
 ***** DAUUG|36 SPECIFICATIONS *****

System classification solder-defined minicomputer
 Logic family SRAM with 74AUC
 Memory protection paged virtual memory
 Multitasking cooperative or preemptive
 Word size 36 bits
 CPU speed 16-20 MIPS
Registers per program 512
Programs ready to run 256
 I/O buses SPI and I2C
 Operating system Osmin or owner-supplied
 Design lifespan 30 years
 Manufacturer anyone

Dauug|36
A Solder-Defined
Computer Architecture for
Backdoor and Malware Immunity

Marc W. Abel

Dauug|36: An Open-Source, Solder-Defined
Computer Architecture for

Backdoor and Malware Immunity

Marc W. Abel
Wright State University

Abstract
VLSI complex logic in safety- or privacy-critical computers too often conceals Faus-
tian ambushments. Systems are trusted and touted in early life as “secure,” only to
be condemned forever by discovery and disclosure of silicon-borne exploitable de-
fects. Users of VLSI complex logic can neither inspect that logic, nor audit it, nor
know its secure life expectancy, nor know if someone already found a vulnerability.

This paper evaluates the immediate potential and practicality of building em-
bedded systems and/or communication endpoints without using VLSI complex logic
at all. I call such machinery solder-defined. Rather than assemble proprietary logic
via nanometer-scale photolithography, millimeter-scale surface-mount methods can
produce open-source machines using maker-scale assembly tools. Finished comput-
ers can be inspected at the logic gate level using ordinary microscopes and in-circuit
testing, with all design of their hardware, firmware, and software open for anyone
to confirm, challenge, or adapt. But such end-user control and community valida-
tion, although a fine start, are not sufficient to ensure that hardware is free from
exploitable defects. The other benefit to solder-defined systems is their designs can
be radically simplified relative to prevalent VLSI CPUs in pursuit of a commensu-
rate radical reduction in concealed mistakes.

This paper introduces Dauug|36, an open-source, solder-defined, 36-bit com-
puter architecture with paged virtual memory and preemptive multitasking. The
CPU and memory subsystem are fully specified, have been electrically simulated,
and surpass 16 million instructions per second—all without a single microproces-
sor, FPGA, PLD, or ASIC in the design. A novel characteristic of Dauug|36 is
that it uses read-only synchronous static RAM (SRAM) as its foundational logic
block, enabling an astonishingly sophisticated instruction set for a logic family that
can be hand-soldered. For example, a 36-bit word’s population count (Hamming
weight) can be computed in just two instructions, or eight clock cycles. This paper
also introduces Osmin, the first operating system for Dauug|36, and describes the
implementation status of the hardware, operating system, and associated tools.

Copyright © 2020–2024 Marc W. Abel.

This paper was submitted to an open-access journal on February 28, 2024.
Licensing information will appear in the published edition.

https://dauug.com/

Front cover: Lowercase letters first appeared in Digital’s DECwriter line with the
introduction of the LA36, the first DECwriter II model. Its seven-pin font could
not support descenders. The other side of the cable was often a PDP-10 mainframe,
which marked the twilight not only of 36-bit computing, but also of solder-defined
computers generally. Fifty years later, the twilight is back.

https://dauug.com/

Contents
1 Introduction 7

1.1 Problem Statement . 7
1.2 Seeking a Solution . 9
1.3 Alternatives to VLSI Complex Logic 13
1.4 Dauug|36 as a Collection of Soldered Components 16

2 Definitions and Abbreviations 21

3 Dauug|36 as a Programmable Machine 22
3.1 State . 23

3.1.1 State for User Programs . 23
3.1.2 State for Privileged Programs 25

3.2 Firmware . 26
3.3 Instruction Format . 27
3.4 Address Formats, Memory Protection, and Memory Capacity 28
3.5 Logic . 30
3.6 Arithmetic . 30

3.6.1 Single-Instruction Arithmetic 30
3.6.2 Short Multiplication . 32
3.6.3 Long Multiplication . 32
3.6.4 Adding a Hardware Multiplier to the Architecture 33
3.6.5 Division . 33

3.7 Advanced ALU Instructions . 34
3.7.1 Reverse Subtraction . 34
3.7.2 Minimum and Maximum . 35
3.7.3 Nudge Integer to Offset from Power of Two 35
3.7.4 Population Count (Hamming Weight) 35
3.7.5 Tribble Swizzling . 35
3.7.6 Transposing XOR . 35
3.7.7 Bit Permutations . 36
3.7.8 Substitution-Permutation Network Instructions 36
3.7.9 Stacked Unary Instructions 37
3.7.10 Unusual Memory Instructions 38

3.8 Multitasking . 38
3.9 Instruction Set Tables . 41

4 Arithmetic Logic Unit Theory of Operation 47
4.1 Simple Lookup Elements . 47
4.2 Three-Layer Carry-Skip Adders . 47
4.3 Swizzlers . 49
4.4 Logarithmic Shifters . 50
4.5 Substitution-permutation networks 51
4.6 Three-Layer Arithmetic Logic Units 52

5 Implementation 55
5.1 Portions That Are Substantially Complete 55

5.1.1 Netlist Generation . 55
5.1.2 Electrical Simulation . 55
5.1.3 Virtual Machine . 56
5.1.4 Assembly Language . 56
5.1.5 Cross Assembler . 57
5.1.6 Firmware . 60
5.1.7 Documentation . 61
5.1.8 Operating System . 61

5.2 Portions That Are Substantially Missing 64
5.2.1 Clock Distribution . 64
5.2.2 I/O Subsystem . 65
5.2.3 Device Drivers . 65
5.2.4 Firmware Loader . 66
5.2.5 Proof of Separation Between Programs 66
5.2.6 Circuit Board Finalization, Routing, and Fabrication 66

6 Implications and Conclusions 67
6.1 Security Advantages . 67

6.1.1 Open Hardware and Open firmware for Open Software 67
6.1.2 Security Perimeter for Solder-Defined Logic 67
6.1.3 Memory Hygiene for Hardware 67
6.1.4 Control of the CPU . 68
6.1.5 Arithmetic . 68
6.1.6 Why Tamper Resistance Is Out of Scope 69

6.2 Performance and Applications . 69

Acknowledgments 70

References 70

Figures
1 To increase security, reduce complexity. 8
2 Principal Data Paths of the CPU and Memory Subsystem 19
3 Dauug|36 CPU instruction formats 28
4 Virtual address format for data memory 28
5 Page table RAM’s input and output bit assignments 29
6 Physical address format for data memory 29
7 A small RAM used as a simple lookup element 47
8 A four-slice, 16-bit carry-skip adder 49
9 A four-slice, 16-bit swizzler . 50
10 A four-slice, 16-bit logarithmic shifter 51
11 A four-slice, 16-bit substitution-permutation network 52
12 A six-slice, 36-bit arithmetic logic unit 53
13 Bit transposition as a square matrix reflection 54
14 Assembly language demonstration: Tower of Hanoi puzzle solution . 58

Tables
1 Categories of vulnerability-inducing hardware irregularities 7
2 Category II (unplanned and unexpected) hardware irregularities . . 8
3 Category III (maliciously introduced) hardware irregularities 9
4 Proposed VLSI supply controls for Category III backdoors 10
5 SRAMs that contain firmware . 27
6 CPU privilege modes . 39
7 Additive instructions . 42
8 Bitwise boolean instructions . 42
9 Immediate instructions . 43
10 Shift and rotate instructions . 43
11 Multiplication instructions . 43
12 Bit-rearranging instructions . 44
13 Substitution-permutation network instructions 44
14 Miscellaneous arithmetic instructions 44
15 Mixed arithmetic-with-logic instructions 45
16 Branch instructions . 45
17 Memory instructions . 45
18 Identity-modifying instructions (privileged) 46
19 Program initialization instructions (privileged) 46
20 Unrestricted memory instructions (privileged) 46
21 4-bit S-box . 52
22 Specifications . 70
23 Dauug|36 potential applications . 71

1.1 Problem Statement 7

Table 1: Categories of vulnerability-inducing hardware irregularities

Category I Category II Category III

Origin purposeful unexpected malicious
Example arithmetic wrap RowHammer hidden backdoor
Software workaround? yes no no
VLSI architect can fix? yes yes no

yes yes yesSupply chain owner can fix?

1 Introduction
1.1 Problem Statement
Irregularities in the behavior of computing hardware are a perennial source of
software-related defects, including exploitable defects that are regarded as security
vulnerabilities. I group these irregularities into three loose categories, summarized
in Table 1.

Category I represents ordinary hardware semantics or limits that programmers
tend to overlook. These semantics and limits can lead to assumptions of invari-
ance, to which attacks supply counterexamples. For instance, arithmetic results
may go out of range. Memory buffers have finite size. Clocks that keep time are
not always monotonic. Shifts and division have peculiar, architecture-dependent
semantics for unusual operands. Suggested workarounds for Category I irregulari-
ties have included increasing the scrutiny done by programmers [35], and increasing
the separation between the instructions that programmers write and the silicon
executing them [12].

Category II irregularities are anomalies that contradict the documented or un-
derstood operation of computing hardware. These are some of the bugs that appear
in the news, as well as more primary sources like [7, 11, 15, 16, 22, 23, 26, 32, 38, 41].
Table 2 lists a few well-known cases. They have whimsical names like “hidden
God mode,” “Meltdown,” and “Silent Bob is Silent.” These pitfalls can sidestep
the most attentive programmer’s precautions, and they can surface years after a
victim’s hardware, operating system, or application is no longer supported by its
originator. To first order, vulnerabilities from Category II irregularities cannot be
solved through software, but require architectural changes to future generations of
VLSI by the supplier.

Category II hardware irregularities are analogous to software defects, and I view
the two as having the same two root causes. First, systems are too complex rela-
tive to the human scrutiny applied to their design and update. I like to mention
this in my talks about cybersecurity, and I often project Figure 1 during my ex-
planation. Second, others have pointed out that long practice in both software and
hardware design has presumed use under controlled, non-adversarial conditions.
In the 1980s, the famed network infiltrations by Marcus Hess and Robert Tappan

8 1 INTRODUCTION

Table 2: Some Category II (unplanned and unexpected) hardware irregularities

When Architecture Name Synopsis
1985 80386 multiply bug arithmetic error
1994 Pentium FDIV arithmetic error
1998 Pentium F00F lockup
2003 Via C3 God mode privilege escalation
2008 Intel AMT Silent Bob full control of everything
2015 DRAM RowHammer memory corruption
2017 x86 Spectre read others’ memory
2017 x86, POWER, ARM Meltdown read all memory
2020 Intel SGX load value inj. inject data values
2020 Intel CSME [M. Ermolov] broken authentication

COMPLEXITY

S
E
C
U
R
IT
Y

Figure 1: To increase security, reduce complexity.

Morris disproved this presumption [36, 37].
Category III irregularities are hidden characteristics introduced within a hard-

ware supply chain that do not align with the buyer’s security objectives. They
can either be active logic that provides a backdoor for an unseen adversary to
control a system, a passive mechanism for eavesdropping, or some combination of
both [6, 11, 14, 27, 30]. Table 3 lists some examples. Such vulnerabilities are of
particular urgency when national boundaries are crossed [29]. Another model that
falls under Category III is outright counterfeiting of critical equipment by unknown
manufacturers, such as reported in July 2020 for network switches [21], or for many
years for integrated circuits for aviation and military use [17]. Another Category
III situation is when a manufacturer knowingly releases defective semiconductors
for use in aerospace. One of my mentors was once fired for refusing to sign off on
such shipments.

1.2 Seeking a Solution 9

Table 3: Actual and rumored Category III (maliciously introduced) hardware
irregularities

Who Architecture Synopsis
AMD Platform Security Processor hypothesized backdoor
Apple iPhone 6 + iOS 10.2.1 sabotaged performance
Deere 8520T tractor right to repair infringements
Huawei 5G cellular infrastructure potential for China influence
Intel Management Engine hypothesized backdoor
Intel RDRAND instruction non-randomness suspicions
NSA ANT Catalog implantable surveillance products
VIA C3 (x86 clone) backdoors claimed by C. Domas
ZPMC ship-to-shore cranes undisclosed cellular modems
ZTE 5G cellular infrastructure potential for China influence

Table 3 slips in an important point about right to repair. ISO 27000 [20] incor-
porates availability into the scope of information security, so when a manufacturer
elects to make a deployed tractor unrepairable by its owner in order to sell a service
call, a cyberattack has been committed via the supply chain. Likewise, the sale
of digital devices that contain non-user-replaceable batteries constitutes a security
affront, a brazen act of ecological terrorism, and an amplifier of human oppression
in regions where conflict minerals are mined.

