY|X satisfies:

(a) Bounded variance: sup∥x−x′∥≤s D(PY|X=x ∥ PY|X=x′), sup∥x−x′∥≤s V(PY|X=x ∥ PY|X=x′) < ∞.

(b) If xℓ, x′ℓ ∈ Rm are such that V(PY|X=xℓ ∥ PY|X=x′ℓ
)→ 0 as ℓ→ ∞, then D(PY|X=xℓ ∥ PY|X=x′ℓ

)→ 0.
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Finally, to extract optimal DP mechanisms from our results on the global minimization of Fisher

information in Section 2.14, we will require that the considered PDFs satisfy the expansion of KL-

divergence in terms of Fisher information and that they have uniformly bounded information-density

variance. We define this class, denoted F , in Definition 2.8.

Assumption 2.4. The PDF p on R satisfies:

(a) Fisher information expansion: D(p ∥ Ta p) = a2 I(p)/2 + o(a2) as a→ 0.

(b) Bounded variance: there is an s > 0 such that sup|a|≤s D(p ∥ Ta p), sup|a|≤s V(p ∥ Ta p) < ∞.

2.8.2 Assumptions for the Saddle-Point Accountant

We will require the privacy-loss random variable (PLRV)—see Definition 2.11—to have a finite MGF.

Assumption 2.5. The MGF ML(t) of the PLRV L is finite for every t > 0.

Under Assumption 2.5, both the MGF and CGF can be extended to be holomorphic functions

over the half-plane z ∈ (0, ∞) + iR ⊂ C.

We impose the following technical assumption on the distribution of the PLRV so that Parseval’s

identity applies.

Assumption 2.6. The induced probability measure PL by the PLRV L decomposes as a sum PL = QL + RL

for QL absolutely continuous with respect to the Lebesgue measure and discrete RL. Further, with qL denoting

the PDF of QL, we assume that x 7→ etxqL(x)2 is integrable for each t > 0.

For our error analysis, we will assume the following on the growth of the first three moments of

a PLRV.

Assumption 2.7. With L̃ = L̃1 + · · · + L̃n being the exponential tilting with parameter t > 0 (see

Definition 2.12), and denoting

Pt :=
n

∑
j=1

E

[∣∣∣L̃j −E[L̃j]
∣∣∣3] , (2.13)

we assume that there are constants KL, V > 0, and P such that t = o(n−1/3) yields the limit (as n→ ∞)

1
n
· (E[L̃], σ2

L̃, Pt)→ (KL, V, P). (2.14)

Remark 2.2. Assumption 2.7 is automatically satisfied under Assumption 2.5 for self-composition.

25



It is worth noting that all of the above three assumptions are satisfied by both the subsampled

Gaussian mechanism (because it is continuous with a PDF that decays super-exponentially) and the

subsampled Laplace mechanism (because its continuous part is bounded). See Appendix A.15 for

more details.

2.9 Large-Composition Theorem

We start by delineating how designing optimal DP mechanisms in the high-composition regime

leads to the information-theoretic KL-divergence optimization problem we consider in (2.8). We

emphasize that our analysis in this section is focused in the setting of sufficiently large number

of compositions. Thus, our focus is solving the resulting information-theoretic problem presented

in (2.8). In a nutshell, we show in Theorem 2.1 that: for a wide class of mechanisms PY|X, with

P◦kY|X denoting the k-fold self-composition, and ε 7→ δP◦kY|X
(ε) the worst-case privacy curve after k

compositions, we have the limit

lim
k→∞

1
k
· inf

{
ε ≥ 0 : δP◦kY|X

(ε) ≤ δ

}
= sup
∥x−x′∥≤s

D(PY|X=x ∥ PY|X=x′). (2.15)

Thus, designing optimal DP mechanisms in the large-composition regime is equivalent, to a “first-

order” approximation, to minimizing the maximal KL-divergence (i.e., solving (2.8)).

2.9.1 The Privacy Curve After Composition

We first set up some useful notation. We let D be some set containing the datasets. Let PY|X be a

mechanism, i.e., a Markov kernel on Rm, and f : D → Rm a query function. Let d ∈ D and write

x = f (d). Then, the result of applying PY|X for the query function f to the dataset d is denoted by

Y ∼ PY|X=x. Note that Y is a random variable.

We consider next the k-fold adaptive composition of M with k different queries. Fix k query

functions f1 : D → Rm and f j : D × (Rm)j−1 → Rm for 2 ≤ j ≤ k. Let d ∈ D, x1 :=

f1(d), and Y1 ∼ PY|X=x1
the output of the first application of the mechanism PY|X. Define

xj := f j(d, Y1, · · · , Yj−1) for 2 ≤ j ≤ k. Then, the k-fold composition of PY|X is defined by

P◦kY|X [x1, · · · , xk] := (PY|X=x1
, · · · , PY|X=xk

). Let Z1 := D, and, for each j ≥ 2, let Zj ⊂ D × (Rm)j−1

denote the set of all possible sequences zj = (d, y1, · · · , yj−1) as d ranges over D. We use the

26



shorthands τ(ℓ) := (τ1, · · · , τℓ). We assume that the f j have the same sensitivity, defined as

s := sup
zj=(d,u(j−1)),z′j=(d′ ,v(j−1))∈Zj

d,d′∈D,d≃d′

| f j(zj)− f j(z′j)|, (2.16)

where d ≃ d′ is used to indicate that the datasets d and d′ are neighboring. Let S (k)d ⊂ (Rm)k denote

the set of all possible outcomes x(k) generated from d ∈ D. Then, according to the DP definition

in (2.1), the mechanism P◦kY|X is (ε, δ)-DP if and only if

sup
d≃d′

sup
(u(k),v(k))∈S (k)d ×S

(k)
d′

sup
A Borel

PY(k) |X(k)=u(k)(A)− eεPY(k) |X(k)=v(k)(A) ≤ δ. (2.17)

We will rewrite the DP definition (2.1) in terms of the Eγ-divergence.

Definition 2.2 (Hockey-stick divergence). The hockey-stick divergence with parameter γ ≥ 0 (or, the

Eγ-divergence) of P from Q, with (P, Q) being a pair of Borel probability measures on Rm, is defined

as

Eγ(P ∥ Q) := (P− γQ)+(Rm) = sup
A Borel

P(A)− γ Q(A). (2.18)

It is immediate that the DP definition (2.1) may be rewritten in terms of the Eγ-divergence [BO13].

Specifically, a mechanism PY|X is (ε, δ)-DP if and only if

sup
∥x−x′∥≤s

Eeε(PY|X=x ∥ PY|X=x′) ≤ δ. (2.19)

Rewriting DP in terms of the hockey-stick divergence facilitates mathematical reasoning about

composition of mechanisms, as we briefly review next. Note that inequality (2.17) may be rewritten

as

sup
d≃d′

sup
(u(k),v(k))∈S (k)d ×S

(k)
d′

Eeε

(
PY(k) |X(k)=u(k) ∥ PY(k) |X(k)=v(k)

)
≤ δ. (2.20)

The left-hand side may be upper bounded, by definition of sensitivity, as

sup
d≃d′

sup
(u(k),v(k))∈S (k)d ×S

(k)
d′

Eeε

(
PY(k) |X(k)=u(k) ∥ PY(k) |X(k)=v(k)

)

≤ sup
u(k),v(k)∈(Rm)k

∥uj−vj∥≤s, j∈[k]

Eeε

(
PY(k) |X(k)=u(k) ∥ PY(k) |X(k)=v(k)

)
(2.21)

= sup
u(k),v(k)∈(Rm)k

∥uj−vj∥≤s, j∈[k]

Eeε

∏
j∈[k]

PY|X=uj

∥∥∥ ∏
j∈[k]

PY|X=vj

 (2.22)
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Further, this upper bound is at least as tight as the bound considered by all existing PLRV-based DP

accountants. Indeed, let (P, Q) be a tightly dominating pair, i.e.,

sup
∥x−x′∥≤s

Eγ(PY|X=x ∥ PY|X=x′) = Eγ(P ∥ Q) (2.23)

for every γ ≥ 0. Then,

Eγ(PY|X=x ∥ PY|X=x′) ≤ Eγ(P ∥ Q) (2.24)

whenever ∥x− x′∥ ≤ s and γ ≥ 0. Then, we have that, for every γ ≥ 0, (see, e.g., [DRS22, Theorem 4])

Eγ

∏
j∈[k]

PY|X=uj

∥∥∥ ∏
j∈[k]

PY|X=vj

 ≤ Eγ(P⊗k ∥ Q⊗k) (2.25)

whenever ∥uj − vj∥ ≤ s for every j ∈ [k]. In other words,

sup
∥uj−vj∥≤s, j∈[k]

Eγ

∏
j∈[k]

PY|X=uj

∥∥∥ ∏
j∈[k]

PY|X=vj

 ≤ Eγ(P⊗k ∥ Q⊗k). (2.26)

Further, the upper bound in (2.22) is tight in general; indeed, equality is attained if the f j depend

only on d. Thus, for the mechanism design part of this chapter, we focus on the privacy curve

δP◦kY|X
(ε) := sup

∥uj−vj∥≤s, j∈[k]
Eeε

∏
j∈[k]

PY|X=uj

∥∥∥ ∏
j∈[k]

PY|X=vj

 . (2.27)

We show in Theorem 2.1 below that, under mild conditions on PY|X , the behavior of δP◦kY|X
(ε) for large

k is governed by the KL-divergence.

The DP mechanism-design problem aims at finding a mechanism PY|X for which, given ε ≥ 0,

the number δP◦kY|X
(ε) is as small as possible. Naturally, one would also impose some cost constraint

on PY|X so that the optimization problem is nontrivial. Dually, we may fix δ ∈ [0, 1] and look for a

mechanism PY|X that minimizes ε ≥ 0, i.e., one that minimizes the left-inverse function

εP◦kY|X
(δ) := inf

{
ε ≥ 0 : δP◦kY|X

(ε) ≤ δ

}
. (2.28)

In other words, we are considering the following problem.

Problem 1. For ε ≥ 0 and k ∈N, minimize δP◦kY|X
(ε) over PY|X . Dually, for δ ∈ [0, 1] and k ∈N, minimize

εP◦kY|X
(δ) over PY|X .
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2.9.2 From DP to KL-divergence: A Large-Composition Theorem

We derive in Theorem 2.1 a sense in which Problem 1 about DP mechanism-design under composition

reduces to the following KL-divergence optimization.

Problem 2. Minimize sup∥x−x′∥≤s D(PY|X=x ∥ PY|X=x′) + Θ(1/
√

k) over PY|X .

Optimizing the maximal KL-divergence (2.8) is, therefore, a “first-order” approximation of

Problem 2. We note that the implicit constant in the Θ(1/
√

k) term in Problem 2 is within a

multiplicative factor of 1 + o(1) from belonging to the interval
[
−Φ−1(δ)σ,−Φ−1(δ)σmax

]
where:

σ2
max is the maximal variance of the random variables Lx,x′ defined in (2.2); σ is the infimal variance

of Lx,x′ whose induced KL-divergence gets arbitrarily close to maximal; and Φ is the standard-

normal CDF. Importantly, this term vanishes in k, so the KL-divergence term dominates the objective

function.

The crux of our technical approach in proving the reduction from Problem 1 to Problem 2 in

Theorem 2.1 is showing that δ is sandwiched between two values δP◦kY|X
(εk(δ)) and δP◦kY|X

(εk(δ)), where

for our choice of values we have both εk(δ)/k and εk(δ)/k of order sup∥x−x′∥≤s D(PY|X=x ∥ PY|X=x′)+

Θ(1/
√

k), from which one may conclude that the true value εP◦kY|X
(δ)/k has this order too. We

introduce next some useful notation. Denote

KLx,x′ := D(PY|X=x ∥ PY|X=x′), (2.29)

and set

KLmax := sup
∥x−x′∥≤s

KLx,x′ . (2.30)

We suppress the dependence on PY|X in the above notation for readability. Note that the proposed

problem in (2.8) aims to minimize KLmax subject to a cost constraint:

inf
PY|X∈R

KLmax

subject to sup
x∈Rm

EPY|X=x
[Txc] ≤ C.

(2.31)

Note that KLx,x′ ≥ 0. It suffices to consider the case KLmax > 0, since the degenerate case KLmax = 0

yields an impractical mechanism that outputs only noise independent of the input data. We

shall assume that KLmax < ∞, since otherwise the mechanism PY|X would be infeasible for the

problem (2.8).

Note that KLx,x′ is the mean KLx,x′ = E[Lx,x′ ] (see (2.2) for the definition of the PLRV Lx,x′ ). We
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will also consider the variance of Lx,x′ , which we denote by

Vx,x′ := E
[(

Lx,x′ −KLx,x′
)2
]

. (2.32)

For tuples of vectors u(k), v(k) ∈ (Rm)k, we will denote KLu(k),v(k) := ∑j∈[k] KLuj ,vj , and Vu(k),v(k) is

defined similarly. We will assume that PY|X satisfies Vmax := sup∥x−x′∥≤s Vx,x′ < ∞. Note that the

values of KLmax and Vmax are obtained by element-wise maximization:

sup
∥uj−vj∥≤s, j∈[k]

KLu(k),v(k) = k ·KLmax, (2.33)

sup
∥uj−vj∥≤s, j∈[k]

Vu(k),v(k) = k ·Vmax. (2.34)

The following result shows that εP◦kY|X
(δ) ∼ k · KLmax, thereby giving an asymptotic sense in

which the DP mechanism-design problem reduces to the KL-divergence optimization (2.8) in the

large-composition regime.

Theorem 2.1. Let PY|X be a Markov kernel on Rm satisfying item (a) of Assumption 2.3, i.e., its induced

information densities have uniformly bounded means and variances. Then, for any δ ∈ (0, 1/2), we have the

bounds

k · (KLmax − o(1)) ≤ εP◦kY|X
(δ) ≤ k ·KLmax +

(
−Φ−1(δ) + o(1)

)√
k ·Vmax, (2.35)

where o(1) denotes a function that vanishes as k→ ∞. If, in addition, item (b) of Assumption 2.3 holds, then

we have the refined expansion

εP◦kY|X
(δ) = k ·KLmax −Φ−1(δ)

√
k ·V⋆

k , (2.36)

where the constants V⋆
k ≥ 0 satisfy the inequalities V ≤ lim infk→∞ V⋆

k ≤ lim supk→∞ V⋆
k ≤ Vmax, with the

constant in the lower bound V ≥ 0 defined by

V := inf

{
lim inf
ℓ→∞

Vxℓ,x′ℓ
: xℓ, x′ℓ ∈ Rm, sup

ℓ∈N

∥xℓ − x′ℓ∥ ≤ s, lim
ℓ→∞

KLxℓ,x′ℓ
= KLmax

}
. (2.37)

Proof. See Appendix A.2.

Remark 2.3. The mechanisms we propose in later sections all satisfy the premises of Theorem 2.1.

Since the proposed distributions can perform arbitrarily close to optimal for the unrestricted prob-

lem (2.8), there is no loss in generality in imposing the restrictions in Theorem 2.1.

Remark 2.4. We derive in Theorem 2.16 an alternative large-composition theorem for a mechanism
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PY|X in terms of its dominating pairs (see (2.23)).

An related result to Theorem 2.1 gives a more precise asymptotic when one has access to

tightly-dominating pairs. Namely, let (P, Q) be a tightly-dominating pair for PY|X , i.e.,

sup
∥x−x′∥≤s

Eγ(PY|X=x ∥ PY|X=x′) = Eγ(P ∥ Q) (2.38)

for every γ ≥ 0, and consider the privacy curve

δTD
P◦kY|X

(ε) := Eγ(P⊗k ∥ Q⊗k). (2.39)

This curve is well-defined and it gives a privacy guarantee [DRS22, Theorem 4]: the k-fold com-

position of PY|X satisfies (ε, δTD
P◦kY|X

(ε))-DP for every ε ≥ 0. Similarly to (2.28), consider the inverse

curve

εTD
P◦kY|X

(δ) := inf
{

ε ≥ 0 : δTD
P◦kY|X

(ε) ≤ δ

}
, (2.40)

for which we prove the following asymptotic.

Theorem 2.2. Let PY|X be a Markov kernel on Rm. Assume that (P, Q) is a tightly dominating pair for PY|X

(see (2.38), and suppose that EP[| log dP
dQ |

3] < ∞. Then, for any fixed δ ∈ (0, 1/2), we have the asymptotic

(see (2.40))

εTD
P◦kY|X

(δ) = k · D(P ∥ Q)−Φ−1(δ)
√

k ·V(P ∥ Q) + o(
√

k). (2.41)

as k→ ∞.

Proof. This follows from the stronger result we prove later in Theorem 2.16 by instantiating it to the

case of fixed δ.

2.10 Optimality of Additive, Continuous, Spherically-Symmetric

Mechanisms

We start by deriving characterizations of solutions to the optimization problem (2.8). The difficulty

of this problem lies in the fact that we are optimizing over all conditional distributions. This not only

makes the problem infinite-dimensional, but it also renders direct approaches ineffective. The main

result of this section, shown in Theorem 2.3 below, is that it suffices to consider continuous additive

channels. In other words, the optimization in (2.8) may be restricted to conditional distributions of
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the form PY|X=x = TxP for some Borel probability measure P on R that is absolutely continuous with

respect to the Lebesgue measure and which is spherically symmetric. Equipped with this reduction,

we build in the next two sections an explicit family of finitely-parametrized distributions that are

also optimal in (2.8). Thus, the main result of this section is stated as follows.

Theorem 2.3. If the cost function c satisfies Assumption 2.1, then there is an additive, continuous, spherically-

symmetric mechanism solving the optimization problem (2.8).

Proof. We break down the proof of Theorem 2.3 into the three parts in Theorems 2.4–2.6 which we

prove throughout this section. By Assumption 2.1, we have both continuity and the vanishing of

c at the origin. Hence, choosing an additive mechanism with a sufficiently rapidly decaying PDF,

we see that problem (2.8) is feasible, i.e., its optimal value is not ∞. By Theorem 2.4, there is an

additive mechanism P⋆ achieving this optimal value. By Theorem 2.5, P⋆ must be continuous. By

Theorem 2.6, we may assume that P⋆ is spherically-symmetric, and the proof is complete.

Let P ⊂ R be the set of conditional distributions PY|X satisfying the cost constraint in (2.8), i.e.,

P :=

{
PY|X ∈ R ; sup

x∈Rm
E[c(Y− x) | X = x] ≤ C

}
. (2.42)

The infimal value in (2.8) is then

KL⋆ := inf
PY|X∈P

sup
x,x′∈Rm :∥x−x′∥≤s

D(PY|X=x ∥ PY|X=x′), (2.43)

where we are considering the ℓ2-sensitivity here. We are interested in computing KL⋆, as well as

mechanisms PY|X that approach this optimal value. Note that, for clarity of presentation, we suppress

the dependence on (s, c, C) in the notations P and KL⋆.

2.10.1 Additive Mechanisms are Optimal

In the main problem (2.8), we allow PY|X to be any mechanism that produces Y given X. A more

restrictive but natural and easy-to-implement class of mechanisms is the additive mechanism class.

An additive mechanism is given by PY|X=x(B) = TxP(B) where P is a Borel probability measure

on Rm. In other words, an additive mechanism PY|X has Y of the form Y = X + Z for some noise

random variable Z ∼ P ∈ B that is independent of the input X. Let Padd ⊂ B be the set of additive
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mechanisms satisfying the cost constraint in (2.8),

Padd := {P ∈ B ; EP[c] ≤ C} . (2.44)

Since the KL-divergence is shift-invariant, restricting the optimization (2.8) to additive mechanisms

amounts to considering the simplified optimization problem

KL⋆
add := inf

P∈Padd
sup

a∈Rm :∥a∥≤s
D(P ∥ TaP). (2.45)

Of course, it is immediate that KL⋆ ≤ KL⋆
add. In fact, we show below that these quantities are the

same, meaning that there is no loss in restricting to additive mechanisms.

The optimization problem in (2.8) is a convex problem, but the fact that the feasible set P is of

infinite dimension means it cannot be solved directly, nor do the tractable properties one expects of

a convex optimization problem necessarily follow. For example, in any finite dimensional convex

optimization problem, a symmetry in the problem leads to the same symmetry in the solution. In

this problem, and under Assumption 2.1, one can see that shifting the mechanism—i.e., given PY|X ,

construct QY|X=x(B) = PY|X=x+z(B + z) for some z—does not change the cost constraint nor the

objective value in (2.8). Thus, one might be inclined to conclude that the optimal mechanism is

invariant to a shift (i.e., is an additive mechanism). Unfortunately, the infinite-dimensional nature

of the problem means that this conclusion is not immediate. We resolve this issue in the following

theorem which states that additive mechanisms are in fact optimal in (2.8).

Theorem 2.4. If the cost function c satisfies Assumption 2.1, then KL⋆ = KL⋆
add, and there exists an additive

mechanism achieving this optimal value.

Proof sketch. The proof is given in Appendix A.3. We give here only a high level description of the

approach. Let P(k)
Y|X be a sequence achieving KL⋆. We make these mechanisms increasingly closer to

being additive, while sacrificing neither feasibility nor utility, by considering the convex combinations

P(k)
Y|X=x(A) := E

[
P(k)

Y|X=x+Zk
(A + Zk)

]
(2.46)

where Zk ∼ Unif(Bk(0)). Specifically, one can invoke Prokhorov’s theorem on the P(k)
Y|X, thereby

extracting a probability measure P⋆ such that P(k)
Y|X=x → TxP⋆ weakly for each fixed x. Finally, we

show that the additive mechanism P⋆ is optimal by invoking joint convexity and lower-semicontinuity

of the KL-divergence.
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2.10.2 Feasible Additive Mechanisms Must Be Continuous

Recall that the finiteness of the KL-divergence D(P ∥ Q) < ∞ necessarily implies the absolute

continuity P≪ Q. This fact can be used to conclude that an additive mechanisms can yield a finite

objective value in (2.8) only if it is continuous.

Theorem 2.5. If µ ∈ B satisfies sup∥x∥≤s D(µ ∥ Txµ) < ∞, then we necessarily have µ≪ λ. In particular,

any feasible additive mechanism in (2.8) must be continuous.

Proof. We show that the relation µ≪ Txµ for every ∥x∥ ≤ s is enough to conclude that µ≪ λ. Fix

a Borel set A ⊂ Rm such that λ(A) = 0, and we will show that µ(A) = 0. Note that the function

x 7→ (Txµ)(A) is Borel as it is given by the convolution 1A ∗ η where η(E) := µ(−E). Then, by

Tonelli’s theorem and translation-invariance of the Lebesgue measure,

∫
Rm

(Txµ)(A) dλ(x) =
∫

R2m
1A−x(b) dµ(b) dλ(x) (2.47)

=
∫

R2m
1A−x(b) dλ(x) dµ(b) (2.48)

=
∫

R2m
1A−b(x) dλ(x) dµ(b) (2.49)

=
∫

Rm
(Tbλ)(A) dµ(b) (2.50)

=
∫

Rm
λ(A) dµ(b) = 0. (2.51)

Thus, (Txµ)(A) = 0 for λ-almost every x. In particular, (Txµ)(A) = 0 for at least one x ∈ Bs(0).

Thus, µ≪ Txµ implies µ(A) = 0, and the proof is complete.

2.10.3 Spherically-Symmetric Additive Mechanisms are Optimal

We show in the following theorem that any mechanism can be replaced with another spherically-

symmetric mechanism without reducing either of the objective value or the cost incurred in prob-

lem (2.8). Note that spherical symmetry amounts to evenness in the single-dimensional case (i.e.,

when m = 1). In this simpler case, we would take q(z) to be the average p(z)+p(−z)
2 , and joint

convexity of the KL-divergence would finish the proof. For m > 1, however, we need to average over

all possible rotations of p. In R, these are just multiplications of the input by an element in {±1},

but in higher dimensions we need to consider multiplication by infinitely many orthogonal matrices.

Thus, we need to utilize the existence of the Haar measure in general.
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Theorem 2.6. Suppose that the cost function c satisfies Assumption 2.1. For any continuous additive

mechanism, there is a corresponding spherically-symmetric, continuous, additive mechanism that increases

neither the objective value nor the cost constraint in problem (2.8).

Proof. Fix a continuous additive mechanism P and let p be its PDF. We will use p to define a new

PDF q that is isotropic, satisfies the cost constraint, and does not increase the maximal KL-divergence.

Specifically, let O(m) denote the orthogonal group, i.e., the topological group of orthogonal

m× m real matrices under multiplication and with the subspace topology inherited from Rm×m.

Let µ denote the right Haar measure on O(m) with the normalization µ(O(m)) = 1; as O(m) is a

compact topological group, µ is well-defined. In particular, µ is a Borel probability measure, and

µ(SU) = µ(S) for any element U ∈ O(m) and Borel subset S ⊂ O(m) (i.e., µ is invariant under

multiplication on the right). We will define the PDF q : Rm → R+ by

q(z) :=
∫

O(m)
p(Uz) dµ(U). (2.52)

We will check that q is well-defined, is isotropic, satisfies the cost constraint, and has a maximal

KL-divergence upper bounded by that of p. Then, the mechanism Y = X + Z with Z having PDF q

and independent of X would verify the claim of the theorem.

To see that q is well-defined, note that the mapping (U, z) 7→ Uz is continuous and p is Borel,

hence (U, z) 7→ p(Uz) is Borel, and Fubini’s theorem yields that z 7→ q(z) is Borel. For isotropy of q,

note that for every V ∈ O(m), right-invariance of µ yields that

q(Vz) =
∫

O(m)
p(UVz) dµ(U) =

∫
O(m)

p(Uz) dµ(U) = q(z). (2.53)

That q satisfies the cost constraint can be seen via Tonelli’s theorem and isotropy of c:

∫
Rm

c(z)q(z) dz =
∫

Rm
c(z)

∫
O(m)

p(Uz) dµ(U) dz (2.54)

=
∫

O(m)

∫
Rm

c(z)p(Uz) dz dµ(U) (2.55)

=
∫

O(m)

∫
Rm

c(UTw)p(w) dw dµ(U) (2.56)

=
∫

O(m)

∫
Rm

c(w)p(w) dw dµ(U) (2.57)

≤
∫

O(m)
C dµ(U) = C. (2.58)

Finally, that q does not increase the maximal KL-divergence can be deduced from joint convexity of

35



the KL-divergence. Indeed, consider the PDFs rx,V(z) := (TVx p)(Vz) for (x, V, z) ∈ Rm×O(m)×Rm.

Then, with U ∼ µ and ∥x∥ ≤ s (so ∥Ux∥ = ∥x∥ ≤ s), we have that

D(q ∥ Txq) = D (z 7→ E[r0,U(z)] ∥ z 7→ E[rx,U(z)]) (2.59)

≤ E [D(r0,U ∥ rx,U)] (2.60)

= E [D(p ∥ TUx p)] (2.61)

≤ sup
∥a∥≤s

D(p ∥ Ta p). (2.62)

The proof is thus complete.

2.11 Proposed Mechanisms

For clarity of presentation, we include separate section for the construction of our proposed mecha-

nisms and for respective results regarding their optimality. This section is devoted to only defining

our proposed mechanisms and illustrating the shapes of their PDFs. Proofs of their respective

optimalities occupy Sections 2.12–2.14.

We introduce next new mechanisms that are optimal or can get arbitrarily close to optimal for the

main KL-divergence problem (2.8). Namely, we introduce: (i) Cactus mechanisms for scalar queries and

fixed sensitivity, (ii) isotropic mechanisms for vector queries and fixed sensitivity, and (iii) Schrödinger

mechanisms for scalar queries and small sensitivity (s→ 0+). We give the mathematical construction

of these mechanisms in this section, and we prove optimality in the next three sections. Later, in

Section 2.15, we demonstrate the DP performance of these mechanisms.

In Theorem 2.3 we reduced the main KL-divergence problem (2.8) to the case of additive,

continuous, spherically-symmetric mechanisms. Symbolically, it suffices to solve the problem

inf
p

sup
∥a∥≤s

D(p ∥ Ta p)

subject to Ep[c] ≤ C,

(2.63)

where p ranges over spherically-symmetric PDFs on Rm. Still, the optimization problem over additive

mechanisms in (2.63) is infinite-dimensional, so it cannot be solved numerically as-is, and it appears

to have no closed-form solution for non-trivial cost functions and fixed sensitivity s. The lack of

closed-form solution is true even for the simple 1-dimensional variance case, i.e., m = 1 and c(x) = x2:
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to our surprise, as will be illustrated later, the Gaussian mechanism is not optimal!3 Therefore, in the

regime of fixed positive s, and for arbitrary dimension m, to find practically achievable near-optimal

mechanisms, we resort to numerical approximation of (2.45). In Section 2.14, we explore the regime

where s→ 0+; in this limit, we show that the optimal distribution can be determined exactly, and in

fact for quadratic cost the limiting optimal distribution is Gaussian—although for other costs the

optimal distribution is much more surprising.

In what follows, we introduce new mechanisms that perform arbitrarily close to optimal for the

problem (2.63) (hence for the main problem (2.8) too by Theorem 2.3). We start in this section by

giving a brief overview of the construction of our proposed mechanisms.

Remark 2.5. In the fixed-sensitivity regime, we set s = 1. We can do this without loss of generality

simply by scaling: that is, the optimization problem in (2.63) with sensitivity s and cost function c(x)

is equivalent to the same problem with sensitivity 1 and cost function c(sx).

2.11.1 The Cactus Mechanisms

We consider scalar mechanisms first, so we set m = 1 in this subsection. We are also considering a

fixed sensitivity, so we set s = 1 (see Remark 2.5). To approximate (2.63) by a numerically tractable

problem, we: (i) quantize the distribution, and (ii) only explicitly parameterize the distribution in

a certain interval. Specifically, we construct a mapping from finite-length vectors to continuous

measures as follows.

Definition 2.3 (Cactus mechanism). Fix two positive integers n and N, and a constant r ∈ (0, 1).

Consider the partition of R by intervals {Jn,i}i∈Z defined by: Jn,0 := [−1/(2n), 1/(2n)] and

Jn,i :=


(

i−1/2
n , i+1/2

n

]
, if i > 0,[

i−1/2
n , i+1/2

n

)
, if i < 0.

(2.64)

We associate to each vector p = (p0, p1, . . . , pN) ∈ [0, 1]N+1 a piecewise constant function that is

defined by

fn,r,p(x) =


np|i|, if x ∈ Jn,i, with |i| < N,

npNr|i|−N , if x ∈ Jn,i, with |i| ≥ N.
(2.65)

3Of course, simply because Gaussian is not optimal does not imply that there is no closed-form solution. It is possible to
write a set of KKT conditions for (2.45). This set of KKT conditions cannot be solved in closed-form.
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We also associate with fn,r,p the Borel measure Pn,r,p, where

Pn,r,p(B) :=
∫

B
fn,r,p(x) dx. (2.66)

For any fixed triplet (n, N, r), and for any p⋆ that solves the restriction of problem (2.63) to the class

{ fn,r,p : fn,r,p is a PDF}p∈[0,1]N+1 , we call the additive mechanism Pn,r,p⋆ a Cactus mechanism.

Remark 2.6. Note that

∫
R

fn,r,p(x) dx = p0 +
N−1

∑
i=1

2pi +
2pN
1− r

=: Sr,p. (2.67)

If Sr,p = 1, then Pn,r,p is a probability measure with density fn,r,p. This distribution is sym-

metric around the origin, i.e., fn,r,p(x) = fn,r,p(−x). Further, its tails decay almost geomet-

rically with base rn: for (N + 1/2)/n < x1 < x2 one has fn,r,p(x2) = rnk · fn,r,p(x1) where

k = (⌈nx2 − 1/2⌉ − ⌈nx1 − 1/2⌉) /n ≈ x2 − x1.

Figure 2.1 shows an example of a Cactus mechanism for a quadratic cost. This plot shows the

Cactus PDF f200,0.9,p⋆ , where p⋆ ∈ [0, 1]1601 is obtained by solving the restriction of problem (2.63) to

the class of potential Cactus mechanisms (i.e., PDFs of the form f200,0.9,p for some p ∈ [0, 1]1601). We

explicitly give the numerical procedure for finding p⋆ in Theorem 2.7 in the next section. The shape

of this distribution4 has inspired the name the “Cactus distribution.” We note that the Cactus PDF is

only piece-wise continuous, but that the number of quantization bins N = 1600 is large is the reason

it appears continuous in Figure 2.1.

We investigate the Cactus mechanisms in detail in Section 2.12. Specifically, we show the explicit

form of the optimization problem that is the restriction of problem (2.63) to the construction in

Definition 2.3 in Theorem 2.7. We also show that the Cactus mechanisms perform arbitrarily close to

optimal for the main problem (2.8) in Theorem 2.8. Numerical experiments for the Cactus mechanism

are also presented in Section 2.15.

2.11.2 Isotropic Mechanisms

Next, we consider vector-valued mechanisms in this subsection (so the dimension m is free). We

generalize our approach for constructing the Cactus mechanism in the previous subsection. However,

in this multidimensional setting, we only consider monotone PDFs, defined as follows.

4In addition to the state of Arizona being home of several of the authors.
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Figure 2.1: The Cactus distribution plotted on a semi-log scale. The cost function is c(z) = z2, and the parameters are:
s = 1, C = 0.25, n = 200, N = 1600, and r = 0.9 (see Definition 2.3).

Definition 2.4. We say that a continuous random vector Z is monotone if it has a PDF p(z) such that

for every z ∈ Rm and t ∈ [0, 1), we have p(tz) ≥ p(z).

Remark 2.7. Note that a continuous random vector is monotone and spherically-symmetric if its

PDF can be written as p(z) = p̃(∥z∥) such that p̃ : R+ → R+ is non-increasing. One example is the

Gaussian mechanism Z ∼ N (0, σ2 Im).

Remark 2.8. Restricting attention to monotone mechanisms naturally leads to suboptimal solutions

to the problem (2.63), unlike for the Cactus mechanism on the real line which is allowed to be

non-monotone hence can be universally optimal. Nevertheless, we focus on monotone mechanisms

since, for such mechanisms, it is tractable to both do DP accounting (see Lemma 2.1) as well as solve

the KL-divergence optimization (2.8) (see Proposition 2.1). In particular, for general vector-valued

mechanisms that are not monotone, it does not seem that current DP accounting techniques can

be readily used to test such mechanisms’ performance. The main difficulty here lies in the fact

that one does not have in general a way to determine “worst shifts” if the mechanism is non-

monotone; in contrast, we show in Lemma 2.1 that maximal shifts are worst shifts for monotone

and spherically-symmetric mechanisms. We note that even with this restriction we will show that

isotropic mechanisms are optimal for (2.8) among monotone mechanisms; see Remark 2.12 for more

details.

As with the scalar case, the search space for the KL-divergence optimization (2.63) is infinite-

39



dimensional, hence we resort to a quantization approach. We generalize the construction of the

Cactus mechanism in Definition 2.3. We fix a large enough ball, which we divide into spherical

shells of fixed small enough width. We require that the mechanism be constant over the individual

spherical shells. Then, we impose geometric tails outside the fixed large ball. In addition, for the

multidimensional case, we require the mechanism to be a priori monotone. Formally, we introduce

the following construction.

Definition 2.5 (Isotropic mechanism). Fix two positive integers n and N, a constant r ∈ (0, 1), and a

vector p = (p0, p1, . . . , pN) ∈ [0, ∞)N+1 with p0 ≥ · · · ≥ pN . Consider the partition of R by intervals

{Ji,n :=
[

i
n , i+1

n

)
}i∈N. We define the piecewise-constant function

f̃n,r,p(ρ) :=


pi, if ρ ∈ Ji,n, with i < N,

pNri−N , if ρ ∈ Ji,n, with i ≥ N.
(2.68)

We also define the density fn,r,p : Rm → [0, ∞) by

fn,r,p(x) := f̃n,r,p(∥x∥), (2.69)

and associate with fn,r,p the Borel measure Pn,r,p given by

Pn,r,p(B) :=
∫

B
fn,r,p(x) dx. (2.70)

For any fixed triplet (n, N, r), and for any p⋆ that solves the restriction of problem (2.63) to the class

{ fn,r,p : fn,r,p is a PDF}p∈[0,∞)N+1,p0≥···≥pN
, we call the mechanism Pn,r,p⋆ an isotropic mechanism.

Visualizing an isotropic mechanism can be done via the distribution of its radius. It is not hard to

see that any spherically symmetric random vector Z can be written in the form

Z = R ·U (2.71)

where U is a uniformly distributed random vector over the unit (m− 1)-sphere in Rm, and R is a

nonnegative scalar random variable (non necessarily independent of U). In fact, we may set R = ∥Z∥

and U = Z/∥Z∥. We call R = ∥Z∥ the radius of Z.

We plot in Figure 2.2 the distribution of the radius R = ∥Z∥ with Z being an isotropic mechanism.

Specifically, we fix the dimension to m = 10, use the quadratic cost with cost bound 2.5, and choose

the construction parameters (n, N, r) = (400, 1200, 0.9). Thus, Z ∼ P400,0.9,p⋆ , where p⋆ is found
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Figure 2.2: The distributions of the radii of both the proposed isotropic mechanism and the Gaussian mechanism (for
comparison), both in m = 10 dimensions and with a quadratic cost E[∥Z∥2] = 2.5. The construction parameters for the
isotropic mechanism are n = 400, N = 1200, and r = 0.9.

by solving (2.63) when restricted to the class of potential isotropic mechanisms (i.e., PDFs of the

form f400,0.9,p for p ∈ [0, ∞)1201 satisfying p0 ≥ · · · ≥ pN). We also plot the PDF of the radius of

a corresponding Gaussian vector, i.e., the mechanism adds the Gaussian vector G ∼ N (0, 0.25I10)

whose radius satisfies ∥G∥ ∼ 1
2 χ10. Note that both mechanisms in Figure 2.2 are monotone according

to Definition 2.4, but this generally does not imply monotonicity of the PDF of the radial part of the

random vectors.

We investigate the isotropic mechanisms in detail in Section 2.13. Specifically, we show the explicit

form of the optimization problem that is the restriction of problem (2.63) to the construction in

Definition 2.5 in Theorem 2.9. We also show that the isotropic mechanisms perform arbitrarily close

to optimal for the main problem (2.8) among all monotone mechanisms in Theorem 2.10. Numerical

experiments for the isotropic mechanism are also presented in Section 2.15.

2.11.3 Schrödinger Mechanisms

The third and final family of mechanisms we introduce are closed-form solutions to the scalar-query

case in the regime of small-sensitivity. Thus, we fix the dimension to m = 1 in this subsection, and we

will consider sensitivities in the regime s→ 0+. We will introduce mechanisms that are the squares

of the ground-state eigenfunctions of the Schrödinger operator with the potential function being a
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positive multiple of the cost function c. Formally, we define the Schrödinger mechanism as follows.

Definition 2.6 (Schrödinger mechanism). The Schrödinger mechanism given the cost function c and

parameter θ > 0 is defined by Y = X + Z for Z having the PDF y2
θ,c where y = yθ,c is the unique

unit-L2-norm and strictly positive solution to the Schrödinger equation

y′′ = (θc− E)y, (2.72)

with E an arbitrary constant. In addition, with C = Ey2
θ,c
[c], we denote the PDF of the Schrödinger

mechanism by p⋆c,C := y2
θ,c.

Remark 2.9. As we will show in Lemma 2.2, there is a unique E for which the ODE (2.72) is uniquely

solvable with the prescribed properties for the solution y. Further, this value of E is the minimal

eigenvalue of the Schrödinger operator with potential θc.

For example, if c(x) = x2 is the quadratic cost, then the Schrödinger eigenproblem treats what is

known as the quantum harmonic oscillator in quantum physics. The ground-state eigenfunction

is known to be the Gaussian function. Then, the Schrödinger mechanism is in fact the Gaussian

mechanism, and we have

p⋆c,C(x) =
1√

2πC
e−x2/(2C), (2.73)

i.e., p⋆c,C is the centered Gaussian PDF with variance C.

As another example, consider the absolute value cost c(x) = |x|. In this case, the Schrödinger

mechanism can be described using the Airy function [NIS, Chapter 9], as follows. The differential

equation

y′′(x) = xy(x) (2.74)

has two linearly independent solutions, called the Airy functions. They are denoted by Ai and

Bi, where Ai is the solution such that Ai(x) → 0 as x → ∞; specifically, Ai is approximated as

Ai(x) ∼ e−2x3/2/3/(2
√

πx1/4). This function can be expressed by the improper Riemann integral

Ai(x) =
1
π

lim
N→∞

∫ N

0
cos

(
t3

3
+ xt

)
dt. (2.75)

This function is analytic, and there are countably many zeros of Ai and Ai′ all falling on the negative

half-line. As is customary, the zeros of Ai and Ai′ are denoted by a1 > a2 > · · · and a′1 > a′2 > · · · ,
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respectively. It is also known that we have the values

a1 = −2.33810 . . . , a′1 = −1.01879 . . . , and Ai(a′1) = 0.53565 . . . . (2.76)

In particular, the function Ai is strictly positive and strictly decreasing over [a′1, ∞). We use the Airy

function to construct the following density, which we show in Section 2.14 to be equal to p⋆c,C.

Definition 2.7 (Airy distribution). For C > 0, we define the Airy distribution with first absolute

moment C as the probability measure whose PDF pAi,C is given by

pAi,C(x) :=
1

3CAi(a′1)
2Ai

(−2a′1
3C
|x|+ a′1

)2

. (2.77)

Remark 2.10. We show in Lemma 2.3 that pAi,C is indeed a PDF with first absolute moment C, and

we also derive its variance.

In Proposition 2.5, we show that p⋆c,C = pAi,C when c(x) = |x|. In Figure 2.3, we illustrate the

Airy distribution and compare it with the Laplace distribution. We note that the Airy distribution

has a lighter tail than that of the Laplace distribution, where the decay rate of the former is e−Θ(|x|3/2)

and that of the latter is e−|x|. Further, since the Airy function Ai is strictly positive and strictly

decreasing over [a′1, ∞), we see that the Airy PDF pAi,C is even, strictly positive everywhere, and

strictly decreasing over [0, ∞). Also, the Airy distribution is differentiable at the origin, unlike the

Laplace distribution.

We investigate the Schrödinger mechanisms in more detail in Section 2.14. There, we show their

optimality in the small sensitivity regime. This optimality is a byproduct of the stronger result

that the Schrödinger PDF p⋆c,C is the unique global minimizer of the Fisher information—a result of

independent interest. That is, we show that (under Assumption 2.2) the PDF p⋆c,C uniquely solves

the minimization

p⋆c,C = argmin
p∈P

Ep [c]≤C

I(p). (2.78)

2.12 Optimality of the Cactus Distribution on the Real Line

We show in this section that the Cactus distribution family introduced in Definition 2.3 is opti-

mal for (2.8), and we show also that each Cactus distribution is obtainable via a tractable finite-

dimensional convex optimization problem. Recall that the Cactus mechanism is scalar, so we are

fixing m = 1 in this section.
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Figure 2.3: The densities of the Laplace distribution and the Airy distribution, pAi,C(x) (introduced in Definition 2.7).
Both of these densities have absolute first moment equal to one.

We use the following notation. Consider the restriction of (2.63) to the mechanisms constructible

by Definition 2.3. For a fixed triplet (n, N, r) ∈N2 × (0, 1), consider the set of mechanisms Cn,N,r ⊂

B,

Cn,N,r :=
{

Pn,r,p ; p ∈ [0, 1]N+1, Sr,p = 1
}

. (2.79)

(Recall that we define Sr,p = Pn,r,p(R) in (2.67).) Denote the optimal value achievable by the class

Cn,N,r with

KL⋆
n,N,r(C) := inf

P∈Cn,N,r
EP [c]≤C

sup
|a|≤1

D(P ∥ TaP). (2.80)

We show next that we may restrict the shift a in the supremum in (2.80) to take values over

the finite set {1/n, 2/n, · · · , 1} (rather than varying over the whole interval [−1, 1]), thereby ren-

dering (2.80) a finite-dimensional optimization problem amenable to standard numerical convex-

programming methods.

For each i ∈ Z, we denote the constants

cn,i :=
∫
Jn,i

nc(x) dx. (2.81)

Theorem 2.7. Fix r ∈ (0, 1), and positive integers n < N. The minimization (2.80) can be recast as the
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following convex program over the variable p = (p0, · · · , pN) ∈ RN+1

minimize
p

max
k∈{1,...,n}

1
2

N−k−1

∑
i=−N+1

(p|i| − p|i+k|) log
p|i|

p|i+k|
+

N−1

∑
i=N−k

(pi − pNri+k−N) log
pi

pNri+k−N

+ pN
1− rk

1− r
k log r−1

subject to p0cn,0 +
N−1

∑
i=1

2picn,i + 2pN

∞

∑
i=N

cn,iri−N ≤ C,

p0 +
N−1

∑
i=1

2pi +
2pN
1− r

= 1,

pi ≥ 0 for all i ∈ {0, . . . , N}. (2.82)

Proof. See Appendix A.4.

The main result regarding the Cactus mechanisms is the following theorem, showing that the

Cactus mechanisms derived from the optimization problem (2.82) are in fact globally optimal for the

main optimization problem (2.8).

Theorem 2.8. Consider m = 1, and suppose the cost function c : R→ R satisfies Assumption 2.1. Assume

also that there are constants α, β > 0 such that c(x) ∼ β|x|α as |x| → ∞. Denote the optimal value a

Cactus distribution (see Definition 2.3) can achieve by

KL⋆
Cactus := lim

η→0+
inf

(n,N,r)∈N2×(0,1)
KL⋆

n,N,r(C + η). (2.83)

We have that KL⋆ = KL⋆
Cactus. In other words, Cactus mechanisms can get arbitrarily close to optimal for the

problem (2.8).

Proof. See Appendix A.5.

Remark 2.11. The proof of Theorem 2.8 gives some guidelines for choosing the parameters (n, N, r).

For example, optimal Cactus distributions can be obtained by restricting the ratio N/n (chosen

sufficiently large), and choosing r = 1−Θα(N−1).

2.13 Optimality of Multidimensional Isotropic Mechanisms

We turn our attention to the multidimensional setting in this section, where we show optimality of

the isotropic mechanisms introduced in Definition 2.5. We fix an arbitrary dimension m ≥ 1, and we
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set s = 1 (see Remark 2.5). We focus on monotone mechanisms, which is supported by the results of

Lemma 2.1 and Proposition 2.1 below. In this section, we show three facts:

1. For monotone and spherically symmetric PDFs, maximal shifts are worst shifts when solving

problems of the form sup∥a∥≤s D f (p ∥ Ta p) for any f -divergence. In particular, this holds for

the Eγ divergence (γ ≥ 1) and the KL-divergence.

2. The isotropic mechanism can be found via a tractable finite-dimensional convex program.

3. The isotropic mechanism is optimal among monotone mechanisms for the main problem (2.8).

2.13.1 Maximal Shifts and Worst Shifts

The following lemma shows that accounting for monotone spherically-symmetric DP mechanisms

reduces to computing the Eγ divergence at the maximal shift. This property is known to hold for the

Gaussian mechanism [ACG+16].

Lemma 2.1. If Z ∼ p is a monotone spherically-symmetric random vector (as in Definition 2.4), and γ ≥ 1,

then a 7→ Eγ(p ∥ Ta p) is spherically symmetric and increasing in the norm ∥a∥. In particular, for any s > 0

we have

max
∥a∥≤s

Eγ(p ∥ Ta p) = Eγ(p ∥ Tse1 p). (2.84)

Proof. See Appendix A.6.1.

We generalize Lemma 2.1 in another dimension, namely, we show next that the same result holds

for any f -divergence. Specializing this result to the KL-divergence will help simplify the numerical

implementation we give later in this section for the isotropic DP mechanism we propose.

Proposition 2.1. Let f : (0, ∞) → R be a convex function satisfying f (1) = 0. For any monotone

spherically-symmetric random vector Z ∼ p, the mapping a 7→ D f (p ∥ Ta p) is spherically symmetric and

increasing in the norm ∥a∥. In particular, for any s > 0 we have

max
∥a∥≤s

D f (p ∥ Ta p) = D f (p ∥ Tse1 p). (2.85)

Proof. See Appendix A.6.2.

Remark 2.12. The above results show that monotonicity facilitates DP accounting—indeed, ac-

counting for multidimensional non-monotonic mechanisms presents a significant challenge, since,
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as suggested by (2.27), one must maximize over all possible ui − vi for 1 ≤ i ≤ k. Thus, in this

section we restrict attention to the subclass of monotone mechanisms. Recall that Theorem 2.6 shows

that, among all additive mechanisms, spherically-symmetric ones are optimal. It can be seen that

spherically-symmetric mechanisms would still be optimal among all monotone mechanisms for the

KL-divergence problem (2.8). Indeed, as in the proof of Theorem 2.6, if p is the PDF of an optimal

mechanism that is monotone but not necessarily spherically-symmetric, then constructing the PDF

q(z) :=
∫

O(m)
p(Uz) dµ(z) (2.86)

(where µ the Haar measure over the orthogonal group O(m), see equation (2.52)) we see that q is

the PDF of a monotone spherically-symmetric mechanism that performs at least as well as p for the

problem (2.8) (hence, optimally among monotone mechanisms). In the sequel, we will denote the

optimal value achievable by a monotone mechanism for the problem (2.8) by KL⋆
monotone.

2.13.2 Computing the Isotropic Mechanism

We show next that the isotropic mechanism in Definition 2.5 can be found via a simple finite-

dimensional convex optimization problem. For each (n, N, r) ∈ N2 × (0, 1), let Fn,N,r denote the

family of mechanisms

Fn,N,r :=
{

Pn,r,p ; p ∈ [0, ∞)N+1, Pn,r,p(R
m) = 1

}
. (2.87)

Denote also the optimal value

KL⋆
n,N,r(C) := inf

P∈Fn,N,r
EP [c]≤C

sup
∥a∥≤1

D(P ∥ TaP). (2.88)

Note that mechanisms Pn,r,p (for p ∈ [0, ∞)N+1) achieving KL⋆
n,N,r(C) are what we call isotropic

mechanisms in Definition 2.5.

To state our next result more compactly, we introduce the following shorthands. For each

s, ρ, θ ≥ 0, let H(s, ρ, θ) denote the area of the triangle with side lengths s, ρ, and θ, i.e., H(s, ρ, θ) = 0

if there is no triangle with such side lengths, and otherwise

H(s, ρ, θ) :=
1
4

√
(s + ρ + θ)(s + ρ− θ)(s− ρ + θ)(−s + ρ + θ). (2.89)
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For each i, j, n ∈N, denote the constant

γi,j,n :=
∫
Ji,n

∫
Jj,n

θρ · H(1, ρ, θ)m−3 dθ dρ. (2.90)

Also, denote the constants

ci,n :=
∫
∥x∥∈Ji,n

c(x) dx. (2.91)

Denote the open balls

B(ρ) := {x ∈ Rm : ∥x∥ < ρ}. (2.92)

For integers i ≥ 0 and n ≥ 1, denote the volume of the spherical shell

vi,n = λ

(
B
(

i + 1
n

)
\ B

(
i
n

))
. (2.93)

Denote also the volume of the unit ball

Vm := λ (B(1)) = πm/2

Γ
(m

2 + 1
) . (2.94)

The following result shows that the optimization (2.88) required to numerically construct our

proposed isotropic mechanism (i.e., finding the vector p ∈ RN+1
+ for a fixed choice of (n, N, r)) can

be carried out as a finite-dimensional convex optimization problem.

Theorem 2.9. The optimization (2.88) can be rewritten as

minimize
p∈(0,∞)N+1

Am ∑
i,j≥0

γi,j,n pi log
pi
pj

(2.95)

subject to ∑
i≥0

pivi,n = 1 (2.96)

∑
i≥0

pici,n ≤ C, (2.97)

where Am = 2m−3(m− 1)Vm−1 and pi = pNri−N for i > N.

Proof. See Appendix A.7.

2.13.3 Optimality of the Isotropic Mechanism

Finally, we prove optimality of our proposed mechanisms introduced in Definition 2.5 for the

optimization problem (2.8) among monotone mechanisms (see Remark 2.12).

Theorem 2.10. Suppose c : Rm → R satisfies Assumption 2.1, and suppose c is also continuous and that, for
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some α, β > 0, c(x) ∼ β∥x∥α as ∥x∥ → ∞. With the optimal value obtainable by isotropic mechanisms (as

constructed in Definition 2.5) denoted by

KL⋆
isotropic(C) := lim

θ→0+
inf

(n,N,r)∈N2×(0,1)
KL⋆

n,N,r(C + θ), (2.98)

we have the equality KL⋆
monotone = KL⋆

isotropic.

Proof. See Appendix A.8.

2.14 Optimality of Schrödinger’s Mechanism for Small Sensitivity

We return to the scalar-query case in this section (so m = 1), and we also focus here on the regime of

small sensitivity (s→ 0+). We will show optimality of the Schrödinger mechanisms introduced in

Definition 2.6 in this regime. Further, we show the stronger result in Theorem 2.13 that the PDF of

the Schrödinger mechanism is in fact the unique global minimizer of the Fisher information.

As we are consider varying sensitivity in this section, we make that explicit in the notation for

ε. Thus, with εP◦kY|X
as defined in (2.28), we replace this notation by εp◦k ,s in this section, where p is

the PDF of the independent noise Z in the additive mechanism Y = X + Z. A schematic for our

approach is the following sequence of reductions:

min
p

εp◦k ↭ min
p

max
a

D(p ∥ Ta p) ↭ argmin
p

I(p) ↭ Hθc(
√

p) = E
√

p, p > 0. (2.99)

That is, we reduce the problem of minimizing the DP parameter ε to that of minimizing the maximal

KL-divergence (thereby removing the composition number k), then to finding unique minimizers of

Fisher information (thereby removing the shift a), and finally to solving the Schrödinger eigenproblem

with positive eigenfunctions.

Note that in this section P denotes the set of all PDFs over R.

2.14.1 Definition of Optimality

Our approach is based on the well-known (see, e.g., [Kul59, Section 2.6]) result that, under mild

regularity conditions on a PDF p, one has the expansion

D(p ∥ Ta p) =
a2

2
I(p) + o(a2) as a→ 0. (2.100)
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We restrict attention in this section to PDFs satisfying this expansion. We also impose a restriction

on the variance of the information density so that the CLT applies to reduce the DP parameter ε to

the KL-divergence. Thus, we restrict attention in this section to the following subset of PDFs on the

real line.

Definition 2.8. Let F ⊂ P be the subset of PDFs p on the real line that satisfy the expansion in (2.100)

and which satisfy both sup|a|≤s D(p ∥ Ta p) < ∞ and sup|a|≤s V(p ∥ Ta p) < ∞ for some s > 0.

The definition we use for optimality of a noise PDF for queries with small sensitivities is given

below.

Definition 2.9. We say that a PDF p ∈ F is optimal in the small-sensitivity regime for the cost function

c and the cost bound C if Ep[c] ≤ C, and for every other PDF q ∈ F (i.e., λ({p = q}) = 0) satisfying

Eq[c] ≤ C there is a constant s(q) > 0 such that 0 < s < s(q) implies

sup
0<δ< 1

2

lim
n→∞

εp◦n ,s(δ)

εq◦n ,s(δ)
< 1. (2.101)

Remark 2.13. For the Gaussian density φσ(x) = e−x2/(2σ2)/
√

2πσ2, we have D(φσ ∥ Ta φσ) =

a2/(2σ2). Thus, if one insists that the PDF p satisfies D(p ∥ Ta p) ≤ D(φσ ∥ Ta φσ) for all small a,

then the mapping a 7→ D(p ∥ Ta p) is necessarily differentiable at a = 0 with vanishing derivative.

In particular, one reasonably expects that desirable PDFs for the small-shift regime to satisfy the

expansion (2.100).

2.14.2 From DP to KL-divergence

Specializing the composition result in Theorem 2.1 to additive continuous mechanisms, we immedi-

ately obtain the following asymptotic.

Theorem 2.11. Fix a PDF p ∈ P . Suppose that there is an s > 0 such that sup|a|≤s D(p ∥ Ta p) < ∞ and

sup|a|≤s V(p ∥ Ta p) < ∞. Then, for any δ ∈ (0, 1/2), we have the limit

lim
n→∞

εp◦n ,s(δ)

n
= sup
|a|≤s

D(p ∥ Ta p). (2.102)

Proof. We apply Theorem 2.1 for the mechanism PY|X given by Y = X + Z, where Z is a continuous
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random variable that is independent of X and which has PDF p. From (2.35), we have the inequalities

n

(
sup
|a|≤s

D(p∥Ta p)− o(1)

)
≤ εp◦n ,s(δ) ≤ n · sup

|a|≤s
D(p∥Ta p)+

(
−Φ−1(δ) + o(1)

)√
n · sup
|a|≤s

V(p∥Ta p),

(2.103)

where o(1) denotes a function that vanishes as n→ ∞. Dividing by n and taking n→ ∞, we obtain

the desired limit (2.102).

According to this asymptotic, characterizing εp◦n ,s(δ) for sufficiently large n boils down to

computing the maximum of D(p ∥ Ta p) over all |a| ≤ s.

2.14.3 From KL-Divergence to Fisher Information

In light of (2.100), another corollary of Theorem 2.1 is that the unique minimizer of the Fisher

information is automatically the optimal PDF in the small-sensitivity regime.

Theorem 2.12. If p ∈ F is the unique minimizer

p = argmin
q∈F

Eq [c]≤C

I(q), (2.104)

then p is the optimal PDF in the small-sensitivity regime for the cost function c and the cost bound C as per

Definition 2.9.

Proof. Let q ∈ F be another PDF (i.e., λ({p = q}) = 0) satisfying Eq[c] ≤ C. Then, by assumption,

I(p) < I(q). Let s0 > 0 be small enough so that the maximal KL-divergences and variances of the

information densities of p and q from Ta p and Taq over |a| ≤ s0 are finite, the expansion (2.100)

holds for p and q for |a| ≤ s0, and the inequalities D(p ∥ Ta p) ≤ a2

2 I(p) + βa2 and D(q ∥ Taq) ≥
a2

2 I(q) − β
2 a2 hold with the constant β := (I(q) − I(p))/4 for all |a| ≤ s0. Fix s ∈ (0, s0). Let

{ak}k∈N ⊂ [−s, s] be a convergent sequence so that D(p ∥ Tak p) → sup|a|≤s D(p ∥ Ta p). We

may assume α ̸= 0 since the KL-divergence is nonnegative and expansion (2.100) implies that

D(p ∥ Tak p)→ 0 if we had ak → 0. Denote α = limk→∞ ak. Then,

sup
|a|≤s

D(p ∥ Ta p) = lim
k→∞

D(p ∥ Tak p) (2.105)

≤ lim
k→∞

a2
k

2
I(p) + βa2

k (2.106)

= α2 ·
(

I(p)
2

+ β

)
(2.107)
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<
α2

2
I(q)− β

2
α2 (2.108)

≤ D(q ∥ Tαq) (2.109)

≤ sup
|a|≤s

D(q ∥ Taq) (2.110)

Finally, applying the asymptotic in Theorem 2.11 on both p and q, we obtain that, for every

δ ∈ (0, 1/2),

lim
n→∞

εp◦n ,s(δ)

εq◦n ,s(δ)
= lim

n→∞

εp◦n ,s(δ)/n
εq◦n ,s(δ)/n

=
sup|a|≤s D(p ∥ Ta p)

sup|a|≤s D(q ∥ Taq)
< 1. (2.111)

As this limit is independent of δ, it still holds after taking the supremum over δ ∈ (0, 1/2). Thus, the

condition in (2.101) is satisfied for every s ∈ (0, s0), i.e., p is the optimal PDF in the small-sensitivity

regime for the cost function c and the cost bound C as per Definition 2.9.

We derive in the remainder of this section unique minimizers of Fisher information over all PDFs

P , then we also show that such minimizers in fact fall within the subset F .

2.14.4 From Fisher Information to the Schrödinger Equation

Solving the Fisher information minimization problem reveals a bridge between differential privacy

and the celebrated Schrödinger operator. This connection enables us to borrow tools from the rich

theory of the Schrödinger equation and show that the global minimizers of Fisher information

are fully characterized by the minimal-eigenvalue eigenfunctions of the Schrödinger operator (see

Theorem 2.13) with the potential given by the cost function c. More specifically, the global minimizer

of Fisher information is identical to the distribution of a particle that is subjected to an energy

potential given by a positive multiple of c and is in the ground state.

We recall the definition of the Schrödinger operator and some of its known properties.

Definition 2.10 (Schrödinger operator, [BS91, Section 2.4]). Given a measurable v : R → R, the

Schrödinger operator Hv on L2(R) with potential v is defined as5

Hv(y) := −y′′ + vy. (2.112)

We say y ∈ L2(R) is an eigenfunction of Hv if y is differentiable, y′ is absolutely continuous, and

5One may define Hv initially on compactly-supported C∞ functions, then show that its closure is self-adjoint if v satisfies
mild conditions (see [BS91, Chapter 2, Theorem 1.1]). In particular, this extension goes through if v is nonnegative (and
measurable).
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there exists a constant E such that Hv(y) = Ey holds a.e.

The spectrum of Hv is discrete: if v is locally bounded and lim|x|→∞ v(x) = ∞ then L2(R) has an

orthonormal complete set consisting of eigenfunctions of Hv with eigenvalues {Ek}k∈N such that

Ek → ∞ (see [BS91, Chapter 2, Theorem 3.1]). Moreover, one may order the Ek in an increasing

fashion, and then the eigenfunction associated to Ek has exactly k zeros (see [BS91, Chapter 2,

Theorem 3.5]). We are interested in the smallest eigenvalue E0 and the associated eigenfunction, i.e.,

the ground-state eigenfunction.

Lemma 2.2. For any θ > 0, there exists a unique unit-L2-norm eigenfunction yθ,c of Hθc satisfying

yθ,c(x) > 0 for all x ∈ R. Further, yθ,c is even, and its eigenvalue is the smallest eigenvalue of Hθc.

Proof. See Appendix A.9.1.

Remark 2.14. This lemma validates the claim in Remark 2.9 that there is a unique E for which the

ODE (2.72) is uniquely solvable with the prescribed properties for the solution y in Definition 2.6,

and that then E is the minimal eigenvalue of the Schrödinger operator Hθc. The notation yθ,c as

given by Lemma 2.2 will be used in the sequel.

The notation yθ,c as given by Lemma 2.2 will be used in the sequel. In fact, as per Definition 2.6,

the PDF of the Schrödinger mechanism we introduce herein is exactly p⋆c,C = y2
θ,c, where C = Ey2

θ,c
[c].

Recall the recipe we provide in Theorems 2.11–2.12 for showing that the Schrödinger PDF p⋆c,C is

the unique optimal DP mechanisms in the small-sensitivity regime (as per Definition 2.9):

1. First, show that p⋆c,C globally minimizes Fisher information (i.e., over P);

2. Then, show that the global minimizer p⋆c,C in fact falls within F ;

3. Finally, use Theorem 2.12 to conclude that the Fisher information global minimizer p⋆c,C (i.e.,

the Schrödinger mechanism) is the optimal DP mechanism in the small-sensitivity regime.

We carry out step 1 in Theorem 2.13 below, where we show that p⋆c,C = y2
θ,c is the unique global mini-

mizer of the Fisher information. After that, we complete our general derivations in Proposition 2.3

by showing that step 2 holds, i.e., p⋆c,C = y2
θ,c ∈ F .

Theorem 2.13. Suppose c satisfies Assumption 2.2, fix θ > 0, set C = Ey2
θ,c
[c], and consider the PDF

p⋆c,C = y2
θ,c. Then, the PDF p⋆c,C uniquely minimizes the Fisher information among all PDFs p ∈ P that
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satisfy Ep[c] ≤ C, i.e.,

p⋆c,C = argmin
p∈P

Ep [c]≤C

I(p). (2.113)

Proof. See Appendix A.10.

Since Theorem 2.13 gives a general unconditional result, our work can be seen as a way to fill the

gaps in [FS18, FS19, Ern17, HR09]. Later in this section, we also provide a new explicit solution for

the absolute-value cost case. Our method of proof deviates from those in [FS18, FS19, Ern17, HR09],

where we borrow results from the quantum mechanics literature (such as [BS91]) to show that the

needed properties for p can be derived instead of assumed. For instance, we show that the unique

eigenfunction yθ,c as given by Lemma 2.2 satisfies the following bound.

Proposition 2.2. For c satisfying Assumption 2.2 and any θ > 0, we have the bound

lim sup
|x|→∞

∣∣∣∣∣ y′θ,c(x)

yθ,c(x)
√

c(x)

∣∣∣∣∣ ≤ √θ. (2.114)

Proof. See Appendix A.9.2.

Finally, we show in the following result that the PDF y2
θ,c falls within the set F introduced in

Definition 2.8.

Proposition 2.3. For any c satisfying Assumption 2.2 and any θ > 0, we have that y2
θ,c ∈ F .

Proof. See Appendix A.11.

Next, we combine Theorems 2.11–2.13 and Proposition 2.3 to show in Theorem 2.14 that the PDF

y2
θ,c is the optimal DP mechanism in the sense of Definition 2.9.

Combining Theorem 2.13, Proposition 2.3, and Corollary 2.12, we get that the Schrödinger

mechanism is optimal in the small-sensitivity regime.

Theorem 2.14. If the cost function c satisfies Assumption 2.2, then the Schrödinger mechanism (see Defini-

tion 2.6) is optimal in the small-sensitivity regime in the sense of Definition 2.9.

Proof. The Schrödinger PDF p⋆c,C uniquely minimizes the Fisher information by Theorem 2.13, and

it belongs to F by Proposition 2.3. Hence, by Theorem 2.12, p⋆c,C is optimal in the small-sensitivity

regime.

Remark 2.15. For the two examples we discuss next, we give a reversing procedure producing θ

given C that takes the form θ = aC−b for absolute constants a and b.
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2.14.5 From the Schrödinger Equation to the Gaussian and Airy Mechanisms

Next, we instantiate Theorem 2.14 for two different cost functions, namely the quadratic and

absolute-value cost functions.

Consider first the quadratic cost function c(x) = x2. By particularizing Theorem 2.14 to this case,

we show that the Gaussian distribution is optimal in the small-sensitivity regime in the sense of

Definition 2.9. This is a direct consequence of the Cramér-Rao bound, but we derive it here using

Theorem 2.14. The Schrödinger to be solved becomes

y′′(x) =
(

θx2 − E
)

y(x). (2.115)

Proposition 2.4. Let c(x) = x2. For any C > 0, we have

p⋆c,C(x) =
1√

2πC
e−x2/(2C), (2.116)

i.e., the Gaussian distribution is optimal in the small-sensitivity regime under a variance cost in the sense of

Definition 2.9.

Proof. See Appendix A.12.1.

We next consider the absolute value cost function c(x) = |x|. In this case, the eigenvalue problem

Hθc(y) = Ey becomes

y′′(x) = (θ|x| − E) y(x), (2.117)

for some θ > 0. It is useful to recall the definition of the Airy functions we give in Section 2.11.3. In

particular, Ai is a solution to the ODE y′′(x) = xy(x) satisfying Ai(x) → 0 as x → ∞ and which is

explicitly given by (2.75). Recall that we define the Airy distribution in Definition 2.7 as

pAi,C(x) :=
1

3CAi(a′1)
2Ai

(−2a′1
3C
|x|+ a′1

)2

, (2.118)

where a′1 < 0 is the zero of Ai′ closest to the origin.

The following lemma verifies the claim in Remark 2.10 that pAi,C is a valid PDF having first

absolute moment C, and it also computes its variance.

Lemma 2.3. With pAi,C as in Definition 2.7, we have that

∫
R

pAi,C = 1,
∫

R
|x|pAi,C(x) dx = C, and

∫
R

x2 pAi,C(x) dx =
9
4

(
8

15
+

1
5 · (−a′1)

3

)
· C2. (2.119)

Proof. See Appendix A.12.2.
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We show in Proposition 2.5 below that the Airy distribution solves the ODE (2.117). Hence, per

Theorem 2.13, the Airy distribution uniquely minimizes the Fisher information subject to an absolute

value cost. If the cost bound is set to C = 1, then we obtain the minimal value

I(pAi,C) ≈ 0.6266 < 1 = I(q), (2.120)

where q(x) := e−|x|/2 is the Laplace distribution.

Proposition 2.5. Let c(x) = |x|. For any C > 0, we have that

p⋆c,C = pAi,C, (2.121)

i.e., the Airy distribution is optimal in the small-sensitivity regime for the absolute-value cost constraint in the

sense of Definition 2.9.

Proof. See Appendix A.12.3.

2.15 Numerical Comparison with the Gaussian and Laplace Mech-

anisms

We apply state-of-the-art accounting methods and privacy-amplification techniques to simulate a real-

world application for the proposed vector-valued isotropic mechanism introduced in Definition 2.5

(see also Theorem 2.9). In particular, we subsample our mechanism, following standard practice in

the DP machine learning literature for amplifying privacy guarantees [KLN+11, BNS13, ACG+16].

Moreover, we use the arbitrary-accuracy FFT-based numerical accountant introduced in [GLW21] to

compute tight privacy bounds for finite compositions.6 To find the isotropic mechanism, we solve

the optimization problem in Theorem 2.9 using an interior-point method.

In Figure 2.4, we fix δ = 10−8 and compute ε under a varying number of compositions. Under

this setup, the accountant in [GLW21] computes both upper and lower bounds on ε. This accountant

allows one to set the additive error in ε and δ via the parameters εerror, δerror. We choose εerror = 0.002

and δerror = 10−10, effectively making the upper and lower bounds indistinguishable (they are both

plotted in Figure 2.4). We compare the resulting privacy curve for the proposed mechanism with

6This accountant uses the privacy loss random variable (PLRV) formulation of DP to compute the privacy parameters.
We note that the PLRV formulation is a lossless reparameterization of the (ε, δ)-curve [SMM19], hence it can applied to our
proposed mechanism.
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Figure 2.4: Privacy budget ε versus number of the compositions, for E[∥Z∥2] = 2.5 (corresponding to σ = 0.5
for N (0, σ2 I10)), δ = 10−8, and subsampling rate q = 0.001. The proposed mechanism has 10 dimensions, and its
construction parameters are (n, N, r) = (400, 1200, 0.9), whereas its vector p ∈ (0, ∞)N+1 is computed numerically with
the aid of Theorem 2.9.

that of the subsampled Gaussian mechanism, for the same dimension m = 10 and variance cost

E[∥Z∥2] = 2.5. Our proposed mechanism provides stronger privacy guarantees for all values of

compositions 1 ≤ k ≤ 2000.

We note that the proposed isotropic mechanism is not optimized for subsampling, though

our numerical results imply that it still outperforms the subsampled Gaussian. An interesting

future direction is to modify the optimization (2.80) (and Theorem 2.9) to explicitly optimize for

subsampling, hence yielding a mechanism with better privacy guarantees than the one in Figure 2.4.

Next, we demonstrate that the Airy mechanism can achieve better DP parameters than the

Laplace mechanism for the same fixed absolute-value cost in the small-sensitivity regime. In Figure

2.5, we fix δ = 10−8 and estimate ε under a varying number of compositions. We still use the

accountant in [GLW21] with εerror = 0.002 and δerror = 10−10, effectively making the upper and

lower bounds indistinguishable (they are both plotted in Figure 2.5). The Airy mechanism provides

stronger privacy guarantees for all values of compositions (1 ≤ n ≤ 2000), and the gap increases

with composition.
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Figure 2.5: The privacy budget ε versus the number of the compositions n, for the constraint C = E[|X|] = 2, s = 1,
fixed privacy parameter δ = 10−8, and subsampling rate q = 0.01.

2.16 The Saddle-Point Accountant in the Large-Composition Regime

We now turn our attention to the DP accounting problem in the large-composition regime. We

first illustrate the properties that the saddle-point accountant (SPA) enjoys using the experiment

in Figure 2.6, which shows a comparison between the SPA and the state-of-the-art (SOTA) DP

accountants when computing the (ε, δ) curve of a composition of 3000 subsampled Gaussian

mechanisms. Only the moments accountant and the SPA are able to trace the whole privacy curve

(see for example the region δ > 10−15). Further, the SPA upper and lower bounds have a narrow gap

between them.

The SPA combines large-deviation and central-limit approaches for bounding expectations of

sums of independent random variables, thereby attaining the best of both worlds. The large

deviation approach uses the moment-generating function to approximate the probability of very

unlikely events. The central limit theorem (CLT) approximates a random variable by a Gaussian

with the same mean and variance. For DP accounting, the large deviation approach led to the

moments accountant [ACG+16]; the CLT approach led to Gaussian-DP [SMM19, DRS22]. Both these

accountant methods can be computed in constant time, but their accuracy is far less than the SOTA

FFT accountant [GLW21]. The saddle-point method can be viewed as a combination of two basic

approaches: maintaining from large deviations the ability to handle very small values of δ, as well as

the precise guarantees of the CLT. The resulting SPA achieves better accuracy than either approach
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Figure 2.6: Accounting for the composition of 3000 subsampled Gaussian mechanisms, with noise scale σ = 2 and
subsampling rate λ = 0.01. The remaining FFT discretization parameters are set to the smallest that appear in their
respective works, i.e., εerror = 0.1, δerror = 10−10 for the PRV Accountant [GLW21], and discretization interval length of
0.005 for Connect the Dots [DGK+22].

on its own, while maintaining the optimality of the runtime complexity.

The SPA works by estimating expectations of the privacy-loss random variable (PLRV), whose

definition is recalled below.

Definition 2.11 (Privacy-Loss Random Variable (PLRV) [ZDW22]). A pair of probability measures

(P, Q) is called a dominating pair for a mechanism (i.e., randomized algorithm)M if, for every ε ≥ 0,

event E, and neighboring datasets D ≃ D′, the following inequality holds:

P [M(D) ∈ E]− eε P
[
M(D′) ∈ E

]
≤ P(E)− eεQ(E). (2.122)

If (2.122) is tight, i.e., if

sup
D≃D′

P [M(D) ∈ E]− eε P
[
M(D′) ∈ E

]
= P(E)− eεQ(E) (2.123)

for each fixed ε ≥ 0, then (P, Q) is said to be a tightly dominating pair. For any dominating pair (P, Q)

consisting of equivalent measures, we associate a privacy-loss random variable (PLRV) that is defined

as

L := log
dP
dQ

(X), X ∼ P. (2.124)

It is not hard to see that a mechanismM having PLRV L will satisfy (ε, δL(ε))-DP for every ε ≥ 0,
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where we define the privacy curve (with a+ := max(0, a))

δL(ε) := E

[(
1− eε−L

)+]
. (2.125)

2.16.1 A Brief Overview of the Saddle-Point Accountant

Suppose that a DP mechanism has a privacy loss random variable whose cumulant-generating

function K(t) is finite for positive values of t. Note that K(t) is a familiar quantity used in DP

accounting; for instance, it can be verified that the mechanism satisfies exactly (t + 1, K(t)/t)-Rényi-

DP for each t > 0 [Mir17]. The SPA performs the following steps to estimate δ given ε:

1) Set F(t) := K(t)− εt− log t− log(t + 1),

2) solve F′(t) = 0 over t > 0,

3) return δ(ε) ≈ eF(t)/
√

2πF′′(t).

From this general workflow, it is clear that the SPA runs in constant time for n-fold self-composition;

indeed, the cumulant-generating function for the composition is nK. Moreover, the root-finding

in step 2 is similar to the one performed in the moments accountant [ACG+16], which solves

K′(t)− ε = 0 instead.

We refer to the approximation returned by this simple procedure as SPA-MSD.7 The reason

SPA-MSD approximates the privacy curve well is the following three steps. First, we express the

privacy curve as the following contour integral:

δ(ε) =
1

2πi

∫ t+i∞

t−i∞
eF(z) dz, (2.126)

which holds independently of the choice of t > 0. Second, we apply the method of steepest descent,

which uses a judicious choice of the integration path in the complex plane: the line parallel to the

imaginary axis with real part corresponding to the saddle-point of the integrand, i.e., the unique

point t > 0 for which F′(t) = 0. This approach leads to a new series expansion for δ given a fixed ε

(see (2.135)), where the first term of this series corresponding to the approximation in step 3 above.

Our experiments demonstrate that the SPA-MSD approximation is very accurate and can consis-

tently achieve relative errors below 0.1% in ε for a fixed δ (see Figure 2.8). However, this approach does

not provide a provable upper bound on the privacy curve—only an approximation. Consequently,

7MSD stands for “method of steepest descent.”
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we introduce another SPA, named SPA-CLT, where we first expand the K term in the integrand in

(2.126) as an Edgeworth series [Hal13], then apply the Berry-Esseen theorem to prove upper and

lower bounds on the privacy curve. This procedure is equivalent to applying CLT to a tilted version

of the privacy loss random variable.

The SPA-CLT amounts to replacing step 3 above by a slightly different approximation given

in Proposition 2.6. This second approximation also enjoys constant runtime, yields provable and

accurate upper bounds for the privacy curve even for very small values of δ.

2.16.2 Subsampling and DP-SGD

In the context of differentially-private stochastic gradient descent (DP-SGD), one applies a DP mecha-

nism on a subset of the dataset. The fraction of the batch size over the size of the dataset is called the

subsampling rate, denoted by λ. Subsampling is known to amplify the privacy guarantees [BBG18].

In this setting, with Mλ denoting the subsampled mechanism, one should bound both orders

Eeε(M(D) ∥Mλ(D′)) and Eeε(Mλ(D) ∥M(D′)) to obtain the value of δ. In the following lemma,

we show that in fact one order dominates. See Appendix A.13 for the proof and further details on

subsampling.

Lemma 2.4. Fix a Borel probability measure P over Rn that is symmetric around the origin (i.e., P(A) =

P(−A) for every Borel A ⊂ Rn), and fix constants (s, λ, γ) ∈ Rn × [0, 1] × [1, ∞). Let TsP be the

probability measure given by (TsP)(A) = P(A− s), and let Q = (1− λ)P + λTsP. We have the inequality

Eγ(P∥Q) ≤ Eγ(Q∥P), with equality if and only if (γ− 1) λ ∥s∥ Eγ(Q∥P) = 0.

Proof. See Appendix A.13.

2.16.3 The Method of Steepest Descent

We give a brief overview of the method of steepest descent (see Appendix A.14 for details). We need

to compute

In =
1

2πi

∫ t+i∞

t−i∞
eFn(z) dz (2.127)

for a given Fn, provided that In is independent of the value of t ∈ R. In a nutshell, the method of

steepest descent is a powerful tool for choosing the best parameter t that renders the computation of

In easiest. Namely, t is the saddle-point of Fn, defined as the unique solution to F′n(t0) = 0. Then, one
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would obtain the “asymptotic expansion”:

In
as. ex.∼ eFn(t0)√

2πF′′n (t0)

(
1 +

∞

∑
m=2

βn,m

)
, (2.128)

where we define the constants

βn,m :=
(−1)mB2m(0, 0, F(3)

n (t0), . . . , F(2m)
n (t0))

2mm!F′′n (t0)m . (2.129)

Recall that this does not mean that the above equation holds for In with equality for any particular n.

Rather, it is a heuristic indicating the potential for the truncated expansion to give close approxima-

tions for the intended integral In. In the remainder of this chapter, we will write fn
as. ex.∼ ∑k∈N an,k

to indicate an asymptotic expansion, i.e., the series might not converge but the first few partial sums

approximate fn well.

In our application of the method of steepest descent to DP, we show in Theorem 2.15 that the

privacy curve can be represented as the contour integral (2.127) for the choice of function

Fn(z) = KL(n)(z)− zε− log z− log(1 + z). (2.130)

2.17 New Representations of the Privacy Curve

In Theorem 2.15, we derive two new formulas for the privacy curve. Then, we apply the method of

steepest descent to the contour-integral formula (2.132). This yields the asymptotic expansion (2.135)

of the privacy curve, which is the basis for the SPA-MSD as given by Definition 2.14. Later, in

Section 2.19, we derive rigorous bounds on a CLT-based approximation that is inspired by the

approximations in the present section.

We assume that we have access to a PLRV L for mechanism M (see Definition 2.11). In most

cases, the relevant variable is L(n) = L1 + · · ·+ Ln, such that δL(n) is the composition curve for the

adaptive compositionM(n) =M1 ◦ · · · ◦Mn (and L1, · · · , Ln are PLRVs forM1, · · · ,Mn that are

independent). However, in this section we derive formulas for the privacy curve δL for any variable

L. We note that for these formulas to be numerically computable, it suffices that the distribution of L

be known to an extent that the derivatives of the MGF M(k)
L (t) can be computed.

62



2.17.1 The Privacy Curve as a Contour Integral

The privacy curve is defined in (2.125) as the expectation δL(ε) = E[ f (L)], where f (x) = (1− eε−x)+.

We want to transform this integral—via Parseval’s identity—into the frequency domain. However, as

f ̸∈ L1(R), we cannot directly apply Parseval’s identity. Nevertheless, exponentially tilting L, we

may replace f (x) by e−tx f (x), which decays fast. Recall that exponential tilting is defined as follows.

Definition 2.12. The exponential tilting with parameter t ∈ R of a random variable L having a finite

MGF at t is the random variable L̃ whose probability measure is given by PL̃(B) := 1
ML(t)

∫
B etx dPL(x)

for any Borel set B. If L has PDF pL, then L̃ is given by its PDF pL̃(x) = etx pL(x)/ML(t).

We carry out the details of this idea in Appendix A.17 to obtain the following new formulas for

δL.

Theorem 2.15. If the PLRV L satisfies Assumption 2.5, then, for every t > 0, we may write the privacy curve

as

δL(ε) = ML(t)E

[
e−tL̃

(
1− eε−L̃

)+]
(2.131)

for all ε ≥ 0, where L̃ is the exponential tilting of L with parameter t (see Definition 2.12). If, in addition, L

satisfies Assumption 2.6, then we also have the formula8

δL(ε) =
1

2πi

∫ t+i∞

t−i∞
eFε(z) dz (2.132)

for all ε ≥ 0, where we define the exponent by9

Fε(z) := KL(z)− zε− log z− log(1 + z). (2.133)

Proof. See Appendix A.17.

The two formulas in (2.131)–(2.132) lead to two paths for approximating δL. The first is a direct

application of the method of steepest descent, where Fε is expanded around the saddle-point (see

Section 2.16.3). The second simply approximates the expectation formula in (2.131) via the CLT,

by replacing L̃ with a Gaussian. The first path (described next) leads to better approximations

numerically, but the second path is more amenable to an error analysis (see Section 2.19).

8The independence of formula (2.132) of t is not surprising, given Cauchy’s integration theorem. More importantly, the
theorem states that an integration path with real part t is actually equivalent to exponential tilting with parameter t.

9We use the principal branch of the complex logarithm, so Fε is well defined and analytic over the half-plane z ∈
(0, ∞) + iR.

63



2.17.2 The Privacy Curve in Terms of Bell Polynomials

As we have proved a formula in (2.132) for the privacy curve δL representing it as a contour integral

like in (2.127), we can now apply the method of steepest descent to approximate it. Recall from

Section 2.16.3 that the best choice for the real-axis intercept in (2.132) is the saddle-point.

Definition 2.13. The saddle-point associated with a PLRV L satisfying Assumption 2.5 and a privacy

parameter ε satisfying ε < ess supL is the unique t0 > 0 such that F′ε(t0) = 0, or equivalently10

K′L(t0) = ε +
1
t0

+
1

t0 + 1
. (2.134)

Remark 2.16. The original moments accountant aims to solve K′L(t) = ε, indicating the connection

between the moments accountant and the SPA, introduced formally in Section 2.17.3.

Applying the method of steepest descent to the contour integral in (2.132) with the choice of t

being the saddle-point, we obtain the following asymptotic expansion for the privacy curve in terms

of the derivatives of the MGF, connected via Bell polynomials (see Section 2.16.3).

Heuristic 2.1. Let L be a PLRV satisfying Assumption 2.5. Then, for any ε ∈ [0, ess supL), and with t0

denoting the associated saddle-point, we have the asymptotic expansion

δL(ε)
as. ex.∼ eFε(t0)√

2πF′′ε (t0)

(
1 +

∞

∑
m=2

βε,m

)
, (2.135)

where, with Bk(x1, . . . , xk) denoting the k-th Bell polynomial and F(k)
ε the k-th derivative, we denote the

constants

βε,m :=
(−1)mB2m(0, 0, F(3)

ε (t0), . . . , F(2m)
ε (t0))

2mm!F′′ε (t0)m . (2.136)

Further, with Bk,j(x1, · · · , xk) denoting the (k, j)-th partial Bell polynomial, the derivatives of Fε are11 (for

k ≥ 2)

F(k)
ε (t0) = (−1)k−1(k− 1)!

(
1
tk
0
+

1
(t0 + 1)k

)
+

k

∑
j=1

(−1)j−1(j− 1)!
ML(t0)j Bk,j(M′(t0), · · · , M(k)(t0)).

(2.137)

10For the well-definedness of the saddle-point, see Appendix A.16.

11The formula for F(k)
ε follows immediately by Faà di Bruno’s formula for the derivatives of composition of functions.
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Figure 2.7: Privacy budget ε of the subsampled Gaussian mechanism after 1500 ≤ n ≤ 4500 compositions using the
proposed SPA-MSD (2.138) and the other closed-form accountants. We use subsampling λ = 0.01, noise scale σ = 2, and
δ = 10−15.

2.17.3 Application: The Saddle-Point Accountant

Based on the asymptotic expansion in (2.135), we can derive various approximations of δL depending

on how many terms we keep. This leads to the following versions of the saddle-point accountant (SPA).

Definition 2.14. The order-k method-of-steepest-descent saddle-point accountant (SPA-MSD) for the

mechanismM with PLRV L satisfying Assumption 2.5 is defined by

δ
(k)
L, SP-MSD(ε) :=

eFε(t0)√
2πF′′ε (t0)

(
1 +

k

∑
m=2

βε,m

)
(2.138)

when ε < ess supL, where t0 > 0 is the saddle-point (i.e., F′ε(t0) = 0), and we set δ
(k)
L, SP-MSD(ε) = 0 if

ε ≥ ess supL. Here, the βε,m are as defined in (2.136).

The first SPA-MSD is δ
(1)
L, SP-MSD(ε) = eFε(t0)/

√
2πF′′ε (t0), which can be expanded using the

definition of Fε as

δ
(1)
L, SP-MSD(ε) =

eKL(t0)−εt0

√
2π
√

t0(t0 + 1)K′′L(t0) + t2
0 + (1 + t0)2

. (2.139)
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The order-3 SPA-MSD is given by

δ
(3)
L, SP-MSD(ε) =

eFε(t0)√
2πF′′ε (t0)

·
(

1 +
1
8

F(4)
ε (t0)

F′′ε (t0)2 −
5
24

F(3)
ε (t0)

2

F′′ε (t0)3 −
1

48
F(6)

ε (t0)

F′′ε (t0)3

)
(2.140)

and the order-2 SPA-MSD is obtained by keeping only the 1 + F(4)
ε (t0)/(8F′′ε (t0)

2) term above.

Empirical Accuracy of SPA-MSD. The expressions for the SPA-MSD displayed in (2.139)–(2.140)

can traverse privacy curves that are virtually indistinguishable from the ground-truth. We illustrate

this in Figure 2.7 for the subsampled Gaussian, where we estimate ε (for fixed δ = 10−15) under a

varying number of compositions. In this experiment, SPA-MSD improves on the other closed-form

accountants (which run in constant time). Hence, SPA-MSD can be seen a correction to both the large

deviation method and the CLT-based method found in the Moments Accountant and Gaussian-DP,

respectively. See Appendix A.24 for the SPA-MSD pseudocode, Appendix A.25 for computing the

ground-truth in Figure 2.7, and Appendix A.26 for more experiments.

2.18 Asymptotically Tight Composition Theorem

We show next that the lowest ε under composition cannot deviate from the mean of the PLRV by a

large multiple of the standard deviation of the PLRV. This result is used afterwards to derive the

asymptotic behavior of the saddle-point. The asymptotic behavior of the saddle-point, in turn, will

be helpful in the next section to derive rigorous bounds on the SPA approximation error. We prove

the following asymptotically tight DP composition theorem.

Theorem 2.16. LetM =M1 ◦ · · · ◦Mn have a PLRV L = L1 + · · ·+ Ln, where the Lj are PLRVs for

the Mj that are independent. Assume that the Lj have finite absolute third moments, and P0 = o(σ3
L) as

n → ∞ (see (2.13)). Let δ ∈ (0, 1/2) be such that lim sup δ < 1/2 (so δ is allowed to vary with n). If

σL/(−Φ−1(δ))→ ∞ as n→ ∞, thenM is (E[L]−Φ−1(δ)σL, δ · (1 + o(1)))-DP. Conversely, this result

is tight in the following sense. If δ0 ∈ (0, 1/2) is fixed, σL → ∞, and M is (E[L] + bσL, δ0 + o(1))-DP,

then we must have lim inf b ≥ −Φ−1(δ0).

Proof. See Appendix A.18.

A more compact way to state the constant-δ claim in the theorem is that, for any fixed δ ∈ (0, 1/2),
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we have

δL(E[L]−Φ−1(δ)σL)→ δ. (2.141)

For example, Theorem 2.16 implies that δL(ε) is close to 10−10 if and only if ε is around E[L] + 6.4σL

for all large n, since −Φ−1(10−10) ≈ 6.4. Thus, if one hopes to have a small value of δ, the only

“interesting” values of ε, in the regime of high n, are those that are above E[L] by the derived multiple

of σL.

2.18.1 Asymptotic Formula for the Saddle-Point

We re-parameterize ε = E[L] + bσL, so b can be seen as the “Z-score” of ε, which is justified by

Theorem 2.16. For this regime of values of ε, we prove the following asymptotic characterization of

the saddle-point.

Theorem 2.17. Let L = L1 + · · ·+ Ln for independent Lj satisfying Assumption 2.5, and suppose that

(E[L], σ2
L) ∼ n · (KL, V) for some constants KL, V > 0. Let ε = E[L] + bσL, where b > 0 satisfies

b = o(n1/6), and assume that ε < ess supL. Then, the value of the saddle-point (as given by Definition 2.13)

satisfies the asymptotic relation

t0 ∼
b +
√

b2 + 4
2σL

. (2.142)

Proof. See Appendix A.19.

This asymptotic formula for the saddle-point will be useful in deriving the asymptotic rate of the

approximation error of the SPA in the next section.

2.19 SPA Error Bound Analysis

While the approximations of Section 2.17 are often very precise (see Figure 2.7), they are merely

approximations, and do not provide any hard guarantees on the (ε, δ)-DP of a given mechanism. In

this section, we derive the alternative form of the SPA by applying the Berry-Esseen theorem to the

saddle-point exponentially tilted PLRV, thereby obtaining upper and lower bounds on the achieved

privacy parameters.
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2.19.1 CLT Based Version of the SPA

We return to the expectation based formula for δL shown in Theorem 2.15, which can be rewritten as

δL(ε) = eKL(t)−εt E
[

f̄
(

L̃− ε, t
)]

, (2.143)

where

f̄ (x, t) := e−xt (1− e−x)+ , (2.144)

with t > 0 varying freely and L̃ being the exponential tilting of L with parameter t. Here, L =

L1 + · · ·+ Ln for independent Lj satisfying Assumption 2.5. We will simply replace L̃ by a Gaussian

with the same first two moments,12 and choose t to be the saddle-point of L as per Definition 2.13.

Thus, we introduce the following version of the SPA.

Definition 2.15. Under Assumption 2.5, the CLT version of the saddle-point accountant (SPA-CLT) is

defined by

δL, SP-CLT(ε) := eKL(t0)−εt0 E
[

f̄ (Z− ε, t0)
]

(2.145)

if ε < ess supL, where Z ∼ N (K′L(t0), K′′L(t0)), and t0 is the saddle-point for L as given by Defini-

tion 2.13. We define δL, SP-CLT(ε) = 0 for ε ≥ ess supL.

Remark 2.17. The approach giving rise to δL, SP-CLT can be seen as a series expansion of the eKL(z) part

of the integrand in Theorem 2.15, or equivalently as an (order-0) Edgeworth expansion [Hal13] of the

distribution of L̃. However, the Edgeworth expansion approach delineated herein is different from

what can be found in the DP literature [WGZ+22]. Specifically, we apply the Edgeworth expansion

on the tilted random variable L̃, whereas the approach of [WGZ+22] uses the Edgeworth expansion

of the non-tilted version L. This distinction can yield very different approximations. We include a

comparison between our approach and the standard CLT in Appendix A.20.

The following result expresses the CLT-based SPA in terms of easily computable functions. In

what follows, we let δL, SP-CLT(ε; t) denote the same expression as in (2.145) but with t0 replaced by a

free t > 0, so in particular δL, SP-CLT(ε) = δL, SP-CLT(ε; t0).

Proposition 2.6. Suppose Assumption 2.5 holds. Fix any t > 0 and ε ∈ [0, ess supL), and denote

γ :=
K′L(t)− ε√

K′′L(t)
, α :=

√
K′′L(t) t− γ, β :=

√
K′′L(t) (t + 1)− γ. (2.146)

12It is not hard to see that the mean and variance of L̃ are given by E[L̃] = K′L(t) and σ2
L̃
= K′′L(t).
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Then, we have that (with q as defined in (2.11))

δL, SP-CLT(ε; t) =
q(α)− q(β)√

2π
eKL(t)−εt−γ2/2. (2.147)

Proof. See Appendix A.21.1.

Remark 2.18. It holds that 0 < q(z) < min(1/z,
√

π/2) for all z > 0, and q(z) ∼ 1/z as z→ ∞ [NIS,

Section 7.8].

While the two methods of approximation—the steepest descent as in Section 2.17.3, and the CLT

approach in this section—lead to different approximations, these two approximations are closely

related, as described by the following simple inequality.

Proposition 2.7. Under Assumption 2.5, for any t > 0

δL, SP-CLT(ε; t) ≤ eFε(t)√
2πK′′L(t)

. (2.148)

Proof. See Appendix A.21.2.

Note that the only difference between the right-hand side of (2.148) and δ
(1)
L, SP-MSD(ε) is that the

denominator involves K′′L instead of F′′ε .

2.19.2 Finite-Composition Error Bound

Using the Berry-Esseen theorem, we prove the following theorem for the error bounds on the

approximation δL, SP-CLT for arbitrary tilts.

Theorem 2.18. Suppose Assumption 2.5 holds. For any t > 0 and ε ≥ 0, there is a ζ ∈ [−1, 1] such that

δL(ε) = eKL(t)−εt E

[
e−t(Z−ε)

(
1− e−(Z−ε)

)+]
+ ζ errSP(ε; t), (2.149)

where Z ∼ N (K′L(t), K′′L(t)) and the error is defined by

errSP(ε; t) := eKL(t)−εt tt

(1 + t)1+t ·
1.12 Pt

K′′L(t)
3/2 . (2.150)

Proof. See Appendix A.22.

Note that omitting the ζ term in the right-hand side of (2.149) gives exactly δL, SP-CLT(ε; t) as per

Definition 2.15. Thus, Theorem 2.18 can be equivalently restated as the following error bound for
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SPA-CLT: for each t > 0 and ε ≥ 0,

|δL(ε)− δL, SP-CLT(ε; t)| ≤ errSP(ε; t). (2.151)

2.19.3 Asymptotic Error Rate

While Theorem 2.18 holds for any positive value of t around which the MGF is finite, a natural

choice of t is the saddle-point t0 itself, defined as the solution to (2.134). We analyze the ensuing

error rate for this particular choice of tilt next.

Specifically, we show that the error rate in approximating δL by δL, SP-CLT decays roughly at least

as fast as 1/(
√

n eb2/2) for the choice ε = E[L] + bσL, and we characterize the constant term too.

Theorem 2.19. Let L = L1 + · · ·+ Ln for independent PLRVs L1, · · · , Ln that satisfy Assumption 2.5.

Suppose that Assumption 2.7 holds too. Let ε = E[L] + bσL for b > 0 satisfying b = o(n1/6), and let t0 be

the saddle-point of L (see Definition 2.13). Then, as n→ ∞, we have

errSP(ε; t0) ∼
1.12
√

e P
V3/2 · C(b)τ ·

√
n

, (2.152)

where τ < 1 satisfies τ → 1, and we define the term C(b) := exp
(
(b2 + b

√
b2 + 4)/4

)
. Furthermore,

writing t0 = τ0 · b+
√

b2+4
2σL

, we may take τ = (2− τ0)τ0 in (2.152).

Proof. See Appendix A.23.

Remark 2.19. In Appendix A.20, we illustrate the benefit of tilting the PLRV by comparing the error

term in (2.152) with the corresponding standard CLT error (i.e., without tilting).

2.19.4 Relative-Error Comparisons

The SPA-CLT approximation (2.147) and its error bound (2.150) can approximate the privacy param-

eters accurately. In Figure 2.8, we plot the relative error13 in estimating ε given δ = 10−15 incurred

by SPA-CLT (both for the approximation in (2.147) and the approximation ± the error term (2.150)),

SPA-MSD (for comparison), and the other closed-form accountants. The setting is for the subsampled

Gaussian mechanism, with the same parameters as in Figure 2.7. Here, SPA improves on both the

moments accountant and Gaussian-DP.

13We take the relative error of a privacy curve estimate ε̂(δ), with a ground-truth of ε(δ), to be |1− ε̂(δ)/ε(δ)|.
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Figure 2.8: Accounting for the privacy budget ε, given δ = 10−15, for the subsampled Gaussian mechanism, with
subsampling rate λ = 0.01, and noise scale σ = 2. We plot the relative error in estimating ε (i.e., |1− ε̂(δ)/ε(δ)| for
an estimate ε̂) versus the number of compositions, n. The SPA outperforms the other closed-form accountants for this
experiment.

2.20 Conclusion and Open Problems

We prove a large-composition theorem for DP, which reduces the ε DP parameter to a maximal

KL-divergence term. We optimize the ensuing maximal KL-divergence, thereby obtaining optimized

mechanisms for the large-composition regimes: the Cactus mechanism, the isotropic mechanism,

and the Schrödinger mechanisms. We prove that these mechanisms perform arbitrarily close to

optimal in their respective settings. We also show via numerical experiments that the proposed

mechanisms outperform the subsampled Gaussian and Laplace mechanisms for finite-composition

in terms of the DP parameters for the same cost constraint. It remains an interesting future line of

work to refine our large-composition theorem, and to use these refinements in turn to optimize DP

mechanisms for the large but fixed composition regime. Another intriguing line of work is comparing

the accuracy-privacy trade-off curves of the proposed mechanisms and existing DP mechanisms in

tasks such as DP stochastic gradient descent (DP-SGD).

We also introduce a novel application of the method of steepest descent in DP. First, using the
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exponentially-tilted version of the PLRV, we derive new formulas for the privacy curve (Theorem 2.15).

Inspired by the method of steepest descent, we fix the exponential tilt to be the saddle-point of the

integrand’s exponent. This amounts to solving the 1-d equation K′L(t) = ε + 1/t + 1/(t + 1). The

ensuing closed-form formulas provide constant-runtime accurate approximations that can traverse

the full privacy curve (e.g., for δ < 10−10). Our approach can be seen as a correction to both

large-deviation methods (e.g., the moments accountant, via the additional 1/t + 1/(t + 1) term)

and CLT-based methods (e.g., Gaussian-DP, via preprocessing the PLRV with exponential tilting).

This way, we retain the constant runtime of closed-form accountants without sacrificing accuracy,

as demonstrated by our experiments. The saddle-point approach leaves a few questions open. The

relative-error plot in Figure 2.8 indicates that, while the SPA-CLT bounds achieve reasonable relative

error, the original approximation given by SPA-CLT and SPA-MSD seem to be several orders of

magnitude more accurate than can be captured by the bounds we derive herein. Hence, it is an

interesting future line of work to refine our bounds to further reveal the power of the saddle-point

approximation. One promising path towards such a refinement might be through finding mechanism-

specific bounds. Relatedly, such finer bounds would shed light on the question of “how large is

large-enough n?” The additional experiments in Appendix A.23 show that n might only need to

be of moderate size for the SPA to provide tight guarantees, yet a more complete answer requires

additional techniques. Finally, it is interesting to use the SPA as a proxy for the privacy curve to

optimize DP mechanisms.
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Chapter 3

Optimal Multi-Class Fairness via

Conditional Information Projection

Information projection [Che68, Csi75, CM03] is a fundamental formulation in several applications of

information theory. Given a set of probability measures C and a reference measure P, a distribution

Q ∈ C is said to be the projection of P onto C if it uniquely achieves the smallest KL-divergence

Dkl(Q∥P) among all distributions in C [Csi75]. Both the minimizing distribution Q and the minimum

divergence value are central quantities in large deviation theory [DZ96], universal source compression

[YB17], hypothesis testing [Csi84], and beyond. Existence and uniqueness of the optimal distribution

have been studied in [Csi75, CM03]. In particular, the optimal distribution has a simple closed-form

given by an exponential tilting of the reference distribution P when the set C is determined by

linear inequalities [Csi75]. Even though the information projection is most commonly defined with

“distance” measured by the KL-divergence [Top79, Csi84, CM03, Bar00, Slo02, BC80], it has also been

extended to Rényi divergences [AS16, KS15a, KS15b] and f -divergences [Csi95a, Csi95b].

We study a natural generalization of information projection: finding the “closest” conditional

distribution (in a prescribed subset F of all possible conditional distributions) to a reference

conditional distribution, where “distance” is measured by averaged (i.e., conditional) f -divergences.

Motivated by applications in machine learning, we refer to this setting as model projection, since

probabilistic classification models (e.g., logistic regression, neural networks with a softmax output

layers) which map an input onto a probability distribution over predicted classes can be viewed as a
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conditional distribution. Analogous to the treatment of information projection, we start by proving

the existence and uniqueness of the optimal conditional distribution. We then establish strong duality,

which, in turn, leads to an equivalent formulation for obtaining the optimal conditional distribution.

This dual formulation is easier to deal with since it converts an optimization with possibly infinitely

many primal variables into a tractable, finite-dimensional optimization in Euclidean space. The

optimal dual variables, in turn, allow the minimizing conditional distribution to be computed

via a generalization of exponential “tilting”: For a general f -divergence, one obtains the optimal

conditional distribution by tilting the reference distribution by the inverse of the derivative of

f . Naturally, this approach reduces to the usual exponential tilting when KL-divergence is the

f -divergence of choice.

3.1 Application to Fair Machine Learning

Machine learning (ML) algorithms are increasingly used to automate decisions that have significant

social consequences. This trend has led to a surge of research on designing and evaluating fairness

interventions that prevent discrimination in ML models. When dealing with group fairness, fairness

interventions aim to ensure that a ML model does not discriminate against different groups deter-

mined by, for example, race, sex, and/or nationality. Extensive comparisons between discrimination

control methods can be found in [BDH+18, FSV+19, WRC21]. As these studies demonstrate, there

is still no “best” fairness intervention for ML, and the majority of existing approaches are tailored

to either binary classification tasks, binary population groups, or both.1 Moreover, discrimination

control methods are often tested on overused datasets of modest sizes collected in either the US or

Europe (e.g., UCI Adult [Lic13] and COMPAS [ALMK16]).

Most fairness interventions in ML focus on binary outcomes. In this case, the classification output

is either positive or negative, and group-fairness metrics are tailored to binary decisions [HPS+16].

While binary classification covers a range of ML tasks of societal importance (e.g., whether to approve

a loan, whether to admit a student), there are many cases where the predicted variable is not binary.

For example, in education, grading algorithms assign one out of several grades to students. In

healthcare, predicted outcomes are frequently not binary (e.g., severity of disease).

Using the model projection theory we put forth in this chapter, we introduce a theoretically-

1See Related Work and Table 3.1 for notable exceptions.
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grounded discrimination control method called FairProjection. This method ensures group

fairness in multi-class classification for several, potentially overlapping population groups. We

consider group fairness metrics that are natural multi-class extensions of their binary classifica-

tion counterparts, such as statistical parity [FFM+15], equalized odds [HPS+16], and error rate

imbalance [PRW+17, Cho17]. When restricted to two predicted classes, FairProjection performs

competitively against state-of-the-art fairness interventions tailored to binary classification tasks.

FairProjection is model-agnostic (i.e., applicable to any model class) and scalable to datasets

that are orders of magnitude larger than standard benchmarks found in the fair ML literature.

Prior work on information projection relies on a critical—and limiting—information-theoretic

assumption: the underlying probability distributions are known exactly. This is infeasible in practical

ML applications, where only a set of training examples sampled from the underlying data distribution

is available. FairProjection fills this gap by using an efficient algorithm for computing the

projected classifier with finite samples. We establish theoretical guarantees for this algorithm in

terms of convergence and sample complexity.

Notably, our proposed fairness intervention is parallelizable (e.g., on a GPU). Hence, the algorithm

FairProjection scales to datasets with the number of samples comparable to the population

of many US states (> 106 samples). We provide a TensorFlow [AAB+15] implementation of

FairProjection and apply it to post-process the outputs of probabilistic classifiers to ensure

group fairness.

We benchmark our post-processing approach against several state-of-the-art fairness interven-

tions selected based on the availability of reproducible code, and qualitatively compare it against

many others. Our numerical results are among the most comprehensive comparisons of fairness

interventions to date. We present performance results on the HSLS (High School Longitudinal Study,

used in [JWC22]), Adult [Lic13], and COMPAS [ALMK16] datasets.

We also evaluate FairProjection on a dataset derived from open and anonymized data

from Brazil’s national high school exam—the Exame Nacional do Ensino Médio (ENEM)—with over

1 million samples. We made use of this dataset due to the need for large-scale benchmarks

for evaluating fairness interventions in multi-class classification tasks. We also answer recent

calls [BZZ+21, DHMS21] for moving away from overused datasets such as Adult [Lic13] and

COMPAS [ALMK16]. We hope that the ENEM dataset encourages researchers in the field of fair ML
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to test their methods within broader contexts.2

In summary, our main contributions in the fairness intervention domain are: (i) We introduce

a post-processing fairness intervention for multi-class classification problems that can account for

multiple protected groups and is scalable to large datasets; (ii) We derive finite-sample guarantees

and convergence-rate results for our post-processing method. Importantly, FairProjection makes

information projection practical without requiring exact knowledge of probability distributions;

(iii) We demonstrate the favourable performance of our approach through comprehensive bench-

marks against state-of-the-art fairness interventions; (iv) We put forth a new large-scale dataset

(ENEM) for benchmarking discrimination control methods in multi-class classification tasks; this

dataset may encourage researchers in fair ML to evaluate their methods beyond Adult and COMPAS.

3.1.1 Related Fairness Intervention Methods

We summarize key differentiating factors from prior work in Table 3.1 and provide a more in-depth

discussion in Appendix B.4.5. The fairness interventions that are the most similar to ours are

the FairScoreTransformer [WRC20, WRC21, FST] and the pre-processing method in [JN20]. The

FST and [JN20] can be viewed as instantiations of FairProjection when restricted to the binary

classification setting and to cross-entropy (for FST) or KL-divergence (for [JN20]) as the f -divergence

of choice. Thus, our approach is a generalization of both methods to multiple f -divergences.

Importantly, unlike our method, [JN20] requires retraining a classifier multiple times.

A reductions approach for fair classification was introduced in [ABD+18]. When restricted to

binary classification, the benchmarks in Section 3.8 indicate that the reductions approach consistently

achieves the most competitive fairness-accuracy trade-off compared to ours. FairProjection has

two key differences from [ABD+18]: it is not restricted to binary classification tasks and does not

require refitting a classifier several times over the training dataset. These are also key differentiating

points from [CHKV19], which presented a meta-algorithm for fair classification that accounts for

multiple constraints and groups. The reductions approach was later significantly generalized in the

GroupFair method by [YCK20] to account for overlapping groups and multiple predicted classes.

Unlike [YCK20], we do not require retraining classifiers.

Several other recent fairness intervention methods consider optimizing accuracy under group-

2Since (to the best of our knowledge) the ENEM dataset has not been used in fair ML, we provide in Appendix
B.5 a datasheet for the ENEM dataset. The data can be found at [INE20], and code for pre-processing the data and the
implementation of FairProjection can be found at https://github.com/HsiangHsu/Fair-Projection.
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Method Feature
Multiclass Multigroup Scores Curve Parallel Rate Metric

Reductions [ABD+18] # ! ! ! # ! SP, (M)EO
Reject-option [KKZ12] # ! # ! # # SP, (M)EO

EqOdds [HPS+16] # ! # # # ! EO
LevEqOpp [CDH+19] # # # # # # FNR
CalEqOdds [PRW+17] # # ! # # ! MEO

FACT [KCT20] # # # ! # # SP, (M)EO

Identifying3 [JN20] !
#

! ! ! # # SP, (M)EO

FST [WRC20, WRC21] # ! ! ! # ! SP, (M)EO
Overlapping [YCK20] ! ! ! ! # # SP, (M)EO
Adversarial [ZLM18] ! ! N/A4 ! ! # SP, (M)EO

FairProjection (ours) ! ! ! ! ! ! SP, (M)EO

Table 3.1: Comparison between benchmark methods. Multiclass/multigroup: implementation takes datasets with
multiclass/multigroup labels; Scores: processes raw outputs of probabilistic classifiers; Curve: outputs fairness-accuracy
tradeoff curves (instead of a single point); Parallel: parallel implementation (e.g., on GPU) is available; Rate: conver-
gence rate or sample complexity guarantee is proved; Metric: applicable fairness metric, with SP↔Statistical Parity,
EO↔Equalized Odds, MEO↔Mean EO. Since FairProjection is a post-processing method, we focus our comparison
on post-processing fairness intervention methods, except for Reductions [ABD+18], which is a representative in-processing
method, and Adversarial [ZLM18], which we use to benchmark multi-class prediction. For comparing in-processing
methods, see [LPB+21, Table 1].

fairness constraints. In [CJG+19], a “proxy-Lagrangian” formulation was proposed for incorpo-

rating non-differentiable rate constraints, including group fairness constraints. We avoid non-

differentiability issues by considering the probabilities (scores) at the output of the classifier instead

of thresholded decisions. In [ZVRG17], a fairness-constrained optimization was introduced that

is applicable to margin-based classifiers (our approach can be used on any probabilistic classifier).

In [CDPF+17] and [MW18], the fairness-accuracy trade-offs in binary classification tasks are char-

acterized when the underlying distributions are known. A non-parity-based fairness notion was

proposed in [KGZ19], called “multiaccuracy,” which aims to ensure high accuracy for all subgroups

even when the group information is not given in the data. We limit our analysis to parity notions of

group fairness. To circumvent the non-differentiability of group-fairness constraints, approximate

fairness constraints based on functionals found in information theory have been explored in [LPB+21,

Rényi mutual information], [BNBR19, Rényi maximal correlation], and [PQC+19, maximum mean

discrepancy]. We avoid such non-differentiability issues by casting group fairness constraints in the

score domain.
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3.2 Chapter Organization

We introduce model projection and compare it with information projection in Section 3.3. Explicit

formulas for model projection are derived in Section 3.4. A finite-sample counterpart to model

projection is introduced in Section 3.5. We introduce FairProjection in Section 3.6, which is

an efficient procedure for computing model projection in practice. The connection between model

projection and fair ML is explained in Section 3.7. Then, Numerical experiments are presented in

Section 3.8.

3.2.1 Notation

Boldface Latin letters will always refer to vectors or matrices. The entries of a vector z are denoted

by zj, and those of a matrix G by Gi,j. The i-th row and j-th column of G are denoted by Gi,: and G:,j.

The all-1 and all-0 vectors are denoted by 1 and 0. We set [N] := {1, · · · , N} and R+ := [0, ∞). For

two vectors a, b ∈ RN , we write a ≤ b to indicate that ai ≤ bi for all i ∈ [N]. The probability simplex

over [N] is denoted by ∆N := {p ∈ RN
+ ; 1T p = 1}, and ∆+

N is its (relative) interior. The set of all

probability measures definable on a general measurable space (Y , Σ) is denoted by ∆Y . If P is a

Borel probability measure over RN , Z ∼ P is a random variable, and f : RN → RK is Borel, then the

expectation of f (Z) is denoted by E[ f (Z)] = EP[ f ] = EP[ f (Z)] = EZ∼P[ f (Z)]. We use the standard

asymptotic notations O, Θ, and Ω.

3.3 Model Projection Formulation

We recall the definition of information projection and some of its properties. Then we formally

introduce model projection, which can be viewed as an extension of information projection. We

prove the existence and uniqueness of the optimal model and establish strong duality in the next

section.

3[JN20] mention that their method can be applied to multi-class classification, but their reported benchmarks are only for
binary classification tasks.

4[ZLM18] is an in-processing method unlike other benchmarks in the table. It does not take a pre-trained classifier as an
input.
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3.3.1 Information Projection

For a given reference probability distribution and a set of distributions, information projection seeks

to find the “closest” distribution within this set to the reference one. Fix a probability space (Ω, Σ, P).

For any subset C ⊂ ∆Ω, let

D f (C ∥P) := inf
Q∈C

D f (Q∥P). (3.1)

Here for a convex f : (0, ∞)→ R the f -divergence [AS66, Csi67] is given by

D f (Q∥P) := EP

[
f
(

dQ
dP

)]
− f (1) (3.2)

whenever Q is absolutely continuous with respect to (w.r.t.) P. We say that a Q ∈ C is the D f -

projection of P onto C if

D f (Q∥P) = D f (C ∥P) (3.3)

and D f (R∥P) > D f (C ∥P) whenever Q ̸= R ∈ C . The existence and uniqueness of the D f -projection

has been established under certain assumptions [Csi95a, Csi95b]. Furthermore, an explicit formula

for the DKL-projection (also termed I-projection) under linear constraints is proved [Csi67].

3.3.2 Model Projection: Problem Setup

We introduce next the definition of model projection.

Definition 3.1. Fix two measurable spaces (X , Σ) and (Y , Γ), a probability measure PX on (X , Σ),

a transition probability kernel PY|X from (X , Σ) into (Y , Γ), and a set F of transition probability

kernels from (X , Σ) into (Y , Γ). The model projection (MP) of PY|X onto F is the unique solution (if it

exists) to the minimization problem:

inf
QY|X∈F

D f

(
QY|X ∥ PY|X | PX

)
. (3.4)

The model projection is the “closest” model to the prescribed model PY|X, where we use the

f -divergence to measure the “closeness”. The choice of the f -divergence is determined by the

application at hand.

In what follows, let X = Rm and Y = [C]. In this setting, conditional distributions from X to Y

become simply vector-valued functions. We denote the base model PY|X by hbase : X → ∆C, i.e.,

hbase(x) := (PY|X(1|x), · · · , PY|X(C|x)), for every x ∈ X . (3.5)
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An arbitrary conditional distribution from X to Y is denoted by a vector-valued function h : X → ∆C.

Then, (3.4) becomes

inf
h∈F

EX

[
D f

(
h(X) ∥ hbase(X)

)]
. (3.6)

The choice of the constraint set F is usually application-dependent. Throughout this chapter,

we consider a special case in which the constraint set is constructed via linear inequalities. In other

words, for some given matrix-valued function G : X → RK×C the constraint set is in the form

F = {h : X → ∆C | E [G(X)h(X)] ≤ 0} . (3.7)

Note that the convex combination ∑ℓ
i=1 tih(i) is in F if each h(i) is in F (and t ∈ ∆ℓ). This linear

form of the constraint set captures the following general setup, which encapsulates our fairness

intervention application of model projection.

Lemma 3.1. Let X ∼ PX , and let g : X ×Y2 → RK be such that g( · , c, c′) is PX-integrable for each fixed

(c, c′) ∈ Y2. Suppose we have a Markov chain Y–X–Ŷ, where, for each x ∈ X , we have Y | X = x ∼ hbase(x)

and Ŷ | X = x ∼ h(x). Then, the inequality E[g(X, Y, Ŷ)] ≤ b (for fixed b ∈ RK) can be written in the

linear form (3.7).

Proof. Since Y and Ŷ are independent given X, we may write

E[gk(X, Y, Ŷ)]− bk = E
[
E[gk(X, Y, Ŷ) | X]

]
− bk = E

 ∑
c,c′∈[C]

hbase
c (X)hc′(X)gk(X, c, c′)

− bk (3.8)

= E

 ∑
c′∈[C]

−bk + ∑
c∈[C]

hbase
c (X)gk(X, c, c′)

 hc′(X)

 = E [Gk,:(X)h(X)] , (3.9)

where we define the matrix-valued function G : X → RK×C by

Gk,c′(x) = −bk + ∑
c∈[C]

hbase
c (x)gk(x, c, c′) (3.10)

for each (k, c′, x) ∈ [K]× [C]×X .

3.3.3 Connection between Information Projection and Model Projection

We connect model projection (3.4) with information projection (3.1) next. Keeping the notation before

equation (3.1), suppose Ω = X ×Y and that PX,Y ∈ ∆Ω is a probability measure that disintegrates

into PX and PY|X . Let P ⊂ ∆Ω be the subset of all probability measures that marginalize to PX on X ,
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i.e.,

P := {Q ∈ ∆Ω | Q(A×Y) = PX(A) for all A×Y ⊂ Σ} .

Then the model projection (3.4) is information projection onto a subset of P . In other words, for a set

F of conditional distributions, the model projection of PY|X onto F is exactly information projection

of PX,Y onto

C := {PXWY|X | WY|X ∈ F} ⊂P . (3.11)

It is important to note that P cannot be described by finitely many linear constraints, precisely

because a distribution may not be determined by finitely many of its moments. Hence, the results on

information projection subject to finitely many linear constraints do not seem applicable to model

projection.

On the other direction, observe that model projection subsumes information projection. This

fact is rather trivial, since for a singleton X = {x} the set Ω = X ×Y can be identified with Y via

(x, y)↔ y. Then, PX is a trivial atom PX = δx (and P = ∆Ω) so the averaging in (3.4) collapses into

only one term, whose minimization is precisely the problem of information projection.

3.4 Model Projection Theory

In this section, we first prove the existence and uniqueness of the model projection onto a linear subset

under the general f -divergence setting. For the information projection framework with f -divergence

measuring “distance,” this problem has been studied [Csi95a] under the condition f ′(0+) = −∞ to

ensure that the projection onto the linear set belongs to the interior of ∆C. This condition also appears

in our result. Then we compute the model projection by establishing strong duality for a functional

optimization over the complete metric space C(X , ∆C) of continuous conditional distributions.5

3.4.1 Existence, Uniqueness, and Explicit Formulas

To start with, we introduce four assumptions, which will be the premises of our main theorems.

These assumptions restrict the behavior of the f -divergence, the linear constraints (see (3.7)), the

feasibility set, and the given conditional distribution hbase, respectively. Our optimization is carried

5We endow X = Rm with the standard topology, and ∆C ⊂ RC with the subspace topology, so continuity of h : X → ∆C
refers to the usual definition of continuous functions between Euclidean spaces. Then, endowing C(X , ∆c) with the sup-norm,
∥h∥∞ = supx∈X ∥h(x)∥, turns it into a convex complete metric space.
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over the “interior”

C+(X , ∆C) :=
{

h ∈ C(X , ∆C) | inf
(x,c)∈X×[C]

hc(x) > 0
}

. (3.12)

Assumption 3.1. The functions f : (0, ∞) → R, G : X → RK×C, and hbase : X → ∆C satisfy the

following:

(a) f is twice continuously-differentiable, f (1) = 0, f ′(0+) = −∞, and f ′′(t) > 0 for every t > 0,

(b) each function Gk,c : X → R is bounded and differentiable with bounded gradient,

(c) there exists at least one conditional distribution h ∈ C+(X , ∆C) satisfying E [Gh] < 0, and

(d) the function hbase belongs to C+(X , ∆C), and each hbase
c has bounded partial derivatives.

The following theorem guarantees the existence and uniqueness of the model projection.

Theorem 3.1. Under Assumption 3.1, there exists a unique hopt ∈ C+(X , ∆C) solving the model projection

problem

min
h∈C+(X ,∆C)

E
[

D f (h(X) ∥ hbase(X))
]

,

s.t. E [Gh] ≤ 0.

(3.13)

Proof. See Appendix B.1.

In fact, the optimal model hopt of Theorem 3.1 owns an explicit formula in terms of the convex

conjugate of the f -divergence. Recall that the convex conjugate Dconj
f is defined as follows.

Definition 3.2. Fix a convex f : (0, ∞)→ R and p ∈ ∆C. The convex conjugate of the f -divergence

q 7→ D f (q ∥ p) is the function v 7→ Dconj
f (v, p) defined by the formula

Dconj
f (v, p) := sup

q∈∆C

vTq− D f (q∥p) (3.14)

at each v ∈ RC.

The formula of the optimal model shows that the model projection onto a set constructed by

linear constraints can be obtained by tilting the reference model, where the tilting is parametrized in

terms of the function v : X ×RK → RC that we define by the matrix-vector multiplication

v(x; λλλ) := −G(x)Tλλλ. (3.15)
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Further, the tilting function is the inverse of f ′; note that, under item (a) of Assumption 3.1, the

derivative f ′ is strictly increasing, so one can define its inverse

ϕ : (−∞, M)→ (0, ∞) (3.16)

by ϕ(u) := ( f ′)−1 (u), where M = supt>0 f ′(t). We prove that model projection has the following

formula.

Theorem 3.2. Under Assumption 3.1, the model projection hopt of the base model hbase (see Theorem 3.1) has

the formula

hopt
c (x) = hbase

c (x) ϕ(γ(x) + vc(x; λλλ⋆)), for every (c, x) ∈ [C]×X , (3.17)

where the function γ : X → R is uniquely defined by

Ec∼hbase(x) [ϕ(γ(x) + vc(x; λλλ⋆))] = 1, for every x ∈ X , (3.18)

and λλλ⋆ ∈ RK is any solution to the convex optimization problem

D⋆ := min
λλλ∈RK

+

E
[

Dconj
f (v(X; λλλ), hbase(X))

]
. (3.19)

Proof. See Appendix B.1.

Remark 3.1. If X is finite, then Theorems 3.1 and 3.2 hold without the differentiability assumptions

on the Gk,c and on the hbase
c .

The duality approach reduces the infinite-dimensional optimization (3.13) into a tractable finite-

dimensional one (3.19). Note that in our setting, a simple application of duality is inaccessible. The

primal optimization (3.13) is equivalent to

inf
h∈C+(X ,∆C)

sup
λλλ∈RK

+

E
[

D f (h(X) ∥ hbase(X)) +λλλTG(X)h(X)
]

, (3.20)

which is not necessarily equal to the dual optimization

sup
λλλ∈RK

+

inf
h∈C+(X ,∆C)

E
[

D f (h(X) ∥ hbase(X)) +λλλTG(X)h(X)
]

. (3.21)

The difficulty here is that the space C+(X , ∆C) is not precompact when X is an infinite set. The

minimax property does not hold in general if neither of the two optimization spaces is precompact.

Our approach shows that, nevertheless, one may carve a precompact subset Q ⊂ C+(X , ∆C) that

is guaranteed to contain the sought optimizer. Note that strict convexity of f implies that the
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unique solution of the inner minimization in the dual (3.21) at any outer maximizer λλλ⋆ is in fact

the unique solution to the primal problem (3.20) (i.e., it is the sought model projection of hbase

onto F ∩ C+(X , ∆C), see (3.7) and (3.12)). We take Q to be the collections of all such “potential”

optimizers, where λλλ ranges over a bounded set; we find such bounded set that suffices, and we prove

that Q is precompact, which allows us to use known minimax theorems to derive our formulas for

model projection.

3.4.2 Comparison with the Information Projection Formula

Notably, for the KL-divergence, the model projection formula closely resembles that of the infor-

mation projection. Analogous to the information projection formula under linear constraints, the

model projection formula (3.17) for a fixed x ∈ X is an exponential tilt since for f (t) = t log t we

have ϕ(u) = eu−1. The difference between the two projections is how the tilt is computed (i.e., in the

value of the parameters λλλ⋆) where its value under the model projection setting reflects the fact that

we are penalizing the average distance. We need the following formula for the convex conjugate of

the KL-divergence

Dconj
KL (v, p) = log ∑

c∈[C]
pcevc . (3.22)

The optimal parameters λλλ⋆ for the DKL-projection is computed as follows. Consider a probability

measure P defined on measurable space (Ω, Σ), a vector-valued function g, and a linear set of

probability measures

C =
{

Q ∈ ∆Ω | EZ∼Q [g(Z)] ≤ 0
}

. (3.23)

The probability measure Q⋆ that is the Dkl-projection of P onto C is given by the same formula

(3.17), albeit with a slightly different λλλ⋆. More precisely,

dQ⋆

dP
(z) = eγ+g(z)Tλλλ⋆

, (3.24)

where γ is a normalizing constant, and the optimal parameters λλλ⋆ are exactly the minimizers of

min
λλλ≥0

log EZ∼P

[
ev(Z;λλλ)

]
(3.25)

where v(Z; λλλ) := −g(Z)Tλλλ. On the other hand, by plugging (3.22) into (3.19) the optimal parameters
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for the model projection problem are solutions to

min
λλλ≥0

E
[
log E

[
evY(X;λλλ)

∣∣∣X
]]

. (3.26)

3.5 A Finite-sample Approximation of Model Projection

In practice, PX is unknown and only data points X := {Xi}i∈[N] ⊂ X , drawn from PX , are available.

Thus, we consider the following robust finite-sample optimization problem. We search for a (multi-

class) classifier h : X→ ∆C that solves the following:

minimize
h:X→∆C

a:X→RC ,b∈RK

D f

(
h ∥ hbase | P̂X

)
+ τ1 ·

(
EX∼P̂X

[
∥a(X)∥2

2

]
+ ∥b∥2

2

)

subject to EP̂X
[G · (h + τ2a)] ≤ τ2b,

(3.27)

with P̂X being the empirical measure (e.g., obtained from a dataset), and τ1, τ2 > 0 prescribed

constants. The terms a and b are added to circumvent infeasibility issues and aid convergence of our

numerical procedure. We show in the following theorem that there is a unique solution for (3.27),

and that it is given by a tilt (i.e., multiplicative factor) of hbase. The tilting parameter is the solution

of a finite-dimensional strongly convex optimization problem.

Theorem 3.3. Suppose Assumption 3.1 holds, and set ζ := τ2
2 /(2τ1). There exists a unique solution hopt,N

to (3.27), and it is given by the formula

hopt,N
c (x) = hbase

c (x) · ϕ
(

vc(x; λλλ⋆
ζ,N) + γ(x; λλλ⋆

ζ,N)
)

, (x, c) ∈ X× [C], (3.28)

with v, ϕ, γ as in Theorem 3.2, and λλλ⋆
ζ,N ∈ RK is the unique solution to the strongly convex problem

D⋆
ζ,N := min

λλλ∈RK
+

EP̂X

[
Dconj

f

(
v(X; λλλ), hbase(X)

)]
+

ζ

2

∥∥∥GT
Nλλλ
∥∥∥2

2
(3.29)

where GN :=
(

G(X1)/
√

N, · · · , G(XN)/
√

N, IK

)
∈ RK×(NC+K).

Proof. See Appendix B.2.

Theorem 3.3 shows that: strong duality holds between the primal (3.27) and (the negative of) the

dual (3.29); there is a unique classifier hopt,N minimizing our optimization problem (3.27); there is a

unique solution λλλ⋆
ζ,N to the dual (3.19); and there is an explicit functional form of hopt,N in terms of

λλλ⋆
ζ,N in (3.28). Moreover, Theorem 3.3 yields a practical two-step procedure for solving the functional
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optimization in equation (3.27): (i) compute the dual variables λλλ by solving the strongly convex

optimization in (3.29); (ii) tilt the base classifier by using the dual variables according to (3.28). This

process is applied on real-world datasets using FairProjection (see Algorithm 1) in the following

sections.

The key distinctions between the finite-sample formulation (3.27) and Theorem 3.2 are that we

use the empirical measure P̂X (e.g., produced using a dataset with i.i.d. samples), we have a strongly

convex dual problem in (3.29) (in contrast to the convex program in (3.19)), and we prove strong

duality in Theorem 3.3 (whereas an analogous strong duality is absent in the proof of Theorem 3.2).

Remark 3.2. In practice, Assumption 3.1 is not a limiting factor for Theorem 3.3 and FairProjection.

This is because: we are considering here a finite-set domain so continuity is automatic; we can

perturb hbase by negligible noise to push it away from the simplex boundary; and the uniform

classifier is strictly feasible. Nevertheless, Assumption 3.1 simplifies the derivation of our theoretical

results.

3.6 Fair Projection: Numerical Model Projection

We introduce a parallelizable algorithm—which we call FairProjection since our application of

interest is fair ML—that solves (3.27) using N i.i.d. data points. We prove that its utility converges

to D⋆ (see (3.19)) in the population limit and establish both sample-complexity and convergence

rate guarantees. Applying FairProjection to the group-fairness intervention problem in the

following section yields the optimal parameters in (3.28) for post-processing (i.e., tilting) the output

of a multi-class classifier in order to satisfy target fairness constraints.

The FairProjection algorithm uses ADMM [BPC+11] to solve the convex program in (3.29).

Recall that it suffices to optimize (3.29) for computing (3.27) as proved in Theorem 3.3. Algorithm 1

presents the steps of FairProjection, and its detailed derivation is given in Appendix B.3.1.

A salient feature of FairProjection is its parallelizability. Each step that is done for i varying

over [N] can be executed for each i separately and in parallel. In particular, this applies to the most

computationally intensive step, the vi-update step. We discuss next how the vi-update step is carried

out.
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Algorithm 1 : FairProjection for solving (3.29).

1: Input: divergence f , predictions {pi := hbase(Xi)}i∈[N], constraints {Gi := G(Xi)}i∈[N], regularizer ζ,
ADMM penalty ρ, and initializers λλλ and (wi)i∈[N].

2: Output: hopt,N
c (x) := hbase

c (x) · ϕ(γ(x; λλλ) + vc(x; λλλ)).

3: Q← ζ
2 I + ρ

2N ∑
i∈[N]

GiGT
i

4: for t = 1, 2, · · · , t′ do

5: ai ← wi + ρGT
i λλλ i ∈ [N]

6: vi ← argmin
v∈RC

Dconj
f (v, pi) +

ρ+ζ
2 ∥v∥2

2 + aT
i v i ∈ [N]

7: q← 1
N ∑

i∈[N]

Gi · (wi + vi)

8: λλλ← argmin
ℓℓℓ∈RK

+

ℓℓℓTQℓℓℓ+ qTℓℓℓ

9: wi ← wi + ρ ·
(
vi + GT

i λλλ
)

i ∈ [N]

10: end for

3.6.1 Inner Iterations

One approach to carry out the inner iteration in Algorithm 1 that updates vi is to study the vanishing

of the gradient of v 7→ Dconj
f (v, pi) + ξ∥v∥2

2 + aT
i v (where ξ = (ρ + ζ)/2 and ai ∈ RC is some

vector). In the KL-divergence case, Dconj
KL is given by a log-sum-exp function, so its gradient is

given by a softmax function, and equating the gradient to zero becomes a fixed-point equation.

We give an iterative routine to solve this fixed point equation in Appendix B.3.2, whose proof of

convergence is discussed in the same section. It is worth noting that carrying out this inner step for

the KL-divergence case can be guaranteed to converge faster if one can bound the ℓ2-norm Lipschitz

constant of the softmax function. As shown in [GP17, Prop. 4], the softmax function is known to be

1-Lipschitz. A result we prove—that is of independent interest—is that this Lipschitz constant can in

fact be reduced to 1/2.

Proposition 3.1. For any n ∈N, the softmax function σ(z) :=
(

ezj

∑n
i=1 ezi

)
j∈[n]

is 1
2 -Lipschitz with respect to

the ℓ2 norm.

Proof. See Appendix B.3.3.

Beyond the KL-divergence case, setting the gradient to zero does not seem to be an analytically

tractable problem. Nevertheless, we may reduce the vector minimization in Line 6 of Algorithm 1 to

a tractable 1-dimensional root-finding problem, as the following result aids in showing.
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Lemma 3.2. For p ∈ ∆+
C , a ∈ RC, and ξ > 0, if f satisfies Assumption 3.1, we have that

min
v∈RC

Dconj
f (v, p) + ξ∥v∥2

2 + aTv = − sup
θ∈R

−θ +∑
c∈[C]

min
qc≥0

pc f
(

qc

pc

)
+

(ac + qc)2

4ξ
+ θqc. (3.30)

Proof. See Appendix B.3.2.

We note that the vi-update steps for both KL and CE (provided in detail in Appendix B.3.2) give,

as a byproduct, the implicitly defined function γ(x; λλλ) (see the statements of Theorems 3.2–3.3).

3.6.2 Convergence Guarantees

Our proposed algorithm, FairProjection, enjoys the following convergence guarantees. The

output after the t-th iteration λλλ
(t)
ζ,N converges exponentially fast to λλλ⋆

ζ,N (see (3.29)).

Theorem 3.4. Suppose Assumption 3.1 holds, and that the matrix (G(Xi))i∈N ∈ RK×NC has full row-rank.

Let λλλ
(t)
ζ,N and h(t) be the t-th iteration outputs of FairProjection for the KL-divergence case. Then,

we have the exponential decay of errors ∥λλλ(t)
ζ,N −λλλ⋆

ζ,N∥2 = e−Ω(t) and h(t)(x) = hopt,N(x) ·
(

1± e−Ω(t)
)

uniformly in x ∈ X as t→ ∞.

Proof. See Appendix B.3.4.

Remark 3.3. The full-rank assumption on the matrix (G(Xi))i∈N ∈ RK×NC can be ensured by adding

negligible noise to it. Further, although Theorem 3.4 is shown for the KL-divergence, the proof

directly extends to general f -divergences satisfying Assumption 3.1 (see Appendix B.3.5 for further

discussions).

Further, we show in the next theorem that carrying t = Ω(log N) iterations of FairProjection,

with regularizer ζ = Θ(N−1/2), yields a parameter λλλ
(t)
ζ,N that works well for the population problem

for information projection (3.19); this makes FairProjection have a computational runtime of

O(N log N).

Theorem 3.5. Suppose Assumption 3.1 holds, let X = Rd, and consider the KL-divergence case. Then,

choosing ζ = Θ
(

N−1/2
)

and t = Ω(log N) we obtain for any δ ∈ (0, 1) that (see (3.19))

Pr
{

EX

[
Dconj
KL

(
v
(

X; λλλ
(t)
ζ,N

)
, hbase(X)

)]
> D⋆ + O

(
1√
N

)}
≤ δ. (3.31)

Proof. See Appendix B.3.6.
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3.6.3 Benefit of Parallelization

The parallelizability of FairProjection provides significant speedup. In Appendix B.4.2, we

provide an ablation study comparing the speedup due to parallelization. For the ENEM dataset

(discussed in Section 3.8), parallelization yields a 15-fold reduction in runtime in our experiments. In

addition to the parallel advantage of FairProjection, its inherent mathematical approach is more

advantageous than gradient-based solutions. When numerically solving the dual problem (3.29)

(or any close variant) via gradient methods, the gradient of Dconj
f (the convex conjugate of an f -

divergence) must be computed. However, this gradient is tractable in only a very limited number of

relevant instances of f -divergences. FairProjection tackles this intractability through having its

subroutines be informed by Lemma 3.2 and the discussion preceding it.

3.7 Application to Fair Machine Learning

In this section, we aim at designing a fairness-aware classifier using machinery of model projection.

We formalize an optimization for this purpose which coincides with the model projection framework

explored in the previous sections. Prior works attempt to design fair classifiers by implicitly solving

a model projection problem, where accuracy is measured by, for example, KL-divergence [JN19]

and cross-entropy [WRC20]. Here we provide a general framework in the setting of multiclass

classification, and this approach allows the usage of any f -divergence. In what follows, we formally

introduce our formulation.

3.7.1 Classification Tasks

The essential objects in (multi-class) classification are the input sample space X , the predicted classes

Y , and the classifiers. We fix two random variables X and Y, taking values in sets X and Y := [C].

Here, (X, Y) is a pair comprised of an input sample X (e.g., criminal history) and corresponding

class label Y (e.g., criminal recidivism) randomly drawn from X × Y with distribution PX,Y. A

probabilistic classifier is a function h : X → ∆C, where hc(x) represents the probability of sample

x ∈ X falling in class c ∈ Y . Thus, h gives rise to a Y-valued random variable Ŷ via the distribution

PŶ|X=x(c) := hc(x).

Let S be a group attribute (e.g., race and/or sex), with support S := [A]. We work under the

setting of a Markov chain (Y, S) − X − Ŷ. We also assume that PS|Y=c(a) > 0 for each (a, c) ∈
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[A]× [C], i.e., each pair comprised of a protected group and predicted class intersect nontrivially.6

We assume that we have in hand a well-calibrated classifier that approximates PY,S|X, i.e., that

predicts both group membership S and the true label Y from input variables X. This classifier

can be directly marginalized into the model hbase (i.e., the distribution PY|X) and the classifier

s : X ×Y → ∆A defined by

sa(x, c) := PS|X=x,Y=c(a). (3.32)

If the group attribute S is part of the input feature X, then PS|X,Y is simply replaced with an indicator

function. Otherwise, we can approximate this conditional distribution by training a probabilistic

classifier. Thus, we henceforth treat s as given.

3.7.2 Group-Fairness Constraints

We consider multi-class generalization of three commonly used group fairness criteria in Table 3.2.

As observed by existing works (see, e.g., [ABD+18, MW18, CHKV19, WRC20, AAW+20]), each of

these fairness constraints7 can be written in the vector-inequality form EPX [Gh] ≤ 0 for a closed-form

matrix-valued function G : X → RK×C. This linearity is not hard to see in view of Lemma 3.1.

Consider for example the case of statistical parity. We may rewrite its defining condition as the

collection of inequalities

(−1)δPŶ|S=a(c
′)− ((−1)δ + α)PŶ(c

′) ≤ 0 for every (δ, a, c′) ∈ {0, 1} × [A]× [C]. (3.33)

Using the Markov chain condition (Y, S)− X− Ŷ and the law of total probability, the functions in

the inequalities (3.33) can be transformed into the form

(−1)δPŶ|S=a(c
′)− ((−1)δ + α)PŶ(c

′) = E
[

gδ,a,c′(X, Y, Ŷ)
]

(3.34)

where

gδ,a,c′(x, y, y′) =
(
(−1)δPS(a)−1sa(x, y)− ((−1)δ + α)

)
1{c′}(y

′). (3.35)

This means that statistical parity can be written in the form E[G(X)h(X)] ≤ 0, where the G matrix

evaluated at a fixed individual x ∈ X has K = 2AC rows indexed by (δ, a, c′) ∈ {0, 1} × [A]× [C],

where the (δ, a, c′)-th row is equal to
(
(−1)δPS(a)−1 ∑c∈[C] sa(x, c)hbase

c (x)− (α + (−1)δ)
)

ec′ , with

6This restriction is only necessary for the linearization of the equalized-odds fairness metric (see Table 3.2).

7We remark that our framework can be applied to other fairness constraints, e.g., the ones in [WRC20].
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Fairness Criterion Statistical parity Equalized odds Overall accuracy equality

Expression

∣∣∣∣∣PŶ|S=a(c
′)

PŶ(c
′)
− 1

∣∣∣∣∣ ≤ α

∣∣∣∣∣PŶ|Y=c,S=a(c
′)

PŶ|Y=c(c
′)
− 1

∣∣∣∣∣ ≤ α

∣∣∣∣∣P(Ŷ = Y | S = a)
P(Ŷ = Y)

− 1

∣∣∣∣∣ ≤ α

Table 3.2: Standard multi-class group fairness criteria; one fixes α > 0 and iterates over all (a, c, c′) ∈ [A]× [C]2.

e1, · · · , eC denoting the standard basis for RC. The expressions for the G matrix corresponding to

the other fairness metrics are given in the following lemma.

Lemma 3.3. Every fairness criterion listed in Table 3.2 can be written in the linear form E[G(X)h(X)] ≤ 0

for a matrix G that is completely determined by the classifiers hbase and s and the population distribution PS,Y.

Explicitly, with ⊙ denoting element-wise multiplication, for statistical parity the matrix G has the K = 2AC

rows

Gk,:(x) =

(
(−1)δ sa′(x, ·)⊙ hbase(x)

PS(a′)
−
(

α + (−1)δ
))

ec′ (3.36)

indexed by k = (δ, a′, c′) ∈ {0, 1} × [A]× [C]; for equalized odds, G has the K = 2AC2 rows

Gk,:(x) =

(
(−1)δ sa′(x, c)hbase

c (x)
PS|Y=c(a′)

−
(

α + (−1)δ
)

hbase
c (x)

)
ec′ (3.37)

indexed by k = (δ, a′, c, c′) ∈ {0, 1} × [A]× [C]2; and for overall accuracy equality, G has the K = 2A rows

Gk,:(x) = (−1)δ sa′(x, ·)⊙ hbase(x)
PS(a′)

−
(

α + (−1)δ
)

hbase(x) (3.38)

indexed by k = (δ, a′) ∈ {0, 1} × [A].

3.7.3 Fairness Through Model Projection

Our goal is to design an efficient post-processing method that takes a pre-trained classifier hbase that

may violate some target group-fairness criteria and finds a fair classifier that has the most similar

outputs (i.e., closest utility performance) to that of hbase. We formulate this fairness intervention

problem mathematically using model projection, as follows. For a fixed search space H ⊂ ∆XC :=

{h : X → ∆C}, a loss function err : ∆XC × ∆XC → R, and a base classifier hbase ∈ ∆XC , one seeks to

solve:

minimize
h∈H

err
(

h, hbase
)

subject to EPX [Gh] ≤ 0. (3.39)

91



The function err quantifies the “closeness” between the scores given by h and hbase. The constraint on

h can encode any arbitrary statistical information about the joint distribution induced on the Markov

chain (Y, S)− X− Ŷ (see Lemma 3.1). Thus, solving the optimization (3.39) amounts to finding the

minimal necessary perturbation to the base classifier hbase to make it satisfy a given on-average

constraint. Since we consider raw output scores, we measure “closeness” via f -divergences:

err
(

h, hbase
)
= D f (h ∥ hbase | PX) := EPX

 ∑
c∈[C]

hbase
c (X) f

(
hc(X)

hbase
c (X)

)− f (1), (3.40)

where f is a convex function over (0, ∞). By varying different choices of f , we can obtain e.g.,

cross-entropy (CE, f (t) = − log t) and KL-divergence ( f (t) = t log t). For a chosen f -divergence, the

optimization problem (3.39) becomes a generalization of information projection [Csi75]; specifically, it

becomes thee model projection problem we introduce in the previous sections.

Thus, the pipeline for applying model projection to fair ML is summarized in the following steps:

1. Assume access to a potentially unfair base multi-class predictor hbase : X → ∆C, and also a set

of N training samples from the dataset.

2. Fix a collection of desired linearizable group-fairness constraints (e.g., from among the ones in

Table 3.2). Let G be the ensuing matrix-valued function (see Lemma 3.3).

3. Pick an f -divergence, and a regularizer ζ ∝ 1/
√

N (see Theorem 3.5), and consider the

finite-sample formulation in (3.27).

4. Use FairProjection (Algorithm 1) and Theorem 3.3 to compute the optimal parameters

λλλ⋆
ζ,N and project hbase to obtain the optimal fair model hopt,N .

The way we design the fair classifier falls into the post-processing category. This is because the

optimal fair classifier is a tilting of the label classifier (see Theorems 3.2 and 3.3). Notably, the formu-

lations (3.13) and (3.27) do not a priori assume a post-processing design procedure. Nevertheless, the

projected classifier turns out to own an optimality guarantee among all classifiers.

We point out that the formulation in [WRC20] presents a special case of the model projection

theory using cross-entropy as the f -divergence of choice and assuming Y and S are binary. While

computationally lightweight, the experiments in [WRC20, Section 6] demonstrate that the model

projection formulation may perform favorably compared to state-of-the-art fairness intervention

mechanisms. Here, we provide a general theoretical work that allows usage of a wide class of
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f -divergences. In the next section, we provide more comprehensive numerical experiments including

for multiple f -divergences and for multi-class prediction.

3.8 Numerical benchmarks

We present empirical results and show that FairProjection has competitive performance both in

terms of runtime and fairness-accuracy trade-off curves compared to benchmarks—most notably the

reductions approach in [ABD+18], which requires retraining. Extensive additional benchmarks and

experiment details are reported in Appendix B.4.

3.8.1 Setup

We consider three base classifiers (Base): gradient boosting (GBM), logistic regression (LR), and

random forest (RF), implemented by Scikit-learn [PVG+11]. For FairProjection (the con-

strained optimization in (3.27)), we use cross-entropy (FairProjection-CE) and KL-divergence

(FairProjection-KL) as the loss function8. We consider two fairness constraints: mean equalized

odds (MEO) and statistical parity (SP) (cf. Table 3.2). Particularly, to measure multi-class performance,

we extend the definition of MEO as

MEO = max
i∈Y

max
s1,s2∈S

(|TPRi(s1)− TPRi(s2)|+ |FPRi(s1)− FPRi(s2)|)/2 (3.41)

where TPRi(s) = P(Ŷ = i|Y = i, S = s), and FPRi(s) = P(Ŷ = i|Y ̸= i, S = s). The definition

of multi-class statistical parity is provided in Appendix B.4.4. All values reported in this section

are from the test set with 70/30 train-test split. When benchmarking against methods tailored to

binary classification, we restrict our results to both binary Y and S since, unlike FairProjection,

competing methods cannot necessarily handle multi-class predictions and multiple groups.

3.8.2 Datasets

We evaluate FairProjection and all benchmarks on four datasets. We use two datasets in the

education domain: the high-school longitudinal study (HSLS) dataset [IPH+11, JWC22] and a novel

dataset ENEM [INE20] (details in Appendix B.4.1). The ENEM dataset contains Brazilian college

8We focus on FairProjection-CE and random forest here; results for FairProjection-KL and other models are in
Appendix B.4.
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entrance exam scores along with student demographic information and socio-economic questionnaire

answers (e.g., if they own a computer). After pre-processing, the dataset contains ∼1.4 million

samples with 139 features. Race was used as the group attribute S, and Humanities exam score

is used as the label Y. The score can be quantized into an arbitrary number of classes. For binary

experiments, we quantize Y into two classes, and for multi-class, we quantize it to 5 classes. The race

feature S has 5 categories, but we binarize it into White and Asian (S = 1) and others (S = 0). We

call the entire ENEM dataset ENEM-1.4M. We also created smaller versions of the dataset with 50k

samples: ENEM-50k-2C (binary classes) and ENEM-50k-5C (5 classes).9 For completeness, we report

results on UCI Adult [Lic13] and COMPAS [ALMK16].

3.8.3 Benchmarks

For the binary classification experiments, we compare our method with five existing fair learn-

ing algorithms: Reduction [ABD+18], reject-option classifier [KKZ12, Rejection], equalized-

odds [HPS+16, EqOdds], calibrated equalized-odds [PRW+17, CalEqOdds], and leveraging equal

opportunity [CDH+19, LevEqOpp].10 The choice of benchmarks is based on the availability of repro-

ducible codes. For the first four baselines, we use IBM AIF360 library [BDH+18]. For Reduction

and Rejection, we vary the tolerance to achieve different operation points on the fairness-accuracy

trade-off curves. As EqOdds, CalEqOdds and LevEqOpp only allow hard equality constraint on

equalized odds, they each produce a single point on the plot (see Fig. 3.1). We include the group

attribute as a feature in the training set following the same benchmark procedure described in

[ABD+18, WRC21] for a consistent comparison. For multi-class classification experiments, we did

not find methods that can be easily compared against FairProjection and use the multi-class

extensions of mean equalized odds and statistical parity. For the sake of completeness, we modified

the codes of adversarial debiasing [ZLM18, Adversarial], and compare our method against it.

Note that Reduction [ABD+18] and Adversarial [ZLM18] are in-processing methods, and the

rest of the benchmark algorithms are post-processing methods like FairProjection. Additional

comparisons to [KCT20] are given in Appendix B.4.4.

There are four methods in Table 3.1 we did not include the experiments: FACT [KCT20], Identify-

ing [JN20], FST [WRC21], and Overlapping [YCK20], as explained in Appendix B.4.1.

9A datasheet (see [GMV+21]) for ENEM is given in Appendix B.5.

10https://github.com/lucaoneto/NIPS2019_Fairness.
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Figure 3.1: Fairness-accuracy trade-off comparisons between FairProjection and five baselines on ENEM-50k-2C,
HSLS, Adult and COMPAS datasets. For all methods, we used random forest as a base classifier. Note that EqOdds,
CalEqOdds, and LevEqOpp only produce a single accuracy-fairness trade-off point, whereas the rest of the methods are
capable of producing the accuracy-fairness trade-off curves by varying the fairness budget α for the group fairness criteria
listed in Table 3.2—a smaller α corresponds to a lefter point on the accuracy-fairness trade-off curve.

3.8.4 Binary Classification Results

We compare FairProjection with benchmarks tailored to binary classification in terms of the

MEO-accuracy trade-off on the ENEM-50k-2C, HSLS, Adult, and COMPAS datasets in Fig. 3.1. Each

point is obtained by averaging 10 runs with different train-test splits. FairProjection-CE curves

were obtained by varying α values (cf. Table 3.2). When α = 1.0, the outputs of FairProjection-CE

are equivalent to the base classifier RF.

We observe that FairProjection-CE and Reduction have the overall best and most con-

sistent performances. On ENEM-50k-2C and HSLS datasets, although EqOdds achieves the best

fairness, that fairness comes at the cost of 4% accuracy drop (additively). The other four methods,

on the other hand, produce comparatively good fairness with an accuracy loss of < 1%. In par-

ticular, FairProjection-CE has the smallest accuracy drop whilst improving MEO from 0.17 to

0.04 on HSLS. CalEqOdds requires strict calibration requirements and yields inconsistent perfor-

mance when these requirements are not met. On ENEM-50k-2C and HSLS, LevEqOpp achieves

comparable MEO with a slight accuracy drop, and on COMPAS, LevEqOpp performs equally well

as FairProjection-CE and Reduction. Note that with high fairness constraints (i.e., small

tolerance), the accuracy of Rejection deteriorates.
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(a) HSLS. (b) ENEM-50k-5C.

Figure 3.2: Fairness-accuracy trade-off for multi-class prediction on HSLS and ENEM-50k-5C. FairProjection is
FairProjection-CE with LR base classifier.

3.8.5 Multi-Class Results

We illustrate how FairProjection performs on multi-class prediction using HSLS and ENEM-50k-

5C. For HSLS, we divided student math performance into quartiles and generated four classes. In

Figure 3.2, we plot fairness-accuracy trade-off of FairProjection-CE with logistic regression and

adversarial debiasing [ZLM18, Adversarial]. As their base classifiers are different (Adversarial

is a GAN-based method), we plot accuracy difference compared to the base classifier instead of

plotting the absolute value of accuracy11. FairProjection reduces MEO significantly with very

small loss in accuracy. While Adversarial is also able to reduce MEO with negligible accuracy

drop, it does not reduce the MEO as much as FairProjection. We show more extensive results

with multi-group and multi-class (|Y| = 5,= |S| = 5) in Appendix B.4.4.

3.8.6 Runtime Comparisons

To demonstrate the scalability of FairProjection, we record in Table 3.3 the runtime of the

instantiations FairProjection-CE and -KL with the five benchmarks on ENEM-1.4M-2C, which is

the biggest dataset we have. These experiments were run on a machine with AMD Ryzen 2990WX 64-

thread 32-Core CPU and NVIDIA TITAN Xp 12-GB GPU. For consistency, we used the same fairness

metric (MEO, α = 0.01), base classifier (GBM), and train/test split, and each number is the average of 2

11Base accuracy for FairProjection = 0.336, Adversarial = 0.307. Random guessing accuracy = 0.2.
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Method Reduction Rejection EqOdds LevEqOpp CalEqOdds FairProjection (ours)
[ABD+18] [KKZ12] [HPS+16] [CDH+19] [PRW+17] CE KL

Runtime 223.6 16.9 5.9 7.9 5.3 11.3 11.6

Table 3.3: Execution time of FairProjection on the ENEM-1.4M-2C compared with five baseline methods (time
shown in minutes). Methods in bold are capable of producing a fairness-accuracy trade-off curve. Methods that are
italicized have a uniformly superior performance. The time reported here for FairProjection includes the time to fit
the base classifiers. If base classifiers are given, the runtime of e.g. FairProjection-KL is 1.63 mins. The runtimes
are consistent with small standard deviations across repeated experiments.

repeated experiments. EqOdds, LevEqOpp, and CalEqOdds are faster than FairProjection since

they are optimized to produce one trade-off point (cf. Fig. 3.1). Compared to baselines that produce

full fairness-accuracy trade-off curves (i.e., Reduction and Rejection), FairProjection has

the fastest runtime. Also, the non-parallel implementation of FairProjection-KL takes 25.3

mins—parallelization attains 15× speedup (detailed results in Appendix B.4.2). We further compare

the runtime results for the binary HSLS, which is the second biggest dataset, with the baselines

that produce full fairness-accuracy trade-off curves. The runtimes for Reduction, Rejection and

FairProjection-CE are 81.1 sec, 9.73 sec and 4.50 sec respectively—again, FairProjection

has the fastest runtime. For a theoretical comparison between the runtime of FairProjection and

Reduction, see Appendix B.4.3.

3.9 Conclusion and Open Problems

We introduce model projection, a generalization of information projection to conditional distributions.

We prove existence, uniqueness, and explicit formulas for the model projection. Instantiating our

model projection theory to the domain of group-fairness, we introduce a theoretically-grounded and

versatile fairness intervention method, FairProjection, and showcase its favorable performance in

extensive experiments. We encourage the reader to peruse our theoretical guarantees in Appendix B.3

and extensive additional numerical benchmarks in Appendix B.4. FairProjection is able to correct

bias for multigroup/multiclass datasets, and it enjoys a fast runtime thanks to its parallelizability.

We also evaluate our method on the ENEM dataset (see Appendix B.5 for a detailed description of

the dataset). Our benchmarks are a step forward in moving away from the overused COMPAS and

UCI Adult datasets.

We only consider group-fairness, and it would be interesting to try to incorporate other fairness

notions (e.g., individual fairness [DHP+12]) into our formulation. We assume that hbase is a pre-
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trained accurate (and potentially unfair) classifier; one future research direction is understanding how

the accuracy of hbase influences the performance of the projected classifier. Finally, the performance

of FairProjection is inherently constrained by data availability. Performance may degrade with

intersectional increases of the number of groups, the number of labels, and the number of fairness

constraints.
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Chapter 4

Measuring Information from Moments

A fundamental formula in information theory is the I-MMSE relation [GSV05], which shows that

in Gaussian channels the mutual information is the integral of the minimum mean-square error

(MMSE):

I(X;
√

γX + N) =
1
2

∫ γ

0
mmse

(
X |
√

tX + N
)

dt. (4.1)

Here, X has finite variance and N is a standard normal random variable independent of X. In

this chapter, we build on this relation to express information measures of two random variables

X and Y as functions of their moments. For example, whenever X and Y are continuous with

finite moment-generating functions around the origin, there is a sequence of rational functions

{ρn}n∈N—each completely determined by finitely many moments of X and Y—such that the mutual

information is

I(X; Y) = lim
n→∞

∫ ∞

0
ρn(t) dt. (4.2)

We derive the new expression (4.2) and a similar formula for differential entropy in three steps.

First, we produce polynomial approximations of conditional expectations. Second, we apply these

approximations to bound the mean-square error of reconstructing a hidden variable X from an

observation Y using an estimator that is a polynomial in Y. We call this approximation the PMMSE, in

short for Polynomial MMSE. Finally, we use the PMMSE in the I-MMSE relation (4.1) to approximate

mutual information (as in (4.2)) and differential entropy.
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4.1 Overview of the Main Results

The crux of our work is the study of polynomial approximations of conditional expectations. A

surprising result that motivates this study is a negative answer to the question: If X and N ∼

N (0, 1) are independent random variables, can y 7→ E[X | X + N = y] be a nonlinear polynomial?

Proposition 4.1, stated below, shows that if X is integrable (i.e., E[|X|] < ∞), the only way that E[X |

X + N] can be a polynomial is if X is Gaussian or constant. In other words, if y 7→ E[X | X + N = y]

is a polynomial, then it is of degree at most 1.

Proposition 4.1 ([AC21c, Theorem 1]). For Y = X + N where X is an integrable random variable and

N ∼ N (0, 1) independent of X, the conditional expectation E[X | Y] cannot be a polynomial in Y with

degree greater than 1. Therefore, the MMSE estimator in a Gaussian channel with finite-variance input is a

polynomial if and only if the input is Gaussian or constant.

Despite the negative result in Proposition 4.1, we produce a sequence of polynomials converging

to the conditional expectation E[X | Y], provided that X has finite variance and Y is light-tailed.

For each n ∈ N, we consider the orthogonal projection of X onto the subspace1 Pn(Y) ⊂ L2(PY)

of polynomials in Y with real coefficients and of degree at most n, where it is assumed that

E[X2], E[Y2n] < ∞. The standard theory of orthogonal projections in Hilbert spaces yields that

the orthogonal projection of X onto Pn(Y), which we denote by En[X | Y], exists and is unique;

indeed, being finite-dimensional, the subspace Pn(Y) is closed. Further, it is well-known that

the orthogonal projection En[X | Y] is the unique best polynomial approximation of both X and

E[X | Y] in the L2(PY) norm (see, e.g., [SS19, Section 4.4]). From an estimation-theoretic point of view,

the operators En are natural generalizations of the linear minimum mean-square error (LMMSE)

estimate. Hence, we call this process polynomial minimum mean-square (PMMSE) estimation.

We collect these observations in the following definition, in which we denote the random vector

Y (n) := (1, Y, · · · , Yn)T .

Definition 4.1 (Polynomial MMSE). Fix n ∈ N and two random variables X and Y satisfying

E
[
X2] < ∞ and E

[
Y2n] < ∞. We define the n-th order polynomial minimum mean-square error

1Throughout, we fix a probability space (Ω,F , P), over which random variables are defined. For q ≥ 1, the Banach space
Lq(P) consists of all q-integrable random variables Z, i.e., ∥Z∥q :=

(∫
Ω |Z|

q dP
)1/q

< ∞. The inner product of the Hilbert
space L2(P) is denoted by ⟨ · , · ⟩. The Borel probability measure on R induced by Y is denoted by PY . The Banach subspace
Lq(PY) ⊂ Lq(P) consists of σ(Y)-measurable and q-integrable random variables.
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(PMMSE) for estimating X given Y by

pmmsen(X | Y) := min
c∈Rn+1

E

[(
X− cTY (n)

)2
]

. (4.3)

We define the n-th order PMMSE estimate of X given Y by En[X | Y] := cTY (n) ∈ Pn(Y) for any

minimizer c ∈ Rn+1 in (4.3).

The PMMSE estimate is the unique minimizer (in L2(PY)) of the following two minimization

problems

En[X | Y] = argmin
q(Y)∈Pn(Y)

E
[
(q(Y)−E[X | Y])2

]
(4.4)

= argmin
q(Y)∈Pn(Y)

E
[
(q(Y)− X)2

]
. (4.5)

Furthermore, we have that the PMMSE satisfies the equality pmmsen(X | Y) = E[(X− En[X | Y])2].

We show in the following result that the PMMSE indeed converges to the MMSE, provided that Y

is light-tailed, and we also give an explicit formula for the PMMSE. Recall that Y is said to satisfy

Carleman’s condition if ∑∞
n=1 E

[
Y2n]−1/(2n)

= ∞, which holds if, e.g., Y has a moment-generating

function (MGF) [Sch17, Sec. 4.2]. For n ∈N, we denote the n-th order Hankel matrix2 of moments

of Y by MY,n :=
(
E
[
Yi+j])

0≤i,j≤n.

Theorem 4.1. If X has finite variance and Y satisfies Carleman’s condition, then, as n → ∞, we have the

convergences En[X | Y]→ E[X | Y] in L2(PY)-norm and pmmsen(X | Y)↘ mmse(X | Y). Further, for

each n ∈N, if |supp(Y)| > n then En[X | Y] = E [(X, XY, · · · , XYn)] M−1
Y,n (1, Y, · · · , Yn)T .

Proof. We may assume Y has infinite support, for otherwise we would have E[X | Y] ∈P|supp(Y)|−1(Y)

and E[X | Y] = En[X | Y] for every n ≥ |supp(Y)| − 1. Since Y satisfies Carleman’s condition, polyno-

mials are dense in L2(PY) [Sch17, Sec. 4.2]. Let {pj(Y) ∈Pj(Y)}j∈N be the complete orthonormal set

in L2(PY) that results from applying Gram-Schmidt orthonormalization to the monomials {Y j}j∈N.

By definition of En[X | Y] as the orthogonal projection of E[X | Y] onto Pn(Y), we have that

En[X | Y] = ∑n
j=0⟨E[X | Y], pj(Y)⟩pj(Y). The L2(PY)-norm convergence En[X | Y] → E[X | Y]

follows. Furthermore, by the orthogonality principle of E[X | Y], we have that

pmmsen(X, t)−mmse(X, t) = E
[
(En[X | Y]−E[X | Y])2

]
. (4.6)

2Hankel matrices are square matrices with constant skew diagonals.
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Since P0(Y) ⊂P1(Y) ⊂ · · · , we deduce the monotone convergence pmmsen(X | Y)↘ mmse(X |

Y) from the L2(PY) convergence En[X | Y]→ E[X | Y]. Finally, the formula for En[X | Y] is shown

in Lemma 4.1.

Remark 4.1. The convergences in Theorem 4.1 are stated for Y that is not necessarily a Gaussian

perturbation of X. In general, when stating the results of this chapter we do not make an implicit

assumption on the relationship between X and Y.

We investigate the PMMSE in more detail in the case when Y is the output of a Gaussian channel

whose input is X, i.e., Y =
√

tX + N where N ∼ N (0, 1) is independent of X and t ≥ 0 is constant.

In this case, we show the following rationality of the PMMSE in signal-to-noise ratio (SNR), t. We

use the shorthand

pmmsen(X, t) := pmmsen(X |
√

tX + N). (4.7)

Theorem 4.2. Fix n ∈ N>0 and a random variable X satisfying E
[
X2n] < ∞. The mapping t 7→

pmmsen(X, t) over [0, ∞) is a rational function, with leading coefficients given by

pmmsen(X, t) =
σ2

XG(n + 2) + · · ·+ (det MX,n)tdn−1

G(n + 2) +
(
σ2

XG(n + 2)dn
)

t + · · ·+ (det MX,n)tdn
, (4.8)

where dn := (n+1
2 ) and G(k) := ∏k−2

j=1 j! (for integers k ≥ 1) is the Barnes G-function [Ada01]. Fur-

ther, each coefficient in the numerator or denominator of pmmsen(X, t) is a multivariate polynomial in

(E[X], · · · , E[X2n]).

Proof. See Section 4.3.1 and Appendix C.2.

Remark 4.2. The PMMSE definition naturally generalizes to random vectors, where orthogonal

projection is then done over spaces of multivariate polynomials. In this case, if X is an m-dimensional

random vector that is independent of N ∼ N (0, Im), the leading terms in the PMMSE formula

become

pmmsen(X, t) =
(tr ΣX)det MN,n + · · ·+ (tr ΣN) (det MX,n) tdn,m−1

det MN,n + · · ·+ (det MX,n) tdn,m
, (4.9)

where ΣX and ΣN are the covariance matrices and dn,m = m(n+m
m+1); the matrices MX,n and MN,n are

also natural generalizations of the real-valued case, see Appendix C.4 for the details.

The intermediate terms in the rational function pmmsen(X, t) can also be given explicitly via

Theorem 4.1. For example, if X is zero-mean and unit-variance, denoting Xk = E[Xk], we have the
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Figure 4.1: Comparison of the graphs of the functions t 7→ pmmsen(X, t) (solid lines) against the function t 7→
mmse(X, t) (dashed black line) for n ∈ {1, 5, 10} and X ∼ Unif({±1}).

formula

pmmse2(X, t) =
2 + 4t + (X4 −X 2

3 − 1)t2

2 + 6t + (X4 + 3)t2 + (X4 −X 2
3 − 1)t3

. (4.10)

For a general n ∈N, the coefficients in both the numerator and denominator of the PMMSE in (4.8)

are “homogeneous" polynomials in the moments of X (i.e., for a single coefficient c(X) there is a

kc ∈N such that c(αX) = αkc c(X)).

The expression (4.8) of the PMMSE in terms of moments gives a simple yet powerful method

for approximating the MMSE. Figure 4.1 shows an example of how the PMMSE approximates the

MMSE for a random variable X that takes the values 1 and −1 equiprobably, where we are also

using the shorthand mmse(X, t) := mmse(X |
√

tX + N) for N ∼ N (0, 1) independent of X. In this

case, the MMSE is given by

mmse(X, t) = 1− 1√
2π

∫
R

tanh(z
√

t)2e−(z+
√

t)2/2 dz, (4.11)

whereas the functions pmmsen(X, t) are rational in t, e.g., for n = 1 we have the LMMSE pmmse1(X, t) =

1/(1 + t), and for n = 5 we have the 5-th degree PMMSE3

pmmse5(X, t) =
45 + 360t + 675t2 + 300t3

45 + 405t + 1035t2 + 1005t3 + 450t4 + 96t5 + 8t6 . (4.12)

3In general, pmmse5(Z, t) is a ratio of a degree-14 polynomial by a degree-15 polynomial as in equation (4.8). In the
special case of a Rademacher random variable, significant cancellations occur and we obtain equation (4.12).
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Comparing the curves in Figure 4.1 hints that the convergence pmmsen(X, t) ↘ mmse(X, t)

is uniform in the SNR t; note that the corresponding pointwise convergence is an immediate

corollary of Theorem 4.1. We show in the following result that the PMMSE indeed converges

uniformly to the MMSE provided that X has a MGF (i.e., its MGF is finite over a neighborhood of

the origin). We also show, under additional assumptions on the distribution of X, that for fixed t the

pointwise-convergence rate of pmmsen(X, t)↘ mmse(X, t) is faster than any polynomial in n.

Theorem 4.3. If the MGF of a random variable X exists,4 then we have the uniform and monotone convergence

sup
t≥0

pmmsen(X, t)−mmse(X, t)↘ 0 (4.13)

as n → ∞. If, in addition, X has a probability density function or a probability mass function pX that is

compactly-supported, even, and decreasing over [0, ∞) ∩ supp(pX), then for all k, t ≥ 0 we have that

lim
n→∞

nk · (pmmsen(X, t)−mmse(X, t)) = 0. (4.14)

Proof. See Section 4.3.2 and Appendix C.3.

Remark 4.3. By the orthogonality property of the conditional expectation, we have the equality of

approximation errors

pmmsen(X, t)−mmse(X, t) = E

[(
En[X |

√
tX + N]−E[X |

√
tX + N]

)2
]

, (4.15)

where N ∼ N (0, 1) is independent of X. Thus, the convergence rate (4.14) is equivalent to

lim
n→∞

nkE

[(
En[X |

√
tX + N]−E[X |

√
tX + N]

)2
]
= 0. (4.16)

Equipped with the PMMSE functional, we are able to derive new formulas for differential entropy

and mutual information in terms of moments. A corollary of the I-MMSE relation states that the

differential entropy of a finite-variance continuous random variable X can be expressed in terms of

the MMSE as [GSV05]

h(X) =
1
2

∫ ∞

0
mmse(X, t)− 1

2πe + t
dt. (4.17)

Naturally, we consider the functionals obtained by replacing the MMSE with the PMMSE, which we

4The assumption that the MGF of X exists is imposed so that
√

tX + N satisfies Carleman’s condition (for N ∼ N (0, 1)
independent of X and t ≥ 0 fixed), which holds because

√
tX + N will then have a MGF. It is not true in general that

Carleman’s condition is satisfied by the sum of two independent random variables each satisfying Carleman’s condition,
see [Ber85, Proposition 3.1].
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Figure 4.2: Comparison of the values of hn(X) (green dots) against the true value h(X) (dashed blue line) for n ∈
{1, · · · , 10} and X ∼ χ2. We have that h(X) < h10(X) < h(X) + 6 · 10−4.

show converge to the differential entropy monotonically from above.

Theorem 4.4. Let X be a continuous m-dimensional random vector whose MGF exists. Consider the

functionals

hn(X) :=
1
2

∫ ∞

0
pmmsen(X, t)− m

2πe + t
dt (4.18)

for each n ∈N>0. Then, we have a decreasing sequence

h(N (0, ΣX)) =
1
2

log ((2πe)m det ΣX) (4.19)

= h1(X) ≥ h2(X) ≥ · · · ≥ h(X) (4.20)

converging to the differential entropy, hn(X)↘ h(X).

Proof. See Section 4.4 and Appendix C.5.2.