Because Category III irregularities are adversarial in origin, there is incentive to
place them at points where the buyer can neither inspect nor repair the product,
such as within VLSI or inaccessible microcode. In general, these vulnerabilities
cannot be addressed either via software or through hopes that a supplier will abstain
from inserting them. Instead, the buyer must extend some form of control over the
manufacturing process and/or the final assembled product.

1.2 Seeking a Solution
Various proposals have been made for safeguarding the VLSI supply chain against
intentional defect introduction, including [19, 24, 29, 42] which are summarized in
Table 4. The suggestions range from never trading with adversaries, to securing a
multi-billion dollar supply chain across hundreds or perhaps thousands of vendors,
to proving mathematically that designs are secure but giving no evidence that hard-
ware actually sold follows those designs, to using one of the planet’s most expensive
machines to partially see inside ICs, to suggesting that complex ICs not be used for
certain infrastructure. Not one of these proposals is practical, but the last of these,
which I confess is my idea, is perhaps the least impractical and most immediately
realizable for certain uses.

This paper’s essential target is hardware irregularity Category III, the case where

10 1 INTRODUCTION

Table 4: Proposed VLSI supply controls for Category III backdoors

Proponent Synopsis
Michael Pompeo geopolitical controls
Adam Waksman lock down VLSI supply chain
Eric Love add formal proofs of security to hardware IP
Mirko Holler X-ray ptychographic inspection

this paper all complex logic to be built by end user

a supply chain for complex logic, such as microprocessors and peripheral controllers,
may be tainted by an adversary prior to delivery to a buyer. In such circumstances,
computing equipment may contain a backdoor or a data exfiltration mechanism.
A drastic approach is advanced: relocate the supply chain from manufacturing
technology and processes that an adversary may control to technology and processes
that are under the buyer’s control. There is a straightforward way to do this:
have the buyer manufacture his or her own complex logic. There is also a backup
approach: have the buyer inspect his or her purchased logic.

Neither of these approaches can place a VLSI foundry at the buyer’s disposal.
Semiconductor fabs cost billions to build, and a short-term lease would be finan-
cially and logistically implausible. What may be practical, however, is to look back
50 years to a time when computers were assembled from simple components by
inexpensive tools at millimeter scale. The labor was costly, the dimensions were
large, the connections were many, and the unit price and weight were beyond reach
for many uses. But in time since, components and assembly processes have under-
gone revolutionary change. What computing machinery can be built now, using
basic components, inexpensive tools, and millimeter dimensions? And what are the
security implications of this machinery?

The central hypothesis of this paper is that it is possible to build an easy-to-
reproduce minicomputer1 today that meets the following informally stated supply
chain tamper resistance criteria:

Supply chain tamper resistance criteria

1. The computer’s electronic components are simple and generic enough to make
it impractical for an adversary to introduce exploitable defects through the
component supply chain.

2. Each electronic component already exists in the marketplace for other uses,
and at least two manufacturers currently produce any particular component.

3. The computer can be assembled using current surface-mount practices, using
either manual or automated placement and soldering.

1This term is defined on page 22.

1.2 Seeking a Solution 11

4. The assembled computer can be inspected against open-source specifications,
resulting in a modest level of confidence that exploitable defects were not
injected into the product.

5. The computer can be warranted by the manufacturer to exactly match iden-
tified open-source specifications.

6. The computer can be warranted by the manufacturer to be assembled from
components supplied by the buyer, or from a specified bill of materials.

These tamper resistance criteria, while useful for excluding Category III hard-
ware irregularities that are maliciously introduced, don’t address exploitable defects
from Category I’s unintended consequences or Category II’s unforeseen behaviors.
To address all three sources of exploitable vulnerabilities, we need to look at not just
at computing machinery’s tamper resistance, but also its behavioral characteristics.
My minimum expectations include at least the following:

Behavioral expectations of computers and CPUs

1. Computers must not run operating systems. Instead, operating systems must
run computers.2

2. A computer must not facilitate any exploit that can bypass any control of the
operating system that is running it.

3. A computer must run any and all adversary-supplied code without possibil-
ity for privilege escalation,3 never violating operating system permissions or
resource limits.

4. Included or attached hardware, as well as buses, must not facilitate any exploit
that can bypass any control of an operating system that is running a computer.

5. Included or attached hardware, as well as buses, must not exchange data with
any other hardware, bus, or memory without authority from the operating
system to do so.

6. Attaching a computer to a network must be no less secure than keeping the
computer air-gapped.

7. A CPU must unconditionally protect all instruction pointers from tampering,
including branch targets and subroutine return addresses.

8. A computer’s security must not be fragile in the presence of malformed input.

2In other words, the unified semantics of the hardware and operating system must be as
specified in the OS source code—neither buried in nor modified by undisclosed, proprietary, and/or
non-inspectable electronics.

3A regrettable exception is needed for software that persuades a human to defeat security mea-
sures. According to Rice’s theorem, such malware cannot dependably be identified by automated
safeguards [31].

12 1 INTRODUCTION

9. A CPU must mitigate unanticipated modular arithmetic wrapping without
bloat, inconvenience, slowdown, or incorrect results.

10. A CPU must never give incorrect results merely due to unexpected signedness
or unsignedness of an operand.

11. A CPU must support preemptive multitasking and memory protection, except
for uses so simple that the application running and its operating system are
one and the same.

12. A computer must offer hashing, pseudorandom number generation, and cryp-
tography that are fast enough for its intended use.

13. A computer must not depend in any manner on microcode or firmware updates
for its continued security or suitability for use.

14. A computer must be repairable by its owner, particularly with regard to on-
site replacement of components or stored data that the owner might foresee-
ably outlive.

15. A computer must be identically replaceable for as long as it is needed.

16. A computer must be delivered with objective, verifiable evidence of conformity
with these expectations.

Simultaneously satisfying the above expectations is comfortably within human
intellect to accomplish: it’s principally a discipline of scaling automation responsi-
bly. Starting at the bottom, I own two sorobans that generally meet the parameters
of this list, even though they don’t use electricity to do arithmetic. Moving up the
automation scale, I own two TRS-80s that also run fine. Although lacking, these
mid-1980s computers conform closer to my expectations than the 64-bit machine
that typeset this paper. So I started to think about what capabilities need to be
added to these ancient, trustworthy computers to build usable systems today with-
out making irresponsible security tradeoffs. I also contemplated what components
could be used to build machines without purchased complex logic—that is, without
any microprocessors, FPGAs, PLDs, or ASICs.

A special challenge with this research is that when it comes to remotely- or
malware-exploitable hardware defects, an incremental improvement is not enough.
The number of defects, unless zero, is immaterial. Likewise, the number of attacks
that can succeed in a script, unless zero, is immaterial. Even the knowledge that
a computer has no known exploitable defects is not sufficient. Once manufactured,
hardware is unlikely to be patched, and once deployed, hardware is unlikely to be
removed from service. The standard of care needs to be immunity—not resistance—
to backdoors and malware.

No claim that any combination of hardware, firmware, and software is immune
to hacking and malware is valid without proof. This is not the same as a supplier’s
assurance, adherence to so-called best practices, successful passage of a series of
tests, exclusive use of open-source designs, or a certification. Any path to proof

1.3 Alternatives to VLSI Complex Logic 13

is likely to be lengthy and expensive; however, the system will never thereafter
fall prey to a covered exploit, nor will it ever need a security update. A proof’s
high cost and and lead time can be beneficial in themselves because they promote
configuration stability, discourage frequent releases, and abhor bloat.

My goal for the architecture of this paper is to soon finish its hardware design,
firmware, real-time operating system (RTOS), cross assembler, and self-hosted as-
sembler. Each of these is to be minimalist, succinct, open-source, and thoroughly
documented. All except the cross assembler are to be likely free of exploitable de-
fects.4 A mathematical, semi-formal, or formal proof that the hardware, firmware,
and kernel are immune to hacking and malware would follow at a later time.

1.3 Alternatives to VLSI Complex Logic
Almost all CPUs made out of anything except silicon wafers lately have been some-
body’s avocation, such as the many homebrew CPUs cataloged in [40]. But the
research of this paper was not undertaken for hobbyists. Trustworthy CPUs are
needed to control dams, fly planes, protect attorney-client privilege, mix chemicals,
leak secrets, coordinate troops, transfer funds, and more. All components selected
must be for sale at scale, not scrounged from scrap, and they must remain available
for the expected duration of manufacturing and servicing.

Here are some logic families that might be usable for building transparently-
functioning computers. Neither practicality nor seriousness was a requirement to
appear on this list because every choice here has important drawbacks. I found
it better to start with an overly imaginative list than to overlook a meritorious
possibility.

Electromagnetic relays have switching times between 0.1 and 20 ms, are
large, costly, and have contacts that wear out. Relays generally have the wrong
scale: a practical word processor will not run on relays. One benefit of using relays
is resistance to electrostatic discharge.

Solid-state relays, including optical couplers, can compute, but more cost-
effective solid-state logic families are readily available.

Vacuum tubes have faster switching times than relays, but are large, costly,
and require much energy. Like relays, their scale is wrong in several dimensions.
Commercial production in the volumes needed does not exist today. Power sup-
ply components may also be expensive at scale. Ordinary vacuum tubes wear out
quickly, but special-quality tubes have proven lifespans of at least decades of con-
tinuous use [34].

Nanoscale vacuum-channel transistors may someday work like vacuum
tubes without filaments, but at present are only theoretical.

Transistors in individual packages may be within scale if extremely small pack-
ages such as VML0806 (0.8 × 0.6 mm footprint) are used. An advantage of discrete
transistors is that no component sees more than one bit position, so slipping a

4The cross assembler’s dependence on a brutishly large C compiler precludes any ability to
guarantee its safety. Its principal use is to assemble, with human verification of every instruction,
the self-hosted assembler for the first time.

14 1 INTRODUCTION

hardware backdoor into the CPU unnoticed would be particularly difficult.5 Find-
ing transistors with desirable characteristics for CPUs might not be possible now.
For example, the MOnSter 6502 is an 8-bit CPU containing 3 218 transistors, but
it can only operate to 50 kHz due to component constraints [25].

7400-series and other glue logic have largely been discontinued. NAND gates
and inverters aren’t a problem to find, but the famed 74181 four-bit arithmetic
logic unit is gone, the 74150 sixteen-to-one multiplexer is gone, etc. Most remaining
chips have slow specifications, obsolete supply voltages, limited temperature ranges,
through-hole packages, and/or single sources. Four-bit adders, for example, are still
manufactured, but their specs are so uncompetitive as to be suggestive for use as
replacement parts only. Counter and shift register selection is equally dilapidated.
But a small number of 7400 parts are offered with very fast speeds, such as the
SN74AUC series.

Current-mode logic offers fast, fast stuff with differential inputs and premium
prices. Around $10 for a configurable AND/NAND/OR/NOR/MUX, or $75 for
one XOR/XNOR gate as of early 2020 when I needed to commit to a logic family.
Propagation delay can be under 0.2 ns. Power consumption is high. For ordinary
use, parallel processing using slower logic families would be cheaper than using
present current-mode devices for sequential processing.

Mask ROM requires large runs to be affordable, and finished product must
be reverse-engineered to assure against backdoors. Propagation delay has typically
been on the order of 100 ns, probably due to lack of market demand for faster
products.

EPROM with a parallel interface apparently comes from only one company as
of 2020. 45 ns access time is available, but requires a 5V supply. Data retention was
10 years in vendor advertisements, but omitted from datasheets. [4] and [5] describe
a CPU that uses EPROM as its principal logic family.

EEPROM as fast as 70 ns is available with a parallel interface. Data retention
is typically 10 years, but I have seen 100 years claimed for some pieces.

NOR flash with a parallel interface is suitable for combinational logic, offering
speeds as fast as 55 ns. Storage density is not as extraordinary as NAND flash,
but 128Mi × 8 configurations are well represented by two manufacturers as of early
2020. Data retention is typically 10 to 20 years, so these devices must be peri-
odically refreshed by means of additional components or temporary removal. Few
organizations schedule maintenance on this time scale effectively. Also, because no
feedback maintains the data stored in these devices, NOR flash may be compara-
tively susceptible to soft errors. Even so, NOR flash is usually considered reliable
enough that external error-correcting code is not employed.