Figure 4.2 illustrates how hn(X) approximates h(X), where X has a chi distribution with two

degrees of freedom (commonly denoted by χ2). It is evident from the figure that hn(X) approximates

the differential entropy of X monotonically more accurately as n grows; indeed, this is true in general

in view of the monotonicity of the convergence pmmsen(X | Y)↘ mmse(X | Y) as in Theorem 4.1.

A noteworthy implication of Theorem 4.4 is that it gives a formula for the differential entropy

h(X) that, in view of Theorem 4.2, is entirely in terms of the moments of X. Furthermore, closure

properties of polynomial subspaces under affine transformations imply that the PMMSE behaves
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under affine transformations exactly as the MMSE does: if E[X2], E[Y2n] < ∞ then

pmmsen(aX + b | cY + d) = a2 pmmsen(X | Y) (4.21)

for all constants a, b, c, and d such that c ̸= 0 (Lemma 4.2). Thus, the distribution functionals hn

behave under affine transformations exactly as differential entropy does, namely, if E[X2n] < ∞ then

hn(aX + b) = hn(X) + log |a| (4.22)

for a ̸= 0 (Corollary 4.2).

The moment-based differential entropy formula in Theorem 4.4 gives rise to formulas of mutual

information primarily in terms of moments.

Theorem 4.5. If the mutual information I(X; Y) exists (but possibly infinite), then it can be written in terms

of the underlying moments in the following two cases:

1. Suppose X is discrete with finite support, and Y is continuous whose MGF exists and that satisfies

h(Y) > −∞. Then, letting Y(x) denote the random variable obtained from Y by conditioning on

{X = x}, we have

I(X; Y) =
1
2

lim
n→∞

∫ ∞

0
pmmsen(Y, t)−EX

[
pmmsen(Y

(X), t)
]

dt. (4.23)

2. Suppose that X and Y are continuous whose MGFs exist and that satisfy h(X), h(Y) > −∞. Suppose

also that I(X; Y) < ∞ or else (X, Y) is not continuous. Then,

I(X; Y) =
1
2

lim
n→∞

∫ ∞

0
pmmsen(X, t) + pmmsen(Y, t)− pmmsen((X, Y), t) dt. (4.24)

Proof. See Section 4.4 and Appendix C.5.3.

One result that helps in the proof of Theorem 4.5 in the second scenario is the following

generalization of the MMSE dimension to random vectors.

Theorem 4.6. Fix two square-integrable continuous m-dimensional random vectors X and N that are

independent. Suppose that pN is bounded and 5 pN(z) = O
(
∥z∥−(m+2)

)
as ∥z∥ → ∞. Then, we have that

lim
t→∞

t ·mmse
(

X |
√

tX + N
)
= tr ΣN . (4.25)

5The exponent m + 2 in the decay rate may be replaced with m + 1 + ε for any ε > 0, see [SS19, Section 3.2]
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Proof. This result follows by a straightforward extension of the proof for the one-dimensional case

given in [WV11]; see [AC21a, Appendix I] for the full details.

We introduce new estimators of information measures by approximating the PMMSE in (4.8)

via plugging in sample moments in place of moments. If {Xj}m
j=1 are i.i.d. samples taken from the

distribution of X, then a uniform random variable over the samples U ∼ Unif({Xj}m
j=1) provides

an estimate pmmsen(U, t) for pmmsen(X, t). The moments of U converge to the moments of X by

the law of large numbers. Further, using pmmsen(U, t) to estimate pmmsen(X, t) is a consistent

estimator by the continuous mapping theorem, as the PMMSE is a continuous function of the

moments. The same can be said of hn(U) as an estimate of hn(X), or of In(U; V) as an estimate of

I(X; Y) when (U, V) ∼ Unif({(Xj, Yj)}m
j=1) where {(Xj, Yj)}m

j=1 are i.i.d. samples drawn according

to the distribution of (X, Y) (where In is the functional given by the expressions inside the limits in

Theorem 4.5). These estimators also satisfy some desirable properties. For example, the behavior of

the PMMSE under affine transformations (4.21) implies that the estimate of the PMMSE from data is

robust to (injective) affine transformations, the functionals hn behave under affine transformations

exactly as differential entropy does, and the same is true for In and I.

The rest of the chapter is organized as follows. We introduce the PMMSE, provide an explicit

formula for it, prove its convergence to the MMSE (Theorem 4.1), and exhibit some of its properties

in Section 4.2. A more detailed treatment of the Gaussian-channel case occupies Section 4.3.

Specifically, we show rationality of the PMMSE (Theorem 4.2) in Section 4.3.1, then prove the uniform

convergence of the PMMSE to the MMSE and bound the pointwise-convergence rate (Theorem 4.3)

in Section 4.3.2. Building on the derived results about the PMMSE, we prove new moments-based

formulas for differential entropy and mutual information in Section 4.4. Our formulas then give rise

to a new estimator that we introduce in Section 4.5, where simulations also illustrate the estimator’s

performance.

4.1.1 Related Literature

The mutual information between the input and output of the Gaussian channel is known to have an

integral relation with the MMSE, referred to in the literature as the I-MMSE relation. This connection

was made in the work of Guo, Shamai, and Verdú in [GSV05]. Extensions of the I-MMSE relation

were investigated in [Zak05, Guo09, Ver10, GWSV11, WV12, AVW14, HJW15, DBPS17, DV20], and
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applications have been established, e.g., in optimal power allocation [LTV06] and monotonicity of

non-Gaussianness [TV06]. Our work is inscribed within this literature.

We introduce the PMMSE approximation of the MMSE, derive new representations of distribution

functionals in terms of moments, and introduce estimators based on these new representations.

We note that utilizing higher-order polynomials as proxies of the MMSE has appeared, e.g., in

approaches to denoising [CM18]. Works such as [DSGW03] and [Don88] show some impossibility

results for estimating the MMSE in the general case. Recent work by Diaz et al. [DKS21] gives lower

bounds for the MMSE via estimating by neural networks. Also, studying smoothed distributions,

e.g., via convolutions with Gaussians, has generated recent interest in the context of information

theory [CPW18, PW16] and learning theory [GGWP19, GGNWP20].

At the heart of our work is the Bernstein approximation problem, on which a vast literature exists

within approximation theory. The original Bernstein approximation problem extends Weierstrass

approximation to the whole real line by investigating whether polynomials are dense in L∞(µ) for

a measure µ that is absolutely continuous with respect to the Lebesgue measure. Works such as

those by Carleson [Car51] and Freud [Fre77], and eventually the more comprehensive solution given

by Ditzian and Totik [DT87]—which introduces moduli of smoothness, a natural extension of the

modulus of continuity—show that tools used to solve the Bernstein approximation problem can

be useful for the more general question of denseness of polynomials in Lp(µ) for all p ≥ 1 (see

[Lub07] for a comprehensive survey). In particular, the case p = 2 has a close relationship with the

Hamburger moment problem, described next.

The Hamburger moment problem asks whether a countably-infinite sequence of real numbers

corresponds uniquely to the moments of a positive Borel measure on R. A connection between this

problem and the Bernstein approximation problem is that if the Hamburger moment problem has a

positive answer for the sequence of moments of µ then polynomials are dense in L2(µ), see [BC81].

In the context of information theory, the application of the Bernstein approximation problem and the

Hamburger moment problem has appeared in [MZ17].

The denominator of the PMMSE in Gaussian channels, which is given by det M√tX+N,n, as well

as the leading coefficient of both the numerator and the denominator, det MX,n, can be seen as

generalizations of the Selberg integral. Denote

In(φ) =
∫

Rn+1 ∏
0≤i<j≤n

(yi − yj)
2

n

∏
i=0

φ(yi) dy0 · · · dyn. (4.26)
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If φ is the PDF of a Beta distribution or a standard normal distribution, then In(φ) is the Selberg

integral or the Mehta integral, respectively (both with parameter γ = 1) [FW08]. For a continuous

random variable Y whose PDF is pY,

det MY,n =
1

(n + 1)!
In(pY). (4.27)

The Vandermonde-determinant power ∏i<j(yi − yj)
2 in the integrand in (4.26) bears a close connec-

tion with the quantum Hall effect [STW94, KTW04]. The connection arises via expanding powers

of the Vandermonde determinant and investigating which of the ensuing monomials have nonzero

coefficients.

We quantify the rate of convergence of the PMMSE to the MMSE in Theorem 4.3, for which the

key ingredient is the bound in Lemma 4.9 on the derivatives of the conditional expectation. The

first-order derivative of the conditional expectation in Gaussian channels has been treated in [DPS20].

We note that in parallel to this work the authors were made aware that the higher-order derivative

expressions in Proposition 4.3 were also derived in [DPS21]. We also extend the proofs for the MMSE

dimension in the continuous case as given in [WV11] to higher dimensions.

Distribution functionals, such as mutual information, are popular metrics for quantifying associa-

tions between data (e.g., [GNO+12, CLA+10, Fle04]), yet reliably estimating distributional functions

directly from samples is a non-trivial task. The naive route of first estimating the underlying dis-

tribution is generally impractical and imprecise. To address this challenge, a growing number of

distribution functionals’ estimators have recently been proposed within the information theory and

computer science communities (see, e.g., [KSG04, VV11, JVHW15, WY16, GKOV17]). The estimators

we propose satisfy desirable properties, such as shift invariance and scale resiliency, without the

need to estimate the underlying distributions.

4.1.2 Notation

Throughout, we fix a probability space (Ω,F , P). For q ≥ 1, the Banach space Lq(P) consists of all

q-times integrable real-valued random variables with norm denoted by ∥ · ∥q. The Borel probability

measure induced by a random variable Y is denoted by PY. The subspace Lq(PY) ⊂ Lq(P) consists

of q-times integrable and σ(Y)-measurable random variables. The inner product of L2(P) is denoted

by ⟨ · , · ⟩. The Banach space Lq(R) consists of all q-times Lebesgue integrable functions from R to

itself, with norm denoted by ∥ · ∥Lq(R). We say that Y has a moment-generating function (MGF)
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if E[etY] < ∞ over some nonempty interval t ∈ (−δ, δ). We let supp(Y) denote the support of Y.

We denote the cardinality of a set S by |S|, and say that Y has infinite support if |supp(Y)| = ∞. If

E
[
Y2n] < ∞, we denote the Hankel matrix of moments by MY,n :=

(
E
[
Yi+j])

0≤i,j≤n. We denote

the random vector Y (n) := (1, Y, · · · , Yn)T . Note that MY,n is the expectation of the outer product

of Y (n), i.e., MY,n = E

[
Y (n)

(
Y (n)

)T
]

. Therefore, MY,n is a rank-1 perturbation of the covariance

matrix of Y (n), denoted ΣY (n) . We let Pn denote the collection of all polynomials of degree at most n

with real coefficients, and we set Pn(Y) := {q(Y) ; q ∈Pn}. For n ∈N, we set [n] := {0, 1, · · · , n}.

Vectors are denoted by boldface letters, in which case subscripted regular letters refer to the entries.

The n× n identity matrix is denoted by In. The closure of a set S will be denoted by S. We use the

shorthand Xk := E
[

Xk
]
, and the notation Yk is defined analogously.

4.2 Polynomial MMSE

We give in this section a brief overview of the Polynomial MMSE (PMMSE). The PMMSE, introduced

in Definition 4.1, can be characterized in two equivalent ways: it is the orthogonal projection

onto subspaces of polynomials of bounded degree, and it is also a natural generalization of the

Linear MMSE (LMMSE) to higher-degree polynomials. Recall that standard results on orthogonal

projections in Hilbert spaces (see, e.g., [SS19, Section 4.4]) yield that the minimum in (4.3) is always

attained, and that the polynomials cTY (n) represent the same element of Pn(Y) for all minimizers c

of (4.3). In other words, the PMMSE estimate En[X | Y] as given by Definition 4.1 is a well-defined

element in Pn(Y) ⊂ L2(PY).6

Unlike the case of the MMSE, working with the PMMSE is tractable and allows for explicit

formulas. For instance, the PMMSE in Gaussian channels is a rational function in the SNR; more

precisely, the formula for t 7→ pmmsen(X |
√

tX + N) stated in Theorem 4.2 reveals that this

mapping is a rational function of t (where N ∼ N (0, 1) is independent of X). In addition, as shown

in Theorem 4.1, we have the strong convergence (i.e., in the strong operator topology) of orthogonal

projection operators En[ · | Y]→ E[ · | Y] provided that polynomials in Y are dense in L2(PY).

6Uniqueness of the minimizing polynomial En[X | Y] should not be confused with the possible non-uniqueness of the
vector c ∈ Rn+1 in the relation En[X | Y] = cTY (n). For example, if Y is binary and n = 2, then Y2 = Y, so for any c0, c1, c2 ∈ R

for which E2[X | Y] = c0 + c1Y + c2Y2 we also have E2[X | Y] = c0 + (c1 − 1)Y + (c2 + 1)Y2. In particular, there is no unique
quadratic p ∈P2 for which E2[X | Y] = p(Y). Nevertheless, in the problems of interest to us, uniqueness of c is also attained
(e.g., if Y is continuous); in fact, c is unique if and only if |supp(Y)| > n holds.
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4.2.1 PMMSE Formula

We show next explicit PMMSE formulas. We build on these formulas in the next section to prove

the rationality of t 7→ pmmsen(X, t) stated in Theorem 4.2, which in turn will simplify the proof of

consistency of the estimators for information measures introduced in Section 4.5.

Lemma 4.1. Fix n ∈ N, and let X and Y be random variables such that E
[
X2] , E

[
Y2n] < ∞. We have

that MY,n is invertible if and only if |supp(Y)| > n. Further, if it is the case that |supp(Y)| > n, then the

PMMSE estimator is given by

En[X | Y] = E
[

XY (n)
]T

M−1
Y,n Y (n), (4.28)

and the PMMSE by

pmmsen(X | Y) = E
[

X2
]
−E

[
XY (n)

]T
M−1

Y,nE
[

XY (n)
]

, (4.29)

which then satisfy the relation

pmmsen(X | Y) = E
[

X2
]
−E [XEn[X | Y]] . (4.30)

Proof. See Appendix C.1.1.

To expound on the formulas given by Lemma 4.1, we instantiate them next for the cases

n ∈ {1, 2}. By definition of the PMMSE, these expressions recover the LMMSE and “quadratic"

MMSE. Polynomial regression is also shown below to be an instantiation of the PMMSE.

Example 1. For n = 1, if E[X2], E[Y2] < ∞ and |supp(Y)| > 1, we have from (4.28) that

E1[X | Y] = (E[X], E[XY])

 1 E[Y]

E[Y] E
[
Y2]


−1 1

Y

 . (4.31)

Computing the matrix inverse and multiplying out, we obtain

E1[X | Y] = E[X] +
cov(X, Y)

σ2
Y

(Y−E[Y]) , (4.32)

where cov(X, Y) := E[XY]−E[X]E[Y] is the covariance between X and Y. Formula (4.32) indeed

gives the LMMSE estimate. Via the relation in (4.30), we recover

pmmse1(X | Y) = σ2
X −

cov(X, Y)2

σ2
Y

= σ2
X · (1− ρ2

X,Y), (4.33)
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with ρX,Y := cov(X, Y)/(σXσY) the Pearson correlation coefficient between X and Y (when σX ̸= 0).

Formula (4.33) verifies that pmmse1(X | Y) is the LMMSE.

Example 2. We will use the notation Yk := E
[
Yk
]

for short. For n = 2, and assuming E[X2], E[Y4] <

∞ and |supp(Y)| > 2, Lemma 4.1 gives the quadratic E2[X | Y] = α0
δ + α1

δ Y + α2
δ Y2 where

α0 = (Y2Y4 −Y2
3 )E[X] + (Y2Y3 −Y1Y4)E[XY] + (Y1Y3 −Y2

2 )E[XY2] (4.34)

α1 = (Y2Y3 −Y1Y4)E[X] + (Y4 −Y2
2 )E[XY] + (Y1Y2 −Y3)E[XY2] (4.35)

α2 = (Y1Y3 −Y2
2 )E[X] + (Y1Y2 −Y3)E[XY] + (Y2 −Y2

1 )E[XY2] (4.36)

and

δ = Y2Y4 −Y2
1Y4 −Y3

2 −Y2
3 + 2Y1Y2Y3. (4.37)

Note that δ = det MY,2 ̸= 0 by Lemma 4.1. Relation (4.30) then yields the formula

pmmse2(X | Y) = E
[

X2
]
− δ−1

2

∑
k=0

αkE
[

XYk
]

. (4.38)

Example 3. Finding the PMMSE estimate can be seen as a generalization of modeling via polynomial

regression. The goal of single-variable polynomial regression is to model a random variable X as a

polynomial in a random variable Y, i.e., X = β0 + β1Y + · · ·+ βnYn + ε for a modeling-error random

variable ε and constants β j to be determined from data. Given access to samples {(xi, yi)}m
i=1,

this model leads to the equation X = Yβββ + εεε, where X = (x1, · · · , xm)T , Y = (yj
i)i∈{1,··· ,m},j∈[n],

εεε = (ε1, · · · , εm)T where the ε j are samples from ε, and βββ = (β0, · · · , βn)T . It is assumed that the

number of distinct yi is strictly larger than n, so Y has full column-rank. A value of βββ that minimizes

∥εεε∥ is known from polynomial regression to be βββT = XTY(YTY)−1. This formula follows from the

PMMSE estimate formula in Lemma 4.1. Indeed, minimizing ∥εεε∥ in polynomial regression amounts

to finding the PMMSE estimate En[U | V], where (U, V) ∼ Unif({(xi, yi)}m
i=1). By the PMMSE

formula in Lemma 4.1, we have that

βββT = E
[
UV (n)

]T
M−1

V,n (4.39)

By definition of (U, V), we also have that XTY = mE
[
UV (n)

]T
and (YTY)−1 = 1

m M−1
V,n. Multiplying

the latter two equations together, we obtain βββT = XTY(YTY)−1 in view of (4.39). To sum up, the

polynomial regression approach solves the restricted problem of finding the PMMSE En[X′ | Y′]

when both X′ and Y′ are discrete with PMFs that evaluate to rational numbers, i.e., when the
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distribution of (X′, Y′) is uniform over a finite dataset {(x′i , y′i)}m
i=1.

Remark 4.4. We note that En[ · | Y] is not in general a conditional expectation operator, i.e., there are

some n ∈N and Y ∈ L2n(P) such that for every sub-σ-algebra Σ ⊂ F we have En[ · | Y] ̸= E[ · | Σ].

One way to see this is that En[ · | Y] might not preserve positivity. For example, if X ∼ Unif(0, 1)

and Y = X + N for N ∼ N (0, 1) independent of X, we have that E1[X | Y] = (Y + 6)/13 (see (4.32)).

Therefore, the probability that E1[X | Y] < 0 is PY((−∞,−6)) > 0. In other words, although X is

non-negative, E1[X | Y] is not; in contrast, E[X | Σ] is non-negative for every sub-σ-algebra Σ ⊂ F .

Remark 4.5. We may define the pointwise PMMSE estimate En[X | Y = y] for y ∈ supp(Y) by the

equation En[X | Y = y] := ∑j∈[n] cjyj where c = (c0, · · · , cn)T is any minimizer in (4.3), and a direct

verification shows that this makes En[X | Y = y] well-defined.

Remark 4.6. The PMMSE, as we introduce it in Definition 4.1, can be equivalently written in vector

LMMSE notation as pmmsen(X | Y) = lmmse(X | Y (n)). However, even when the channel producing

Y from X is additive, the same might not be true of that producing Y (n) from X. For example, if

Y = X + N, then Y2 contains the cross term XN. For this reason, we use the introduced PMMSE

notation in place of the vector LMMSE notation.

4.2.2 PMMSE Properties

We investigate next the behavior of the PMMSE under affine transformations, and exhibit a few

additional properties of the PMMSE that parallel those of the MMSE. The behavior of the PMMSE

under affine transformations, shown in Lemma 4.2 below, has desirable implications on the moments-

based approximations of differential entropy and mutual information that we introduce in Section 4.4.

For example, recall that differential entropy satisfies h(aY + b) = h(Y) + log |a| for any a, b ∈ R with

a ̸= 0. Because of Lemma 4.2, the same property holds for the approximations hn (as given by (4.18)),

i.e., hn(aY + b) = hn(Y) + log |a|.

For random variables X and Y such that E[X2] < ∞ and constants α, β, γ, δ ∈ R such that γ ̸= 0,

one has mmse(αX + β | γY + δ) = α2mmse(X | Y) (see, e.g., [GSV05]). This property of the MMSE

holds because mmse( · | Y) measures the distance to L2(PY), which is a space that is invariant under

(injective) affine transformations of Y. A similar reasoning yields an analogous property for the

PMMSE.
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Lemma 4.2. Let X and Y be two random variables and n ∈N, and assume that both E
[
X2] and E

[
Y2n] are

finite. For any α, β, γ, δ ∈ R such that γ ̸= 0, we have that pmmsen(αX + β | γY + δ) = α2pmmsen(X |

Y).

Proof. This property follows from the fact that Pn(aY+ b)− c = Pn(Y) for a, b, c ∈ R with a ̸= 0.

We show next that the operator En[ · | Y] satisfies several properties analogously to the conditional

expectation E[ · | Y]. Note that the properties we derive for the PMMSE cannot be straightforwardly

deduced from analogous properties that the conditional expectation satisfies, since En[ · | Y] is not in

general a conditional expectation operator (see Remark 4.4). Nevertheless, we have the following

PMMSE operator properties.

Lemma 4.3. For n ∈ N and random variables X, Y, and Z such that σX, σY, E[Z2n] < ∞, the following

hold:

(i) Linearity: En[aX + bY | Z] = aEn[X | Z] + bEn[Y | Z] for any a, b ∈ R.

(ii) Invariance: En[p(Z) | Z] = p(Z) for any p ∈Pn.

(iii) Idempotence: En [En [X | Z] | Z] = En[X | Z].

(iv) Contractivity: ∥En[X | Z]∥2 ≤ ∥X∥2.

(v) Self-Adjointness: E [En[X | Z]Y] = E [XEn[Y | Z]], i.e., En[ · | Z] is self-adjoint.

(vi) Orthogonality: E[(X − En[X | Z])p(Z)] = 0 for p ∈ Pn, and En[Y | Z] = 0 if and only if

Y ∈Pn(Z)⊥.

(vii) Total expectation: E[En[X | Z]] = E[X].

(viii) Independence: If X and Z are independent, then En[X | Z] = E[X].

(ix) Markov Chain: If X—Y—Z forms a Markov chain, then En [E[X | Y] | Z] = En[X | Z].

Proof. Properties (i)–(vi) follow immediately from the characterization of En[ · | Z] as an orthogonal

projection from L2(P) onto Pn(Z). Property (vii) follows from the first part of (vi) via linearity

of expectation by choosing the constant polynomial p ≡ 1. If X and Z are independent, then

X −E[X] ∈ Pn(Z)⊥, so we deduce (viii) from the second part of (vi) by choosing Y = X −E[X].

Finally, (ix) is a restatement of X − E[X | Y] ∈ Pn(Z)⊥, which can be easily seen to hold when

X—Y—Z forms a Markov chain.
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Remark 4.7. In view of properties (vii)–(viii), one may define the unconditional version of En as

En[X] := E[X] for X ∈ L2(P). With this definition, the total expectation property (vii) becomes

En[En[X | Z]] = En[X], and the independence property (viii) becomes En[X | Z] = En[X] for

independent X and Z. This definition of En[X] is also consistent with defining it as En[X | 1], because

E[X] is the closest constant to X in L2(P).

We also show that the PMMSE estimate satisfies the “tower property” similarly to the conditional

expectation. This property is relegated Proposition C.1 in Appendix C.4.2, where we extend our

results on the PMMSE to multiple dimensions.

Next we show that, if X and Z are symmetric random variables7 that are independent, then the

polynomial in X + Z closest to X is always of odd degree or is a constant.

Lemma 4.4. For k ∈N≥1 and symmetric and independent random variables X and Z satisfying E
[
Z2] , E

[
X4k
]
<

∞ and |supp(X + Z)| > 2k, we have that E2k[X | X + Z] = E2k−1[X | X + Z].

Proof. See Appendix C.1.2.

Finally, we show that the pointwise PMMSE estimate En[X | Y = y] (see Remark 4.5) satisfies the

following convergence theorems.

Lemma 4.5 (Convergence Theorems). Fix a sequence of square-integrable random variables {Xk}k∈N, and

let n ∈N and the random variable Y be such that E
[
Y2n] < ∞ and |supp(Y)| > n. For every y ∈ R, the

following hold:

(i) Monotone Convergence: If {Xk}k∈N is monotone with square-integrable pointwise limit X = limk→∞ Xk,

and either Y ≥ 0 or Y ≤ 0 holds almost surely, then

En[X | Y = y] = lim
k→∞

En [Xk | Y = y] . (4.40)

(ii) Dominated Convergence: If there is a square-integrable random variable M such that supk∈N |Xk| ≤ M,

and if the pointwise limit X := limk→∞ Xk exists, then

En[X | Y = y] = lim
k→∞

En [Xk | Y = y] . (4.41)

Proof. See Appendix C.1.3.

7A random variable Y is symmetric if PY−a = P−(Y−a) for some a ∈ R.
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4.3 PMMSE in Gaussian Channels

We focus in this section on the case Y =
√

tX + N for t ≥ 0 and N ∼ N (0, 1) independent of X. We

prove rationality of the PMMSE (Theorem 4.2), uniform convergence of the PMMSE to the MMSE,

and a pointwise-convergence rate bound (Theorem 4.3). Investigating the PMMSE in Gaussian

channels allows us to extrapolate—via the I-MMSE relation—new formulas for differential entropy

and mutual information primarily in terms of moments in the next section, which then pave the way

for new estimators for these information measures in Section 4.5. We write

pmmsen(X, t) := pmmsen(X |
√

tX + N), (4.42)

mmse(X, t) := mmse(X |
√

tX + N), (4.43)

lmmse(X, t) := lmmse(X |
√

tX + N). (4.44)

Omitted proofs of results stated in this section can be found in Appendix C.2 (for Section 4.3.1) and

Appendix C.3 (for Section 4.3.2).

4.3.1 Rationality of the PMMSE: Proof of Theorem 4.2

Fix an integer n > 0, and let X be a random variable such that E[X2n] < ∞. We denote the moments

of X by Xk := E
[

Xk
]
, where X0 := 1. We begin by rewriting the PMMSE as

pmmsen(X, t) =
pmmsen(X, t) det M√tX+N,n

det M√tX+N,n
, (4.45)

where N ∼ N (0, 1) is independent of X. With some algebra, one can show that the above expresses

the PMMSE as a rational function.

Lemma 4.6. Fix n ∈ N, N ∼ N (0, 1), and a random variable X that is independent of N and which

satisfies E
[
X2n] < ∞. Over t ∈ [0, ∞), the function t 7→ det M√tX+N,n is a polynomial of degree at

most dn := (n+1
2 ), whose coefficient of tdn is det MX,n, coefficient of t is σ2

XG(n + 2)dn, and constant

term is G(n + 2), where G(n + 2) := ∏n
k=1 k! is the Barnes G-function. In addition, over t ∈ [0, ∞), the

function t 7→ pmmsen(X, t)det M√tX+N,n is a polynomial of degree at most dn − 1, whose constant term is

σ2
XG(n + 2). Furthermore, each coefficient in either of these two polynomials stays unchanged if X is shifted

by a constant.

Proof. See Appendix C.2.1.
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According to Lemma 4.6, we may define constants an,j
X and bn,j

X by the polynomial identities

pmmsen(X, t) det M√tX+N,n = ∑
j∈[dn−1]

an,j
X tj, (4.46)

det M√tX+N,n = ∑
j∈[dn ]

bn,j
X tj, (4.47)

and taking the ratio of these two polynomials yields the following rational expression for the PMMSE

pmmsen(X, t) =
∑j∈[dn−1] an,j

X tj

∑j∈[dn ] bn,j
X tj

. (4.48)

Lemma 4.6 also derives a subset of the desired coefficients values8

(
an,0

X , bn,0
X , bn,1

X , bn,dn
X

)
=
(

σ2
XG(n + 2), G(n + 2), σ2

XG(n + 2)dn, det MX,n

)
, (4.49)

so it only remains to derive the value of an,dn−1
X .

Remark 4.8. We give fully-expanded formulas for each of the an,j
X and bn,j

X in Appendix C.2.2, express-

ing them as integer-coefficient multivariate polynomials in the first 2n moments of X. Examining

these expressions gives a strengthening of Theorem 4.2 in which the specific moments that could

appear in any of the an,j
X or bn,j

X are further restricted.

To complete the proof, we show that the value of the leading term in the numerator in (4.48) is

given by

an,dn−1
X = det MX,n. (4.50)

We prove (4.50) next for continuous X, then generalize for every random variable X.

Assume for now that X is continuous. In particular, |supp(X)| = ∞, so det MX,n ̸= 0 according to

Lemma 4.1. In view of bn,dn
X = det MX,n (see (4.49)), showing an,dn−1

X = det MX,n becomes equivalent

to showing pmmsen(X, t) ∼ 1/t as t→ ∞ (see (4.48)). In addition, the PMMSE is bounded by the

LMMSE and the MMSE,

mmse(X, t) ≤ pmmsen(X, t) ≤ lmmse(X, t). (4.51)

We have that lmmse(X, t) ∼ 1/t as t→ ∞. Further, the assumption of continuity of X implies that

mmse(X, t) ∼ 1/t too [WV11]. Thus, by (4.51), we obtain pmmsen(X, t) ∼ 1/t as t → ∞. We have

8Note that Lemma 4.6 also shows that an,j
X+s = an,j

X and bn,ℓ
X+s = bn,ℓ

X for each (j, ℓ, s) ∈ [dn − 1]× [dn]×R, which is a
stronger result than shift-invariance of the PMMSE (see Lemma 4.2); however, we do not utilize this fact in the remainder of
the proof.
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thus shown the desired equation (4.50) when X is continuous.

We now return to the general case (i.e., not necessarily continuous X). Note that the quantity

an,dn−1
X − det MX,n is a multivariate polynomial in the first 2n moments of X. By showing an,dn−1

X =

det MX,n in the previous paragraph for every continuous X, we have established the vanishing of a

multivariate polynomial in the first 2n moments of every continuous 2n-times integrable random

variable X. We show in Proposition 4.2 below that such a set of zeros is in fact too large to be

contained in the zero-locus of any nonzero polynomial, i.e., that such a polynomial must vanish

identically (equivalently, an,dn−1
X = det MX,n must hold even when X is not continuous). For the

proof of the latter claim, we first derive a moment-approximation intermediate result.

Lemma 4.7. Fix m ∈ N>0, set ℓ = ⌊m/2⌋ and µ0 = 1, and let (µ1, · · · , µm) ∈ Rm be such that

(µi+j)(i,j)∈[ℓ]2 is positive definite. For every ε > 0, there exists a continuous random variable Z such that∣∣∣E [Zk
]
− µk

∣∣∣ < ε for every k ∈ [m].

Proof. Since (µi+j)(i,j)∈[ℓ]2 is assumed to be positive definite, the solution to the truncated Hamburger

moment problem implies that there is a finitely-supported discrete random variable W such that

E
[
Wk
]
= µk for each k ∈ [2ℓ+ 1] (see [CF91, Theorem 3.1, items (iii) and (v)]). Let U ∼ Unif(0, 1)

be independent of W, and consider the continuous random variables Zη = W + ηU for η > 0. For

each k ∈ [m], Zk
η →Wk in distribution as η → 0+. Further, the set {Zk

η}0<η≤1 is uniformly integrable

since |Zk
η | ≤ (|W|+ 1)k ∈ L1(P). By the Lebesgue-Vitali theorem [Bog07, Theorem 4.5.4], we get

E[Zk
η ]→ E[Wk] = µk for each k ∈ [m] as η → 0+. Hence, for each ε > 0, we may choose η > 0 small

enough so that |E[Zk
η ]− µk| < ε for every k ∈ [m], completing the proof.

In the other direction, if µ0 = 1 and (µ1, · · · , µ2ℓ) ∈ R2ℓ come from a continuous random variable

Z, i.e., E
[

Zk
]
= µk for each k ∈ [2ℓ], then it must be that the Hankel matrix H =

(
µi+j

)
(i,j)∈[ℓ]2 is

positive definite. Indeed, since |supp(Z)| = ∞, we have that vT Hv =
∥∥∥∑k∈[ℓ] vkZk

∥∥∥2

2
> 0 for every

nonzero real vector v = (v0, · · · , vℓ)T .

For each integer m ≥ 2, let Rm ⊂ Lm(P) be the set of all continuous random variables X such

that E[|X|m] < ∞. Consider the set Cm ⊂ Rm defined by Cm = {(E[X], · · · , E[Xm]) ; X ∈ Rm}. We

have the following result.

Proposition 4.2. Let p be a polynomial in m variables with real coefficients. If p (E[X], · · · , E[Xm]) = 0 for

every continuous random variable X satisfying E[|X|m] < ∞, then p is the zero polynomial.

Proof. See Appendix C.2.3.
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Proposition 4.2 completes the proof of Theorem 4.2. Indeed, since an,dn−1
X −det MX,n = p

(
E[X], · · · , E[X2n]

)
for some multivariate polynomial p, and since we have shown above that p vanishes over Cm, we con-

clude from Proposition 4.2 that p vanishes identically. In other words, the equation an,dn−1
X = det MX,n

holds for any random variable X satisfying E[X2n] < ∞ (regardless of whether X is continuous).9

This completes the proof of Theorem 4.2.

We note the following corollary of Theorem 4.2.

Corollary 4.1. For a random variable X satisfying E
[
X2n] < ∞, we have that pmmsen(X, 0) = σ2

X, for

every t > 0 we have the inequalities

pmmsen(X, t) ≤
σ2

X
1 + σ2

Xt
<

1
t

, (4.52)

and the function t 7→ pmmsen(X, t) is real-analytic at each t ∈ [0, ∞). If X also satisfies |supp(X)| > n,

then as t→ ∞ we have the asymptotic

pmmsen(X, t) =
1
t
+ O(t−2). (4.53)

Proof. That pmmsen(X, 0) = σ2
X follows by setting t = 0 in (4.8) or in the definition of the PMMSE.

The inequalities in (4.52) follow since pmmsen(X, t) ≤ lmmse(X, t) = σ2
X/(1 + σ2

Xt). In addition,

a rational function is analytic at each point in its domain. For each t ≥ 0, |supp(
√

tX + N)| = ∞

where N ∼ N (0, 1) independent of X. Therefore, M√tX+N is invertible for every t ≥ 0, i.e., the

denominator in (4.8) is never zero for t ≥ 0, so we infer analyticity of pmmsen(X, t). Finally, if

|supp(X)| > n then det MX,n ̸= 0, so (4.53) follows from (4.8).

4.3.2 Convergence of PMMSE to MMSE: Proof of Theorem 4.3

In Appendix C.3.1 we give the proof of the uniform convergence in (4.13), namely, that as n→ ∞ we

have

sup
t≥0

pmmsen(X, t)−mmse(X, t)↘ 0 (4.54)

for X having a MGF. In a nutshell, the proof follows from Cantor’s intersection theorem in view

of continuity of the PMMSE and the MMSE in the SNR, t, and monotonicity of the PMMSE in the

polynomial degree, n.

In this subsection, we prove the asymptotic convergence rate stated in (4.14). Specifically, let

9In [AC21a, Appendix L], an alternative proof of an,dn−1
X = det MX,n is given via a self-contained algebraic argument.
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D denote the set of all PDFs or PMFs p that are compactly-supported, even, and decreasing over

[0, ∞) ∩ supp(p). Suppose that X is continuous or discrete, with PDF or PMF pX ∈ D . We prove

next that for any fixed k, t ≥ 0 we have

lim
n→∞

nk · (pmmsen(X, t)−mmse(X, t)) = 0. (4.55)

Let N ∼ N (0, 1) be independent of X, and set Y = X + N.

The proof of the convergence rate in (4.14) relies on results on the Bernstein approximation

problem in weighted Lp spaces. In particular, we consider the Freud case [Lub07, Definition 3.3],

where the weight is of the form e−Q for Q of polynomial growth, e.g., a Gaussian weight.

Definition 4.2 (Freud Weight, [Lub07, Definition 3.3]). A function W : R→ (0, ∞) is called a Freud

Weight, and we write W ∈ F , if it is of the form W = e−Q for Q : R→ R satisfying:

(1) Q is even,

(2) Q is differentiable, and Q′(y) > 0 for y > 0,

(3) y 7→ yQ′(y) is strictly increasing over (0, ∞),

(4) yQ′(y)→ 0 as y→ 0+, and

(5) there exist λ, a, b, c > 1 such that for every y > c we have a ≤ Q′(λy)
Q′(y) ≤ b.

One may associate to each Freud weight W = e−Q its Mhaskar–Rakhmanov–Saff numbers an(Q),

defined next.

Definition 4.3. If Q : R → R satisfies conditions (2)–(4) in Definition 4.2, and if yQ′(y) → ∞ as

y → ∞, then the n-th Mhaskar–Rakhmanov–Saff (MRS) number an(Q) of Q is defined as the unique

positive root an of the equation

n =
2
π

∫ 1

0

antQ′(ant)√
1− t2

dt. (4.56)

Remark 4.9. The condition yQ′(y) → ∞ as y → ∞ in Definition 4.3 is satisfied if e−Q is a Freud

weight. Indeed, in view of properties (2)–(3) in Definition 4.2, the quantity ℓ := limy→∞ yQ′(y) is

well-defined and it belongs to (0, ∞]. If ℓ ̸= ∞, then because limy→∞ λyQ′(λy) = ℓ too, property (5)

would imply that a ≤ 1/λ ≤ b contradicting that λ, a > 1. Therefore, ℓ = ∞.

For example, the Gaussian weight W(y) = e−y2
is a Freud weight for which Q(y) = y2, and it

has the MRS numbers an(Q) =
√

n since
∫ 1

0 t2/
√

1− t2 dt = π
4 .
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We apply the following Jackson-type theorem.

Theorem 4.7 ([Lub07, Corollary 3.6]). Fix W ∈ F , and let u be an r-times continuously differentiable

function such that u(r) is absolutely continuous. Let an = an(Q) where W = e−Q, and fix 1 ≤ s ≤ ∞. Then,

for some constant D(W, r, s) and every n ≥ max(r− 1, 1)

inf
q∈Pn

∥(q− u)W∥Ls(R) ≤ D(W, r, s)
( an

n

)r
∥u(r)W∥Ls(R). (4.57)

We will apply the polynomial approximation result stated in Theorem 4.7 for the L2(PY) norm,

i.e., we set s = 2, W =
√

pY, and u(y) = E[X | Y = y] in Theorem 4.7. To this end, we will establish

the following three facts:

(i)
√

pY ∈ F ,

(ii) an(− 1
2 log pY) = OpX (

√
n), and

(iii) ∥(dr/dyr)E[X | Y = y]∥2 = Or(1).

The former two facts are established in the following lemma.

Lemma 4.8. If X ∼ p for some p ∈ D , and N ∼ N (0, 1) is independent of X, then ps
X+N is a Freud

weight for any fixed constant s > 0. Further, suppose M > 0 is such that supp(p) ⊂ [−M, M], and denote

Q = − log pX+N . Then, for each integer n ≥ 1 and real s > 0, we have the bound

an(sQ) ≤
(

2M +
√

2
)√

n/s. (4.58)

Proof. See Appendix C.3.2.

Next, we derive a bound on ∥(dr/dyr)E[X | Y = y]∥2 that depends only on r. We will need the

following result showing that the higher-order derivatives of the conditional expectation are given

by the conditional cumulants.

Proposition 4.3 ([AC21c, Proposition 1], [DPS21, Proposition 7]). Fix an integrable random variable

X and an independent N ∼ N (0, 1), and let Y = X + N. For each integer r ≥ 1 and real y, we have the

formula
dr−1

dyr−1 E [X | Y = y] = κr(X | Y = y), (4.59)

where κr(X | Y = y) := ∂r

∂τr log E
[
eτX | Y = y

]∣∣
τ=0 is the r-th conditional cumulant of X given {Y = y}.
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Using Proposition 4.3, we obtain the following bound on the second moment of the derivatives of

the conditional expectation via Hölder’s inequality.

Lemma 4.9. Fix an integrable random variable X and an independent N ∼ N (0, 1), let Y = X + N, and fix

an integer r ≥ 2. Denote the constants qr := ⌊(
√

8r + 9− 3)/2⌋, γr := (2rqr)!1/(4qr), and

Cr =
r

∑
k=1

(k− 1)!
k

∑
j=0

(−1)j
(

r
j

){
r− j
k− j

}
, (4.60)

where {r
k} denotes Stirling’s number of the second kind.10 We have the bound∥∥∥∥ dr−1

dyr−1 E[X | Y = y]
∥∥∥∥

2
≤ 2rCr min

(
γr, ∥X∥r

2rqr

)
. (4.61)

Proof. See Appendix C.3.3.

Remark 4.10. For 2 ≤ r ≤ 7, we obtain the first few values of qr as 1, 1, 1, 2, 2, 2, and we have qr ∼
√

2r

as r → ∞ (see Remark C.3 at the end of the proof in Appendix C.3.3 for a way to reduce qr). The first

few values of Cr (for 2 ≤ r ≤ 7) are given by 1, 1, 4, 11, 56, 267, and as r → ∞ we have the asymptotic

Cr ∼ (r− 1)!/αr for some constant α ≈ 1.146 (see [OEI]). The crude bound Cr < rr can also be seen

by a combinatorial argument.

We now apply the results of Lemmas 4.8–4.9 in Theorem 4.7 to complete the proof of the

convergence rate in (4.14). Fix a real k ≥ 0, set r = ⌈k + 1⌉, and let n ≥ max(r − 1, 1) be an

integer. We apply Theorem 4.7 for the conditional expectation function u(y) = E[X | Y = y], the

weight W =
√

pY, and the exponent s = 2. By our choice of weight, ∥vW∥L2(R) = ∥v(Y)∥2 for

any Borel function v : R → R; in particular, this holds for the choice v(y) = q(y)−E[X | Y = y]

for any q ∈ Pn, and also for v(y) = dr

dyr E[X | Y = y]. Recall from (4.4) that En[X | Y] minimizes

∥q(Y)−E[X | Y∥2 over q(Y) ∈Pn(Y). Hence, with our choice of W and u, we have

∥En[X | Y]−E[X | Y]∥2 = inf
q∈Pn

∥(q− u)W∥L2(R) . (4.62)

By Lemma 4.8, W =
√

pY is a Freud weight, and we have a bound an(Q) = OpX (
√

n) where

W = e−Q. In addition, by Lemma 4.9, we have a bound ∥ dr

dyr E[X | Y = y]∥2 = Or(1). Therefore, by

10The integer {r
k} equals the number of unordered set-partitions of an r-element set into k nonempty subsets. The integer

Cr equals the number of cyclically-invariant ordered set-partitions of an r-element set into subsets of sizes at least 2, see
sequence A032181 at [OEI].
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Theorem 4.7, we obtain a constant D′(pX , k) (depending on D(
√

pY, r, 2), see (4.57)) such that

∥En[X | Y]−E[X | Y]∥2 ≤
D′(pX , k)
n⌈k+1⌉/2

. (4.63)

From (4.63), we conclude

nk ∥En[X | Y]−E[X | Y]∥2
2 ≤

D′(pX , k)2

n
. (4.64)

Further, by the orthogonality principle of E[X | Y], we have that (see (4.6))

pmmsen(X, 1)−mmse(X, 1) = ∥En[X | Y]−E[X | Y]∥2
2. (4.65)

Hence, we conclude from (4.64) that

lim
n→∞

nk (pmmsen(X, 1)−mmse(X, 1)) = 0. (4.66)

Finally, note that the premises of the theorem are also satisfied by
√

tX for any t > 0, so we have

lim
n→∞

nk
(

pmmsen(
√

tX, 1)−mmse(
√

tX, 1)
)
= 0. (4.67)

Also, one straightforwardly obtains from Lemma 4.2 that

pmmsen(X, t)−mmse(X, t) =
1
t

(
pmmsen(

√
tX, 1)−mmse(

√
tX, 1)

)
. (4.68)

Thus, we conclude from (4.67) the desired asymptotic result that nk (pmmsen(X, t)−mmse(X, t))→

0 as n→ ∞ for any fixed reals k, t ≥ 0 (note that the limit trivially holds for t = 0 since then both the

PMMSE and the MMSE are equal to σ2
X).

Remark 4.11. The convergence rate proved in Theorem 4.3 is an asymptotic one, and obtaining a

finitary version hinges on having explicit characterization of the constants D(W, r, s) in Theorem 4.7.

However, no explicit formula for D(W, r, s) exists in the literature, to the best of our knowledge. To

give more details, note that we show in (4.63) a bound for finite n. Namely, for k ≥ 0, r = ⌈k + 1⌉,

and n ≥ max(r− 1, 1) we have the bound

∥En[X | X + N]−E[X | X + N]∥2 ≤
D′(pX , k)

nr/2 , (4.69)

where the constant D′(pX , k) can be chosen as, e.g., with supp(pX) ⊂ [−M, M],

D′(pX , k) = D(
√

pX+N , r, 2) ·
(

2
(√

2M + 1
))r
· 2rCr min(γr, Mr). (4.70)
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Thus, to make explicit the constant of interest to us, D′(pX , k), it suffices to have an explicit bound

on D(
√

pX+N , r, 2). However, this latter result, to the best of our knowledge, does not exist in

the literature; further, distilling an explicit form for D(W, r, s) from existing proofs is a nontrivial

matter. The constants D(W, r, s) carry over from [Lub07, Corollary 3.6], a result that was first proved

in [DL97] (specifically, it is the combination of Theorem 1.2 and Corollary 1.8 in [DL97]). The

constant D(W, r, s) is a universal constant in the sense that Theorem 4.7 is a Jackson-type theorem,

i.e., it gives a polynomial-approximation bound that holds uniformly for all admissible functions

u that are to be approximated (although the weight W is fixed). Thus, making D(W, r, s) explicit

is in fact a significant improvement on the general approximation-theoretic problem. Note that

we do not need to utilize this universality for our PMMSE convergence-rate analysis, since we

only need to apply the bound in Theorem 4.7 for the specific choice of u being the conditional

expectation function. This in particular implies the potential of the constant D(
√

pX+N , r, 2) being

improved for our purposes. Yet, we note that the closely related Jackson-type theorem shown

in [Mha96, Theorem 4.1.1] can potentially lead to explicit constants more easily; this result derives

inequality (4.57) in Theorem 4.7, but with the MRS number an replaced with the Freud number qn

(the positive solution to qnQ′(qn) = n), and it is also premised on a few assumptions on Q′′. Finally,

since we are interested in guaranteeing convergence in n, the derivation in Theorem 4.3 is sufficient

for our PMMSE analysis. See Remark 4.13 for further discussion.

Remark 4.12. Examining the proof of the asymptotic convergence rate in Theorem 4.3 reveals that it

is possible to show that the same convergence rate holds beyond Gaussian channels. Specifically, the

following is a blueprint for showing that

lim
n→∞

nk
(

pmmsen(X |
√

tX + Z)−mmse(X |
√

tX + Z)
)
= 0 (4.71)

for every k, t ≥ 0, where Z a (non-necessarily Gaussian) continuous noise that is independent of X:

1. Suppose that the random variable Y =
√

tX + Z is such that the conditional PDFs pY|X=x

form an exponential family. From [DC21, Proposition 3], the higher-derivative formulas

dr−1

dyr−1 E[X | Y = y] = κr(X | Y = y) (as in Proposition 4.3) carries over to this case.

2. The proof of Lemma 4.9 carries over verbatim to obtain a bound
∥∥∥ dr−1

dyr−1 E[X | Y = y]
∥∥∥

2
≤

2rCr∥X∥r
2rqr

.

3. Assume that pZ is a Freud weight, say pZ = e−Q for Q(z) ∼ zℓ as z → ∞ for some fixed
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ℓ > 1. Then, the proof of Lemma 4.8 can be adapted to show that (if, e.g., pX ∈ D , where D is

as defined in the beginning of this subsection) the PDF pY is also a Freud weight with MRS

number of order n1/ℓ.

4. Applying the Bernstein approximation result stated in Theorem 4.7, we obtain an upper

bound on the approximation error pmmsen(X | Y) −mmse(X | Y) of order n−k(1−1/ℓ) as

n → ∞. As this is true for every k ≥ 0, we conclude the asymptotic rate of convergence

nk · (pmmsen(X | Y)−mmse(X | Y))→ 0 for every k ≥ 0 and every t ≥ 0.

4.4 New Formulas for Information Measures in Terms of Moments

We apply the derived PMMSE results in the I-MMSE relation to express the differential entropy and

mutual information in terms of moments. For example, combining Theorems 4.2 and 4.4 shows

that for any continuous random variable X that has a MGF, we may express differential entropy as

(see (4.8))

h(X) =
1
2

lim
n→∞

∫ ∞

0
− 1

2πe + t
+

σ2
XG(n + 2) + · · ·+ (det MX,n)tdn−1

G(n + 2) +
(
σ2

XG(n + 2)dn
)

t + · · ·+ (det MX,n)tdn
dt, (4.72)

where the coefficients of the integrand are all multivariate polynomials in the moments of X. The

starting point in deriving this formula is the I-MMSE relation, which we briefly review first.

Theorem 4.8 (I-MMSE relation, [GSV05]). For any square-integrable random variable X, an independent

N ∼ N (0, 1), and γ > 0, we have that

I(X;
√

γX + N) =
1
2

∫ γ

0
mmse(X, t) dt. (4.73)

The I-MMSE relation directly yields the following formula for differential entropy: for a square-

integrable continuous random variable X we have that [GSV05]

h(X) =
1
2

log
(

2πeσ2
X

)
− 1

2

∫ ∞

0

σ2
X

1 + σ2
Xt
−mmse(X, t) dt. (4.74)

Since
∫ ∞

0
a

1+at −
b

1+bt dt = log a
b for any a, b > 0, we may simplify (4.74) to become

h(X) =
1
2

∫ ∞

0
mmse(X, t)− 1

2πe + t
dt. (4.75)

We further extend the representation in (4.75) to higher dimensions.
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Lemma 4.10. If the m-dimensional continuous random vector X has a finite covariance matrix, then

h(X) =
1
2

∫ ∞

0
mmse(X, t)− m

2πe + t
dt. (4.76)

Proof. See Appendix C.5.1.

The MMSE term in the expression for h(X) given in Lemma 4.10 can be approximated by the

PMMSE, resulting in an expression for differential entropy as a function of moments of X. From (4.74)

and (4.75), and since mmse(X, t) ≤ lmmse(X, t), replacing the MMSE with the LMMSE gives the

upper bound on differential entropy h(X)

h(X) ≤ h1(X) :=
1
2

∫ ∞

0
lmmse(X, t)− 1

2πe + t
dt (4.77)

=
1
2

log
(

2πeσ2
X

)
= h(N (0, σ2

X)), (4.78)

which is the maximum possible differential entropy for a continuous random variable with a

prescribed variance of σ2
X . We take this a step further and introduce for each integer n ≥ 1 (assuming

only E[X2n] < ∞) the functional

hn(X) :=
1
2

∫ ∞

0
pmmsen(X, t)− 1

2πe + t
dt. (4.79)

By the monotonicity pmmse1(X, t) ≥ pmmse2(X, t) ≥ · · · ≥ mmse(X, t), we also have a monotone

sequence h1(X) ≥ h2(X) ≥ · · · ≥ h(X) for a random variable X having moments of all orders. As

stated in Theorem 4.4, which we prove next in the 1-dimensional case, if X also has a MGF then

hn(X)↘ h(X). The proof for arbitrary dimensions requires extending our PMMSE results to higher

dimensions (which we give in Appendix C.4), hence we relegate it to Appendix C.5.2.

Proof of Theorem 4.4 (for the 1-dimensional case). The functions gn(t) := lmmse(X, t)− pmmsen(X, t)

are nonnegative and nondecreasing. By Theorem 4.3, gn ↗ g pointwise, where g(t) := lmmse(X, t)−

mmse(t). Therefore, by the monotone convergence theorem,
∫ ∞

0 gn(t) dt ↗
∫ ∞

0 g(t) dt. Adding

and subtracting 1/(2πe + t) to each integrand, and noting that t 7→ lmmse(X, t)− 1/(2πe + t) is

absolutely integrable, we conclude that hn(X)↘ h(X).

Remark 4.13. It remains a topic of ongoing investigation to derive the convergence rate of the limit

hn(X)↘ h(X) shown in Theorem 4.4. Note that we may write the convergence error as

hn(X)− h(X) =
1
2

∫ ∞

0
pmmsen(X, t)−mmse(X, t) dt. (4.80)
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Hence, the convergence rate of hn(X) ↘ h(X) can be shown if one has the convergence rate of

pmmsen(X, t) ↘ mmse(X, t) as a function of t. However, the asymptotic convergence rate bound

we show in Theorem 4.3 does not depend on the parameter t. As discussed in Remark 4.11, finer

characterization of the PMMSE convergence rate hinges on having explicit bounds on the constant

D(W, r, s) (see the statement of Theorem 4.7). This constant is only given implicitly in [DL97], which

is likely due to the universality it enjoys, i.e., the approximation error in Theorem 4.7 is controlled by

D(W, r, s) for a fixed W and every function u that is to be approximated by polynomials. In our case,

however, we need another type of universality. Precisely, we need to control the best-polynomial

error when approximating the class of functions ut(y) := E[X |
√

tX + N = y] in their respective

weighted Hilbert spaces with weights Wt := √p√tX+N for every t ≥ 0. To the best of our knowledge,

no such universality result where the weight can vary parametrically exists in the literature.

The behavior of the PMMSE under affine transformations shown in Lemma 4.2 implies that each

approximation hn behaves under (injective) affine transformations exactly as differential entropy

does.

Corollary 4.2. If X is a random variable satisfying E[X2n] < ∞, and (α, β) ∈ R2 with α ̸= 0, then we have

hn(αX + β) = hn(X) + log |α|. (4.81)

In addition, if X and Y are independent with finite 2n-th moments, then hn(X, Y) = hn(X) + hn(Y).

The moments-based formula for differential entropy shown in Theorem 4.4 yields moments-

based formulas for mutual information in view of the expansions I(X; Y) = h(Y)− h(Y | X) in the

discrete-continuous case and h(X, Y) = h(X) + h(Y)− h(X, Y) in the purely continuous case. The

proof of these formulas, stated in Theorem 4.5, is given in Appendix C.5.3. We discuss here a few

implications. If X is discrete and Y is continuous, and if they satisfy the assumptions in the first case

of Theorem 4.5, then we denote the functionals

In(X; Y) :=
1
2

∫ ∞

0
pmmsen(Y, t)−EX

[
pmmsen(Y

(X), t)
]

dt. (4.82)

Recall that we denote by Y(x) the random variable obtained from Y by conditioning on {X = x}. If

X and Y are continuous satisfying the premises of the second case of Theorem 4.5, then we denote

the functional

In(X; Y) :=
1
2

∫ ∞

0
pmmsen(X, t) + pmmsen(Y, t)− pmmsen((X, Y), t) dt. (4.83)
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The statement of Theorem 4.5 is that In(X; Y)→ I(X; Y) as n→ ∞.

The functionals In enjoy properties that resemble those for the mutual information. First, the

behavior of the PMMSE under affine transformations exhibited in Lemma 4.2 implies that In(X; Y)

is invariant under injective affine transformations of Y. Indeed, this can be seen immediately from

the behavior of hn in Corollary 4.2. Also, the approximations In(X; Y) detect independence exactly.

Corollary 4.3. Suppose X and Y are random variables satisfying the premises of Theorem 4.5 (in either case 1

or case 2). For any constants (α, β) ∈ R2 with α ̸= 0, and for any n ∈N, we have

In(X; αY + β) = In(X; Y). (4.84)

In addition, if X and Y are independent, then In(X; Y) = 0 for every n.

We give full expressions for the first two approximants of mutual information that are generated

by the LMMSE and quadratic MMSE, in the discrete-continuous case.

Example 4. When n = 1, we obtain

I1(X; Y) = log σY −EX
[
log σY(X)

]
, (4.85)

which is the exact formula for I(X; Y) when both Y is Gaussian and each Y(x) (for x ∈ supp(X)) is

Gaussian; indeed, in such a case, the MMSE is just the LMMSE.

Example 5. For n = 2, we obtain the formula

I2(X; Y) =
1
6

log
b2,3

Y

∏x∈supp(X)

(
b2,3

Y(x)

)PX(x)

+
1
2

∫ ∞

0

a2,1
Y t

2 + b2,1
Y t + b2,2

Y t2 + b2,3
Y t3

−EX

[
a2,1

Y(X) t

2 + b2,1
Y(X) t + b2,2

Y(X) t2 + b2,3
Y(X) t3

]
dt

(4.86)

where we may compute for any R ∈ L4(P)

b2,3
R :=

∣∣∣∣∣∣∣∣∣∣
1 E[R] E[R2]

E[R] E[R2] E[R3]

E[R2] E[R3] E[R4]

∣∣∣∣∣∣∣∣∣∣
(4.87)

= σ2
RE[R4] + 2E[R]E[R2]E[R3]−E[R2]3 −E[R3]2, (4.88)
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which is strictly positive when |supp(R)| > 2, and

b2,2
R = −4E[R]E[R3] + 3E[R2]2 + E[R4] (4.89)

b2,1
R = 6σ2

R (4.90)

a2,1
R = 4E[R]4 − 8E[R]2E[R2] +

8
3

E[R]E[R3] + 2E[R2]2 − 2
3

E[R4]. (4.91)

4.5 Application: Estimation of Information Measures from Data

The approximations introduced in the previous sections naturally motivate estimators for information

measures. These estimators are based on (i) approximating moments with sample moments, then

(ii) plugging the sample moments into the formulas we have developed for information measures.

Since the formulas for information measures depend continuously on the underlying moments, the

resulting estimators are asymptotically consistent. Moreover, the estimators also behave as the target

information measure under affine transformations, being inherently robust to, for example, rescaling

of the samples.

We estimate h(X) from i.i.d. samples X1, · · · , Xm as hn(U) for U ∼ Unif({X1, · · · , Xm}). More

precisely, we introduce the following estimator of differential entropy.

Definition 4.4. Let X, X1, · · · , Xm be i.i.d. continuous random variables, and denote S = {Xj}m
j=1.

We define the n-th estimate ĥn(S) of the differential entropy h(X) as the functional that takes the

value hn(X) if the first 2n moments of X are replaced by their respective sample moments. In other

words, with U ∼ Unif(S), we set ĥn(S) := hn(U).

The estimator of mutual information I(X; Y) between a discrete X and a continuous Y is defined

next. We utilize Theorem 4.5. We will need to invert the Hankel matrices of moments (E[Vi+j |

U = u])i,j∈[n] for each u ∈ supp(U), where (U, V) is uniformly distributed over the samples

S = {(Xj, Yj)}m
j=1. These Hankel matrices are invertible if and only if for each u ∈ {Xj}m

j=1 there are

more than n distinct samples (Xj, Yj) for which Xj = u; equivalently, the size of the support set of

the random variable V conditioned on U = u exceeds n. Thus, we remove all values u that appear at

most n times in the samples S . In other words, we replace S with the subset

S (n) :=
{
(X′, Y′) ∈ S ; |{1 ≤ i ≤ m ; Xi = X′}| > n

}
. (4.92)
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Definition 4.5. Let (X, Y), (X1, Y1), · · · , (Xm, Ym) be i.i.d. 2-dimensional random vectors such that

X is discrete with finite support and Y is continuous, and denote S = {(Xj, Yj)}m
j=1. Define S (1) ⊇

S (2) ⊇ · · · by

S (n) :=
{
(X′, Y′) ∈ S ; |{1 ≤ i ≤ m ; Xi = X′}| > n

}
. (4.93)

For each n ≥ 1 such that S (n) is nonempty, let (U(n), V(n)) ∼ Unif(S (n)). We define the n-th estimate

În(S) of the mutual information I(X; Y) by În(S) := In(U(n); V(n)).

We show in this Appendix C.6 how to implement the proposed estimators numerically. In this

section, we prove that the estimators are consistent, and discuss their sample complexity. We end

the section by empirically comparing the estimators’ performance with other estimators from the

literature.

4.5.1 Consistency

As sample moments converge almost surely to the moments, and as our expressions for differential

entropy and mutual information depend continuously on the moments, the continuous mapping

theorem yields that the estimators of differential entropy and mutual information introduced in the

beginning of this section are consistent.

Theorem 4.9. Let X be a continuous random variable that has a MGF. Let {Xj}∞
j=1 be i.i.d. samples drawn

according to PX . Then, for every n ∈N, we have the almost-sure convergence

lim
m→∞

ĥn

(
{Xj}m

j=1

)
= hn(X). (4.94)

Furthermore, we have that

h(X) = lim
n→∞

lim
m→∞

ĥn

(
{Xj}m

j=1

)
(4.95)

where the convergence in m is almost-sure convergence.

Proof. See Appendix C.7.1.

Corollary 4.4. Let X be discrete random variable with finite support, and Y be a continuous random variable

with a MGF and satisfying h(Y) > −∞. Let {(Xj, Yj)}∞
j=1 be i.i.d. samples drawn according to PX,Y. For

every n ∈N, we have the almost-sure convergence

lim
m→∞

În

(
{(Xj, Yj)}m

j=1

)
= In(X; Y). (4.96)
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Furthermore,

I(X; Y) = lim
n→∞

lim
m→∞

În

(
{(Xj, Yj)}m

j=1

)
(4.97)

where the convergence in m is almost-sure convergence.

Proof. See Appendix C.7.2.

4.5.2 Sample Complexity

When X is a continuous random variable of bounded support, we may derive the following sample

complexity of the estimator of differential entropy in Definition 4.4 from Hoeffding’s inequality.

Proposition 4.4. Fix a bounded-support continuous random variable X ∈ L2n(P). There is a constant

C = C(X, n) such that, for all small enough ε, δ > 0, any collection S of i.i.d. samples drawn according to PX

of size

|S| > C
ε2 log

1
δ

(4.98)

must satisfy

Pr
{∣∣∣ĥn(S)− hn(X)

∣∣∣ < ε
}
≥ 1− δ. (4.99)

Proof. See Appendix C.8.

Remark 4.14. The sample complexity bound may be rearranged as follows. With m = |S| denoting

the sample size, we have that

Pr

{∣∣∣ĥn(S)− hn(X)
∣∣∣ ≥ C1

√
log(1/δ)√

m

}
≤ δ, (4.100)

where C1 is a constant depending only on pX and n. There are existing results on the sam-

ple complexity rates for estimators that are minimax optimal (see the analysis on the modified

Kernel Density Estimator, KDE, in [HJWW20]) or near-optimal (see the analysis of the fixed k-

nearest neighbor, k-NN, estimator in [JGH18]). These analyses show an upper bound on the root

mean-square error E

[(
ĥ(S)− h(X)

)2
]1/2

that is roughly of the order (m log m)−s/(s+d) + m−1/2

or m−s/(s+d) log m + m−1/2; here, X is a d-dimensional random vector satisfying certain regularity

assumptions that are controlled by the smoothness parameter s ∈ (0, 2], S is a set of m i.i.d. samples

drawn according to PX , and ĥ is the modified KDE or k-NN estimator. When d = 1 and s < 1

(roughly, X is compactly supported and either does not vanish, or does not vanish smoothly, at the

boundary), then the first terms in either of these bounds dominates the m−1/2 term. Our bound
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in (4.100) contains the relevant asymptotic term m−1/2, but it is given instead in terms of probability.

Nevertheless, it may be converted to a root mean-square bound of order
√
(log m)/m (by choosing

δ = 1/m) under the assumption that the probability that the samples S are well-spaced is not too

small, since then one may bound ĥn(S) almost surely and apply the reverse Markov inequality. It is

worth noting that the sample complexity bound we give in Proposition 4.4 and (4.100) holds for all

(compactly-supported) PDFs without any regularity assumptions of any kind. However, we also

note that the constant in this bound is PDF-dependent.

From Proposition 4.4, we may also obtain a sample complexity result for the estimate În in

Definition 4.5.

Proposition 4.5. Fix a finitely-supported discrete random variable X and a bounded-support continuous

random variable Y ∈ L2n(P). There is a constant C = C(X, Y, n) such that, for all small enough ε, δ > 0,

any collection S of i.i.d. samples drawn according to PX,Y of size

|S| > C
ε2 log

1
δ

(4.101)

must satisfy

Pr
{∣∣∣ În(S)− In(X; Y)

∣∣∣ < ε
}
≥ 1− δ. (4.102)

Proof. See Appendix C.8.4.

4.5.3 Numerical Results

We compare via synthetic experiments the performance of our estimators11 against some of the

estimators in the literature.

Our proposed estimator for differential entropy is ĥ10, i.e., given samples S of X we estimate h(X)

by ĥ10(S) as given by Definition 4.4, for a large sample size (e.g., |S| > 600), and it is ĥ5 for a smaller

sample size (e.g., |S| ≤ 600). We compare this estimator with two estimation methods: k-Nearest-

Neighbors (k-NN), and Kernel Density Estimation (KDE). The k-NN-based method we compare

against is as provided by the Python package ‘entropy_estimators’ [Ste14], which we will refer to in

this section as KSG. The kernel used for the KDE method is Gaussian, and it is obtained by computing

from a set of samples {Xj}m
j=1 a kernel Φ via the Python function ‘scipy.stats.gaussian_kde’ [VGO+20];

then, the estimate for differential entropy will be −1
m ∑m

j=1 log Φ(Xj). The parameters for the KSG

11A Python code can be found at [AC21b].
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and the KDE estimators are the default parameters, namely, k = 3 for the KSG estimator, and the

bandwidth for the KDE estimator is chosen according to Scott’s rule (i.e., m−1/(d+4) for a set of m

samples of a d-dimensional random vector). We note that a more recent iteration of KDE has been

proposed by Han et al. in [HJWW20], which improves the estimation for the non-smooth part of a

PDF.

The mutual information is estimated using Î5, i.e., given samples S of (X, Y) our estimate for

I(X; Y) will be Î5(S) as given by Definition 4.5. This estimator is compared against the partitioning

estimator and the Mixed KSG estimator [GKOV17] (which is a k-NN-based estimator); we utilize the

implementation in [GKOV17] for both estimators. In particular, the parameters are fixed throughout,

namely, we utilize the parameters used in [GKOV17] (k = 5 for the Mixed KSG, and 8 bins per

dimension for the partitioning estimator).

We perform 250 independent trials for each experiment and each fixed sample size, then plot

the absolute error as a percentage of the true value (except for the last experiment, where the

ground truth is 0, so we plot the absolute error) against the sample size. The sample sizes chosen

for our experiments parallel those in [GKOV17], namely, {800, 1600, 2400, 3200, 4000}. To illustrate

the smaller sample size regime, we repeat our Experiment 1 (estimating the differential entropy of

Wigner’s semicircle law) for sample sizes among {100, 200, 400, 600}. Since the PMMSE theory we

developed in this chapter applies only to light-tailed distributions (e.g., those with MGFs), we restrict

our experiments to such distributions.

We note that we also performed the mutual information experiments for the Noisy KSG estimator

based on the estimator in [KSG04] (with noise strength σ = 0.01 as in [GKOV17]), but its performance

was much worse than the other estimators, so we do not include it in the plots.

Remark 4.15. There is a trade-off between the approximation error hn(X)− h(X) and the estimation

error |ĥn(S)− hn(X)| as the choice of the polynomial degree n varies. Indeed, as n increases, the

approximation error vanishes, since we know that hn(X) ↘ h(X) by Theorem 4.4. On the other

hand, the estimation error is expected to increase for large n, since the quality of estimating moments

via sample moments deteriorates for higher moments and a fixed sample size. Evidently, similar

trade-offs can be observed for other estimators in the literature, e.g., for the k-NN estimator one has

bias-variance trade-off as k varies. Proposition 4.4 gives a characterization of the estimation error. To

fully understand the best choice of n, one would need both a finer characterization of the constant

C(X, n) in Proposition 4.4 (namely, its dependence on n), and also a convergence rate refinement

133



for hn(X) ↘ h(X) in Theorem 4.4 (see Remark 4.13). Note that the approximation error can be

efficiently numerically computed for a given X and n (see Figure 4.2), and we report this value for

the experiments we perform in this section. These experiments show that n = 5 gives a favorable

estimation error compared to state-of-the-art estimators for moderate sample sizes (m ≤ 600) and

similarly n = 10 for larger support sizes (m > 600). We note that the compute time it takes to

estimate h(X) by ĥ5(S) is comparable to that of both the k-NN and KDE estimators (in the order of

seconds on a commercial laptop), and the compute time for ĥ10(S) is in the order two minutes.

Experiment 1. We estimate the differential entropy of a random variable X distributed according to

Wigner’s semicircle distribution, i.e.,

pX(x) :=
2
π

√
1− x2 · 1[−1,1](x). (4.103)

The ground truth is h(X) ≈ 0.64473 nats. We generate a set S of i.i.d. samples distributed according

to PX. The size of S ranges from 800 to 4000 in increments of 800, and for each fixed sample

size we independently generate 250 such sets S (so we generate a total of 1250 sets of samples).

The differential entropy h(X) is estimated by three methods: the moments-based estimator that

we propose ĥ10, the k-NN-based estimator implemented in [Ste14] (which we refer to as the KSG

estimator), and the Gaussian KDE estimator. For the proposed estimator, we use ĥ10(S) as an

estimate for h(X). For the KSG estimator, we use the default setting, for which k = 3. We also

use the default setting for the Gaussian KDE estimator; in particular, the bandwidth is chosen

according to Scott’s Rule as m−1/(d+4) where m = |S| and d = 1 is the dimensionality of X. The

percentage relative absolute error in the estimation (e.g., 100 · |ĥ10(S)/h(X)− 1|, in %) is plotted

against the sample size for the three estimators in Figure 4.3. The solid lines in Figure 4.3 are

the means of the errors, i.e., the mean in the 250 independent trials of the percentage relative

absolute error for each fixed sample size in {800, 1600, 2400, 3200, 4000}. Via bootstrapping, we infer

confidence intervals, which are indicated by the shaded areas around the solid lines in Figure 4.3.

We see that the proposed estimator outperforms the KSG estimator and the KDE estimator for

this experiment. We note that we have the true value of the functional h10(X) ≈ 0.64632 nats (i.e.,

this is the value if we use the true first 20 moments of X instead of the corresponding sample

moments obtained from i.i.d. samples). Hence, the approximation error is h10(X)− h(X) ≈ 0.00159

nats, i.e., h10(X) is approximately 99.75% accurate when approximating the ground truth h(X) (so

100− 100 · (h10(X)− h(X))/h(X) ≈ 99.75). For the sake of illustrating the case of smaller sample
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Figure 4.3: Estimation of differential entropy for a semicircle distribution as in Experiment 1. The vertical axis shows
the percentage relative absolute error in the estimation, e.g., for the proposed estimator it is 100 · |ĥ10(S)/h(X)− 1| (%)
where S is the set of samples and h(X) ≈ 0.64473 nats is the ground truth. The horizontal axis shows |S|, the sample
size. The proposed estimator ĥ10 outperforms the k-NN-based estimator (denoted KSG) and the Gaussian KDE estimator
for this experiment.

sizes, we further carry out this experiment with sample sizes in the set {100, 200, 400, 600}. In this

regime, we choose n = 5, i.e., our estimator is ĥ5. The results are illustrated in Figure 4.4. We also

notice that the proposed estimator outperforms both the KSG and KDE estimators in this regime. In

this case, h5(X) ≈ 0.6509 nats, so h5(X)− h(X) ≈ 0.00617 nats, giving h5(X) a 99.04% accuracy as

an approximation for h(X).

Experiment 2. We estimate the differential entropy h(X) of a random vector X = (X1, X2)
T where

X1 and X2 are i.i.d. distributed according to Wigner’s semicircle distribution, namely, X has the PDF

pX(x, y) =
4

π2

√
(1− x2)(1− y2) · 1[−1,1]×[−1,1](x, y). (4.104)

The ground truth is h(X) ≈ 1.28946 nats. The same numerical setup as in Experiment 1 is performed

here. The results are plotted in Figure 4.5, where we see a similar behavior to the comparison in the

1-dimensional case; in particular, the proposed estimator outperforms the KSG estimator and the

KDE estimator for this experiment. By independence of X1 and X2, we know that h(X) = 2h(X1)

and h10(X) = 2h10(X1). Thus, we get the same relative approximation errors as in Experiment 1,

namely, h10(X)− h(X) ≈ 0.00318 nats so h10(X) is approximately 99.75% accurate in approximating

h(X).
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Figure 4.4: Estimation of differential entropy for a semicircle distribution as in Experiment 1 for the small sample size
regime (100 ≤ m ≤ 600). In this regime, the plotted proposed estimator curve refers to the estimation of differential entropy
using ĥ5, i.e., n = 5. The proposed estimator outperforms both the KSG and the KDE estimators for this experiment in the
small sample size regime too.
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Figure 4.5: Estimation of differential entropy for a 2-dimensional semicircle distribution as in Experiment 2. The proposed
estimator ĥ10 outperforms both the KSG and the KDE estimators for this experiment.

Experiment 3. We estimate the differential entropy h(X) of a Gaussian mixture X whose PDF is

given by

pX(x) =
4

∑
i=1

pi√
2πσ2

i

e−(x−µi)
2/(2σ2

i ), (4.105)
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Figure 4.6: Estimation of differential entropy for a Gaussian mixture as in Experiment 3. The proposed estimator ĥ10
outperforms both the KSG and KDE estimators for this experiment. The plot of the KDE estimator’s performance is omitted
to avoid cluttering, as it lies just above the line for the proposed estimator but overlaps significantly with its uncertainty
region.

where

p = (0.1, 0.2, 0.3, 0.4) (4.106)

µµµ = (−2, 0, 1, 5) (4.107)

σσσ = (1.5, 1, 2, 1). (4.108)

The ground truth is h(X) ≈ 2.34249 nats. The same numerical setup in Experiments 1 and 2 is used

here. The results are plotted in Figure 4.6. For this experiment, the proposed estimator outperforms

the KSG estimator, and it is essentially indistinguishable from the KDE estimator. Note that it

is expected that the KDE estimator performs well in this Gaussian mixture experiment, since it

is designed specifically to approximate densities by Gaussian mixtures. We have the true value

h10(X) ≈ 2.34817 nats, so the approximation error is h10(X)− h(X) ≈ 0.00568 nats, making h10(X)

approximately 99.76% accurate in approximating the true differential entropy h(X).

Experiment 4. We estimate the differential entropy h(X) of a random vector X that is a mixture of

two Gaussians, namely, X has the PDF

pX(x) =
1

4π
√

det(A)
e−(x−µµµ)T A−1(x−µµµ)/2 +

1
4π
√

det(B)
e−(x−ννν)T B−1(x−ννν)/2, (4.109)
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Figure 4.7: Estimation of differential entropy for a vector Gaussian mixture as in Experiment 4. The proposed estimator
ĥ10 outperforms both the KSG and KDE estimators for this experiment.

where we have the means µµµ = (−1,−1)T and ννν = (1, 1)T , and the covariance matrices

A =

 1 1/2

1/2 1

 (4.110)

and B = I2. The ground truth is h(X) ≈ 3.22406 nats. The same numerical setup as in Experi-

ments 1–3 is performed here. The results are plotted in Figure 4.7. As in the 1-dimensional case in

Experiment 3, the proposed estimator outperforms the KSG estimator for this experiment. Further,

the proposed estimator also outperforms the KDE estimator in this 2-dimensional setting. We have

the true value h5(X) ≈ 3.22846 nats, so the approximation error is h5(X)− h(X) ≈ 0.0044 nats,

making h5(X) approximately 99.86% accurate in approximating the true differential entropy h(X).

Experiment 5. We replicate the mixture-distribution part of the zero-inflated Poissonization ex-

periment of [GKOV17]. In detail, we let Y ∼ Exp(1), and let X = 0 with probability 0.15 and

X ∼ Pois(y) given that Y = y with probability 0.85. The quantity to be estimated is the mutual

information I(X; Y), and the ground truth is I(X; Y) ≈ 0.25606 nats. We generate a set of i.i.d.

samples S according to the distribution PX,Y, where S has size in {800, 1600, 2400, 3200}. We esti-

mate I(X; Y) via the proposed estimator by Î5(S), and we also consider the estimates given by the

Mixed KSG estimator and the partitioning estimator, both as implemented in [GKOV17] (including

the parameters used therein). This estimation process is repeated independently 250 times. The
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comparison of estimators’ performance is plotted in Figure 4.8. The solid lines indicate the mean

percentage relative absolute error, and the shaded areas indicate confidence intervals obtained via

bootstrapping. We see in Figure 4.8 that the proposed estimator outperforms the other considered

estimators for this experiment. We note that we have the true value I5(X; Y) ≈ 0.24677 nats, which

gives an approximation error |I5(X; Y) − I(X; Y)| ≈ 0.00929 nats, i.e., I5(X; Y) is approximately

96.37% accurate in approximating I(X; Y). We also test the affine-transformation invariance property

of the proposed estimator. In particular, we consider estimating the mutual information from the

scaled samples S ′ obtained from S via scaling the Y samples by 104, i.e.,

S ′ := {(A, 104B) ; (A, B) ∈ S}. (4.111)

Plotted in Figure 4.9 is a comparison of the same estimators using the same samples as those used

to generate Figure 4.8, but where Y is processed through this affine transformation. The ground

truth stays unchanged, and so do our estimator and the partitioning estimator, but the Mixed KSG

estimates change. This experiment illustrates the resiliency of the proposed estimator to affine

transformations. In fact, the computed numerical values in the modified setting by the proposed

estimator differ by no more than 10−15 nats from those numerically computed in the original setting

for each of the 1000 different sets of samples S ; in theory, these pairs of values are identical, and

the less than 10−15 discrepancy is an artifact of the computer implementation. Finally, we note that

although the setup is more general than the assumptions we prove our results under in this chapter

(as X here is not finitely supported), the proposed estimator outperformed the other estimators.

Experiment 6. We test for independence under the following settings. We consider independent

X ∼ Bernoulli(0.5) and Y ∼ Unif([0, 2]). We estimate I(X; Y), whose true value is I(X; Y) = 0. We

employ the same estimation procedure as in Experiment 5. The results are plotted in Figure 4.10,

which shows that the proposed estimator predicted independence more accurately than the other

estimators for the same sample size. Note that in this case the plot shows the absolute error (in nats)

rather than the relative absolute error, as the ground truth is zero. In this case, the true value of

I5(X; Y) is exactly equal to I(X; Y), i.e., I5(X; Y) is 100% accurate in approximating I(X; Y).
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Figure 4.8: Percentage relative absolute error vs. sample size for unscaled zero-inflated poissonization in Experiment 5.
The proposed estimator Î5 outperforms both the k-NN-based estimator (denoted Mixed KSG) and the partitioning estimator.
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Figure 4.9: Percentage relative absolute error vs. sample size for the scaled zero-inflated poissonization in Experiment 5.
To generate these plots, we use the same samples that yield the plots in Figure 4.8, but we process them through an affine
transformation. Specifically, each sample (A, B) is replaced with (A, 104B). Then the samples are passed to the three
estimators. We see that the proposed estimator Î5 is resilient to scaling, i.e., the same performance line in Figure 4.8 is
observed here too. This is in contrast to the performance of the Mixed KSG estimator. The partitioning estimator is resilient
to scaling, but its performance is not favorable in this experiment (with above 25% relative absolute error).

4.6 Conclusion

We investigate in this work the interplay between information measures and moments. Via developing

the PMMSE, we give polynomial approximations of the conditional expectation. The PMMSE in turn

yields new formulas for the differential entropy and mutual information in terms of the underlying
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Figure 4.10: Absolute error (in nats) vs. sample size for the independence testing in Experiment 6. The proposed estimator
Î5 outperforms the Mixed KSG and the partitioning estimators in this experiment.

moments. These formulas gave rise to a new estimator from data, where simply the moments are

estimated from sample moments. The estimator is illustrated in several experiments that indicate a

favorable performance as compared to the Gaussian KDE and k-NN estimators. For future work, it is

worth investigating the finitary version of the convergence rate of the PMMSE to the MMSE, which

would naturally yield convergence rates for the functionals hn and In to the differential entropy and

mutual information, and these in turn would tighten the sample complexity analysis. The proposed

estimator’s performance could also be compared with more recently developed estimators. It is

interesting also to apply the PMMSE to the problem of estimating Fisher information, which is

tightly related to the MMSE via Brown’s identity [CDFP21]. Finally, the I-MMSE relation has been

extended beyond Gaussian channels (e.g., Poisson channels [GSV08]), and it remains to be seen how

the framework we develop in this chapter can shed light on those channels.
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Appendix A

Appendix to Chapter 2

A.1 Further Comparisons with the Literature

We contrast in this appendix our Fisher information minimization contribution with the relevant

literature.

• [HR09, Example 5.1]: Although there is no general statement (e.g., a theorem) in [HR09]

showing a result similar to our result in Theorem 2.13, one can distill from Section 4.5

in [HR09] a claim that roughly translates as follows. For a PDF p to uniquely minimize the

Fisher information over all PDFs satisfying Ep[c] ≤ C, it suffices to satisfy the following: (i) p

is strictly positive, absolutely continuous, and twice differentiable, (ii) the following integration

by parts holds1 for the ratio ψ = p′/p

∫
R

ψ(x)(q′(x)− p′(x)) dx = −
∫

R
ψ′(x)(q(x)− p(x)) dx (A.1)

for every PDF q with I(q) < ∞ and Eq[c] ≤ C, and (iii) there is a θ > 0 such that y =
√

p

uniquely solves the Schrödinger equation y′′ = (θc− E)y with E being the smallest possible

constant. Example 5.1 of [HR09] gives full details for the special case when c(x) = −a ·

1|x|≤1 + b · 1|x|>1 (and notes the well-known case c(x) = x2). In contrast, our results on Fisher

information minimization assumes none of the assumptions made in [HR09]; rather, we derive

similar results that are required for our proof technique to follow through (e.g., via proving

1We note that the integration by parts in equation (A.1) should not be expected to hold for arbitrary cost c.
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Proposition 2.2).

• [Ern17]: The derivations therein assume without proof some of the above mentioned properties

regarding [HR09], such as positivity, smoothness, and the validity of the integration by parts

in (A.1); there are no worked examples in [Ern17]. Similarly to our comparison with [HR09],

we derive rather than assume the required properties.

• The use of Fisher information for optimizing privacy has appeared in [FS18, FS19]. However,

in these papers, rather than connecting DP to Fisher information, the authors set up the

privacy problem as one where Fisher information is to be minimized. Then, the problem of

minimizing Fisher information is connected to the Schrödinger equation. However, we note that

the mathematical setup for the Fisher-information minimization problems in [FS18, FS19] is

different from, and less general than, what we consider herein. Recall that we derive the unique

minimizers of the Fisher information I(p) for p ∈ P(R), i.e., over all possible PDFs, subject to

the constraint Ep[c] ≤ C where c satisfies Assumption 2.2. In contrast, [FS18] considers only

bounded-support PDFs that are also twice continuously differentiable. The work in [FS18] is

extended in [FS19] to consider unbounded-support PDFs, but subject to two restrictions: the

PDF must be twice continuously differentiable, and the cost constraint is the variance cost

constraint. Again, we do not assume these properties a priori, but derive whatever properties

are necessary for our approach.

A.2 Proof of Theorem 2.1

First, if KLmax = 0, then we have both εP◦kY|X
(δ) = 0 and Vmax = 0, and there is nothing to prove. So,

assume KLmax > 0. It is not hard to see that this implies Vmax > 0 too. The proof is divided into the

following steps.

• Step 1: applying the CLT.

By the definition of δP◦kY|X
given in (2.27), we may write

δP◦kY|X
(ε) = sup

∥uj−vj∥≤s, j∈[k]
Eeε

∏
j∈[k]

PY|X=uj

∥∥∥ ∏
j∈[k]

PY|X=vj

 . (A.2)
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Define the functions fk : (Rm)k × (Rm)k × [0, ∞)→ [0, 1] by

fk(u(k), v(k), ε) := Eeε

∏
j∈[k]

PY|X=uj

∥∥∥ ∏
j∈[k]

PY|X=vj

 , (A.3)

so we have

δP◦kY|X
(ε) = sup

∥uj−vj∥≤s, j∈[k]
fk(u(k), v(k), ε). (A.4)

For each pair u(k), v(k) ∈ (Rm)k with ∥uj− vj∥ ≤ s for 1 ≤ j ≤ k, let Lu(k),v(k) := ∑j∈[k] Luj ,vj where the

Luj ,vj are independent PLRVs defined as in (2.2). By assumption of finiteness of the KL-divergence,

we have the equivalence of measures, so we may write

fk(u(k), v(k), ε) = E

[(
1− e

ε−L
u(k) ,v(k)

)+]
. (A.5)

We apply the CLT to this expectation.