Although NOR flash’s access time is much slower than SRAM’s, its storage
density can be much greater. For applications that can use large lookup tables
directly instead of multiple-step algorithms, NOR flash may be faster than SRAM
for uses like finding sines or logs of single-precision floats when high throughput is
needed.

5One possible backdoor would be to install several RF retro-reflectors like NSA’s RAGEMAS-
TER [27] in parallel, or a single retro-reflector in combination with a software driver.

1.3 Alternatives to VLSI Complex Logic 15

NOR flash may also be useful for building finite-state machines such as periph-
eral controllers or boot logic for loading firmware. Here again, a servicing mechanism
would need to exist at the point of use on account of NOR flash’s limited retention
time.

NOR flash with a serial interface can be used as secondary storage for system
firmware. At power-up, hardwired logic would load the CPU’s firmware from the
NOR flash. The firmware would need reflashing about every ten years to prevent
bit rot.

NAND flash is available with parallel interfaces, but data and address lines are
shared. These devices aren’t directly usable as combinational logic. Also, NAND
flash has a high enough error rate that external error correction is considered manda-
tory.

Dynamic RAM, or DRAM, does not have an interface suitable for combina-
tional logic. This is in part because included refresh circuitry must rewrite the entire
RAM many times per second due to self-discharge. Although standardized, DRAM
interfaces are very complex, and datasheets of several hundred pages are common.
DRAM is susceptible to many security exploits from the RowHammer family [26], as
well as to cosmic ray and package decay soft errors. The upside to DRAM is that an
oversupply resulting from strong demand makes it disproportionately inexpensive
compared to better memory.

Static RAM, or SRAM, has the simple parallel interface we need for combi-
national logic. We can substitute SRAM logic for ROM logic, except SRAM will
forget its logic tables when powered off. To use SRAM for logic, an additional
circuit called a firmware loader must be present to load any needed tables when
power is applied. In addition to increasing the number of components, the firmware
loader’s presence increases capacitance at the SRAM pins it needs to access. This
added capacitance may require a compensating reduction in CPU speed.

As a logic family, SRAM’s main selling point is its speed, due in part to SRAM’s
high computational expressivity. Even a tiny SRAM has at least 16 address pins for
inputs, allowing much more computation per part than trivial glue logic gates. An
access time of 10 ns is typical for asynchronous SRAM, with 8 and 7 ns obtainable
at modest price increases. For synchronous SRAM, 5.5 ns access time is typical.
Price is roughly 600 times that of DRAM as of 2020, around $1.50/Mibit. Of
the sequential logic families that do not employ VLSI complex logic, SRAM offers
the best combination of cost and computation speed available. As main memory,
SRAM’s decisive selling point is natural immunity from RowHammer and other
shenanigans. Moreover, SRAM’s simple parallel interface, separate connections for
addresses and data, and predictable timing make it easily adaptable for use as logic.

It may seem contradictory to allow use of SRAM even as all other VLSI ICs
(microprocessors, FPGAs, PLDs, ASICs, etc.) are disallowed. The distinction is
one of complexity: SRAM is a perfectly regular array of addressable D flip-flops. It
is not complex logic per my definition in Section 2. SRAM is fungible, generic, and
standardized by JEDEC. SRAM’s operation is simple and predictable, as evidenced
by the difference between an SRAM datasheet (15–24 pages, depending on interface
logic) and even a basic 8-bit microcontroller (hundreds of pages).

16 1 INTRODUCTION

Compared to microprocessors, FPGAs, PLDs, and ASICs, it’s probably very
difficult to insert a supply-chain backdoor into an SRAM IC. The adversary would
need to know what the SRAM’s end use will be, what tables will be loaded into
it, and where it will be placed within a circuit. The SRAM would need to touch
enough identifiable data in context to be useful to an adversary—perhaps feasible
for primary storage or registers, but likely infeasible inside the arithmetic logic
unit.6 Even if a backdoor could be inserted, it would need to add no more than a
couple nanoseconds to the SRAM’s operation, or the whole computer will fail. And
assuring delivery of an SRAM backdoor to a single victim may well require altering
the product worldwide.

Because any backdoor logic for an SRAM would be considerably more complex
than the internal logic ordinarily present, it would be straightforward to detect via
scanning electron microscopy of delayered ICs. And because the capacity of SRAM
ICs is capped in order to manufacture them in older foundries (e.g. 40 nm), the best
and latest imaging equipment would not be needed. Some forms of screening, such
as an electrical noise analysis prior to soldering, may be effective without imaging
due to SRAM’s simplicity and external clocking.

There is one other motivation for permitting SRAM as a logic family: its use is
already mandatory for primary storage. To build a computer with just one million
bits of primary storage, we either need one million parts (more or less), or we will
need some kind of VLSI storage. There is a security distinction between using
SRAM for storage, where an IC would see a lot of data at rest, and using SRAM
for computation, where an IC would see only a tiny amount of data in flight. So
if it turns out that a malicious vendor can introduce an exploitable defect to an
SRAM IC, it’s much more likely to be a problem for primary storage SRAM than
for SRAM that only implements logic.

Programmable logic devices, or PLDs, and field programmable gate
arrays, or FPGAs, can implement CPUs, but they are not inspectable, not au-
ditable, not fungible, ship with undocumented firmware and potentially other state,
have a central view of the entire CPU, and have a very small number of suppliers
controlling the market. They are amazing, affordable products with myriad applica-
tions, but they may also be the ultimate delivery vehicle for supply chain backdoors.
They are easily reconfigured without leaving visible evidence of tampering. I would
resist using PLDs and FPGAs in security-critical systems.

1.4 Dauug|36 as a Collection of Soldered Components
Dauug|36 is an open-source, 36-bit architecture for owner-built CPUs, controllers,
and minicomputers. One of its purposes is to test whether the behavioral expecta-
tions and supply chain tamper resistance criteria in Section 1.2 can be achieved in
a useful computer. Only maker-scale assembly tools are necessary, so this architec-
ture can be implemented even in regions with minimal infrastructure and capital.
No access is needed to a VLSI foundry. All that a builder will need is a bare circuit

6The bit-sliced ALU for the architecture of this paper only exposes six bits of data at a time
to each IC.

1.4 Dauug|36 as a Collection of Soldered Components 17

board, a few hundred components, and some practice soldering. Because Dauug|36
does not contain a microprocessor (whether hard core or soft core), it isn’t tech-
nically a microcomputer, so instead I call it a minicomputer. These two terms are
differentiated in Section 2.

Even though Dauug|36 doesn’t have a microprocessor, it offers 36-bit computing
with paged virtual memory, preemptive multitasking, and a rich instruction set
with more than 180 opcodes. Its physical logic family is synchronous static RAM
containing read-only lookup tables, augmented with fast 7400-series logic. This
union is tricky and somewhat fragile because these components were not designed
for use together. The SRAM employed allows either 2.5 or 3.3 V power, while the
7400-series parts are designed for 1.8 V use. Fortunately, the glue logic datasheets
permit up to 2.7 V, so by using these parts near their highest rated voltage, and the
SRAM parts at their lowest, it’s possible to build the machine. Only ICs rated for
at least industrial use (−40 °C to +85 °C) and that can be hand-soldered appear
in the architecture.

Another discontinuity between the 7400-series ICs and SRAM is how each in-
teracts with the system clock. The SRAM ICs have registered inputs that can be
synchronized by the system clock. The D flip-flops in the 7400 series have clock
inputs, but their clock semantics are not consistent with SRAM’s. The RAMs have
clock enable inputs that the CPU’s control decoder can use to tell each RAM what
to do—or not to do anything—on the next rising edge. These clock enable inputs,
in combination with other control inputs, also provide a clocked output enable capa-
bility for the RAMs. This is vital because many nodes in the circuit must be driven
by different components at different times. In contrast, the stand-alone flip-flops,
including the 16-bit D flip-flops that coordinate divergent data paths through the
CPU, not only don’t have clock enable inputs, but have unregistered output enable
pins that aren’t clocked at all. I would need many more words to explain all the
reasons why this is bad, but the upshot is that SRAM and 7400 logic are difficult
to use alongside each other in clocked circuits.7

Of the more than 50 logic series named with a 74- prefix, the most appealing for
this architecture is 74AUC-, which stands for Advanced Ultra-Low Voltage CMOS.
I only know of one manufacturer for this series, and only a few component types
are offered. Of these, my architecture only uses D flip-flops and trivial logic gates.
My reason for selecting the 74AUC series is that no other has a propagation delay
that can keep pace with prevalent synchronous SRAM ICs. Most SRAMs in the
design offer clock-to-output-valid times of 5.5 ns and can compute any deterministic
function of 18 input bits in that time. In contrast, the surrounding circuits built
from glue logic will generally need more than one gate each, wherein the longest
path should have delay comparable to one SRAM. The 74AUC trivial logic (AND,
OR, NOT, NAND, NOR, XOR, and buffer) propagation delay is between 1.0 and
1.3 ns, so its speed mixes well with synchronous SRAM. Propagation delay for
74AUC flip-flops is 1.1 to 2.2 ns, so they are able to keep pace alongside 5.5 ns

7Note to fabs: Introducing 1- and 16-bit flip-flops with clock enable and clocked output enable
to the 74AUC family would solve this problem. When you do, remember to offer more than ball
grid array packages for those who solder by hand.

18 1 INTRODUCTION

SRAM.
Figure 2 is a conceptual schematic of Dauug|36’s data paths within the CPU

and primary storage. Most paths in the drawing, including nodes 1–5, are 36 bits
wide.8 Rectangles indicate SRAMs, and triangles indicate parallel-wired D flip-
flops in the same number as the number of bits. Wires that touch in the drawing
intersect; the only non-intersecting crossover in the figure is where node 1 is drawn
in front of node 2. To first order, “normal” information flow is through SRAMs,
with the flip-flops offering alternative paths for special-use instructions.

Here is an example of “normal” information flow. Most instructions (more than
130) are arithmetic logic unit (ALU) instructions, where operands are fetched from
the register file, then acted on by a three-layer SRAM ALU, then the computed
result is returned to the register file. Although this circular path appears to take
five clock cycles (fetch operands + 3 ALU + store result), the register file operation
is interleaved such that the same clock edge that accepts write data from nodes
2 and 5 also initiates the next instruction’s fetch to those nodes, while simultane-
ously disconnecting the γ RAMs from nodes 2 and 5. Thus for ALU instructions,
the instruction cycle is always four clock cycles. For control simplicity, all other
instructions also always take four clock cycles.

Another “normal” instruction flow is a load from or store to data memory,
which is located in parallel with portions of the ALU. The privileged instructions
RDM and WDM (read and write data memory) pass all address bits unmodified through
the α RAMs, thereby bypassing the page table. These instructions can access data
memory at any address. The non-privileged LD and STO (load and store) instructions
that ordinary user programs would run pass the highest bits (the 4096-word page)
of each address through the page table, while using two of the α RAMs to pass the
offset within each page unmodified. These instructions can only access those pages
that the operating system has mapped for the currently-executing program.

Most flip-flops in Figure 2 are for special-use instructions where “normal” in-
formation flow needs to be diverted. An example is the WCM (write code memory)
instruction. The address to write at needs to move from the right operand register
at node 5 to the code RAM’s address pins at node 0. This is the purpose of 27-bit
flip-flop “a” (address for code reads and writes) in the drawing. The data to be
written comes from the left operand register at node 2, and passes through 36-bit
flip-flop “w” (write code) to reach the code RAM’s data pins at node 1.

The architecture divides the register file into identical copies kept in separate
SRAM ICs named “left” and “right.” This allows both operands of an instruction
to be fetched on the same rising clock edge. When results are stored back to the
registers, each bit is received from two separate pins in the γ RAMs in order to
keep nodes 2 and 5 electrically distinct. The cost of this separation is that twice
as many bits of storage are needed for the γ RAMs—a negligible drawback because
the smallest RAMs on the market are already wide enough to drive both nodes.

The register file, page table, and return address stack are stratified by user,
an eight-bit, system-global flip-flop indicating which of up to 256 programs is run-

8Node 0 and the unmarked nodes above it are 27 bits to match the architecture’s 27-bit code
address space.