First, we note that we may through away pairs (u(k), v(k)) ∈ R2mk for which Vu(k),v(k) = 0. Indeed,

if Vu(k),v(k) = 0, then Lu(k),v(k) = KLu(k),v(k) almost surely. But then we would have 1 = E[e
−L

u(k) ,v(k) ] =

∏j∈[k] e−KLuj ,vj , which would imply in view of nonnegativity of the KL-divergence that Lu(k),v(k) = 0.

In this case, we have fk(u(k), v(k), ε) = 0 for every ε ≥ 0. Therefore, by nonnegativity of the fk, for

the purpose of maximizing (u(k), v(k)) 7→ fk(u(k), v(k), ε) we may exclude pairs (u(k), v(k)) for which

Vu(k),v(k) = 0. Denote the restricted sets

Vk :=
{
(u(k), v(k)) ∈ R2mk : ∥uj − vj∥ ≤ s for 1 ≤ j ≤ k, and Vu(k),v(k) > 0

}
. (A.6)

Then, for each k ∈N and ε ≥ 0,

δP◦kY|X
(ε) = sup

∥uj−vj∥≤s,j∈[k]
fk(u(k), v(k), ε) = sup

(u(k),v(k))∈Vk

fk(u(k), v(k), ε). (A.7)

Now, fix (u(k), v(k)) ∈ Vk, i.e., ∥uj − vj∥ ≤ s for j ∈ [k] and Vu(k),v(k) > 0, and we will derive

bounds on fk(u(k), v(k), ε). Consider Wu(k),v(k) ∼ N (KLu(k),v(k) , Vu(k),v(k)). By the CLT there is a function

r(k) = o(1) (uniformly in (u(k), v(k), ε) by assumption of uniformly bounded variances) such that

fk(u(k), v(k), ε) = E

[(
1− e

ε−L
u(k) ,v(k)

)+]
(A.8)

=
∫ 1

0
P
[

Lu(k),v(k) > ε− log(1− u)
]

du (A.9)

=
∫ 1

0
P
[
Wu(k),v(k) > ε− log(1− u)

]
du + r(k) (A.10)
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= E

[(
1− e

ε−W
u(k) ,v(k)

)+]
+ r(k) (A.11)

= Q

 ε−KLu(k),v(k)√
Vu(k),v(k)

− e
ε−KL

u(k) ,v(k)
+V

u(k) ,v(k)
/2

Q

 ε−KLu(k),v(k) + Vu(k),v(k)√
Vu(k),v(k)

+ r(k)

(A.12)

where Q denotes the Gaussian Q-function. Next, we use (A.12) to investigate the limits of

fk(u(k), v(k), εk(δ)) and fk(u(k), v(k), εk(δ)) for specific values of εk(δ) and εk(δ).

• Step 2: an upper bound on ε.

Let k0 ∈N be such that r(k) ∈ (δ− 1/2, δ) whenever k ≥ k0. For each k ≥ k0, define the constant

εk(δ) := k ·KLmax −Φ−1 (δ− r(k)) ·
√

k ·Vmax, (A.13)

which we will show is an upper bound on εP◦kY|X
(δ). We do this by showing the bound δP◦kY|X

(εk(δ)) ≤ δ

using (A.12), then inverting it. Specifically, an upper bound on fk may be given by (note that

Q(z) = Φ(−z) for z ≥ 0)

fk(u(k), v(k), εk(δ)) ≤ Φ

 sup
(u(k),v(k))∈Vk

KLu(k),v(k) − εk(δ)√
Vu(k),v(k)

+ r(k) (A.14)

for every (u(k), v(k)) ∈ Vk. Since KLu(k),v(k) ≤ k ·KLmax < εk(δ), we conclude from the definition of

εk(δ) that

fk(u(k), v(k), εk(δ)) ≤ Φ
(

Φ−1 (δ− r(k))
)
+ r(k) ≤ δ. (A.15)

Therefore, maximizing over (u(k), v(k)) ∈ Vk, we conclude that (see (A.7))

δP◦kY|X
(εk(δ)) ≤ δ. (A.16)

Inverting this inequality, we get the upper bound

εP◦kY|X
(δ) ≤ εk(δ). (A.17)

• Step 3: a general lower bound on ε.

We similarly lower bound fk, but we now require a more delicate argument. We first show a general

asymptotic lower bound k ·KLmax on εP◦kY|X
(δ), then we refine it in the case V > 0.

For the general case, fix any τ ∈ (0, KLmax), and we will show that εP◦kY|X
(δ) ≥ kτ for all large k by

showing that δP◦kY|X
(kτ) > δ. Let {(uj, vj)}j∈N ⊂ R2m be a sequence with ∥uj − vj∥ ≤ s and KLuj ,vj →
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KLmax as j→ ∞. We may assume that KLuj ,vj > 0 for each j. Let V′ := lim infj→∞ Vuj ,vj . If necessary,

we replace the (uj, vj) by a subsequence so that Vuj ,vj → V′. Note that V(uj ,vj)
> 0 for each j since

KLuj ,vj > 0. Denote the constant k-tuples u(k)
j := (uj, · · · , uj) ∈ Rmk and v(k)j := (vj, · · · , vj) ∈ Rmk.

For all large j, we have that KLuj ,vj > τ. Hence, for all large j,

Q

 kτ −KL
u(k)

j ,v(k)j√
V

u(k)
j ,v(k)j

 ≥ Q(0) =
1
2

. (A.18)

Next, we show that the second term in (A.12) can be made arbitrarily small. We have the limit

lim
j→∞

kτ −KL
u(k)

j ,v(k)j
+

1
2
·V

u(k)
j ,v(k)j

= k ·
(

τ −KLmax +
1
2
·V′
)

. (A.19)

We consider two cases according to whether V′ < 2(KLmax − τ). Assume for now that V′ <

2(KLmax − τ) holds. Then, the limit in (A.19) is negative and the second term in (A.12) can be made

arbitrarily small by choosing (u(k), v(k)) = (u(k)
j , v(k)j ) for large j and k. Indeed, let j0 ∈ N be such

that j ≥ j0 implies

τ −KLuj ,vj +
1
2
·Vuj ,vj <

1
2
·
(

τ −KLmax +
1
2
·V′
)
=: θ0 < 0. (A.20)

Hence, in this case, bounding the Q-function from above by 1, the second term in (A.12) is bounded

by

exp
(

kτ −KL
u(k)

j ,v(k)j
+

1
2

V
u(k)

j ,v(k)j

)
Q

 kτ −KL
u(k)

j ,v(k)j
+ V

u(k)
j ,v(k)j√

V
u(k)

j ,v(k)j

 ≤ eθ0k (A.21)

for j ≥ j0. Hence, in this case, we obtain the bound (see (A.18))

sup
(u(k),v(k))∈Vk

fk(u(k), v(k), kτ) ≥ 1
2
− o(1) (A.22)

for a function o(1) that goes to zero as k → ∞ (for instance, it may be taken as eθ0k − r(k)). Now,

assume instead that V′ ≥ 2(KLmax − τ). Let j1 ∈N be such that j ≥ j1 implies

τ −KLuj ,vj + ·Vuj ,vj ≥
1
2
· (KLmax − τ) =: θ1 > 0. (A.23)

In this case, using the bound Q(z) ≤ 1√
2πz

e−z2/2 for z > 0, we may bound the second term in (A.12)

159



by

exp
(

kτ −KL
u(k)

j ,v(k)j
+

1
2

V
u(k)

j ,v(k)j

)
Q

 kτ −KL
u(k)

j ,v(k)j
+ V

u(k)
j ,v(k)j√

V
u(k)

j ,v(k)j



≤

√
V

u(k)
j ,v(k)j

√
2π ·

(
kτ −KL

u(k)
j ,v(k)j

+ V
u(k)

j ,v(k)j

) exp

−1
2

 kτ −KL
u(k)

j ,v(k)j√
V

u(k)
j ,v(k)j

2


≤
√

Vmax√
2π · θ1

· 1√
k

(A.24)

for all large j ≥ j1. In particular, in this case too we obtain the bound (A.22), namely,

sup
(u(k),v(k))∈Vk

fk(u(k), v(k), kτ) ≥ 1
2
− o(1) (A.25)

for a function o(1) that goes to zero as k→ ∞. Thus, we always have that

δP◦kY|X
(kτ) = sup

(u(k),v(k))∈Vk

fk(u(k), v(k), kτ) ≥ 1
2
− o(1) > δ (A.26)

as k→ ∞. Inverting this inequality, we obtain that

kτ ≤ εP◦kY|X
(δ) (A.27)

for all large k. In particular,

τ ≤ lim inf
k→∞

εP◦kY|X
(δ)

k
(A.28)

for every τ ∈ (0, KLmax). Taking τ ↗ KLmax, we conclude that

KLmax ≤ lim inf
k→∞

εP◦kY|X
(δ)

k
. (A.29)

Combining (A.17) and (A.29), we infer the inequalities (2.35) in the theorem statement, i.e.,

k · (KLmax − o(1)) ≤ εP◦kY|X
(δ) ≤ k ·KLmax +

(
−Φ−1(δ) + o(1)

)√
k ·Vmax, (A.30)

Next, we derive the expansion (2.36) via deriving a refined lower bound on εP◦kY|X
(δ) under the

assumption that V > 0.

• Step 4: a lower bound on ε when V > 0.

Recall that V is defined by (2.37) in the theorem statement as the minimal value V that Vx,x′ can take
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if KLx,x′ is arbitrarily close to maximal:

V := inf

{
lim inf
ℓ→∞

Vxℓ,x′ℓ
: xℓ, x′ℓ ∈ Rm, sup

ℓ∈N

∥xℓ − x′ℓ∥ ≤ s, lim
ℓ→∞

KLxℓ,x′ℓ
= KLmax

}
. (A.31)

From Assumption 2.3, it can be inferred that V > 0. Indeed, if it were the case that V = 0,

then we may take far enough elements of a sequence of sequences of pairs {(xm,ℓ, x′m,ℓ)}m,ℓ (so

that limm→∞ lim infℓ→∞ Vxm,ℓ,x′m,ℓ
= 0, and limℓ→∞ KLxm,ℓ,x′m,ℓ

= KLmax for each m) to produce a

new sequence {(ξm, ξ ′m) := (xm,ℓm , x′m,ℓm
)}m (for large enough ℓm) for which KLξm ,ξ ′m → KLmax but

Vξm ,ξ ′m → 0 (possibly after passing to a subsequence), thereby violating Assumption 2.3. Consider

also the constant

α := inf
∥x−x′∥≤s

KLmax −KLx,x′ + Vx,x′ . (A.32)

As V > 0, we have that α > 0.

Denote the constant γ := 1
α

√
Vmax

2π , and fix an arbitrary η ∈ (0, 1/2). For all large k, define the

two functions

εk(δ) := k ·KLmax −Φ−1
(

δ + η + r(k) +
γ√

k

)
·
√

k ·V. (A.33)

We assume here, and for the remainder of the proof, that k is large enough that the argument of Φ−1

above falls inside the interval (0, 1). We will show the bound δ < δP◦kY|X
(εk(δ)). This bound may be

inverted to obtain εk(δ) ≤ εP◦kY|X
(δ), from which the desired asymptotic result follows readily.

From (A.12), we have that, for any (u(k), v(k)) ∈ Vk,

fk(u(k), v(k), εk(δ)) ≥ gk(u(k), v(k))− hk(u(k), v(k)) + r(k), (A.34)

where we define the functions

gk(u(k), v(k)) := Φ

KLu(k),v(k) − εk(δ)√
Vu(k),v(k)

 , (A.35)

hk(u(k), v(k)) := e
εk(δ)−KL

u(k) ,v(k)
+V

u(k) ,v(k)
/2

Φ

KLu(k),v(k) −Vu(k),v(k) − εk(δ)√
Vu(k),v(k)

 . (A.36)

We upper bound hk. Note that

Φ(−z) <
1

z
√

2π
e−z2/2 (A.37)

161



for z > 0. Therefore,

hk(u(k), v(k)) <
1/
√

2π

exp
(

w2
k,u(k),v(k)

/2
)
·
(

wk,u(k),v(k) +
√

Vu(k),v(k)

) <
1/
√

2π

wk,u(k),v(k) +
√

Vu(k),v(k)
. (A.38)

where wk,u(k),v(k) := (εk(δ)−KLu(k),v(k))/
√

Vu(k),v(k) . Therefore, we have that

wk,u(k),v(k) +
√

Vu(k),v(k) =
1√

Vu(k),v(k)
·
(

εk(δ)−KLu(k),v(k) + Vu(k),v(k)

)
(A.39)

≥ 1√
k ·Vmax

·
(

k ·KLmax −KLu(k),v(k) + Vu(k),v(k)

)
(A.40)

≥
√

k · α√
Vmax

, (A.41)

where the last line follows by definition of α (see (A.32)). Therefore, we have that

sup
(u(k),v(k))∈Vk

hk(u(k), v(k)) ≤
√

Vmax

α
√

2πk
. (A.42)

Next, we lower bound the supremum of gk. Let {(xℓ, x′ℓ)}ℓ∈N be a sequence with ∥xℓ − x′ℓ∥ ≤ s

such that KLxℓ,x′ℓ
→ KLmax and Vxℓ,x′ℓ

→ V. Consider the length-k sequences of repeated vectors

u(k)
ℓ = (xℓ, · · · , xℓ) and v(k)ℓ = (x′ℓ, · · · , x′ℓ), and note that we have (u(k)

ℓ , v(k)ℓ ) ∈ Vk for all large ℓ. We

have the limit

lim
ℓ→∞

KL
u(k)
ℓ ,v(k)ℓ

− εk(δ)√
V

u(k)
ℓ ,v(k)ℓ

= Φ−1
(

δ + η + r(k) +
γ√

k

)
. (A.43)

Therefore, we have the lower bound

sup
(u(k),v(k))∈Vk

gk(u(k), v(k)) ≥ δ + η + r(k) +
γ√

k
. (A.44)

Putting (A.42) and (A.44) together, we conclude the lower bound

δP◦kY|X
(εk(δ)) ≥ δ + η + r(k) > δ (A.45)

for all large k. From (A.17) and (A.45), and by definition of εP◦kY|X
as an inverse of δP◦kY|X

, we arrive at

the bounds

εk(δ) ≤ εP◦kY|X
(δ) ≤ εk(δ). (A.46)

Plugging in the definitions of εk(δ) and εk(δ), then rearranging and taking k→ ∞ then η → 0+, we
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obtain the bounds

0 <
√

V ≤ lim inf
k→∞

εP◦kY|X
(δ)− k ·KLmax

−Φ−1(δ) ·
√

k
≤ lim sup

k→∞

εP◦kY|X
(δ)− k ·KLmax

−Φ−1(δ) ·
√

k
≤
√

Vmax < ∞. (A.47)

This completes the proof of the theorem.

A.3 Proof of Theorem 2.4: Additive Mechanisms are Optimal

Let F : R → [0, ∞] denote the objective function in (2.8), i.e.,

F(PY|X) := sup
∥u−v∥≤s

D(PY|X=u ∥ PY|X=v). (A.48)

Thus,

KL⋆ = inf
PY|X∈P

F(PY|X). (A.49)

Fix a sequence of conditional distributions

{
P(k)

Y|X

}
k∈N
⊂P (A.50)

satisfying

KL⋆ = lim
k→∞

F
(

P(k)
Y|X

)
. (A.51)

Recall that by assumption, the version of each conditional distribution P(k)
Y|X we choose is regular, i.e.,

x 7→ P(k)
Y|X=x(B) is a Borel function for each Borel set B ⊂ Rm. Note that KL⋆ < ∞. Throwing away

the first few elements in the sequence, we assume that F
(

P(k)
Y|X

)
< ∞ for each k ∈N. Let λ denote

the Lebesgue measure on Rm, and Br(x) ⊂ Rm the open ball around x of radius r.

We break the proof down into several steps:

1. Introduce Markov kernels P(k)
Y|X as “continuous” convex combinations of the P(k)

Y|X .

2. The P(k)
Y|X also satisfy the cost constraint.

3. The P(k)
Y|X asymptotically achieve KL⋆.

4. The P(k)
Y|X=x are asymptotically shifted versions TxP⋆ of a fixed P⋆ ∈ B.

5. P⋆ achieves KL⋆.

• Step 1: Averaging the P(k)
Y|X .
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For k ∈N, we will define the Markov kernel P(k)
Y|X ∈ R by

P(k)
Y|X=x(A) :=

1
λ(Bk(0))

∫
Bk(0)

P(k)
Y|X=x+z(A + z) dz. (A.52)

Of course, we need to check that (A.52) indeed yields a Markov kernel P(k)
Y|X. In view of Fubini’s

theorem, it suffices to check that the map (x, z) 7→ P(k)
Y|X=x+z(A + z) is jointly Borel (for every fixed

Borel set A ⊂ Rm). This joint measurability is not self-evident, so we check next that it indeed holds.

Let the transition probability kernel L(k) : R2m ×B(Rm)→ [0, 1] be defined by

L(k)((x, z), A) := P(k)
Y|X=x+z(A). (A.53)

Let N(k) : R2m ×B(Rm)→ [0, 1] denote the map

N(k)((x, z), A) := P(k)
Y|X=x+z(A + z). (A.54)

For each (x, z) ∈ R2m and Borel set A ⊂ Rm, we may write N(k)((x, z), A) as the integral of a

nonnegative Borel function against L((x, z), dy), namely,

N(k)((x, z), A) =
∫

Rm
1A(y− z) L((x, z), dy), (A.55)

where ((x, z), y) 7→ 1A(y− z) is Borel. Hence (see, e.g., [Ç11, Chapter 1, Proposition 6.9]) (x, z) 7→

N(k)((x, z), A) is a Borel function. Hence, P(k)
Y|X as given by (A.52) is indeed a well-defined Markov

kernel on Rm.

For the next steps, we will use the following notation

R(k,x)
Y|X=z(A) := P(k)

Y|X=x+z(A + z), (A.56)

P(k,x)(A) := P(k)
Y|X=x(A), (A.57)

U(k)(A) :=
λ(A ∩ Bk(0))

λ(Bk(0))
. (A.58)

Note that R(k,x)
Y|X ∈ R and P(k,x) ∈ B for each fixed (k, x) ∈N×Rm, and (A.52) may be rewritten as

P(k,x) = R(k,x)
Y|X ◦U(k). (A.59)

• Step 2: The P(k)
Y|X satisfy the cost constraint.

Fix k ∈ N, and we will show next that P(k)
Y|X ∈ P , i.e., that P(k)

Y|X satisfies the cost constraint.
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Recall that a Markov kernel PY|X ∈ R belongs to P if and only if it satisfies

sup
x∈Rm

EPY|X=x
[Txc] ≤ C. (A.60)

By the assumption that P(k)
Y|X ∈P , we have that

E
P(k)

Y|X=x
[Txc] ≤ C (A.61)

for every x ∈ Rm. Shifting the variable of integration in (A.61) by a fixed constant −z, we obtain that

E
T−zP(k)

Y|X=x
[Tx−zc] ≤ C (A.62)

for every (x, z) ∈ R2m. Replacing x by x + z in (A.62), we conclude that (see (A.56))

E
R(k,x)

Y|X=z
[Txc] ≤ C (A.63)

for every (x, z) ∈ R2m. We proceed via the following standard approximation by simple functions

argument.

Fix x ∈ Rm, and let ∑j aj1Aj(y) be a nonnegative simple function upper bounded by (Txc)(y).

Integrating against R(k,x)
Y|X=z(dy) we deduce from (A.63) that

∑
j

ajR
(k,x)
Y|X=z(Aj) ≤ C (A.64)

for every z ∈ Rm. Integrating (A.64) against U(k)(dz), and noting that P(k,x) = R(k,x)
Y|X ◦ U(k)

(see (A.59)), we deduce that

∑
j

ajP(k,x)(Aj) ≤ C. (A.65)

Now, as (A.65) holds for all nonnegative simple functions below Txc, taking an increasing sequence

of nonnegative simple function converging pointwise to Txc we conclude that

EP(k,x) [Txc] ≤ C. (A.66)

In other words (see (A.57)),

E
P(k)

Y|X=x
[Txc] ≤ C. (A.67)

As (A.67) holds for all x ∈ Rm, we have shown that P(k)
Y|X ∈P .

• Step 3: The P(k)
Y|X are asymptotically optimal.

Next, we use monotonicity of the KL-divergence under conditioning (see Lemma A.1) to show
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the limit

KL⋆ = lim
k→∞

F
(

P(k)
Y|X

)
. (A.68)

Shift-invariance of the KL-divergence implies that, for each x, x′, z ∈ Rm,

D
(

R(k,x)
Y|X=z∥R

(k,x′)
Y|X=z

)
= D

(
P(k)

Y|X=x+z∥P
(k)
Y|X=x′+z

)
. (A.69)

Thus, as (x + z)− (x′ + z) = x− x′, we conclude that

sup
∥x−x′∥≤s

z∈Rm

D
(

R(k,x)
Y|X=z∥R

(k,x′)
Y|X=z

)
= F

(
P(k)

Y|X

)
(A.70)

By assumption of optimality of the P(k)
Y|X (see (A.51)), for each δ > 0, there exists a k0 such that for all

k ≥ k0,

sup
∥x−x′∥≤s

z∈Rm

D
(

R(k,x)
Y|X=z∥R

(k,x′)
Y|X=z

)
≤ KL⋆ + δ. (A.71)

By definition of KL-divergence, we infer R(k,x)
Y|X=z ≪ R(k,x′)

Y|X=z for all z ∈ Rm and ∥x − x′∥ ≤ s.

Also, (A.71) shows in particular that

sup
∥x−x′∥≤s

Eξ∼U(k)

[
D
(

R(k,x)
Y|X=ξ

∥R(k,x′)
Y|X=ξ

)]
≤ KL⋆ + δ. (A.72)

Using (A.59), Lemma A.1 yields that

sup
∥x−x′∥≤s

D
(

P(k,x)∥P(k,x′)
)
≤ KL⋆ + δ. (A.73)

Taking δ→ 0+, we see that (A.68) holds.

• Step 4: P(k,x) is asymptotically TxP⋆ for a fixed P⋆.

Next, we show that there is a measure P⋆ ∈ B such that, for every x ∈ Rm, we have the weak

convergence

P(k,x) → TxP⋆ (A.74)

as k→ ∞.

First, for each fixed x ∈ Rm, we establish the total-variation distance convergence

lim
k→∞

∥∥∥P(k,x) − TxP(k,0)
∥∥∥

TV
= 0. (A.75)
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We may write (
TxP(k,0)

)
(A) =

1
λ(Bk(0))

∫
Bk(−x)

R(k,x)
Y|X=z(A) dz. (A.76)

Therefore, for any Borel set A ⊂ Rm we have that

P(k,x)(A)− TxP(k,0)(A) ≤ 1
λ(Bk(0))

∫
Bk(0)\Bk(−x)

R(k,x)
Y|X=z(A) dz ≤ λ(Bk(0) \ Bk(−x))

λ(Bk(0))
. (A.77)

Now, applying a rotation, we note that

λ(Bk(0) \ Bk(−x)) = λ(Bk(0) \ Bk(∥x∥e1)) ≤ λ(Bk(0) \ Bk(se1)) (A.78)

where e1 = (1, 0 · · · , 0) ∈ Rm. Furthermore, the triangle inequality yields that Bk−s/2((s/2)e1) ⊂

Bk(se1)∩ Bk(0); indeed, if ∥z− (s/2)e1∥ < k− s/2 then ∥z∥, ∥z− se1∥ ≤ ∥z− (s/2)e1∥+ ∥(s/2)e1∥ <

k. Therefore, we have that

Bk(0) \ Bk(se1) ⊂ Bk(0) \ Bk−s/2((s/2)e1), (A.79)

and

λ (Bk(0) \ Bk−s/2((s/2)e1)) = λ (Bk(0))− λ (Bk−s/2((s/2)e1)) . (A.80)

Therefore, combining (A.78)–(A.80), we obtain

λ(Bk(0) \ Bk(−x))
λ(Bk(0))

≤ km − (k− s/2)m

km . (A.81)

Further, by Bernoulli’s inequality, for every k > s/2,

km − (k− s/2)m

km = 1−
(

1− s
2k

)m
≤ 1−

(
1− ms

2k

)
=

ms
2k

. (A.82)

From (A.77), (A.81), and (A.82), we conclude that∥∥∥P(k,x) − TxP(k,0)
∥∥∥

TV
= sup

A∈B(Rm)

P(k,x)(A)− TxP(k,0)(A) ≤ ms
2k

. (A.83)

Hence, the total-variation distance convergence in (A.75) follows.

The next ingredient we need is that the set {P(k,0)}k∈N ⊂ B is tight, i.e., that

lim
n→∞

sup
k∈N

P(k,0)(Rm \ Bn(0)) = 0. (A.84)

By Step 2 of this proof, we have that P(k,0) satisfies the cost constraint, i.e., EP(k,0) [c] ≤ C. By the

assumption of isotropy of c, there is a function c̃ such that c(y) = c̃(∥y∥). Then, by the assumption
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of monotonicity of c̃,

P(k,0)(Rm \ Bn(0)) · c̃(n) ≤
∫

Rm\Bn(0)
c̃(∥y∥) dP(k,0)(y) ≤ C. (A.85)

Since c̃(n)→ ∞ as n→ ∞ by assumption, we conclude that

lim sup
n→∞

sup
k∈N

P(k,0)(Rm \ Bn(0)) ≤ lim sup
n→∞

C
c̃(n)

= 0. (A.86)

Hence (A.84) follows, i.e., {P(k,0)}k∈N is tight.

By tightness of {P(k,0)}k∈N, we conclude via Prokhorov’s theorem [Ç11, Chapter 3, Theorem 5.13]

after passing to a subsequence that there is a P⋆ ∈ B such that P(k,0) → P⋆ weakly as k→ ∞, i.e., for

every continuous and bounded function f : Rm → R we have

lim
k→∞

EP(k,0) [ f ] = EP⋆ [ f ]. (A.87)

This immediately implies that, for each x ∈ Rm, we also have

TxP(k,0) → TxP⋆ (A.88)

weakly as k→ ∞. As convergence in total variation is stronger than weak convergence, we conclude

from (A.75) and (A.88) that for every x ∈ Rm

P(k,x) → TxP⋆ (A.89)

weakly as k→ ∞.

• Step 5: The additive mechanism P⋆ is optimal.

The final step is showing that P⋆ attains KL⋆ and satisfies the cost constraint. By joint lower-

semicontinuity of the KL-divergence [Pos75, Theorem 1], we deduce from (A.89) that for each

x ∈ Rm

D(P⋆∥TxP⋆) ≤ lim inf
k→∞

D
(

P(k,0)∥P(k,x)
)

. (A.90)

But we also have

sup
∥x∥≤s

D
(

P(k,0)∥P(k,x)
)
≤ F

(
P(k)

Y|X

)
. (A.91)
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Therefore, taking the supremum over ∥x∥ ≤ s in (A.90), we infer from (A.68) that

sup
∥x∥≤s

D(P⋆∥TxP⋆) ≤ KL⋆. (A.92)

Hence, it only remains to check that P⋆ ∈Padd for us to conclude that equality holds in (A.92).

For every r > 0 and x ∈ Rm, the function 1Br(0) · Txc is lower semicontinuous and bounded.

Hence, the weak convergence P(k,x) → TxP⋆ yields

ETx P⋆

[
1Br(0) · Txc

]
≤ lim inf

k→∞
EP(k,x)

[
1Br(0) · Txc

]
. (A.93)

As P(k)
Y|X ∈P , nonnegativity of c implies in view of (A.93) that

ETx P⋆

[
1Br(0) · Txc

]
≤ C. (A.94)

By the monotone convergence theorem, taking r → ∞ yields

ETx P⋆ [Txc] ≤ C, (A.95)

In other words, P⋆ ∈Padd. Therefore, we must have

KL⋆ ≤ KL⋆
add ≤ sup

∥x∥≤s
D(P⋆∥TxP⋆). (A.96)

Combining this inequality with (A.92), we conclude that

KL⋆ = KL⋆
add = sup

∥x∥≤s
D(P⋆∥TxP⋆). (A.97)

This completes the proof of the theorem.

Remark A.1. The lemma stated below, showing that conditioning increases divergence, is a well-

known fact. It is shown in the literature under various assumptions on the underlying distributions

(see, e.g., [Pol19, Theorem 2.2 and Section 2.6]). We use it in the proof of Theorem 2.3 in the specific

situation where one of the conditional distributions is absolutely continuous with respect to the

other for each individual input. As in [Pol19, Remark 2.4], Doob’s version of the Radon-Nikodym

theorem can be used to derive that conditioning increases divergence in our case. For completeness,

we add a proof of this lemma here.

Lemma A.1 (Conditioning increases divergence). Let PY|X, P′Y|X be Markov kernels on Rm such that

PY|X=x ≪ P′Y|X=x for every x ∈ Rm. Fix a Borel probability measure PX on Rm. Denote the marginalizations
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of PX,Y := PY|X ⊗ PX , P′X,Y := P′Y|X ⊗ PX in the second coordinate by PY, P′Y. Then, we have the inequality

D
(

PY ∥ P′Y
)
≤ Eξ∼PX

[
D
(

PY|X=ξ ∥ P′Y|X=ξ

)]
. (A.98)

Proof. Since by assumption PY|X=x ≪ P′Y|X=x for every x ∈ Rm, a generalization of the Radon-

Nikodym theorem by Doob (see [Ç11, Chapter 5, Theorem 4.44]) yields the existence of a version of

the Radon-Nikodym derivatives dPY|X=x/dP′Y|X=x such that the function

(x, y) 7→
dPY|X=x

dP′Y|X=x
(y) (A.99)

is jointly measurable. We show that this function is a version of dPX,Y/dP′X,Y. First, note that

PX,Y ≪ P′X,Y. Indeed, for any Borel set E ⊂ Rm, denoting the sections by Ex := {y ∈ Rm ; (x, y) ∈ E},

we have that PX,Y(E) = 0 if and only if PY|X=x(Ex) = 0 for PX-a.e. x, and a similar statement holds for

P′X,Y. By assumption, PY|X=x ≪ P′Y|X=x for each x, so we obtain PX,Y ≪ P′X,Y. By joint measurability

and nonnegativity, using the disintegration theorem (see, e.g., [Ç11, Chapter 1, Theorem 6.11]) we

obtain that for any Borel E ⊂ R2m

∫
E

dPY|X=x

dP′Y|X=x
(y) dP′X,Y(x, y) =

∫
Rm

∫
Ex

dPY|X=x

dP′Y|X=x
(y) dP′Y|X=x(y) dPX(x) (A.100)

=
∫

Rm

∫
Ex

dPY|X=x(y) dPX(x) (A.101)

= PX,Y(E). (A.102)

Thus, we have the equality
dPX,Y

dP′X,Y
(x, y) =

dPY|X=x

dP′Y|X=x
(y) (A.103)

for P′X,Y-a.e. (x, y).

Define f : [0, ∞) → [−1/e, ∞) by f (0) = 0 and f (t) = t log t for t > 0. By the disintegration

theorem and (A.103), we have the equality

D
(

PX,Y ∥ P′X,Y
)
=
∫

R2m
f

(
dPX,Y

dP′X,Y

)
dP′X,Y (A.104)

=
∫

Rm

∫
Rm

f

(
dPY|X=x

dP′Y|X=x
(y)

)
dP′Y|X=x dPX(x) (A.105)

= Eξ∼PX

[
D
(

PY|X=ξ ∥ P′Y|X=ξ

)]
. (A.106)

On the other hand, disintegration with respect to Y yields the following bound. Denote by
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PX|Y, P′X|Y the disintegrations of PX,Y, P′X,Y with respect to PY, P′Y. In particular, PX|Y and P′X|Y are

Markov kernels on Rm. By the disintegration theorem and Jensen’s inequality,

D
(

PX,Y ∥ P′X,Y
)
=
∫

R2m
f

(
dPX,Y

dP′X,Y

)
dP′X,Y (A.107)

=
∫

Rm

∫
Rm

f

(
dPX,Y

dP′X,Y
(x, y)

)
dP′X|Y=x(x) dP′Y(y) (A.108)

≥
∫

Rm
f (g(y)) dP′Y(y) (A.109)

where

g(y) :=
∫

Rm

dPX,Y

dP′X,Y
(x, y) dP′X|Y=x(x). (A.110)

For this application of Jensen’s inequality, we use the fact, shown next, that g is finite P′Y-a.e. In fact,

we show that g is a version of dPY/dP′Y. Note that PX,Y ≪ P′X,Y implies that PY ≪ P′Y. Now, for any

Borel B ⊂ Rm, the disintegration theorem yields that

∫
B

g dP′Y =
∫

B

∫
Rm

dPX,Y

dP′X,Y
(x, y) dP′X|Y=x(x) dP′Y(y) (A.111)

=
∫

Rm×B

dPX,Y

dP′X,Y
dP′X,Y (A.112)

= PX,Y(R
m × B) = PY(B). (A.113)

Thus, we have that

g(y) =
dPY
dP′Y

(y). (A.114)

for P′Y-a.e. y. Hence, we obtain from inequality (A.109) that

D
(

PX,Y ∥ P′X,Y
)
≥ D

(
PY ∥ P′Y

)
. (A.115)

Combining inequality (A.115) and equation (A.106) we obtain the desired inequality (A.98).

A.4 Proof of Theorem 2.7: Finite-Dimensionality

Note that the vector p only includes pi for 0 ≤ i ≤ N. We will simplify our analysis by defining pi

for all integers i. Specifically, for i ∈ Z \ {0, · · · , N}, we denote

pi :=


p|i|, if − N ≤ i ≤ −1,

pNr|i|−N , if |i| > N.
(A.116)
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Thus we may rewrite the formula for fn,r,p in (2.65) as

fn,r,p(x) = npi if x ∈ Jn,i. (A.117)

We show first that

sup
a∈R:|a|≤1

D(Pn,r,p∥TaPn,r,p) = max
k∈Z:|k|≤n

∑
i∈Z

pi log
pi

pi+k
, (A.118)

then we show that this formula is equal to the objective function in (2.82). For convenience, we drop

the subscripts on fn,r,p and Pn,r,p throughout this proof. We may assume p > 0, since any vector p

with some zero coordinate will be infeasible in both optimization problems (2.80) and (2.82).

Fix a ∈ [−1, 1]. For each i ∈ Z, let J ◦n,i =
(

i−1/2
n , i+1/2

n

)
denote the interior of Jn,i. We start by

showing that the function

Fa := f log
f

T−a f
(A.119)

is integrable, which would allow us to use countable additivity of the Lebesgue integral to split

D(P∥T−aP) into a sum of integrals over the J ◦n,i. Let k ∈ Z be the unique integer such that

a + 1
2n ∈ Jn,k, and denote ∆ := k− an. From

k− 1/2
n

≤ a +
1

2n
≤ k + 1/2

n
, (A.120)

we conclude that 0 ≤ ∆ ≤ 1. Consider an integer i and a real x ∈ J ◦n,i. If x < (i− 1/2 + ∆)/n, then

x + a = x +
k− ∆

n
<

i + k− 1/2
n

=
(i + k− 1) + 1/2

n
(A.121)

and, since ∆ ≤ 1,

x + a = x +
k− ∆

n
>

i− 1/2
n

+
k− 1

n
=

(i + k− 1)− 1/2
n

. (A.122)

Inequalities (A.121) and (A.122) together imply that x + a ∈ J ◦n,i+k−1. Similarly, if x > (i− 1/2 +

∆)/n then x + a ∈ J ◦n,i+k. We may ignore the countably many cases x = (i− 1/2 + ∆)/n (as i varies

over Z) for the sake of integrating Fa. We conclude that for every x ∈ R such that nx− ∆ + 1
2 is not

an integer,

Fa(x) =

 npi log pi
pi+k−1

, if x ∈ Jn,i, x < i−1/2+∆
n ,

npi log pi
pi+k

, if x ∈ Jn,i, x > i−1/2+∆
n .

(A.123)
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Since
∫

R
|Fa| = ∑i∈Z

∫
J ◦n,i
|Fa|, we obtain

∫
R
|Fa| = ∑

i∈Z

pi

(
∆
∣∣∣∣log

pi
pi+k−1

∣∣∣∣+ (1− ∆)
∣∣∣∣log

pi
pi+k

∣∣∣∣) . (A.124)

Now, we may conclude that Fa ∈ L1(R) by comparison with a geometric series. Indeed, we show the

convergence of the series

Sℓ := ∑
i∈Z

pi

∣∣∣∣log
pi

pi+ℓ

∣∣∣∣ (A.125)

for each fixed ℓ ∈ Z. Consider the set of indices

I = Z \ {−N − |ℓ|, · · · , N + |ℓ|}, (A.126)

and note that for each i ∈ I we have pi+j = pNr|i+j|−N for both values j ∈ {0, ℓ}. In particular, for

i ∈ I we have that ∣∣∣∣log
pi

pi+ℓ

∣∣∣∣ = ||i| − |i + ℓ|| · log
1
r
≤ |ℓ| · log

1
r

. (A.127)

Therefore, we obtain the bound

Sℓ ≤
|ℓ|pN log 1

r
rN · 1 + r

1− r
+ ∑
|i|≤N+|ℓ|

pi

∣∣∣∣log
pi

pi+ℓ

∣∣∣∣ < ∞. (A.128)

As Sk and Sk−1 are both finite, we conclude from (A.124) that Fa ∈ L1(R). Therefore, by countable

additivity,

D(P∥T−aP) = ∑
i∈Z

∫
J ◦n,i

Fa, (A.129)

i.e.,

D(P∥T−aP) = ∑
i∈Z

pi

(
∆ log

pi
pi+k−1

+ (1− ∆) log
pi

pi+k

)
. (A.130)

Let Bℓ denote the same sum as Sℓ but without the absolute value sign,

Bℓ := ∑
i∈Z

pi log
pi

pi+ℓ
. (A.131)

Finiteness of the Sℓ yields from (A.130) that

D(P∥T−aP) = ∆Bk−1 + (1− ∆)Bk. (A.132)

Also, the relation we are aiming to prove (A.118) can be restated as

sup
|d|≤1

D(P∥TdP) = max
|ℓ|≤n

Bℓ. (A.133)
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We deduce from k = an + ∆, |a| ≤ 1, and 0 ≤ ∆ ≤ 1 that we must have −n ≤ k ≤ n + 1. If it holds

that −n + 1 ≤ k ≤ n, then what we have shown in (A.132) implies, in view of 0 ≤ ∆ ≤ 1, that

D(P∥T−aP) ≤ max
|ℓ|≤n

Bℓ. (A.134)

We treat the remaining two extreme cases k ∈ {−n, n + 1} separately. First, if k = −n then ∆ = 0, in

which case

D(P∥T−aP) = B−n ≤ max
|ℓ|≤n

Bℓ. (A.135)

Second, if k = n + 1 then ∆ = 1, in which case

D(P∥T−aP) = Bn ≤ max
|ℓ|≤n

Bℓ. (A.136)

Combining all cases, we conclude that

sup
|d|≤1

D(P∥TdP) ≤ max
|ℓ|≤n

Bℓ. (A.137)

We establish now that the reverse inequality in (A.137) also holds. Let ℓ ∈ {0, · · · , n}. The shift

aℓ := ℓ/n satisfies |aℓ| ≤ 1 and aℓ + 1
2n ∈ Jn,ℓ. Also, ∆ℓ := ℓ− aℓn = 0. Therefore, we conclude

from (A.132) that

D(P∥T−aℓP) = Bℓ. (A.138)

This shows that

sup
|d|≤1

D(P∥TdP) ≥ max
0≤ℓ≤n

Bℓ. (A.139)

In addition, consider ℓ ∈ {−n, · · · ,−1} and the shift a′ℓ := ℓ/n. Then, in this case a′ℓ +
1

2n ∈ Jn,ℓ+1.

Also, ∆′ℓ := (ℓ+ 1)− a′ℓn = 1. Thus, by (A.132), we have that

D(P∥T−a′ℓ
P) = B(ℓ+1)−1 = Bℓ. (A.140)

Therefore,

sup
|d|≤1

D(P∥T−dP) ≥ max
−n≤ℓ≤−1

Bℓ. (A.141)

Combining (A.139) and (A.141), we conclude that

sup
|d|≤1

D(P∥T−dP) ≥ max
|ℓ|≤n

Bℓ. (A.142)

Inequality (A.142) together with the reverse inequality (A.137) yield that the desired equation (A.118)
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holds, i.e.,

sup
|a|≤1

D(P∥TaP) = max
|k|≤n

∑
i∈Z

pi log
pi

pi+k
. (A.143)

Next, we show that the expression

max
|k|≤n

∑
i∈Z

pi log
pi

pi+k
(A.144)

reduces to the form given in the statement of the theorem. By construction, pi = p−i for each i ∈ Z.

Thus, we have for each k ∈ Z

Bk = ∑
i∈Z

pi log
pi

pi+k
= ∑

j∈Z

p−j log
p−j

p−j+k
= ∑

j∈Z

pj log
pj

pj−k
= B−k. (A.145)

Therefore, Bk = (Bk + B−k)/2 for every k ∈ Z. Note that this is a symmetric expression in k. As

B0 = 0, the KL-divergence is nonnegative, and Bk ≥ 0 for every |k| ≤ n (see (A.138) and (A.140)), we

conclude that

sup
|a|≤1

D(P∥TaP) = max
1≤k≤n

1
2
(Bk + B−k). (A.146)

We now rewrite (A.146) in terms of pi for only 0 ≤ i ≤ N, by taking advantage of (A.116). Fix

k ∈ {1, · · · , n}. We may write

B−k = ∑
j∈Z

pj log
pj

pj−k
= ∑

i∈Z

pi+k log
pi+k
pi

, (A.147)

so

Bk + B−k = ∑
i∈Z

(pi − pi+k) log
pi

pi+k
. (A.148)

We split this sum at the points −N, N − k, and N. For any k ∈ {1, . . . , n}, using the assumption that

n < N, we may write

∑
i∈Z

(pi − pi+k) log
pi

pi+k
=

N−k−1

∑
i=−N+1

(p|i| − p|i+k|) log
p|i|

p|i+k|

+
∞

∑
i=N−k

(pi − pi+k) log
pi

pi+k
+
−N

∑
i=−∞

(pi − pi+k) log
pi

pi+k
. (A.149)

In fact, the third term in (A.149) is identical to the second. This is proved by

−N

∑
i=−∞

(pi − pi+k) log
pi

pi+k
=

∞

∑
i=N

(p−i − p−i+k) log
p−i

p−i+k
(A.150)

=
∞

∑
i=N

(pi − pi−k) log
pi

pi−k
(A.151)
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=
∞

∑
i=N−k

(pi+k − pi) log
pi+k
pi

(A.152)

=
∞

∑
i=N−k

(pi − pi+k) log
pi

pi+k
. (A.153)

Moreover, we may rewrite this expression as

∞

∑
i=N−k

(pi − pi+k) log
pi

pi+k

=
N−1

∑
i=N−k

(pi − pNri+k−N) log
pi

pNri+k−N +
∞

∑
i=N

(pNri−N − pNri+k−N) log
pNri−N

pNri+k−N (A.154)

=
N−1

∑
i=N−k

(pi − pNri+k−N) log
pi

pNri+k−N + pN

∞

∑
i=N

ri−N(1− rk) log r−k (A.155)

=
N−1

∑
i=N−k

(pi − pNri+k−N) log
pi

pNri+k−N + pN
1− rk

1− r
k log r−1. (A.156)

Putting all of the above together shows that (A.146) is exactly equal to the objective function in (2.82).

Finally, we show that the cost constraint

EP[c] ≤ C (A.157)

is equivalent to the one given in (2.82). By nonnegativity of c, we have that

EP[c] =
∫

R
f c = ∑

i∈Z

∫
Jn,i

npic = ∑
i∈Z

picn,i = p0cn,0 + 2
N−1

∑
i=1

picn,i + 2pN

∞

∑
i=N

cn,iri−N , (A.158)

and the proof is complete.

A.5 Proof of Theorem 2.8: Optimality of Cactus

We will use the integration shorthand

∫
A

f :=
∫

A
f (x) dx. (A.159)

Define

γ :=

 1/2 if α > 1,

α/2 otherwise.
(A.160)

Note that γ ∈ (0, 1/2] and γ < α. Define the PDF

ψ(x) := exp (−|x|γ) · χ−1, (A.161)
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where

χ :=
∫

R
exp (−|x|γ) dx (A.162)

is the normalization constant. As γ ∈ (0, 1], the function z 7→ |z|γ is subadditive. Hence, for any

x, y ∈ R we have the inequality
ψ(x + y)

ψ(x)
≤ exp (|y|γ) . (A.163)

For each σ > 0, denote the dilated PDF

ψσ(x) :=
1
σ

ψ
( x

σ

)
. (A.164)

We denote the result of convolving a PDF q with ψσ by qσ,

qσ := q ∗ ψσ. (A.165)

For any a ∈ R, it is easy to see that

Ta(qσ) = (Taq)σ , (A.166)

so we denote this common quantity by Taqσ.

Due to the length of the proof, we break down some of the initial steps into the following five

auxiliary lemmas. The proof resumes in the subsequent subsection.

A.5.1 Auxiliary Lemmas

The first lemma helps reduce the problem to considering only continuous PDFs. Specifically, it shows

that a convolution qσ can perform arbitrarily close to how the original PDF q does.

Lemma A.2. For any PDF q and constant η > 0, there is a constant σ0 ∈ (0, 1) such that σ ∈ (0, σ0] implies

the inequalities

D(qσ∥Taqσ) ≤ D(q∥Taq), for all a ∈ R, (A.167)

Eqσ [c] ≤ Eq[c] + η. (A.168)

Proof. First, by the data-processing inequality, for any a ∈ R and σ > 0,

D(qσ∥Taqσ) ≤ D(q∥Taq). (A.169)

Thus, (A.167) always holds. We may assume that Eq[c] < ∞, for otherwise (A.168) trivially holds.
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Now, we will establish (A.168) for all small σ by proving the limit

lim
σ→0+

Eqσ [c] = Eq[c]. (A.170)

Let (Ω,F , P) be a probability space and Z, V : Ω → R be independent random variables with

PDFs q and ψ, respectively, with respect to λ, i.e., with PZ(B) := P(Z−1(B)) and PV(B) := P(V−1(B))

we have
dPZ
dλ

= q,
dPV
dλ

= ψ. (A.171)

Then, for any σ > 0, the random variable Zσ := Z + σV has PDF qσ (see equations (A.160)–(A.165)).

Denote integration against P by E; in particular,

E[ f (Z, V)] :=
∫

Ω
f (Z(ω), V(ω)) dP(ω) (A.172)

for any Borel function f : R2 → R.

By Slutsky’s theorem, we have that Zσ → Z in distribution. By the continuous mapping theorem,

we also have that c(Zσ)→ c(Z) in distribution. Thus, by the Lebesgue-Vitali theorem [Bog07, Theo-

rem 4.5.4], to conclude that (A.170) holds, it suffices to show uniform integrability of {c(Zσ)}0<σ≤1,

i.e., it suffices to show that

lim
K→∞

sup
0<σ≤1

E
[
c(Zσ) · 1(K,∞)(c(Zσ))

]
= 0. (A.173)

To establish (A.173), it suffices to uniformly upper bound the c(Zσ) (for σ ∈ (0, 1]) by an integrable

random variable. To see this, note that if

sup
0<σ≤1

c(Zσ) ≤ U (A.174)

for some random variable U : Ω→ R with E[U] < ∞, then we have the inequality

sup
0<σ≤1

E
[
c(Zσ) · 1(K,∞)(c(Zσ))

]
≤ E

[
U · 1(K,∞)(U)

]
, (A.175)

and the limit

lim
K→∞

E
[
U · 1(K,∞)(U)

]
= 0 (A.176)

follows by absolute continuity of the Lebesgue integral in view of E[U] < ∞.

Now, we show that a uniform bound as in (A.174) holds. Recall that for any (u, v) ∈ R2 and
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0 < s < t, denoting ∥(u, v)∥s := (|u|s + |v|s)1/s, one has from Hölder’s inequality that

∥(u, v)∥t ≤ ∥(u, v)∥s ≤ 2
1
s−

1
t ∥(u, v)∥t. (A.177)

In particular, for any r > 0, denoting ℓr := max(1, 2r−1), one has that

(|u|+ |v|)r ≤ ℓr(|u|r + |v|r). (A.178)

In addition, by the tail-regularity assumption on c, there is a constant β1 > 0 such that

c(x) ≤ β1 (1 + |x|α) (A.179)

for every x ∈ R. Then, for any u, v ∈ R, we have that

c(u + v) ≤ β1 (1 + ℓα (|u|α + |v|α)) . (A.180)

In particular, for every σ ∈ (0, 1],

c(Zσ) ≤ β1 (1 + ℓα (|Z|α + |V|α)) =: U. (A.181)

Now, we have that E[|V|α] < ∞ by definition of ψ. Further, by assumption on c, there are A, β2 > 0

such that |x| > A implies

β2|x|α ≤ c(x). (A.182)

Then, as

|Z|α ≤ Aα + |Z|α · 1R\[−A,A](Z) ≤ Aα + c(Z)/β2 (A.183)

and E[c(Z)] = Eq[c] < ∞ by assumption, we also have that E[|Z|α] < ∞. Thus, E[U] < ∞. Hence,

by absolute continuity of the Lebesgue integral, the uniform bound in (A.181) implies the uniform

integrability of the set {c(Zσ)}0<σ≤1, so (A.170) follows by the Lebesgue-Vitali theorem, and the

proof is complete.

The following lemma shows that the integrands when computing D(qσ∥Taqσ) have equi-small

tails as a varies over [−1, 1]. This will allow us to focus on approximating qσ by a cactus distribution

only in a bounded interval.

Lemma A.3. If the PDF q satisfies

sup
|a|≤1

D(q∥Taq) < ∞ (A.184)
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then for any σ > 0

lim
z→∞

sup
|a|≤1

∫
R\[−z,z]

qσ

∣∣∣∣log
qσ

Taqσ

∣∣∣∣ = 0. (A.185)

Proof. Assume that q satisfies (A.184). By the data processing inequality, we also have

sup
|a|≤1

D(qσ∥Taqσ) < ∞. (A.186)

Suppose, for the sake of contradiction, that (A.185) does not hold. That is, suppose there exists ε > 0

where

lim sup
z→∞

sup
|a|≤1

∫
R\[−z,z]

qσ

∣∣∣∣log
qσ

Taqσ

∣∣∣∣ = ε. (A.187)

This implies that there exists a sequence {(zn, an)}n∈N, where zn ↗ ∞ and supn∈N |an| ≤ 1, such

that for all n ∫
R\[−zn ,zn ]

qσ

∣∣∣∣log
qσ

Tan qσ

∣∣∣∣ ≥ ε/2. (A.188)

Since [−1, 1] is a compact set, there exists a convergent subsequence {ank}k∈N, say ank → a where

a ∈ [−1, 1]. Moreover, for any z > 0, for sufficiently large k we have znk ≥ z, which implies

lim sup
k→∞

∫
R\[−z,z]

qσ

∣∣∣∣∣log
qσ

Tank
qσ

∣∣∣∣∣ ≥ ε/2. (A.189)

Recall that ψ is as defined in (A.161) and that, as shown in (A.163), it satisfies the inequality

ψ(x + y)
ψ(x)

≤ exp (|y|γ) (A.190)

for every x, y ∈ R. Thus, for any a, b, z ∈ R,

(Taqσ)(z) = qσ(z− a) (A.191)

=
∫

R
q(x)

1
σ

ψ

(
z− a− x

σ

)
dx (A.192)

≤ e|a−b|γ/σγ
∫

R
q(x)

1
σ

ψ

(
z− b− x

σ

)
dx (A.193)

= e|a−b|γ/σγ
(Tbqσ)(z). (A.194)

Thus, for any a, b ∈ R, we have the uniform bound∥∥∥∥log
Taqσ

Tbqσ

∥∥∥∥
L∞(R)

≤
(
|a− b|

σ

)γ

. (A.195)
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Applying this bound to the integral in (A.189) gives

∫
R\[−z,z]

qσ ·
∣∣∣∣∣log

qσ

Tank
qσ

∣∣∣∣∣ =
∫

R\[−z,z]
qσ ·

∣∣∣∣∣log
qσ

Taqσ
+ log

Taqσ

Tank
qσ

∣∣∣∣∣ (A.196)

≤
∫

R\[−z,z]
qσ ·

(∣∣∣∣log
qσ

Taqσ

∣∣∣∣+( |ank − a|
σ

)γ)
(A.197)

≤
( |ank − a|

σ

)γ

+
∫

R\[−z,z]
qσ ·

∣∣∣∣log
qσ

Taqσ

∣∣∣∣ . (A.198)

Recalling inequality (A.189) and that ank → a as k→ ∞, we have, for any z > 0,

∫
R\[−z,z]

qσ

∣∣∣∣log
qσ

Taqσ

∣∣∣∣ ≥ ε/2. (A.199)

Finally, note that by finiteness of the KL-divergence D(qσ∥Taqσ) (see (A.186)), we also have that

∫
R

qσ

∣∣∣∣log
qσ

Taqσ

∣∣∣∣ < ∞. (A.200)

Indeed, the function f (t) := t log t over (0, ∞) is lower bounded by −1/e, so dividing the integration

region over the two regions where f is positive or negative we obtain

∫
R

qσ

∣∣∣∣log
qσ

Taqσ

∣∣∣∣ = ETaqσ

[∣∣∣∣ f ◦ qσ

Taqσ

∣∣∣∣] ≤ D (qσ∥Taqσ) +
2
e
< ∞. (A.201)

Thus, by the monotone convergence theorem, we must have

lim
z→∞

∫
R\[−z,z]

qσ

∣∣∣∣log
qσ

Taqσ

∣∣∣∣ = 0. (A.202)

As this contradicts (A.199), the lemma is proved.

The following lemma gives an exp(−O(wγ)) lower bound on the minimum value of qσ over

[−w, w] and on the probability that Zσ ∼ qσ exceeds w, both as w→ ∞.

Lemma A.4. For a PDF q and a constant σ > 0, we have that

∫
[w,∞)

qσ = exp (−O(wγ)) (A.203)

and

min
|x|≤w

qσ(x) = exp (−O(wγ)) , (A.204)

both as w→ ∞.
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Proof. First, we show that there is a bounded Borel set B with λ(B) > 0 such that

µ := inf
x∈B

q(x) > 0. (A.205)

Note that we may remove the boundedness condition on B. Indeed, if the Borel set B satisfies

λ(B) > 0 and infx∈B q(x) > 0, then the bounded Borel sets Am := B∩ [−m, m] also satisfy λ(Am) > 0

and infx∈Am q(x) > 0 for all large m by continuity of λ and the definition of the infimum. Now, to

see that such a B exists, consider the Borel sets Bn := q−1([1/n, ∞)) for integers n ≥ 1. For each

n ≥ 1, we have that infx∈Bn q(x) ≥ 1/n. Suppose, for the sake of contradiction, that λ(Bn) = 0 for

each n. Then we would have

λ(q−1((0, ∞))) = λ

(
q−1

(⋃
n≥1

[1/n, ∞)

))
= λ

(⋃
n≥1

Bn

)
= 0. (A.206)

Hence, q = 0 a.e. However, this would contradict that q is a PDF. Thus, we conclude that λ(Bn) > 0

for some n. In short, there must exist a bounded Borel set B with λ(B) > 0 and infx∈B q(x) > 0. Fix

such a B, and let x0 > 0 be such that B ⊂ [−x0, x0].

Recall that we define qσ = q ∗ ψσ (see equations (A.160)–(A.165)). For each w ∈ R, Tonelli’s

theorem implies that ∫
[w,∞)

qσ =
∫

R
q(x)

∫ ∞

w
ψ

(
y− x

σ

)
1
σ

dy dx. (A.207)

Performing a change of variable, we have for every x, w ∈ R

∫ ∞

w
ψ

(
y− x

σ

)
1
σ

dy =
∫
[(w−x)/σ,∞)

ψ. (A.208)

Further, for any z ≥ 0, by definition of ψ, we have the bound

∫
[z,∞)

ψ ≥
∫
[z,z+1]

ψ ≥ exp
(
− (z + 1)γ) · χ−1, (A.209)

where χ =
∫

R
exp(−|u|γ) du is the normalization constant for ψ. Therefore, whenever w ≥ x we

have ∫
[(w−x)/σ,∞)

ψ ≥ exp
(
−
(

w− x + σ

σ

)γ)
· χ−1. (A.210)

Now, combining (A.207) and (A.208), nonnegativity of the PDFs q and ψ implies the bound

∫
[w,∞)

qσ ≥
∫

B
q(x)

∫
[(w−x)/σ,∞)

ψ(u) du dx. (A.211)
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Since B ⊂ [−x0, x0], we conclude from (A.210) that for every w ≥ x0∫
[w,∞)

qσ ≥
∫

B
µ · exp

(
−
(

w− x + σ

σ

)γ)
· χ−1 dx (A.212)

≥ λ(B)µχ−1 · exp
(
−
(

w + x0 + σ

σ

)γ)
. (A.213)

The estimate in (A.203) follows by taking w→ ∞.

Finally, we show that (A.204) holds. Let w0 > 0 be such that
∫
[−w,w] q ≥ 1/2 for every w ≥ w0.

Then, for any w ≥ w0 and x ∈ [−w, w],

qσ(x) =
∫

R
q(u)ψσ(x− u) du (A.214)

= (σχ)−1
∫

R
q(u) exp (−|x− u|γ/σγ) du (A.215)

≥ (σχ)−1
∫ w

−w
q(u) exp (−|x− u|γ/σγ) du (A.216)

≥ (σχ)−1 exp (−(2/σγ)wγ)
∫
[−w,w]

q (A.217)

≥ (2σχ)−1 exp (−(2/σγ)wγ) . (A.218)

The estimate (A.204) follows by taking w→ ∞.

Conversely, the following lemma gives an upper bound on the tail of any distribution that satisfies

the cost constraint.

Lemma A.5. For any P ∈ B, if EP[c] < ∞ then

P(R \ [−x, x]) = o
(

c(x)−1
)

(A.219)

as x → ∞.

Proof. By evenness of c, it suffices to show that P((x, ∞)) = o(c(x)−1). By monotonicity of c,

c(x)P((x, ∞)) = c(x)
∫
(x,∞)

dP ≤
∫
(x,∞)

c(t) dP(t)→ 0, (A.220)

as desired.

The final auxiliary lemma gives an upper bound on the tail of the cost constraint incurred by a

cactus distribution.

Lemma A.6. Fix r ∈ (0, 1) and integers N > n ≥ 1, and set w = (N− 1/2)/n. Assume that c(x) ≤ β1xα
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for x ≥ w. Then, we have the bound

∑
i≥N

cn,iri−N ≤ β1ℓα

 wα

1− r
+

2
(

α
e
)α log 1

r + Γ(α + 1)

rnα
(

log 1
r

)α+1

 , (A.221)

where ℓα := max(1, 2α−1).

Proof. By monotonicity of c,

∑
i≥N

cn,iri−N = ∑
i≥N

∫ (i+1/2)/n

(i−1/2)/n
ncri−N (A.222)

≤ ∑
i≥N

β1

(
i + 1/2

n

)α

ri−N (A.223)

= β1 ∑
i≥0

(
w +

i + 1
n

)α

ri (A.224)

≤ β1ℓα

(
wα

1− r
+

Li−α(r)
rnα

)
, (A.225)

where

Li−α(r) := ∑
k≥1

kαrk (A.226)

is the polylogarithm function. To finish the proof of the lemma, we show next that

Li−α(r) ≤ 2

(
α

e log 1
r

)α

+
Γ(α + 1)(
log 1

r

)α+1 . (A.227)

Now, consider the function g : (0, ∞)→ (0, ∞) defined by

g(x) := xαrx. (A.228)

We have that

g′(x) = (α + x log r) xα−1rx. (A.229)

Thus, g increases until it reaches a maximum at x0 = α/ log 1
r then it decreases. Thus,

Li−α(r) ≤ g(⌊x0⌋) + g(⌈x0⌉) +
∫
(0,∞)

g. (A.230)

We have

g(⌊x0⌋) + g(⌈x0⌉) ≤ 2g(x0) = 2

(
α

e log 1
r

)α

, (A.231)
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and ∫
(0,∞)

g =
Γ(α + 1)(
log 1

r

)α+1 . (A.232)

The proof is thus complete.

A.5.2 Proof of Theorem 2.8

By Theorem 2.3, there is an even PDF q⋆ that satisfies both

sup
|a|≤1

D(q⋆∥Taq⋆) = KL⋆, (A.233)

Eq⋆ [c] ≤ C. (A.234)

Fix arbitrary constants δ, η > 0, and we will find a cactus distribution that attains the KL-

divergence (A.233) to within δ and the cost (A.234) to within η.

By Lemma A.2, there is a σ > 0 such that the PDF q⋆σ satisfies the bounds

sup
|a|≤1

D(q⋆σ∥Taq⋆σ) ≤ KL⋆, (A.235)

Eq⋆σ [c] ≤ C +
η

2
. (A.236)

Throughout the proof, we will denote

q := q⋆σ (A.237)

for short. Let

Q(B) :=
∫

B
q (A.238)

be the probability measure induced by q. We will construct a cactus distribution that approximates q.

We first note a few properties of q. Note that q is an even PDF. Further, it is uniformly continuous,

and strictly positive over R. Thus, q is locally bounded away from zero. For each z ≥ 0, denote the

minimum

µz := min
|x|≤z

q(x), (A.239)

so µz > 0 for every z. In addition, q is upper bounded: by Young’s inequality, we have that

∥q∥L∞(R) = ∥q⋆ ∗ ψσ∥L∞(R) ≤ ∥q⋆∥L1(R) · ∥ψσ∥L∞(R) = (σχ)−1 =: M. (A.240)

In fact, q satisfies a property resembling local γ-Hölder continuity. Specifically, as in the proof of

185



Lemma A.3 (see (A.190)–(A.194)), we have that

q(x) ≤ e|x−y|γ/σγ
q(y) (A.241)

for every x, y ∈ R. Therefore, for some |tx,y| ≤ 1 we have

|q(x)− q(y)| = q(y)
∣∣∣etx,y |x−y|γ/σγ − 1

∣∣∣ ≤ 2M
σγ
|x− y|γ, (A.242)

where the latter inequality follows whenever |x− y| ≤ σ. In particular, for all ε ∈ (0, 2M), we have

that

|q(x)− q(y)| ≤ ε whenever |x− y| ≤ σ ·
( ε

2M

)1/γ
. (A.243)

Before constructing the parameters (n, N, r) of the cactus distribution, we note a fundamental

lower bound on n. For the cost constraint to be satisfied, we need cn,0 < C to hold. Nevertheless, by

continuity of c, every real number is a Lebesgue point of c. In particular, as 0 is a Lebesgue point of

c, we obtain

cn,0 =

∫
[−1/(2n),1/(2n)] c

1/n
→ c(0) = 0 (A.244)

as n→ ∞. Let nmin be the least positive integer such that

cn,0 < C (A.245)

for every n ≥ nmin. Note that nmin depends only on c and C.

Now, we choose the integers n and N. Denote the constants

θα := 4
(α

e

)α
+ 2Γ(α + 1) (A.246)

θ′α := (2θα)
1/α (A.247)

γ′ :=
γ + α

2
∈ (γ, α) (A.248)

εmin := 2M ·min
(

2
σnmin

,
1

θ′ασ

)γ

(A.249)

zmin,0 :=

(
log

(
4
σ
·
(

2M
εmin

)1/γ
))1/γ′

(A.250)

zmin,1 :=
(

η

δ
· 2eθ′α

β1ℓα

)1/(α+1)

(A.251)

zmin,2 :=
(

2α+1

β1ℓα

)1/(α−γ′)

(A.252)

zmin := max
(

zmin,0, zmin,1, zmin,2,
δ

12M

)
. (A.253)
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Since q = q⋆σ (see (A.237)), Lemma A.3 yields the existence of a constant z0 > 0 such that z ≥ z0

implies the uniform bound

sup
|a|≤1

∫
R\[−z,z]

q
∣∣∣∣log

q
Taq

∣∣∣∣ ≤ δ

3
. (A.254)

In addition, Lemma A.4 yields the existence of constants τ, z1 > 0 such that z ≥ z1 implies (see (A.238)

and (A.239))

min (µz, Q([z, ∞))) ≥ exp (−τzγ) . (A.255)

By the tail-regularity assumption on c, there are constants β1, β2, z2 > 0 such that

β2zα ≤ c(z) ≤ β1zα (A.256)

for every z ≥ z2. By Lemma A.5, we have that (see (A.238))

lim
z→∞

Q(R \ [−z, z])c(z) = 0. (A.257)

Let z3 > 0 be large enough that z ≥ z3 implies

Q (R \ [−z, z]) c(z) ≤ β2

β1ℓα
· η

6
. (A.258)

If z ≥ max(z2, z3), then by (A.256) and (A.258) we may bound the tail of Q also by

Q (R \ [−z, z]) ≤ 1
β1ℓαzα

· η

6
. (A.259)

Let z4 > 0 be the smallest number such that both inequalities

eτzγ ≥ δβ1ℓα

2Mη
· zα (A.260)

eγzγ′ ≥
(

4
σ

)γ

· 48M2

δ
· zeτzγ

(A.261)

hold for all z ≥ z4. Fix a rational number

z > max(zmin, z0, z1, z2, z3, z4, 2θ′α) (A.262)

that is a ratio of an odd integer by an even integer, and set

w := z + 1. (A.263)

We choose z (hence also w) here to belong in N + 1
2 for simplicity, but we note that any other choice

(of denominator) is also valid provided that w is increased so that the subsequent choices in (A.268)
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below can be made. Set

ε :=
22γ+1M

σγ
· e−γwγ′

. (A.264)

Denote

n0 :=
2
σ
·
(

2M
ε

)1/γ

, (A.265)

By the uniform continuity of q shown in (A.243), we have that

|q(x)− q(y)| ≤ ε whenever |x− y| ≤ 2
n0

. (A.266)

Note that nmin < n0 since ε < εmin, which in turn follows because w > zmin,0. We note also that

ε < εmin implies 2θ′α < n0. Set

n1 := ewγ′
. (A.267)

By construction, we have that n1 = 2n0. Thus, we may choose integers n ∈ [n0, n1] and N > n such

that

w =
2N − 1

2n
(A.268)

Next, we choose the parameter r, thereby completing the cactus distribution construction. Define,

for i ∈ {0, · · · , N − 1},

pi := inf
x∈Jn,i

q(x)
n

. (A.269)

By evenness, continuity, and strict positivity of q, we have that

p0 +
N−1

∑
i=1

2pi =
∫
[−w,w]

∑
|i|≤N−1

np|i| · 1Jn,i ≤
∫
[−w,w]

q < 1. (A.270)

Thus, for any r ∈ (0, 1), setting

pN :=
1− r

2

(
1−

(
p0 +

N−1

∑
i=1

2pi

))
, (A.271)

we infer from (A.270) that the vector p = (p0, · · · , pN) belongs to (0, 1]N+1, and by construction it

satisfies Sr,p = 1. We will choose r as

r := 1− θ′α
wn

, (A.272)

and define pN as in (A.271) for this choice of r.

Therefore, fn,r,p is a valid cactus distribution. By uniform continuity of q (see (A.266)) and by

definition of the pi (see (A.269)), we have that fn,r,p uniformly approximates q from below over
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[−w, w]: for every x ∈ [−w, w] we have that

0 ≤ q(x)− fn,r,p(x) ≤ ε. (A.273)

We will deduce from the uniform bound (A.273) that fn,r,p approximates q in the two senses:

E fn,r,p [c] ≤ Eq[c] +
η

2
(A.274)

and

sup
|a|≤1

D( fn,r,p∥Ta fn,r,p) ≤ sup
|a|≤1

D(q∥Taq) + δ. (A.275)

Combined with (A.235)–(A.236), we would conclude from (A.274)–(A.275) that

E fn,r,p [c] ≤ C + η (A.276)

and

sup
|a|≤1

D( fn,r,p∥Ta fn,r,p) ≤ KL⋆ + δ. (A.277)

Now, we show that fn,r,p satisfies the cost constraint (A.276). Since fn,r,p|[−w,w] ≤ q|[−w,w], we

have that

E fn,r,p [c · 1[−w,w]] ≤ Eq[c] ≤ C +
η

2
. (A.278)

We show next that

E fn,r,p [c · 1R\[−w,w]] ≤
η

2
. (A.279)

By construction of fn,r,p, and since w = (N − 1/2)/n (see (A.268)), we have the expression

E fn,r,p [c · 1R\[−w,w]] = 2pN ∑
i≥N

cn,iri−N . (A.280)

We bound the terms 2pN and ∑i≥N cn,iri−N separately. By Lemma A.6, we have the bound

∑
i≥N

cn,iri−N ≤ β1ℓα

 wα

1− r
+

2
(

α
e
)α log 1

r + Γ(α + 1)

rnα
(

log 1
r

)α+1

 . (A.281)

By definition of r (see (A.272)), and since w ≥ 1 and n ≥ 2θ′α, we have that r ≥ 1/2 > 1/e. Thus, we

deduce from (A.281) that

∑
i≥N

cn,iri−N ≤ β1ℓα

 wα

1− r
+

θα

nα
(

log 1
r

)α+1

 , (A.282)
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where θα is as defined in (A.246). In addition, we have that (recall that we denote by Pn,r,p the

probability measure associated with fn,r,p)

2pN
1− r

= Pn,r,p (R \ [−w, w]) = 1− Pn,r,p ([−w, w]) . (A.283)

As fn,r,p uniformly approximates q from below over [−w, w] to within ε (see (A.273)), we have that

Pn,r,p ([−w, w]) ≥ Q ([−w, w])− 2εw. (A.284)

Thus, by the bound on the tail of Q in (A.259)

2pN
1− r

≤ Q (R \ [−w, w]) + 2εw ≤ 1
β1ℓαwα

· η

6
+ 2εw. (A.285)

Further, combining inequalities (A.260)–(A.261) and using the definition of ε in (A.264), we obtain

ε ≤ η

12β1ℓαwα+1 . (A.286)

Thus, we deduce

2pN ≤
η · (1− r)
3β1ℓαwα

. (A.287)

From the expression in (A.280), multiplying inequalities (A.282) and (A.287) and noting that 1− r ≤

log 1
r , we obtain

E fn,r,p [c · 1R\[−w,w]] ≤
η

3

1 +
θα(

wn log 1
r

)α

 . (A.288)

By definition of r, we have that

log
1
r
≥ 1− r =

θ′α
wn

. (A.289)

Using inequality (A.289) in (A.288), we obtain

E fn,r,p [c · 1R\[−w,w]] ≤
η

3
· 3

2
=

η

2
, (A.290)

which is inequality (A.279). Combining (A.278)–(A.279), we deduce (A.276), i.e.,

E fn,r,p [c] ≤ C + η. (A.291)

Next, we show that fn,r,p satisfies the KL bound (A.277). We begin by splitting the integration at

the points ±z. By finiteness of the considered KL-divergences, we have for each |a| ≤ 1

D( fn,r,p∥T−a fn,r,p)− D(q∥T−aq) ≤
∫
[−z,z]

(
fn,r,p log

fn,r,p

T−a fn,r,p
− q log

q
T−aq

)
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+
∫

R\[−z,z]
fn,r,p log

fn,r,p

T−a fn,r,p

+
∫

R\[−z,z]
q
∣∣∣∣log

q
T−aq

∣∣∣∣ . (A.292)

We already have a uniform bound for the last integral in (A.292): since z ≥ z0, the estimate in (A.254)

holds and we obtain

sup
|a|≤1

∫
R\[−z,z]

q
∣∣∣∣log

q
Taq

∣∣∣∣ ≤ δ

3
. (A.293)

We proceed to bounding the first integral in (A.292) uniformly by

sup
|a|≤1

∫
[−z,z]

(
fn,r,p log

fn,r,p

T−a fn,r,p
− q log

q
T−aq

)
≤ δ

3
. (A.294)

We do this via deriving an upper bound on the integrand that is uniform in both a and the variable

of integration. From w ≥ δ/(12M) (A.253), µw ≥ e−τwγ
(A.255), and (A.261), we have that

ε ≤ µw

2
·min

(
1,

δ

12Mw

)
. (A.295)

Define the function g : [−w, w]→ [0, ε] by

g := q− fn,r,p. (A.296)

That the range of g is contained within [0, ε] follows since fn,r,p approximates q from below uniformly

over [−w, w] to within ε. Thus, z = w− 1 yields

sup
|a|≤1
∥Tag∥L∞([−z,z]) ≤ ε. (A.297)

We note that, over [−z, z], the inequality

fn,r,p log
fn,r,p

T−a fn,r,p
− q log

q
T−aq

≤ −q log
(

1− T−a
g
q

)
− g log

(
1− g

q

)
+ g log

T−aq
q

(A.298)

holds; that all the logarithms are well defined follows since g ≤ q over [−w, w]. Indeed, subtracting

the left hand side from the right hand side in (A.298), we get the function

−q log
(

1− g
q

)
− g log

(
1− T−a

g
q

)
, (A.299)

which is nonnegative over [−z, z] since g is nonnegative over [−w, w]. Now, we bound each of the

terms in (A.298). It is easy to see that for 0 ≤ t ≤ 1/2 one has

− log(1− t) ≤ 2t. (A.300)
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Now, we show that g/q ≤ 1/2 over [−w, w]. Indeed, this is equivalent to q ≤ 2 fn,r,p over [−w, w]. But

q− ε ≤ fn,r,p over [−w, w], which implies in view of ε ≤ µw/2 ≤ q/2 (over [−w, w]) that q ≤ 2 fn,r,p,

as desired. Thus, we obtain that over [−z, z]

−q log
(

1− T−a
g
q

)
≤ 2qT−a

g
q
≤ 2Mε

µw
, (A.301)

and

−g log
(

1− g
q

)
≤ 2g2

q
≤ 2ε2

µw
≤ ε. (A.302)

It is also clear that over [−z, z]

g log
T−aq

q
≤ ε log

M
µw
≤ ε

(
M
µw
− 1
)

. (A.303)

Plugging in inequalities (A.301)–(A.303) into (A.298), we obtain the uniform bound

fn,r,p log
fn,r,p

T−a fn,r,p
− q log

q
T−aq

≤ 3Mε

µw
(A.304)

over [−z, z]. Integrating, we deduce

∫
[−z,z]

fn,r,p log
fn,r,p

T−a fn,r,p
− q log

q
T−aq

≤ 6zMε

µw
<

δ

3
, (A.305)

where the last inequality follows by (A.295).

It remains to upper bound the middle integral in (A.298), for which we also derive a uniform

upper bound

sup
|a|≤1

∫
R\[−z,z]

fn,r,p log
fn,r,p

T−a fn,r,p
≤ δ

3
. (A.306)

We will further split the integration at the points ±(w + 1). By evenness of fn,r,p, we have that this

integral depends only on |a|, i.e., for each a ∈ [−1, 1]

∫
R\[−z,z]

fn,r,p log
fn,r,p

T−a fn,r,p
=
∫

R\[−z,z]
fn,r,p log

fn,r,p

Ta fn,r,p
. (A.307)

Thus, it suffices for (A.306) to show that

sup
0<a≤1

∫
R\[−z,z]

fn,r,p log
fn,r,p

T−a fn,r,p
≤ δ

3
. (A.308)

Consider first the integral ∫
R\[−(w+1),w+1]

fn,r,p log
fn,r,p

T−a fn,r,p
(A.309)

for fixed a ∈ (0, 1]. From the proof of Theorem 2.7, we can write the integrand in (A.309) as follows.
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Extend the definition of pi to all i ∈ Z by

pi :=


p|i|, if − N ≤ i ≤ −1,

pNr|i|−N , if |i| > N.
(A.310)

For each i ∈ Z, there is an integer j with |j| ≤ n, such that we have

fn,r,p log
fn,r,p

T−a fn,r,p
= npi log

pi
pi+j

(A.311)

over Jn,i except possibly at a single point. By definition of w, we have that

R \ [−(w + 1), w + 1] =
⋃

|i|≥N+n

Jn,i. (A.312)

Further, if |i| ≤ N + n and |j| ≤ n, then |i + j| ≥ N. Hence, from (A.311) we have that over Jn,i with

|i| ≥ N + n

fn,r,p log
fn,r,p

T−a fn,r,p
= npNr|i|−N(|i| − |i + j|) log r ≤ n2 pNr|i|−N log

1
r

. (A.313)

Summing over |i| ≥ N + n, we obtain

∫
R\[−(w+1),w+1]

fn,r,p log
fn,r,p

T−a fn,r,p
= ∑
|i|≥N+n

∫
Jn,i

fn,r,p log
fn,r,p

T−a fn,r,p
(A.314)

≤ npN log
1
r ∑
|i|≥n

r|i| =
2npNrn log 1

r
1− r

. (A.315)

Using the upper bound on pN in (A.287), we obtain that

∫
R\[−(w+1),w+1]

fn,r,p log
fn,r,p

T−a fn,r,p
≤

ηnrn log 1
r

3β1ℓαwα
. (A.316)

As 1/e ≤ r ≤ 1 and log 1
r ≤

1
r − 1, using the definition of r given in (A.272) and w ≥ z4 (see (A.253)),

we have the bound
ηnrn log 1

r
3β1ℓαwα

≤ eηn(1− r)
3β1ℓαwα

≤ eηθ′α
3β1ℓαwα+1 ≤

δ

6
. (A.317)

Thus, we have shown that

sup
a∈(0,1]

∫
R\[−(w+1),w+1]

fn,r,p log
fn,r,p

T−a fn,r,p
≤ δ

6
. (A.318)

The final integral bound we need is the following:

sup
0<a≤1

∫
w−1<|x|≤w+1

fn,r,p(x) log
fn,r,p(x)

T−a fn,r,p(x)
dx ≤ δ

6
. (A.319)
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By evenness of fn,r,p, we have that

∫
w−1<|x|≤w+1

fn,r,p(x) log
fn,r,p(x)

T−a fn,r,p(x)
dx =

∫
(w−1,w+1]

fn,r,p log
f 2
n,r,p

(T−a fn,r,p) · (Ta fn,r,p)
. (A.320)

Consider the function inside the logarithm in the integrand:

ρ(x; a) :=
fn,r,p(x)2

fn,r,p(x + a) fn,r,p(x− a)
. (A.321)

We will prove the uniform upper bound

sup
x∈(w−1,w+1]

a∈(0,1]

ρ(x; a) ≤ exp
(

2wγ′
)

, (A.322)

where γ′ = (γ + α)/2 ∈ (γ, α) is as defined in (A.248). Note that

(w− 1, w + 1] =
N+n⋃

i=N−n
Jn,i. (A.323)

For each a ∈ (0, 1] and x ∈ (w− 1, w + 1], there are integers N − n ≤ i ≤ N + n and 0 ≤ j, k ≤ n

such that

ρ(x; a) =
p2

i
pi+j pi−k

. (A.324)

Thus, it suffices to show that exp(wγ′) is an upper bound on each of the terms

pi
pj

,
pk

pNrn ,
pN
pk

,
1
rn (A.325)

for 0 ≤ i, j, k ≤ N − 1 with |i− j| ≤ n. First, for 1/rn, denoting m = nw/(2θα)1/α ≥ 2, we have the

bound

rn =

((
1− 1

m

)m)(2θα)1/α/w

≥ 4−(2θα)1/α/w ≥ 1
2

. (A.326)

Hence,
1
rn ≤ 2 ≤ ewγ′

. (A.327)

For pk/pN with 0 ≤ k ≤ N − 1, we have the bound

pk
pN
≤ M

npN
=

2M/(1− r)
n · (2pN/(1− r))

=
2M/(1− r)

nPn,r,p(R \ [−w, w])
(A.328)

≤ 2M/(1− r)
nQ(R \ [−w, w])

≤ M/(1− r)
ne−τwγ =

Mweτwγ

θ′α
. (A.329)
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Hence,
pk

pNrn ≤
2Mweτwγ

θ′α
≤ ewγ′

, (A.330)

where the last inequality follows from (A.261) for all small δ, e.g., for

δ ≤ 3 · 22γ+2 · θ′α · χ−1 (A.331)

(alternatively, we may increase the size of w at the outset). Consider next pi/pj for 0 ≤ i, j ≤ N − 1

with |i− j| ≤ n. By definition of the pk and uniform continuity of q, we have for 0 ≤ k ≤ N − 2

|pk − pk+1| ≤
ε

n
. (A.332)

By the triangle inequality, we deduce

∣∣pi − pj
∣∣ ≤ |i− j|ε

n
≤ ε. (A.333)

Thus,
pi
pj
≤ 1 +

ε

pj
≤ 1 +

nε

µw
≤ 1 +

n
2
≤ ewγ′

. (A.334)

The last term pN/pk can be bounded using (A.287) to obtain

pN
pk
≤ η · (1− r)/(6β1ℓαwα)

µw/n
=

ηθ′α
6β1ℓαµwwα+1 ≤

ηθ′α
6β1ℓα

· eτwγ ≤ ewγ′
, (A.335)

where the last inequality follows from (A.261) for all small η, e.g., for

η ≤ 24β1ℓα · χ−1 · (θ′α)−2 (A.336)

(alternatively, we may increase the size of w at the outset). Collecting (A.327), (A.330), (A.334),

and (A.335), we obtain the following upper bound on the integral in (A.320):

Pn,r,p((w− 1, w + 1]) · 2wγ′ . (A.337)

Further,

Pn,r,p((w− 1, w + 1])] ≤ Pn,r,p((w− 1, w]) + Pn,r,p((w, ∞)) (A.338)

≤ Q((w− 1, w]) +
1
2
− Pn,r,p([0, w]) (A.339)

≤ Q((w− 1, w]) +
1
2
− (Q([0, w])− εw) (A.340)

= εw + Q((z, ∞)) (A.341)
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≤ εw +
η

12β1ℓαzα
(A.342)

≤ η

6β1ℓαzα
, (A.343)

where the last inequality follows by (A.286). Hence, the integral in (A.320) is upper bounded by

2α

3β1ℓαwα−γ′
· η ≤ η

6
, (A.344)

where the last inequality follows since w ≥ zmin (see (A.253)). Thus, we have shown that (A.319)

holds, which when combined with (A.318) gives (A.306).