1.4 Dauug|36 as a Collection of Soldered Components 19

w

I/O
subsystem

add one

�rmware load

�rmware load

�rmware
load

return
addresses

code
RAM

left
registers

right
registers

page
table

data
RAM

ALU �

ALU �T

ALU �

t
f r

c

d

i

o

a

m

j

Address for code reads and writes
Bypass page table
Call (save return address)
Destination register
From incrementer
Input from i/o
Jump and call destinations
iMmediate argument
Output to i/o
Return (restore return address)
To incrementer
Write code

Letter Codes for Flip-Flops

node 0

node 1

node 2

node 3

node 4

node 5

W

W

W

W

W Writes Disabled

W

Figure 2: Principal Data Paths of the CPU and Memory Subsystem. All compo-
nents are clocked and have output enables. Triangles and rectangles show D flip-
flops and SRAM respectively. Most paths are 36 bits. SRAM address inputs are
shown with arrows; the bottom SRAM connections exchange bidirectional data.

20 1 INTRODUCTION

ning. User 0 is considered the superuser, the identity used by the operating system
kernel. The remaining 255 numbers are available for use by user programs, al-
though it’s likely that a small number of these will be interruptible kernel subtasks.
One example of a kernel subtask would be a routine that loads a program into
code memory after other user programs have already started. The program loader
needs to be interruptible so that real-time operating system (RTOS) constraints of
already-running programs are not violated by the kernel pausing to load a large,
new program all at once.

The 74AUC logic family does not offer counters or shift registers, and the corre-
sponding parts in other 7400 series are too slow for Dauug|36. But the architecture
needs both, so 74AUC trivial glue logic and 16-bit D flip-flops are used to build up
circuits that do well enough. The program counter incrementer, which adds either
0 or 1 to a 27-bit code memory address, is built from 36 eight-pin packages, all
of which are dual two-input AND or XOR gates. A 16-bit D flip-flop alongside
five XOR gates supplies an 8-bit “up/down counter” that is actually a bidirectional
Galois linear feedback shift register (LFSR). That’s the stack pointer: the CALL and
RETURN instructions respectively invoke its successor and predecessor operations.
Another 16-bit D flip-flop implements a presettable “instruction counter,” also an
LFSR, that periodically interrupts the CPU for preemptive multitasking. This mul-
titasking timer’s preset value determines its interval and is stored in a shift register
hacked from another 16-bit D flip-flop. Timer expiry is represented as 16 binary
ones, which require 15 AND gates to detect.

In addition to SRAM and 7400-series logic, a handful of other components affect
the architecture’s security. The first is that a reservoir is needed for about 100 Mbit
of firmware when the power is off. I opted for a NOR flash IC because it’s the
most transparent means I know that can store firmware at this scale. Punched
paper or Mylar tape would increase transparency of operation, but at 2.54 mm per
byte stored (the prevailing standard when punched tape was last popular), the tape
would be 33 km long. Of the alternatives, I was most confident loading firmware
from a solitary NOR flash IC that is electrically isolated such that the CPU cannot
modify it.

Although programmable frequency synthesizer ICs containing micro-electrome-
chanical system (MEMS) oscillators have largely replaced crystals for system clocks
in new designs, Dauug|36 uses a crystal oscillator for two reasons. First, MEMS
oscillators would be a perfect vector for introducing time-related logic bombs into
an electronics supply chain. If I wanted to compromise a nation’s critical infrastruc-
ture or military electronics and evade detection, tampering with the MEMS device
supply chain would be my first idea. One manufacturer’s white paper disavows
culpability here, using the inaccurate claim that producing secure code is beyond
the ability of all semiconductor manufacturers, and then suggests suing attackers
under the Digital Millennium Copyright Act as a defense strategy for vulnerable
silicon [18]. Second, I have found no data retention information for MEMS devices.
How many years will a circuit run before a clock forgets what frequency to output?
Dauug|36 plays it safe and uses a regular crystal oscillator. Likewise, Dauug|36’s
clock driver eschews recently-marketed clock distribution ICs that are extremely

2 DEFINITIONS AND ABBREVIATIONS 21

sophisticated and could conceal associated vulnerabilities.
Another class of security-problematic components is electrolytic capacitors. Be-

cause ISO 27000 [20] includes availability within its definition of information secu-
rity, wear-out failure of electrolytic capacitors is not an option. What should be
used instead of electrolytics is a field of active study. I intend to use multi-layer
ceramic capacitors (MLCCs) in early Dauug|36 prototypes. I am less concerned
about electrolytic capacitors in commodity power supplies that can be replaced
easily, subject to their environment’s sensitivity to outages and servicing.

2 Definitions and Abbreviations
The Dauug|36 architecture employs terms defined in [20], plus the following defini-
tions for concepts that do not have well-known terms. Key abbreviations are also
spelled out.

ALU. Arithmetic logic unit.
Arithmetic shift. Multiplication or division by a power of two, rounding to-

wards −∞ in the case of division. (This is not the customary definition.)
Buyer. An authority responsible for the selection, procurement, installation,

operation, and security of a computing platform on behalf of a risk owner.
Clock cycle. The span of time between two consecutive rising edges of the

system clock oscillator.
Code RAM. A primary storage SRAM that contains instructions that are

fetched and executed by the CPU.
Complex logic. Digital electronic parts that, because of their complexity, may

contain unseen exploitable defects.
CPU cycle. The amortized span of clock cycles required to execute a CPU

instruction. In Dauug|36 systems, a CPU cycle is four clock cycles.
Data RAM. One or more primary storage SRAMs that are read or written by

load or store instructions.
Discounted logic. Digital electronic parts that are unlikely to contain ex-

ploitable defects, as evidenced in a written assessment or other approved measure.
Firmware loader. Circuit that cold-boots a minicomputer, including logic that

copies firmware from nonvolatile storage to SRAM logic elements and code memory.
FSM. Finite state machine.
Instruction. A 36-bit word in code memory consisting of an opcode with zero,

one, two, or three operands.
Internal firewall. A boundary that isolates a portion of circuitry that is not

solder-defined, such that exploits of defects within that portion cannot escape.
LFSR. Linear feedback shift register in Galois configuration.
Logical shift. A binary shift without any intent to multiply or divide. Unlike

arithmetic shift, no overflow check is made.
Maker-scale assembly tools. Capital equipment for electronics assembly that

can be made available to most technically knowledgeable builders.

22 3 DAUUG|36 AS A PROGRAMMABLE MACHINE

MEMS oscillator. A frequency synthesizer IC referenced to an on-die micro-
electromechanical system (MEMS) resonator. Their displacement of crystal oscil-
lators raises security concerns.

Mibit. 220 = 1 048 576 bits. In contrast, 1 Mbit is 1 000 000 bits.
Microcomputer. According to custom and [10], a “computer system that uti-

lizes a microprocessor as its central control and arithmetic element.”
Microprocessor. A die that contains at least one complete CPU.
Minicomputer. A computer wherein all hardware logic that may contain ex-

ploitable defects is solder-defined, and all firmware is open-source.
Net. An electrically contiguous set of component pins. A net may communicate

one bit at a time among electrical components.
Node. An intentional grouping of related nets. A node may communicate many

bits, such as a word, at a time among electrical components.
Opcode. A nine-bit field in a CPU instruction that the control decoder uses to

determine the necessary control signals to execute the instruction.
Opcode family. A group of opcodes that have the same purpose but need

different control signals due to minor variations.
Operand. A field within an instruction containing a 9-bit register number,

18-bit integer constant, or 27-bit code address.
Overrange. A convenient synonym for out-of-range. In this paper, this word

does not distinguish between overflow and underflow.
Primary storage. Non-cache memory that is accessible to or contains individ-

ual CPU instructions. Ordinarily termed “RAM” outside this paper.
PRNG. Pseudorandom number generator.
Program loader. Operating system code that copies a program to code mem-

ory, excludes forbidden privileged instructions, and completes link editing.
RAM. Within this paper, an informal abbreviation for SRAM.
SPN. Substitution-permutation network.
SRAM. Static RAM. Most SRAM ICs in this paper implements logic using

read-only lookup tables. A few SRAMs provide read-write storage.
Solder-defined behavior. Intentional operational characteristics of solder-

defined hardware when used with exclusively open-source firmware.
Solder-defined hardware. Digital electronics needing only maker-scale assem-

bly tools to build, in which all complex logic components are discounted.
Tribble. A six-bit subword of a 36-bit word. This word envisions a “tri-nibble,”

a nibble that has been enlarged to the next multiple of three.
Word. A bit vector of a CPU architecture’s natural size. Dauug|36’s natural

size is 36 bits for both code and data.

3 Dauug|36 as a Programmable Machine
Having considered the physical makeup of Dauug|36 in Section 1.4, I here describe
the architecture’s operational makeup. Ordinarily a description in this much detail
would be excessive for peer literature, but in this case the information presented

3.1 State 23

gives an approximation of the capabilities, performance, and cost that a solder-
defined architecture can reach. This information is new to the literature and is not
available elsewhere. Also from these details can be inferred a set of strategies for
optimal use of the SRAM-with-74AUC logic family, as well as a benchmark for the
best implementation to date.

3.1 State
The end deliverable in software development is a machine-executable set of rule-
based state transitions. This section outlines what state is available to modify,
thereby giving an outline of how software functions on Dauug|36 machines. This
section’s brevity advances an important point: the architecture is very simple in
comparison with other contemporary architectures. This simplicity not only enables
an SRAM-with-7400 architecture to exist, but allows the architecture to be readily
understood even by a single person.

3.1.1 State for User Programs

From a non-privileged program’s perspective, the internal state of the architecture
is as follows.

Registers. Each program running has exclusive use of 512 registers. Every
register is 36 bits wide.9 All registers are considered to contain integers; there is
no native floating-point representation. As a convenience, registers are declared
with variable names and signages in assembly language, much like other languages
declare signed and unsigned integers.

N(egative) flag. This one-bit flag can be set by the ALU to indicate that a
result is negative. This flag’s semantics are stratified by opcode, so the meaning of
“negative” varies depending on what is appropriate. The N(egative) flag does not
always match bit 35 of a numeric result because the ALU considers signage and
overflow.

R(ange) flag. This one-bit flag can be set by the ALU to indicate that the
true value of a numeric result does not fit in its destination register. Setting the
R(ange) flag is intended to indicate an error condition; therefore, it is not cleared by
subsequent ALU instructions, even if they succeed. Only a CRF (clear range flag)
or REVERT (return from subroutine with flags unchanged) instruction can clear the
R(ange) flag.

T(emporal) flag. This one-bit flag is a non-sticky counterpart of the R(ange)
flag. The ALU sets this flag to indicate that the true result of the most recent
arithmetic instruction does not fit in its destination register. Unlike the R(ange)
flag, the T(emporal) flag must be tested immediately in order to be useful.

Z(ero) flag. This one-bit flag can be set by the ALU to indicate that the true
value of a numeric result is zero. The Z(ero) flag is not always set when all 36 bits
of a numeric result are zero because the ALU considers overflow and underflow.

9Simplification. To speed operand fetching, every register has a left copy and a right copy,
each of which are 36 bits. In fancy circumstances, these “copies” can contain different values.

24 3 DAUUG|36 AS A PROGRAMMABLE MACHINE

Data memory. A non-privileged program can address 8Mi words of virtual data
memory. Here again, the word size is 36 bits. Data memory is always addressed
with word granularity; it is not byte-addressable. Non-privileged programs cannot
access physical memory directly; they are constrained by the page table.

Data memory edge cases. The following phenomena matter little to most
user programs, but can be observed. Physical and virtual memory are managed in
4096-word pages. The architecture has no concept of page faults. Instead, all virtual
addresses are guaranteed to be backed by physical memory. More than one virtual
page can be mapped to any physical page. Virtual pages can be write-protected.
Typically, an operating system will allocate and maintain a single all-zero physical
page for the entire system, and map all unneeded virtual pages to it with write
protection.

Stack. The stack is a circular buffer with 255 entries. Each entry consists of
a 27-bit subroutine return address, alongside the four CPU flags (N, R, T, Z) at
the time of the corresponding CALL instruction. The RETURN instruction branches
to the return address at the “top” of the stack and discards the saved CPU flags.
In this situation, the caller sees any flag modifications made by the subroutine. A
REVERT instruction works like return, except the original flags are restored exactly
as the caller had them.

What the stack is not. The only access to stack memory is via CALL, RETURN,
and their variants. The LD (load) and STO (store) instructions and their variants
have no access to the stack. The stack is stored on its own dedicated SRAM IC,
and there is no way to obtain a pointer to a stack location. There is no random
access to stack locations. The only information contained in the stack are return
addresses and CPU flags; program data such as local variables are never on the
stack.10 Dauug|36 has no support for stack-based recursion—a small price to pay
for completely preventing stack corruption and overflow.

Stack pointer. The stack pointer is not directly accessible to programs, but
is adjusted by ±1 by CALL, RETURN, and their variants.11 If the pointer overflows
its 255 possible states, the user program is likely to get lost, but there won’t be
a security concern. If the pointer underflows, the user program will RETURN to
operating system code that, because the user program underflowed its stack, will
safely terminate the user program.

Code memory. The behavior of user programs is determined by their represen-
tation in code memory; however, user programs have no access to this representation
other than by fetching the next instruction to immediately execute. User programs
cannot read or write code memory.

Instruction pointer. The instruction pointer is the address of the next in-
struction to be executed in code memory. The instruction pointer is write-only. It
can be modified by variants of CALL, RETURN, and JUMP, but there is no electrical
path that can enable programs to inspect it.

CPU possession. Although a program isn’t conscious of when it’s not running,

10Small to medium programs should keep most or all variables in their 512 available registers.
11Simplification. The stack pointer is a reversible 8-bit linear feedback shift register, not an

up/down counter.

3.1 State 25

a program can surrender the remainder of its timeslice via the YIELD instruction.
This is a state change.

3.1.2 State for Privileged Programs

It is recommended that the only Dauug|36 privileged programs be the operating
system kernel that runs as user 0, and its interruptible subtasks that run as non-
zero users. From the kernel’s perspective, the internal state of the architecture is
as stated for non-privileged programs, plus the following privileged state:

Code memory. Up to 4Mi words of code memory can be installed. Privileged
programs can read from and write to all of it. The electrical path to read from
code memory is too long to fit in four clock cycles, so a contiguous sequence of two
instructions is needed to read. Information loss will occur if the RCM1 and RCM2
(read code memory 1 and 2) instructions are not contiguous. Writing a word to
code memory takes one instruction.

Data memory. Privileged programs can read from and write to all physical
data memory, bypassing the page table. Up to 8Mi words of physical data memory
can be installed.

User. The user is an 8-bit flip-flop that indicates which of up to 256 programs
is running. User 0 is reserved for the operating system kernel, also called the
“superuser.” User 0 is electrically immune to preemption by the multitasking timer.

The user number electrically stratifies the registers, page table, and stack into
separate partitions for each program. For example, every program can access 512
registers (9 address bits), and there can be 256 programs (8 address bits). Thus the
architecture has 131 072 registers, which are chosen via 17 address bits. Likewise,
each program has 2048 page table entries, for a total page table size of 512Ki words,
and 256 stack entries, for a total stack size of 64Ki words.12

Page table. The page table, which can be read and written by privileged
programs, maps virtual pages to physical pages in data memory. Section 3.4 offers
more specifics.

Privilege mode. The contents of the user register can be selectively masked
with all zeros, enabling the kernel to do housekeeping on other programs’ regis-
ters, stacks, and page tables. Table 6 (p. 39) shows this relationship. The PRIV
instruction dynamically substitutes user 0 for whatever the user register contains,
essentially entering a “superuser mode.” The NPRIV instruction restores normal ac-
cess to the registers, stacks, and page table, essentially entering a “normal mode.”
The SETUP instruction is a hybrid of PRIV and NPRIV, allowing the kernel to ex-
change data between its own registers and a different program’s page table and
stack.

Timer setpoint. Preemptive multitasking is achieved by forcibly interrupting
the CPU after a user program has executed a certain number of instructions. This
number of user instructions is effectively a multitasking timer interval, which can
vary between 2 and 65 535. Supporting a larger setpoint in hardware is not necessary
because the round-trip time from user to kernel to user is just 20 clock cycles—the

12Because of LFSR limitations, only stack locations 1–255 are available to each user.

26 3 DAUUG|36 AS A PROGRAMMABLE MACHINE

time required for 5 CPU instructions. Thus the overhead incurred to extend a user’s
CPU allocation beyond one time slice is less than 0.01%.

The timer itself is implemented as a 16-bit LFSR, so the timer setpoint is es-
sentially a starting point within the sequence. It is not a linear count, but must be
calculated. For example, the setpoint for the maximum interval of 65 535 instruc-
tions turns out to be 1010 1111 1111 0111.

Timer progress. The multitasking timer LFSR’s present 16-bit value is not
observable; however, control of the CPU will return to the kernel when the LFSR
value reaches 65 535.

3.2 Firmware
Other than D flip-flops, the architecture has 200-or-so logic gates comprising invert-
ers and two-input AND, NAND, OR, NOR, and XOR. All are used for control; no
basic gates appear in the data path. Instead, all Dauug|36 computation is achieved
by lookup tables that are stored in every SRAM that does computation. These
lookup tables are called firmware, and must be copied from nonvolatile storage (se-
rial NOR flash) to the SRAMs at power-up. Once the firmware is in place, all writes
to these SRAMs are disabled until power is removed. Importantly for security, the
CPU is electrically unable to alter the contents of either the nonvolatile storage or
any SRAM used as logic.

When discussing Dauug|36 as a programmable machine, firmware almost doesn’t
have to be mentioned because usually firmware can be abstracted away. Instead,
one can say that the LD (load) instruction does such and such, TIMER does some-
thing else, etc. All these behaviors can be implemented with basic gates instead of
SRAM, although size, cost, power, and execution time would increase intolerably.
Writers of user programs or even OS kernels can look at the CPU’s semantics and
behavior as merely these and ignore firmware behind the scenes. Yet firmware is
central to implementing the architecture and evaluating its security.

Firmware is also the language in which the instruction set is extended. For
example as of early 2024, there is no library code for integer division, and the person
responsible for writing division routines will, by extending the firmware, create new
CPU instructions that harness the ALU’s potential to accelerate division.

Table 5 inventories the 23 SRAMs that firmware is loaded into. Of these, all
but one are exclusively for firmware. After the firmware loader’s work is done and
before the operating system is loaded, further writes to these RAMs are disabled.
The exception is the code RAM. The firmware loader’s final task is to transfer a short
program called the boot loader to the code RAM and start it. It is the boot loader’s
job to load the operating system from external media and start that. Because the
boot loader is maintained in the same nonvolatile storage as the firmware and is
brought into the system by the firmware loader, the boot loader is deemed to be
firmware.

Two 128Ki × 36 SRAMs are wired in tandem for 128Ki × 72 and form the
instruction decoder. Most of this memory is unused, but what is used accepts a nine-
bit opcode, a two-bit cycle indicator (there are four clock cycles in an instruction),

3.3 Instruction Format 27

Table 5: SRAMs that contain firmware. The code RAM only contains firmware
until the operating system has been loaded. The other SRAMs are used solely as
logic and cannot be modified after firmware is loaded. The address space supports
128Mi words of code RAM, but present SRAM ICs are much smaller.

Name Qty. Organization Purpose
C 1 up to 4Mi × 36 boot loader in code RAM
D 2 128Ki × 36 instruction decoder
α 6 256Ki × 18 α (first) layer of ALU
β 6 256Ki × 18 β (second) layer of ALU
γ 6 256Ki × 18 γ (third) layer of ALU
θ 1 256Ki × 18 subword look-across and carry propagation
ζ 1 256Ki × 18 CPU flag generation

and two “hijack” bits that indicate when a multitasking context switch is occurring.
The output is 44 control bits that, as they change during the four clock cycles of
an instruction, tell the circuit board how to execute the instruction.

The 20 remaining SRAMs that contain firmware implement the arithmetic logic
unit. The main section of the ALU uses 18 RAMs, arranged in three layers of six
RAMs that operate in parallel as will be shown in Figure 12 (p. 53). The ALU
uses a bit-slicing scheme, where each 36-bit operand is split into six-bit subwords,
also called tribbles. The ALU uses six RAMs at a time on these six-bit subwords to
advance a 36-bit word through one clock cycle of computation. The operation done
by each RAM is very small, such as add two tribbles, logical AND of two tribbles,
etc. Because the ALU has three layers, it takes three clock cycles for a calculation
to proceed fully through the ALU. The layers are named α (alpha), β (beta), and γ
(gamma) after their sequential order.

The ALU’s six-bit slices are logically connected for carry propagation and other
needs by an SRAM named θ (theta). Another SRAM, ζ (zeta), combines many
inputs to produce the four CPU flags N(egative), R(ange), T(emporal), and Z(ero).

3.3 Instruction Format
Every Dauug|36 instruction is encoded as a 36-bit word. There are four possible
formats; these are shown in Figure 3 and are as similar to each other as practical.
Each format is named after the number of fields it contains; for example, Format
III has three fields.

Format IV is the most common and is used for ALU instructions. This format
provides a 9-bit destination register, left operand register, and right operand regis-
ter. Except for the always-leftmost opcode, the field order purposely conforms to
infix arithmetic in the form c = a + b.

Format III is for instructions that move immediate values to registers, such

28 3 DAUUG|36 AS A PROGRAMMABLE MACHINE

opcode

opcode

opcode

opcode left register right register

immediate value

branch target in code memory

dest. register

dest. register

ignoredFormat I

Format II

Format III

Format IV

bits 8–0bits 17–9bits 26–18bits 35–27

Figure 3: Dauug|36 CPU instruction formats. Every field is a multiple of nine
bits.

o�setvirtual page

bits 22–12 bits 11–00

reserved

bits 35–23

Figure 4: Virtual address format for data memory. The virtual page field’s width
matches Figure 5, and can grow in the future from the reserved field.

as IMN (immediate negative). Eighteen bits can be specified, which cover many
frequently-used integer constants. Constants that don’t fit in 18 bits require three
instructions to load, typically IMH (immediate high), IMP (immediate positive), and
OR (logical OR).

Format II is for branch instructions such as JUMP and CALL. All Dauug|36
branch destinations that aren’t from the stack (like RETURN) are absolute addresses.
This allows the operating system kernel to police all access to code memory, even
though the architecture includes no code memory protection hardware.

Format I is the simplest. The CPU is guaranteed to ignore all bits except for
the opcode, which represents an instruction like CRF (clear range flag), NOP (no
operation), RETURN, etc.

3.4 Address Formats, Memory Protection, and Memory Ca-
pacity

Figures 4, 5, and 6 show the virtual and physical address formats for data memory
and their relationship. In brief, the page table is indexed by virtual page numbers
to look up physical page numbers by direct substitution. Each page contains 4096
words. Separation between programs is achieved by using eight bits of each virtual
page number to identify the owning program. Ownership only applies to virtual
pages; all physical pages are “owned” by the kernel. To be secure, this mechanism
requires every page table entry to be valid, which can be achieved by filling unneeded
entries with a single write-protected “zero page” for the entire system.

Physical pages may not all be contiguous. The present netlist permits one or

3.4 Address Formats, Memory Protection, and Memory Capacity 29

physical page

bits 15–0

bit 16: chip select (M1 vs. M0)

bit 17: write disable

virtual pageuser

bits 18–11 bits 10–0

INPUT

OUTPUT

Figure 5: Page table RAM’s input and output bit assignments

o�setphysical page

bits 27–12 bits 11–00

bit 35: write disable

bit 34: chip select (M1 vs. M0)

reserved

bits 33–28

Figure 6: Physical address format for data memory. The reserved field can be re-
allocated if SRAM densities improve significantly to expand the number of physical
pages.

two data memory SRAM ICs using bit 34 as a chip select bit. Bit 35 is a write
disable flag, effectively causing every memory location to have a writable and non-
writable representation. This limits the physical address space to 35 bits at present,
although it would be easy to semantically attach write protection to virtual memory
instead, thereby increasing the physical data memory address space to 36 bits.

On actual machines, the amount of data memory will be much smaller. Although
288 Mibit SRAMs are sold organized as 8Mi × 36, and the architecture supports
two, these parts are only available in ball grid array packages. These are unrealistic
to place or solder by hand. Makers with modest capabilities will be limited to
144 Mibit (4Mi × 36) ICs with linear pins. Parts larger than 288 Mibit are not sold
as of early 2024. Although DRAM lore attributes this to SRAM’s high comparative
transistor count per cell, that isn’t why. Process technology for considerably larger
SRAMs does exist, yet part sizes have not increased since 2015. SRAMs are also
more expensive than DRAMs, again due primarily to market factors. Not only do
SRAMs use more transistors per bit than DRAM, but SRAM prices are around 100
times more per transistor.