Combining (A.293), (A.294), and (A.306) gives, in view of (A.292), the desired inequality (A.277):

sup
|a|≤1

D( fn,r,p∥Ta fn,r,p) ≤ KL⋆ + δ. (A.345)

Recall that we showed in (A.276) that

E fn,r,p [c] ≤ C + η. (A.346)

To sum up, we make the dependence on C explicit in the optimal values, i.e., we write KL⋆(C),

KL⋆
n,N,r(C), and KL⋆

Cactus(C). What we have shown above yields that

KL⋆
n,N,r(C + η) ≤ KL⋆(C) + δ. (A.347)

Consider the values

KL◦Cactus(C) := inf
(n,N,r)∈N2×(0,1)

KL⋆
n,N,r(C), (A.348)

so (as defined by (2.83) in the statement of the theorem) KL⋆
Cactus(C) = limη→0+ KL◦Cactus(C + η). We

conclude that

KL⋆(C + η) ≤ KL◦Cactus(C + η) ≤ KL⋆(C) + δ. (A.349)

Taking δ→ 0+, we have

KL⋆(C + η) ≤ KL◦Cactus(C + η) ≤ KL⋆(C). (A.350)

Finally, being the infimum of a jointly convex function over a convex set, the function C 7→ KL⋆(C)

is convex. Since it is also finite, we see that KL⋆(C) is continuous over (0, ∞). Thus, taking η → 0+,

we see that

KL⋆
Cactus(C) = KL⋆(C), (A.351)

completing the proof of the theorem.
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A.6 Proofs of Section 2.13.1: Maximal Shifts and Worst Shifts

A.6.1 Proof of Lemma 2.1

Let p̃ : R+ → R+ be such that p(z) = p̃(∥z∥) for all z ∈ Rm. Fix a ∈ Rm with 0 < ∥a∥ ≤ s, and let

U ∈ Rm×m be an orthogonal matrix such that a = ∥a∥Ue1. Using the change of variables y = UTx,

we get that a 7→ Eγ(p ∥ Ta p) is spherically symmetric:

Eγ(p ∥ Ta p) =
∫

Rm
(p(x)− γp(x− a))+ dx (A.352)

=
∫

Rm
( p̃(∥x∥)− γ p̃(∥x− a∥))+ dx (A.353)

=
∫

Rm
( p̃(∥y∥)− γ p̃(∥y− ∥a∥e1∥))+ dy (A.354)

= Eγ(p ∥ T∥a∥e1
p). (A.355)

Next, we use (A.354) to show monotonicity in ∥a∥. Using hyperspherical coordinates, and defining

I(r, ϕ; ∥a∥) := p̃(r)− γ p̃(
√

r2 − 2∥a∥r cos ϕ + ∥a∥2), (A.356)

we have that

Eγ(p ∥ Ta p) ∝
∫ π

0

∫ ∞

0
I(r, ϕ; ∥a∥)+rm−1 dr dϕ, (A.357)

where the proportionality constant depends only on m. Now, for r ≥ 0, we have 2r cos ϕ ≥ ∥a∥ if

and only if

r ≥
√

r2 − 2∥a∥r cos ϕ + ∥a∥2. (A.358)

In particular, as γ ≥ 1, and as p̃ is decreasing, we have that the integrand in (A.357) vanishes

whenever 2r cos ϕ ≥ ∥a∥. Now, writing

r2 − 2∥a∥r cos ϕ + ∥a∥2 = (∥a∥ − r cos ϕ)2 + r2 sin2 ϕ, (A.359)

we see that this quadratic in ∥a∥ is strictly increasing over the region ∥a∥ ∈ (2r cos ϕ, ∞). As p̃ is

decreasing, we conclude that the mapping

∥a∥ 7→
∫
(r,ϕ)∈R+×(0,π)

2r cos ϕ<∥a∥
I(r, ϕ; ∥a∥)+rm−1 dr dϕ (A.360)

is increasing. This completes the proof of the lemma.
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A.6.2 Proof of Proposition 2.1

Subtracting γ · (t− 1) from f (t), where γ ∈ ∂ f (1) (the subdifferential of f at 1), we may assume that

f is nonnegative. Let f ∗(t) = t f (1/t). Then,

D f (p ∥ Ta p) = D f ∗(Ta p ∥ p) = D f (Ta p ∥ p) = D f ∗(p ∥ Ta p). (A.361)

Let f1(t) = f (t) · 1(0,1)(t) and f2(t) = f (t) · 1(1,∞)(t), so f = f1 + f2 and

D f (p ∥ Ta p) =
∫

Rm
p̃(∥x∥)( f1 + f ∗2 )

(
p̃(∥x− ∥a∥e1∥)

p̃(∥x∥)

)
dx (A.362)

where p(x) = p̃(∥x∥). Then, the proof is finished as in the end of the proof of Lemma 2.1. Namely,

the integrand above is non-decreasing in ∥a∥, which can be seen from the fact that f1 + f ∗2 is

non-increasing and that it vanishes over [1, ∞).

A.7 Proof of Theorem 2.9

Denote f = fn,r,p and f̃ = f̃n,r,p for short. Using hyperspherical coordinates, we have the KL-

divergence

D( f ∥ Te1 f ) =
∫

Rm
f̃ (∥x∥) log

f̃ (∥x∥)
f̃ (∥x− e1∥)

dx (A.363)

= (m− 1)Vm−1

∫ ∞

0

∫ π

0
I(ρ, ϕ) dϕ dρ, (A.364)

where we denote the integrand

I(ρ, ϕ) := ρm−1 sinm−2(ϕ) f̃ (ρ) log
f̃ (ρ)

f̃ (
√

ρ2 − 2ρ cos ϕ + 1)
. (A.365)

With θ =
√

ρ2 − 2ρ cos ϕ + 1 for fixed ρ > 0,

∫ π

0
I(ρ, ϕ) dϕ = 2m−3

∫
R+

θρH(1, ρ, θ)m−3 f̃ (ρ) log
f̃ (ρ)
f̃ (θ)

dθ. (A.366)

Therefore,

D( f ∥ Te1 f ) = Am

∫
R2
+

θρH(1, ρ, θ)m−3 f̃ (ρ) log
f̃ (ρ)
f̃ (θ)

dθ dρ. (A.367)

Using the partition R+ =
⋃

i≥0 Ji,n, we get the objective function in (2.95). From Proposition 2.1, the

function a 7→ D( f ∥ Ta f ) is maximized over ∥a∥ ≤ 1 at a = e1.
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Next, note that (2.96) is the probability constraint:

1 =
∫

Rm
f (x) dx = ∑

i≥0

∫
∥x∥∈Ji,n

f (x) dx = ∑
i≥0

pivi,n. (A.368)

Finally, inequality (2.97) is the cost constraint, as can be seen by expanding EPn,r,p [c] =
∫

Rm f (x)c(x) dx

along the Ji,n.

A.8 Proof of Theorem 2.10

The proof is divided into several steps:

• Step 1: general setup. Fix arbitrary θ1 > 0. Let q⋆ be a PDF of a monotone spherically-symmetric

continuous additive mechanism achieving satisfying Eq⋆ [c] ≤ C and

D(q⋆ ∥ Te1 q⋆) ≤ KL⋆
monotone(C) + θ1. (A.369)

Fix arbitrary θ2 > 0. We will construct parameters n, N ∈N, p ∈ [0, 1]N+1, and r ∈ (0, 1) such that

Pn,r,p ∈ Fn,N,r and

D( fn,r,p ∥ Te1 fn,r,p) ≤ KL⋆
monotone(C) + 2θ1, (A.370)

E fn,r,p [c] ≤ C + θ2. (A.371)

Let τ := 1
2 min(1, α) ∈ (0, 1

2 ]. Define the PDF ψ(x) := exp (−∥x∥τ) /χ, where χ is the normaliza-

tion constant. We will use ψ as a smoothing kernel. Let ψσ(x) := σ−mψ(x/σ). Let σ ∈ (0, 1) be small

enough so that q = q⋆ ∗ ψσ satisfies

Eq[c] ≤ C +
θ2

2
. (A.372)

Note that the data-processing inequality implies also that

D(q ∥ Te1 q) ≤ KL⋆
monotone(C) + θ1. (A.373)

Let q̃ : R+ → R+ be such that q(x) = q̃(∥x∥).

Consider n, N ∈N and T > 2 (to be specified later in Step 3), and set w := N/n, r := 1− 1/(TN).

Define p by

pi := inf
ρ∈Ji,n

q̃(ρ) = q̃
(

i + 1
n

)
, 0 ≤ i ≤ N − 1, (A.374)
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pN :=
1

∑k≥0 rkvN+k,n
·
(

1−
N−1

∑
i=0

pivi,n

)
. (A.375)

Denote f = fn,r,p for short, and let f̃ : R+ → R+ be such that f (x) = f̃ (∥x∥). We will also denote

P = Pn,r,p for short.

• Step 2: properties of q. By Young’s inequality, q is bounded:

∥q∥∞ ≤ ∥q⋆∥1∥ψσ∥∞ =
1

σmχ
=: M. (A.376)

The function ψ satisfies ψ(x)/ψ(y) ≤ exp (∥x− y∥τ) for every x, y ∈ Rm. Since q is a convolution

with ψσ, it is not hard to see that, for any fixed θ ∈ (0, 2M log 2) and x, y ∈ Rm, we have that

|q(x)− q(y)| < θ whenever the norms of x and y satisfy |∥x∥ − ∥y∥| <
(

1
2 σm+τχθ

)1/τ
. Next, we

note that by finiteness of the KL-divergence the tail of q may be ignored when considering its

KL-divergence. Let w̄0 > 1 be such that w > w̄0 implies

∫
∥x∥≥w−1

∣∣∣∣q(x) log
q(x)

q(x− e1)

∣∣∣∣ dx <
θ1

4
. (A.377)

Since Eq[c] < ∞ and c is a monotone radial function,

c̃(w) ·Q (Rm \ B(w)) ≤
∫

Rm\B(w)
c(x)q(x) dx → 0 (A.378)

as w→ ∞. As c̃(w) ∼ βwα by assumption, we see that wαQ(Rm \ B(w))→ 0 as w→ ∞. Denote the

constants

B′ :=
2m+α+2 · e2m+1 · β · Γ(m + α) · Tα

(m− 1)!
(A.379)

B := 2 max
(
1, B′

)
. (A.380)

Let w̄1 > 0 be such that w > w̄1 implies

Q (Rm \ B(w)) <
min(θ1, θ2)

Bwα
. (A.381)

Let g(w) := mVmwm−1q̃(w) denote the radial distribution, and µ(w) := g(w)/Q(Rm \ B(w)) the

hazard function. By assumption, we have that
∫

R+
g(w)wα dw < ∞. Note that w 7→ log Q(Rm \B(w))

is locally absolutely continuous with derivative −µ(w). Therefore, for w > 0,

Q(Rm \ B(w)) = exp
(
−
∫ w

0
µ(x) dx

)
(A.382)

Taking w → ∞, we get
∫

R+
µ(w) dw = ∞. In addition, µ is continuous. Therefore, by Lemma A.8
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(shown below),

L := lim sup
w→∞

wµ(w) > 0. (A.383)

Let {wk}k∈N, wk ↗ ∞, be such that wkµ(wk) ≥ L/2 for each k ∈ N. If other words, for each

w ∈ {wk}k∈N, we have

Q(Rm \ B(w)) ≤ 2mVm

L
· q̃(w)wm. (A.384)

Finally, since ψ(x)/ψ(y) ≤ exp (∥x− y∥τ), we obtain that q̃(w) ≥ q̃(0)e−(w/σ)τ
. In addition, it

is not hard to show that (for k ≥ 2 and w′ > 0)
∫ ∞

w′ vk−1e−v dv ≥ (w′)k−1e−w′ . Thus, we obtain the

lower bound

Q(Rm \ B(w)) ≥ mVm q̃(0)
στ

τ
wm−τe−(w/σ)τ

. (A.385)

• Step 3: choice of parameters. Fix any T > 2 + 2/L (see (A.383)). Recall that we set τ = 1
2 min(1, α),

which satisfies τ ∈ (0, 1
2 ] and τ < α. Denote the constant τ′ := τ+α

2 ∈ (τ, α). Let w̄2 > 0 be such that

w > w̄2 implies
2m+1eTmτ

στ
· wτ exp

((w
σ

)τ)
≤ exp

(
wτ′
)

. (A.386)

Denote the constant w̄3 = 20eAm
mVmθ1

. Let w̄4 > 0 be such that w > w̄4 implies c̃(w) < 2βwα. Let k∗ ∈N

be such that wk > max(w̄0, w̄1, w̄2, w̄3, w̄4, σ−τ/τ′ , 2) for all k ≥ k⋆. Denote w = wk⋆ . Consider any

constant θ3 ∈ (0, 2M log 2) satisfying

θ3 < min
(

q̃(w)

2
,

θ1q̃(w)

12MVmwm ,
θ1

2Vmwm+τ′
,

θ2

BVmwm+α

)
. (A.387)

With n0 :=
(

1
2 σm+τχθ3

)− 1
τ , fix n > max(n0, m), N = wn.

• Step 4: monotonicity of f . We only need to show pN−1 ≥ pN . Since we are choosing n > n0, the

continuity of q shown in Step 2 yields that f ≥ q− θ3 over B(w). Therefore,

P (Rm \ B(w)) ≤ Q (Rm \ B(w)) + θ3Vmwm. (A.388)

As w = wk⋆ , the bound on the hazard function (A.384) yields

Q(Rm \ B(w)) ≤ 2mVm

L
· q̃(w)wm. (A.389)

In addition, our choice of θ3 in (A.387) yields that

θ3Vmwm <
Vm

2
· q̃(w)wm. (A.390)
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By our choice of T in Step 3, we infer the tail bound

P (Rm \ B(w)) < mVmT · q̃(w)wm. (A.391)

Using r = 1− 1/(TN), it is elementary to derive the bound

∑
k≥0

rkvN+k,n ≥ mVmTwm. (A.392)

Combining these bounds, by definition of pN , we get

pN < q̃(w) = pN−1, (A.393)

• Step 5: bounding the cost. As f ≤ q over B(w),

E f [c] ≤ C +
θ2

2
+ E f [c · 1Rm\B(w)], (A.394)

As w > w̄4, we have c̃(u) < 2βuα for u > w. Hence,

E f [c · 1Rm\B(w)] ≤ 2mVmβpN ∑
k≥0

rk
∫
JN+k,n

ρm+α−1 dρ

≤ 2emVmβpN
nm+α ∑

k≥0
rk(N + k)m+α−1,

where the second inequality follows from

(N + k + 1)ℓ − (N + k)ℓ ≤ eℓ(N + k)ℓ−1 (A.395)

for k ≥ 0 and ℓ > 1. By Lemma A.7, we have the upper bound

∑
k≥0

rk(N + k)m+α−1 ≤ 2m+α−1Γ(m + α) · (TN)m+α. (A.396)

In addition, refining (A.392) using Lemma A.7, we obtain

∑
k≥0

rkvN+k,n ≥
m! ·Vm

2e2m · (Tw)m (A.397)

Combining these bounds, and recalling the definition of the constant B in (A.380), we obtain that

E f [c · 1Rm\B(w)] ≤
B
4
· P (Rm \ B(w))wα. (A.398)

Now, by our choice of θ3 (see (A.387)), θ3Vmwm < θ2
Bwα . As w > w̄1, the tail bound on Q in (A.381)

holds. Thus, recalling the tail bound on P given by (A.388), we get P (Rm \ B(w)) ≤ 2θ2
Bwα . Plugging
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this into (A.398), we get E f [c · 1Rm\B(w)] ≤
θ2
2 . Hence, from (A.394), we conclude that

E f [c] ≤ C + θ2. (A.399)

• Step 6: bounding the KL-divergence. Next, we upper bound the difference of KL-divergences D( f ∥ Te1 f )−

D(q ∥ Te1 q) by the arbitrarily small quantity θ1. We split the integral giving the difference of

these KL-divergences to consider integrating separately over the three regions {x : ∥x∥ ≤ w− 1},

{x : w− 1 < ∥x∥ < w + 1}, and {x : ∥x∥ ≥ w + 1}.

◦ Step 6.i: bounding the tail. As γi,j,n = 0 for |i− j| > n,

∫
∥x∥≥w+1

f (x) log
f (x)

f (x− e1)
dx ≤ Am pN log

1
r ∑

i≥N+n

n

∑
k=1

γi,i+k,n ri−Nk. (A.400)

Now, note that for ρ, θ ≥ 1, we have H(1, ρ, θ) ≤ 1
2 min(ρ, θ). Therefore, for i ≥ N + n and k ≥ 1, we

have that

γi,i+k,n =
∫
Ji,n

∫
Ji+k,n

θρ · H(1, ρ, θ)m−3 dθ dρ (A.401)

≤
(2(i + k) + 1)

(
(i + 1)m−1 − im−1)

2m−2(m− 1)nm+1 . (A.402)

In addition, from (A.395) we see that

γi,i+k,n ≤
e(2(i + k) + 1)im−2

2m−2nm+1 . (A.403)

Combining (A.400)–(A.403) and using r = 1− 1/(TN), it is elementary to obtain

∫
∥x∥≥w+1

f (x) log
f (x)

f (x− e1)
dx ≤

eAm pN log 1
r

2m−2nm+1 ∑
i≥N+n

n

∑
k=1

(2(i + k) + 1)im−2ri−Nk

≤ 10eAm

mVm
· 1

Tw
· pN ∑

ℓ≥0
rℓvN+ℓ,n (A.404)

=
10eAm

mVm
· 1

Tw
· P (Rm \ B(w)) ≤ 5eAm/(mVm)

w
. (A.405)

Recall that we choose w > w̄3 = 20eAm/(mVmθ1). Therefore, we obtain from (A.405) the following

tail bound ∫
∥x∥≥w+1

f (x) log
f (x)

f (x− e1)
dx <

θ1

4
. (A.406)

◦ Step 6.ii: bounding the approximation region. Consider the innermost region {x : ∥x∥ ≤ w− 1}. By

construction of f , we have f (x) ≤ q(x) whenever ∥x∥ ≤ w. Since n > n0 (see Step 3), the continuity

of q shown in Step 2 yields that f (x) ≥ q(x)− θ3 whenever ∥x∥ ≤ w. Also, as q− θ3 ≤ f ≤ q over
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B(w), and as θ3 ≤ q/2 over B(w), we get that 0 < f ≤ q ≤ 2 f and 0 < Te1 f ≤ Te1 q ≤ 2Te1 f over

B(w− 1). It is not hard to derive the following elementary bound: for any numbers 0 < ϕ ≤ κ and

0 < ϕ′ ≤ κ′, denoting γ = κ − ϕ ≥ 0 and γ′ = κ′ − ϕ′ ≥ 0, if 2γ ≤ κ and 2γ′ ≤ κ′ (i.e., κ ≤ 2ϕ and

κ′ ≤ 2ϕ′), then we have

ϕ log
ϕ

ϕ′
− κ log

κ

κ′
≤ 2κγ′

κ′
+

2γ2

κ
+ γ log

κ′

κ
. (A.407)

Applying this elementary bound on the integrand

I := f log
f

Te1 f
− q log

q
Te1 q

(A.408)

(with f in place of ϕ and q in place of κ) we obtain the bound

sup
x∈B(w−1)

I(x) ≤ 2Mθ3

q̃(w)
+

2θ2
3

q̃(w)
+ θ3 log

M
q̃(w)

. (A.409)

Since θ3 < q̃(w)/2 and log u ≤ u− 1, we infer

sup
x∈B(w−1)

I(x) <
3Mθ3

q̃(w)
<

θ1

4Vmwm . (A.410)

As this is a uniform bound, we conclude that

∫
∥x∥≤w−1

(
f log

f
Te1 f

− q log
q

Te1 q

)
(x) dx <

θ1

4
. (A.411)

◦ Step 6.iii: bounding the intersection shell. Consider the region {x : w − 1 < ∥x∥ < w + 1}. By

monotonicity of f ,

sup
w−1<∥x∥<w+1

f (x)
f (x− e1)

≤ q̃(w− 1)
pNrn ≤ 4q̃(0)

pN
. (A.412)

Next, we derive a lower bound on pN . By Lemma A.7,

∑
k≥0

rkvN+k,n ≤ 2m−1e(m!)VmTm · wm. (A.413)

As f ≤ q over B(w), we get P(Rm \B(w)) ≥ Q(Rm \B(w)). Combining (A.385), (A.386) (as w > w̄2),

and (A.413), we deduce that

pN =
P(Rm \ B(w))

∑k≥0 rkvN+k,n
≥ 4q̃(0) exp

(
−wτ′

)
. (A.414)

Plugging this into (A.412) then integrating, we get

∫
w−1<∥x∥<w+1

f (x) log
f (x)

f (x− e1)
dx ≤ wτ′P(Rm \ B(w)). (A.415)
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Finally, recalling the upper bound (A.388) on P, the bound Q (Rm \ B(w)) < θ1
2wα < θ1

2wτ′ (from (A.381)

since w > w̄1), and that θ3Vmwm < θ1
2mτ′ by choice of θ3 (see (A.387)), we infer P (Rm \ B(w)) <

θ1/wτ′ . Plugging into (A.415), we get

∫
w−1<∥x∥<w+1

f (x) log
f (x)

f (x− e1)
dx <

θ1

4
. (A.416)

• Step 7: conclusion of proof. Combining the inequalities shown in (A.377), (A.399), (A.406), (A.411),

and (A.416), we get that f satisfies E f [c] ≤ C + θ2 and D( f ∥ Te1 f )− D(q ∥ Te1 q) ≤ θ1. Therefore, we

have shown that

KL⋆
n,N,r(C + θ2) ≤ KL⋆

monotone(C) + 2θ1. (A.417)

Define

K̃L(C) := inf
(n,N,r)∈N2×(0,1)

KL⋆
n,N,r(C), (A.418)

so KL⋆
isotropic(C) = limθ2→0+ K̃L(C + θ2) as defined in (2.98). Then, we have that

KL⋆
monotone(C + θ2) ≤ K̃L(C + θ2) ≤ KL⋆

monotone(C) + 2θ1. (A.419)

Note that C 7→ KL⋆(C) is continuous over (0, ∞), since it is finite and convex there (indeed, it is the

infimum of a convex function over a convex set). Taking θ1 → 0+ then θ2 → 0+, we conclude that

KL⋆
isotropic = KL⋆

monotone, and the proof is complete.

Lemma A.7. Let Li−u(r) := ∑k≥1 kurk be the polylogarithm function. For each r ∈ (e−e/4, 1) and u ≥ 1,

we have
1

2e2(u+1)
≤ (1− r)u+1

Γ(u + 1)
· Li−u(r) ≤

3
2

. (A.420)

Proof. Let f (z) := zurz, so Li−u = ∑k≥1 f (k). Then, f increases over [0, z⋆] and decreases over [z⋆, ∞),

where z⋆ = u/ log 1
r . Therefore, by non-negativity of f over R+, we have∣∣∣∣Li−u(r)−

∫
R+

f (z) dz
∣∣∣∣ ≤ 2 f (z⋆). (A.421)

The proof is completed by computing the integral of f and applying simple bounds on f (z⋆).

Lemma A.8. With R+ = [0, ∞), let µ : R+ → R+ be a continuous nonnegative function with∫
R+

µ(w) dw = ∞ and ∫
R+

wαµ(w)

exp
(∫ w

0 µ(x) dx
) dw < ∞, (A.422)

for some α > 0. Then, lim supw→∞ wµ(w) > 0.
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Proof. By continuity and non-integrability,
∫ ∞

A µ(w) dw = ∞ for every A > 0. This immediately

implies, by (A.422), that

lim inf
w→∞

wα

exp
(∫ w

0 µ(x) dx
) = 0. (A.423)

Fix {wi}i∈N, wi ↗ ∞, with wα
i exp

(
−
∫ wi

0 µ(x) dx
)
→ 0 as i→ ∞. Then, for all large i, we have that∫ wi

0 µ(x) dx/ log wi ≥ α. Suppose for the sake of contradiction that limw→∞ wµ(w) = 0. Then, by

l’Hôpital’s rule,

lim
w→∞

∫ w
0 µ(x) dx

log w
= lim

w→∞
wµ(w) = 0, (A.424)

contradicting the existence of the sequence {wi}i∈N.

A.9 Auxiliary Results for Minimzing the Fisher Information

We prove in this appendix Lemma 2.2 and Proposition 2.2, and we also introduce and prove the

following lemma, which will be useful in the proof of Theorem 2.14 in the next appendix.

Lemma A.9. With P0 ⊂ P denoting the set of strictly positive PDFs, we have that

inf
p∈P0

Ep [c]≤C

I(p) = inf
p∈P

Ep [c]≤C

I(p). (A.425)

Proof. See Appendix A.9.3.

A.9.1 Proof of Lemma 2.2

By [BS91, Chapter 2, Theorems 3.1 and 3.5], there is a minimal eigenvalue E0 of Hθc, which

corresponds to a 1-dimensional eigenspace {γy}γ∈R ⊂ L2(R) where y ∈ L2(R) has no zeros.

Then, there is a unique γ ∈ R such that ∥γy∥2 = 1 and γy(x) > 0 for all x ∈ R, namely,

γ := sgn(y(0))/∥y∥2. Setting yθ,c = γy yields the desired uniqueness result. Further, this uniqueness

yields that yθ,c is even since yθ,c(−x) also satisfies the same differential equation, so a normalized

version of yθ,c(x) + yθ,c(−x) does too.

A.9.2 Proof of Proposition 2.2

We will use the following asymptotic of yθ,c.
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Theorem A.1 ([BS91, Chapter 2, Theorem 4.6]). Fix θ > 0, and let E0 be the eigenvalue associated with

yθ,c. As x1, x− x1 → ∞ or x1, x− x1 → −∞, we have the asymptotic

yθ,c(x) ∼
exp

(
−
∫ x

x1

√
θc(t)− E0 dt

)
(θc(x))1/4 . (A.426)

We denote y = yθ,c for readability. Denote f = −y′/y and g = θc− E0, and note that f satisfies

the Riccati equation

− f ′ + f 2 = g. (A.427)

With this notation, the eigenvalue equation for y is y′′ = gy. Since c grows without bound, g is

eventually strictly positive. Since y is strictly positive and y′′ = gy, we conclude that y′′ is eventually

positive a.e., i.e., there is an N such that λ({x ∈ (N, ∞) ; y′′(x) < 0}) = 0. Since y′ is absolutely

continuous,

y′(t1)− y′(t2) =
∫ t1

t2

y′′(t) dt ≥ 0 (A.428)

for all large t1 and t2 with t1 > t2, i.e., y′ is eventually increasing. As y decays to zero at infinity, and

as y′ eventually increases, we infer that y′ is eventually negative. Thus, f is eventually positive. We

will show that, for all large x,

f (x) ≤
√

2g(x), (A.429)

which is equivalent to ∣∣∣∣y′(x)
y(x)

∣∣∣∣ ≤ √2 (θc(x)− E0). (A.430)

This is enough to finish the proof of the lemma by evenness of y and c. Now, we show that (A.429)

holds.

Set h =
√

2g, so we want to show that f ≤ h is eventually satisfied. Denote z = f − h.

Differentiating and using − f ′ + f 2 = g (see (A.427)), we obtain

−z′ + z2 + 2zh = h′ − g. (A.431)

Now, we note that h′ < g eventually holds. Indeed, as x → ∞,

h′(x)
g(x)

=
1√
2

g′(x)
g(x)3/2 ∝

c′(x)
c(x)3/2 → 0 (A.432)

by assumption on c. Thus, by (A.431), we eventually have −z′ < 0, i.e., z is strictly increasing over

(x0, ∞) for some x0 > 0.

Suppose, for the sake of contradiction, that there is an x1 > x0 such that f (x1) > h(x1), i.e.,
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z(x1) > 0. Then, as z is strictly increasing over (x0, ∞), we have that z(x) > 0 for all x ≥ x1. In other

words,

−y′(x)
y(x)

>
√

2g(x) (A.433)

for all x ≥ x1. Increase x1 if necessary so that y(x) < 1 for x ≥ x1. Then,

y(x) ≤ exp
(
−
∫ x

x2

√
2g(t) dt

)
(A.434)

for all x > x2 ≥ x1. Let x3 and x4 satisfying x4 > x3 > x1 be such that

y(x) ≥ 1
2g(x)1/4 exp

(
−
∫ x

x3

√
g(t) dt

)
(A.435)

for every x > x4. Then, for all x > x4,

(
√

2− 1)
∫ x

x3

√
g(t) dt ≤ log

(
2g(x)1/4

)
. (A.436)

Denote

w(t) =

√
(
√

2− 1)
√

g(t), (A.437)

so (A.436) can be rewritten as ∫ x
x3

w(t)2 dt

log (γ · w(x))
≤ 1, (A.438)

where γ := 2
√

1 +
√

2 is an absolute constant. To arrive at a contradiction, we take x → ∞ and use

L’Hôpital’s rule:

lim
x→∞

∫ x
x3

w(t)2 dt

log (γ · w(x))
= lim

x→∞

w(x)3

w′(x)
= ∞. (A.439)

To see the last limit diverges, note that

w(x)3

w′(x)
∝

c(x)3/2

c′(x)
→ ∞. (A.440)

The limit in (A.439) contradicts inequality (A.438). Thus, there is no x1 > x0 such that f (x1) > h(x1).

Hence, (A.429) eventually holds, and the proof is complete.

In the course of this proof of Proposition 2.2, we have shown the following useful property of yθ,c

that will be used later.

Lemma A.10. For c satisfying Assumption 2.2 and any θ > 0, the function yθ,c is eventually decreasing.
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A.9.3 Proof of Lemma A.9

For each p ∈ P and σ > 0, denote pσ(x) = p(x/σ)/σ. Let ϕ denote the Gaussian density

ϕ(x) := e−x2/2/
√

2π.

We begin by noting that the limit

lim
σ→0+

Ep∗ϕσ [c] = Ep[c] (A.441)

holds for every PDF p that satisfies Ep[c] < ∞. This limit can be proved in the same way Lemma A.2

is proved. Indeed, by the assumed additive and multiplicative regularity of c, it is not hard to see that,

for the random variables Zσ ∼ p ∗ ϕσ, the set {c(Zσ)}0<σ≤1 is uniformly bounded by an integrable

random variable. In particular, the set {c(Zσ)}0<σ≤1 is uniformly integrable, so the Lebesgue-Vitali

theorem [Bog07, Theorem 4.5.4] yields that the limit (A.441) holds.

Now, we show that the function I⋆0 : R→ [0, ∞] defined by

I⋆0 (C) := inf
p∈P0

Ep [c]≤C

I(p) (A.442)

is continuous at C. We may write

I⋆0 (C) = inf
p∈P0

I(p) + I(−∞,C]
(
Ep[c]

)
. (A.443)

Being the infimum of a jointly convex function over a convex set, I⋆0 is convex. Further, this function

is finite over (0, ∞). To see that I⋆0 (C) is finite, we only need to take p the Gaussian PDF with small

enough variance. Hence, being convex and finite, I⋆0 is continuous over (0, ∞).

Define

I⋆(C) := inf
p∈P

Ep [c]≤C

I(p) (A.444)

Now, fix ε, η > 0, and let p ∈ P be a PDF such that Ep[c] ≤ C and

I(p) ≤ I⋆(C) + ε. (A.445)

Since the Fisher information satisfies the convolution inequality, we have

I(p ∗ ϕσ) ≤ I(p) (A.446)
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for every σ > 0. By the limit in (A.441), there is a σ = σ(η) such that

Ep∗ϕσ [c] ≤ Ep[c] + η ≤ C + η. (A.447)

Note that p ∗ ϕσ ∈ P0 by strict positivity of ϕ. Therefore,

I⋆0 (C + η) ≤ I(p ∗ ϕσ) ≤ I(p) ≤ I⋆(C) + ε. (A.448)

By continuity of I⋆0 at C, we may take η → 0+ to obtain

I⋆0 (C) ≤ I⋆(C) + ε. (A.449)

By arbitrariness of ε, we deduce

I⋆0 (C) ≤ I⋆(C). (A.450)

But the reverse inequality is trivial, thus equality is attained in (A.450), completing the proof of the

lemma.

A.10 Proof of Theorem 2.13

We use the integration shorthand ∫
A

f :=
∫

A
f (x) dx. (A.451)

We will let L2(R, c) denote the space of Lebesgue measurable functions f : R → R such that

∥ f ∥2,c := (
∫

R
f 2c)1/2 < ∞. First, we note that C = ∥y∥2

2,c is indeed finite as can be deduced from the

expansion of y in Theorem A.1.

Denote the space of absolutely continuous functions on R by AC(R), and those that are locally

absolutely continuous over R by ACloc(R). Consider the vector space

V := L2(R) ∩ L2(R, c) ∩ACloc(R). (A.452)

Let E be the eigenvalue of y, so

y′′ = (θc− E)y. (A.453)

Consider the modified Dirichlet energy E : V → R∪ {∞} defined by

E(w) := ∥w′∥2
2 + θ∥w∥2

2,c − E∥w∥2
2. (A.454)
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We start by showing that y is a global minimizer of E , and

0 = E(y) = inf
w∈V
E(w). (A.455)

Note that y ∈ V since y ∈ C1(R).

Fix an arbitrary w ∈ V, and we will show that E(w) ≥ 0. Since w is a.e. differentiable, we

have (y · (w/y)′)2 ≥ 0 a.e. Rearranging this inequality, and noting the eigenvalue equation (A.453)

satisfied by y, we obtain that a.e.

(
w′
)2 ≥ 2y′ww′

y
− (y′)2w2

y2 (A.456)

=

(
y′w2

y

)′
− y′′w2

y
(A.457)

=

(
y′w2

y

)′
− (θc− E)w2. (A.458)

Note that y′w2/y ∈ ACloc(R). Thus, integrating (A.458) over any [−t, t] with t > 0, we obtain

∥w′1[−t,t]∥2
2 ≥

y′w2

y

∣∣∣∣t
−t
− θ∥w1[−t,t]∥2

2,c + E∥w1[−t,t]∥2
2. (A.459)

Next, we show that there exists a sequence tn ↗ ∞ such that

lim inf
n→∞

y′w2

y

∣∣∣∣tn

−tn

≥ 0. (A.460)

This would readily yield E(w) ≥ 0 from inequality (A.459). By assumption, w ∈ L2(R, c), so

symmetry of c implies ∫ ∞

0
(w(x)2 + w(−x)2)c(x) dx =

∫
R

w2c < ∞. (A.461)

In particular, there is a sequence {tn}n∈N ⊂ (0, ∞) such that, as n→ ∞, we have tn ↗ ∞ and

(
w(tn)

2 + w(−tn)
2
)

c(tn)→ 0. (A.462)

In addition, by the upper bound (2.114) in Proposition 2.2, there is an A ∈ (0, ∞) such that∣∣∣∣y′(x)
y(x)

∣∣∣∣ ≤ A · c(|x|) (A.463)

holds for all large |x|. Then, for all large n,

y′w2

y

∣∣∣∣tn

−tn

=
y′(tn)w(tn)2

y(tn)
− y′(−tn)w(tn)2

y(−tn)
(A.464)
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≥ −
∣∣∣∣y′(tn)

y(tn)

∣∣∣∣w(tn)
2 −

∣∣∣∣y′(−tn)

y(−tn)

∣∣∣∣w(−tn)
2 (A.465)

≥ −Ac(tn)
(

w(tn)
2 + w(−tn)

2
)

. (A.466)

Taking the limit inferior in (A.466) we obtain, in view of (A.462), that

lim inf
n→∞

y′w2

y

∣∣∣∣tn

−tn

≥ 0. (A.467)

In addition, by the assumption that w ∈ L2(R), the monotone convergence theorem implies

lim
n→∞

θ∥w1[−tn ,tn ]∥
2
2,c − E∥w1[−tn ,tn ]∥

2
2 = θ∥w∥2

2,c − E∥w∥2
2. (A.468)

Taking the limit inferior of (A.459) along the tn, and using (A.467) and (A.468) we conclude that

∥∥w′
∥∥2

2 ≥ −θ∥w∥2
2,c + E∥w∥2

2. (A.469)

As w ∈ L2(R, c) ∩ L2(R), (A.469) is equivalent to E(w) ≥ 0.

We have just shown that

inf
w∈V

E(w) ≥ 0. (A.470)

On the other hand, we may show that E(y) = 0. Indeed, as y ∈ C1(R) and y′ ∈ AC(R), we have that

yy′ ∈ ACloc(R). Note that yy′ = O(y2c) by the upper bound in Proposition 2.2. As y ∈ L2(R, c), we

get yy′ ∈ L1(R). Thus, there exist sequences an, bn ↗ ∞ such that y(−an)y′(−an), y(bn)y′(bn)→ 0.

Therefore, we have that

E(y) = ∥y′∥2
2 + θ∥y∥2

2,c − E∥y∥2
2 (A.471)

= lim
n→∞

∥y′1[−an ,bn ]∥
2
2 + θ∥y1[−an ,bn ]∥

2
2,c − E∥y1[−an ,bn ]∥

2
2 (A.472)

= lim
n→∞

∫ bn

−an

(
y′
)2

+ (θc− E)y2 (A.473)

= lim
n→∞

∫ bn

−an

(
y′
)2

+ yy′′ (A.474)

= lim
n→∞

∫ bn

−an

(
yy′
)′ (A.475)

= lim
n→∞

y(bn)y′(bn)− y(−an)y′(−an) (A.476)

= 0, (A.477)

where (A.472) follows by the monotone convergence theorem as y ∈ L2(R) ∩ L2(R, c). Thus, y

globally minimizes E over V.
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Next, we show that the already shown properties of y imply that p (which we defined by p = y2

in the beginning of this proof) minimizes the Fisher information. For that, we consider first a couple

of important quantities.

Define, for γ ∈ R,

I⋆γ := inf
w∈V

∥w∥2
2,c≤γ, ∥w∥2=1

4∥w′∥2
2. (A.478)

It is not hard to see that V is closed under positive dilation, so in particular u(x) = w(x/σ)/
√

σ

is in V if w ∈ V. This in turn yields (via choosing σ large enough if necessary) that the inequality

∥w∥2
2,c ≤ γ in the definition of I⋆γ can be replaced with an equality, i.e.,

I⋆γ = inf
w∈V

∥w∥2
2,c=γ, ∥w∥2=1

4∥w′∥2
2. (A.479)

Our next goal is to show that E ≤ E⋆, where we define

E⋆ := inf
γ∈R

I⋆γ + θγ. (A.480)

Indeed, by (A.479), we use (A.480) to deduce that E⋆ satisfies

E⋆ = inf
w∈V
∥w∥2=1

4∥w′∥2
2 + θ∥w∥2

2,c (A.481)

= inf
w∈V\{0}

4∥w′∥2
2 + θ∥w∥2

2,c

∥w∥2
2

(A.482)

= E + inf
w∈V\{0}

E(w)

∥w∥2
2

(A.483)

≥ E, (A.484)

where (A.482) follows since V is a vector space, and (A.484) since infw∈V E(w) ≥ 0 (see (A.470)).

Next, we deduce that I(p) = I⋆C. Note that p = y2 implies (p′)2/p = 4(y′)2. Thus, I(p) = 4∥y′∥2
2.

From E ≤ E⋆ and the definition of E⋆ in (A.480), we obtain

E∥y∥2
2 = E ≤ E⋆ ≤ I⋆C + θC = I⋆C + θ∥y∥2

2,c. (A.485)

Adding 4∥y′∥2
2 − E∥y∥2

2 to both sides, we obtain

I(p) ≤ I⋆C + E(y). (A.486)

As E(y) = 0 (see (A.477)), we conclude that I(p) ≤ I⋆C. The reverse inequality also holds since

213



∥y∥2 = 1 and ∥y∥2
2,c = C, so we conclude that

I(p) = I⋆C. (A.487)

Finally, we are ready to show that p globally minimizes the Fisher information, i.e., with P

denoting the set of all possible PDFs, we show that

I(p) = inf
q∈P

Eq [c]≤C

I(q). (A.488)

We start by showing that I(p) is minimal among strictly positive PDFs. Denote the set of strictly

positive PDFs by P0,

P0 := {q ∈ P ; q(x) > 0 for every x ∈ R} . (A.489)

Note that, by definition of the Fisher information, q ∈ AC(R) if I(q) < ∞. Further, if q ∈ AC(R),

then
√

q ∈ ACloc(R). Then, for every q ∈ P0 such that I(q) < ∞, setting w =
√

q, we get

I(q) = 4∥w′∥2
2. (A.490)

Thus, we conclude from I(p) = I⋆C (see (A.487)) that

I(p) = inf
q∈P0

Eq [c]≤C

I(q). (A.491)

However, the same argument cannot be applied to a PDF q that has zeros. For this, we apply

Lemma A.9, to obtain from (A.491) that

I(p) = inf
q∈P0

Eq [c]≤C

I(q) = inf
q∈P

Eq [c]≤C

I(q), (A.492)

which is the global optimality of p claimed in (A.488). Since p is strictly positive, and since it

minimizes the Fisher information among all possible PDFs, we conclude that it is the unique

minimizer of the Fisher information over all possible PDFs (see, e.g., [HR09, Proposition 4.5]), and

the proof of the theorem is complete.

A.11 Proof of Proposition 2.3: Regularity of the Schrödinger PDF

We need the following well-known differentiation under the integral sign result.

Theorem A.2. Let U ⊂ R be open, and (X, Σ, µ) be a measure space. Suppose f : U × X → R satisfies:
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1. For each a ∈ U, we have f (a, · ) ∈ L1(µ).

2. For µ-almost every x ∈ X, the function f ( · , x) is differentiable over U.

3. The function x 7→ supa0∈U

∣∣∣ ∂ f
∂a (a0, x)

∣∣∣ is µ-integrable.

Then, over U,
d
da

∫
X

f (a, x) dµ(x) =
∫

X

∂ f
∂a

(a, x) dµ(x). (A.493)

We use Theorem A.2 to differentiate a 7→ D(p ∥ Ta p) twice, then conclude using Taylor’s theorem.

We have that

D(p ∥ Ta p) =
∫

R
p(x) log

p(x)
p(x− a)

dx. (A.494)

Denote the function f1(a, x) := log p(x)
p(x−a) . For each a ∈ R, we have that f1(a, · ) is continuous;

indeed, it is differentiable by differentiability and strict positivity of p (recall that p = y2
θ,c). We

consider the Borel space (X, Σ, µ) = (R,B, p(x) dx). Hence, for the sake of showing the integrability

f1(a, · ) ∈ L1(p(x) dx), we may ignore any bounded interval. By the asymptotic expansion of yθ,c in

Theorem A.1, we have the following asymptotic formula. Let E denote the eigenvalue of yθ,c. For

each a ∈ R, as x → ∞ we have

p(x)
p(x− a)

∼

√
c(x− a)

c(x)
· exp

(
−2

∫ x

x−a

√
θc(t)− E dt

)
. (A.495)

By Assumption 2.2, we have that for all large x

1
2ρ(−a)

≤ c(x− a)
c(x)

≤ 2ρ(a). (A.496)

Further, for |a| < 1, we have that for all large x

∫ x

x−a

√
θc(t)− E dt ≤

√
θc(x) ≤

√
θ · c(x). (A.497)

Thus, we conclude the integrability f1(a, · ) ∈ L1(p(x) dx).

For each x ∈ R, f1( · , x) is differentiable with derivative

∂ f1

∂a
(a0, x) =

−p′(x− a0)

p(x− a0)
=
−2y′θ,c(x− a0)

yθ,c(x− a0)
. (A.498)

We consider a0 ∈ U = (−1, 1). From Proposition 2.2, there is some z0 = z0(θ, c) such that z > z0(θ, c)

implies ∣∣∣∣∣y′θ,c(z)
yθ,c(z)

∣∣∣∣∣ ≤ 2
√

2θ · c(z). (A.499)
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Hence, for x > z0 + 1, we have for all |a0| < 1∣∣∣∣∣y′θ,c(x− a0)

yθ,c(x− a0)

∣∣∣∣∣ ≤ 2
√

2θ · c(x− a0). (A.500)

Using Assumption 2.2, we have

sup
|a0|<1

c(x− a0) ≤
(

sup
|a0|<1

ρ(a0)

)
· (c(x) + 1), (A.501)

where A := sup|a0|<1 ρ(a0) is finite. Combining these inequalities, we conclude that

sup
|a0|<1

∣∣∣∣∂ f1

∂a
(a0, x)

∣∣∣∣ ≤ 4A
√

2θ · (c(x) + 1) (A.502)

for all large x. As (a, x) 7→ ∂ f1
∂a (a, x) is continuous, we conclude that sup|a0|<1

∣∣∣ ∂ f1
∂a (a0, x)

∣∣∣ ∈
L1(p(x) dx).

Therefore, we may apply Theorem A.2 to differentiate the KL-divergence and obtain

d
da

D(p ∥ Ta p) = −
∫

R
p(x) · p′(x− a)

p(x− a)
dx (A.503)

over |a| < 1. Performing a change of variable, we obtain that

d
da

D(p ∥ Ta p) = −
∫

R
p(x + a) · p′(x)

p(x)
dx. (A.504)

Next, we apply Theorem A.2 to differentiate the KL-divergence a second time. This time,

we use the usual Lebesgue space (R,B, λ). Consider the function f2(a, x) := p(x + a) · p′(x)
p(x) .

Inequality (A.502) shows that f2(a, · ) ∈ L1(λ) for each a ∈ (−1, 1). Further, for each x ∈ R, f2( · , x)

is differentiable over (−1, 1) with derivative

∂ f2

∂a
(a, x) = p′(x + a) · p′(x)

p(x)
. (A.505)

We write ∣∣∣∣∂ f2

∂a
(a, x)

∣∣∣∣ = ∣∣∣∣ p′(x + a)
p(x + a)

∣∣∣∣ · ∣∣∣∣ p′(x)
p(x)

∣∣∣∣ · p(x + a). (A.506)

Via the same derivation of inequality (A.502), but using the full power of Proposition 2.2 this time (i.e.,
√

c as an upper bound instead of c), and applying Lemma A.10 (i.e., that p is eventually decreasing),

we obtain the bound

sup
|a|<1

∣∣∣∣∂ f2

∂a
(a, x)

∣∣∣∣ ≤ 8
√

2Aθ · c(x)p(x− 1) (A.507)

for all large x. Therefore, sup|a|<1

∣∣∣ ∂ f2
∂a (a, x)

∣∣∣ ∈ L1(λ).
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Hence, we may apply Theorem A.2 again to obtain that

d2

da2 D(p ∥ Ta p) = −
∫

R
p′(x + a) · p′(x)

p(x)
dx (A.508)

over (−1, 1). Setting a = 0 in D(p ∥ Ta p) and its first two derivatives, we obtain from Taylor’s

theorem that

D(p ∥ Ta p) =
a2

2
I(p) + o(a2) (A.509)

as a→ 0, i.e., expansion (2.100) holds.

Next, we show that sup|a|≤s V(p ∥ Ta p) < ∞ for some s > 0. For this, it suffices to show that

∫
R

p(x) · sup
|a|≤1

∣∣∣∣log
p(x)

p(x− a)

∣∣∣∣2 dx < ∞ (A.510)

Using the asymptotic formula for yθ,c in Theorem 2.11, we have

p(x)
p(x− a)

∼

√
c(x− a)

c(x)
· exp

(
−2

∫ x

x−a

√
θc(t)− E dt

)
. (A.511)

Hence, the same method showing integrability of f1(a, · ) shows the desired result.

A.12 Proofs of Section 2.14.5

A.12.1 Proof of Proposition 2.4

According to Theorem 2.14, we need to solve the following differential equation

y′′(x) =
(

θx2 − E
)

y(x), (A.512)

for some θ > 0 and eigenvalue E. It can be easily verified that

y1(x) =

(√
θ

π

)1/4

e−x2·
√

θ/2, (A.513)

solves (A.512) with the corresponding eigenvalue

E0 =
√

θ. (A.514)

Thus, by the uniqueness property in Lemma 2.2, the unit-norm, strictly-positive, ground-state

eigenfunction, denoted by yθ,c in Lemma 2.2, is given by y1. Therefore, the optimal density is given
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by y2
θ,c. The corresponding cost for this density is therefore equal to(√

θ

π

)1/2 ∫
R

x2e−x2
√

θ dx =
1

2
√

θ
. (A.515)

To ensure that the incurred cost is equal to C, we thus need to choose

θ =
1

4C2 . (A.516)

Plugging this into (A.513), we obtain

yθ,c(x)2 =
1√

2πC
e−x2/(2C), (A.517)

which, according to Theorem 2.14, is the optimal density p⋆c,C. Thus, Gaussian density is optimal in

the small-sensitivity regime.

A.12.2 Proof of Lemma 2.3

Denote

α =
1

3C · Ai(a′1)
2 , β =

−2a′1
3C

, (A.518)

so we have pAi,C(x) = αAi(β|x| + a′1)
2. Recall that the Airy function Ai satisfies the differential

equation (2.74), i.e.,

Ai′′(x) = xAi(x). (A.519)

We now verify that pAi,C is a PDF. By evenness of pAi,C, a change of variable yields the integral

∫
R

pAi,C = 2α
∫ ∞

0
Ai(βx + a′1)

2 dx =
2α

β

∫ ∞

a′1
Ai(x)2 dx. (A.520)

Using Ai′′(x) = xAi(x), one obtains

(
xAi(x)2 − Ai′(x)2

)′
= Ai(x)2. (A.521)

Using this antiderivative of Ai(x)2 in (A.520), one obtains

∫
R

pAi,C =
2α

β

∫ ∞

a′1
Ai(x)2 dx =

2α · (−a′1)Ai(a′1)
2

β
= 1. (A.522)

Hence, pAi,C is indeed a PDF.

Next, we show that the first absolute moment of pAi,C is C. Beginning as in (A.520), then using
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xAi(x) = Ai′′(x), we get that

∫
R
|x|pAi,C(x) dx =

2α

β2

∫ ∞

a′1
(x− a′1)Ai(x)2 dx =

2α

β2

(∫ ∞

a′1
Ai′′(x)Ai(x) dx− a′1

∫ ∞

a′1
Ai(x)2 dx

)
.

(A.523)

Using integration by parts, we obtain

∫ ∞

a′1
Ai′′(x)Ai(x) dx = −

∫ ∞

a′1
Ai′(x)2 dx. (A.524)

Using Ai′′(x) = xAi(x), one can verify that

1
3

(
−x2Ai(x)2 + xAi′(x)2 + 2Ai(x)Ai′(x)

)′
= Ai′(x)2. (A.525)

Hence, we have the integral ∫ ∞

a′1
Ai′(x)2 dx =

(a′1)
2

3
Ai(a′1)

2. (A.526)

In sum, we obtain that ∫
R
|x|pAi,C(x) dx =

2α

β2 ·
2(a′1)

2Ai(a′1)
2

3
= C, (A.527)

as desired.

Finally, we check the variance formula for pAi,C. We start with rewriting the integral as

∫
R

x2 pAi,C(x) dx =
2α

β3

(∫ ∞

a′1
x2Ai(x)2 dx− 2a′1

∫ ∞

a′1
xAi(x)2 dx + (a′1)

2
∫ ∞

a′1
Ai(x)2 dx

)
(A.528)

=
2α

β3

(∫ ∞

a′1
Ai′′(x)2 dx +

(−a′1)
3Ai(a′1)

2

3

)
. (A.529)

It can be directly verified that

1
5

(
(x3 − 1)Ai(x)2 − x2Ai′(x)2 + 2xAi(x)Ai′(x)

)′
= Ai′′(x)2. (A.530)

Hence, ∫ ∞

a′1
Ai′′(x)2 dx =

(−a′1)
3 + 1

5
. (A.531)

Therefore,

∫
R

x2 pAi,C(x) dx =
2α

β3

(
8
15
· (−a′1)

3 +
1
5

)
· Ai(a′1)

2 =
9
4

(
8
15

+
1

5 · (−a′1)
3

)
· C2, (A.532)

and the proof is complete.
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A.12.3 Proof of Proposition 2.5

First, we notice that, according to Theorem 2.14, we need to solve the differential equation (2.117).

Let

y1 =
√

pAi,C. (A.533)

Thus, from Definition 2.7, we have

y1(x) = γ · Ai
(

θ1/3|x|+ a′1
)

, (A.534)

where

γ :=
1√

3C · Ai(a′1)
, (A.535)

and

θ =

(−2a′1
3C

)3

. (A.536)

Differentiating separately for x < 0, x = 0, and x > 0, we obtain

y′1(x) = θ1/3γ sgn(x)Ai′(θ1/3|x|+ a′1), (A.537)

for every x ∈ R (where sgn(x) = x/|x| for x ̸= 0, and sgn(0) = 0). Thus, y′1 is absolutely continuous.

Differentiating again, we obtain for every x ∈ R

y′′1 (x) = θ2/3γAi′′
(

θ1/3|x|+ a′1
)

. (A.538)

Since Ai is a solution of the differential equation of (2.74), it follows that Ai′′(z) = zAi(z) for every

z ∈ R and thus

y′′1 (x) =
(

θ|x|+ θ2/3a′1
)

y1(x), (A.539)

and hence y1 solves the equation (2.117). Therefore, we conclude from Lemma 2.2 that yθ,c = y1

is the ground-state eigenfunction of Hθc. Moreover, since
∫

R
cy2

θ,c =
∫

R
cpAi,C = C, Theorem 2.14

implies that p⋆c,C = pAi,C, as desired.

A.13 Subsampling: Proof of Lemma 2.4

Subsampling is a fundamental tool in the analysis of differentially-private mechanisms. Informally,

subsampling entails applying a differentially-private mechanism to a small set of randomly sampled

datapoints from a given dataset. There are several ways of formally defining the subsampling
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operator, see, e.g., [BBG18]. The most well-known one, Poisson subsampling, is parameterized by the

subsampling rate λ ∈ (0, 1] which indicates the probability of selecting a datapoint. More formally,

the subsampled datapoints from a dataset D can be expressed as {x ∈ D : Bx = 1}, where Bx is a

Bernoulli random variable with parameter λ independent for each x ∈ D. Given any mechanismM,

we define the subsampled mechanismMλ as the composition ofM and the Poisson subsampling

operator. Characterizing the privacy guarantees of subsampled mechanisms is the subject of “privacy

amplification by subsampling” principle [KLN+11]. This principle is well-studied particularly for

characterizing the privacy guarantees of subsampled Gaussian mechanisms in the context of a

variant of differential privacy, namely, Rényi differential privacy [ZW19, ACG+16, MTZ19]. We can

mirror their formulation to characterize ε and δ for the subsampled Gaussian mechanisms. Recall

that a Gaussian mechanism satisfies M(D) = N ( f (D), σ2 Id) where f is a query function with

ℓ2-sensitivity 1. For the subsampled Gaussian, the optimal privacy curve (of a single composition) is

δMλ
(ε) = max

{
Eeε(P∥Q),Eeε(Q∥P)

}
, (A.540)

where P = N (0, σ2 Id) and Q = (1− λ)P + λP′, and P′ ∼ N (e1, σ2 Id) where e1 is the first standard

basis vector. In Lemma 2.4 (restated below for convenience), we show that the above maximum is

always attained by Eeε(Q∥P) for any ε ≥ 0, and that it holds for a larger family of DP mechanisms

(including Gaussian and Laplace mechanisms). A similar ordering bound was proved by [MTZ19,

Theorem 5] for the Rényi divergence.

Lemma A.11. Fix a Borel probability measure P over Rn that is symmetric around the origin (i.e., P(A) =

P(−A) for every Borel A ⊂ Rn), and fix constants (s, λ, γ) ∈ Rn × [0, 1] × [1, ∞). Let TsP be the

probability measure given by (TsP)(A) = P(A− s), and let Q = (1− λ)P + λTsP. We have the inequality

Eγ(P∥Q) ≤ Eγ(Q∥P), with equality if and only if (γ− 1) λ ∥s∥ Eγ(Q∥P) = 0.

Proof. The case λ = 0 is clear, so assume λ ∈ (0, 1]. Suppose for now that γ · (1− λ) < 1. Denote

R := TsP, and consider the function G : (0, ∞)→ [0, ∞) defined by

G(t) := t · E1+ γ−1
t
(P∥R). (A.541)

Since γ′ 7→ Eγ′(P∥R) is monotonically decreasing, we have that G is monotonically increasing. Note

that 0 < γλ + 1− γ ≤ λ. Thus, plugging t ∈ {γλ + 1− γ, λ} into G, we obtain

(γλ + 1− γ) · E γλ
γλ+1−γ

(P∥R) ≤ λ · E λ−(1−γ)
λ

(P∥R). (A.542)
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Now, note that

(γλ + 1− γ) · E γλ
γλ+1−γ

(P∥R) = (γλ + 1− γ) · sup
A

P(A)− γλ

γλ + 1− γ
· R(A) (A.543)

= sup
A

P(A)− γ · ((1− λ)P(A) + λR(A)) (A.544)

= Eγ(P∥Q), (A.545)

where the suprema are taken over all Borel sets A ⊂ Rn. In addition, by symmetry of P around the

origin, we have that

Eγ′(P∥R) = sup
A

P(A)− γ′P(A− s) (A.546)

= sup
A

P(−A)− γ′P(−A− s) (A.547)

= sup
A

P(A)− γ′P(A+ s) (A.548)

= sup
A

P(A− s)− γ′P(A) (A.549)

= Eγ′(R∥P). (A.550)

Therefore,

λ · E λ−(1−γ)
λ

(P∥R) = λ · E λ−(1−γ)
λ

(R∥P) (A.551)

= λ · sup
A

R(A)− λ− (1− γ)

λ
· P(A) (A.552)

= sup
A

((1− λ)P(A) + λR(A))− γP(A) (A.553)

= Eγ(Q∥P). (A.554)

We conclude from (A.542) the desired inequality Eγ(P∥Q) ≤ Eγ(Q∥P). In addition, the case

γ · (1− λ) ≥ 1 follows immediately since then Eγ(P∥Q) = 0 ≤ Eγ(Q∥P).

In light of this lemma, the privacy guarantee of a subsampled Gaussian mechanism is fully

characterized by computing only Eeε((1− λ)P + λTsP∥P), where P = N (0, σ2 Id). Based on this

result, for our numerical experiments, we only compute the saddle-point accountant with this order

of P and Q.
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A.14 The Method of Steepest Descent

We describe the general approach for the method of steepest descent. Our task is to compute the

contour integral

In =
1

2πi

∫ t+i∞

t−i∞
eFn(z) dz. (A.555)

What we will obtain is an asymptotic expansion

In
as. ex.∼ eFn(t0)√

2πF′′n (t0)

(
1 +

∞

∑
m=2

βn,m

)
. (A.556)

In a nutshell, the method of steepest descent is a powerful tool for choosing the best parameter t that

renders the computation of In easiest. In particular, this choice of t is called the saddle-point, which is

found as follows.

Here, Fn is holomorphic over a strip (0, T) + iR in the complex plane, the parameter n ∈ N

is growing without bound, and t ∈ (0, T) ⊂ R is a free parameter. In particular, the value of the

integral In is assumed to be independent of the parameter t. This could be satisfied for certain

choices of Fn by virtue of its analyticity and in view of Cauchy’s integral theorem. As we show

in Theorem 2.15, computing the above contour integral amount to exactly computing the privacy

parameter δL(n)(ε) if we choose the function

Fn(z) = KL(n)(z)− zε− log z− log(1 + z). (A.557)

Suppose that F′′n (t) > 0 over t ∈ (0, T)—in particular, Fn is strictly convex over the real interval

(0, T)—and that there is a value t0 ∈ (0, T) solving the equation F′n(t0) = 0, which is then necessarily

unique. Then, a second order Taylor expansion around t0 yields that

Fn(z) = Fn(t0) +
(z− t0)

2

2
F′′n (t0) + o(|z− t0|3). (A.558)

Looking at the the values of the approximating quadratic Fn(t0) +
(z−t0)

2

2 F′′n (t0) for z near t0 along

the real axis (so z = t for t0 ≈ t ∈ R) and along the axis t0 + iR (so z = t0 + is for 0 ≈ s ∈ R), we see

that this approximation has a local minimum at t0 along the real axis and it has a local maximum at

t0 along the axis t0 + iR. Hence, t0 is a saddle-point for the approximating quadratic. Further, as

the integral we are concerned with runs along the contour t + iR, we expect the value of In to come

primarily from values z ≈ t0.
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Now, consider the function

Gn(z) = Fn(t0 + z)− Fn(t0)−
z2

2
F′′n (t0). (A.559)

We have that Gn is holomorphic over some vertical strip centered at the origin, and

G(k)
n (0) =

 0, 0 ≤ k ≤ 2

F(k)
n (t0), k ≥ 3.

(A.560)

We assume for the next steps that Gn is an entire function. Thus, Gn has the expansion

Gn(z) = ∑
k≥3

F(k)
n (t0)

k!
zk. (A.561)

Furthermore, eGn(z) has the power series expansion

eGn(z) = 1 + ∑
k≥3

αn,kzk, (A.562)

where

αn,k =
1
k!

Bk(0, 0, F(3)
ε (t0), . . . , F(k)

ε (t0)). (A.563)

As we may write

Fn(t0 + is) = Fn(t0) + Gn(is)−
F′′n (t0)

2
s2, (A.564)

we get the exact value of the integral

In =
eFn(t0)

2π

∫ ∞

−∞
e−s2F′′n (t0)/2

(
1 + ∑

k≥3
αn,k(is)k

)
ds. (A.565)

The derived steps thus far have all been justified rigorously. The final step, however, is a heuristic,

where we truncate the power series expansion to obtain possible estimates of In. The point is that

the derived expressions through this heuristic have the potential of being proved by other means to

be indeed close approximations of In.

For instance, dropping the whole series beyond the constant term yields the basic saddle-point

approximation

In,1 :=
eFn(t0)

2π

∫ ∞

−∞
e−s2F′′n (t0)/2 ds =

eFn(t0)√
2πF′′n (t0)

. (A.566)

Note that this approximation is in fact exact if Fn is a quadratic, i.e., for computing the Gaussian
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integral. Keeping the terms k ∈ {3, · · · , 2k⋆}, it is not hard to see that one obtains the k⋆-th estimate

In,k⋆ :=
eFn(t0)√
2πF′′n (t0)

(
1 +

k⋆

∑
m=2

βn,m

)
, (A.567)

where we denote the constants

βn,m :=
(−1)mB2m(0, 0, F(3)

n (t0), . . . , F(2m)
n (t0))

2mm!F′′n (t0)m . (A.568)

Then one might say that In has the “asymptotic expansion”

In
as. ex.∼ eFn(t0)√

2πF′′n (t0)

(
1 +

∞

∑
m=2

βn,m

)
. (A.569)

Recall that this does not mean that the above equation holds with equality for any particular n. Rather,

it is a heuristic indicating the potential for the truncated expansion to give close approximations for

the intended integral In.

A.15 Satisfiability of the Assumptions

We explain here how Assumption 2.6 is satisfied by the subsampled Gaussian and Laplace mecha-

nisms. Note that by the Lebesgue decomposition theorem, the probability measure of the PLRV can

always be decomposed into a sum of an absolutely continuous measure, a discrete measure, and a

singular measure (such as the Cantor distribution). Thus, Assumption 2.6 requires the exclusion

of singular components. This can be easily seen to be satisfied by the subsampled Gaussian and

Laplace mechanisms. Further, Assumption 2.6 does not impose any requirement on the discrete part.

Thus, we consider the continuous part here.

Note that the PLRV for the subsampled Gaussian mechanism (with subsampling rate λ, variance

σ2, and sensitivity s) is given by

L = log
(

1− λ + λe(2sX−s2)/(2σ2)
)

, (A.570)

where X ∼ (1− λ)N (0, σ2) + λN (s, σ2). Hence,

P [L ≤ z] = P

[
X ≤ s

2
+

σ2

s
log
(

ez − (1− λ)

λ

)]
(A.571)
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if z > log(1− λ), and P[L ≤ z] = 0 otherwise. So, L is continuous with PDF

pL(z) = A
e2z

g(z)3/2 ·
(

g(z)
λ

)− σ2

2s2 log g(z)
λ

· 1(log(1−λ),∞)(z), (A.572)

where g(z) = ez− (1− λ) and we have the constant A = σ
s ·
√

λ
2π exp

(
− s2

8σ2

)
. From this, we see that

pL(z) decays superexponentially as z→ ∞. Further, it is continuous. Indeed, we only need to check

continuity at z = log(1− λ). But this is immediate using, e.g., y = log g(z)
λ and taking y → −∞.

These properties imply that Assumption 2.6 is satisfied by the subsampled Gaussian mechanism.

Finally, we note that the case of the subsampled Laplace mechanism is simpler. Indeed, taking

the analogous expression for L as in (A.570), we see that L has only a discrete component and a

continuous component. Further, the continuous part comes from values of X between 0 and s. This

boundedness translates into the fact that the PDF of the continuous part of L is compactly supported,

so Assumption 2.6 is satisfied in this case too.

A.16 Well-Definedness of the Saddle-Point

The well-definedness of the saddle-point, given ε < ess supL, follows from convexity of Fε over the

positive reals. Namely, we show that Fε is complex-differentiable and that there is a unique positive real

t0 such that F′ε(t0) = 0. Let KL|R be the restriction of the CGF to the real axis. We have that KL|R is

convex over (0, ∞), and thus, Fε|R is strictly convex there. Thus, the minimum of Fε over the positive

reals is unique; further, the real derivative at this minimum vanishes. Nevertheless, finiteness of ML

over (0, ∞) implies its analyticity over the half-plane (0, ∞) + iR; in particular, the complex derivative

of Fε exists in the same half-plane. Hence, the function Fε is complex-differentiable at t0, and its

derivative vanishes there, as required.

A.17 Proof of Theorem 2.15

Before proving Theorem 2.15, we show the following general Parseval identity. For f ∈ L1(R), we

denote the Fourier transform by

f̂ (ξ) :=
∫

R
f (x)e−ixξ dx. (A.573)

Lemma A.12. Let P = Q + R be a Borel probability measure on R, where Q is absolutely continuous with

respect to the Lebesgue measure whose PDF is square-integrable and R is discrete. For any continuous function
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f : R → R such that f ∈ L1(R) ∩ L2(R), f̂ ∈ L1(R), and EX∼P[| f (X)|] < ∞, we have the Parseval

identity ∫
R

f (x) dP(x) =
1

2π

∫
R

f̂ (ξ)ϕP(ξ) dξ, (A.574)

where ϕP(ξ) := EX∼P[eiξX ] is the characteristic function.

Proof. Let q denote the PDF of Q. Suppose R is supported over {xj}j∈J , where J is at most countable,

and write rj = R({xj}). Then, we may write

∫
R

f (x) dP(x) =
∫

R
f (x) dQ(x) +

∫
R

f (x) dR(x) (A.575)

=
∫

R
f (x)q(x) dx + ∑

j∈J
f (xj)rj. (A.576)

Since f , q ∈ L1(R) ∩ L2(R), we have the Parseval identity

∫
R

f (x)q(x) dx =
1

2π

∫
R

f̂ (ξ)ϕQ(ξ) dξ. (A.577)

As we also have continuity of f and integrability of f̂ , we also have the Fourier inversion

f (x) =
1

2π

∫
R

f̂ (ξ)eixξ dξ (A.578)

for every x ∈ R. In particular, we have that

∑
j∈J

f (xj)rj =
1

2π

∫
R

f̂ (ξ)ϕR(ξ) dξ. (A.579)

The desired result follows by ϕP = ϕQ + ϕR.

Now, we apply Lemma A.12 to derive Theorem 2.15.

Proof of Theorem 2.15. Expectations of functions of L̃ can be written in terms of L as E[ f (L̃)] =

E[etL f (L)]/ML(t). Thus, the MGF of the tilted variable L̃ is given by

ML̃(z) = E[ezL̃] =
E[etLezL]

ML(t)
=

ML(t + z)
ML(t)

. (A.580)

Similarly, expectations of functions of L can be written in terms of L̃ as E[ f (L)] = ML(t)E[e−tL̃ f (L̃)].

Thus, we can write the privacy curve δL in terms of the tilted variable L̃ as

δL(ε) = E

[(
1− eε−L

)+]
(A.581)

= ML(t)E

[
e−tL̃

(
1− eε−L̃

)+]
. (A.582)

227



In other words, the formula in (2.131) holds.

Next, we use Assumption 2.6 to apply Parseval’s identity (Lemma A.12) to the expectation

in (A.582) to get the contour-integral formula in (2.132). Specifically, consider the function

f (x) = e−tx (1− eε−x)+ , (A.583)

Note that f is bounded, continuous, and f ∈ L1(R) ∩ L2(R). Further, we have the Fourier transform

f̂ (s) =
e−(t+is)ε

(t + is)(t + 1 + is)
∈ L1(R). (A.584)

In addition, by Assumption 2.6, the probability measure PL induced by L may be written as

PL = QL + RL, where QL is absolutely continuous with respect to the Lebesgue measure whose

PDF qL satisfies that x 7→ eτxqL(x)2 is integrable for every τ > 0 and RL is discrete. Suppose RL is

supported over {xj}j∈J with J at most countable, and write rL,j = R({xj}). Then, by definition of

exponential tilting, for every Borel set B ⊂ R, we have that

PL̃(B) =
1

ML(t)

∫
B

etx dPL(x) (A.585)

=
1

ML(t)

∫
B

etx dQL(x) +
1

ML(t)

∫
B

etx dRL(x) (A.586)

=
1

ML(t)

∫
B

etxqL(x) dx +
1

ML(t)
∑
j∈J

xj∈B

etxj rL,j (A.587)

= Q̃(B) + R̃(B), (A.588)

where we define the Borel measures

Q̃(B) :=
1

ML(t)

∫
B

etxqL(x) dx, (A.589)

R̃(B) :=
1

ML(t)
∑
j∈J

xj∈B

etxj rL,j. (A.590)

From these definitions, it is clear that R̃ is discrete and Q̃ is absolutely continuous with respect to the

Lebesgue measure with PDF q̃(x) := etxqL(x)/ML(t). Furthermore, by assumption on qL, we have

that q̃ ∈ L2(R). Therefore, we may apply Parseval’s identity (Lemma A.12) on f and PL̃ to obtain

E
[

f (L̃)
]
=

1
2π

∫
R

f̂ (s)ϕPL̃
(s) ds. (A.591)
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Next, applying the formula for ML̃ in (A.580), we see that

ϕPL̃
(s) = E[eisL̃] = ML̃(is) =

ML(t + is)
ML(t)

. (A.592)

Therefore, combining formulas (A.582) and (A.591), we get

δL(ε) = ML(t)E[ f (L̃)] =
1

2π

∫
R

f̂ (s)ML(t + is) ds. (A.593)

Now, using the contour {z = t + is : −∞ < s < ∞} oriented counter-clockwise, we see that (A.593)

may be rewritten as the contour integral

δL(ε) =
1

2πi

∫ t+i∞

t−i∞
f̂ ((z− t)/i)ML(z) dz. (A.594)

Finally, using the formula for f̂ in (A.584), we deduce

δL(ε) =
1

2πi

∫ t+i∞

t−i∞

e−zε

z(z + 1)
ML(z) dz (A.595)

=
1

2πi

∫ t+i∞

t−i∞
eFε(z) dz, (A.596)

where we define

Fε(z) := KL(z)− εz− log(z)− log(1 + z) (A.597)

and we take the principal branch for the complex logarithm. This is precisely the desired formula

for δL stated in (2.132), and the proof of the theorem is therefore complete.

A.18 Proof of Theorem 2.16: The Large-Composition Regime

We may show this result using the standard Berry-Esseen approach. By the Berry-Esseen theorem,

we have for Z ∼ N (E[L], σ2
L) that

δL(ε) = E

[(
1− eε−L

)+]
(A.598)

=
∫ 1

0
P [L > ε− log(1− u)] du (A.599)

= δZ(ε) + θ · 0.56 P0

σ3
L

(A.600)

where |θ| ≤ 1. A direct computation yields that, for any ε ≥ E[L], with Z ∼ N (E[L], σ2
L),

δZ(ε) = Φ
(

E[L]− ε

σL

)
− eε−E[L]+σ2

L/2 Φ

(
E[L]− σ2

L − ε

σL

)
. (A.601)
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Plugging in ε = E[L]−Φ−1(δ)σL, we obtain that

δZ(E[L]−Φ−1(δ)σL) = δ− e−Φ−1(δ)σL+σ2
L/2Φ

(
Φ−1(δ)− σL

)
. (A.602)

Using Φ(−x) = Q(x) = q(x)e−x2/2
√

2π
for x > 0, we obtain

δZ(E[L]−Φ−1(δ)σL) = δ− q(σL −Φ−1(δ))√
2π

e−Φ−1(δ)2/2 (A.603)

= δ− q(σL −Φ−1(δ))√
2π

e−(−Φ−1(δ))2/2 (A.604)

= δ− q(σL −Φ−1(δ))

q(−Φ−1(δ))
Φ(Φ−1(δ)) (A.605)

= δ ·
(

1− q(σL −Φ−1(δ))

q(−Φ−1(δ))

)
. (A.606)

Note that q(x) ∼ 1/x as x → ∞. Since σL/(−Φ−1(δ)) → ∞ by assumption, we also have σL −

Φ−1(δ))→ ∞. Thus, we obtain

q(σL −Φ−1(δ))

q(−Φ−1(δ))
∼ 1
−Φ−1(δ)q(−Φ−1(δ))

· 1
σL

−Φ−1(δ)
− 1

. (A.607)

As lim sup δ < 1/2, we get that the term −Φ−1(δ)q(−Φ−1(δ)) is bounded away from 0. Therefore,

we get that

δZ(E[L]−Φ−1(δ)σL) = δ · (1 + o(1)) . (A.608)

From (A.600), and since P0 = o(σ3
L) by assumption, we conclude that

δL(E[L]−Φ−1(δ)σL) = δ · (1 + o(1)) . (A.609)

In other words,M is (E[L]−Φ−1(δ)σL, δ · (1 + o(1))-DP, as desired.

A.19 Proof of Theorem 2.17: Asymptotic of the Saddle-Point

We write K = KL for short. Consider the saddle-point equation (2.134):

K′(t) = ε +
1
t
+

1
1 + t

. (A.610)

The left-hand side strictly increases from E[L] to ess supL over t ∈ [0, ∞), whereas the right-hand

side strictly decreases from ∞ to ε over the same interval. Hence, there exists a unique solution

t = t0 > 0, which we call the saddle-point.
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We show first that t0 → 0 as n → ∞. Suppose, for the sake of contradiction, that t∗ :=

lim supn→∞ t0 > 0, and let nk ↗ ∞ be a sequence of indices such that the sequence of the nk-

th saddle points, denoted t(k)0 , converge to t∗. Let ρ2 : (0, ∞) → (0, ∞) be defined by ρ2(t) :=

(K′(t)−E[L])/(tσ2
L), so ρ2(t)→ 1 as t→ 0+ and

K′(t) = E[L] + σ2
Ltρ2(t). (A.611)

Note that ρ2 is a continuous function. Noting that ε = E[L] + bσL, rearranging the saddle-point

equation yields that

1 + σ2
L

E[L] tρ2(t)

1 + b σL
E[L]

= 1 +
1
εt

+
1

ε · (1 + t)
. (A.612)

Taking t ∈ {t(k)0 }k∈N, letting k→ ∞, and recalling the assumptions that (E[L], σ2
L) ∼ n · (KL, V) for

KL, V > 0 and that b = o(
√

n), we infer from (A.612) that

Vt∗ρ2(t∗)
KL

= 0. (A.613)

Equality (A.613) contradicts that V, t∗, ρ2(t∗), KL > 0. Thus, we must have that t∗ = 0.

Consider the reparametrization t = d/σL, so d is a variable over (0, ∞). The saddle-point equation

can be rewritten as (
ρ2(t)−

b
σL

)
d2 −

(
b +

2
σL

)
d−

(
1− ρ2(t)d3

σL

)
= 0. (A.614)

We rewrite the saddle-point equation in this “quadratic” form since it closely approximates the

quadratic d2 − bd− 1 = 0 at the saddle-point. Indeed, let d0 > 0 be such that t0 = d0/σL. We obtain

from (A.614) the inequality 1
2 d2

0 − (b + 1)d0 − 1 ≤ 0 for all large n. This latter inequality yields that

d0 ≤ b + 1 +
√
(b + 1)2 + 2 = o(n1/6). (A.615)

Hence, ρ2(t0)d3
0/σL → 0 as n → ∞, i.e., the “constant” term in (A.614) approaches 1. Thus, for all

large n, completing the square in (A.614) yields (denoting t = t0, ρ = ρ2, and σ = σL for short)

d0 =

b + 2
σ +

√(
b + 2

σ

)2
+ 4

(
1− ρ(t)d3

0
σ

)(
ρ(t)− b

σ

)
2
(

ρ(t)− b
σ

) . (A.616)

Taking n→ ∞, we obtain

d0 ∼
b +
√

b2 + 4
2

, (A.617)
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which gives the desired asymptotic formula for the saddle-point t0 = d0/σL.

A.20 Contrast between SPA and the Standard CLT

To illustrate the advantage of our tilting approach, we compare the asymptotic behavior of the

error in Theorem 2.19 to that obtainable from non-tilted Berry-Esseen. Let L = L1 + · · ·+ Ln for

independent PLRVs L1, · · · , Ln that satisfy Assumption 2.5. Suppose that Assumption 2.7 holds too.

By the Berry-Esseen theorem, we have for a Gaussian Z ∼ N (E[L], σ2
L) that2

δL(ε) = E

[(
1− eε−L

)+]
(A.618)

=
∫ 1

0
P [L > ε− log(1− u)] du (A.619)

= δZ(ε) + θ · 0.56 P0

σ3
L

(A.620)

where |θ| ≤ 1. By Assumption 2.7, the error term in the standard Berry-Esseen approach shown

above satisfies

errStandard(ε) :=
0.56 P0

σ3
L
∼ 0.56 P

V3/2 ·
√

n
. (A.621)

Thus, the improvement our approach yields is asymptotically (see Theorem 2.19 for the definitions

of C(b) and τ)
errSP(ε; t0)

errStandard(ε)
∼ 2

√
e

C(b)τ
. (A.622)

Even for moderate values of b, the above ratio is very small (recall that we denote ε = E[L] + bσL).

For example, if b ≈ 6.4 (so δ ≈ 10−10 in the limit; see Theorem 2.16 on the high-composition regime),

we obtain the limit of the ratio

lim
n→∞

errSP(ε; t0)

errStandard(ε)
≈ 3× 10−9. (A.623)

In addition, in the complementary regime of δ→ 0, e.g., when ε = E[L] + bσL with b ≥
√

log n

(and still b = o(n1/6)), one has that the error term in the standard CLT dominates the approximation

of δ:

δZ(ε) = o (errStandard(ε)) . (A.624)

In contrast, in the same regime, our error term errSP(ε; t0) is always vanishingly smaller than the

2Note that Z is not necessarily a PLRV associated to a Gaussian mechanism, since in general σ2
L ̸= 2E[L].
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approximation itself, i.e.,

errSP(ε; t0) = o (δL, SP-CLT(ε)) . (A.625)

A.21 Proofs of Section 2.19.1

A.21.1 Proof of Proposition 2.6

Denote K = KL for short. The Gaussian expectation may be computed as

E
[

f̄ (Z− ε, t)
]
= exp

(
K′′(t)t2

2
− (K′(t)− ε)t

)
·Q
(√

K′′(t) t− K′(t)− ε√
K′′(t)

)

− exp
(

K′′(t)(t + 1)2

2
− (K′(t)− ε)(t + 1)

)
·Q
(√

K′′(t) (t + 1)− K′(t)− ε√
K′′(t)

)
.

(A.626)

Using Q(z) = q(z)√
2π

e−z2/2 and the definitions of α, β, γ, we get

E
[

f̄ (Z− ε, t)
]
=

q(α)− q(β)√
2π

e−γ2/2. (A.627)

Plugging this into the definition of δL, SP-CLT completes the proof.

A.21.2 Proof of Proposition 2.7

Let Z ∼ N (K′L(t), K′′L(t)) be the variable in the expectation in (2.145). Its PDF is upper bounded by

pZ(z) ≤ 1√
2πK′′L(t)

. Thus

E

[
e−t(Z−ε)

(
1− e−(Z−ε)

)+]
=
∫ ∞

ε
pZ(z)e−t(z−ε)

(
1− e−(z−ε)

)
dz (A.628)

≤ 1√
2πK′′L(t)

∫ ∞

ε
e−t(z−ε)

(
1− e−(z−ε)

)
dz (A.629)

=
1√

2πK′′L(t) t(t + 1)
. (A.630)

Applying this bound to the definition of δL, SP-CLT(ε) in (2.145) completes the proof.
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A.22 Proof of Theorem 2.18

A simple key feature of exponential tilting, stated here without proof, is that it respects addition and

independence.

Lemma A.13. For independent Lj, the exponential tilting of L = L1 + · · · + Ln with parameter t is

L̃ = L̃1 + · · ·+ L̃n, where L̃j is the exponential tilting of Lj with parameter t for each j. Further, L̃1, . . . , L̃n

are independent too.

Fix t > 0. Recall from (2.143) that

δL(ε) = eKL(t)−εt E
[

f̄
(

L̃− ε, t
)]

(A.631)

where L̃ is the exponential tilting of L with parameter t, and

f̄ (x, t) = e−xt(1− e−x)+ (A.632)

Note that K′L(t) = E[L̃] and K′′L(t) = Var[L̃]. We consider the function f̄ (x, t). We show next that,

for fixed t, x 7→ f̄ (x, t) is a unimodal function with a maximal value of tt/(t + 1)t+1. Certainly

f̄ (x, t) ≥ 0 for all x. For x > 0 the derivative (with respect to x) is

f̄ ′(x, t) = −te−tx(1− e−x) + e−txe−x (A.633)

= e−tx [−t + (t + 1)e−x] . (A.634)

Note that −t + (t + 1)e−x is monotonically decreasing in x, which means that f̄ (x, t) is increasing

until −t + (t + 1)e−x = 0, and is subsequently decreasing. In particular, the maximal value of f̄ is

attained when

x = x0 = − log
t

t + 1
. (A.635)

Note that x0 > 0. Thus, the maximal value of f̄ is

fmax := f̄ (x0, t) = f̄
(
− log

t
t + 1

, t
)

(A.636)

=

(
t

t + 1

)t (
1− t

t + 1

)
=

tt

(t + 1)t+1 . (A.637)

Thus, between x = 0 and x = x0, f̄ (x, t) is monotonically increasing from 0 to fmax; then from x = x0

to x = ∞, f̄ (x, t) is monotonically decreasing from fmax to 0. Thus, there exist functions f−1
1 (z),
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f−1
2 (z) such that, for any z ∈ (0, fmax), f̄ (x, t) > z if and only if

f−1
1 (z) < x < f−1

2 (z).

Therefore,

E[ f̄ (L̃− ε, t)] =
∫ fmax

0
P
[

f̄ (L̃− ε, t) > z
]

dz (A.638)

=
∫ fmax

0
P
[

f−1
1 (z) < L̃− ε < f−1

2 (z)
]

dz. (A.639)

In addition, we may apply the Berry-Esseen theorem to write

sup
x∈R

∣∣∣P [L̃ > x
]
−P[Z > x]

∣∣∣ ≤ 0.56 Pt

K′′L(t)
3/2 (A.640)

where Z ∼ N (K′L(t), K′′L(t)) and Pt is defined in the beginning of Section 2.19. Thus we have the

upper bound

δL(ε) = eKL(t)−εt E
[

f̄
(

L̃− ε, t
)]

(A.641)

= eKL(t)−εt
∫ fmax

0
P
[

f−1
1 (z) < L̃− ε < f−1

2 (z)
]

dz (A.642)

≤ eKL(t)−εt

(
1.12 fmaxPt

K′′L(t)
3/2 +

∫ fmax

0
P
[

f−1
1 (z) < Z− ε < f−1

2 (z)
]

dz

)
(A.643)

= eKL(t)−εt
(

E
[

f̄ (Z− ε, t)
]
+

1.12 fmaxPt

K′′L(t)
3/2

)
(A.644)

Similarly, we have the lower bound

δL(ε) ≥ eKL(t)−εt
(

E
[

f̄ (Z− ε, t)
]
− 1.12 fmaxPt

K′′L(t)
3/2

)
. (A.645)

This completes the proof of the theorem.

A.23 Proof of Theorem 2.19: Asymptotic of the SPA-CLT Approxi-

mation Error

We write K = KL for short. Recall the definition of the error term in (2.150)

errSP(ε; t0) = eK(t0)−εt0
tt0
0

(1 + t0)1+t0
· 1.12 Pt0

K′′(t0)3/2 . (A.646)
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From the characterization of the saddle-point in Theorem 2.17, we have that

t0 ∼
b +
√

b2 + 4
2σL

. (A.647)

By Assumption 2.7, we have that σ2
L = K′′(0) ∼ nV as n → ∞. Hence, t0 ∼ c/

√
n for c =

(b +
√

b2 + 4)/(2V) = o(n1/6). Thus, by Assumption 2.7 again, (K′′(t0), Pt0) ∼ n · (V, P). As we also

have that t0 → 0, we conclude that

tt0
0

(1 + t0)1+t0
· 1.12 Pt0

K′′(t0)3/2 ∼
1.12 P

V3/2 ·
√

n
. (A.648)

Thus, it only remains to analyze the asymptotic of exp (K(t0)− εt0).

We use the following Taylor expansion of K around 0:

K(t0) = t0 ·E[L] +
t2
0
2
· σ2

L +
t3
0
6
· K′′′(ξ), (A.649)

where 0 ≤ ξ ≤ t0. Using ε = E[L] + bσL, and writing t0 = d0/σL (so d0 ∼ (b +
√

b2 + 4)/2

by (A.647)), we obtain

K(t0)− εt0 =
d2

0
2
− bd0 +

d3
0K′′′(ξ)

6σ3
L

. (A.650)

Now, note that K′′′(ξ) = ∑n
j=1 K′′′Lj

(ξ). Thus, applying the triangle inequality, we obtain that

|K′′′(ξ)| ≤ Pξ . As 0 ≤ ξ ≤ t0, Assumption 2.7 yields that |K′′′(ξ)| = O(n). As σL = Θ(
√

n), and

d0 = o(n1/6), we infer that
d3

0K′′′(ξ)
6σ3

L
→ 0 (A.651)

as n→ ∞. Hence,

exp (K(t0)− εt0) ∼ exp

(
d2

0
2
− bd0

)
. (A.652)

Writing d0 = τ0 · (b +
√

b2 + 4)/2, so τ0 > 0 and τ0 → 1 by (A.647), then collecting terms, we obtain

d2
0

2
− bd0 =

τ2
0
2
− (2− τ0)τ0 ·

b2 + b
√

b2 + 4
4

. (A.653)

Therefore, we obtain that

exp (K(t0)− εt0) ∼
√

e
C(b)τ

(A.654)

where τ := (2− τ0)τ0 → 1. Putting the asymptotics shown above together, we conclude that

errSP(ε; t0) ∼
1.12
√

e P
V3/2 · C(b)τ ·

√
n

, (A.655)

as desired.
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A.24 Instantiation of the Saddle-point Accountant

The algorithm SaddlePointAccountant (Algorithm 2), giving the workflow of the versions of the

SPA, is presented here.