30 3 DAUUG|36 AS A PROGRAMMABLE MACHINE

To some degree, foundries are ready to scale up if demand emerges for larger
SRAM ICs, but challenges have arisen shrinking SRAM cells for nonplanar processes
[33]. SRAM cells as small as 0.02 µm2 can be made at scale, suggesting that a
4608 Mibit, 128Mi × 36 SRAM IC can be built on a 1 cm2 die. But its static power
consumption and self-heating will be high, and expensive GPUs for training AI
models will compete with the RAM for manufacturing capacity.

3.5 Logic
The firmware implements one opcode for each of the 16 bitwise boolean functions
of two words:

• all zeros, all ones

• AND, OR, NAND, NOR, XOR, XNOR

• exactly left, NOT left, exactly right, NOT right

• left AND NOT right, right AND NOT left, left OR NOT right, right OR NOT
left

Some of these are not helpful, but AND NOT in particular is useful to have as one
instruction.

The architecture implements left and right logical shifts and rotations, each
as one instruction. An encoding must be used to represent the shift or rotation
displacement because this information is needed within each of the ALU’s six-bit
slices. For left shifts and rotations, the encoding is e = 0101010101018 × n, where
e is the encoding placed in the right operand, and 0 ≤ n < 36 is the number of
positions to shift or rotate. In other words, the number of bits to shift is replicated
to all six tribbles of the encoding. For right rotations or shifts, use encoding e =
0101010101018 ×(36−n), where 1 ≤ n < 36. In other words, the equivalent number
of bits to rotate left is replicated to each tribble. To shift or rotate right by zero
bits, use e = 0.

If an encoded displacement is not in a register when it is needed for a shift
or rotation, it must be prepared on the fly. This would cause the rotation or
shift to require two instructions instead of one. Although the described encodings
suggest multiplication, that would take a while. Special opcodes exist to encode
the displacement in one instruction.

3.6 Arithmetic
3.6.1 Single-Instruction Arithmetic

The basic operations add, subtract, arithmetic shift left, and arithmetic shift right
are available for 36-bit signed and unsigned integers. These use one instruction each,
assuming that shift and rotation displacements are already encoded per Section 3.5.
I have improved these instructions’ semantics relative to prevalent CPUs.

3.6 Arithmetic 31

For most CPUs, arithmetic instructions only offer homogeneous signage. Either
two unsigned integers produce an unsigned result, or two signed integers produce a
signed result. This covers only two of eight possible situations. Dauug|36 addition
and subtraction support heterogeneous signage, so all of the following automatically
work correctly:

• unsigned = unsigned + unsigned • signed = unsigned + unsigned
• unsigned = unsigned + signed • signed = unsigned + signed
• unsigned = signed + unsigned • signed = signed + unsigned
• unsigned = signed + signed • signed = signed + signed

The above stratification by signedness is achieved by implementing eight op-
codes for addition. The assembler selects the correct opcode based on whether each
register is declared as unsigned or signed. This frees the programmer from needing
to think hard about signedness or worry about conflicts because all that matters
is that the result fits in the destination register and is interpreted with the correct
signage.

Most computers detect out-of-range additive operations using a scheme that
was modern 60 years ago that checks a carry flag or overflow flag for fully-unsigned
and fully-signed operations respectively [13]. There are a few problems with these
scheme, starting with the issue that neither flag is decisive by itself even for homo-
geneous-signage addition and subtraction. They do not work for heterogeneous
addition and subtraction,13 nor do they know anything about left or right arithmetic
shifts. On top of this, many programmers—and programming languages—recklessly
don’t even bother to check for out-of-range results.

Dauug|36 presses for a higher standard. The architecture doesn’t have a carry
or overflow flag because they seek the wrong information. The right question is, “is
the stored result of a recent calculation incorrect?” Dauug|36 supplies the answer
via a CPU flag named R(ange). This flag is turned on whenever the result of an
addition or subtraction does not fit in its destination register. The R(ange) flag is
also turned on when the result of an arithmetic shift is not exactly equivalent to
multiplying or dividing by the corresponding power of two.14 Further calculations
do not turn R(ange) off; the flag is only cleared by the CRF (clear range flag) and
REVERT (subroutine return with original flags) instructions.

When testing the R(ange) flag, the programmer doesn’t need to know anything
about operand or destination signage. The R(ange) flag is turned on if and only if
it is not already on and a result does not fit in the destination register. In addition
to working for all eight signage variations for addition and all eight for subtraction,
the flag works for all four variants of arithmetic shift left (shift signed/unsigned
register into signed/unsigned result) and all four for arithmetic shift right.

When an out-of-range condition needs to be detected for the last instruction only,
Dauug|36 supplies a T(emporal) flag. Any computation that may turn R(ange) on

13For example, whether a 4-bit sum 10002 + 10002 carries, overflows, or is zero depends on the
operands’ signages.

14Right arithmetic shift quotients are rounded toward negative infinity.

32 3 DAUUG|36 AS A PROGRAMMABLE MACHINE

will turn the T(emporal) flag on or off to indicate whether the destination is able to
hold the full result.

3.6.2 Short Multiplication

Dauug|36 does not include a hardware multiplier. In the absence of heavy num-
ber crunching, asymmetric cryptography, or artificial intelligence, most computer
multiplication is for the purpose of computing memory addresses of array elements.
The hardware requirements to do this efficiently are quite minimal.

Dauug|36 defines short multiplication as unsigned multiplication where one fac-
tor is known to be less than 64, and the result is known to fit in 36 bits. The small
factor will often be size of an array element in words, and is ordinarily known when
the program is assembled. This factor is replicated across the six tribbles of a word,
e.g. by multiplying by 0101010101018. So if we’re multiplying by 19 = 238 for
example, a control word of 2323232323238 is used.

With the large factor and encoded small factor in hand, the architecture’s ML
(multiply low) and MH (multiply high) instructions are invoked. Both multiply each
factor across the bit slices of the ALU, with six bits taken from the large factor, and
six from the expanded small factor. The reason for using two different instructions
is that when we multiply six bits by six bits, the result will be twelve bits, but each
bit slice only fits six bits. ML and MH multiply the same numbers, except ML returns
the six least-significant bits of the product, and MH returns the six most-significant.

Something else needs to happen before the two “partial products” are added:
the most-significant bits need to move six bit positions leftward to obtain their
correct place values. This isn’t exactly what happens. Instead, MH rotates its result
six bits left. This result will be incorrect if the six wrapped bits are anything but
all zeros. MH knows about this and will set the R(ange) and T(emporal) flags if this
error occurs. But considering that the architecture won’t have more than 236 words
of data memory under any circumstance, we already know that for computing array
offsets, the results of MH and ML added together will always fit in their destination.
Thus the architecture offers short multiplication in just three instructions (MH, ML,
A), or 12 clock cycles, with no special hardware.

3.6.3 Long Multiplication

By long multiplication, I mean unsigned multiplication of two words to produce a
72-bit result. This has to be done in software and takes 35 instructions (140 clock
cycles), plus a probable CALL and RETURN. Many embedded systems rarely need
to do long multiplication. Getting this as fast as 35 instructions requires elaborate
ALU firmware tricks to create several oddball instructions. A full explanation is
beyond the scope of this paper and is available in the system documentation, so
here are illustrative excerpts for two of the instructions used:

DSL (double shift left)
c = a dsl b

3.6 Arithmetic 33

DSL adds the T(emporal) flag with wrapping to b, and then shifts the sum left
six bits. The six vacated bits are filled using the six leftmost bits of a. The result
is written to c.

MHL4 (multiply high and low, tribble 4)
c = a mhl4 b
MHL4 replicates tribble 4 (bits 24–29) of a across all six subwords, and then

multiplies them pairwise with the tribbles of b. In order to fit the six 12-bit results
into c, the six most significant bits of each product are written to the left copy of
c, and the six least significant bits of each product are written to the right copy of
c. No flags are changed.

3.6.4 Adding a Hardware Multiplier to the Architecture

In most cases, there is no performance advantage in adding a fast SRAM multiplier
to Dauug|36. Such a multiplier would more than double the size of the whole
computer for a seldom-used instruction. Having said that, I present an elaborate
explanation of how to multiply quickly using SRAM as logic in chapter 10 of [2].
I also wrote a Rust program [1] to generate and test SRAM multipliers for any
combination of factor signages, including an “either” option that allows a factor to
be declared unsigned or signed at the time of multiplication. Factor lengths need
not be identical and can be several thousand bits.

Although there are no plans to add a hardware multiplier to Dauug|36, its
cost and performance have been calculated. A 36-bit, either-signage multiplier
would require 49 SRAMs, all of which are 256Ki × 18. Dozens of 16-bit D flip-
flops would be needed to load 91 164 672 bits of firmware into these SRAMs. A
36-bit multiplication with a 72-bit result, with either factor independently signed
or unsigned, would take five clock cycles.15 Instruction decoding, operand fetching,
and storing the result must also happen, so a hardware-multiplier instruction will
require as much time as two regular instructions.

3.6.5 Division

Division is not implemented yet, although assembly subroutines that quickly divide
by 24 and 60 have been tested. A triage scheme to leverage Dauug|36 for unsigned
integer division appears in [3]. The method stratifies division into six cases, then
uses the ALU’s ability to (sometimes) do more than one task per instruction to find
the quotient and remainder.

• If the numerator is less than 64, the ALU directly looks up the quotient.

• If the denominator is a power of two, the process becomes a right arithmetic
shift.

15The multiplier can complete a 36-bit multiplication every clock cycle, but its path length is
five clock cycles.

34 3 DAUUG|36 AS A PROGRAMMABLE MACHINE

• If the denominator is less than 64 and is not one of (29, 37, 53, 58, 59, 61), a
short series of shifts and adds completes the division.

• If the denominator is less than 4096, its 36-bit reciprocal is recalled from the
firmware, and the division is completed by long multiplication.

• If the denominator is larger, binary long division with non-restoring subtrac-
tion is done.16

• If the denominator is zero, the numerator is copied to the quotient and re-
mainder.17

3.7 Advanced ALU Instructions
Because Dauug|36 computers are for building at millimeter scale using off-the-
shelf components, they face a performance ceiling that would be difficult to raise.
Moreover, the process technology used in today’s SRAM ICs is already fifteen years
old, making SRAM capacity for code memory lackluster. These missed capabilities
are partially restored by making use of the ALU’s distributed construction: because
the ALU has 20 SRAM ICs, some of these ICs can be used for different tasks within
the same instruction cycle.

“Advanced” instructions that speed up the architecture have two general flavors.
Some instructions are effectively catenations of instructions that use different parts
of the ALU. A trivial example is NAND, which does a bitwise AND in the ALU’s
α layer and a bitwise NOT in the β layer. Other instructions exploit the ALU’s
high interconnectedness to do tasks in a fixed number of clock cycles that other
architectures use a loop for. For instance, a hash function for associative arrays
uses only one instruction per input word because Dauug|36’s ALU is a special case
of a substitution-permutation network. Ordinary ALUs would be envious of the
MIX and XIM instructions.

This section introduces some noteworthy ALU instructions that speed up com-
putation and reduce code size. For operational details, the reader may consult [2]
and [3].

3.7.1 Reverse Subtraction

Because subtraction is not commutative, operand order makes a difference. On
ordinary CPUs, the desired sign is obtained by swapping operands if necessary.
Swapping is not always possible on Dauug|36 because occasionally the contents of
a register will depend on whether it is fetched as the left operand or as the right
operand. This is the case, for example, after Section 3.6.3’s MHL4 instruction, or
if a hardware multiplier is added that atomically stores a 72-bit product. For this
reason, all S (subtract) opcodes are offered with RS (reverse subtract) variants.

16The architecture’s ability to count leading zeros without using loops considerably speeds long
division.

17Dividing by zero is not wrong, but there are infinitely many correct quotients and only one
correct remainder.

3.7 Advanced ALU Instructions 35

3.7.2 Minimum and Maximum

Although MIN and MAX are not advanced ideas, most architectures employ more than
one instruction, including a branch, to implement them. Dauug|36 boasts eight
signage-stratified MIN instructions with full range checking, and eight matching MAX
instructions.