Algorithm 2 : SaddlePointAccountant (SPA)

1: Input: A finite set E ⊂ [0, ∞) (values of ε), and tightly dominating distributions
(P1, Q1), . . . , (Pn, Qn).

2: Output: Four approximations δ
(k)
L,SP-MSD, 1 ≤ k ≤ 3, and δL, SP-CLT of the privacy curve δL, and an

error bound so that |δL(ε)− δL, SP-CLT(ε)| ≤ errSP(ε).

3: Lj ← log
dPj
dQj

(Xj) where Xj ∼ Pj j ∈ [n]

4: KLj(t)← log E
[
etLj
]

j ∈ [n]

5: L← L1 + · · ·+ Ln

6: KL ← KL1 + · · ·+ KLn

7: for ε ∈ E do
8: t0 ← positive solution to K′L(t0) = ε + 1

t0
+ 1

t0+1

9: Fε(t)← KL(t)− εt− log t− log(t + 1)

10: βε,2 ←
1
8

F(4)
ε (t0)

F′′ε (t0)2

11: βε,3 ← −
5

24
F(3)

ε (t0)
2

F′′ε (t0)3 −
1

48
F(6)

ε (t0)

F′′ε (t0)3

12: δ
(1)
L, SP-MSD(ε)←

eFε(t0)√
2πF′′ε (t0)

13: δ
(2)
L, SP-MSD(ε)←

eFε(t0)√
2πF′′ε (t0)

(1 + βε,2)

14: δ
(3)
L, SP-MSD(ε)←

eFε(t0)√
2πF′′ε (t0)

(1 + βε,2 + βε,3)

15: γ←
K′L(t0)− ε√

K′′L(t0)

16: (α, β)←
(√

K′′L(t0) t0 − γ,
√

K′′L(t0) (t0 + 1)− γ
)

17: δL, SP-CLT(ε)← eKL(t0)−εt0−γ2/2 q(α)− q(β)√
2π

18: L̃j ← exp. tilt of Lj with parameter t0, j ∈ [n]

19: Pt0 ← ∑
j∈[n]

E

[∣∣∣L̃j − K′Lj
(t0)

∣∣∣3]

20: errSP(ε)← eKL(t0)−εt0
tt0
0

(1 + t0)1+t0
·

1.12 P(n)
t0

K′′L(t0)3/2

21: end for
22: Return: δ

(k)
L,SP-MSD, 1 ≤ k ≤ 3, δL, SP-CLT, errSP.
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A.25 Ground-Truth Curve Computation

We explain here how the ground-truth curve in Figure 2.7 is computed. Since the setting there is

for self-composition, we employ that here too. So, let L1, · · · , Ln be i.i.d. PLRVs for the subsampled

Gaussian mechanism, and consider the PLRV L = L1 + · · ·+ Ln for the composed mechanism.

Recall that the saddle-point accountant gives various approximations to the contour integral

given in Theorem 2.15, which we copy here:

δL1(ε) =
1

2πi

∫ t+i∞

t−i∞
eFε(z) dz (A.656)

where the function Fε is defined as:

Fε(z) = KL1(z)− εz− log z− log(1 + z). (A.657)

After n compositions, the contour integral becomes:

δL(ε) =
1

2πi

∫ t+i∞

t−i∞
enKL1 (z)−εz−log z−log(1+z) dz. (A.658)

Recall that this formula holds for any value of t > 0.

The ground-truth in (A.658) is then computed via standard numerical integration, which evidently

is a time-consuming process, yet it is one that can produce a reference value to relatively compare

accountants’ accuracies.

Let P = N (0, σ2), Q = (1− λ)N (0, σ2) + λN (s, σ2). The composed subsampled Gaussian has

the PLRV L = L1 + · · ·+ Ln, where the Lj are independent and (see Lemma 2.4)

Lj = log
dQ
dP

(X) = log
(

1− λ + λes(2X−s)/(2σ2)
)

,

X ∼ (1− λ)N (0, σ2) + λN (s, σ2).
(A.659)

In addition, the MGF of L1 may be written as

ML1(z) = E[ezL1 ] (A.660)

= EX∼Q

[(
dQ
dP

(X)

)z]
(A.661)

= EX∼P

[(
dQ
dP

(X)

)z+1
]

(A.662)

=
∫ ∞

−∞

(
1− λ + λes(2x−s)/(2σ2)

)z+1
dP(x). (A.663)
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Recall that the CGF is given by

KL1(z) = log ML1(z). (A.664)

Plugging in the log integral (A.664) into the contour integral (A.658), the contour integral can

be directly computed using standard numerical libraries. We note that this calculation is very slow,

as the integrand in (A.658) itself involves an integral over R. Moreover, we numerically invert

this function via bisection to obtain the curve described in Figure 2.7. This ground-truth curve

was computed on a 64-core cluster using multi-processing to distribute the workload, and took

a wall-time of 45 minutes. This amounts to a runtime of 48 CPU hours. In contrast, all other

accountants run in the order of seconds on a commercial laptop.

A.26 Additional Numerical Experiments

We provide further experiments exploring the flexibility of the saddle-point accountant. We show

that the SPA-MSD approximations can be accurate even in the moderate-composition regime, though

the SPA-CLT bounds become loose for a small number of compositions. We demonstrate this

using parameters used by a real-world application of DP on the image classification SGD algorithm

in [DBH+22], which uses the subsampled Gaussian as the DP mechanism. In particular, we use the

noise scale σ = 9.4 and subsampling rate λ = 214/50000, as these were the values that allowed a 40-

layer Wide-ResNet to achieve a new SOTA accuracy of 81.4% on CIFAR-10 under (ε = 8, δ = 10−5)-DP.

This algorithm went up to n = 2000 compositions to achieve this SOTA.

First, we plot the (ε, δ)-curves at n ∈ {100, 250, 500, 2000} compositions in Figure A.1. We observe

that the CLT bounds get tighter as the number of compositions increases, but the order-1 SPA-MSD

remains consistently accurate for all presented compositions and values of δ.

Second, we demonstrate the accuracy of the order-1 SPA-MSD for all compositions less than 2000

in Figure A.2, where we fix δ = 10−5, vary the number of compositions, and plot the resulting value

of ε.

These two plots verify that the order-1 SPA-MSD is much more accurate than the CLT bounds

suggest.
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(a) 100 compositions

0 1 2 3 4 5
ε

10−17

10−14

10−11

10−8

10−5

10−2

δ

Moments Accountant
PRV Accountant
Connect the Dots
SPA-MSD (k=1)
SPA-CLT Bounds
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Figure A.1: Accounting for the composition of n ∈ {100, 250, 500, 2000} subsampled Gaussian mechanisms, with noise
scale σ = 9.4 and subsampling rate λ = 214/50000. The PRV Accountant [GLW21] discretization parameters are
εerror = 0.1, δerror = 10−10. The Connect the Dots [DGK+22] discretization interval length is 0.005.
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Figure A.2: Privacy budget ε of the subsampled Gaussian mechanism after 1 ≤ n ≤ 2000 compositions using the order-1
SPA-MSD, the Moments Accountant, and the PRV Accountant [GLW21]. We use subsampling λ = 214/50000, noise
scale σ = 9.4, and δ = 10−5. The discretization parameters for the PRV Accountant are εerror = 0.1, δerror = 10−10.
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Appendix B

Appendix to Chapter 3

The theoretical details of Chapter 3 are included in this appendix. The outline is as follows:

• Appendix B.1: we present the proofs of Section 3.4. Specifically, we prove Theorems 3.1 and 3.2.

• Appendix B.2: we prove the strong duality stated in Theorem 3.3 from Section 3.5.

• Appendix B.3: we prove the theoretical properties of Algorithm 1 stated in Section 3.6.

B.1 Proofs of Section 3.4: Existence, Uniqueness, and the Formula

for Model Projection

We prove Theorems 3.1 and 3.2 in this appendix. Namely, we show that under Assumption 3.1 model

projection exists and is unique, and we also derive its formula. The proof is lengthy, so we divide it

into several subsections. The outline of this appendix is as follows:

• In Appendix B.1.1, we lay the groundwork for the proof. We set up the generalized optimization

problem (B.3) over general Banach spaces C(X ) of continuous functions, and introduce the

relevant notation and assumptions.

• In Appendix B.1.2, we state general results on the general optimization problem (B.3).

• In Appendix B.1.3, we prove Theorems 3.1–3.2 using the general results stated in Appendix B.1.2.

• In Appendices B.1.4–B.1.6, we prove the general results stated previously in Appendix B.1.2.
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B.1.1 Notation and Setup

For the starting points below, we assume only that X is a topological space (i.e., we do not assume

X = Rm yet). Let C(X ) denote the Banach space of continuous and bounded functions

C(X ) :=

{
h : X → RC | h continuous and sup

x∈X
∥h(x)∥1 < ∞

}
, (B.1)

which is Banach when equipped with the sup norm, i.e., for h ∈ C(X )

∥h∥∞ := sup
x∈X
∥h(x)∥1. (B.2)

Consider the following optimization problem

min
h∈C(X )

E [F(X, h(X))] ,

s.t. E [Gk(X, h(X))] ≤ 0, k ∈ [K],

(B.3)

where F and G1, · · · , GK are functions defined on X ×RC and taking values in R := R∪ {∞}. We

denote by C(X ,Z) ⊂ C(X ), for Z ⊂ RC, the subset of functions taking values in Z , i.e.,

C(X ,Z) := {h ∈ C(X ) | h(x) ∈ Z for every x ∈ X}. (B.4)

Note that C(X ,Z) is closed or convex if Z is closed (in RC) or convex, respectively. Therefore,

C(X , ∆C) is a convex complete metric space (for any X ). However, it is not compact in general.

Therefore, it might not be straightforward to tackle the optimization problem (B.3) even when

restricted to only C(X , ∆C). Therefore, we tackle (B.3) indirectly via solving a much more restricted

problem of the form

min
h∈K

E [F(X, h(X))] ,

s.t. E [Gk(X, h(X))] ≤ 0, k ∈ [K]
(B.5)

for a compact subset K ⊂ C(X , ∆C) then showing that the problem (B.5) produces a global optimizer.

We also consider ε-truncations of the simplex

∆ε
C := ∆C ∩ [ε, 1]C (B.6)

and the corresponding space

C+(X , ∆C) :=
⋃
ε>0
C(X , ∆ε

C). (B.7)
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We set

∆+
C := ∆C ∩ (0, 1]C. (B.8)

We let F denote the feasibility region in (B.3), i.e.,

F :=
{

h ∈ C(X ) | max
k∈[K]

E [Gk(X, h(X))] ≤ 0
}

. (B.9)

We denote by S the strict-feasibility region, i.e.,

S :=
{

h ∈ C(X ) | max
k∈[K]

E [Gk(X, h(X))] < 0
}

. (B.10)

We let D be the set of functions in C(X ) at which the objective function and the constraints are

integrable1

D :=
{

h ∈ C(X ) | max
(

E [|F(X, h(X))|] , max
k∈[K]

E [|Gk(X, h(X))|]
)
< ∞

}
. (B.11)

For a function ψ : V → R∪ {∞}, the domain of ψ is the set of points at which ψ is defined and finite

dom ψ := {v ∈ V | ψ(v) < ∞}. (B.12)

We define the intersection of domains

D :=
⋂

x∈X

{
p ∈ RC | max(F(x, p), G1(x, p), · · · , GK(x, p)) < ∞

}
. (B.13)

We denote the convex hull and closure of a set A by co(A) and A, respectively. Abusing notation,

we will also denote R = R∪ {∞}. We denote the indicator function of a set U ⊂ C(X ) by IU

IU (h) :=

 0 if h ∈ U ,

∞ otherwise.
(B.14)

We define extended functionals A,B1, · · · ,BK : C(X )→ R by

A(h) := E [F(X, h(X))] + ID(h), (B.15)

Bk(h) := E [Gk(X, h(X))] + ID(h), k ∈ [K]. (B.16)

In these definitions, it is understood that the value ∞ is assigned outside the set D regardless of

whether the original function is defined and regardless of its value if it is defined there, e.g., if

1We say that a function V : X → R∪ {∞} is integrable if E [|V(X)|] < ∞.
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h ∈ C(X ) is such that F( · , h( · )) is not integrable or if its integral is −∞ then A(h) is defined to be

∞ because h ̸∈ D. For β : Rn → R and ℓ ∈ [n], the notation ∂ℓβ will refer to the partial derivative of

β with respect to its ℓ-th input.

Recall the definition of the convex conjugate (see equation (3.14)).

Definition B.1 (Convex Conjugate). The convex conjugate of a proper2 function W : ∆C → R is the

function Wconj : RC → R defined by

Wconj(v) := sup
q∈∆C

⟨v, q⟩ −W(q). (B.17)

The convex conjugate of an f -divergence D f ( · ∥ p) is denoted by Dconj
f ( · , p). If, for a fixed v, the

maximum in (B.17) is attained at a unique point, then we denote that point by qconj(v).

We will prove results under some subset of assumptions that we introduce here and in the

beginning of the following section. The first set of assumptions has to do with the well-definedness

of our optimization problem, and it will be sufficient to develop the general theory.

Assumption B.1. The functions {F, G1, · · · , GK} in (B.3), and the feasibility set D in (B.11) satisfy:

(a) the set D is nonempty,

(b) for J ∈ {F, G1, · · · , GK}, inf
h∈D

J( · , h( · )) is lower bounded by an integrable function,

(c) for J ∈ {F, G1, · · · , GK} and x ∈ X , the function J(x, · ) is lower-semicontinuous,

(d) the functions q 7→ F(x, q) are strictly convex, and the functions q 7→ Gk(x, q) are convex.

Remark B.1. Note that item (b) of Assumption B.1 is satisfied if, e.g., the functions F, G1, · · · , GK,

are lower bounded by a constant.

Next, we show how a unique minimizer of (B.5) can be obtained from the dual problem. This

procedure is possible thanks to Sion’s minimax theorem. It will be useful to introduce the following

quantities. First, the following term will bound the norm of optimal dual variables corresponding to

the dual of the optimization problem (B.3).

Definition B.2. For q ∈ S ∩D, we define

θq :=
A(q)− inf

h∈D
A(h)

−max
k∈[K]

Bk(q)
. (B.18)

2We say W is proper if dom W is nonempty.
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Under item (b) of Assumption B.1, θq ∈ [0, ∞). Next, we define the Lagrangian of the optimization

problem (B.3).

Definition B.3. Define the Lagrangian function L : D ×RK
+ → R by

L(h, λλλ) := E

F(X, h(X)) + ∑
k∈[K]

λkGk(X, h(X))

 = A(h) + ∑
k∈[K]

λkBk(h). (B.19)

We use the following notation for what will be shown to be a class of models that contains the

optimal model.

Definition B.4. For fixed λλλ ∈ RK
+ and Z ⊂ D, define qZλλλ : X → Z by

qZλλλ (x) := argmin
p∈Z

F(x, p) + ∑
k∈[K]

λkGk(x, p), for every x ∈ X , (B.20)

if the minimization in (B.20) has a unique solution for every x ∈ X .

Remark B.2. One way to guarantee the well-definedness of qZλλλ , for any fixed λλλ ∈ RK
+, is to ensure Z

is a nonempty convex and compact set, each F(x, · ) is lower-semicontinuous and strictly convex,

and each Gk(x, · ) is lower-semicontinuous and convex. Indeed, under such assumptions, each

mapping p 7→ F(x, p) + ∑k∈[K] λkGk(x, p) is lower-semicontinuous and strictly convex, which is then

uniquely minimized over the convex and compact set Z .

B.1.2 A Generalized Result and Proof Technique

We present in this section generalized results on the general optimization problem (B.3). These general

results will be combined to prove Theorems 3.1 and 3.2 in the next subsection (Appendix B.1.3).

Specifically, in this subsection, we:

• Derive a general duality result in Theorem B.1 for the problem (B.3) conditioned on the precom-

pactness of the set Q of potentially optimal models. The proof of this theorem is relegated to

Appendix B.1.4.

• Prove in Theorem B.2 that the set Q of potentially optimal models is indeed precompact. The

proof of this theorem is relegated to Appendix B.1.5.

• Derive formulas for the convex conjugate in Lemma B.2. The proof of this lemma is relegated

to Appendix B.1.6.
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Then, we combine Theorems B.1–B.2 and Lemma B.2 to prove Theorems 3.1–3.2 in Appendix B.1.3.

The main theorem underlying our results is the following general result on optimizers of the

problem (B.3).

Theorem B.1. Suppose Assumption B.1 holds. Let Z ⊂ D be convex and compact such that C(X ,Z) ∩ S is

nonempty, say p ∈ C(X ,Z) ∩ S , and set Λ := {λλλ ∈ RK
+ | ∥λλλ∥1 ≤ θp}. If

Q :=
{

qZλλλ | λλλ ∈ Λ
}

(B.21)

is precompact and Q ⊂ C(X ,Z) ⊂ D, then the problem

min
h∈C(X ,Z)

E [F(X, h(X))] ,

s.t. E [Gk(X, h(X))] ≤ 0, k ∈ [K]

(B.22)

has a unique solution, and this solution is qZλλλ⋆ where λλλ⋆ is any solution of

sup
λλλ∈Λ

L(qZλλλ , λλλ). (B.23)

Proof. See Appendix B.1.4.

We apply Theorem B.1 to the problem of model projection. An intermediate step is that in which

separability of the objective function F and linearity of the constraining functions Gk are assumed.

We will be interested in the situation Z ⊂ [0, 1]C. We introduce the following assumptions.

Assumption B.2. The functions F and G1, · · · , GK satisfy the following:

(a) For each x ∈ X , the function F(x, · ) is separable and can be written as

F(x, p) = ∑
c∈[C]

fc(x, pc) (B.24)

for C1(R) strictly convex functions fc(x, · ) satisfying limt0→0+
∂ fc
∂t (x, t0) = −∞.

(b) For each fixed (k, x) ∈ [K]×X the function Gk(x, · ) is linear, i.e.,

Gk(x, q) = qT gk(x). (B.25)

Further, for each k ∈ [K] the function gk : X → RC is continuous. We denote

G = (g1, · · · , gK)
T . (B.26)
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Note that item (a) of Assumption B.2 implies that t0 7→ (∂ fc/∂t)(x, t0) is strictly increasing

for fixed (c, x) ∈ [C] × X , so it is invertible. We let φc denote the inverse, i.e., define φc(x, · ) :

(−∞, ∂m+1 fc(x, 1−))→ RC
>0 by

(∂m+1 fc) (x, φc(x, u)) = u. (B.27)

Each φc(x, · ) is continuous and strictly increasing, so it is a bijection from its domain to (0, 1).

Therefore, fixing x ∈ X , for any a ∈ RC the mapping

γ 7→ ∑
c∈[C]

φc (x, γ + ac) (B.28)

is a strictly increasing continuous bijection from an interval I1 = (−∞, τ1) to another I2 = (0, τ2)

where τ2 > 1. We define γ : X ×RK → R implicitly by

∑
c∈[C]

φc (x, γ(x, λλλ) + vc(x; λλλ)) = 1. (B.29)

Note that we allow λλλ with negative coordinates in the definition of γ(x, λλλ). Recall that we set

v(x; λλλ) = −G(x)Tλλλ.

In the sequel, we will take the f j to be the following functions. For any (c, x, t) ∈ [C]×X × [0, 1],

fc(x, t) := hbase
c (x) f

(
t

hbase
c (x)

)
. (B.30)

Then, F(x, p) = ∑c∈[C] fc(x, pc) satisfies

F(x, p) = D f (p ∥ hbase(x)). (B.31)

We denote, under the assumption f ′(0+) = −∞, the inverse of f ′ by ϕ. Then,

φc(x, t) = hbase
c (x)ϕ(t). (B.32)

We extend the definition of the f -divergence so that for any p, q ∈ [0, 1]C with q > 0

D f (p∥q) = ∑
c∈[C]

qc f
(

pc

qc

)
. (B.33)

We will repeatedly use the following bound on the values of φc.

Lemma B.1. Fix y ∈ ∆+
C , and let f : (0, ∞) → R be strictly convex and continuously differentiable over

(0, ∞) such that f ′(0+) = −∞ and denote the inverse of its derivative by ϕ. For each c ∈ [C], define

fc : [0, 1] → R by fc(t) = yc f (t/yc), and let φc : (−∞, f ′(1/yc)] → (0, 1] be the inverse of f ′c . Let
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v ∈ RC and θ ∈ R+ be such that ∥v∥∞ ≤ θ, and let γ ∈ R be the unique real number such that

∑c∈[C] φc(γ + vc) = 1. Then,

min
c∈[C]

φc(γ + vc) ≥ ϕ

(
f ′
(

1
C

)
− 2θ

)
· min

c∈[C]
yc. (B.34)

Proof. For each c ∈ [C], let βc = γ + vc. Then, |βi − β j| ≤ 2θ for every (i, j) ∈ [C]2. Since

∑c∈[C] φc(βc) = 1, there exists at least one a ∈ [C] such that

φa(βa) ≥
1
C

. (B.35)

Therefore, βa ≥ f ′a(1/C). Furthermore, f ′a(1/C) = f ′(1/(Cya)) ≥ f ′(1/C). Then,

min
c∈[C]

βc ≥ f ′
(

1
C

)
− 2θ. (B.36)

Finally, we have

min
c∈[C]

φc(βc) ≥ min
c∈[C]

φc

(
min
i∈[C]

βi

)
≥ min

c∈[C]
φc

(
f ′
(

1
C

)
− 2θ

)
= min

c∈[C]
ycϕ

(
f ′
(

1
C

)
− 2θ

)
, (B.37)

where the last step is because φc(t) = ycϕ(t).

In view of this result, we will employ the following notation. Write

ymin := inf
x,c

hbase
c (x), (B.38)

and, for θ > 0, let

tmin(θ) := ϕ

(
f ′
(

1
C

)
− 2θ − 1

)
ymin (B.39)

and

umin(θ) := f ′
(

1
C

)
− 2θ − 1. (B.40)

We use 2θ + 1 instead of 2θ to obtain a strict inequality

φc(x, γ(x, λλλ) + vc(x; λλλ)) > tmin(∥λλλ∥) (B.41)

The following regularity conditions guarantee that an optimizer over a compact set K ⊂

C(Rm, ∆C) is also a global optimizer. Note that we introduce the following definition only for

the case X = Rm.

Definition B.5. Assume X = Rm. We call the functions fc and G regular if
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(a) every function fc(x, · ) is twice continuously differentiable and, for every ε > 0,

inf
(c,x,t)∈[C]×Rm×(ε,1)

∂2
m+1 fc(x, t) > 0, (B.42)

(b) the partial derivatives ∂ℓ∂m+1 fc(x, t) and ∂ℓGk,c(x) exist and are continuous, and for every

ε > 0,

sup
(ℓ,k,c,x,t)∈[m]×[K]×[C]×Rm×(ε,1)

max (|∂ℓ∂m+1 fc(x, t)|, |Gk,c(x)|, |∂ℓGk,c(x)|) < ∞, (B.43)

(c) the functions ∂m+1 fc( · , t) are continuous for every t ∈ (0, 1] and c ∈ [C].

We show that the regularity conditions on the fc and G yield Lipschitzness of φc and local

Lipschitzness of γ. This in turn will yield precompactness of the set Q given in equation (B.21)

in Theorem B.1. The key tool we employ is utilizing a simplified version of the implicit function

theorem, where the simplicity is due to the triviality of gluing.

Theorem B.2. Under Assumptions 3.1 and B.2, for any θ ∈ R+ the set

Q =
{

q∆C
λλλ | λλλ ∈ RK

+, ∥λλλ∥1 ≤ θ
}

(B.44)

is a precompact subset of C(Rm, ∆C).

Proof. See Appendix B.1.5.

The explicit formula for hopt is a direct consequence of the formula for q∆C
λλλ .

Lemma B.2. Let f : [0, ∞)→ R be a strictly convex continuously differentiable function over3 (0, ∞) such

that f (1) = 0 and f ′(0+) = −∞, and let ϕ be the inverse of f ′. Fix q ∈ ∆+
C , and define F : [0, 1]C → R by

F(p) = Ec∼q

[
f
(

pc

qc

)]
. (B.45)

Then, the convex conjugate of F is defined over all of RC and satisfies

Fconj(v) = Ec∼q [vcϕ(γ(v) + vc)− f (ϕ(γ(v) + vc))] (B.46)

where γ : RC → R is the unique function satisfying

Ec∼q [ϕ(γ(v) + vc)] = 1, v ∈ RC. (B.47)

3We set f (0) := f (0+).
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Further, for any v ∈ RC, we have that

qconj
c (v) = qcϕ(γ(v) + vc), for every c ∈ [C]. (B.48)

Proof. See Appendix B.1.6.

Corollary B.1. Under Assumptions 3.1 and B.2, the c-th coordinate of q∆C
λλλ (x) (see (B.20)) is given by

φc (x, γ(x, λλλ) + vc(x; λλλ)) .

The final ingredient in the proof is a direct consequence of Lemma B.1.

Corollary B.2. Under Assumptions 3.1 and B.2, for any λλλ ≥ 0 and ε ∈ [0, tmin(∥λλλ∥))

q∆ε
c

λλλ = q∆c
λλλ . (B.49)

B.1.3 Proof of Theorems 3.1 and 3.2

We are now ready to derive the model projection formula. We operate under Assumption 3.1, and

note that the model projection problem we consider will satisfy Assumption B.2. We apply the

general results stated in Appendix B.1.2 above with Z = ∆ε
C for all small enough ε.

By continuity of f ,

D ⊃ ∆+
C . (B.50)

Further, for any ε ∈ (0, 1),

D ⊃ C(X , ∆ε
C), (B.51)

so D ⊃ C+(X , ∆C). Fix h̃ ∈ C+(X , ∆C) such that E
[
vh̃(X)

]
< 0, i.e., h̃ ∈ S . Let ε be small enough

that h̃ ∈ C(X , ∆ε
C). Denote θ̃ = θh̃. Fix θ ≥ θ̃. Decrease, if necessary, the value of ε so that ε < tmin(θ).

Then, by Corollary B.2,

q∆ε
c

λλλ = q∆c
λλλ (B.52)

for all λλλ with ∥λλλ∥ ≤ θ.

By Theorem B.2, we have precompactness of the set

Q :=
{

q∆C
λλλ | λλλ ≥ 0, ∥λλλ∥1 ≤ θ

}
(B.53)

and that Q ⊂ C(Rm, ∆C). But, by (B.52),

Q = {q∆ε
C

λλλ | λλλ ≥ 0, ∥λλλ∥1 ≤ θ}. (B.54)
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Then, Q ⊂ C(Rm, ∆ε
C). Precompactness of Q, then, implies by Theorem B.1 (using Z = ∆ε

C) that the

problem

min
h∈C(X ,∆ε

C)
E
[

D f (h(X) ∥ hbase(X))
]

,

s.t. E [G(X)h(X)] ≤ 0

(B.55)

has the unique solution q∆C
λλλ⋆ for any λλλ⋆ solving

inf
λλλ≥0,∥λλλ∥1≤θ̃

E
[

Dconj
f (v(X; λλλ), hbase(X))

]
(B.56)

where we used the fact that

L(q∆C
λλλ , λλλ) = −E

[
Dconj

f

(
v(X; λλλ), hbase(X)

)]
. (B.57)

By Corollary B.3, we may remove the condition ∥λλλ∥ ≤ θ̃. As the solution q∆C
λλλ⋆ does not depend on ε,

and as ε is arbitrary, we may extend the optimization to be over all of C+(X , ∆C). Finally, the proof

is complete in view of the equation of q∆C
λλλ⋆ as given by Corollary B.1.

B.1.4 Proof of Theorem B.1: a Generalized Result

We start by proving intermediate results on the general optimization problem (B.3)–(B.5), then we

combine these component results to derive Theorem B.1 at the end of this subsection.

First, we have the following basic result on the existence and uniqueness of solutions to the

general optimization problem (B.5) over compact subsets of C(X ).

Lemma B.3. Suppose items (a)–(c) of Assumption B.1 all hold. For a compact set K ⊂ D such that K ∩F is

nonempty, the following optimization problem has a minimizer

min
h∈K

A(h),

s.t. Bk(h) ≤ 0, k ∈ [K].
(B.58)

If, in addition, K is convex and item (d) holds, then the minimizer is unique.

Proof. We prove the existence of a minimizer first. Then we treat uniqueness. Suppose that items (a)–

(c) of Assumption B.1 all hold, and fix a compact set K ⊂ D. We show that the objective function

is lower-semicontinuous on K and that the feasibility set K ∩ F is compact, which together yield

via the extreme value theorem the existence of a minimizer. We start by showing that the mappings

252



A,B1, · · · ,BK are lower-semicontinuous on K. Lower-semicontinuity of the Bi will yield that the

feasibility set K ∩F of (B.58) is compact.

Fix J ∈ {F, G1, · · · , GK}, and we will show that the mapping h 7→ E[J(X, h(X))] + ID(h) is

lower-semicontinuous when restricted to K. As K ⊂ D by assumption, this mapping is just h 7→

E[J(X, h(X))]. As K is a metric space, lower-semincontinuity on K is equivalent to sequential-lower-

semicontinuity [KZ06, Theorem 7.1.2]. Fix a convergent sequence hn → h in K (i.e., supx∈X ∥hn(x)−

h(x)∥1 → 0 as n→ ∞). By item (b) of Assumption B.1, we may apply Fatou’s lemma to obtain

lim inf
n→∞

E[J(X, hn(X))] ≥ E
[
lim inf

n→∞
J(X, hn(X))

]
. (B.59)

Uniform convergence hn → h implies, in particular, pointwise convergence: hn(x)→ h(x) for every

x ∈ X . Therefore, by lower-semicontinuity of each J(x, · ) (item (c) of Assumption B.1)

E
[
lim inf

n→∞
J(X, hn(X))

]
≥ E[J(X, h(X))]. (B.60)

Therefore,

lim inf
n→∞

E[J(X, hn(X))] ≥ E[J(X, h(X))], (B.61)

and lower-semicontinuity of A,B1, · · · ,BK on K follows. In particular, the lower-level sets

Vk := {h ∈ K | E [Gk(X, h(X))] ≤ 0} (B.62)

are closed4 [KZ06, Theorem 7.1.1]. Therefore, the feasibility set F ∩ K =
⋂

k∈[K] Vk is closed. By

compactness of K, the feasibility set F ∩K is compact too. Finally, lower-semicontinuity of A on

K and compactness of the nonempty (by assumption) feasibility set F ∩K yield the existence of a

minimizer [KZ06, Theorem 7.3.1].

Finally, we show uniqueness of the minimizer. Suppose that K is also convex, and that item (d)

of Assumption B.1 holds too. Since expectation is a linear operator, h 7→ E[F(X, h(X))] is strictly

convex, and each h 7→ E[Gk(X, h(X))] is convex. Hence, the lower-level sets (B.62) are convex which

implies that the feasibility set K ∩F is convex. Thus, the optimization problem (B.58) has a unique

minimizer, and the proof of the lemma is complete.

It will be useful to introduce the following notation.

Definition B.6. For a given λλλ ∈ RK
+ and a subset K ⊂ D, define the function in K that achieves the

4The Vi are closed both in K and in C(X ), as the compact set K is closed in the Hausdorff space C(X ).

253



minimal value of the Lagrangian by

hKλλλ := argmin
h∈K

L(h, λλλ), (B.63)

if there is such a unique function.

We need the following intermediate result, which expresses the solutions to the general optimiza-

tion problem (B.5) in terms of hKλλλ we just defined above.

Theorem B.3. Suppose Assumption B.1 holds, and fix a nonempty compact and convex K ⊂ D. For every

λλλ ∈ Rk
≥0, the function L( · , λλλ) has a unique minimizer over K, i.e., hKλλλ in (B.63) is well-defined. In addition,

if λλλ⋆ satisfies

inf
h∈K
L(h, λλλ⋆) = sup

λλλ∈Rk
+

inf
h∈K
L(h, λλλ), (B.64)

then hKλλλ⋆ is the unique solution for problem (B.5).

Proof. Since K is compact and h 7→ L(h, λλλ) is strictly convex and lower-semicontinuous for any fixed

λλλ ∈ RK
+, there is a unique minimizer of L(h, λλλ) over K. Hence, hKλλλ is well-defined and satisfies

L(hKλλλ , λλλ) = inf
h∈K
L(h, λλλ). (B.65)

Next, we prove strong duality for (B.5). Again, the mapping h 7→ L(h, λλλ) is strictly convex and

lower-semicontinuous for each fixed λλλ. Also, λλλ 7→ L(h, λλλ) is concave for each fixed h (as it is affine).

Therefore, by Sion’s minimax theorem and the compactness of K,

inf
h∈K

sup
λλλ∈RK

+

L(h, λλλ) = sup
λλλ∈RK

+

inf
h∈K
L(h, λλλ). (B.66)

Let h⋆ denote the unique solution of (B.5), whose existence and uniqueness are guaranteed by

Lemma B.3. We have that

sup
λλλ∈RK

+

L(h⋆, λλλ) = inf
h∈K

sup
λλλ∈RK

+

L(h, λλλ). (B.67)

Combining (B.67), (B.66), and (B.64) together, we have

sup
λλλ∈RK

+

L(h⋆, λλλ) = inf
h∈K

sup
λλλ∈RK

+

L(h, λλλ) = sup
λλλ∈RK

+

inf
h∈K
L(h, λλλ) = inf

h∈K
L(h, λλλ⋆). (B.68)
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Furthermore, since

L(h⋆, λλλ⋆) ≤ sup
λλλ∈RK

+

L(h⋆, λλλ) and inf
h∈K
L(h, λλλ⋆) ≤ L(h⋆, λλλ⋆), (B.69)

then we have

L(h⋆, λλλ⋆) ≤ inf
h∈K
L(h, λλλ⋆) ≤ L(h⋆, λλλ⋆) (B.70)

which implies L(h⋆, λλλ⋆) = inf
h∈K
L(h, λλλ⋆). Therefore, by strict convexity of h 7→ L(h, λλλ⋆), h⋆ = hKλλλ⋆ .

Next, we prove the existence of a λλλ⋆ satisfying (B.64) in Theorem B.3 whenever K ∩ S ̸= ∅. It

will be convenient to introduce the following quantity, which will be used to bound the searching

space of dual variable.

Definition B.7. For a subset K ⊂ D, we define

θ(K) := inf
q∈K∩S

A(q)− inf
h∈K
A(h)

−max
k∈[K]

Bk(q)
. (B.71)

We note that under items (a)–(b) of Assumption 3.1, if K ⊂ D is such that K ∩ S is nonempty,

then θ(K) ∈ R≥0. Indeed, fix an integrable L : X → R such that

L(x) ≤ inf
h∈D

F(x, h(x)) (B.72)

for every x ∈ X . Then, for any q ∈ K ∩ S

−∞ < E [L(X)] ≤ inf
h∈D
A(h) ≤ inf

h∈K
A(h) ≤ A(q) < ∞. (B.73)

Thus, infh∈K A(h) ∈ R. Hence, by definition of D and because K ∩ S ⊂ D, we obtain θ(K) ∈ R+.

Theorem B.4. Suppose items (a)–(b) of Assumption B.1 both hold, and fix K ⊂ D. If K ∩ S is nonempty,

then

sup
λλλ∈RK

+

inf
h∈K
L(h, λλλ) = sup

λλλ∈RK
+

∥λλλ∥1≤θ(K)

inf
h∈K
L(h, λλλ), (B.74)

there exists a λλλ⋆ that achieves the supremum in the left-hand-side in (B.74), and any such maximizer satisfies

∥λλλ⋆∥1 ≤ θ(K).

Proof. If the equality

inf
h∈K
L(h, 0) = sup

λλλ∈RK
+

inf
h∈K
L(h, λλλ) (B.75)

255



holds, then the desired equality (B.74) also holds and λλλ = 0 achieves the supremum. Thus, for the

remainder of the proof, we assume that (B.75) does not hold, i.e.,

inf
h∈K
L(h, 0) < sup

λλλ∈RK
+

inf
h∈K
L(h, λλλ). (B.76)

For any λλλ ∈ RK
+ and q ∈ S , by the definition of S (see (B.10)), E [Gk(X, q(X))] < 0 for all k ∈ [K].

Then, for any q ∈ K ∩ S

inf
h∈K
L(h, λλλ) ≤ inf

h∈K∩S
L(h, λλλ) ≤ L(q, λλλ) = A(q) + ∑

k∈[K]
λkBk(q) ≤ A(q) + ∥λλλ∥1 max

k∈[K]
Bk(q) (B.77)

where we used the fact that q ∈ K ∩ S ⊂ K ⊂ D. Thus, we have

∥λλλ∥1 ≤
A(q)− inf

h∈K
L(h, λλλ)

−max
k∈[K]

Bk(q)
. (B.78)

Now, if λλλ ∈ RK
+ satisfies both ∥λλλ∥1 > θ(K) and infh∈K L(h, λλλ) ≥ infh∈K L(h, 0), then, we must have

(because L(h, 0) = E [F(X, h(X))] = A(h) for h ∈ D)

θ(K) < ∥λλλ∥1 ≤
A(q)− inf

h∈K
L(h, λλλ)

−max
k∈[K]

Bk(q)
≤
A(q)− inf

h∈K
A(h)

−max
k∈[K]

Bk(q)
(B.79)

for every q ∈ K ∩ S . Taking the infimum over all q ∈ K ∩ S , we obtain

θ(K) < ∥λλλ∥1 ≤ θ(K), (B.80)

which is absurd. Thus, every λλλ that satisfies ∥λλλ∥1 > θ(K) must have infh∈K L(h, λλλ) < infh∈K L(h, 0).

Taking the supremum over all such λλλ implies

sup
λλλ∈RK

+
∥λλλ∥1>θ(K)

inf
h∈K
L(h, λλλ) ≤ inf

h∈K
L(h, 0) < sup

λλλ∈RK
+

inf
h∈K
L(h, λλλ). (B.81)

In particular, the desired equality (B.74) holds.

Finally, being the pointwise infimum of linear (in particular, upper-semicontinuous) functions in

λλλ, infh∈K L(h, λλλ) is upper-semicontinuous. Hence, having θ(K) < ∞ would imply that at least one

λλλ⋆ maximizing the dual optimization problem (B.74) exists. By inequality (B.81), ∥λλλ⋆∥1 ≤ θ(K) for

any such maximizer λλλ⋆.

Though Theorem B.4 gives a way to bound the value of the dual parameter λλλ, the upper bound

θ(K) might not be computable. In particular, computing θ(K) requires global information about
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K. Nevertheless, note that removing the outer infimum in the definition of θ(K) still yields a finite

upper bound. Further, relaxing the inner infimum to be over the domain D also gives a finite upper

bound (under item (b) of Assumption 3.1).

Under item (b) of Assumption 3.1, θq is always finite. Also, θ(K) ≤ θq whenever K ⊂ D and

q ∈ K ∩ S . Thus, Theorem B.4 immediately implies the following result.

Corollary B.3. Suppose items (a)–(b) of Assumption B.1 both hold, and fix K ⊂ D. If K ∩ S is nonempty

and q ∈ K ∩ S , then

sup
λλλ∈RK

+

inf
h∈K
L(h, λλλ) = sup

λλλ∈RK
+

∥λλλ∥1≤θq

inf
h∈K
L(h, λλλ), (B.82)

and the supremum is achievable. Furthermore, all maximizers have 1-norm at most θq.

Next, we give a more tractable way of expressing hKλλλ .

Theorem B.5. Suppose Assumption B.1 holds. Fix a nonempty convex and compact subset Z ⊂ D, and a

nonempty convex and compact subset K ⊂ C(X ,Z) ∩D. For any λλλ ∈ RK
+, if qZλλλ ∈ K, then hKλλλ = qZλλλ .

Proof. For each x ∈ X , let Rx ⊂ RC denote the image of K under the mapping h 7→ h(x), i.e.,

Rx := {h(x) | h ∈ K}. (B.83)

We have, by assumption,
⋃

x∈X Rx ⊂ Z . Fix λλλ ∈ RK
+, and write

L(x, q) = F(x, q) + ∑
k∈[K]

λkGk(x, q) (B.84)

for short. Then, for any (x, h) ∈ X ×K

L(x, h(x)) ≥ inf
p∈K

L(x, p(x)) ≥ inf
r∈Rx

L(x, r) ≥ inf
q∈Z

L(x, q) = L(x, qZλλλ (x)). (B.85)

Assume that qZλλλ ∈ K. Then, taking the expectation of the two far ends of (B.85) then the infimum for

h ∈ K we get

inf
h∈K
L(h, λλλ) ≥ L(qZλλλ , λλλ). (B.86)

However, it is also true that

inf
h∈K
L(h, λλλ) ≤ L(qZλλλ , λλλ). (B.87)

Therefore, we get the equality

inf
h∈K
L(h, λλλ) = L(qZλλλ , λλλ). (B.88)
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By strict convexity of h 7→ L(h, λλλ), and by definition of hKλλλ , we have hKλλλ = qZλλλ .

Finally, we are ready to prove our generalized result in Theorem B.1.

Proof of Theorem B.1. Write θ = θp, and note that θ ∈ R+. Let u ∈ C(X ,Z)∩F be arbitrary. Consider

the two sets

K = co(H∪ {p}), (B.89)

K′ = co(H∪ {p, u}). (B.90)

The sets K and K′ are convex and compact, and they satisfy K,K′ ⊂ C(X ,Z) because C(X ,Z) is

convex and closed and H ⊂ C(X ,Z) by assumption. If λλλ ∈ Λ, then by definition qZλλλ is an element in

both K and K′, hence by Theorem B.5

hKλλλ = qZλλλ = hK
′

λλλ . (B.91)

By Corollary B.3,

sup
λλλ∈RK

+

inf
h∈K
L(h, λλλ) = sup

λλλ∈RK
+

∥λλλ∥1≤θ

inf
h∈K
L(h, λλλ), (B.92)

and the same is true for K′

sup
λλλ∈RK

+

inf
h∈K′
L(h, λλλ) = sup

λλλ∈RK
+

∥λλλ∥1≤θ

inf
h∈K′
L(h, λλλ). (B.93)

By definition, infh∈K L(h, λλλ) = L(hKλλλ , λλλ) and infh∈K′ L(h, λλλ) = L(hK′λλλ , λλλ).

Therefore, for any λλλ ∈ Λ

inf
h∈K
L(h, λλλ) = L(qZλλλ , λλλ) = inf

h∈K′
L(h, λλλ). (B.94)

Thus, the problems (B.92) and (B.93) are equivalent to each other, and they are equivalent to

sup
λλλ∈RK

+
∥λλλ∥1≤θ

L(qZλλλ , λλλ). (B.95)

Furthermore, there is a λλλ⋆ achieving this supremum. In addition, by Theorem B.3, for any such λλλ⋆ we

have that qZλλλ⋆ is the unique solution to both infh∈K∩F E [F(X, h(X))] and infh∈K′∩F E [F(X, h(X))] .

Now,

E
[

F(X, qZλλλ⋆(X))
]
= inf

h∈K′∩F
E [F(X, h(X))] ≤ E [F(X, u(X))] . (B.96)
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Therefore, by arbitrariness of u,

E
[

F(X, qZλλλ⋆(X))
]
= inf

u∈C(X ,Z)∩F
E [F(X, u(X))] . (B.97)

Finally, uniqueness follows by convexity of the set F and strict convexity of the functionA|C(X ,Z).

B.1.5 Proof of Theorem B.2: Precompactness of Potentially Optimal Models

We note that Assumption 3.1 implies regularity of fc(x, t) = hbase
c (x) f (t/hbase

c (x)) and G as defined

by Definition B.5. To see this, note that ∂2
m+1 fc(x, t) = f ′′(t/hbase

c (x))/hbase
c (x). By continuity of f ′′,

item (a) is satisfied. Also,

∂ℓ∂m+1 fc(x, t) =
−t∂ℓhbase

c (x)
hbase

c (x)2
f ′′
(

t
hbase

c (x)

)
(B.98)

and again continuity of f ′′ implies that item (b) is also satisfied.

We employ the following version of the implicit function theorem.

Theorem B.6 (Implicit Function Theorem). Let Ω ⊂ Re ×R be an open set, denote by U ⊂ Re and

V ⊂ R its projections, and let C : Ω → R be a differentiable function. If there exists a unique function

c : U → V satisfying both (a, c(a)) ∈ Ω and C(a, c(a)) = 0 for every a ∈ U, and if ∂e+1C(a, c(a)) ̸= 0

for every a ∈ U, then c is differentiable and ∂ic(a) = (−∂iC/∂e+1C)|(a,c(a)) for every (i, a) ∈ [e]×U.

We begin by deriving upper bounds on the partial derivatives of the φc and γ. Then, we conclude

from Lipshcitzness of the φc and γ total boundedness of Q via compactness of ∆C. As a by-product,

it will follow that Q consists of continuous functions, i.e., that Q ⊂ C(Rm, ∆C). For convenience of

notation, we will show precompactness when ∥λλλ∥1 is restricted to be at most θ − 1 for some θ > 1.

Fix c ∈ [C], and we will show an upper bound on the partial derivatives of φc. Set (see (B.40) for

the definition of umin)

Ωc := {(x, u) ∈ Rm ×R | umin(θ) < u < ∂m+1 fc(x, 1)} . (B.99)

By the assumption of continuity of ∂m+1 fc( · , 1), the set Ωc is open; indeed, Ωc is the intersection

of the preimage of the open set (0, ∞) under the continuous map (x, u) 7→ ∂m+1 fc(x, 1)− u with

the open set Rm × (umin(θ), ∞). The set Ωc is nonempty. Indeed, for any x ∈ Rm, we have by

monotonicity of f ′ that

umin(θ) = f ′
(

1
C

)
− 2θ − 1 < f ′

(
1
C

)
≤ f ′

(
1

hbase
c (x)

)
= ∂m+1 fc(x, 1). (B.100)
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Define ρc : Ωc × (0, 1)→ R by

ρc(x, u, t) = ∂m+1 fc(x, t)− u. (B.101)

For any (x, u) ∈ Ωc, there exists a unique t ∈ (0, 1) such that ρc(x, u, t) = 0, namely, t = φc(x, u). In

other words, φc(x, u) is defined via

ρc(x, u, φc(x, u)) = 0. (B.102)

By assumption on fc, all partial derivative of ρc exist and are continuous. Therefore, ρc is differen-

tiable. Further, by regularity of fc, ∂m+2ρc(x, u, t) ̸= 0. Hence, by the implicit function theorem, φc is

differentiable and its partial derivatives are given by

∂m+1 φc(x, u) = −∂m+1ρc(x, u, φc(x, u))
∂m+2ρc(x, u, φc(x, u))

=
1

∂2
m+1 fc(x, φc(x, u))

, (B.103)

∂ℓφc(x, u) = − ∂ℓρc(x, u, φc(x, u))
∂m+2ρc(x, u, φc(x, u))

=
−∂ℓ,m+1 fc(x, φc(x, u))

∂2
m+1 fc(x, φc(x, u))

, (B.104)

for every (x, u) ∈ Ωc, where ℓ ≤ m. Because φc is differentiable, it is also continuous. Further, by

assumption of regularity, we have the bound

max
r∈[m+1]

max
c∈[C]

sup
(x,u)∈Ωc

|∂r φc(x, u)| ≤ A (B.105)

for some positive constant A.

Next, we show an upper bound on partial derivative of γ. Consider the function τ : Rm ×

B1(0, θ)×R>0 → R defined by

τ(x, λλλ, ε) := min
j∈[c]

∂m+1 fc(x, 1−) + ∑
k∈[K]

λkGk,c(x)

−max
c∈[C]

∂m+1 fc(x, ε) + ∑
k∈[K]

λkGk,c(x)

 .

(B.106)

We may lower bound τ uniformly over (x, λλλ) ∈ Rm ×B1(0, θ) by

τ(x, λλλ, ε) ≥ f ′(1−)− f ′
(

ε

ymin

)
− 2θE (B.107)

where E = supk,c,x |Gk,c(x)| is finite by assumption. The uniformity of this lower bound implies that

inf
x,∥λλλ∥1≤θ

τ(x, λλλ, ε) ≥ f ′(1−)− f ′
(

ε

ymin

)
− 2θE. (B.108)
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Taking ε→ 0+, the lower bound in (B.108) approaches ∞. In particular, we get that

inf
x,∥λλλ∥1≤θ

τ(x, λλλ, ε) > 0 (B.109)

for every small enough ε. Fix ε ∈ (0, tmin(θ)) such that (B.109) is satisfied. Define the set

Ω :=

(x, λλλ, u) ∈ Rm+k+1 | max
c∈[C]

∂m+1 fc(x, ε) + ∑
k∈[K]

λkGk,c(x) < u

< min
c∈[C]

∂m+1 fc(x, 1−) + ∑
k∈[K]

λkGk,c(x)

 . (B.110)

The set Ω is nonempty by inequality (B.109). Further, similarly to the Ωc, the set Ω is open. Note

that for any (x, λλλ) ∈ Rm ×Rk with ∥λλλ∥1 ≤ θ, we have (x, λλλ, γ(x, λλλ)) ∈ Ω. For each c ∈ [C], define

ψc : Ω→ (0, 1) by

ψc(x, λλλ, u) = φc

x, u− ∑
k∈[K]

λkGk,c(x)

 . (B.111)

Define η : Ω→ (−1, C) by

η(x, λλλ, u) = −1 + ∑
c∈[C]

ψc(x, λλλ, u). (B.112)

Then, γ(x, λλλ) is defined by

η(x, λλλ, γ(x, λλλ)) = 0. (B.113)

As we have shown that each φc is differentiable, and as each partial derivative ∂ℓGk,c is assumed

to exist and be continuous, the function η is differentiable. Further, we may compute the partial

derivatives of η by the chain rule

∂m+K+1η(x, λλλ, u) = ∑
c

∂m+K+1ψc(x, λλλ, u) = ∑
c

∂m+1 φc

(
x, u−∑

k
λkGk,c(x)

)
(B.114)

= ∑
c

1
∂2

m+1 fc (x, φ (x, u−∑k λkGk,c(x)))
, (B.115)

∂ℓη(x, λλλ, u) ℓ≤m
= ∑

c

(
∂ℓφc

(
x, u−∑

k
λkGk,c(x)

)

−
(

∑
k

λk∂ℓGk,c(x)

)
∂m+1 φc

(
x, u−∑

k
λkGk,c(x)

))
(B.116)

= −∑
c

∂ℓ,m+1 fc (x, φc (x, u−∑k λkGk,c(x))) + ∑k λk∂ℓGk,c(x)
∂2

m+1 fc (x, φ (x, u−∑k λkGk,c(x)))
, (B.117)

∂m+ℓη(x, λλλ, u) 1≤ℓ≤K
= ∑

c
−Gℓ,c(x)∂m+1 φc

(
x, u−∑

k
λkGk,c(x)

)
(B.118)
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= ∑
c

−Gℓ,c(x)
∂2

m+1 fc (x, φ (x, u−∑k λkGk,c(x)))
. (B.119)

Therefore, by the implicit function theorem, we have that γ is differentiable and

∂ℓγ(x, λλλ)
ℓ≤m
=

−∂ℓη(x, λλλ, γ(x, λλλ))

∂m+K+1η(x, λλλ, γ(x, λλλ))
=

∑c
∂ℓ,m+1 fc(x,φc(x,γ(x,λλλ)−∑k λkGk,c(x)))+∑k λk∂ℓGk,c(x)

∂2
m+1 fc(x,φ(x,γ(x,λλλ)−∑k λkGk,c(x)))

∑c
1

∂2
m+1 fc(x,φ(x,γ(x,λλλ)−∑k λkGk,c(x)))

, (B.120)

∂m+ℓγ(x, λλλ)
1≤ℓ≤K
=

∑c
Gℓ,c(x)

∂2
m+1 fc(x,φ(x,γ(x,λλλ)−∑k λkGk,c(x)))

∑c
1

∂2
m+1 fc(x,φ(x,γ(x,λλλ)−∑k λkGk,c(x)))

. (B.121)

Thus, by assumption of regularity

sup
r,x
|∂rγ(x, λλλ)| ≤ B · (2 + ∥λλλ∥1) (B.122)

for some positive constant B.

Define functions pλλλ ∈ C(Rm, ∆C), one for each λλλ ∈ RK, as follows. For each (x, λλλ) ∈ Rm ×RK,

let pλλλ(x) ∈ ∆C be the probability vector whose c-th coordinate is

φc

x, γ(x, λλλ)− ∑
k∈[K]

λkGk,c(x)

 . (B.123)

When λλλ ≥ 0, we get q∆c
λλλ = pλλλ. Let Q′ = {pλλλ | ∥λλλ∥1 ≤ θ}.

We have the Lipshitz conditions

|φc(x, u)− φc(x, u′)| ≤ A
√

m + 1|u− u′| (B.124)

|γ(x, λλλ)− γ(x, λλλ′)| ≤ B(2 + θ)
√

m + K∥λλλ−λλλ′∥2
1 (B.125)

for every x ∈ Rm, u, u′ such that (x, u), (x, u′) ∈ Ωc, and λλλ, λλλ′ ∈ B1(0, θ). Let

L = max
(

A
√

m + 1, B(2 + θ)
√

m + K
)

. (B.126)

Fix ν > 0, and set δ = min(1, ν/(LC(L + E))). Let N ∈N and λλλ1, · · · , λλλN ∈ B1(0, θ) be such that the

balls B1(λλλr, δ) cover B1(0, θ). Fix pλλλ ∈ Q′. Let r ∈ [N] be such that ∥λλλ−λλλr∥1 ≤ δ. Then, for every

x ∈ Rm,

∥pλλλ(x)− pλλλr (x)∥1 = ∑
c∈[C]

∣∣∣∣∣∣φc

x, γ(x, λλλ)− ∑
k∈[K]

λkGk,c(x)

− φc

x, γ(x, λλλr)− ∑
k∈[K]

λr,kGk,c(x)

∣∣∣∣∣∣
(B.127)
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≤ L ∑
c∈[C]

∣∣∣∣∣∣γ(x, λλλ)− γ(x, λλλr) + ∑
k∈[K]

(λr,k − λk)Gk,c(x)

∣∣∣∣∣∣ (B.128)

≤ LC (|γ(x, λλλ)− γ(x, λλλr)|+ E∥λλλ−λλλr∥1) (B.129)

≤ LC(Lδ2 + Eδ) (B.130)

≤ ν. (B.131)

Therefore, Q′ is totally bounded. Hence, Q is totally bounded too. As C(Rm, ∆C) is a complete

metric space, Q is precompact, and the proof is complete.

B.1.6 Proof of Lemma B.2: the Convex Conjugate Formula

By definition of the convex conjugate (Definition B.1), for any v ∈ RC

Fconj(v) = sup
p∈∆C

vT p− F(p) = − inf{F(p)− vT p | p ∈ [0, 1]C, 1T p = 1}. (B.132)

Fix v. Let ηv := minc∈[C] f ′(1/qc)− vc. For any γ ∈ (−∞, ηv), define p(γ) ∈ (0, 1)C by

pc(γ) := qcϕ(γ + vc). (B.133)

Note that both f ′ and ϕ are strictly increasing and continuous functions, so for any γ ∈ (−∞, ηv),

0 = lim
t→−∞

pc(t) < pc(γ) < qcϕ(ηv + vc) ≤ qcϕ( f ′(1/qc)) = 1 (B.134)

for every c ∈ [C]. Let a ∈ [C] be such that ηv = f ′(1/qa)− va. We have that

lim
γ→ηv

pa(γ) = qa lim
u→ f ′(1/qa)

ϕ(u) = 1, (B.135)

so

lim
γ→ηv

∑
c∈[C]

pc(γ) > 1. (B.136)

On the other hand,

lim
γ→−∞ ∑

c∈[C]
pc(γ) = 0. (B.137)

The intermediate value theorem implies that γ(v) as given in (B.47) is well-defined.

Introducing a Lagrange multiplier η

Fconj(v) = − inf
p∈[0,1]C

sup
η∈R

F(p)− vT p− η(1T p− 1). (B.138)
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Define gv : R→ R∪ {±∞} by

gv(η) := inf
p∈[0,1]C

F(p)− vT p− η(1T p− 1). (B.139)

Note that

gv(γ(v)) = F(p(v))− vT p(v). (B.140)

Indeed, we have (0, 1]C ⊂ dom F and

∇
(

F(p)− vT p− γ(v)(1T p− 1)
)∣∣∣

p=p(γ(v))
=

(
f ′
(

pc(γ(v))
qc

)
− vc − γ(v)

)
c∈[C]

= 0, (B.141)

so (B.140) follows by convexity of F. Then,

Fconj(v) = − inf
p∈[0,1]C

sup
η∈R

F(p)− vT p− η(1T p− 1) (B.142)

≤ − sup
η∈R

inf
p∈[0,1]C

F(p)− vT p− η(1T p− 1) (B.143)

= − sup
η∈R

gv(η) (B.144)

≤ −gv(γ(v)) (B.145)

= vT p(v)− F(p(v)). (B.146)

Therefore, formula (B.46) holds.

Further, by strict convexity of F, p(v) is the unique minimizer of F(h)− vTh for h ∈ ∆+
C . We show

that qconj(v) = p(v). If f (0+) = ∞, then F takes the value ∞ on the relative boundary ∆C \ ∆+
C of ∆C,

so p(v) is the unique minimizer of F(h)− vTh over h ∈ ∆C, i.e., qconj(v) = p(v). Assume f (0+) < ∞.

Then, F is convex over ∆C. Let G(h) = F(h)− vTh. For h ∈ ∆C such that G(h) ≤ G(p(v)), the point

1
2 (p(v) + h) lies in ∆+

C and satisfies

G
(

1
2
(p(v) + h)

)
≤ 1

2
(G(p(v)) + G(h)) ≤ G(p(v)), (B.147)

so by uniqueness of p(v), we must have h = p(v). Therefore, p(v) is the unique minimizer of G

over ∆C when f (0+) < ∞ too, and qconj(v) = p(v), completing the proof of equation (B.48) and the

lemma.
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B.2 Proof of Theorem 3.3: Strong Duality

We use the following minimax theorem, which is a generalization of Sion’s minimax theorem.

Theorem B.7 ([ET99, Chapter VI, Prop. 2.2]). Let V and Z be two reflexive Banach spaces, and fix two

convex, closed, and non-empty subsets A ⊂ V and B ⊂ Z. Let L : A×B → R be a function such that for

each u ∈ A the function p 7→ L(u, p) is concave and upper semicontinuous, and for each p ∈ B the function

u 7→ L(u, p) is convex and lower semicontinuous. Suppose that there exist points u0 ∈ A and p0 ∈ B such

that limp∈B,∥p∥→∞ L(u0, p) = −∞ and limu∈A,∥u∥→∞ L(u, p0) = ∞. Then, L has at least one saddle-point

(u, p), and

L(u, p) = min
u∈A

sup
p∈B

L(u, p) = max
p∈B

inf
u∈A

L(u, p). (B.148)

In particular, in (B.148), there exists a minimizer in A of the outer minimization, and a maximizer in B of the

outer maximization.

Denote hi := h(Xi), pi := hbase(Xi), ai := a(Xi), and Gi := G(Xi), and let the matrix GN :=(
G1/
√

N, · · · , GN/
√

N, IK

)
∈ RK×(NC+K) be as in the theorem statement. We may rewrite the

optimization (3.27) as

minimize
(hi ,ai ,b)∈∆C×RC×RK ,i∈[N]

1
N ∑

i∈[N]

D f (hi∥pi) + τ1 ·
(
∥ai∥2

2 + ∥b∥2
2

)
subject to

1
N ∑

i∈[N]

Gihi + τ2 · (Giai − b) ≤ 0.
(B.149)

We define f at 0 by the right limit f (0) := f (0+). Assume for now that f (0+) < ∞, and we

will explain at the end of this proof how to treat the case f (0+) = ∞. For the optimization

problem (B.149), the Lagrangian L : ∆N
C ×RNC ×RK ×RK

+ → R is given by

L
(
(hi)i∈[N] , (ai)i∈[N] , b, λλλ

)
:=

1
N ∑

i∈[N]

D f (hi∥pi) + τ1

(
∥ai∥2

2 + ∥b∥2
2

)
+λλλT (Gihi + τ2 (Giai − b)) .

(B.150)

With v(x; λλλ) := −G(x)Tλλλ as in the theorem statement, and denoting vi := v(Xi; λλλ) = −GT
i λλλ, we

may rewrite the Lagrangian as

L
(
(hi)i∈[N] , (ai)i∈[N] , b, λλλ

)
=

1
N ∑

i∈[N]

D f (hi∥pi)− vT
i hi + τ1∥ai∥2

2 − τ2vT
i ai

+ τ1∥b∥2
2 − τ2λλλTb.

(B.151)
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The optimization problem (B.149) can be written as

inf
(hi ,ai ,b)∈∆C×RC×RK ,i∈[N]

sup
λλλ∈RK

+

L
(
(hi)i∈[N] , (ai)i∈[N] , b, λλλ

)
. (B.152)

We check that the Lagrangian L satisfies the conditions in Theorem B.7. First, any Euclidean space

RM (for M ∈ N) is a reflexive Banach space since it is finite-dimensional. In addition, the convex

nonempty sets ∆N
C ×RNC ×RK and RK

+ are closed in their respective ambient Euclidean spaces.

By continuity and convexity of f , and linearity of L in λλλ, we have that L satisfies all the convexity,

concavity, and semicontinuity conditions in Theorem B.7. Further, fixing any hi ∈ ∆C, i ∈ [N], and

letting ai = 0, i ∈ [N], and b = 1
τ2

(
1 + 1

N ∑i∈[N] Gihi

)
, we would get that

L
(
(hi)i∈[N] , (ai)i∈[N] , b, λλλ

)
= −λλλT1 +

1
N ∑

i∈[N]

D f (hi∥pi) + τ1∥b∥2
2 → −∞ as ∥λλλ∥2 → ∞.

(B.153)

In addition, choosing λλλ = 0, we have the Lagrangian

L
(
(hi)i∈[N] , (ai)i∈[N] , b, λλλ

)
=

1
N ∑

i∈[N]

D f (hi∥pi) + τ1∥ai∥2
2 + τ1∥b∥2

2 → ∞ (B.154)

as ∥b∥2 + ∑i∈[N] ∥hi∥2 + ∥ai∥2 → ∞. Thus, we may apply the minimax result in Theorem B.7 to

obtain the existence of a saddle-point of L and that

min
(hi ,ai ,b)∈∆C×RC×RK ,i∈[N]

sup
λλλ∈RK

+

L
(
(hi)i∈[N] , (ai)i∈[N] , b, λλλ

)
= max

λλλ∈RK
+

inf
(hi ,ai ,b)∈∆C×RC×RK ,i∈[N]

L
(
(hi)i∈[N] , (ai)i∈[N] , b, λλλ

)
.

(B.155)

In particular, there exists a minimizer (hopt,N
i , aopt,N

i , bopt,N) ∈ ∆C ×RC ×RK, i ∈ [N], of the outer

minimization in the left-hand side in (B.155), and a maximizer λλλ⋆ ∈ RK
+ of the outer maximization in

the right-hand side of (B.155). By strict convexity of the objective function in (B.149) (and convexity

of the feasibility set), we obtain that the minimizer (hopt,N
i , aopt,N

i , bopt,N) ∈ ∆C ×RC ×RK, i ∈ [N],

is unique. We show next that the optimizer λλλ⋆ is unique too, which we will denote by λλλ⋆
ζ,N as in

the theorem statement. We also show that, for each fixed λλλ ∈ RK
+, there is a unique minimizer

(hλλλ
i , aλλλ

i , bλλλ) ∈ ∆C ×RC ×RK, i ∈ [N], of the inner minimization in the right-hand side of (B.155); by

strict convexity of f , this would imply that hopt,N
i = h

λλλ⋆
ζ,N

i .

Now, fix λλλ ∈ RK
+, and consider the inner minimization in (B.155). We have that

inf
(hi ,ai ,b)∈∆C×RC×RK ,i∈[N]

L
(
(hi)i∈[N] , (ai)i∈[N] , b, λλλ

)
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= inf
(hi ,ai ,b)∈∆C×RC×RK ,i∈[N]

1
N ∑

i∈[N]

D f (hi∥pi)− vT
i hi + τ1∥ai∥2

2 − τ2vT
i ai + τ1∥b∥2

2 − τ2λλλTb (B.156)

=
1
N ∑

i∈[N]

inf
hi∈∆C

D f (hi∥pi)− vT
i hi + inf

ai∈RC
τ1∥ai∥2

2 − τ2vT
i ai + inf

b∈RK
τ1∥b∥2

2 − τ2λλλTb (B.157)

=
1
N ∑

i∈[N]

−Dconj
f (vi, pi)−

1
2

ζ∥vi∥2
2 −

1
2

ζ∥λλλ∥2
2 (B.158)

= − ζ

2

∥∥∥GT
Nλλλ
∥∥∥2

2
− 1

N ∑
i∈[N]

Dconj
f (vi, pi) (B.159)

where ζ := τ2
2 /(2τ1). Here, the minimizers are aλλλ

i := τ2
2τ1

vi and bλλλ
i := τ2

2τ1
λλλ, and hλλλ

i is the unique

probability vector in ∆C for which Dconj
f (vi, pi) = D f (hλλλ

i ∥pi)− vT
i hλλλ

i ; the existence and uniqueness

of hλλλ
i is guaranteed since q 7→ D f (q∥pi)− vT

i q is lower semicontinuous and strictly convex, and ∆C

is compact. Rewriting it in the form (B.159), the function

λλλ 7→ inf
(hi ,ai ,b)∈∆C×RC×RK ,i∈[N]

L
(
(hi)i∈[N] , (ai)i∈[N] , b, λλλ

)
(B.160)

can be seen to be strictly concave. Indeed, the function λλλ 7→
∥∥∥GT

Nλλλ
∥∥∥2

2
is strictly convex. Also, each

function λλλ 7→ Dconj
f (vi, pi) is convex as it is a pointwise supremum of linear functions: recalling that

vi = −GT
i λλλ, we have the formula

Dconj
f (vi, pi) = sup

q∈∆C

−qTGT
i λλλ− D f (q ∥ pi). (B.161)

Hence, the outer maximizer λλλ⋆ in (B.155) is indeed unique, which we denote by λλλ⋆
ζ,N . Note that λλλ⋆

ζ,N

is the unique solution to the minimization (3.29), i.e.,

λλλ⋆
ζ,N = argmin

λλλ∈RK
+

1
N ∑

i∈[N]

Dconj
f (vi, pi) +

ζ

2

∥∥∥GT
Nλλλ
∥∥∥2

2
, (B.162)

as stated by the theorem.

Since hopt,N = hλλλ⋆
ζ,N , the following formula for hλλλ (for a general λλλ ∈ RK

+) yields the desired

functional form (3.28) for hopt,N in terms of λλλ⋆
ζ,N . Specifically, we restate here the relevant part of

Lemma B.2 below.

Lemma B.4. Let f : [0, ∞) → R ∪ {∞} be a strictly convex function that is continuously differentiable

over (0, ∞) and satisfying f (0) = f (0+), f (1) = 0, and f ′(0+) = −∞. Let ϕ denote the inverse of f ′.

Fix p ∈ ∆+
C and v ∈ RC. Then, the unique minimizer of q 7→ D f (q∥p)− vTq over q ∈ ∆C is given by

q⋆c = pc · ϕ(γ + vc), c ∈ [C], where γ ∈ R is the unique number satisfying Ec∼p[ϕ(γ + vc)] = 1.
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From Lemma B.4, and using v(x; λλλ⋆
ζ,N) = −G(x)Tλλλ⋆

ζ,N and ϕ = ( f ′)−1, we get that there exists a

uniquely defined function γ : X×RK → R for which

Ec∼hbase(x)

[
ϕ
(

γ(x; λλλ⋆
ζ,N) + vc(x; λλλ⋆

ζ,N)
)]

= 1 (B.163)

for every x ∈ X. For this γ, we know from Lemma B.4 that

h
λλλ⋆

ζ,N
c (x) = hbase

c (x) · ϕ
(

γ(x; λλλ⋆
ζ,N) + vc(x; λλλ⋆

ζ,N)
)

(B.164)

for every c ∈ [C] and x ∈ X. Since hopt,N = hλλλ⋆
ζ,N , we obtain formula (3.28) for hopt,N in terms of

λλλ⋆
ζ,N , and the proof of Theorem 3.3 is complete in the case f (0+) < ∞.

Finally, we note how the case f (0+) = ∞ is treated, so assume f (0) = f (0+) = ∞. The only

difference in this case is that the Lagrangian L might attain the value ∞, whereas we need it to be

R-valued to apply the minimax result in Theorem B.7. Nevertheless, the only way L can be infinite is

if some classifier hi has an entry equal to 0, in which case the objective function in (3.27) (or (B.149))

will also be infinite, so such a classifier can be thrown out without affecting the optimization problem.

More precisely, we still have strict convexity and lower semicontinuity of the objective function

in (B.149). Thus, there is a unique minimizer hopt,N of (B.149). For this optimizer, there must

be an ε1 > 0 such that hopt,N(x) ≥ ε11 for every x ∈ X. Thus, the optimization problem (B.149)

remains unchanged if ∆C is restricted to classifiers bounded away from 0 by ε1. Moreover, by the

same reasoning, the optimization problem (B.161) for finding Dconj
f also remains unchanged if ∆C

is replaced by the set of classifiers bounded away from 0 by some ε2 > 0 that is independent of the

Xi. Hence, choosing ε = min(ε1, ε2) > 0, and replacing ∆C by ∆̃C := {q ∈ ∆C ; q ≥ ε1} in the above

proof, we attain the same results for the case f (0+) = ∞.

B.3 Proofs of Section 3.6: Theoretical Results for FairProjection

The theoretical details for FairProjection stated in Section 3.6 are proved in this appendix. The

outline is as follows:

• Algorithm 1 is derived in Appendix B.3.1.

• The inner iterations of Algorithm 1 are further developed in Appendix B.3.2.

• The 1
2 -Lipschitzness of the softmax function (Proposition 3.1) is proved in Appendix B.3.3.
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• The convergence rate result in Theorem 3.4 is proved in Appendix B.3.4, and an extension of it

(to general f -divergences) is discussed in Appendix B.3.5.

• The performance of FairProjection for the population problem (3.19) as stated in Theo-

rem 3.5 is proved in Appendix B.3.6.

B.3.1 Algorithm 1: derivation of the ADMM iterations

ADMM is applicable to problems taking the form

minimize
(V ,λλλ)∈RV×RK

F(V) + ψ(λλλ)

subject to AV + Bλλλ = m,

(B.165)

where F : RV → R ∪ {∞} and ψ : RK → R ∪ {∞} are closed proper convex functions, and

A ∈ RU×V , B ∈ RU×K, and m ∈ RU are fixed.

We rewrite the convex problem (3.29) into the ADMM form (B.165) as follows. With the samples

X1, · · · , XN
i.i.d.∼ PX fixed, we denote the following fixed vectors and matrices: for each i ∈ [N], set

pi := hbase(Xi) ∈ ∆+
C = {q ∈ ∆C ; q > 0}, (B.166)

Gi := G(Xi) ∈ RK×C. (B.167)

We introduce a variable V := (vi)i∈[N] ∈ RNC (with components vi ∈ RC), and consider the objective

functions

F(V) :=
1
N ∑

i∈[N]

Dconj
f (vi, pi) +

ζ

2
∥V∥2

2 , (B.168)

ψ(λλλ) := IRK
+
(λλλ) +

ζ

2
∥λλλ∥2

2 . (B.169)

Then, setting5

A =
1√
N

INC, B =
1√
N
(Gi)

T
i∈[N], and m = 0NC, (B.170)

our finite-sample problem (3.29) takes the ADMM form (B.165).

In addition, this reparametrization allows us to parallelize the ADMM iterations, which we

briefly review next. One starts with forming the augmented Lagrangian for problem (B.165),

Lρ : RV ×RK ×RU → R∪ {∞}, where ρ > 0 is a fixed penalty parameter and U ∈ RU denotes a dual

5The prefactor 1/
√

N is unnecessary since m = 0, but we introduce it to simplify the ensuing expressions.
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variable, by

Lρ(V , λλλ, U) := F(V) + ψ(λλλ) + UT (AV + Bλλλ−m) +
ρ

2
∥AV + Bλλλ−m∥2

2 . (B.171)

The ADMM iterations then repeatedly update the triplet after the t-th iteration (V (t), λλλ(t), U(t)) into

a triplet (V (t+1), λλλ(t+1), U(t+1)) that is given by

V (t+1) ∈ argmin
V∈RV

Lρ(V , λλλ(t), U(t)), (B.172)

λλλ(t+1) ∈ argmin
λλλ∈RV

Lρ(V (t+1), λλλ, U(t)), (B.173)

U(t+1) = U(t) + ρ ·
(

AV (t+1) + Bλλλ(t+1)
)

. (B.174)

We next instantiate the ADMM iterations to our problem, and we note that we will consider the

scaled dual variable W =
√

NU.

In our case, the augmented Lagrangian splits into non-interacting components along the vi.

This splitting allows parallelizability of the V-update step, which is the most computationally

intensive step. Consider a conforming decomposition U = (ui)i∈[N] for ui ∈ RC, and let W =
√

NU.

With some algebra, one can show that the ADMM iterations for the ADMM problem specified

by (B.168)–(B.170) are expressible by6

v(t+1)
i = argmin

v∈RC
Dconj

f (v, pi) +R
(t)
i (v), i ∈ [N], (B.175)

λλλ(t+1) = argmin
λλλ∈RK

+

λλλTQλλλ + q(t)Tλλλ, (B.176)

w(t+1)
i = w(t)

i + ρ ·
(

v(t+1)
i + GT

i λλλ(t+1)
)

, i ∈ [N], (B.177)

where R(t)
i : RC → R is the quadratic form

R(t)
i (v) :=

ρ + ζ

2
∥v∥2

2 +
(

w(t)
i + ρGT

i λλλ(t)
)T

v, (B.178)

and the fixed matrix Q ∈ RK×K and vectors q(t) ∈ RK are given by

Q :=
ζ

2
IK +

ρ

2N ∑
i∈[N]

GiGT
i , (B.179)

6Note also that in these specific ADMM iterations, unlike in the general ADMM iterations, we write “= argmin” as
opposed to “∈ argmin” since strict convexity and coercivity guarantee that a unique minimizer exists (see [CST17] for a case

where argmin is empty). Also, we write here q(t)T instead of
(

q(t)
)T

for readability.
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q(t) :=
1
N ∑

i∈[N]

Gi ·
(

w(t)
i + v(t+1)

i

)
. (B.180)

Note that both the first (B.175) and last (B.177) steps can be carried out for each sample i ∈ [N] in

parallel.

B.3.2 The inner iterations: minimizing the convex conjugate of f -divergence

Only updating the primal-variable vi in Algorithm 1, i.e., solving

min
v∈RC

Dconj
f (v, p) + ξ∥v∥2

2 + aTv (B.181)

for fixed (p, ξ, a) ∈ ∆+
C × (0, ∞) × RC, is a nonstandard task. We propose in this section two

approaches to execute this step, which aim at re-expressing the required minimization as either a

fixed-point or a root-finding problem. In more detail, if one has access to an explicit formula for the

gradient of Dconj
f , then one can transform (B.181) into a fixed-point equation. This case applies for

the KL-divergence, for which ∇Dconj
KL is the softmax function (Appendix B.3.2). Furthermore, for the

convergence of the fixed-point iterations, we derive an improved Lipschitz constant for the softmax

function in Appendix B.3.3. On the other hand, if one does not have a tractable formula for ∇Dconj
f ,

we propose the reduction provided in Lemma 3.2, whose proof is provided in Appendix B.3.2. We

specialize the reduction provided by Lemma 3.2 to the cross-entropy case in Appendix B.3.2. Finally,

we include in Appendix B.3.2 a general formula for ∇Dconj
f that can be used for the vi-update step

for a general f -divergence, and we also utilize it in Appendices B.3.4–B.3.6 to prove the convergence

rate of Algorithm 1 stated in Theorems 3.4–3.5.

Primal update for KL-divergence

Consider the case when the f -divergence of choice is the KL-divergence, i.e., f (t) = t log t. Then, the

convex conjugate Dconj
f is given by the log-sum-exp function [DV75], namely, for (p, v) ∈ ∆+

C ×RC

we have

Dconj
f (v, p) = log ∑

c∈[C]
pcevc . (B.182)

Thus, the first step in a given ADMM iteration, as in (B.175) (see also the beginning of the for-loop

in Algorithm 1), amounts to solving

min
v∈RC

log ∑
c∈[C]

pcevc + ξ∥v∥2
2 + aTv (B.183)
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Algorithm 3 : argmin
v∈RC

Dconj
KL (v, p) + ξ∥v∥2

2 + aTv

1: Input: ξ > 0, p ∈ ∆+
C , a, v ∈ RC.

2: zc ← vc + log pc c ∈ [C]
3: bc ← ac − 2ξ log pc c ∈ [C]
4: repeat
5: z← − 1

2ξ (σ(z) + b)
6: until convergence
7: Output: vc := zc − log pc c ∈ [C]

for ξ := ρ+ζ
2 > 0 and some fixed vectors (p, a) ∈ ∆+

C ×RC; see (B.166), (B.175) and (B.178) for

explicit expressions. The problem (B.183) is strictly convex. Further, we may recast this problem, via

introducing the variable z ∈ RC by zc := vc + log pc, as

min
z∈RC

log ∑
c∈[C]

ezc + ξ∥z∥2
2 + bTz, (B.184)

where bc = ac− 2ξ log pc is fixed. To solve this latter problem, it suffices to find a zero of the gradient,

which is given by

∇z

log ∑
c∈[C]

ezc + ξ∥z∥2
2 + bTz

 = σ(z) + 2ξz + b (B.185)

where σ : RC → ∆+
C denotes the softmax function σ(z) :=

(
ezc′

∑c∈[C] ezc

)
c′∈[C]

. Thus, we arrive at the

fixed-point problem θ(z) = z for the function

θ(z) := − 1
2ξ

(σ(z) + b) . (B.186)

We solve θ(z) = z using a fixed-point-iteration method, i.e., with some initial z0, we iteratively

compute the compositions θ(m)(z0) for m ∈N. This procedure is summarized in Algorithm 3.

The exponentially-fast convergence of Algorithm 3 is guaranteed in view of Lipschitzness of θ

as defined in (B.186). Indeed, it is known that the softmax function is 1-Lipschitz (see, e.g., [GP17,

Prop. 4]); we improve this Lipschitz constant to 1/2 in Appendix B.3.3. This improvement yields a

better guarantee on the convergence speed of FairProjection. Indeed, as a lower value of the

ADMM penalty ρ correlates with a faster convergence, lowering the Lipschitz constant of the softmax

function allows us to speed up FairProjection by choosing ρ > 1
2 − ζ instead of ρ > 1− ζ.

272



Proof of Lemma 3.2: primal update for general f -divergences

The lemma follows by the following sequence of steps:

min
v∈RC

Dconj
f (v, p) + ξ∥v∥2

2 + aTv
(I)
= min

v∈RC
max
q∈∆C

qTv− D f (q ∥ p) + aTv + ξ∥v∥2
2 (B.187)

(II)
= max

q∈∆C
min
v∈RC

qTv− D f (q ∥ p) + aTv + ξ∥v∥2
2 (B.188)

(III)
= max

q∈∆C
−D f (q ∥ p)− 1

4ξ
∥a + q∥2

2 (B.189)

= − min
q∈∆C

D f (q ∥ p) +
1

4ξ
∥a + q∥2

2 (B.190)

= − min
q∈RC

+

sup
θ∈R

D f (q ∥ p) +
1

4ξ
∥a + q∥2

2 + θ ·
(

1Tq− 1
)

(B.191)

(IV)
= − sup

θ∈R

min
q∈RC

+

D f (q ∥ p) +
1

4ξ
∥a + q∥2

2 + θ ·
(

1Tq− 1
)

(B.192)

(V)
= − sup

θ∈R

−θ + ∑
c∈[C]

min
qc≥0

pc f
(

qc

pc

)
+

1
4ξ

(ac + qc)
2 + θqc, (B.193)

where (I) holds by definition of Dconj
f (see (3.14)), (II) by Sion’s minimax theorem, (III) since the

inner minimization occurs at v = − 1
2ξ (q + a), (IV) by generalized minimax theorems [ET99, see,

e.g., Chapter VI, Proposition 2.2] (restated as Theorem B.7 herein for convenience), and (V) by

separability.

Primal update for cross-entropy

In the cross-entropy (CE) case, i.e., f (t) = − log t, instead of using an explicit formula for Dconj
f

(which would yield unwieldy expressions), we utilize the reduction shown in Lemma 3.2. Thus, we

have the equality

min
v∈RC

Dconj
f (v, p) + ξ∥v∥2

2 + aTv = − sup
θ∈R

−θ + ∑
c∈[C]

min
qc≥0

pc f
(

qc

pc

)
+

1
4ξ

(ac + qc)
2 + θqc. (B.194)

As per (B.194), we focus next on solving the inner single-variable minimization

min
q≥0
−p log q +

1
4ξ

(a + q)2 + θq. (B.195)

It is easily seen that the solution to this minimization is the unique point making the objective’s

derivative vanish, i.e., it is q⋆ ∈ (0, ∞) for which

− p
q⋆

+
q⋆

2ξ
+ θ +

a
2ξ

= 0. (B.196)
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Algorithm 4 : argmin
v∈RC

Dconj
CE (v, p) + ξ∥v∥2

2 + aTv

1: Input: ξ > 0, z ∈ R, p ∈ ∆+
C , a ∈ RC.

2: repeat

3: g(z)← −1 + ∑
c∈[C]

√(
z +

ac

2

)2
+ 2pcξ −

(
z +

ac

2

)
4: g′(z)← −C + ∑

c∈[C]

2z + ac√(
z + ac

2
)2

+ 2pcξ

5: z← z− g(z)
g′(z)

6: until convergence

7: Output: vc :=
1

2ξ

(
z− ac

2
−
√(

z +
ac

2

)2
+ 2pcξ

)

This is easily solvable as a quadratic, yielding

q⋆ =

√(
θξ +

a
2

)2
+ 2pξ −

(
θξ +

a
2

)
. (B.197)

Therefore, solving (B.194) amounts to finding the constant θ ∈ R that yields a probability vector

q ∈ ∆C, where

qc :=

√(
θξ +

ac

2

)2
+ 2pcξ −

(
θξ +

ac

2

)
. (B.198)

Consider the function

g(z) := −1 + ∑
c∈[C]

√(
z +

ac

2

)2
+ 2pcξ −

(
z +

ac

2

)
, (B.199)

so we simply are looking for a root of g (then set θ = z/ξ and v = − 1
2ξ (q + a)). This can be

efficiently accomplished via Newton’s method. Namely, we compute

g′(z) = −C + ∑
c∈[C]

2z + ac√(
z + ac

2
)2

+ 2pcξ
, (B.200)

then, starting from z(0), we form the sequence

z(t+1) := z(t) −
g
(

z(t)
)

g′
(
z(t)
) . (B.201)

This procedure is summarized in Algorithm 4.
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On the gradient of the convex conjugate of f -divergence

The following general result on the differentiability of Dconj
f can be used to carry out the vi-update

step for a general f -divergence, and it will also be useful in Appendices B.3.4–B.3.6 for proving the

convergence rate of Algorithm 1 as stated in Theorems 3.4–3.5.

Lemma B.5. Suppose f : (0, ∞)→ R is strictly convex. For any fixed p ∈ ∆+
C , the function v 7→ Dconj

f (v, p)

is differentiable, and its gradient is given by

∇vDconj
f (v, p) = qconj

f (v, p) ∈ ∆C, (B.202)

where

qconj
f (v, p) := argmin

q∈∆C

D f (q ∥ p)− vTq. (B.203)

Proof. From [Roc09, Proposition 11.3], since q 7→ D f (q ∥ p) is a lower semicontinuous proper convex

function, the subgradient of its convex conjugate v 7→ Dconj
f (v, p) is given by

∂vDconj
f (v, p) = argmin

q∈∆C

D f (q ∥ p)− vTq. (B.204)

Recall also that a function is differentiable at a point if and only if its subgradient there consists of a

singleton [BFG87]. Thus, it only remains to show that the right-hand side in (B.204) is a singleton.

For this, we note that q 7→ D f (q ∥ p)− vTq is lower semicontinuous and strictly convex, and ∆C is

compact.

B.3.3 Proof of Proposition 3.1: 1/2-Lipschitzness of the Softmax Function

As stated in Section 3.6 and Appendix B.3.2, the convergence speed of the inner iteration (the vi

update step) of FairProjection can be guaranteed to be faster if the Lipschitz constant of the

softmax function is lowered from 1 (which is proved in [GP17, Prop. 4]). By Lipschitzness here, we

mean ℓ2-norm Lipschitzness. We prove 1-Lipschitzness in this appendix.

We will need the following result.

Lemma B.6 (Theorem 2.1.6 in [Nes04]). A twice continuously differentiable function f : Rn → R is

convex and has an L-Lipschitz continuous gradient if and only if its Hessian is positive semidefinite with

maximal eigenvalue at most L.

Since the softmax function is the gradient of the log-sum-exp function, and since the spectral

norm is upper bounded by the Frobenius norm, it suffices to upper bound the Frobenius norm of
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the Jacobian of σ by 1/2. Suppose that σ is operating on n symbols. Consider the sum of powers

functions sk(x) := ∑i∈[n] xk
i for x ∈ Rn. For any v ∈ Rn, denoting x = σ(v), the square of the

Frobenius norm of the Jacobian of σ at v is given by

w(x) := s2(x)2 + s2(x)− 2s3(x). (B.205)

We show that w(x) ≤ 1
4 for any n ∈N and x ∈ ∆n.

The approach we take is via reduction to the case n ≤ 3, which one can directly verify. Namely,

assuming, without loss of generality, that x1 ≤ x2 ≤ · · · ≤ xn, we show that if x1 + x2 ≤ 1/2 then

w(y) ≥ w(x) where y ∈ ∆n−1 is given by y = (x1 + x2, x3, · · · , xn). Note that if n ≥ 4 then we

must have x1 + x2 ≤ 1/2, because x1 + x2 ≤ x3 + x4 and x1 + x2 + x3 + x4 ≤ 1. Thus, we will have

reduced the problem from an n ≥ 4 to n− 1, which iteratively reduces the problem to n ≤ 3. Fix

n ≥ 4.

Denote z = (x3, · · · , xn). A direct computation yields that

w(y)− w(x) = 2x1x2 · (2s2(z) + g(x1, x2)) (B.206)

with the quadratic

g(a, b) := 2a2 + 2b2 + 2ab− 3a− 3b + 1. (B.207)

By assumption, xi ≥ max(x1, x2) for each i ≥ 3, so 2s2(z) ≥ (n− 2)x2
1 + (n− 2)x2

2 ≥ x2
1 + x2

2. Then,

w(y)− w(x) ≥ 2x1x2 · h(x1, x2) (B.208)

with

h(a, b) := 3a2 + 3b2 + 2ab− 3a− 3b + 1. (B.209)

Now, we show that h is nonnegative for every a, b ≥ 0 with a + b ≤ 1/2. With c = a + b, we may

write

h(a, b) = 3c2 − (3 + 4a)c + 4a2 + 1. (B.210)

This quadratic in c has its vertex at cmin = (3 + 4a)/6. As a ≥ 0, cmin ≥ 1/2. As a + b ≤ 1/2, we see

that the minimum of h is attained for c = 1/2. Substituting b = 1/2− a, we obtain

h(a, b) =
(

2a− 1
2

)2
, (B.211)

which is nonnegative, as desired.
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B.3.4 Proof of Theorem 3.4: Convergence Rate of Algorithm 1

We recall a general result on the R-linear convergence rate for ADMM, which corresponds to case 1 in

scenario 1 in [DY16]; see Tables 1 and 2 therein. Recall that a sequence {z(t)}t∈N is said to converge

R-linearly to z⋆ if there is a constant η ∈ (0, 1) and a sequence {β(t)}t∈N such that ∥z(t) − z⋆∥ ≤ β(t)

and supt

(
β(t+1)/β(t)

)
≤ η. In particular, one has exponentially small errors:

∥z(t) − z⋆∥ ≤ β(0) · ηt. (B.212)

The following theorem is used in our proof of Theorem 3.4.

Theorem B.8 ([DY16]). Suppose that problem (B.165) has a saddle point, F is strongly convex and differ-

entiable with Lipschitz-continuous gradient, A has full row-rank, and B has full column-rank. Then, the

ADMM iterations (B.172)–(B.174) converge R-linearly to a global optimizer.

In Appendix B.3.1, we show that the dual (3.29) of our fairness optimization problem (3.27) can

be written in the ADMM general form (B.165) with the choices

F(V) =
1
N ∑

i∈[N]

Dconj
f (vi, pi) +

ζ

2
∥V∥2

2 (B.213)

and

A =
1√
N

INC, B =
1√
N
(Gi)

T
i∈[N]. (B.214)

Recall from Theorem 3.3 (see also the proof in Appendix B.2) that our problem (3.29) has a saddle

point. Further, the function F : RNC → R is ζ-strongly convex and differentiable. Indeed, each

v 7→ Dconj
f (v, pi) is convex, and the term ζ

2∥V∥2
2 is ζ-strongly convex, so F is ζ-strongly convex too.

In addition, by the formula for ∇Dconj
f in Lemma B.5, the gradient of F is

∇F(V) =
1
N

qconj
f (V) + ζV , (B.215)

where

qconj
f (V) :=

(
qconj

f (vi, pi)
)

i∈[N]
, (B.216)

with qconj
f (vi) as defined in (B.203).

In the KL-divergence case, i.e., f (t) = t log t, the gradient of Dconj
f is given by the softmax function

(see Appendix B.3.2)

qconj
f (v, p) = σ (v + log p) =

(
pcevc

∑c′∈[C] pc′ evc′

)
c∈[C]

. (B.217)
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Therefore, we have that

∇F(V) =
1
N

(σ (vi + log pi))i∈[N] + ζV . (B.218)

By Proposition 3.1, the softmax function σ is 1
2 -Lipschitz. Hence, ∇F is

(
1

2N + ζ
)

-Lipschitz.

Therefore, the general ADMM convergence rate in Theorem B.8 yields that there is a constant

r > 0 such that ∥∥∥λλλ
(t)
ζ,N −λλλ⋆

ζ,N

∥∥∥
2
≤ β · e−rt (B.219)

where β :=
∥∥∥λλλ

(0)
ζ,N −λλλ⋆

ζ,N

∥∥∥
2
. (Although Theorem B.8 guarantees exponentially-fast convergence of

λλλ
(t)
ζ,N to a global optimizer, recall that λλλ⋆

ζ,N is the unique optimizer of (3.29), as Theorem 3.3 shows.)

Finally, it remains to bound the distance between hopt,N and the output classifier h(t) after the

t-th iteration of Algorithm 1. Note that ϕ(u) = ( f ′)−1(u) = eu−1, so γ may be obtained explicitly,

and equation (3.28) becomes

hopt,N
c′ (x) =

hbase
c′ (x) · evc′ (x;λλλ⋆

ζ,N)

∑c∈[C] hbase
c (x) · evc(x;λλλ⋆

ζ,N)
. (B.220)

Thus, using λλλ(t) := λλλ
(t)
ζ,N in place of λλλ⋆

ζ,N , we obtain that the t-th classifier obtained by Algorithm 1 is

h(t)c′ (x) =
hbase

c′ (x) · evc′ (x;λλλ(t))

∑c∈[C] hbase
c (x) · evc(x;λλλ(t))

. (B.221)

Therefore, we have the ratios

h(t)c′ (x)

hopt,N
c′ (x)

=
∑c∈[C] hbase

c (x)evc(x;λλλ⋆
ζ,N)

∑c∈[C] hbase
c (x)evc(x;λλλ(t))

· exp
(

vc′(x; λλλ(t))− vc′(x; λλλ⋆
ζ,N)

)
. (B.222)

By definition of v, v(x; λλλ) = −G(x)Tλλλ. Thus, we obtain from (B.219) and boundedness of G that∥∥∥v(x; λλλ(t))− v(x; λλλ⋆
ζ,N)

∥∥∥
∞
= e−Ω(t), (B.223)

where the implicit constant is independent of x. Applying (B.223) in (B.222), and noting that

e±e−Ω(t)
= 1± e−Ω(t) as t→ ∞, we conclude that∣∣∣∣∣∣ h(t)c′ (x)

hopt,N
c′ (x)

− 1

∣∣∣∣∣∣ = e−Ω(t), c′ ∈ [C], (B.224)

uniformly in x. We may rewrite (B.224) as

h(t)(x) = hopt,N(x) ·
(

1± e−Ω(t)
)

, (B.225)
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which is the desired convergence rate in the theorem statement, and the proof is complete.

B.3.5 Extension of Theorem 3.4

Though Theorem 3.4 is shown for the KL-divergence, the proof directly extends to general f -

divergences satisfying Assumption 3.1. In fact, Lipschitz continuity of the gradient of Dconj
KL is the

only specific property that we apply to derive the KL-divergence case. For a general f -divergence,

Lipschitz continuity of ∇Dconj
f may be derived as follows. Combining Lemmas B.4–B.5 reveals the

formula ∇vDconj
f (v, p) = (pc · ϕ (γ(v) + vc))c∈[C], where ϕ = ( f ′)−1 and γ(v) is uniquely defined by

Ec∼p [ϕ(γ(v) + vc)] = 1, with p ∈ ∆+
C fixed. Since ϕ′ = 1/( f ′′ ◦ ϕ), we have that ϕ is locally Lipschitz.

From the proof of Theorem B.2, we know that v 7→ γ(v) is locally Lipschitz. Thus, v 7→ ∇vDconj
f (v, p)

is locally Lipschitz. Further, λλλ 7→ ∇vDconj
f (v(x; λλλ), p) is then also locally Lipschitz. Note that we

may restrict λλλ a priori to be within some finite ball (see Lemma B.7). Thus, if, e.g., X is compactly-

supported, we would obtain the desired Lipschitzness properties of the gradient of Dconj
f , and the

proof of Theorem 3.4 carries through for D f in place of DKL.

B.3.6 Proof of Theorem 3.5: Convergence Rate to the Population Problem

The proof is divided in this appendix into several lemmas. We note first that, in the course of the

proof of Theorems 3.1–3.2, it was shown that at least one minimizer λλλ⋆ of (3.19) exists. Further, any

such minimizer satisfies the following bound. Denote the constraint function by µµµ(h) := EPX [Gh].

Throughout this proof, we set X := Rd.

Lemma B.7. Suppose Assumption 3.1 holds, and fix a strictly feasible classifier h ∈ H, i.e., µµµ(h) < 0. Every

minimizer λλλ⋆ ∈ RK
+ of (3.19) must satisfy the inequality

∥λλλ⋆∥1 ≤ λmax :=
D f

(
h ∥ hbase | PX

)
min
k∈[K]

− µk(h)
. (B.226)

We note that for the fairness metrics specified in Table 3.2, one valid choice of a strictly feasible h

(i.e., one for which µµµ(h) < 0) is the uniform classifier h(x) ≡ 1
C 1. In any case, we have that λmax < ∞

since both h and hbase are assumed to belong toH and f is continuous over (0, ∞); e.g., one bound on

λmax is λmax ≤ maxm≤t≤M f (t)/ mink∈[K]−µk(h) where m = infc,x hc(x) and M = 1/ infx,c hbase
c (x).
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We will also need the following constants for the convergence analysis:

gmean := E
[
∥G(X)∥2

2

]
, (B.227)

gmax := sup
x∈X
∥G(x)∥2

2 . (B.228)

Clearly, gmean ≤ gmax. By the boundedness of G in the second item in Assumption 3.1, gmax is finite.

Remark B.3. Although the results for FairProjection are stated to hold under Assumption 3.1,

we note that those conditions do not essentially restrict applicability of FairProjection. Indeed,

we focus on the CE and KL cases, for which f satisfies the imposed conditions. We also note that

only boundedness of G is required for Theorem 3.3, which is true for the fairness metrics in Table 3.2

in non-degenerate cases (e.g., no empty groups). The condition on hbase being bounded away from

zero can be made to hold by perturbing it if necessary with negligible noise. The condition on hbase

being continuous is automatically satisfied if its domain is a finite set (as is the case for Theorem 3.3).

Finally, the strict feasibility condition is verified by the uniform classifier.

Now, consider a form of ℓ2 regularization of (3.19):

min
λλλ∈RK

+

E

[
Dconj

f

(
v(X; λλλ), hbase(X)

)
+

ζ

2

∥∥∥G̃(X)Tλλλ
∥∥∥2

2

]
(B.229)

where G̃(x) := (G(x), IK) ∈ RK×(K+C). We show now that there is a unique minimizer λλλ⋆
ζ of (B.229).

Lemma B.8. Under Assumption 3.1, there exists a unique minimizer λλλ⋆
ζ of the regularized problem (B.229).

Proof. Denote the function A : RK
+ → R by

A(λλλ) := E

[
Dconj

f

(
v(X; λλλ), hbase(X)

)
+

ζ

2

∥∥∥G̃(X)Tλλλ
∥∥∥2

2

]
. (B.230)

That the range of A falls within R follows by Assumption 3.1, since then the function x 7→

Dconj
f (v(x; λλλ), hbase(x)) is PX-integrable. We will show that A is lower semicontinuous and ζ-strongly

convex.

By Lemma B.5, v 7→ Dconj
f (v, p) is differentiable for any fixed p ∈ ∆+

C , implying that it is also

continuous. Thus, λλλ 7→ Dconj
f (v(x; λλλ), hbase(x)) is continuous for each x ∈ X . Hence, by Fatou’s

lemma and boundedness of G, A is lower semicontinuous.

Next, to show strong convexity, we note that λλλ 7→ Dconj
f (v(x; λλλ), hbase(x)) is convex for each

x ∈ X . Indeed, this function is the supremum of affine functions. Further, the regularization term is
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ζ-strongly convex, as its Hessian is given by

ζ ·
(

E
[

G̃(X)G̃(X)T
]
+ I
)

, (B.231)

which is positive definite with minimal eigenvalue at least ζ.

Now, for each fixed θ > 0, consider the compact set Λθ := {λλλ ∈ RK
+ ; ∥λλλ∥2

2 ≤ θ}. By what

we have shown thus far, there is a unique minimizer λλλθ of A over Λθ . By strong convexity, if A

has a global minimizer then it is unique. We will show that λλλθ is a global minimizer of A, where

θ = 2(A(0)− D⋆)/ζ. Suppose that 0 is not a global minimzer. Fix λλλ ∈ RK
+ such that A(0) > A(λλλ).

Then,

A(0) > A(λλλ) ≥ D⋆ +
ζ

2

(
E

[∥∥∥G(X)Tλλλ
∥∥∥2

2

]
+ ∥λλλ∥2

2

)
≥ D⋆ +

ζ

2
∥λλλ∥2

2 . (B.232)

Thus, ∥λλλ∥2
2 < θ. This implies that λλλθ is a global minimizer of A, hence it is the unique global

minimizer of A. The proof of the lemma is thus complete.

The following bound shows that λλλ⋆
ζ is within O(ζ) of achieving D⋆ (see (3.19)).

Lemma B.9. Suppose Assumption 3.1 holds, fix ζ ≥ 0, and denote the unique solution and the optimal

objective value of (B.229) by λλλ⋆
ζ and D⋆

ζ , respectively. We have the bounds

E
[

Dconj
f

(
v(X; λλλ⋆

ζ ), hbase(X)
)]
≤ D⋆

ζ ≤ D⋆ + θreg · ζ, (B.233)

where we define the constant θreg := λ2
max · (1 + gmean)/2.

Proof. The first bound is trivial. Using Lemma B.7, we may fix a λλλ⋆ ∈ RK
+ with ∥λλλ⋆∥1 ≤ λmax such

that λλλ⋆ achieves D⋆. By definition of D⋆
ζ ,

D⋆
ζ ≤ E

[
Dconj

f

(
v(X; λλλ⋆), hbase(X)

)
+

ζ

2

∥∥∥G̃(X)Tλλλ⋆
∥∥∥2

2

]
≤ D⋆ + θreg · ζ,

where the last inequality follows since for the 2-matrix norm, ∥Mλλλ∥2 ≤ ∥M∥2∥λλλ∥2 and ∥MT∥2 =

∥M∥2.

Next, we derive a sample-complexity bound for the finite-sample problem (3.29) via generalizing

the proofs of Theorem 3 in [AAW+20] and Theorem 13.2 in [HR19].

Lemma B.10. Suppose Assumption 3.1 holds, and let λmax and gmax be as defined in Lemma B.7 and

equation (B.228). For any δ ∈ (0, 1), with λλλ⋆
ζ,N denoting the unique solution to (3.29), it holds with
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probability at least 1− δ that

EX

[
Dconj

f

(
v(X; λλλ⋆

ζ,N), hbase(X)
)]
≤ D⋆

ζ +
2gmax · (1 + ζ · λmax)

2

δζN
. (B.234)

Proof. Let Λ := {λλλ ∈ RK
+ ; ∥λλλ∥1 ≤ λmax}, and consider the function ℓ : Λ×X → R defined by

ℓ(λλλ, x) := Dconj
f

(
v(x; λλλ), hbase(x)

)
+

ζ

2

∥∥∥G̃(x)Tλλλ
∥∥∥2

2
. (B.235)

Note that the regularized problem (B.229) can be written as

D⋆
ζ := min

λλλ∈RK
+

E [ℓ(λλλ, X)] , (B.236)

and the finite-sample version of it (3.29) can also be written as

D⋆
ζ,N := min

λλλ∈RK
+

1
N ∑

i∈[N]

ℓ(λλλ, Xi). (B.237)

We show first that, for each fixed x ∈ X , the function λλλ 7→ ℓ(λλλ, x) is ζ-strongly convex over Λ.

The gradient of the regularization term is ζG̃(x)Tλλλ, and its Hessian is given by

∇2
λλλ

ζ

2

∥∥∥G̃(x)Tλλλ
∥∥∥2

2
= ζG(x)G(x)T + ζ IK. (B.238)

Further, the function λλλ 7→ Dconj
f (v(x; λλλ), hbase(x)) is convex as it is a pointwise supremum of linear

functions. Indeed, for any p ∈ ∆C, recalling that v(x; λλλ) = −G(x)Tλλλ, we have the formula

Dconj
f (v(x; λλλ), p) = sup

q∈∆C

−qTG(x)Tλλλ− D f (q ∥ p). (B.239)

Next, we show Lipschitzness of λλλ 7→ ℓ(λλλ, x). For any fixed v ∈ RC and p ∈ ∆+
C , we have the

gradient (see Lemma B.5)

∇vDconj
f (v, p) = qconj(v) ∈ ∆C, (B.240)

where

qconj(v) := argmin
q∈∆C

D f (q ∥ p)− vTq. (B.241)

Thus, we have the gradient

∇λλλDconj
f

(
v(x; λλλ), hbase(x)

)
= −G(x)qconj (v(x; λλλ)) . (B.242)

Hence, the gradient of λλλ 7→ ℓ(λλλ, x) is

∇λλλℓ(λλλ, x) = −G(x)qconj (v(x; λλλ)) + ζG̃(x)Tλλλ, (B.243)
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which therefore satisfies the bound

∥∇λλλℓ(λλλ, x)∥2 ≤ ∥G(x)∥2 (1 + ζ · λmax) . (B.244)

Therefore, each λλλ 7→ ℓ(λλλ, x) is A-Lipschitz with

A = (1 + ζ · λmax) · sup
x∈X
∥G(x)∥2. (B.245)

Thus, by Theorem 13.1 in [HR19], with probability 1− δ we have the bound

EX

[
ℓ
(

λλλ⋆
ζ,N , X

)]
≤ D⋆

ζ +
2A2

δζN
. (B.246)

With probability one, we have the bound

EX

[
Dconj

f

(
v
(

X; λλλ⋆
ζ,N

)
, hbase(X)

)]
≤ EX

[
ℓ
(

λλλ⋆
ζ,N , X

)]
. (B.247)

This completes the proof of the lemma.

Now, we are ready to finish the proof of Theorem 3.5 by specializing the above lemmas to the

KL-divergence case. So, we set f (t) = t log t for the rest of the proof. By Lemmas B.9–B.10, we have

with probability 1− δ

EX

[
Dconj

f

(
v(X; λλλ⋆

ζ,N), hbase(X)
)]
≤ D⋆ + θreg · ζ +

2gmax · (1 + ζ · λmax)
2

δζN
. (B.248)

Thus, by Lipschitzness (Proposition 3.1) and (B.219)

EX

[
Dconj

f

(
v(X; λλλ

(t)
ζ,N), hbase(X)

)]
≤ D⋆+

1
2
√

gmeanβe−rt + θreg · ζ +
2gmax · (1 + ζ · λmax)

2

δζN
. (B.249)

Here, we are choosing the constant β independently of N (as the optimal values of λλλ are bounded),

and r of order
√

ζ
1

2N +ζ
(as can be guaranteed from Corollary 3.1 and Theorem 3.4 in [DY16]).

Choose ζ = Θ(N−1/2). Collecting the constants in (B.249), we obtain that

EX

[
Dconj

f

(
v(X; λλλ

(t)
ζ,N), hbase(X)

)]
≤ D⋆ +

1
2
√

gmeanβe−rt +
ℓ

δ
√

N
(B.250)

for some constant ℓ that is completely determined by θreg, gmax, and λmax. This bound can be further

upper bounded by D⋆ + O(N−1/2) by choosing t ≥ 1
2r log N = Θ(log N), thereby completing the

proof of the theorem.
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B.4 Additional experiments and more details on the experimental

setup

B.4.1 Numerical Benchmark Details

Datasets

The HSLS dataset is collected from 23,000+ participants across 944 high schools in the USA, and it

includes thousands of features such as student demographic information, school information, and

students’ academic performance across several years. We preprocessed the dataset (e.g., dropping

rows with a significant number of missing entries, performing k-NN imputation, normalization),

and the number of samples reduced to 14,509.

The ENEM dataset, collected from the 2020 Brazilian high school national exam and made

available by the Brazilian Government [INE20], is comprised of student demographic information,

socio-economic questionnaire answers (e.g., parents education level, if they own a computer) and

exam scores. We preprocess the dataset by removing missing values, repeated exam takers, and

students taking the exam before graduation (“treineiros”) and obtain ∼1.4 million samples with 138

features.

Hyperparameters

For logistic regression and gradient boosting, we use the default parameters given by Scikit-learn. For

random forest, we set the number of trees and the minimum number of samples per leaf to 10. For

all classifiers, we fixed the random state to 42. When running FairProjection (cf. Algorithm 1),

we set the hyperparameters ζ = 1/
√

N (see Theorem 3.5) and ρ = 2 (see Appendix B.3.2), where N

is the number of samples.

Benchmark Methods

For binary classification, we compare with six different benchmark methods:

• EqOdds [HPS+16]: We use AIF360 implementation of EqOddsPostprocessing and we use 50% of

the test set as a validation set, i.e., 70% training set, 15% validation set, 15% test set.

• CalEqOdds [PRW+17]: We use AIF360 implementation of CalibratedEqOddsPostprocessing and

284



we use 50% of the test set as a validation set, i.e., 70% training set, 15% validation set, 15% test

set.

• Reduction [ABD+18]: We use AIF360 implementation of ExponentiatedGradientReduction, and

we use 10 different epsilon values as follows: [0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2]. We

used EqualizedOdds constraint for MEO experiments and DemographicParity for statistical parity

experiments.

• Rejection [KKZ12]: We use AIF360 implementation of RejectOptionClassification. We use

the default parameters except metric_ub and metric_lb, namely, low_class_thresh = 0.01,

high_class_thresh = 0.99, num_class_thresh = 100, num_ROC_margin = 50. We set the values

metric_ub = ε and metric_lb = −ε to obtain trade-off curves. Epsilon values we used are:

[0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2].

• LevEqOpp [CDH+19]: We used the code provided in the Github repo, originally programmed

in R. We converted it into Python, and verified that the Python version achieved similar

accuracy/fairness performance to their R version on UCI Adult dataset. We follow the same

hyperparameters setup in [CDH+19].

The following four methods, despite being mentioned in Table 3.1, are not included in the

experiments:

• FACT [KCT20]: We used the code provided on the Github repo. We did not include the results

in the main text as we found that:

(i) This method is not directly comparable because they find post-processing parameters on

the entire test set and apply them on the test set. This is different from all other methods

we are comparing including our method, which use training set or a separate validation

set to fit the post-processing mechanism. For this reason, FACT often has a point that lies

above all other curves on the accuracy-fairness plot. However, this is not a fair comparison.

We include the results of FACT in the COMPAS plots for the sake of demonstration.

(ii) We found the results produced by this method inconsistent. Partial reason is due to the

problem of finding mixing rates—probability of flipping Ŷ = 1 to 0 (i.e., P(Ỹ = 0|Ŷ = 1))

and vice-versa—which have to be between 0 and 1. But there are cases where these values

lie outside [0, 1], which leads to erroneous and inconsistent results.
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For the results we present in the COMPAS plots, we used 20 epsilon values from 1 to 10−4,

equidistant in log space. We used 10 different train/test splits as we do in all other experiments.

If certain splits does not produce a feasible solution, we drop those results. If none of the 10

splits produce a feasible solution, we drop the epsilon value. At the end, we had 19 epsilon

values.

• Identifying [JN20]: Their optimization formulation is a special case of our formulation when

f -divergence is KL divergence, but their algorithm requires retraining a classifier multiple

times to solve the optimization problem, which results in a much slower runtime compared to

ours (see Lines 1037–1046 in Appendix B.4). Nevertheless, we will add experiments for binary

classification using [JN20] in the final version.

• FST [WRC20, WRC21]: Codes are not available publicly.

• Overlapping [YCK20]: We did not include this method for binary classification experiments as

it reduces to the Reductions [ABD+18] approach for the binary class, binary protected group

case. We could not benchmark for multi-class experiments with the code available online as it

was assuming binary class (even though multiple protected groups).

For multi-class comparison, we compare with Adversarial [ZLM18]. In theory, the adversarial

debiasing method is applicable to multi-class labels and groups, but its AIF360 implementation works

only for binary labels and binary groups. We adapted their implementation to work on multi-class

labels by changing the last layer of the classifier model from one-neuron sigmoid activation to

multi-neuron soft-max activation. We varied adversary_loss_weight to obtain a trade-off curve, values

taken from [0.001, 0.01, 0.1, 0.2, 0.35, 0.5, 0.75]. For all other parameters, we used the default values:

num_epochs = 50, batch_size = 128, classifier_num_hidden_units = 200.

There are some methods that are relevant to our work but we could not benchmark in our

experiments due to the lack of publicly available codes, including [WRC21], [MW18], [JSW22].

B.4.2 Additional experiments on runtime of FairProjection

We preform an ablation study on the runtime to illustrate that the parallelizability of FairProjection

can significantly reduce the runtime, especially when the dataset contains hundreds of thousands

of samples. We report the runtime of FairProjection-KL on ENEM with 2 classes, 2 groups,
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and with different sizes. In Table B.1, we observe that when the number of samples exceeds 200k,

parallelization leads to 10.1× to 15.5× speedup of the runtime.

Method # of Samples (in thousands)
20 50 100 200 500 ∼1400

Non-Parallel 0.37±0.00 0.87±0.01 1.72±0.01 3.53±0.01 9.09±0.01 25.26±0.02
Parallel (GPU) 0.18±0.00 0.22±0.01 0.25±0.01 0.32±0.01 0.64±0.01 1.63±0.05

Speedup 2.00× 3.92× 7.21× 10.97× 14.23× 15.46×

Table B.1: Execution time of parallel (on GPU) and non-parallel (on CPU) versions of the FairProjection-KL
ADMM algorithm on the ENEM datasets with different sizes (time shown in minutes) with gradient boosting base
classifiers.

B.4.3 Additional Explanation on runtime comparison

The theoretical analysis below contrasts the runtimes of both FairProjection and Reduction [ABD+18],

which is in line with our numerically observed comparison in Table 3.3. Two key factors make

FairProjection faster than Reduction:

1. FairProjection needs a much lower number of iterations than Reduction does (logarithmic

vs. polynomial).

2. Each iteration for FairProjection is less computationally expensive than its counterpart in

Reduction. In fact, it is independent of the underlying model being projected, whereas

Reduction requires retraining.

In more detail, one can obtain from [ABD+18, Theorem 3] that the Reductions approach converges

in O(N2) iterations (where N is the number of samples and we use the suggested α = 1/2 in

[ABD+18, Theorem 3] according to the discussion at the top of page 6 therein). Taking the runtime

of each iteration into consideration, one cannot hope for a runtime faster than O(N4) for Reduction.

In fact, the runtime for Reduction must be higher than O(N4), since each of its iterations performs

the subroutine BESTh(λ), which is a ‘cost-sensitive classification’ problem (i.e., numerically solving

for an optimal classifier), and the O(N4) estimate would hold only if this retraining procedure can

be done in constant time (which might be overly optimistic). In contrast, FairProjection does

not require this retraining procedure at all, runs in O(log N) iterations, has O(N) runtime for each

iteration, and can perform much of each iteration in a parallel way.
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For the dependence of the runtime of FairProjection on the number of groups, we note that

there is a linear dependence on the number of constraints K when the number of samples N is much

larger than K (which is the case for all datasets we consider), so one can say that the runtime is at

most γKN log N for an absolute constant γ. Note that there are K = 2AC constraints for statistical

parity, where A is the number of sensitive groups, and C is the number of classes; e.g., for the

ENEM-1.4M-2C dataset that is used in Table 3.3, we get K = 8 for statistical parity. The K factor in the

O(KN log N) rate comes from the creation of the vector q in Algorithm 1. If one does not parallelize,

still one gets a runtime of O(CKN log N). Interestingly, the vi-update step runtime in Algorithm 1 is

O(C) for a fixed i ∈ [N] for both KL-divergence and Cross Entropy (see Appendices B.3.2 and B.3.3).

B.4.4 Omitted Experimental Results on Accuracy-Fairness Trade-off

Accuracy-fairness trade-off in binary classification

We include the results of benchmark methods and Fair Projection on 4 datasets (HSLS, ENEM-

50k, Adult, and COMPAS) and 3 base classifiers (Logistic regression, Random forest, and GBM)

in Figures B.1-B.8. For equalized odds experiments, we have six benchmark methods (EqOdds,

Rejection, Reduction, CalEqOdds, FACT, LevEqOpp). For statistical parity experiments, we

have Rejection and Reduction. We plot Fair Projection with both cross entropy and KL diver-

gence.

When a method performs significantly worse than others, we did not plot its results. We did not

include Rejection in the Adult plots as it did not produce consistent and reliable results on this

dataset. CalEqOdds is included only in COMPAS as its performance was significantly worse and

the point was too far away from other curves in all other datasets. FACT is also included only in the

COMPAS plots and the reasons for this are explained in Appendix B.4.1.

We observe that Fair Projection performs consistently well in all four datasets. FairProjection-CE

and FairProjection-KL have similar performance (i.e., overlapping curves) in most cases. The

performance of Fair Projection is often comparable with Reduction. Rejection has competitive

performance in ENEM-50k and HSLS, but its performance falters in COMPAS and Adult. EqOdds

produces a point with very low MEO but with a substantial loss in accuracy. LevEqOpp also yields a

point with low MEO but with a much smaller accuracy drop. Even though LevEqOpp only optimizes

for FNR difference between two groups, it performs surprisingly well in terms of MEO in all four
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datasets. However, we note that LevEqOpp can only produce a point, not a curve, and it does not

enjoy the generality of Fair Projection as it is specifically designed for binary-class, binary-group

predictions and minimizing Equalized Opportunity difference.

Accuracy-fairness trade-off in multi-class/multi-group classification

In the main text, we showed the performance of FairProjection-CE on multi-class prediction

with 5 classes and 2 groups (see Figure 3.2). We include results under a few different multi-class

settings here. First, we show results on ENEM-50k-5-5 which has 5 classes and 5 groups in Figure B.9

and B.10 . We obtain 5 groups by not binarizing the race feature. Then, we show results on binary

classification with 5 groups in Figure B.11 and B.12. Finally, we include the extended version of

Figure 3.2 that include both FairProjection-CE and FairProjection-KL in Figure B.13.

To measure multi-class performance, we extend the definition of mean equalized odds (MEO)

and statistical parity as follows:

MEO = max
i∈Y

max
s1,s2∈S

(|TPRi(s1)− TPRi(s2)|+ |FPRi(s1)− FPRi(s2)|)/2 (B.251)

Statistical Parity = max
i∈Y

max
s1,s2∈S

|Ratei(s1)− Ratei(s2)| (B.252)

where we denote TPRi(s) = P(Ŷ = i | Y = i, S = s), FPRi(s) = P(Ŷ = i | Y ̸= i, S = s), and

Ratei(s) = P(Ŷ = i | S = s).

In all experiments, FairProjection reduces MEO and statistical parity significantly (e.g., 0.22

to 0.14) with a negligible sacrifice in accuracy.
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Figure B.1: Accuracy-fairness curves of FairProjection and benchmark methods on the HSLS dataset with 3 different
models (Logistic regression, Random forest, GBM). The fairness constraint is MEO.
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Figure B.2: Accuracy-fairness curves of FairProjection and benchmark methods on the HSLS dataset with 3 different
models (Logistic regression, Random forest, GBM). The fairness constraint is statistical parity.

290



0.0 0.1 0.2 0.3
Mean Equalized Odds

0.63

0.64

0.65

0.66

0.67

A
cc

ur
ac

y

ENEM-50k (Logistic Regression)

0.1 0.2
Mean Equalized Odds

0.62

0.63

0.64

0.65

0.66

A
cc

ur
ac

y

ENEM-50k (Random Forest)

0.0 0.1 0.2 0.3
Mean Equalized Odds

0.63

0.64

0.65

0.66

0.67

A
cc

ur
ac

y

ENEM-50k (GBM)

Base
EqOdds
Rejection
Reduction
LevEqOpp
FairProjection-CE
FairProjection-KL

Figure B.3: Accuracy-fairness curves of FairProjection and benchmark methods on the ENEM-50k-2C dataset with 3
different models (Logistic regression, Random forest, GBM). The fairness constraint is MEO.
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Figure B.4: Accuracy-fairness curves of FairProjection and benchmark methods on the ENEM-50k-2C dataset with 3
different models (Logistic regression, Random forest, GBM). The fairness constraint is statistical parity.
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Figure B.5: Accuracy-fairness curves of FairProjection and benchmark methods on COMPAS with 3 different models
(Logistic regression, Random forest, GBM). The fairness constraint is MEO.
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Figure B.6: Accuracy-fairness curves of FairProjection and benchmark methods on COMPAS with 3 different models
(Logistic regression, Random forest, GBM). The fairness constraint is statistical parity.
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Figure B.7: Accuracy-fairness curves of FairProjection and benchmark methods on the Adult dataset with 3 different
models (Logistic regression, Random forest, GBM). The fairness constraint is MEO.
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Figure B.8: Accuracy-fairness curves of FairProjection and benchmark methods on the Adult dataset with 3 different
models (Logistic regression, Random forest, GBM). The fairness constraint is statistical parity.
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Figure B.9: Accuracy-fairness curves of FairProjection-CE and FairProjection-KL on ENEM-50k with with
5 labels, 5 groups and different base classifiers base classifiers. The fairness constraint is MEO.
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Figure B.10: Accuracy-fairness curves of FairProjection-CE and FairProjection-KL on ENEM-50k with
with 5 labels, 5 groups and different base classifiers base classifiers. The fairness constraint is SP.
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Figure B.11: Accuracy-fairness curves of FairProjection-CE and FairProjection-KL on ENEM-50k with
with 2 labels, 5 groups and different base classifiers base classifiers. The fairness constraint is MEO.
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Figure B.12: Accuracy-fairness curves of FairProjection-CE and FairProjection-KL on ENEM-50k with
with 2 labels, 5 groups and different base classifiers base classifiers. The fairness constraint is SP.
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Figure B.13: Comparison of FairProjection-CE and FairProjection-KL with Adversarial on ENEM-
50k-5-2, meaning 5 labels, 2 groups. The reason for the difference comparing to Fig. 3.2 is that we resampled 50k data
points from ENEM.

Method Feature
Multiclass Multigroup Scores Curve Parallel Rate Metric

Reductions [ABD+18] # ! ! ! # ! SP, (M)EO
Reject-option [KKZ12] # ! # ! # # SP, (M)EO

EqOdds [HPS+16] # ! # # # ! EO
LevEqOpp [CDH+19] # # # # # # FNR
CalEqOdds [PRW+17] # # ! # # ! MEO

FACT [KCT20] # # # ! # # SP, (M)EO

Identifying [JN20] !
#

! ! ! # # SP, (M)EO

FST [WRC20, WRC21] # ! ! ! # ! SP, (M)EO
Overlapping [YCK20] ! ! ! ! # # SP, (M)EO
Adversarial [ZLM18] ! ! N/A ! ! # SP, (M)EO

FairProjection (ours) ! ! ! ! ! ! SP, (M)EO

Copy of Table 3.1. Comparison between benchmark methods. Multiclass/multigroup: implementation takes datasets
with multiclass/multigroup labels; Scores: processes raw outputs of probabilistic classifiers; Curve: outputs fairness-
accuracy tradeoff curves (instead of a single point); Parallel: parallel implementation (e.g., on GPU) is available; Rate:
convergence rate or sample complexity guarantee is proved; Metric: applicable fairness metric, with SP↔Statistical
Parity, EO↔Equalized Odds, MEO↔Mean EO. Since FairProjection is a post-processing method, we focus our
comparison on post-processing fairness intervention methods, except for Reductions [ABD+18], which is a representative
in-processing method, and Adversarial [ZLM18], which we use to benchmark multi-class prediction. For comparing
in-processing methods, see [LPB+21, Table 1].
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B.4.5 More on related work

Our method is a model-agnostic post-processing method, so we focus our comparison on such

post-processing fairness intervention methods. In the above table, the only exception is Adver-

sarial [ZLM18], which we use to benchmark multi-class prediction. Adversarial [ZLM18] is an

in-processing method based on generative-adversarial network (GAN) where the adversary tries

to guess the sensitive group attribute S from Y and Ŷ. Even though this GAN-based approach is

applicable to multi-class, multi-group prediction, it cannot be universally applied to any pre-trained

classifier like our method.

EqOdds [HPS+16], CalEqOdds [PRW+17] and LevEqOpp [CDH+19] are post-processing meth-

ods designed for binary prediction with binary groups. They find different decision thresholds for

each group that equalize FNR and FPR of two groups. CalEqOdds [PRW+17] has an additional

constraint that the post-processed classifier must be well-calibrated, and we observe in our exper-

iments that this stringent constraint leads to a low-accuracy classifier especially when there is a

big gap in the base rate between the two groups. FACT [KCT20] follows a similar approach but

generalizes this to an optimization framework that can have both equalized odds and statistical

parity constraints and flexible accuracy-fairness trade-off. The optimization formulation finds a

desired confusion matrix, and their proposed post-processing method flips the predictions to match

the desired confusion matrix. Reject-option [KKZ12] is similar in that it flips predictions near the

decision threshold. In [KKZ12], instead of finding the optimal confusion matrix, it performs grid

search to find the optimal margin around the decision threshold that can minimize either equalized

odds or statistical parity. For these methods that center around modifying decision thresholds, it is

not straightforward to extend to multi-class and multi-group as one will have to consider (|Y|2 ) · (|S|2 )

boundaries.

FST [WRC20, WRC21] tackles fairness intervention via minimizing cross-entropy for binary

classes. Their method is inherently tailored to binary classification and only a cross-entropy objective

function, and our FairProjection-CE reduces to FST for the case of CE and binary classification

tasks. Identifying [JN20] is a method for minimizing KL-divergence for group-fairness intervention,

which changes the label weights (via a convex combination) between unweighted and weighted

samples, but it is not clear that this would navigate a good fairness-accuracy trade-off curve. Their

method can be extended to non-binary prediction with non-binary groups by an appropriate choice

of base classifier and fairness constraints, which is a non-trivial extension of the accompanying
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code, and we chose not to pursue this. Note that [JN20] and FairProjection solve the KL-

divergence minimization in very different ways. In particular, the runtime of [WRC20, WRC21]

on a 350k training dataset is longer than 30 minutes using logistic regression as a base classifier

(in comparison, the runtime of FairProjection for a 500k dataset is less than 1 minute). This

is because they require reweighing the data and retraining a large number of times. Hence, it is

inherently non-parallelizable.

Fairness in Multi-Class Prediction

Methods that are based on optimization with a fairness regularizer often can be easily extended to

multi-class prediction as it only requires a small change in the regularizer. For example, instead of

using |FNR0(x)− FNR1(x)|, one can replace this with

∑
i∈Y

∑
j ̸=i∈Y

|P(Ŷ = j | Y = i, S = 0)− P(Ŷ = j | Y = i, S = 1)|. (B.253)

FERM [DOBD+18] mentions how their method can be extended to multi-class sensitive attribute.

Similarly, we believe that their method can be used for multi-class labels as well. The reductions

approach [ABD+18] assumes binary labels but is has natural extension to multi-class, which is

explored in [YCK20]. In-processing methods proposed in [CHS20] and [ZLM18] allow for both

multi-class labels and multi-class group attributes. [ZLM18] aims to achieve the independence

between the sensitive attribute S and Ŷ or Ŷ given Y by training an adversary who tries to figure

out Ŝ. [CHS20] directly estimates the fairness loss (e.g., B.253) using kernel density estimation.

They also demonstrate the empirical performance in a three-class classification using synthetic

data. Another in-processing method is [AAV19] where the authors propose a way to incorporate

multi-class fairness constraints into decision tree training. The preprocessing method suggested

in [CKV20] is conceptually similar to our methods in that it aims to minimize the KL-divergence

between the original distribution and preprcoessed distribution while satisfying fairness constraints.

Their method, however, requires all feature vectors to be binary, and applies only to demographic

parity or representation rate. There exist other notions of fairness, which is different from commonly-

used group fairness metrics such as envy-freeness [BDNP19] or best-effort [KJW+21], which can be

applied to multi-class prediction tasks.

Finally, there are unpublished works [DEHH21, YX20] that could handle multi-class classification.

Specifically, [DEHH21] presents a post-processing method that selects different thresholds for each
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group to achieve demographic parity. [YX20] formulates SVM training as a mixed-integer program

and integrates fairness regularizer in the objective, which can also deal with multi-class.

B.5 Datasheet for ENEM 2020 dataset

Questions

The questions below are derived from [GMV+21] and aim to provide context about the ENEM-2020

dataset. We highlight that we did not create the dataset nor collect the data included in it. Instead,

we simply provide a link to the ENEM-2020 data at [INE20]. At the time of writing, the ENEM-2020

dataset is open and made freely available by the Brazilian Government at [INE20] under a Creative

Commons Attribution-NoDerivs 3.0 Unported License [Com]. We provide the datasheet below to

clarify certain aspects of the dataset (e.g., motivation, composition, etc.) since the original information

is available in Portuguese at [INE20], thus limiting its access to a broader audience. The website

[INE20] contains a link to download a .zip file which contains the ENEM-2020 data in .csv format

and extensive accompanying documentation.

The datasheet below is not a substitute for the explanatory files that are downloaded together

with the dataset at [INE20], and we emphatically recommend the user to familiarize themselves with

associated documentation prior to usage. We also strongly recommend the user to carefully read the

“Leia-Me” (readme) file Leia_Me_Enem_2020.pdf available in the same .zip folder that contains

the dataset. The answers in the datasheet below are based on an English translation of information

available at [INE20] and may be incomplete or inaccurate. The datasheet below is based on our

own independent analysis and in no way represents or attempts to represent the opinion or official

position of the Brazilian Government and its agencies.

We also note that we do not distribute the ENEM-2020 dataset directly nor host the dataset

ourselves. Instead, we provide a link to download the data from a public website hosted by the

Brazilian Government. The dataset may become unavailable in case the link in [INE20] becomes

inaccessible.

Motivation

• For what purpose was the dataset created? According to the “Leia-me” (Read Me) file that

accompanies the data, the dataset was made available to fufill the mission of the Instituto
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Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (INEP) of developing and

disseminating data about exams and evaluations of basic education in Brazil.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity

(e.g., company, institution, organization)? The dataset was developed by INEP, which is a

government agency connected to the Brazilian Ministry of Education.

• Who funded the creation of the dataset? The data is made freely available by the Brazilian

Government.

Composition

• What do the instances that comprise the dataset represent (e.g., documents, photos, people,

countries)? The instances of the dataset are information about individual students who took

the Exame Nacional do Ensino Médio (ENEM). The ENEM is the capstone exam for Brazilian

students who are graduating or have graduated high school.

• How many instances are there in total (of each type, if appropriate)? The raw data provided

in at [INE20] has approximately 5.78 million entries. The processed version we use in our

experiments has approximately 1.4 million entries.

• Does the dataset contain all possible instances or is it a sample (not necessarily random)

of instances from a larger set? The data provided is the lowest level of aggregation of data

collected from ENEM exam-takers made available by INEP.

• What data does each instance consist of? We provide a brief description of the features

available in the raw public data provided at [INE20]. Upon downloading the data, a detailed

description of features and their values are available (in Portuguese) in the file titled

Dicionário_Mircrodados_ENEM_2020.xsls.

The features include:

– Information about exam taker: exam registration number (masked), year the exam was

taken (2020), age range, sex, marriage status, race, nationality, status of high school

graduation, year of high school graduation, type of high school (public, private, n/a), if

they are a “treineiro” (i.e., taking the exam as practice).
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– School data: city and state of participant’s school, school administration type (private,

city, state, or federal), location (urban or rural), and school operation status.

– Location where exam was taken: city and state.

– Data on multiple-choice questions: The exam is divided in 4 parts (translated from

Portuguese): natural sciences, human sciences, languages and codes, and mathematics.

For each part there is data if the participant attended the corresponding portion of the

exam, the type of exam book they received, their overall grade, answers to exam questions,

and the answer sheet for the exam.

– Data on essay question: if participant took the exam, grade on different evaluation criteria,

and overall grade.

– Data on socio-economic questionnaire answers: the data include answers to 25 socio-

economic questions (e.g., number of people who live in your house, family average income,

if the your house has a bathroom, etc.).

• Is there a label or target associated with each instance? No, there is no explicit label. In our

fairness benchmarks, we use grades in various components of the exam as a predicted label.

• Is any information missing from individual instances? Yes, certain instances have missing

values.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings,

social network links)? No explicit relationships identified.

• Are there recommended data splits (e.g., training, development/validation, testing)? No.

• Are there any errors, sources of noise, or redundancies in the dataset? The data contains

missing values and, according to INEP, was collected from individual exam takers. The

information is self-reported and collected at the time of the exam.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,

websites, tweets, other datasets)? Self-contained.

• Does the dataset contain data that might be considered confidential (e.g., data that is

protected by legal privilege or by doctor–patient confidentiality, data that includes the

content of individuals’ non-public communications)? According to the Leia-me (readme) file
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(in Portuguese) that accompanies the dataset and our own inspection, the dataset does not

contain any feature that allows direct identification of exam takers such as name, email, ID

number, birth date, address, etc. The exam registration number has been substituted by a

sequentially generated mask. INEP states that the released data is aligned with the Brazilian

Lei Geral de Proteção dos Dados (LGPD, General Law for Data Protection). We emphatically

recommend the user to view the Readme file prior to usage.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting, threat-

ening, or might otherwise cause anxiety? The official terminology used by the Brazilian

Government to denote race can be viewed as offensive. Specifically, the term used to describe

the race of exam takers of Asian heritage is “Amarela,” which is the Portuguese word for the

color yellow. Moreover, the term “Pardo,” which roughly translates to brown, is used to denote

individuals of multiple or mixed ethnicity. This outdated and inappropriate terminology is

still in official use by the Brazilian Government, including in its population census. The dataset

itself includes integers to denote race, which are mapped to specific categories through the

variable dictionary.

• Does the dataset relate to people? Yes.

• Does the dataset identify any subpopulations (e.g., by age, gender)? Yes. Information about

age, sex, and race are included in the dataset.

• Is it possible to identify individuals (i.e., one or more natural persons), either directly or

indirectly (i.e., in combination with other data) from the dataset? The Leia-me (readme) file

notes that the individual exam-takers cannot be directly identified from the data. However,

in the same file, INEP recognizes that the Brazilian data protection law (LGPD) does not

clearly define what constitutes a reasonable effort of de-identification. Thus, INEP adopted a

cautious approach: this dataset is a simplified/abbreviated version of the ENEM micro-data

compared to prior releases and aims to remove any features that may allow identification of

the exam-taker.

• Does the dataset contain data that might be considered sensitive in any way (e.g., data that

reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or

union memberships, or locations; financial or health data; biometric or genetic data; forms
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of government identification, such as social security numbers; criminal history)? The data

includes race information and socio-economic questionnaire answers.

Collection Process

Since we did not produce the data, we cannot speak directly about the collection process. Our

understanding is that the data contains self-reported answers from exam-takers of the ENEM

collected at the time of the exam. The exam was applied on 17 and 24 of January 2021 (delayed

due to COVID). The data was aggregated and made publicly available by INEP at [INE20]. After

consulting the IRB office at our institution, no specific IRB was required to use this data since it is

anonymized and publicly available.

Preprocessing/cleaning/labeling

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,

tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, process-

ing of missing values)? Some mild pre-processing was done on the data to ensure anonymity,

as indicated in the “Leia-me” file. This includes aggregating participant ages, masking exam

registration numbers, and removing additional information that could allow de-anonymization.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to

support unanticipated future uses)? The raw data is not publicly available.

Uses

• Has the dataset been used for any tasks already? We have used this dataset to benchmark

fairness interventions in ML in the present paper. ENEM microdata has also been widely used

in studies ranging from public policy in Brazil to item response theory in high school exams.

• Are there tasks for which the dataset should not be used? INEP does not clearly define tasks

that should not be used on this dataset. However, no attempt should be made to de-anonymize

the data.
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Distribution and Maintenance

The ENEM-2020 dataset is open and made freely available by the Brazilian Government at [INE20]

under a Creative Commons Attribution-NoDerivs 3.0 Unported License [Com] at the time of writing.

The dataset may become unavailable in case the link in [INE20] becomes inaccessible.
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Appendix C

Appendix to Chapter 4

C.1 Proofs of Section 4.2

C.1.1 PMMSE Formula: Proof of Lemma 4.1

The matrix MY,n is symmetric. We show that it is positive-semidefinite, and that it is positive-definite

if and only if |supp(Y)| > n. For any d ∈ Rn+1, we have the inequality

dT MY,nd = dT E

[
Y (n)

(
Y (n)

)T
]

d (C.1)

= E

[
dTY (n)

(
Y (n)

)T
d
]

(C.2)

= E

[∣∣∣dTY (n)
∣∣∣2] ≥ 0, (C.3)

so MY,n is positive-semidefinite. Furthermore, the equality case E

[∣∣∣dTY (n)
∣∣∣2] = 0 holds if and

only if
∣∣∣dTY (n)

∣∣∣2 = 0, and this latter relation holds if and only if dTY (n) = 0. Therefore, MY,n

is positive-definite if and only if dTY (n) = 0 implies d = 0, i.e., Y (n) does not lie almost surely

in a hyperplane in Rn+1. Finally, Y (n) lies almost surely in a hyperplane in Rn+1 if and only if

|supp(Y)| ≤ n. Therefore, the desired result that MY,n is invertible if and only if |supp(Y)| > n

follows.

Next, assume that |supp(Y)| > n, so by what we have shown above, MY,n is invertible. Let M1/2
Y,n

denote the lower-triangular matrix in the Cholesky decomposition of MY,n, i.e., M1/2
Y,n is the unique

lower-triangular matrix with positive diagonal entries that satisfies M1/2
Y,n

(
M1/2

Y,n

)T
= MY,n, and
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denote M−1/2
Y,n :=

(
M1/2

Y,n

)−1
. We show that the entries of the vector V = M−1/2

Y,n Y (n) comprise an

orthonormal basis for Pn(Y). We have that

E
[
VV T

]
= E

[
M−1/2

Y,n Y (n)
(

Y (n)
)T (

M−1/2
Y,n

)T
]

(C.4)

= M−1/2
Y,n MY,n

(
M−1/2

Y,n

)T
= In+1. (C.5)

Hence, the entries of the vector V form an orthonormal subset of Pn(Y). Since {1, Y, · · · , Yn} spans

Pn(Y), and M−1/2
Y,n is invertible, we conclude that the entries of V also span Pn(Y). Hence, the

entries of V form an orthonormal basis of Pn(Y).

Then, the general expansion of orthogonal projections yields the formula En[X | Y] = E
[
XV T]V .

Substituting V = M−1/2
Y,n Y (n) we obtain (4.28). Then, expanding the PMMSE formula pmmsen(X |

Y) = E[(X− En[X | Y])2], we obtain (4.29). The proof of the lemma is thus complete.

We note that an alternative proof of this lemma, once one obtains the invertibility of MY,n, is via

differentiation under the integral sign with respect to the polynomial coefficients in En[X | Y] in the

same way as the LMMSE is usually derived.

C.1.2 PMMSE for Symmetric random variables: Proof of Lemma 4.4

We may assume that X and Z are symmetric around 0, since Em[X + a | X + Z + b] = a + Em[X |

X + Z] for every m ∈N and a, b ∈ R. Then, E[X j] = E[Zj] = 0 for every odd j ∈N. Set Y = X + Z

and n = 2k. Then, E[Y j] = 0 for every odd j ∈N, and E[XYℓ] = 0 for every even ℓ ∈N. Then, the

coefficient of Yn in En[X | Y] is

1
det MY,n

∑
ℓ∈[n]
ℓ odd

E
[

XYℓ
] [

M−1
Y,n

]
ℓ,n

, (C.6)

where
[

M−1
Y,n

]
ℓ,n

denotes the (ℓ, n)-th entry of M−1
Y,n. Fix an odd ℓ ∈ [n]. Let T(ℓ,n)

n denote the set of

permutations of [n] that send ℓ to n. We have that

[
M−1

Y,n

]
ℓ,n

= − ∑
π∈T(ℓ,n)

n

sgn(π) ∏
r∈[n]\{ℓ}

E
[
Yr+π(r)

]
. (C.7)

We have that, for every π ∈ T(ℓ,n)
n , ∑r∈[n]\{ℓ} r + π(r) = n(n + 1)− ℓ− n, which is odd. Therefore,

for at least one r ∈ [n] \ {ℓ}, the integer r + π(r) is odd. Hence, E[Yr+π(r)] = 0, implying that[
M−1

Y,n

]
ℓ,n

= 0. As this is true for every odd ℓ ∈ [n], we conclude that the coefficient of Yn in En[X | Y]
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is 0. In other words, we have E2k[X | X + Z] = E2k−1[X | X + Z], and the proof is complete.

C.1.3 PMMSE Convergence Theorems: Proof of Lemma 4.5

Note that in (i) the sequences {XkY j}k∈N, for each fixed j ∈ [n], are monotone almost surely. Also, X0

is integrable, as we are assuming that X0 ∈ L2(F ). Note also that in (ii) each sequence {XkY j}k∈N, for

j ∈ [n], is dominated by M|Y|j, which is integrable since both M and Y j are square-integrable. Thus,

monotone convergence and dominated convergence both hold in L1(F ) for each of the sequences

{XkY j}k∈N, where j ∈ [n] is fixed. In addition, the formula

En [Xk | Y = y] = E
[

XkY (n)
]T

M−1
Y,n (1, y, · · · , yn)T

=
n

∑
j=0

cjE
[

XkY j
]

(C.8)

expresses En [Xk | Y = y] as an R-linear combination of {XkY j}j∈[n] (where the cj do not depend on

k). Thus, the convergence theorems in (i) and (ii) also hold.

Remark C.1. A version of Fatou’s lemma that holds for a subset of values of y is also derivable.

Namely, suppose that there is a random variable M ∈ L1(F ) such that XkY j ≥ −M for every

(k, j) ∈N× [n], and that lim infk→∞ Xk is square-integrable. Then, the same argument in the proof

of Lemma 4.5 shows that

lim inf
k→∞

En[Xk | Y = y] ≥ En

[
lim inf

k→∞
Xk

∣∣∣∣ Y = y
]

(C.9)

for every y ∈ R such that M−1
Y,n(1, y, · · · , yn)T consists of non-negative entries. For example, when

n = 1, Fatou’s lemma holds for y ≥ E[Y] if E[Y] ≤ 0, and it holds for y ∈ [E[Y], E[Y2]/E[Y]] if

E[Y] > 0.

C.2 Rationality of the PMMSE (Theorem 4.2): Proofs of Section 4.3.1

C.2.1 Proof of Lemma 4.6

We introduce the following functions. Recall that we denote Xk = E[Xk]. For k ∈ [n], we define the

function vX,k : [0, ∞)→ R at each t ≥ 0 by

vX,k(t) := E

[
X
(√

tX + N
)k
]

. (C.10)
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For example, vX,0(t) = X1, vX,1(t) =
√

tX2, and vX,2(t) = tX3 + X1 if X ∈ L3(P). Define the

vector-valued function vX,n : [0, ∞)→ Rn+1 via

vX,n := (vX,0, · · · , vX,n)
T . (C.11)

In view of Lemma 4.1, we may represent the PMMSE as

pmmsen(X, t) = E
[

X2
]
− vX,n(t)T M−1√

tX+N,n
vX,n(t). (C.12)

Therefore, defining FX,n : [0, ∞)→ [0, ∞) by

FX,n(t) := vX,n(t)T M−1√
tX+N,n

vX,n(t), (C.13)

we have the equation

pmmsen(X, t) = E
[

X2
]
− FX,n(t). (C.14)

The functions FX,n are non-negative because the matrices M√tX+N,n are positive-definite (see

Lemma 4.1). In view of (C.14), PMMSE is fully characterized by FX,n, so we focus on this function.

We introduce the following auxiliary polynomials, where R is a random variable independent of

N. For ℓ even, we set

eR,X,ℓ(t) := E

[
R
(√

tX + N
)ℓ]

, (C.15)

and for ℓ odd we set (for t > 0)

oR,X,ℓ(t) := t−1/2E

[
R
(√

tX + N
)ℓ]

. (C.16)

That eR,X,ℓ and oR,X,ℓ are polynomials in t can be seen as follows. Recall that E[Nr] = 0 for odd

r ∈N. If ℓ is even then expanding the right hand side of (C.15) yields

eR,X,ℓ(t) = ∑
k∈[ℓ]

k even

(
ℓ

k

)
tk/2E

[
RXk

]
E
[

Nℓ−k
]

, (C.17)

whereas if ℓ is odd then the right hand side of (C.16) yields

oR,X,ℓ(t) = ∑
k∈[ℓ]
k odd

(
ℓ

k

)
t(k−1)/2E

[
RXk

]
E
[

Nℓ−k
]

. (C.18)

Both expressions on the right hand sides of (C.17) and (C.18) are polynomials of degree at most

⌊ℓ/2⌋. Further, the coefficient of t⌊ℓ/2⌋ in either polynomial is E
[

RXℓ
]

.

Let S[n] denote the symmetric group of permutations on the n + 1 elements of [n]. We utilize the
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following auxiliary result on the parity of i + π(i) for a permutation π ∈ S[n].

Lemma C.1. For any permutation π ∈ S[n], there is an even number of elements i ∈ [n] such that i + π(i)

is odd, i.e., the following is an even integer

δ(π) := |{i ∈ [n] ; i + π(i) is odd}| . (C.19)

Proof. The integer i + π(i) is odd if and only if i and π(i) have opposite parities. Thus, the desired

result follows from the following more general characterization. For any partition [n] = A ∪ B, the

cardinality of the set

I := {i ∈ [n] ; (i, π(i)) ∈ (A× B) ∪ (B× A)} (C.20)

is even. The desired result follows by letting A and B be even and odd integers, respectively, in [n].

Now, we show that the general characterization holds.

Let Aπ ⊂ A denote the subset of elements of A that get mapped by π into B, i.e.,

Aπ := {i ∈ A ; π(i) ∈ B}, (C.21)

and define Bπ similarly. Then, I = Aπ ∪ Bπ is a partition. As |Aπ | = |Bπ |, we get that |I| = 2|Aπ |,

and the desired result that |I| is even follows.

We show first that the function t 7→ det M√tX+N,n is a polynomial in t, and show that the

coefficient of tdn in it is det MX,n. By Leibniz’s formula,

det M√tX+N,n = ∑
π∈S[n]

sgn(π) ∏
r∈[n]

E

[(√
tX + N

)r+π(r)
]

. (C.22)

With the auxiliary polynomials e1,X,ℓ and o1,X,ℓ as defined in (C.15) and (C.16) (i.e., with R = 1), and

δ as defined in (C.19), we may write

det M√tX+N,n = ∑
π∈S[n]

sgn(π)tδ(π)/2 ∏
i∈[n]

i+π(i) odd

o1,X,i+π(i)(t) ∏
j∈[n]

j+π(j) even

e1,X,j+π(j)(t), (C.23)

thereby showing that det M√tX+N,n is a polynomial in t by evenness of each δ(π) (Lemma C.1).

Furthermore, for each permutation π ∈ S[n],

deg

tδ(π)/2 ∏
i+π(i) odd

o1,X,i+π(i)(t) ∏
j+π(j) even

e1,X,j+π(j)(t)

 ≤ δ(π)

2
+ ∑

i+π(i) odd

i + π(i)− 1
2

+ ∑
j+π(j) even

j + π(j)
2

(C.24)
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=
1
2

n

∑
k=0

k + π(k) =
n(n + 1)

2
= dn. (C.25)

Therefore, we also have deg
(

det M√tX+N,n

)
≤ dn. Finally, taking the terms of highest degrees in

√
t in (C.22), we obtain that the coefficient of tdn in det M√tX+N,n is

∑
π∈S[n]

sgn(π) ∏
r∈[n]
Xr+π(r), (C.26)

which is equal to det MX,n by the Leibniz determinant formula. This coefficient is non-negative

because MX,n is positive-semidefinite, and it is nonzero if and only if |supp(X)| > n by Lemma 4.1.

The same approach can be used to show that the mapping t 7→ FX,n(t)det M√tX+N,n is a

polynomial in t and to characterize its leading coefficient. In this case, we utilize eX,X,ℓ and oX,X,ℓ

(i.e., R = X).

For each (i, j) ∈ [n]2 let the subset T(i,j)
n ⊂ S[n] denote the collection of permutations sending i to

j, i.e.,

T(i,j)
n :=

{
π ∈ S[n] ; π(i) = j

}
. (C.27)

We define, for each (i, j) ∈ [n]2, the cofactor functions c(i,j)X,n : [0, ∞) → R and the products d(i,j)X,n :

[0, ∞)→ R by

c(i,j)X,n (t) := ∑
π∈T(i,j)

n

sgn(π) ∏
k∈[n]
k ̸=i

(
M√tX+N,n

)
k,π(k)

, (C.28)

d(i,j)X,n (t) := vX,i(t) c(i,j)X,n (t) vX,j(t). (C.29)

Here,
(

M√tX+N,n

)
a,b

is the (a, b)-th entry of M√tX+N,n, i.e.,

(
M√tX+N,n

)
a,b

= E

[(√
tX + N

)a+b
]

. (C.30)

Note that c(i,j)X,n (t) is the (i, j)-th cofactor of M√tX+N,n. The cofactor matrix CX,n : [0, ∞)→ R(n+1)×(n+1)

of t 7→ M√tX+N,n is given by

CX,n :=
(

c(i,j)X,n

)
(i,j)∈[n]2

. (C.31)

We define the function DX,t : [0, ∞)→ R by

DX,n := vT
X,nCX,nvX,n. (C.32)
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We have the following two relations. First, DX,n is the sum of the d(i,j)X,n

DX,n(t) = ∑
(i,j)∈[n]2

d(i,j)X,n (t). (C.33)

Second, by Cramer’s rule, and because symmetry of the matrix M√tX+N,n implies that its cofactor is

equal to its adjugate, we have the formula

M−1√
tX+N,n

=
1

det M√tX+N,n
CX,n. (C.34)

Therefore, we obtain

FX,n(t) =
DX,n(t)

det M√tX+N,n
=

∑(i,j)∈[n]2 d(i,j)X,n (t)

det M√tX+N,n
. (C.35)

Hence, it suffices to study the d(i,j)X,n .

We start with a characterization of the cofactors c(i,j)X,n . Namely, we show that if i + j is even then

c(i,j)X,n (t) is a polynomial in t, and if i + j is odd then
√

tc(i,j)X,n (t) is a polynomial in t. If i + j is even,

then

c(i,j)X,n (t) = ∑
π∈T(i,j)

n

sgn(π)tδ(π)/2 ∏
k∈[n]

k+π(k) odd

o1,X,k+π(k)(t)∏
r∈[n], r ̸=i

r+π(r) even

e1,X,r+π(r)(t), (C.36)

whereas if i + j is odd then

c(i,j)X,n (t) = ∑
π∈T(i,j)

n

sgn(π)t
δ(π)−1

2 ∏
k∈[n], k ̸=i

k+π(k) odd

o1,X,k+π(k)(t)∏
r∈[n]

r+π(r) even

e1,X,r+π(r)(t). (C.37)

Thus, evenness of δ(π) for each π ∈ S[n] implies that each c(i,j)X,n (t) is a polynomial when i + j is even

and that each
√

tc(i,j)X,n (t) is a polynomial when i + j is odd. Further, the degree of c(i,j)X,n for even i + j

is upper bounded by

δ(π)

2
+ ∑

k+π(k) odd

k + π(k)− 1
2

+ ∑
r+π(r) even ; r ̸=i

r + π(r)
2

=
n(n + 1)

2
− i + j

2
, (C.38)

whereas the degree of
√

tc(i,j)X,n and for odd i + j is upper bounded by

δ(π)

2
+ ∑

k+π(k) odd ; k ̸=i

k + π(k)− 1
2

+ ∑
r+π(r) even

r + π(r)
2

=
n(n + 1)

2
− i + j− 1

2
. (C.39)

We note that both upper bounds are equal to

n(n + 1)
2

−
⌊

i + j
2

⌋
. (C.40)
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Finally, considering the terms of highest order, we see that the term

∑
π∈T(i,j)

n

sgn(π) ∏
k∈[n]\{i}

Xk+π(k) (C.41)

is the coefficient of t
n(n+1)

2 −
⌊

i+j
2

⌋
in c(i,j)X,n when i + j is even and in

√
tc(i,j)X,n when i + j is odd.

Now, to show that DX,n is a polynomial, it suffices to check that each d(i,j)X,n is. We consider

separately the parity of i + j and build upon the characterization of c(i,j)X,n . If i + j is even, so i and j

have the same parity, then

E

[
X
(√

tX + N
)i
]

E

[
X
(√

tX + N
)j
]

is a polynomial in t of degree at most (i + j)/2 with the coefficient of t(i+j)/2 being Xi+1Xj+1. If i + j

is odd, so i and j have different parities, then

t−1/2E

[
X
(√

tX + N
)i
]

E

[
X
(√

tX + N
)j
]

is a polynomial in t of degree at most (i + j− 1)/2 with the coefficient of t(i+j−1)/2 being Xi+1Xj+1.

Thus, from the characterization of c(i,j)X,n , regardless of the parity of i + j we obtain that d(i,j)X,n (t)

is a polynomial in t of degree at most n(n + 1)/2 = dn. Thus, from (C.35), the function t 7→

FX,n(t)det M√tX+N,n is a polynomial of degree at most dn. Further, note that pmmsen(X, t) ≤

lmmse(X, t)→ 0 as t→ ∞. Thus, writing

pmmsen(X, t) =
(X2 − FX,n(t))det M√tX+N,n

det M√tX+N,n
(C.42)

and recalling that we have shown that det M√tX+N,n is a polynomial in t of degree at most dn, we

conclude that the numerator t 7→ pmmsen(X, t)det M√tX+N,n is a polynomial of degree at most

dn − 1.

Next, we derive the constant terms. Denote by an,0
X and bn,0

X the constant terms of the polynomials

t 7→ pmmsen(X, t)det M√tX+N,n and t 7→ det M√tX+N,n, respectively. The formulas for an,0
X and bn,0

X

follow simply by setting t = 0. Indeed, if N ∼ N (0, 1) is independent of X, then

FX,n(0) = X 2
1 E

[
N(n)

]T
M−1

N,n E
[

N(n)
]
= X 2

1 (C.43)

because E
[

N(n)
]

is the leftmost column of MN,n. Therefore,

an,0
X = σ2

X det MN,n = σ2
Xbn,0

X . (C.44)
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Further, by direct computation or using the connection between Hankel matrices and orthogonal

polynomials [Sim98, Appendix A] along with the fact that the probabilist’s Hermite polynomials

qk satisfy the recurrence xqk(x) = qk+1(x) + kqk−1(x), it follows that det MN,n = ∏n
k=1 k! = G(n + 2)

where G is the Barnes G-function.

Next, we show the last statement in the lemma, namely, that each coefficient in either of the two

considered polynomials stays unchanged if X is shifted by a constant. This property will allow us to

prove the claim that the coefficient of t in det M√tX+N,n is σ2
XG(n + 2)dn. By what we have shown

thus far, we may define constants an,j
X and bn,j

X by the polynomial identities

pmmsen(X, t) det M√tX+N,n = ∑
j∈[dn−1]

an,j
X tj, (C.45)

det M√tX+N,n = ∑
j∈[dn ]

bn,j
X tj. (C.46)

Fix s ∈ R. For any i.i.d. random variables Z, Z0, · · · , Zn, we have that (see, e.g., [Sim98, Appendix

A])

det MZ,n =
1

(n + 1)!
E

[
∏

0≤i<j≤n
(Zi − Zj)

2

]
. (C.47)

From equation (C.47), since (Zi + s)− (Zj + s) = Zi − Zj, we obtain that

det MZ+s,n = det MZ,n. (C.48)

Let N ∼ N (0, 1) be independent of X. Then, for every t ∈ [0, ∞), considering Z =
√

tX + N in

(C.48), we obtain

det M√t(X+s)+N,n = det M√tX+N,n. (C.49)

As both sides of (C.49) are polynomials in t, we obtain that bn,j
X+s = bn,j

X for every j ∈ [dn]. Since we

also have pmmsen(X + s, t) = pmmsen(X, t), it follows that

t 7→ ∑
j∈[dn−1]

an,j
X tj = pmmsen(X, t) ∑

j∈[dn ]

bn,j
X tj (C.50)

is also invariant under shifting X, so we also obtain an,j
X+s = an,j

X .

By the shift-invariance of bn,1
X , we may assume that X1 = 0 (so X2 = σ2

X). Now, as each entry in

M√tX+N,n is a polynomial in
√

t, we see that we may drop any term of order (
√

t)3 or above for the
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sake of finding bn,1
X (which is the coefficient of t in det M√tX+N,n). In other words,

bn,1
X = det

((
i + j

2

)
σ2

XE
[

Ni+j−2
]

t + E
[

Ni+j
])

(i,j)∈[n]2
. (C.51)

By Leibniz’s formula, we conclude

bn,1
X = σ2

X ∑
π∈S[n]
k∈[n]

sgn(π)

(
k + π(k)

2

)
E
[

Nk+π(k)−2
]
· ∏

i∈[n]\{k}
E
[

Ni+π(i)
]

.
(C.52)

But, for any non-negative integer m(
m
2

)
E
[

Nm−2
]
=

m
2

E [Nm] . (C.53)

Therefore, (C.52) simplifies to

bn,1
X =

σ2
X
2 ∑

π∈S[n]
k∈[n]

sgn(π)(k + π(k)) ∏
i∈[n]

E
[

Ni+π(i)
]

. (C.54)

Evaluating the summation over k for each fixed π, we obtain that

bn,1
X =

(
n + 1

2

)
σ2

X ∑
π∈S[n]

sgn(π) ∏
i∈[n]

E
[

Ni+π(i)
]

. (C.55)

Finally, by Leibniz’s formula for det MN,n, we obtain that

bn,1
X =

(
n + 1

2

)
σ2

X det MN,n, (C.56)

as desired. This completes the proof of Lemma 4.6.

C.2.2 Expanded Formulas for the Coefficients in (4.48)

As stated in Remark 4.8, we give here fully-expanded formulas for the coefficients an,j
X and bn,j

X , which

will yield further restrictions on which moments can appear in any of these coefficients. Recall that

we set Xk = E[Xk].

We have the expansion (see (C.22))

det M√tX+N,n = ∑
π∈S[n]

sgn(π) ∏
r∈[n]

E

[(√
tX + N

)r+π(r)
]

(C.57)

by the Leibniz formula. In the expressions that follow, we denote the tuple k = (k0, · · · , kn).

Expanding the powers inside the expectation and computing the expectation, we get a formula of
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the form

det M√tX+N,n = ∑
π∈S[n]

kr∈[r+π(r)], ∀r∈[n]

t(k0+···+kn)/2Xk0 · · · Xkn βπ;k, (C.58)

where the βπ;k are integers given by1

βπ,k := sgn(π) ∏
r∈[n]

(
r + π(r)

kr

)
E[Nr+π(r)−kr ]. (C.59)

By Lemma 4.6, only the summands for which the integer k0 + · · ·+ kn is even can be non-trivial,

because det M√tX+N,n is a polynomial in t. Thus, we have

det M√tX+N,n = ∑
j∈[dn ]

tj ∑
π∈S[n]

kr∈[r+π(r)], ∀r∈[n]
k0+···+kn=2j

βπ;kXk0 · · · Xkn . (C.60)

Because the coefficients bn,j
X were defined by equality of polynomials det M√tX+N,n = ∑j∈[dn ] bn,j

X tj

(see (4.47)), we obtain that for each j ∈ [dn]

bn,j
X = ∑

π∈S[n]
kr∈[r+π(r)], ∀r∈[n]

k0+···+kn=2j

βπ;kXk0 · · · Xkn . (C.61)

The coefficient an,j
X may be expanded similarly to obtain the following formula. Define the integers

γi,π,k,w,z =(−1)i+π(i)sgn(π)

(
i
w

)(
π(i)

z

)
E[Ni−w]E[Nπ(i)−z] ∏

r∈[n]\{i}

(
r + π(r)

kr

)
E[Nr+π(r)−kr ],

(C.62)

and the restricted sums

si(k) = ∑
r∈[n]\{i}

kr. (C.63)

1From this formula, one may deduce an alternative proof that t 7→ det M√tX+N,n is a polynomial. The term βπ;k is
nonzero if and only if all the differences r + π(r)− kr are even. Suppose, for the sake of contradiction, that this is true for
some fixed permutation π ∈ S[n] and naturals k0, · · · , kn for which k0 + · · ·+ kn is odd. Then, there is an odd number of odd
numbers kr . But, by Lemma C.1, there is an even number of odd numbers r + π(r). Therefore, there is an r ∈ [n] for which
r + π(r) and kr have different parities, contradicting evenness of r + π(r)− kr .
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Then, we have the formula

an,j
X = ∑

π∈S[n]
kr∈[r+π(r)], ∀r∈[n]

k0+···+kn=2j

βπ;k0,··· ,knX2Xk0 · · · Xkn − ∑
(i,π)∈[n]×S[n]
(w,z)∈[i]×[π(i)]

kr∈[r+π(r)], ∀r∈[n]\{i}
w+z+si(k)=2j

γi,π,k,w,zXw+1Xz+1 ∏
r∈[n]\{i}

Xkr .

(C.64)

From the formulas for an,j
X and bn,j

X in (C.64) and (C.61), we obtain the following restrictions on

how they can contain any of the moments of X. We need to define the following set of homogeneous

polynomials in the moments of X. We use the notation λλλ = (λ1, · · · , λm)T ∈Nm.

Definition C.1. For (ℓ, m, k) ∈N3, let Πℓ,m,k denote the set of unordered partitions of ℓ into at most

m parts each of which not exceeding k, i.e., Πℓ,m,k :=
{

λλλ ∈Nm ; k ≥ λ1 ≥ · · · ≥ λm, λλλT1 = ℓ
}

. We

define the set of homogeneous integer-coefficient polynomials with weighted-degree ℓ and width at

most m in the first k moments X1, · · · ,Xk of X as

Hℓ,m,k(X) :=

 ∑
λλλ∈Πℓ,m,k

cλλλ

m

∏
i=1
Xλi ; cλλλ ∈ Z

 . (C.65)

If Πℓ,m,k = ∅, we set Hℓ,m,k(X) = Z.

Remark C.2. An element q(X) ∈ Hℓ,m,k(X) will be an integer linear combination of terms ∏m
i=1 Xλi .

Each of these terms is a product of at most m of the moments of X (hence the terminology width).

The highest moment that can appear is Xk, because λλλ ∈ Πℓ,m,k. Suppose Πℓ,m,k ̸= ∅. Then, each

summand shares the property that ∑m
i=1 λi = ℓ. Further, looking at each Xj as an indeterminate of

“degree" j, we may view q(X) as a “homogeneous" polynomial in the moments of X of “degree" ℓ. In

other words, for any constant c, q(cX) = cℓq(X); in fact, this homogeneity holds for each term in the

sum defining q, ∏m
i=1 E

[
(cX)λi

]
= cℓ ∏m

i=1 E
[
Xλi
]
.

Example 6. The partitions of the integer 6 into at most 3 parts each of which not exceeding 4 are

given by Π6,3,4 = {(4, 2, 0), (4, 1, 1), (3, 3, 0), (3, 2, 1), (2, 2, 2)}. Note the resemblance between the

elements of Π6,3,4 and the terms appearing in the expression for det MX,2, namely, (see (4.37))

det MX,2 = X4X2 −X4X 2
1 −X 2

3 + 2X3X2X1 −X 3
2 . (C.66)

A term ∏3
i=1 Xλi with λ1 ≥ λ2 ≥ λ3 appears in det MX,2 if and only if λλλ = (λ1, λ2, λ3) is in Π6,3,4. In

particular, det MX,2 ∈ H6,3,4(X). Leibniz’s formula for the determinant can be used to show that, in
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general, det MX,n ∈ Hn(n+1),n+1,2n(X).

From (C.64) and (C.61), we have that the constants an,j
X and bn,j

X satisfy

an,j
X ∈ H2j+2, min(n,2j)+2, τn(j) (X) (C.67)

bn,j
X ∈ H2j, min(n+1,2j), 2 min(n,j) (X), (C.68)

with Hℓ,m,k(X) as given in Definition C.1 and τn(j) ≤ 2 min(n, j + 1) is defined by

τn(j) =



2 if j = 0,

2j + 1 if 1 ≤ j ≤ n
2 ,

2j if n+1
2 ≤ j ≤ n,

2n if j > n.

(C.69)

C.2.3 Proof of Proposition 4.2

We proceed by induction on m. The case m = 1 follows because then by assumption on p we have that

p(k) = 0 for every positive integer k as can be seen by taking X ∼ N (k, 1), but the only polynomial

with infinitely many zeros is the zero polynomial. Now, assume that the statement of the proposition

holds for every polynomial in m− 1 variables, where m ≥ 2.

Fix a polynomial p in m variables, and assume that p|Cm = 0. Regarding p as a polynomial in one

of the variables with coefficients being polynomials in the remaining m− 1 variables, we may write

p(u1, · · · , um) = ∑
j∈[d]

pj(u1, · · · , um−1)u
j
m, (C.70)

for some polynomials p0, · · · , pd in m− 1 variables, where d is the total degree of p. We show that

p = 0 identically by showing that each pj vanishes on Cm−1 and using the induction hypothesis to

obtain pj = 0 identically.

Fix µµµ = (µ1, · · · , µm−1) ∈ Cm−1. Let µm be a variable, and set ℓ = ⌊m/2⌋. We have that ℓ =

(m − 1)/2 if m is odd, and ℓ = m/2 if m is even. Set H = (µi+j)(i,j)∈[ℓ]2 . If m is even, then

det H = αµm + β for some constants α, β ∈ R determined by µµµ, with α = det(µi+j)(i,j)∈[ℓ−1]2 > 0. In

the case m is even, we set t = −β/α, and in the case m is odd, we set t = 0. Then, H is positive

definite whenever µm > t.

For each integer k ≥ 1 and real ε > 0, Lemma 4.7 yields a random variable Xk,ε ∈ Rm satisfying

δk,ℓ(ε) := E[Xℓ
k,ε]− µℓ ∈ (−ε, ε) (C.71)
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for each ℓ ∈ {1, · · · , m− 1} and

δk,m(ε) := E[Xm
k,ε]− (t + k) ∈ (−ε, ε). (C.72)

Then, by assumption on p, for every ε > 0 and k ∈N≥1,

∑
j∈[d]

pj

(
µµµ + (δk,ℓ(ε))1≤ℓ≤m−1

)
(t + k + δk,m(ε))

j = 0. (C.73)

Taking the limit ε→ 0+, we deduce that

∑
j∈[d]

pj(µ1, · · · , µm−1)(t + k)j = 0. (C.74)

Considering the left-hand side in (C.74) as a univariate polynomial in k, and noting that the vanishing

in (C.74) holds at infinitely many values of k, we deduce that

pj(µ1, · · · , µm−1) = 0 (C.75)

for every j ∈ [d]. This holds for every (µ1, · · · , µm−1) ∈ Cm−1, i.e., the premise of the proposition

applies to each pj (namely, for every X ∈ Rm−1 we have pj(E[X], · · · , E[Xm−1]) = 0). By the

induction hypothesis, we obtain pj = 0, as polynomials, for every j ∈ [d]. Therefore, p = 0, and the

proof is complete.

C.3 Convergence of the PMMSE to the MMSE in Gaussian Chan-

nels (Theorem 4.3): Proofs of Section 4.3.2

We derive in Appendix C.3.1 the uniform convergence supt≥0 pmmsen(X, t) −mmse(X, t) ↘ 0

stated in equation (4.13). Lemma 4.8 regarding Freud weights is derived in Appendix C.3.2, and the

bound on the higher-order derivatives of the conditional expectation given in Lemma 4.9 is shown in

Appendix C.3.3.

C.3.1 Uniform Convergence of PMMSE to MMSE (4.13)

We start the proof by obtaining from Theorem 4.1 pointwise convergence. Let N ∼ N (0, 1) be

independent of X. The MGF of
√

tX + N exists (it is the product of the MGFs of
√

tX and N) and

this implies that
√

tX + N satisfies Carleman’s condition [Sch17, Sec. 4.2]. Hence, by Theorem 4.1,

318



we have limn→∞ pmmsen(X, t) = mmse(X, t) pointwise for each fixed t ≥ 0. Now, we show that the

convergence is in fact uniform in t.

For each n ∈N and t ∈ [0, ∞), write gn(t) := pmmsen(X, t)−mmse(X, t). We will show that

lim
n→∞

sup
t∈[0,∞)

gn(t) = 0. (C.76)

The limit pmmsen(X, t)↘ mmse(X, t) as n→ ∞ says that gn(t)↘ 0 as n→ ∞ for every fixed t ≥ 0.

In addition, the asymptotics given in Corollary 4.1 imply that for each fixed n ∈ N, gn(t) → 0 as

t→ ∞. Note that {gn}n∈N is a pointwise decreasing sequence of nonnegative functions. We finish

the proof via Cantor’s intersection theorem.

Fix ε > 0. For each n ∈N, let Cε,n = g−1
n ([ε, ∞)), where g−1

n denotes the set-theoretic inverse. As

{gn}n∈N is decreasing, Cε,1 ⊇ Cε,2 ⊇ · · · is decreasing too. As each gn is continuous, each Cε,n is

closed. Further, limt→∞ g1(t) = 0 implies that Cε,1 is bounded, hence each Cε,n is bounded. Thus,

each Cε,n is compact. But, the intersection
⋂

n∈N Cε,n is empty, for if t0 were in the intersection then

lim infn→∞ gn(t0) ≥ ε violating that limn→∞ gn(t0) = 0. Hence, by Cantor’s intersection theorem, it

must be that the Cε,n are eventually empty, so there is an m ∈ N such that supt∈[0,∞) gn(t) ≤ ε for

every n > m. This is precisely the uniform convergence in (C.76), and the proof is complete.