3.7.3 Nudge Integer to Offset from Power of Two

Sometimes one needs to discard the rightmost bits of an integer and replace them
with a fixed substitute. This is equivalent to adjusting n such that n (mod p) = r
without changing ⌊n ÷ p⌋, where n, p, and r are non-negative integers, p is a power
of two, and r < p. Although this sounds esoteric, it’s useful for hopping a pointer
among the fields of a power-of-two-aligned structure, and Dauug|36 can do it in a
single instruction. When presented n as a left operand and p+r as a right operand,
the NUDGE instruction replaces the rightmost log2 p bits of n with the bits of r and
returns the result.

3.7.4 Population Count (Hamming Weight)

The number of 1 bits in a 36-bit word can be counted in a sequence of two in-
structions: a variant of STUN (stacked unary) that will eventually be available as an
assembler macro named HAM1 (Hamming weight 1), and an opcode named HAM2.

3.7.5 Tribble Swizzling

A set of commonly-occurring rearrangements of a register’s 6-bit subwords is ac-
cessible via the SWIZ instruction. The most-often used of these is rearrangement
0, which copies tribble 0 (the six least-significant bits) of a word to the other five.
Thus the expression x SWIZ 0 is equivalent to multiplying the six least-significant
bits of x by 0101010101018.

3.7.6 Transposing XOR

As data passes through the bit-sliced ALU, the slices are not kept as-is. The six α
RAMs transmit one bit to each of the six β RAMs, and the six β RAMs transmit
one bit each to the γ RAMs. (See Figure 13, p. 54.) The firmware makes extensive
use of these wiring transpositions. The TXOR (transposing XOR) instruction lets
the programmer access the transpositions directly.

In the instruction c = a txor b, the bits of b are transposed to compute b⊤

by relocating the i th bit of tribble j to the j th bit of tribble i for all i, j ∈ {0...5}.
The bitwise XOR of a with b⊤ is then written to destination c.18

TXOR can be used to obtain the transpose of a register. To do this, use zero for
a.

18Simplification. The netlist implements (a⊤⊕ b)⊤ instead of a ⊕ b⊤.

36 3 DAUUG|36 AS A PROGRAMMABLE MACHINE

3.7.7 Bit Permutations

Because the SRAMs in the bit-sliced ALU operate on six-bit subwords, these RAMs
can be used to look up permutations of six-bit tribbles taken from the left operand.
Which permutation to apply comes from the corresponding right operand tribble,
and because there are only 64 possible values, the architecture can only implement
64 of the 6! = 720 permutations of six bits. The 64 implemented were chosen
for their likelihood of programmer interest and for being a complete set such that
each of the 720 permutations can be reached as a catenation of two implemented
permutations.

The full story about bit permutations is lengthy, but the outcome for program-
mers is that some of the simpler word permutations, such as reversing the order of
all 36 bits, can be done in one CPU instruction. It is also known that any needed
permutation of 36 bits can be achieved in five or fewer CPU instructions. These
instructions are named PIT (permute inside tribbles, which is done in the ALU’s
γ layer), PAT (permute across tribbles, within the transposed β layer), and PAIT
(permute across and inside tribbles, in the transposed β layer followed by γ).

3.7.8 Substitution-Permutation Network Instructions

The full interconnectedness between the RAMs in the ALU’s α and β layers, and
subsequently the β and γ layers, allow the ALU to function as a substitution-
permutation network. At each of the three layers, tribbles from the left operand are
replaced by S-boxes selected by tribbles from the right operand. The instruction
that does this is MIX, and its inverse is XIM. So for any 36-bit plaintext x and 36-bit
key k:

x = (x MIX k) XIM k = (x XIM k) MIX k

The S-boxes for MIX and XIM derive algorithmically from nothing-up-my-sleeve num-
ber

√
2. Uses for MIX and XIM may include the following:

• As a hash function for associative arrays. A running hash beginning with an
undisclosed random seed is used as the left operand for either MIX or XIM. The
right operand is the next word to be included in the hash. This scheme uses
one instruction per word hashed.

• As the second instruction of a two-instruction pseudorandom number gener-
ator (PRNG). The first instruction is a STUN (stacked unary) configured as
a linear feedback shift register starting from a non-zero random seed. The
output of STUN is fed back to itself to produce successive keys that become
the right operand of either MIX or XIM. The first MIX or XIM takes its left
operand from another random seed, and its output is fed back as the PRNG
output and next left operand. Although this PRNG is not cryptographically
secure, it has superb statistical properties and passes all PRNG tests in [9].

• As a round function for a 36-bit block cipher. Among this idea’s problems are
an anemic block size and S-boxes that were never optimized against differential
cryptanalysis.

3.7 Advanced ALU Instructions 37

• As an element of a round function for a cipher with larger blocks, such as 144
bits. Such a cipher is likely to be slow, but not as slow as if MIX and XIM were
not present. It would also be incompatible with non-Dauug|36 hardware.
Because of MIX and XIM’s heavy S-box use and word transpositions, these
instructions execute faster on Dauug|36 machines than they can be simu-
lated on multi-GHz microprocessors. Any new cipher designed specifically for
Dauug|36 will require public vetting by expert cryptographers.

3.7.9 Stacked Unary Instructions

As shown in Figure 12 (p. 53), the ALU copies the right operand of each instruction
to all three ALU layers unmodified, while the left operand progresses through the
three layers with modifications. By using the left operand as an input to a unary
function, and the right operand to identify one of 64 possible unary functions, a
bank of unary functions can be designed that use all three layers of the ALU as
a “stacked” unit. These are available via the STUN (stacked unary) opcode family.
Notable implemented unary functions include:

• Compute the absolute value of a number in two instructions without branch-
ing.

• Compute the absolute value of a number with magnitude < 230 in one in-
struction.

• Signum: −1, 0, or +1 based on x < 0, x = 0, or x > 0, in one instruction.

• Range-checked conversions of a shift or rotate displacement to a shift control
word.

• Population count (Hamming weight): the number of ones in a word, in two
instructions.

• Identify leading or trailing zeros or ones in one instruction.

• Determine the parity of a word in one instruction.

• Increment or decrement a bit-reversed integer modulo 236 in one instruction.
Carry propagation is from left to right. This makes canonical trailing-bit
manipulation that other CPUs can do available as leading-bit operations on
Dauug|36. There are also other uses.

• Implement a 36-bit linear feedback shift register in one instruction.

• Efficiently implement 72-, 108-, and 144-bit linear feedback shift registers.

• Shift or rotate left or right by one bit through the T(emporal) flag.

38 3 DAUUG|36 AS A PROGRAMMABLE MACHINE

3.7.10 Unusual Memory Instructions

The data memory and page table are electrically within the arithmetic logic unit.
Certain instructions use these as a combined circuit. Three applications are wor-
thy of mention. For each use, a non-privileged version for virtual memory and a
privileged version for physical memory exists.

• LDSTO (load and store) and its privileged counterpart RWDM (read and write
data memory) atomically read from and write to a single memory address
in one instruction. They are useful for implementing semaphores in shared
memory.

• STO2 (store twice) and its privileged counterpart WDM2 (write data memory
twice) can store one value in two consecutive memory locations using one
instruction. They are useful for zeroing large blocks of memory quickly.

• ADDLD (add then load) and its privileged counterpart ADDRDM (add then read
data memory) approximate a one-instruction “base + offset” scheme for read-
ing from memory. This means that a separate A instruction is not necessary to
fetch memory at some offset from a pointer. The limitation is that carry prop-
agation across tribbles isn’t available before the memory is accessed, so certain
criteria about the base and offset must be satisfied for these instructions to
work correctly.

3.8 Multitasking
Dauug|36 multitasking is designed to have simple semantics, very fast context
switches, and few components. Both cooperative and preemptive multitasking are
supported. Their context switch process is identical because the control signal as-
serted by the YIELD instruction for cooperative multitasking feeds the same OR
gate as the preemption timer’s output.19

Because nearly all CPU state is stratified by user (Section 3.1.2), only 39 bits
within the CPU must change to transition from one program to another. These are
the:

• instruction pointer (27 bits)

• CPU flags N, R, T, Z (4 bits)

• D flip-flop “u,” set by the USER instruction (8 bits)

Changing the instruction pointer is straightforward because every program al-
ready has a stack initialized for subroutine return addresses. Firmware to save the
instruction pointer when a program is interrupted is almost identical to the CALL
opcode, except no branch needs to occur—there is no “CALL to” address. Simi-
larly, firmware that restores the instruction pointer when a program is resumed is

19The context switch is not immediate: two instructions beyond YIELD will execute before the
CPU is relinquished. If this is a concern, these two instructions can be NOPs.

3.8 Multitasking 39

Table 6: CPU privilege modes. The active partition of stack, page table, and
register memory is set by the USER instruction; however, a handful of AND gates
can override the current partition with user 0, the superuser. Instructions NPRIV,
SETUP, and PRIV switch between the privilege modes.

Privilege Active Active Active Multitasking
Mode Stack Page Table Registers Timer
NPRIV current USER current USER current USER active
SETUP current USER current USER superuser inactive
PRIV superuser superuser superuser inactive

almost identical to RETURN. No hardware is added beyond what is already present
to support CALL and RETURN.

Changing the CPU flags is almost free because the 27-bit instruction pointer
is pushed onto a 36-bit-wide return address stack. For no extra hardware, the
four CPU flags are also pushed on the stack, leaving five bits of each stack entry
unused. The CALL opcode always pushes the flags with the instruction pointer, even
though RETURN never restores them. A tiny amount of hardware must be added to
restore the flags, specifically, half of a 16-bit D flip-flip. Firmware for an additional
opcode REVERT is a near-copy of RETURN, except that the flags revert to their as-
saved condition. The firmware that restores the instruction pointer is actually more
like REVERT than RETURN because REVERT unlike RETURN restores the flags with the
instruction pointer.

All that remains is to change the eight user bits that identify which program is
running to the call stack, page table, and register file. The current user is subordi-
nate to one of three “privilege modes” appearing in Table 6. Only NPRIV and PRIV
modes apply to this discussion.20 NPRIV mode, named after the NPRIV instruction,
is when a user program is executing. During this time, the CPU sees the call stack,
page table, and register file specified by the most recent USER instruction executed
by the kernel. In PRIV mode, the CPU sees the stack, page table, and registers
belonging to user 0, also called the superuser or kernel. This means the effect of
the USER instruction is not immediate while in PRIV mode, but is deferred until the
next NPRIV instruction.

The CPU does not transition directly from one user program to the next. In-
stead, it enters PRIV mode in between so that the kernel’s scheduler can direct which
program should run next. The transition from user program to kernel takes the du-
ration of two instructions, which is eight clock cycles. The first four clock cycles
work like CALL, saving the instruction pointer and flags on the user program’s stack,
and right at the end placing the CPU in PRIV mode. The second four clock cycles
work like REVERT, loading the instruction pointer and flags from the kernel’s stack.

20SETUP mode allows the kernel to initialize or sanitize a user program’s stack before or after
running. It is also used to effect page table updates when virtual memory is requested or released.

40 3 DAUUG|36 AS A PROGRAMMABLE MACHINE

These eight cycles of work need to happen when the multitasking timer expires, but
how does the CPU know what to do? In other words, what forcibly takes the CPU
away from a running user program without creating havoc?

Not counting the preemption timer of Section 3.1.2, the circuit that captures
the CPU from user programs only adds two NOR gates and two 1-bit D flip-flops,
known as the control decoder hijack counter, to the architecture. But it quadruples
the tiny amount of firmware present in the instruction decoder. What happens is
this: the hijack counter is ordinarily zero, but when a YIELD instruction is executed
(for cooperative multitasking) or the preemption timer expires (for preemptive mul-
titasking), its flip-flops count out the next three instruction cycles, and then return
to and remain zero.21

The instruction decoder RAMs produce the control signals each opcode needs
during its four clock cycles. This isn’t much memory: 4 cycles × 512 instructions
possible = 2048 doublewords. But these RAMs contain four variants of each in-
struction’s firmware, for a total of 8192 doublewords. These variants are keyed by
the hijack counter. Variant 0 is the instruction as it ordinarily exists. Variants 1, 2,
and 3 are recalled when a context switch from running a user program to running
the kernel occurs.