C.3.2 Proof of Lemma 4.8

Write Y = X + N and pY = e−Q. To see that ps
Y is a Freud weight, it suffices to show that pY is a

Freud weight, since it can be easily seen that the conditions in Definition 4.2 hold for ps
Y if they hold

for pY. First, we note that Q′(y) is equal to E[N | Y = y].

Lemma C.2. Fix a random variable X and let Y = X + N where N ∼ N (0, 1) is independent of X. Writing

pY = e−Q, we have that Q′(y) = E[N | Y = y].

Proof. We have that pY(y) = E[e−(y−X)2/2]/
√

2π. Differentiating this equation, we obtain that

p′Y(y) = E[(X− y)e−(y−X)2/2]/
√

2π, where the exchange of differentiation and integration is war-

ranted since t 7→ te−t2/2 is bounded. Now, Q = − log pY, so Q′ = −p′Y/pY, i.e.,

Q′(y) = y− E[Xe−(y−X)2/2]

E[e−(y−X)2/2]
= y−E [X | Y = y] . (C.77)

The proof is completed by substituting X = Y− N.

In view of Lemma C.2, that p is even and non-increasing over [0, ∞) ∩ supp(p) imply that Q
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satisfies conditions (1)–(4) of Definition 4.2. It remains to show that property (5) holds. To this end,

we show that if supp(p) ⊂ [−M, M] and λ = M + 2, then for every y > M + 4 we have that

1 <
M2 + 5M + 8

2(M + 2)
≤ Q′(λy)

Q′(y)
≤ M2 + 7M + 8

4
. (C.78)

First, since Q′(y) = y−E[X | Y = y] (see (C.77)), we have the bounds y−M ≤ Q′(y) ≤ y + M for

every y ∈ R. Therefore, y > M and λ > 1 imply that

λy−M
y + M

≤ Q′(λy)
Q′(y)

≤ λy + M
y−M

. (C.79)

Further, since y > M + 4 and λ = M + 2, we have

M2 + 5M + 8
2(M + 2)

< λ− M(M + 3)
y + M

=
λy−M
y + M

(C.80)

and
λy + M
y−M

= λ +
M(M + 3)

y−M
≤ M2 + 7M + 8

4
. (C.81)

The fact that 1 < M2+5M+8
2(M+2) follows since the discriminant of M2 + 3M + 4 is −7 < 0. Therefore, pY

is a Freud weight.

Next, we derive the bound on an(sQ) stated in (4.58). By definition of an, we have that an(sQ) =

an/s(Q). Thus, it suffices to show an(Q) ≤ (2M +
√

2)
√

n. By Lemma C.2,

Q′(y) = E[N | Y = y] = y−E[X | Y = y]. (C.82)

Therefore X ≤ M implies that, for any constant z ≥ 0, we have

∫ 1

0

ztQ′(zt)√
1− t2

dt =
π

4
z2 − z

∫ 1

0

t√
1− t2

E
[

Xe−(X−zt)2/2
]

E
[
e−(X−zt)2/2

] dt (C.83)

≥ π

4
z2 −Mz. (C.84)

We have πz2/4−Mz > n for z = (2M +
√

2)
√

n. Since y 7→ yQ′(y) is strictly increasing over (0, ∞)

(condition (3) of Definition 4.2), we conclude that an(Q) ≤ (2M +
√

2)
√

n. This completes the proof

of Lemma 4.8.
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C.3.3 Proof of Lemma 4.9

We use the formula of the conditional expectation derivative given in Proposition 4.3, with the

conditional cumulant being expanded in terms of conditional moments using Bell polynomials, then

apply Hölder’s inequality to each ensuing summand. We use the following notation. The set of all

finite-length tuples of non-negative integers is denoted by N∗. For every integer r ≥ 2, let Πr be the

set of unordered integer partitions r = r1 + · · ·+ rk of r into integers rj ≥ 2. We encode Πr via a list

of the multiplicities of the parts as

Πr := {(λ2, · · · , λℓ) ∈N∗ ; 2λ2 + · · ·+ ℓλℓ = r} . (C.85)

In (C.85), ℓ ≥ 2 is free, and trailing zeros are ignored (i.e., λℓ > 0). For a partition (λ2, · · · , λℓ) =

λλλ ∈ Πr having m = λ2 + · · ·+ λℓ parts, we denote

cλλλ :=
1
m

(
m

λ2, · · · , λℓ

)(
r

2, · · · , 2︸ ︷︷ ︸
λ2

; · · · ; ℓ, · · · , ℓ︸ ︷︷ ︸
λℓ

)
(C.86)

and eλλλ := (−1)m−1cλλλ. Set C′r := ∑λλλ∈Πr cλλλ. For each (y, k) ∈ R×N, denote f (y) := E[X | Y = y]

and

gk(y) := E
[
(X−E[X | Y])k | Y = y

]
. (C.87)

For ℓ ≥ 2 and (λ2, · · · , λℓ) = λλλ ∈ Nℓ−1, denote gλλλ := ∏ℓ
i=2 gλi

i , with the understanding that

g0
i = 1. Using Proposition 4.3, and expanding κr(X | Y = y) in terms of the conditional moments

E[Xk | Y = y], we obtain (see [AC21c, Proposition 1])

f (r−1) = ∑
λλλ∈Πr

eλλλgλλλ. (C.88)

Fix (λ2, · · · , λℓ) = λλλ ∈ Πr. By the generalization of Hölder’s inequality stating ∥ψ1 · · ·ψk∥1 ≤

∏k
i=1 ∥ψi∥k, we have that

∥∥∥gλλλ(Y)
∥∥∥2

2
=

∥∥∥∥∥∏
λi ̸=0

g2λi
i (Y)

∥∥∥∥∥
1

≤ ∏
λi ̸=0

∥∥∥g2λi
i (Y)

∥∥∥
s

(C.89)

where s is the number of nonzero entries in λλλ. By Jensen’s inequality for conditional expectation, for

each i such that λi ̸= 0, we have that∥∥∥g2λi
i (Y)

∥∥∥
s
≤ ∥X−E[X | Y]∥2iλi

2iλis
. (C.90)
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Now, r = ∑ℓ
i=2 iλi ≥ ∑s+1

i=2 i = (s+1)(s+2)
2 − 1, so we have that s2 + 3s− 2r ≤ 0, i.e., s ≤ qr. Further,

iλi ≤ r for each i. Hence, monotonicity of norms and inequalities (C.89) and (C.90) imply the uniform

(in λλλ) bound ∥∥∥gλλλ(Y)
∥∥∥

2
≤ ∥X−E[X | Y]∥r

2rqr
. (C.91)

Observe that ∥X −E[X | Y]∥k ≤ 2 min
(
(k!)1/(2k), ∥X∥k

)
(see [GWSV11]). Therefore, applying the

triangle inequality in (C.88) we obtain∥∥∥ f (r−1)(Y)
∥∥∥

2
≤ ∑

λλλ∈Πr

cλλλ

∥∥∥gλλλ(Y)
∥∥∥

2
(C.92)

≤ 2rC′r min
(

γr, ∥X∥r
2rqr

)
, (C.93)

where γr = (2rqr)!1/(4qr).

It only remains then to note that C′r = Cr. The integer cλλλ (as defined in (C.86)) can be easily

seen to be equal to the number of cyclically-invariant ordered set-partitions of an r-element set into

m = λ2 + · · ·+ λℓ subsets where, for each k ∈ {2, · · · , ℓ}, exactly λk parts have size k. Hence, the

integer C′r equals the total number of cyclically-invariant ordered set-partitions of an r-element set

into subsets of sizes at least 2, which is given by sequence A032181 at [OEI]. The formula for C′r

stated in [OEI] coincides with our definition of Cr in (4.60) in the statement of the lemma, from

which we obtain C′r = Cr. Finally, since the formula in [OEI] is stated without proof, we provide a

proof here for completeness. Using the notation of [BR19], we have that

C′r =
r

∑
k=1

(k− 1)!
{

r
k

}
≥2

(C.94)

where {r
k}≥2 denotes the number of partitions of an r-element set into k subsets each of which

contains at least 2 elements (note that there are (k− 1)! cyclically-invariant arrangements of k parts).

The exponential generating function of the sequence r 7→ {r
k}≥2 is (ex − 1− x)k/k!. Now, we may

write

(ex − 1− x)k = ∑
a+b≤k

(
k

a, b

)
(−1)k−axb ∑

t∈N

(ax)t

t!
. (C.95)

Therefore, the coefficient of xr in (ex − 1− x)k/k! is

1
r!

{
r
k

}
≥2

= ∑
a+b≤k

(−1)k−aar−b

a!b!(k− a− b)!(r− b)!
(C.96)

=
1
r!

k

∑
b=0

(
r
b

) k−b

∑
a=0

(−1)k−a ar−b

a!(k− a− b)!
(C.97)
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=
1
r!

k

∑
b=0

(
r
b

){
r− b
k− b

}
(−1)b, (C.98)

which when combined with (C.94) gives C′r = Cr in view of (4.60). This completes the proof of the

lemma.

Remark C.3. A closer analysis reveals that iλis in (C.90) cannot exceed βr := t2
r (tr + 1/2) where

tr := (
√

6r + 7− 1)/3. For r → ∞, we have rqr/βr ∼ 33/2/2 ≈ 2.6. The reduction when, e.g., r = 7,

is from rqr = 14 to βr = 10.

C.4 Generalizations to Arbitrary Bases and Multiple Dimensions

We extend our approximation results for the conditional expectation from the polynomial-basis

setting to arbitrary bases, and from conditioning on random variables to conditioning on arbitrary σ-

algebras. An extension to the multidimensional case is also presented, which straightforwardly yields

an approximation theorem for differential entropy of random vectors. Another byproduct of the

multidimensional generalization is the expression for mutual information between two continuous

random variables completely in terms of moments, as given in Theorem 4.5.

C.4.1 Arbitrary Bases and σ-Algebras

Up to here, our exposition dealt with the polynomial basis of L2(PY). However, our results can be

extended to a more general setup. Recall that we have defined

MY,n = E

[
Y (n)

(
Y (n)

)T
]

, (C.99)

and derived

E[X | Y] = lim
n→∞

E
[

XY (n)
]

M−1
Y,nY (n) (C.100)

in Theorem 4.1 under two requirements: Y satisfies Carleman’s condition, and |supp(Y)| = ∞.

Along similar lines, we derive a generalization where the set of polynomials of Y is replaced with

any linearly-independent subset of L2(Σ) having a dense span, where Σ ⊂ F is any σ-algebra, and

L2(Σ) denote the subset of L2(P) consisting of Σ-measurable random variables. Denseness replaces

Carleman’s condition, while linear independence replaces the infinite-support requirement.
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Theorem C.1. Fix a σ-algebra Σ ⊂ F and a set {ψk}k∈N = S ⊂ L2(Σ). For each n ∈N, define the random

vector ψψψ(n) = (ψ0, · · · , ψn)T and the matrix of inner products

MS ,n := E

[
ψψψ(n)

(
ψψψ(n)

)T
]

. (C.101)

If S is linearly independent and span(S) is dense in L2(Σ), then

E[X | Σ] = lim
n→∞

E
[

Xψψψ(n)
]T

M−1
S ,n ψψψ(n) (C.102)

in L2(Σ) for any random variable X ∈ L2(P).

For the proof of Theorem C.1, we will need the following formula for the closest element in

a finite-dimensional subspace of L2(P) to a random variable X ∈ L2(P), which will also be used

for the extension of our results to random vectors later in this appendix. The following formula is

simply an instantiation of the fact that, in a separable Hilbert space, the orthogonal projection onto a

closed subspace is the unique closest element.

Lemma C.3. For any fixed finite-dimensional subspace V ⊂ L2(P) having a basis {V0, V1, · · · , Vn}, denoting

V = (V0, V1, · · · , Vn)T , we have that for every X ∈ L2(P)

E [XV ]T E
[
VV T

]−1
V = argmin

V∈V
∥X−V∥2 . (C.103)

In view of Lemma C.3, we introduce the following notation.

Definition C.2. Fix a random variable X ∈ L2(P), a σ-algebra Σ ⊂ F , and a linearly-independent set

{θj}j∈N = Θ ⊂ L2(Σ). Write θθθ(n) = (θ0, · · · , θn)T for each n ∈N. We define the n-th approximation

of E[X | Σ] with respect to Θ by

En,Θ [X | Σ] := E
[

Xθθθ(n)
]

E

[
θθθ(n)

(
θθθ(n)

)T
]−1

θθθ(n). (C.104)

Note that En,Θ[X | Σ] belongs to span({θj}j∈[n]). Further, according to Lemma C.3, En,Θ[X | Σ] is

the unique closest element in span({θj}j∈[n]) to X,

En,Θ[X | Σ] = argmin
V ∈ span({θj}j∈[n])

∥X−V∥2 . (C.105)

If Y ∈ L2n(P), Θ = {Y j}j∈N, and Σ = σ(Y), then the estimate reduces to En,Θ[X | Σ] = En[X | Y].

The central claim in Theorem C.1 is that if span(Θ) is dense in L2(Σ) then we have the limit

E[X | Σ] = lim
n→∞

En,Θ[X | Σ]. (C.106)
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The proof of Theorem 4.1 can be adapted mutatis mutandis to derive the above limit, so we omit the

details.

C.4.2 The Multidimensional PMMSE

We extend our results on the PMMSE of random variables to random vectors. We begin with some

notation. The Hilbert space of q-integrable m-dimensional random vectors is denoted by Lq(Rm, P),

with norm also denoted by ∥ · ∥q. The subspace of Σ-measurable random vectors is denoted by

Lq(Rm, Σ). We keep the notations Lq(R, Σ) = Lq(Σ) and Lq(R, PY) = Lq(PY). By a generalization of

Hölder’s inequality, for any Y = (Y1, · · · , Ym)T ∈ Lβ(Rm, P), we also have that Yα1
1 · · ·Y

αm
m ∈ L1(P)

for any constants α1, · · · , αm ≥ 0 such that α1 + · · ·+ αm ≤ β.

We extend the notation Y (n) to random vectors as follows. For an m-dimensional random vector

Y = (Y1, · · · , Ym)T , we let Y (n,m) denote the random vector whose entries are monomials in the Yj of

total degree at most n, ordered first by total degree then reverse-lexicographically in the exponents.

For example, if m = 3 so Y = (Y1, Y2, Y3)
T , then for n = 2

Y (2,3) = (1, Y1, Y2, Y3, Y2
1 , Y1Y2, Y1Y3, Y2

2 , Y2Y3, Y2
3 )

T (C.107)

because we are taking the totally ordered set of exponents ( {v ∈ N3 | 1Tv ≤ 2} , < ) to have the

order2

(0, 0, 0) < (1, 0, 0) < (0, 1, 0) < (0, 0, 1) < (2, 0, 0)

< (1, 1, 0) < (1, 0, 1) < (0, 2, 0) < (0, 1, 1) < (0, 0, 2).

A straightforward stars-and-bars counting argument reveals that the length of Y (n,m) is (n+m
m ).

Let Pn,m denote the set of polynomials in m variables with real coefficients of total degree at

most n. For a fixed m-dimensional random vector Y , denote Pn,m(Y) := {p(Y) ; p ∈Pn,m}. Note

that Pn,1 = Pn. Also, the notation Y (n,1), while avoided, is disambiguated by interpreting it as Y (n),

i.e., Y (n,1) = (1, Y, · · · , Yn)T where the subscript on Y1 is dropped. We denote the product sets of

Pn,m(Y) by Pℓ
n,m(Y), and consider their elements as vectors rather than tuples. In other words, we

denote the set of length-ℓ vectors whose coordinates are multivariate polynomial expressions of an

2Note that this ordering is not the same as the degree reverse lexicographical order nor its reverse.
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m-dimensional random vector Y with total degree at most n by

Pℓ
n,m(Y) =

{
(p1(Y), · · · , pℓ(Y))T ; p1, · · · , pℓ ∈Pn,m

}
. (C.108)

The multivariate generalization of the PMMSE is defined as follows.

Definition C.3 (Multivariate Polynomial MMSE). Fix positive integer ℓ, m, and n. Fix an ℓ-

dimensional random vector X ∈ L2(Rℓ, P) and an m-dimensional random vector Y ∈ L2n(Rm, P),

and set k = (n+m
m ). We define the n-th order PMMSE for estimating X given Y by

pmmsen(X | Y) := min
C∈Rℓ×k

∥∥∥X − CY (n,m)
∥∥∥2

2
, (C.109)

and the n-th order PMMSE estimate of X given Y by

En[X | Y ] := CY (n,m) ∈Pℓ
n,m(Y) (C.110)

for any minimizing matrix C ∈ Rℓ×k in (C.109).

Remark C.4. For any minimizer C in (C.109), the ℓ-dimensional random vector CY (n,m) is the unique

orthogonal projection of X onto Pℓ
n,m(Y); in particular, En[X | Y ] is well-defined by (C.110).

Denote, for Y ∈ L2n(Rm, P),

MY ,n := E

[
Y (n,m)

(
Y (n,m)

)T
]

. (C.111)

For n ∈N and an ℓ-dimensional random vector (X1, · · · , Xℓ)
T = X ∈ L2(Rℓ, P), if MY ,n is invertible,

Lemma C.3 yields that

En[X | Y ] =


En[X1 | Y ]

...

En[Xℓ | Y ]

 (C.112)

=


E
[

X1Y (n,m)
]T

M−1
Y ,nY (n,m)

...

E
[

XℓY (n,m)
]T

M−1
Y ,nY (n,m)

 . (C.113)

We say that the Yj do not satisfy a polynomial relation if the monomials ∏m
j=1 Y

αj
j , for α1, · · · , αm ∈N,
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are linearly independent, i.e., if the mapping

φ :
⋃

n∈N

Pn,m →
⋃

n∈N

Pn,m(Y), φ(p) = p(Y) (C.114)

is an isomorphism of vector spaces.

Generalizing our results on random variables to random vectors can be done in view of the

following polynomial denseness result.

Theorem C.2 ([Pet82]). For any m-dimensional random vector Y = (Y1, · · · , Ym)T and q > 1, if we have the

denseness
⋃

n∈N Pn(Yj) = Lq(PYj) for each j ∈ {1, · · · , m}, then we have the denseness
⋃

n∈N Pn,m(Y) =

Lr(PY ) for every r ∈ [1, q).

Since ∥Z∥r
r = ∑j ∥Zj∥r

r, this inferred denseness in Theorem C.2 over Lr(PY ) may be extended to

denseness over Lr(Rm, PY ), i.e., we have the following immediate corollary.

Corollary C.1. Fix an integer m ≥ 1 and an m-dimensional random vector Y = (Y1, · · · , Ym)T . If each

of the random variables Y1, · · · , Ym satisfies Carleman’s condition, then the set of vectors of polynomials⋃
n∈N Pm

n,m(Y) is dense in Lq(Rm, PY ) for any q ≥ 1.

We deduce the following result on the convergence of the multivariate PMMSE to the MMSE.

Theorem C.3. Fix an m-dimensional random vector Y = (Y1, · · · , Ym)T and an ℓ-dimensional random

vector X ∈ L2(Rℓ, P). If each Yj satisfies Carleman’s condition, and if the Yj do not satisfy a polynomial

relation, then we have the L2(Rℓ, PY )-limit

E[X | Y ] = lim
n→∞

En[X | Y ]. (C.115)

Proof. Since the Yj do not satisfy a polynomial relation, the matrix MY ,n is invertible for each

n ∈ N. Further, the entries of Y (n,m) are linearly independent for each n. Then, by Lemma C.3,

equation (C.113) follows, i.e., the PMMSE estimate En[X | Y ] is the ℓ-dimensional random vector

whose k-th entry is E
[

XkY (n,m)
]T

M−1
Y ,nY (n,m). By Corollary C.1, since each Yj satisfies Carleman’s

condition, the set of vectors of polynomials
⋃

n∈N Pm
n,m(Y) is dense in L2(Rm, PY ). In particular,⋃

n∈N Pn,m(Y) is dense in L2(PY ). By Theorem C.1, we have the L2(PY ) limits

E[Xk | Y ] = lim
n→∞

E
[

XkY (n,m)
]T

M−1
Y ,nY (n,m) (C.116)

for each k ∈ {1, · · · , ℓ}. We conclude that En[X | Y ]→ E[X | Y ] in L2(Rℓ, PY ), as desired.
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The approach for showing the rationality of t 7→ pmmsen(X, t) for a random variable X ∈ L2n(P)

in Theorem 4.2 may be generalized to deduce rationality of t 7→ pmmsen(X, t) for an m-dimensional

random vector X ∈ L2n(Rm, P). Here, we are denoting pmmsen(X, t) := pmmsen(X |
√

tX + N),

where N ∼ N (0, Im) is independent of X. For brevity, we give a blueprint of how this generalization

of rationality can be obtained. First, Lemma 4.6 may be generalized to yield that det M√tX+N is a

polynomial in t of degree at most dn,m which is given by

dn,m := ∑
k∈[n]

k · |{(λ1, · · · , λm) ∈Nm ; λ1 + · · ·+ λm = k}| (C.117)

= ∑
k∈[n]

k
(

k + m− 1
m− 1

)
(C.118)

= ∑
k∈[n]

m
(

k + m− 1
m

)
= m

(
n + m
m + 1

)
. (C.119)

Further, the coefficient of tdn,m in det M√tX+N is det MX . Note that dn,1 = dn. Then, the PMMSE

expression in Theorem 4.2 may be generalized to give

pmmsen(X, t) =

(tr ΣX)det MN,n + · · ·+ (tr ΣN) (det MX,n) tdn,m−1

det MN,n + · · ·+ (det MX,n) tdn,m
.

(C.120)

To deduce (C.120), the multidimensional MMSE dimension result in Theorem 4.6 is used, as follows.

Note that tr ΣN = m for N ∼ N (0, Im). By Theorem 4.6, we have that mmse(X, t) ∼ m/t. It is also

true that lmmse(X, t) ∼ m/t. Therefore, pmmsen(X, t) ∼ m/t for every integer n ≥ 1. Note that

pmmsen(X, 0) = tr ΣX . Expression (C.120) follows via the same proof technique for Theorem 4.2.

With the definition of the multivariate PMMSE at hand, we show that the PMMSE estimate

satisfies a tower property similar to the conditional expectation.

Proposition C.1 (Tower Property). Fix n ∈N and three random variables X ∈ L2(P) and Y1, Y2 ∈ L2n(P).

Suppose that |supp(Y1)|, |supp(Y2)| > n. Then

En [En[X | Y1] | Y1, Y2] = En[X | Y1], (C.121)

and

En [En[X | Y1, Y2] | Y2] = En[X | Y2]. (C.122)

Proof. Set Y = (Y1, Y2)
T . Equation (C.121) is straightforward: since En[X | Y1] ∈Pn(Y1) ⊂Pn,2(Y),

the projection of En[X | Y1] onto Pn,2(Y) is En[X | Y1] again. Equation (C.122) also follows by an
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orthogonal projection argument. There is a unique representation X = p1,2 + p⊥1,2 for (p1,2, p⊥1,2) ∈

Pn,2(Y)×Pn,2(Y)⊥. There is also a unique representation p1,2 = q2 + q⊥2 for (q2, q⊥2 ) ∈Pn(Y2)×

Pn(Y2)
⊥. The projection of X onto Pn,2(Y) is p1,2, whose projection onto Pn(Y2) is q2, i.e.,

En [En[X | Y1, Y2] | Y2] = q2. (C.123)

Furthermore, we have the representation X = q2 + (q⊥2 + p⊥1,2), for which (q2, q⊥2 + p⊥1,2) ∈Pn(Y2)×

Pn(Y2)
⊥. Hence, the projection of X onto Pn(Y2) is q2 too, i.e.,

En[X | Y2] = q2. (C.124)

From (C.123) and (C.124) we get (C.122). Equation (C.122) can also be deduced from the formula of

W := E[X | Y ]. Denote Y (n)
2 = (1, Y2, · · · , Yn

2 )
T . We have that

W = E
[

XY (n,2)
]T

M−1
Y ,nY (n,2) (C.125)

and

En[W | Y2] = E
[
WY (n)

2

]T
M−1

Y2,nY (n)
2 . (C.126)

For k ∈ [n], let δ(k) ∈
[
(n+2

2 )− 1
]

be the index of the entry in Y (n,2) that equals Yk
2 . Then,

E
[
Yk

2 Y (n,2)
]
= MY ,neδ(k), (C.127)

where e0, · · · , e
(n+2

2 )−1 are the standard basis vectors of R(n+2
2 ). Therefore, plugging (C.125) into

(C.126), we obtain

En[W | Y2] = E
[

XY (n)
2

]T
M−1

Y2,nY (n)
2 , (C.128)

which is just En[X | Y2], as desired.

C.5 Information Measures in Terms of Moments: Proofs of Sec-

tion 4.4

C.5.1 Proof of Lemma 4.10

By finiteness of ΣX , we get that h(X) is well defined and less that ∞, but it could be−∞. First, the case

that det ΣX = 0 follows since both sides of (4.76) would then equal −∞, which can be seen as follows.

That h(X) = −∞ follows by a limiting argument starting from 0 ≤ Dkl (PX∥N (0, ΣX + εIm)),
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and inferring that h(X) ≤ 1
2 log ((2π)m det (ΣX + εIm)) +

1
2 rank(ΣX) for all ε > 0, then taking

ε→ 0+. That the right-hand side of (4.76) equals −∞ follows from mmse(X, t) ≤ lmmse(X, t) and

lmmse(X, t) ∼ rank(ΣX )
t . So, we may assume det ΣX ̸= 0.

In the same way that (4.74) is derived in [GSV05] (see Lemma 7 and Theorem 14 therein), one

may obtain

h(X) =
1
2

log
(
(2πe)m det ΣX

)
− 1

2
lim

γ→∞

[
log (det (γΣX + Im))−

∫ γ

0
mmse(X, t) dt

]
. (C.129)

Building on (C.129), we infer via the monotone convergence theorem that, with the eigenvalues of

ΣX denoted by λ1, · · · , λm,

h(X) =
1
2

log

(
(2πe)m

m

∏
i=1

λi

)
+

1
2

∫ ∞

0
mmse(X, t)−

m

∑
i=1

λi
1 + λit

dt. (C.130)

This equation yields the desired result h(X) = 1
2

∫ ∞
0 mmse(X, t)− m

2πe+t dt since log ((2πe)m ∏m
i=1 λi) =∫ ∞

0 ∑m
i=1

λi
1+λit

− m
2πe+t dt, completing the proof of the lemma.

C.5.2 Proof of Theorem 4.4

We derive the multidimensional version of Theorem 4.4 here. Fix an m-dimensional random vector V .

We may assume det ΣV ̸= 0, for otherwise the result follows immediately from hn(V) = h(V) = −∞

for all n. In view of monotonicity of pmmsen(V , t) in n, and since h1(V) is finite, it suffices by the

monotone convergence theorem and the equation

h(V) =
1
2

∫ ∞

0
mmse(V , t)− m

2πe + t
dt (C.131)

to show that pmmsen(V , t) → mmse(V , t) as n → ∞. Let N ∼ N (0, Im) be independent of V . A

simple application of the triangle inequality yields that it suffices to prove the convergence

En

[
V |
√

tV + N
]
→ E

[
V |
√

tV + N
]

. (C.132)

We deduce (C.132) from Theorem C.3, as follows.

Denote Z(t) :=
√

tV + N, and let Z(t)
j be the j-th entry of Z(t). Fix t ≥ 0. To apply Theorem C.3,

we only need to show that the Z(t)
j do not satisfy a nontrivial polynomial relation. We show

this by induction on m. The case m = 1 follows since Z(t)
1 is continuous. Assume that we have

shown that Z(t)
1 , · · · , Z(t)

m−1 do not satisfy a nontrivial polynomial relation, and that m ≥ 2. Suppose,
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for the sake of contradiction, that q is a polynomial in m variables such that q(Z(t)) = 0. Write

q(u1, · · · , um) = ∑k∈[d] qk(u1, · · · , um−1)uk
m for some polynomials qk in m − 1 variables such that

qd ̸= 0. Squaring q(Z(t)) = 0 and taking the conditional expectation with respect to Nm we obtain

0 = E

[
q
(

Z(t)
)2
∣∣∣∣Nm

]
= ∑

k∈[2d]
βk Nk

m (C.133)

for some real constants βk with the leading constant β2d := ∥qd(Z(t)
1 , · · · , Z(t)

m−1)∥2
2. Since Nm is

continuous, equation (C.133) cannot be a nontrivial polynomial relation for Nm. Thus, we must have

β2d = 0, i.e., qd(Z(t)
1 , · · · , Z(t)

m−1) = 0. By the induction hypothesis, qd = 0 identically, a contradiction.

Therefore, no nontrivial polynomial relation q(Z(t)) = 0 can hold, and the inductive proof is complete.

Finally, applying Theorem C.3, we deduce the limit in (C.132), thereby completing the proof of the

theorem.

C.5.3 Proof of Theorem 4.5

Consider the first case, namely, X is discrete with finite support and Y is continuous whose MGF

exists and for which h(Y) > −∞. The existence of the MGF of Y implies the existence of the MGFs

of Y(x) for each x ∈ supp(X). Since σ2
Y < ∞, we have that h(Y) is finite. In addition, for each

x ∈ supp(X), we infer from σ2
Y(x) < ∞ the existence of the differential entropy h(Y | X = x) and

that h(Y | X = x) < ∞. If minx∈supp(X) h(Y | X = x) > −∞, then I(X; Y) = h(Y)− h(Y | X); this

latter equation also holds if h(Y | X = x) = −∞ for some x ∈ supp(X). Therefore, Theorem 4.4

implies (4.23).

Now, consider the second case instead, so both X and Y are continuous random variables whose

MGFs exist and that satisfy h(X), h(Y) > −∞. We also assume that I(X; Y) < ∞ or else (X, Y)

is not continuous. From these assumptions, we conclude that both h(X) and h(Y) are finite and

h(X, Y) exists. Thus, we obtain I(X; Y) = h(X) + h(Y)− h(X, Y). By Theorem 4.4, we have that

hn(X) → h(X) and hn(Y) → h(Y) as n → ∞. Finally, note that the MGF of (X, Y) exists by the

assumption that the MGFs of X and Y exist. Thus, by Theorem 4.4, we have that hn(X, Y)→ h(X, Y)

too. The desired result (4.24) follows.
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C.6 Estimator Implementation

We show in this appendix how to implement the proposed estimators numerically. Note that

pmmsen(X, t) contains roughly n2 terms, and that numerically integrating this rational function can

be done efficiently using built-in quadrature methods. Precomputing the function t 7→ pmmse10(X, t)

takes a couple of minutes on a commercial laptop, whereas querying this rational function can be

done in constant time. However, we need to develop the expressions of our approximations of

differential entropy further to avoid possible issues that could arise from numerically computing

the improper integral over [0, ∞). To illustrate this issue, consider the expression for h2(X). For

convenience, define the function δX,n : (0, ∞)→ [0, ∞) by

δX,n(t) := det M√tX+N,n (C.134)

for a 2n-times integrable random variable X. Recall that δX,n is the denominator of pmmsen(X, · ).

Recall from (4.10) that a zero-mean unit-variance random variable X satisfies

pmmse2(X, t) =
2 + 4t + (X4 −X 2

3 − 1)t2

2 + 6t + (X4 + 3)t2 + (X4 −X 2
3 − 1)t3

. (C.135)

For example, when X ∼ Unif([−
√

3,
√

3]), so

(X1,X2,X3,X4) =

(
0, 1, 0,

9
5

)
, (C.136)

we obtain

pmmse2(X, t) =
5 + 10t + 2t2

5 + 15t + 12t2 + 2t3 . (C.137)

Now, consider the expression for h2(X) in (4.79), namely,

h2(X) =
1
2

∫ ∞

0

5 + 10t + 2t2

5 + 15t + 12t2 + 2t3 −
1

2πe + t
dt. (C.138)

The integral in (C.138) converges, but a numerical computation might not be able to capture this

convergence as the expression for the integrand is a difference of non-integrable functions that both

decay as 1/t. To avoid this possible issue, we subtract a 1/t term from both of these non-integrable

functions. More precisely, denoting differentiation with respect to t by a prime, we write

pmmse2(X, t) =
5 + 10t + 2t2 − 1

3 δ′X,2(t) +
1
3 δ′X,2(t)

δX,2(t)

=
2t

5 + 15t + 12t2 + 2t3 +
1
3

d
dt

log δX,2(t)
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and
1

2πe + t
=

d
dt

log(2πe + t). (C.139)

The integrand pmmse2(X, t)− 1/(2πe + t) now becomes

2t
5 + 15t + 12t2 + 2t3 +

d
dt

log
δX,2(t)1/3

2πe + t
. (C.140)

The advantage in having the integrand in this form is that the first term is well-behaved (it decays as

1/t2), and the second term’s integral can be given in closed form

∫ ∞

0

(
log

δX,2(t)1/3

2πe + t

)′
dt = log

(
2πe

(
2
5

)1/3
)

. (C.141)

Therefore, equation (C.138) becomes

h2(X) =
1
2

log
2πe

(5/2)1/3 +
∫ ∞

0

t
5 + 15t + 12t2 + 2t3 dt. (C.142)

We use equation (C.142) instead of (C.138) for numerical computation. Note that this resolves the

same numerical instability issue when estimating from data: if S = {Xj}m
j=1 is a multiset of i.i.d.

samples distributed according to PX , and if U ∼ Unif(S), we compute the estimate ĥ2(S) = h2(U)

of h2(X) via an expression analogous to that in (C.142) where X is replaced with U.

The procedure of obtaining expression (C.142) from (C.138) can be carried out for a general X and

n such that E[X2n] < ∞ and |supp(X)| > n, as follows. Let θX,n : [0, ∞)→ [0, ∞) be the polynomial

that is the numerator of pmmsen(X, t), i.e., θX,n(t) := δX,n(t) · pmmsen(X, t). Thus, we have that

pmmsen(X, t) =
θX,n(t)
δX,n(t)

. (C.143)

We define the function ρX,n : [0, ∞)→ R by

ρX,n(t) :=
θX,n(t)− d−1

n δ′X,n(t)
2δX,n(t)

, (C.144)

where dn = (n+1
2 ). By the analysis of the coefficients in pmmsen(X, t) proved in Theorem 4.2, we

have that ρX,n(0) = 0 and

ρX,n(t) = O
(

t−2
)

(C.145)

as t→ ∞. In particular, ρX,n is integrable over [0, ∞). The following formula for differential entropy

directly follows from the definition of hn in (4.79).
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Lemma C.4. For any random variable X satisfying E[X2n] < ∞ and |supp(X)| > n, we have the formula

hn(X) =
1
2

log

(
2πe

(
det MX,n

det MN,n

)1/dn
)
+
∫ ∞

0
ρX,n(t) dt, (C.146)

where dn = (n+1
2 ), N ∼ N (0, 1), and ρX,n is as defined in (C.144).

A similar conclusion holds for mutual information.

Lemma C.5. Fix a discrete random variable X with finite support, and a 2n-times integrable continuous

random variable Y. We have that

In(X; Y) =
1

n(n + 1)
log

det MY,n

∏x∈supp(X)

(
det MY(x),n

)PX(x)
+
∫ ∞

0
ρY,n(t)−EX

[
ρY(X),n(t)

]
dt, (C.147)

where for each x ∈ supp(X) we denote by Y(x) the random variable Y conditioned on {X = x}.

Note that in Lemmas C.4 and C.5, the determinants det MA,n and the rational functions ρn(A; t),

for A ∈ {X, Y} or A ∈ {Y(x) ; x ∈ supp(X)}, are completely determined by the first 2n moments

of A. To obtain the estimates ĥn and În given samples, the moments of A are replaced with their

respective sample moments in formulas (C.146) and (C.147).

C.7 Proofs of Subsection 4.5.1: Consistency

C.7.1 Proof of Theorem 4.9: Consistency of the Differential Entropy Estimator

We use the formula for hn given in Lemma C.4,

hn(X) =
1
2

log

(
2πe

(
det MX,n

det MN,n

)1/dn
)
+
∫ ∞

0
ρX,n(t) dt, (C.148)

where dn = (n+1
2 ) and N ∼ N (0, 1). We may assume that N is independent of X and the Xj. For each

m ∈N, let Sm := {Xj}j∈[m], and consider the sequence {Um ∼ Unif(Sm)}m∈N. For each m ∈N, let

Em be the event that X0, · · · , Xm are distinct, and let E be the event that the Xj, for j ∈ N, are all

distinct. Whenever m ≥ n and Em occurs, we have by Definition 4.4 of ĥn and formula (C.148) for hn

the following estimate

ĥn (Sm) =
1
2

log

(
2πe

(
det MUm ,n

det MN,n

)1/dn
)
+
∫ ∞

0
ρUm ,n(t) dt. (C.149)
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Since X is continuous, we have that P(Em) = 1 for every m ∈ N. Further, E0 ⊃ E1 ⊃ · · · and

E =
⋂

m∈N Em, hence P(E) = 1. Therefore, for the purpose of proving the almost-sure limit

ĥn (Sm)→ hn(X), we may assume that E occurs. We first treat convergence of the integral part. We

show that the integral part is a continuous function of the moments, then the continuous mapping

theorem yields that ∫ ∞

0
ρUm ,n(t) dt→

∫ ∞

0
ρX,n(t) dt (C.150)

almost surely as m→ ∞ because sample moments converge almost surely to the moments. A similar

method is then applied to the convergence of the log det MX,n part.

We fix n ∈ N≥1, and assume m ≥ n throughout the proof. We use the following notation. The

2n-dimensional random vector µµµ(m) consists of the first 2n moments of Um

µµµ(m) :=

(
∑m

j=0 Xj

m + 1
, · · · ,

∑m
j=0 X2n

j

m + 1

)T

. (C.151)

Let µ
(m)
k be the k-th coordinate of µµµ(m), so µµµ(m) =

(
µ
(m)
1 , · · · , µ

(m)
2n

)T
. We write Xk := E

[
Xk
]

for

k ∈N, and consider the constant vector

XXX := (Xk)1≤k≤2n . (C.152)

By the strong law of large numbers, we have the almost-sure convergence µ
(m)
k → Xk for each 1 ≤

k ≤ 2n. Then, µµµ(m) →XXX almost surely as m→ ∞. We show next that the function XXX 7→
∫ ∞

0 ρX,n(t) dt

is continuous.

By definition of ρX,n (see (C.144)), there are polynomials A1, · · · , Adn−2 and B1, · · · , Bdn in 2n

variables such that

ρX,n(t) =
∑dn−2

j=1 Aj(XXX ) tj

cn + ∑dn
j=1 Bj(XXX ) tj

(C.153)

where cn := ∏n
k=1 k! (we are subsuming the 1/2 factor in (C.144) in the numerator, so we have the

equality δX,n(t) = cn + ∑dn
j=1 Bj(XXX )tj). Being polynomials, each of the Aj and the Bℓ is continuous

over R2n. Then, by the continuous mapping theorem, we have the almost-sure convergences

Aj

(
µ(m)

)
→ Aj(XXX ) and Bℓ

(
µ(m)

)
→ Bℓ(XXX ) (C.154)

as m→ ∞ for each 1 ≤ j ≤ dn − 2 and 1 ≤ ℓ ≤ dn. Denote

A(XXX ) :=
(

Aj(XXX )
)

1≤j≤dn−2 , (C.155)
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B(XXX ) :=
(

Bj(XXX )
)

1≤j≤dn
. (C.156)

We show next that the there is an open set O ⊂ Rdn containing the point B(XXX ) such that the mapping

f : Rdn−2 ×O → R defined by

f (p1, · · · , pdn−2, q1, · · · , qdn) :=
∫ ∞

0

∑dn−2
j=1 pjtj

cn + ∑dn
j=1 qjtj

dt (C.157)

is continuous at the point (A(XXX ), B(XXX )). To this end, we shall show first that the mapping in (C.157)

is well-defined on an open neighborhood of (A(XXX ), B(XXX )). In other words, the denominator of the

integrand t 7→ cn + ∑dn
j=1 qjtj cannot have a root t ∈ [0, ∞) for any q ∈ O, and the rational function

integrand has to be integrable. For integrability, we will restrict the set O to contain only points

having qdn > 0, so showing that the integrand’s denominator is strictly positive over t ∈ [0, ∞) will

be enough to deduce integrability in (C.157).

We consider the subset G ⊂ Rdn defined by

G :=

{
g ∈ Rdn ; gdn > 0,

dn

∑
ℓ=1

gjtj > −cn for all t ≥ 0

}
(C.158)

where in this definition and the subsequent argument we set g = (g1, · · · , gdn)
T . Note that B(XXX ) ∈ G.

Indeed, since X is continuous, Bdn(XXX ) = det MX,n > 0; similarly, for every t ∈ [0, ∞), continuity

of
√

tX + N implies that det M√tX+N > 0 (recall that cn + ∑dn
j=1 Bj(XXX )tj = det M√tX+N). We show

that G is an open set. Fix g ∈ G and ε1 ∈ (0, gdn) . We have that the polynomial ∑dn
j=1(gj − ε1)tj is

eventually increasing and approaches infinity as t→ ∞. Let t0 > 1 be such that for every t > t0 we

have
dn

∑
ℓ=1

(gj − ε1)tj > −cn. (C.159)

Being continuous, the polynomial ∑dn
j=1 gjtj attains its minimum over the compact set [0, t0]. Let s

denote this minimum, and note that s > −cn. Let ε ∈ (0, 1) be defined by

ε :=
1
2

min

(
ε1,

(s + cn)(t0 − 1)

t0(t
dn
0 − 1)

)
. (C.160)

As ε < ε1, inequality (C.159) yields that for every t > t0

dn

∑
j=1

(gj − ε)tj > −cn. (C.161)
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In addition, for any t ∈ [0, t0],

dn

∑
j=1

(gj − ε)tj =
dn

∑
j=1

gjtj − ε
dn

∑
j=1

tj ≥ s− ε
dn

∑
j=1

tj
0

> s− (s + cn)(t0 − 1)

t0(t
dn
0 − 1)

dn

∑
j=1

tj
0

= s− (s + cn) = −cn. (C.162)

Thus, combining (C.161) and (C.162) we obtain

dn

∑
j=1

(gj − ε)tj > −cn (C.163)

for every t ∈ [0, ∞). Hence, for any (δj)1≤j≤dn =: δ ∈ Rdn such that ∥δ∥2 < ε, we have that for all

t ∈ [0, ∞)
dn

∑
j=1

(gj − δj)tj ≥
dn

∑
j=1

(gj − ∥δ∥2)tj ≥
dn

∑
j=1

(gj − ε)tj > −cn. (C.164)

In other words, the open ball {q ∈ Rdn ; ∥q− g∥ < ε} lies within G. This completes the proof that G

is open. Then, the function f given by (C.157) is well-defined on the open set Rdn−2 × G. We will

replace G with an open box O ⊂ G to simplify the notation for the proof of continuity of f .

By openness of G, there is an η1 ∈ (0, Bdn(XXX )) such that the open box

O1 :=
dn

∏
j=1

(
Bj(XXX )− η1, Bj(XXX ) + η1

)
⊂ G (C.165)

contains B(XXX ). Since O1 ⊂ G, we have by the definition of G in (C.158) that for any g ∈ O1 the lower

bound

cn +
dn

∑
ℓ=1

gℓtℓ > 0 (C.166)

holds for every t ≥ 0. In particular, with η := η1/2, the set

O :=
dn

∏
j=1

(
Bj(XXX )− η, Bj(XXX ) + η

)
⊂ O1 ⊂ G (C.167)

is an open set containing B(XXX ), and the point (Bj(XXX )− η)1≤j≤2n lies inside G. Then, the function

f : Rdn−2 ×O → R given by (C.157) is well-defined, and for any g ∈ O we have the lower bound

(over t ∈ [0, ∞))

cn +
dn

∑
ℓ=1

gℓtℓ ≥ cn +
dn

∑
ℓ=1

(Bℓ(XXX )− η)tℓ > 0. (C.168)

From (C.168), Lebesgue’s dominated convergence shows continuity of f at (A(XXX ), B(XXX )), as follows.
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Let w := (u, v) ∈ Rdn−2×O be such that ∥w∥2 < η. The integrand in f at (A(XXX ), B(XXX ))− (u, v)

may be bounded as ∣∣∣∣∣∣ ∑dn−2
j=1 (Aj(XXX )− uj)tj

cn + ∑dn
ℓ=1(Bℓ(XXX )− vℓ)tℓ

∣∣∣∣∣∣ =
∣∣∣∑dn−2

j=1 (Aj(XXX )− uj)tj
∣∣∣

cn + ∑dn
ℓ=1(Bℓ(XXX )− vℓ)tℓ

(C.169)

≤
∑dn−2

j=1 (|Aj(XXX )|+ η)tj

cn + ∑dn
ℓ=1(Bℓ(XXX )− η)tℓ

. (C.170)

The bound in (C.170) is uniform in w, and the upper bound is integrable over [0, ∞) as the denomi-

nator’s degree exceeds that of the numerator by at least 2 and the denominator is strictly positive

by (C.168). Hence, by Lebesgue’s dominated convergence

lim
∥w∥→0

f ((A(XXX ), B(XXX ))−w) = f (A(XXX ), B(XXX )) , (C.171)

i.e., f is continuous at (A(XXX ), B(XXX )), as desired. Denote

A(m) :=
(

Aj(µ
(m))

)
1≤j≤dn−2

, (C.172)

B(m) :=
(

Bℓ(µ
(m))

)
1≤ℓ≤dn

. (C.173)

We have the formulas

f (A(m), B(m)) =
∫ ∞

0
ρUm ,n(t) dt (C.174)

and

f (A(XXX ), B(XXX )) =
∫ ∞

0
ρX,n(t) dt. (C.175)

Since (A(m), B(m))→ (A(XXX ), B(XXX )) almost surely, continuity of f at (A(XXX ), B(XXX )) implies by the

continuous mapping theorem that

f (A(m), B(m))→ f (A(ν), B(ν)) (C.176)

almost surely as m→ ∞, i.e., (C.150) holds.

Now, for the convergence of the logarithmic part, recall that we have the almost sure convergence

det MUm ,n = Bdn(µ
(m))→ Bdn(XXX ) = det MX,n (C.177)

as m→ ∞. As the mapping R>0 → R defined by q 7→ log q is continuous, the continuous mapping

theorem yields that

log det MUm ,n → log det MX,n (C.178)
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almost surely as m→ ∞. Combining (C.176) and (C.178), we obtain that

ĥn (Sm)→ hn(X) (C.179)

almost surely as m→ ∞. Finally, (4.95) follows from (C.179) by Theorem 4.4.

C.7.2 Proof of Corollary 4.4: Consistency of the Mutual Information Estimator

Denote Sm = {(Xj, Yj)}j∈[m], and consider the empirical measure

P̂m(x) := ∑
j∈[m]

δx(Xj)

m + 1
. (C.180)

Let Dm be the event that for each x ∈ supp(X) there is a subset of indices Jx ⊂ [m] of size at least

n + 1 such that: i) Xj = x for each j ∈ Jx, and ii) the Yj, for j ∈ Jx, are distinct. If Dm occurs, then we

may write

În(Sm) = ĥn(Am)− ∑
x∈supp(X)

P̂m(x) ĥn(Bm,x), (C.181)

where Am := {Yj}j∈[m] and Bm,x := {Yj ; j ∈ [m], Xj = x}. By the assumption of continuity of Y, it

holds with probability 1 that the Yj, for j ∈N, are all distinct. In addition, we have that PX(x) > 0

for each x ∈ supp(X). Therefore, P(Dm)→ 1 as m→ ∞. Note that D0 ⊂ D1 ⊂ · · · .

Let C be the event that limm→∞ ĥn(Am) = hn(Y) and, for each x ∈ supp(X), limm→∞ ĥn(Bm,x) =

hn(Y(x)). By Theorem 4.9 and finiteness of supp(X), for each integer m′ ≥ (n + 1)|supp(X)|, we

have that P(C | Dm′) = 1. Let F be the event that the empirical measure P̂m converges to PX , i.e., that

for each x ∈ supp(X) the limit P̂m(x)→ PX(x) holds as m→ ∞. By the strong law of large numbers,

P(F) = 1. Therefore,

P
(

lim
m→∞

În(Sm) = In(X; Y)
)
≥ P(C∩ F∩Dm′)

≥ P(F) + P(C∩Dm′)− 1

= P(Dm′). (C.182)

Taking m′ → ∞, we deduce that În(Sm)→ In(X; Y) almost surely.

339



C.8 Proofs of Subsection 4.5.2: Sample Complexity

C.8.1 Proof of Proposition 4.4: Differential Entropy

Suppose supp(X) ⊂ [p, q] ⊂ (0, ∞), and write S = {Xj}m
j=1; note that we may assume, without loss

of generality, that X is strictly positive because hn is shift-invariant. We use the same notation in

Appendix C.7. In particular, Xk = E[Xk], and XXX = (X1, · · · ,X2n)
T . Let U ∼ Unif(S). Let Em be the

event that X1, · · · , Xm are distinct. From (C.148)–(C.149), if m > n and Em holds, then we have that

ĥn(S)− hn(X) =
1

2dn
log

det MU,n

det MX,n
+
∫ ∞

0
ρU,n(t) − ρX,n(t) dt. (C.183)

By the assumption of continuity of X, we have that P(Em) = 1 for every m. Therefore, for the purpose

of proving a sample complexity bound, we may assume that m > n and that Em occurs.

We will consider the determinant part and the integral part in (C.183) separately, but the proof

technique will be the same. Let Aj and Bℓ be the polynomials as defined by (C.153) in Appendix C.7,

so

ρX,n(t) =
∑dn−2

j=1 Aj(XXX ) tj

cn + ∑dn
j=1 Bj(XXX ) tj

(C.184)

where cn := ∏n
k=1 j!. We split each of the polynomials Aj and Bℓ into a positive part and a negative

part. More precisely, we collect the terms in Aj that have positive coefficients into a polynomial

A(+)
j , and the terms in Aj with negative coefficients into a polynomial −A(−)

j (so A(−)
j has positive

coefficients, and Aj = A(+)
j − A(−)

j ). Define B(+)
ℓ and B(−)

ℓ from Bℓ similarly. By positivity of X, each

moment Xk is (strictly) positive. Then, we may write

ρX,n(t) =
fX(t)− gX(t)
uX(t)− vX(t)

(C.185)

with the polynomials in t

fX(t) :=
dn−2

∑
j=1

A(+)
j (XXX )tj (C.186)

gX(t) :=
dn−2

∑
j=1

A(−)
j (XXX )tj (C.187)

uX(t) := cn +
dn

∑
ℓ=1

B(+)
ℓ (XXX )tℓ (C.188)

vX(t) :=
dn

∑
ℓ=1

B(−)
ℓ (XXX )tℓ, (C.189)
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having all non-negative coefficients. We note that we have suppressed the dependence on n in

the notation used for these polynomials for readability. For q ∈ { f , g, u, v}, let qU be the random

variable whose value is what is obtained via qX when the moments of X are replaced with the

sample moments obtained from the samples S , e.g.,

fU(t) :=
dn−2

∑
j=1

A(+)
j

(
∑m

i=1 Xi

m
, · · · ,

∑m
i=1 X2n

i
m

)
tj. (C.190)

Note that uU(t)− vU(t) = det M√tU+N,n > 0, where N ∼ N (0, 1) is independent of X, X1, · · · , Xm.

Then the function

ρU,n(t) =
fU(t)− gU(t)
uU(t)− vU(t)

(C.191)

is well-defined over t ∈ [0, ∞). By the homogeneity properties proved in Theorem 4.2, we know that

the total degree of Aj is at most 2j + 2, and the total degree of Bℓ is at most 2ℓ. Therefore, for any

η ∈ (0, 1) and ξξξ ∈ R2n
≥0, we have the inequalities

(1− η)2j+2 A(±)
j (ξξξ) ≤ A(±)

j ((1− η)ξξξ) (C.192)

A(±)
j ((1 + η)ξξξ) ≤ (1 + η)2j+2 A(±)

j (ξξξ) (C.193)

(1− η)2ℓB(±)
ℓ (ξξξ) ≤ B(±)

ℓ ((1− η)ξξξ) (C.194)

B(±)
ℓ ((1 + η)ξξξ) ≤ (1 + η)2ℓB(±)

ℓ (ξξξ) (C.195)

for every 1 ≤ j ≤ dn − 2 and 1 ≤ ℓ ≤ dn.

For each η ∈ (0, 1), we denote the event

An,η(S) :=

{
1− η ≤ ∑m

i=1 Xk
i

mXk
≤ 1 + η for all k ∈ [2n]

}
, (C.196)

Hoeffding’s inequality yields that, for any z > 0 and 1 ≤ k ≤ 2n,

P

(∣∣∣∣∣Xk −
1
m

m

∑
i=1

Xk
i

∣∣∣∣∣ ≥ z

)
≤ 2e−2mz2/(qk−pk)

2

. (C.197)

Setting z = ηXk ≥ ηpk > 0 for η ∈ (0, 1) yields that

P

(
(1− η)Xk <

1
m

m

∑
i=1

Xk
i < (1 + η)Xk

)
≥ 1− 2e−2mη2/((q/p)k−1)

2

. (C.198)

Therefore, the union bound yields that

P
(
An,η(S)

)
≥ 1− 4ne−2mη2/((q/p)2n−1)

2
. (C.199)
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If An,η(S) occurs, we show a bound on the estimation error that is linear in η

ĥn(S)− hn(X) = OX,n(η), (C.200)

independent of the number of samples m, for all small enough η. Then, we choose η to be linear in

the error ε to conclude the proof.

We may bound ρU,n(t) (see (C.191)) via the bounds in (C.192)–(C.195) under the assumption

that An,η(S) occurs. If (1− η)Xk ≤ 1
m ∑m

i=1 Xm
i ≤ (1 + η)Xk holds for every 1 ≤ k ≤ 2n, then

by (C.192)–(C.195) we have that for every t ≥ 0 and η ∈ (0, 1)

(1− η)2 fX((1− η)2t)− (1 + η)2gX((1 + η)2t)
uX((1 + η)2t)− vX((1− η)2t)

≤ fU(t)− gU(t)
uU(t)− vU(t)

= ρU,n(t). (C.201)

For an analogous upper bound, we first verify the positivity

uX((1− η)2t)− vX((1 + η)2t) > 0 (C.202)

for every small enough η. Let

µX := sup
t∈[0,∞)

vX(t)
uX(t)

. (C.203)

We show that µX < 1. We have the limit

ξX := lim
t→∞

vX(t)
uX(t)

=
B(−)

dn
(XXX )

B(+)
dn

(XXX )
. (C.204)

Recall that B(+)
dn

(XXX ) − B(−)
dn

(XXX ) = Bdn(XXX ) = det MX,n > 0 and both B(+)
dn

(XXX ) and B(−)
dn

(XXX ) are

non-negative, hence B(+)
dn

(XXX ) > 0. Then, ξX < 1. Thus, there is a t0 ≥ 0 such that vX(t)/uX(t) <

(1 + ξX)/2 < 1 whenever t > t0. Further, by the extreme value theorem, there is a t1 ∈ [0, t0]

such that vX(t)/uX(t) ≤ vX(t1)/uX(t1) < 1 for every t ∈ [0, t0]. Therefore, µX ≤ max((1 +

ξX)/2, vX(t1)/uX(t1)) < 1, as desired. Note that if µX = 0 then vX ≡ 0 identically, in which

case (C.202) trivially holds by positivity of uX . So, for the purpose of showing (C.202), it suffices to

consider the case µX ∈ (0, 1). Denote

ν :=
(

1 + η

1− η

)2
. (C.205)

Now, since vX is a polynomial of degree at most dn, we have that vX(ατ) ≤ αdn vX(τ) for every α ≥ 1

and τ ≥ 0. Therefore, for every 1 ≤ ν < µ−1/dn
X and t ≥ 0, we have that

vX((1 + η)2t)
uX((1− η)2t)

≤
(

1 + η

1− η

)2dn

· vX((1− η)2t)
uX((1− η)2t)

(C.206)
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≤ νdn µX < 1, (C.207)

i.e., inequality (C.202) holds. Therefore, for every 1 ≤ ν < µ−1/dn
X (if µX = 0, we allow 1 ≤ ν < ∞),

inequalities (C.192)–(C.195) imply the bound

ρU,n(t) =
fU(t)− gU(t)
uU(t)− vU(t)

(C.208)

≤ (1 + η)2 fX((1 + η)2t)− (1− η)2gX((1− η)2t)
uX((1− η)2t)− vX((1 + η)2t)

. (C.209)

Combining (C.201) and (C.209), then integrating with respect to t over [0, ∞) and performing a

change of variables from t to (1− η)2t, we obtain the bounds

∫ ∞

0

fX(t)− νgX(νt)
uX(νt)− vX(t)

dt ≤
∫ ∞

0
ρU,n(t) dt (C.210)

≤
∫ ∞

0

ν fX(νt)− gX(t)
uX(t)− vX(νt)

dt. (C.211)

Next, we further develop these bounds. For any s ∈ (0, 1), denote

νX,n,s :=
(

1− sµX
1− s

)1/dn

. (C.212)

Consider the functions

φX(t; ν) :=
uX(t)− vX(t)

uX(t)− vX(νt)
, (C.213)

ψX(t; ν) :=
uX(t)− vX(t)

uX(νt)− vX(t)
. (C.214)

We show in Appendix C.8.2 that, for any constants s ∈ (0, (1− µX)/(1 + µX)) and 1 ≤ ν ≤ νX,n,s,

the uniform bounds

1− s ≤ ψX(t; ν) ≤ 1 ≤ φX(t; ν) ≤ 1 + s (C.215)

hold over t ∈ [0, ∞). Fix s ∈ (0, (1− µX)/(1 + µX)) and 1 ≤ ν ≤ νX,n,s.

Now, the integrand in the upper bound in (C.211) can be rewritten as

ν fX(νt)− gX(t)
uX(t)− vX(νt)

= φX(t; ν)

(
fX(t)− gX(t)
uX(t)− vX(t)

+
ν fX(νt)− fX(t)
uX(t)− vX(t)

)
. (C.216)

The integrand in the lower bound in (C.210) can be rewritten as

fX(t)− νgX(νt)
uX(νt)− vX(t)

= ψX(t; ν)

(
fX(t)− gX(t)
uX(t)− vX(t)

+
gX(t)− νgX(νt)
uX(t)− vX(t)

)
. (C.217)

343



By the bounds in (C.215), we have that for every t ≥ 0

0 ≤ φX(t; ν)− 1 ≤ s. (C.218)

Hence, by non-negativity of fX and gX , we deduce

(φX(t; ν)− 1) · fX(t)− gX(t)
uX(t)− vX(t)

≤ s · fX(t)
uX(t)− vX(t)

, (C.219)

i.e., the inequality

φX(t; ν)
fX(t)− gX(t)
uX(t)− vX(t)

≤ fX(t)− gX(t)
uX(t)− vX(t)

+ s
fX(t)

uX(t)− vX(t)
(C.220)

hold of all t ≥ 0. In addition, since fX(νt) ≤ νdn−2 fX(t) over t ∈ [0, ∞), inequality (C.218) implies

that

φX(t; ν) · ν fX(νt)− fX(t)
uX(t)− vX(t)

≤ (1 + s)(νdn−1 − 1) fX(t)
uX(t)− vX(t)

. (C.221)

Therefore, applying inequalities (C.220) and (C.221) in formula (C.216), we deduce in view of the

upper bound in (C.211) the inequality

∫ ∞

0
ρU,n(t)− ρX,n(t) dt ≤

(
(1 + s)νdn−1 − 1

) ∫ ∞

0

fX(t)
uX(t)− vX(t)

dt. (C.222)

Similarly, we derive a lower bound on (C.217). By (C.215), we have that for every t ≥ 0

s ≥ 1− ψX(t; ν) ≥ 0. (C.223)

Hence, by non-negativity of fX and gX ,

s · fX(t)
uX(t)− vX(t)

≥ (1− ψX(t; ν))
fX(t)− gX(t)
uX(t)− vX(t)

, (C.224)

i.e., the inequality

ψX(t; ν)
fX(t)− gX(t)
uX(t)− vX(t)

≥ fX(t)− gX(t)
uX(t)− vX(t)

− s
fX(t)

uX(t)− vX(t)
(C.225)

holds for all t ≥ 0. In addition, from ψX(t; ν) ≤ 1 ≤ ν and gX(νt) ≤ νdn−2gX(t) for t ≥ 0, we deduce

ψX(t; ν) · gX(t)− νgX(νt)
uX(t)− vX(t)

≥ ψX(t; ν) · (1− νdn−1)gX(t)
uX(t)− vX(t)

≥
(

1− νdn−1
) gX(t)

uX(t)− vX(t)
. (C.226)

Therefore, applying inequalities (C.225) and (C.226) in formula (C.217), the lower bound in (C.210)
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yields the bound

∫ ∞

0
ρU,n(t)− ρX,n(t) dt ≥ −s

∫ ∞

0

fX(t)
uX(t)− vX(t)

dt−
(

νdn−1 − 1
) ∫ ∞

0

gX(t)
uX(t)− vX(t)

dt. (C.227)

In particular, (C.227) implies that

∫ ∞

0
ρU,n(t)− ρX,n(t) dt ≥ −

(
νdn−1 − (1− s)

) ∫ ∞

0

fX(t) + gX(t)
uX(t)− vX(t)

dt. (C.228)

Now, note that (1 + s)νdn−1 − 1 ≥ νdn−1 − (1− s). Therefore, combining the upper bound in (C.222)

and the lower bound in (C.228), we deduce that∣∣∣∣∫ ∞

0
ρU,n(t)− ρX,n(t) dt

∣∣∣∣ ≤ ((1 + s)νdn−1 − 1
) ∫ ∞

0

fX(t) + gX(t)
uX(t)− vX(t)

dt. (C.229)

The upper bound in (C.229) may be made as small as needed by choosing a small s then choosing a

small ν.

The second part of the proof, given in Appendix C.8.3, derives the following error bound for

estimating log det MX,n from samples. If B(−)
dn

(XXX ) > 0, we denote

τX,n :=

B(+)
dn

(XXX )/B(−)
dn

(XXX ) + 1

2

1/(n+1)

∈ (1, ∞) (C.230)

and

ηX,n := min
(

1
2

,
τX,n − 1
τX,n + 1

)
∈ (0, 1/2]. (C.231)

If B(−)
dn

(XXX ) = 0, then we set τX,n = ∞ and ηX,n = 1/2. We show that for all η ∈ (0, ηX,n), if An,η(S)

holds, then we have the bound∣∣∣∣ 1
2dn

log
det MU,n

det MX,n

∣∣∣∣ ≤ 6η

n
·

B(+)
dn

(XXX ) + B(−)
dn

(XXX )

B(+)
dn

(XXX )− B(−)
dn

(XXX )
. (C.232)

To finish the proof, we choose η so that the desired accuracy is achieved with high probability.

Recall from (C.199) that

P
(
An,η(S)

)
≥ 1− 4ne−mη2αX,n (C.233)

where we denote the constant

αX,n := 2 ·
((

q
p

)2n
− 1

)−2

. (C.234)

In addition, from (C.229) and (C.232), we know that if s ∈ (0, (1− µX)/(1 + µX)), ν ∈ [1, νX,n,s],
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η ∈ (0, ηX,n), and An,η(S) occurs, then∣∣∣ĥn(S)− hn(X)
∣∣∣ ≤ η · βX,n +

(
(1 + s)νdn−1 − 1

)
· γX,n (C.235)

where we denote the constants

βX,n :=
6
n
·

B(+)
dn

(XXX ) + B(−)
dn

(XXX )

B(+)
dn

(XXX )− B(−)
dn

(XXX )
, (C.236)

γX,n :=
∫ ∞

0

fX(t) + gX(t)
uX(t)− vX(t)

dt. (C.237)

Consider the constant εX,n ∈ (0, 2 min(γX,n, βX,n)] defined by

εX,n := min
(

2γX,n ·
1− µX
1 + µX

, 2βX,n

)
. (C.238)

Fix ε ∈ (0, εX,n), set s := ε/(6γX,n) ∈ (0, 1/3], denote

κX,n := min

(
3, τX,n,

(
1− sµX

1− s

) 1
2dn

,
1 + ε/(2βX,n)

1− ε/(2βX,n)

)
, (C.239)

and fix η ∈ (0, (κX,n − 1)/(κX,n + 1)). Since κX,n ≤ 3, we obtain η < 1/2. In addition, κX,n ≤ τX,n,

hence η < (κX,n − 1)/(κX,n + 1) implies that η < ηX,n. Note that, for a ∈ (0, 1) and b > 1, the

inequality a ≤ (b− 1)/(b + 1) is equivalent to (1 + a)/(1− a) ≤ b. By definition,

κX,n ≤
(

1− sµX
1− s

)1/(2dn)

, (C.240)

hence we have

(1 + s)νdn = (1 + s)
(

1 + η

1− η

)2d
< (1 + s)κ2d

X,n (C.241)

≤ (1 + s) · 1− sµX
1− s

≤ 1 + s
1− s

(C.242)

≤ 1 + s + s(1− 3s)
1− s

= 1 + 3s. (C.243)

In addition, since

κX,n ≤
1 + ε/(2βX,n)

1− ε/(2βX,n)
, (C.244)

and since we assume η < (κX,n − 1)/(κX,n + 1), we deduce the inequality η < ε/(2βX,n). Applying

the two inequalities η < ε/(2βX,n) and (1 + s)νdn ≤ 1 + 3s (see (C.243)) into inequality (C.235), we
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conclude that ∣∣∣ĥn(S)− hn(X)
∣∣∣ ≤ η · βX,n +

(
(1 + s)νdn−1 − 1

)
· γX,n

≤ ε

2
+

ε

2
= ε (C.245)

whenever An,η(S) occurs.

Now, fix δ ∈ (0, 1/(4n)). Set

η :=
1
2
· κX,n − 1

κX,n + 1
. (C.246)

We show that η ≥ εcX,n, where we define the constant cX,n by

cX,n := min
(

1
8γX,n

,
τX,n − 1

4γX,n(τX,n + 1)
,

1− µX
72γX,ndn

,
1

4βX,n

)
. (C.247)

In this definition of cX,n, the term involving τX,n is removed if τX,n = ∞. We assume that

m ≥
2/(c2

X,nαX,n)

ε2 log
1
δ

. (C.248)

From η ≥ εcX,n and (C.248), it follows that the probability that the event An,η(S) does not occur is

bounded as

P
(
An,η(S)c) ≤ 4ne−mη2αX,n ≤ δ. (C.249)

Note that this would conclude the proof, as then we would have that

P
(∣∣∣ĥn(S)− hn(X)

∣∣∣ ≤ ε
)
≥ P

(∣∣∣ĥn(S)− hn(X)
∣∣∣ ≤ ε

∣∣∣ An,η(S)
)

P
(
An,η(S)

)
= P

(
An,η(S)

)
> 1− δ. (C.250)

The rest of the proof is devoted to showing that η ≥ εcX,n holds.

Let ρ = (1− µX)/(6dn). We will show that(
1− sµX

1− s

)1/(2dn)

≥ 1 + sρ

1− sρ
. (C.251)

Inequality (C.251) is equivalent to

(1− sµX)(1− sρ)2dn ≥ (1 + ρs)2dn(1− s). (C.252)

By Bernoulli’s inequality, since 0 ≤ sρ ≤ 1, we have that (1 − sρ)2dn ≥ 1 − 2dnρs. In addition,

the inequality 1 + 2az ≥ eaz ≥ (1 + a)z for a, z ≥ 0 satisfying az ≤ log 2 implies, in view of

347



2dnρs ≤ 1/9 < log 2, that

1 + 4dnρs ≥ (1 + ρs)2dn . (C.253)

Therefore, to show (C.252), it suffices to show that

(1− sµX)(1− 2dnρs) ≥ (1 + 4dnρs)(1− s). (C.254)

Now, using the definition ρ = (1− µX)/(6dn), inequality (C.254) follows as

(1− sµX)(1− 2dnρs) = (1− sµX)(1− s(1− µX)/3)

= (1 + 2(1− µX)s/3)(1− s) + s2(1− µX)(µX + 2)/3

≥ (1 + 2(1− µX)s/3)(1− s) = (1 + 4dnρs)(1− s).

Since (C.254) holds, we conclude that inequality (C.251) holds.

Now, by the definition of κX,n in (C.239) there are four possible values κX,n can take. First, if

κX,n = 3, then

η =
1
4
= ε · 1

4ε
≥ ε · 1

8γX,n
≥ εcX,n (C.255)

since ε < εX,n ≤ 2γX,n. Now, if κX,n = τX,n (so B(−)
dn

(XXX ) > 0), then

η =
1
2
· τX,n − 1

τX,n + 1
≥ ε

4γX,n
· τX,n − 1

τX,n + 1
(C.256)

since ε < 2γX,n. Next, suppose that

κX,n =

(
1− sµX

1− s

)1/(2dn)

. (C.257)

By (C.251) and (C.257), we deduce that

κX,n ≥
1 + sρ

1− sρ
. (C.258)

Recall that, for 0 < a < 1 < b, the inequalities (1 + a)/(1− a) ≤ b and (b− 1)/(b + 1) ≥ a are

equivalent. Therefore, the definition of η in (C.246) yields from (C.258) that η ≥ sρ/2. Plugging in

the definitions of s and ρ, we conclude that

η ≥ ε · 1− µX
72γX,ndn

≥ εcX,n. (C.259)

Finally, when

κX,n =
1 + ε/(2βX,n)

1− ε/(2βX,n)
, (C.260)
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the definition of η implies that η ≥ ε/(4βX,n) ≥ εcX,n. Combining these four cases, we conclude that

we must have η ≥ εcX,n independently of the value of κX,n. The proof is thus complete.

C.8.2 Proof of the Uniform Bounds (C.215)

Being polynomials of degree at most dn with non-negative coefficients, the functions uX and vX

satisfy uX(νt) ≤ νdn uX(t) and vX(νt) ≤ νdn vX(t) for every ν ≥ 1 and t ≥ 0. Note also that both

uX and vX are nondecreasing. In addition, we have vX(t) < uX(t) for every t ≥ 0, because

uX(t)− vX(t) = det M√tX+N,n > 0. We have also shown that µX < 1, where µX is defined in (C.203)

as

µX := sup
t∈[0,∞)

vX(t)
uX(t)

. (C.261)

These facts will be enough to deduce the bounds in (C.215).

We show first the bounds on φX in (C.215). It suffices to consider the case µX > 0, for otherwise

vX vanishes identically and φX ≡ 1 identically. We show that for every s > 0 and 1 ≤ ν ≤ ν′X,n,s,

where ν′X,n,s := ((1/s + 1/µX)/(1/s + 1))1/dn , the uniform bound 1 ≤ φX(t; ν) ≤ 1 + s in (C.215)

holds.

Consider the lower bound on φX . For every 1 ≤ ν < µ−1/dn
X , we have the uniform bound

vX(νt)
uX(t)

≤ νdn vX(t)
uX(t)

≤ νdn µX < 1 (C.262)

over t ∈ [0, ∞). In particular,

uX(t)− vX(νt) > 0 (C.263)

for every 1 ≤ ν < µ−1/dn
X and t ≥ 0. Since vX is nondecreasing, we conclude that φX(t; ν) =

(uX(t)− vX(t))/(uX(t)− vX(νt)) ≥ 1 whenever 1 ≤ ν < µ−1/dn
X . Note that ν′X,n,s < µ−1/dn

X for every

s > 0 since µX ∈ (0, 1).

Next, we show the upper bound on φX . Fix s > 0 and ν ∈ [1, ν′X,n,s]. Since vX(t)/µX ≤ uX(t), we

have for every t ≥ 0 the bound

vX(νt) ≤ νdn vX(t) ≤
1/s + 1/µX

1/s + 1
· vX(t) (C.264)

≤ vX(t)/s + uX(t)
1/s + 1

= vX(t) +
uX(t)− vX(t)

1/s + 1
. (C.265)
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Rearranging (C.265), we obtain the bound

−1
1/s + 1

≤ vX(t)− vX(νt)
uX(t)− vX(t)

. (C.266)

Adding 1 to both sides of (C.266) then inverting, we obtain φX(t; ν) ≤ 1 + s; for this step, we used

the fact that uX(t)− vX(νt) > 0, which follows by (C.263) since ν ≤ ν′X,n,s < µ−1/dn
X .

Next, we prove the bounds on ψX in (C.215). We do not assume µX > 0. The upper bound

ψX(t; ν) ≤ 1 follows for every ν ≥ 1 by monotonicity of uX. For the lower bound on ψX, we show

that for every s ∈ (0, 1) and 1 ≤ ν ≤ νX,n,s, where νX,n,s := ((1− sµX)/(1− s))1/dn , the uniform

bound ψX(t; ν) ≥ 1− s holds over t ∈ [0, ∞). We have, for every s ∈ (0, 1) and ν ∈ [1, νX,n,s], the

bound

uX(νt) ≤ νdn uX(t) ≤
1− sµX

1− s
· uX(t) (C.267)

≤ uX(t)− svX(t)
1− s

=
uX(t)− vX(t)

1− s
+ vX(t) (C.268)

over t ∈ [0, ∞). Rearranging (C.268), we obtain ψX(t; ν) ≥ 1− s, as desired.

Finally, note that νX,n,s ≤ ν′X,n,s is equivalent to s ≤ (1− µX)/(1 + µX). This concludes the proof

that, for every s ∈ (0, (1− µX)/(1 + µX)) and ν ∈ [1, νX,n,s], the uniform bounds in (C.215)

1− s ≤ ψX(t; ν) ≤ 1 ≤ φX(t; ν) ≤ 1 + s (C.269)

hold over t ∈ [0, ∞).

C.8.3 Proof of Inequality (C.232)

Recall that

det MX,n = Bdn(XXX ) = B(+)
dn

(XXX )− B(−)
dn

(XXX ). (C.270)

We bound the error when estimating log det MX,n from the samples S . Denote the random vector

µµµ :=
(

∑m
i=1 Xi

m , · · · , ∑m
i=1 X2n

i
m

)
, and note that

det MU,n = Bdn(µµµ) = B(+)
dn

(µµµ)− B(−)
dn

(µµµ). (C.271)
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We assume that m > n. Let ηX,n be as defined by (C.230) and (C.231), and fix η ∈ (0, ηX,n). Then we

show that under An,η(S)

∣∣∣∣ 1
2dn

log
det MU,n

det MX,n

∣∣∣∣ ≤ 6η

n
·

B(+)
dn

(XXX ) + B(−)
dn

(XXX )

B(+)
dn

(XXX )− B(−)
dn

(XXX )
. (C.272)

By (C.68) in the proof of Theorem 4.2, each term in the polynomials B(±)
dn

is a product of at most

n + 1 monomials. Thus,

(1− η)n+1B(±)
dn

(XXX ) ≤ B(±)
dn

(µµµ) ≤ (1 + η)n+1B(±)
dn

(XXX ). (C.273)

It suffices to consider the case when B(−)
dn

is not the zero polynomial, for if B(−)
dn

is the zero polynomial

then we obtain from (C.273) the bound

∣∣∣∣ 1
2dn

log
det MU,n

det MX,n

∣∣∣∣ = 1
2dn

∣∣∣∣∣∣log
B(+)

dn
(µµµ)

B(+)
dn

(XXX )

∣∣∣∣∣∣ (C.274)

≤ max (± log(1± η))

n
(C.275)

=
− log(1− η)

n
<

2η

n
(C.276)

where the last inequality follow because − log(1− z) < 2z for z ∈ (0, 1/2), which can be verified by

checking the derivative. Note that the bound 2η/n in (C.276) is stronger than the bound in (C.272).

Assume that B(−)
dn

does not vanish identically, so positivity of X yields that B(−)
dn

(XXX ) > 0.

From (C.273), we have that

log
B(+)

dn
(XXX )− ν

n+1
2 B(−)

dn
(XXX )

B(+)
dn

(XXX )− B(−)
dn

(XXX )
+ (n + 1) log(1− η) ≤ log

det MU,n

det MX,n
(C.277)

and

log
det MU,n

det MX,n
≤ log

B(+)
dn

(XXX )− ν−
n+1

2 B(−)
dn

(XXX )

B(+)
dn

(XXX )− B(−)
dn

(XXX )
+ (n + 1) log(1 + η) (C.278)

where we used our assumption that

ν
n+1

2 =

(
1 +

2
1/η − 1

)n+1
<

1
2

B(+)
dn

(XXX )

B(−)
dn

(XXX )
+ 1

 (C.279)

<
B(+)

dn
(XXX )

B(−)
dn

(XXX )
. (C.280)
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Now, for every (w, z, r) ∈ R3 such that w > z > 0 and w/z > r > 1, rearranging r + 1/r > 2 we have

that
w− z/r

w− z
<

w− z
w− rz

. (C.281)

Setting (w, z, r) = (B(+)
dn

(XXX ), B(−)
dn

(XXX ), ν(n+1)/2), we obtain that

1 <
B(+)

dn
(XXX )− ν−

n+1
2 B(−)

dn
(XXX )

B(+)
dn

(XXX )− B(−)
dn

(XXX )
(C.282)

<
B(+)

dn
(XXX )− B(−)

dn
(XXX )

B(+)
dn

(XXX )− ν
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Therefore,

0 < log
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<
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∣∣∣∣∣∣ . (C.285)

Applying (C.284)–(C.285) in (C.278) and combining that with (C.277), we obtain (since log(1 + η) <

− log(1− η)) the bound

∣∣∣∣log
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1
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. (C.286)

Now, we may write
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(
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2 − 1
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. (C.287)

The proof of (C.272) (or, (C.232)) is completed by showing that for (w, z, r) ∈ R3
>0 such that (1+ z)r <

1 + 1
2w we have

− log (1− w ((1 + z)r − 1)) ≤ (2w + 1)rz. (C.288)

Before showing that (C.288) holds, we note how it completes the proof. Setting

(w, z, r) =
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dn
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,
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 , (C.289)
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we obtain that

log
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since (see (C.279))

ν
n+1

2 <
1
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+ 1

 . (C.291)

Then − log(1− η) < 2η yields from (C.286) and (C.290) that

1
2dn

∣∣∣∣log
det MU,n

det MX,n

∣∣∣∣ ≤ B(+)
dn

(XXX ) + B(−)
dn

(XXX )

B(+)
dn

(XXX )− B(−)
dn

(XXX )
· 2η

n(1− η)
+

2η

n
. (C.292)

Then (C.292) yields the desired inequality (C.232) as η ∈ (0, 1/2).

Finally, to see that (C.288) holds, we consider for fixed w, r > 0

f (z) := (2w + 1)rz + log
(
1− w

(
(1 + z)r − 1

))
(C.293)

over 0 ≤ z < (1 + 1/(2w))1/r − 1. Inequality (C.288) is restated as f (z) ≥ 0 for every 0 < z <

(1 + 1/(2w))1/r − 1, which follows since f is continuous, f (0) = 0, f ′(0+) = (w + 1)r > 0, and

f ′(z) = (2w + 1)r− wr(1 + z)r−1

1− w((1 + z)r − 1)
(C.294)

> (2w + 1)r− wr(1 + z)r

1− w((1 + z)r − 1)
(C.295)

> (2w + 1)r− wr(1 + 1/(2w))

1− w((1 + 1/(2w))− 1)
= 0 (C.296)

for every 0 ≤ z < (1 + 1/(2w))1/r − 1.

C.8.4 Proof of Proposition 4.5: Mutual Information

Let {(Xj, Yj)}j∈N be i.i.d. samples drawn according to PX,Y. Denote Sm = {Xj}m
j=1. By continuity

of Y, we may assume that all the Yj, for j ∈ N, are distinct. For each x ∈ supp(X), let Jx := {1 ≤

j ≤ m ; Xj = x}. Let Dm be the event that, for every x ∈ supp(X), we have that |Jx| > n. We use

Hoeffding’s inequality to obtain a lower bound on the probability

P(Dm) = P

(
min

x∈supp(X)
|Jx| > n

)
. (C.297)

Let P̂m be the empirical measure, i.e., define P̂m(x) := m−1 ∑m
j=1 δx(Xj). Note that |Jx| = mP̂m(x).
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Let x0 ∈ supp(X) be such that PX(x0) is minimal, set ζ := PX(x0)/2, and suppose m ≥ ζ−1n.

Then, the union bound and ζ ≤ PX(x)− ζ for each x ∈ supp(X) yield that

P

(
n ≥ min

x∈supp(X)
|Jx|
)
≤ P

(
mζ ≥ min

x∈supp(X)
|Jx|
)

(C.298)

≤ ∑
x∈supp(X)

P (mζ ≥ |Jx|) (C.299)

≤ ∑
x∈supp(X)

P (m(PX(x)− ζ) ≥ |Jx|) (C.300)

= ∑
x∈supp(X)

P
(

PX(x)− P̂m(x) ≥ ζ
)

. (C.301)

Since E[P̂m(x)] = PX(x) for each x ∈ supp(X), Hoeffding’s inequality yields that P
(

PX(x)− P̂m(x) ≥ ζ
)
≤

e−2ζ2m. Therefore,

P

(
n ≥ min

x∈supp(X)
|Jx|
)
≤ |supp(X)| · e−2ζ2m. (C.302)

In other words, for every m ≥ 2n/PX(x0), we have the bound

P(Dm) ≥ 1− |supp(X)| · e−mPX(x0)
2/2. (C.303)

Denote πX := 4/PX(x0)
2 and

δX,n := min
(

1
4|supp(X)| , e−PX(x0)n/2

)
. (C.304)

We conclude from (C.303) that, for every δ ∈ (0, δX,n), if m ≥ πX log(1/δ) then P(Dm) > 1− δ/4.

Consider the event Pm,ε that the empirical measure P̂m is pointwise ε-close to the true measure

PX , i.e.,

Pm,ε :=

{
max

x∈supp(X)

∣∣∣P̂m(x)− PX(x)
∣∣∣ < ε

}
. (C.305)

By the union bound, we have that

P
(
Pc

m,ε
)
≤ ∑

x∈supp(X)

P
(∣∣∣P̂m(x)− PX(x)

∣∣∣ ≥ ε
)

. (C.306)

By Hoeffding’s inequality, for each x ∈ supp(X), we have that

P
(∣∣∣P̂m(x)− PX(x)

∣∣∣ ≥ ε
)
≤ 2e−2mε2

. (C.307)

Therefore, we obtain the bound

P (Pm,ε) > 1− 2|supp(X)|e−2mε2
. (C.308)
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In particular, if δ ∈ (0, 1/(4|supp(X)|)), then m ≥ (1/ε2) log(1/δ) implies P(Pm,ε) > 1− δ/2.

Recall that, if Dm occurs, then we may write

În(Sm) = ĥn(Am)− ∑
x∈supp(X)

P̂m(x) ĥn(Bm,x), (C.309)

where Am := {Yj}m
j=1 and Bm,x := {Yj ; 1 ≤ j ≤ m, Xj = x}. Then,

∣∣∣ În(Sm)− In(X; Y)
∣∣∣ ≤ ∣∣∣ĥn(Am)− hn(Y)
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+ ∑

x∈supp(X)

P̂m(x)
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|hn(Y(x))|.

(C.310)

Denote HX,Y,n := ∑x∈supp(X) |hn(Y(x))|. Consider the events

Fx,ε :=
{∣∣∣ĥn(Bm,x)− hn(Y(x))

∣∣∣ < ε

3

}
(C.311)

F′ε :=
{∣∣∣ĥn(Am)− hn(Y)

∣∣∣ < ε

3

}
. (C.312)

Set Fε :=
⋂

x∈supp(X) Fx,ε. From Proposition 4.4, we know that there is a constant CX,Y,n such that

for every small enough ε, δ > 0, if m ≥ (CX,Y,n/ε2) log(1/δ) then P(Fx,ε | Dm) ≥ 1− δ/(8|supp(X)|)

for each x ∈ supp(X) and P(F′ε | Dm) > 1− δ/8. Then, P(Fε ∩ F′ε | Dm) ≥ 1− δ/4. We conclude,

possibly after increasing CX,Y,n, that P(Fε ∩ F′ε ∩Dm) ≥ 1− δ/2. Also, P(Pm,ε/(3HX,Y,n)
) > 1− δ/2,

where we increase CX,Y,n, if necessary, to exceed 9H2
X,Y,n. Then, P(Fε ∩ F′ε ∩Dm ∩Pm,ε/(3HX,Y,n)

) ≥

1− δ. But under the event Fε ∩ F′ε ∩Dm ∩Pm,ε/(3HX,Y,n)
, we have from (C.310) the bound∣∣∣ În(Sm)− In(X; Y)

∣∣∣ < ε

3
+

ε

3
+

ε

3
= ε, (C.313)

and the proof is complete.
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