When the hijack counter begins its sequence, variant 0 of an opcode’s firmware
won’t be run. Instead, variant 1 is substituted. This might be any opcode a user
program is allowed to execute; perhaps S (subtract), JUMP, or whatever. Variant
1 executes the instruction normally. Its firmware is identical to variant 0, except
the control signal that allows the instruction pointer to increment is suppressed.
The incrementer has a long path length, so it’s too late to prevent I, the address
of the instruction executing as variant 1, from becoming I + 1. But we need to
prevent I + 1, which is the correct resume address for the next CPU timeslice, from
becoming I + 2, which would skip an instruction.

The next instruction will be decoded as variant 2. It doesn’t matter what the
instruction is or what address it was fetched from because variant 2’s firmware is
identical for all 512 opcodes. Variant 2 does two things. First, I + 1 is pushed on
the user program’s return address stack. This is the location of the next instruc-
tion when the user resumes. Second, the CPU is switched to PRIV mode, thereby
switching to the superuser’s registers, stack, and page table.

The next instruction will be decoded as variant 3. Its firmware is also identical
for all 512 opcodes, so it doesn’t matter what the instruction is or what code address
it’s in. The firmware is bit-identical to REVERT, causing the instruction pointer and
flags to be popped from the kernel’s call stack. The next instruction fetch will be
where the kernel takes over, decoded in normal fashion as variant 0.

Not counting latency to catch the preemption timer expiration and finish the
user instruction immediately prior to the context switch, a complete transition from
user program to kernel takes eight clock cycles.

The opposite transition from kernel to user program is simpler because the kernel
is non-preemptable. Rather than respond to an expiring timer, the kernel directly

21Simplification. The actual count sequence is Gray code 0, 1, 3, 2 to conserve components.
The sequence advances once for each instruction cycle, which is four clock cycles.

3.9 Instruction Set Tables 41

issues the needed instructions to effect the context switch. Only three instructions
(12 clock cycles) are needed:

First, a USER instruction executes to direct which program will run next. This
instruction can be skipped if the kernel elects to continue the program that was
just interrupted. Because the preemption timer has a maximum setting of 65 535
instructions, which isn’t very many, returning to the just-interrupted program may
be the norm at times.

Second, an NPCALL (call as nonprivileged program) instruction calls a short
pseudo-subroutine. It’s immaterial that a subroutine is being called because the
prime objective is to place the kernel’s address to continue at on the stack. This
instruction also switches the CPU to NPRIV mode, making the call stack, page table,
and registers for the continuing user program available.

Third, a REVERT instruction executes, thereby popping the user program’s saved
instruction pointer and flags from its own stack. The next instruction fetch will
continue the user program.

Although these three steps are the whole story of kernel-to-user context switches,
complexity is hidden in its briefness. The target of NPCALL never returns. A casual
reading indicates that it REVERTs, which is a special case of returning, but that
isn’t what happens either. The REVERT, which executes as user code, is not paired
with the NPCALL, which executes as kernel code. The other condition to meet is
that REVERT can’t follow NPCALL as the next instruction because the REVERT must
happen before the user program’s timeslice, and the instruction that follows NPCALL
continues the kernel after the user program’s timeslice. The REVERT is written as if
it’s a separate subroutine.

3.9 Instruction Set Tables
Tables 7–17 provide a short index of non-privileged Dauug|36 instructions. Rather
than describe semantics for each instruction, they state a brief overview of the
instructions, how they are named, and where some appear in this paper. The
privileged instructions follow in Tables 18–20.

Privileged instructions must not be executed by user programs, because they can
escalate privilege as well as compromise separation between programs. The enforce-
ment mechanism is that the OS kernel’s program loader knows which instructions
are privileged and refuses to copy them to code memory without authorization. To
make this distinction easy, nonprivileged instructions are assigned opcodes 0–447,
and privileged instructions are assigned opcodes 448–511. A program cannot cir-
cumvent the opcode restriction by branching to another program’s code, because
the program loader checks all branch instructions to ensure they do not cross text
segments. The opcode restriction and branch restriction can be overcome by the
XANY (execute any instruction) and JANY (jump anywhere) instructions respectively,
but they are privileged.

42 3 DAUUG|36 AS A PROGRAMMABLE MACHINE

Table 7: Additive instructions (sect. 3.6.1). Half are stratified by signage.

Mnemonic # of Description
A 8 add
AC 8 add with carry
AW 1 add with wrap
AWC 1 add with wrap and carry
RS 8 reverse subtract (sect. 3.7.1)
RSC 8 reverse subtract with carry
RSW 1 reverse subtract with wrap
RSWC 1 reverse subtract with wrap and carry
S 8 subtract
SC 8 subtract with carry
SW 1 subtract with wrap
SWC 1 subtract with wrap and carry

Table 8: Bitwise boolean instructions (sect. 3.5)

Mnemonic Description
AND AND
IGF ignorant false
IGT ignorant true
LANR left AND NOT right
LONR left OR NOT right
NAND NAND
NL NOT left
NOR NOR
NR NOT right
OR OR
RANL right AND NOT left
RONL right OR NOT left
XL exactly left
XNOR exclusive NOR
XOR exclusive OR
XR exactly right

3.9 Instruction Set Tables 43

Table 9: Immediate instructions (sect. 3.3) move constants to the low or high half
of registers.

Mnemonic Description
IMB immediate both
IMH immediate high
IMN immediate negative
IMP immediate positive

Table 10: Shift and rotate instructions. Arithmetic shifts are stratified by signage.

Mnemonic # of Description
ASL 4 arithmetic shift left (sect. 3.6.1)
ASR 4 arithmetic shift right (sect. 3.6.1)
LSL 1 logical shift left
LSR 1 logical shift right
ROL 1 rotate left

Table 11: Multiplication instructions (sect. 3.6.2–3.6.3)

Mnemonic Description
DSL double shift left
MH multiply high
MHL multiply high and low
MHL0 multiply high and low, tribble 0
MHL1 multiply high and low, tribble 1
MHL2 multiply high and low, tribble 2
MHL3 multiply high and low, tribble 3
MHL4 multiply high and low, tribble 4
MHL5 multiply high and low, tribble 5
MHNS multiply high no shift
ML multiply low

44 3 DAUUG|36 AS A PROGRAMMABLE MACHINE

Table 12: Bit-rearranging instructions

Mnemonic Description
PAIT permute across and inside tribbles (sect. 3.7.7)
PAT permute across tribbles (sect. 3.7.7)
PIT permute inside tribbles (sect. 3.7.7)
SWIZ swizzle (sect. 4.3)
TXOR transposing XOR (sect. 3.7.6)

Table 13: Substitution-permutation network instructions (sect. 3.7.8)

Mnemonic Description
MIX mix
XIM unmix

Table 14: Miscellaneous arithmetic instructions. Most are stratified by signage.

Mnemonic # of Description
CMP 4 compare
CRF 1 clear R(ange) flag
MAX 8 maximum (sect. 3.7.2)
MIN 8 minimum (sect. 3.7.2)
NUDGE 1 nudge (sect. 3.7.3)

3.9 Instruction Set Tables 45

Table 15: Mixed arithmetic-with-logic instructions

Mnemonic Description
HAM2 Hamming weight part 2 (sect. 3.7.4)
NOLIST NOP, but not shown in listings
NOP no operation
STUN stacked unary (sect. 3.7.9)
UN.A single-RAM unary operations, alpha layer
UN.B single-RAM unary operations, beta layer
UN.G single-RAM unary operations, gamma layer

Table 16: Branch instructions. JUMP comes with flag-conditioned variants.

Mnemonic # of Description
CALL 1 call
JUMP 11 jump
RETURN 1 return
REVERT 1 return with original CPU flags
YIELD 1 relinquish CPU (sect. 3.8)

Table 17: Memory instructions. Data memory addresses are virtual.

Mnemonic Description
ADDLD add then load (sect. 3.7.10)
LD load
LDSTO load and store (sect. 3.7.10)
STO store
STO2 store twice (sect. 3.7.10)

46 3 DAUUG|36 AS A PROGRAMMABLE MACHINE

Table 18: Identity-modifying instructions (privileged)

Mnemonic Description
NPCALL call subroutine and become nonprivileged user
NPRIV become nonprivileged user
PCALL call subroutine and become superuser
PEEK copy user register to superuser
POKE copy superuser register to user
PRIV become superuser
SETUP access user’s stack and user’s page table as superuser
USER specify current nonprivileged user

Table 19: Program initialization instructions (privileged)

Mnemonic Description
CALI call stack initialize
JANY jump to any code memory address
TIMER set preemptive multitasking timer interval
XANY fetch and execute instruction from register

Table 20: Unrestricted memory instructions (privileged). Data memory addresses
are physical.

Mnemonic Description
ADDRDM add then read data memory (sect. 3.7.10)
RCM1 read code memory part 1 (sect. 3.1.2)
RCM2 read code memory part 2 (sect. 3.1.2)
RDM read data memory
RPT read page table
RWDM read and write data memory (sect. 3.7.10)
WCM write code memory
WDM write data memory
WDM2 write data memory twice (sect. 3.7.10)
WPT write page table

4.1 Simple Lookup Elements 47

sel result

00

01

10

11

L NAND R

L XOR R

L + R with wrap

L R with wrap

L Rsel

result

7 72

7

64Ki x 8

SRAM

carry

1

Figure 7: A small RAM used as a simple lookup element. Arrow labels show
number of wires.

4 Arithmetic Logic Unit Theory of Operation
Chapters 4–7 of [2] present a theory of SRAM arithmetic logic units that can be
tailored to a range of CPU objectives. Dauug|36 tries to minimize the number of
clock cycles required for a particular task, while offering a reasonably-large word
size of 36 bits. Applications that can tolerate smaller word sizes and/or more clock
cycles to accomplish a task can use a considerably different—and proportionately
smaller—ALU based on techniques from these chapters that Dauug|36 does not use
or need. This section that you are now reading focuses on Dauug|36’s ALU; for
other use cases, [2] may be a more complete reference.

4.1 Simple Lookup Elements
Simple lookup elements are the fundamental building block of all SRAM logic. Note
that the use of RAM has nothing to do with its mutability: we actually want ROM,
but RAM is much faster and does not require custom fabrication. The overall
constraining parameter is the number of input bits, which is the base-two logarithm
of the number of rows. We need enough inputs bits to select among all operations
the RAM supports, plus these operations’ inputs, which are typically one or two
subwords and sometimes a carry bit.

Figure 7 shows a whimsical lookup element that offers two logical and two arith-
metic functions. The element accepts two 7-bit inputs, here named L(eft) and
R(ight), and a 2-bit input sel that specifies the operation to perform. The 8 output
bits are partitioned into a 7-bit result for the four operations, and a 1-bit carry
that outputs a carry bit for addition, borrow bit for subtraction, or 0 for NAND
and XOR.

4.2 Three-Layer Carry-Skip Adders
Although Figure 7 can add small words directly, it can’t naively scale to add larger
words. A one-RAM adder for even 16-bit words requires (16 + 1) × 216+16 bits of
storage—more than 240 times that of today’s largest SRAM ICs. Nor can addition

48 4 ARITHMETIC LOGIC UNIT THEORY OF OPERATION

be trivially parallelized by bit slicing. Although we can break two 16-bit words into
4-bit subwords and use 4 RAMs to add the subwords pairwise, these bit slices are
not independent of one another due to carries that sometimes occur from one bit
slice to the next. So the four bit slices will produce 16 result bits and 4 carry bits,
but the output we need is 16 result bits and 1 carry bit.

If each RAM is given its own carry input such that carries can chain from right
to left (least- to most-significant), four small RAMs can easily compute a 16-bit
sum, but there is a time penalty proportional to the number of bit slices, which
thus far is equal to the number of RAMs. The rightmost slice, slice 0, must finish
its work before slice 1 can start, and so on. This is called ripple carry, and it doesn’t
scale to add large words quickly. An adder where all RAMs that do similar work
can operate simultaneously would add faster.

Figure 8 is a four-slice, 16-bit adder with no ripple. It’s called a carry-skip adder,
and it uses nine RAMs. Without loss of generality, these RAMs are assumed to be
synchronous (have clocked inputs), so their sequence can be described in terms of
clock cycles, sometimes regarded as layers. The dependencies are such that three
clock cycles are required to add two numbers. Dauug|36’s carry-skip adder is much
like this figure and also has three layers, except it has two more slices and two more
bits per slice (a total of thirteen RAMs) to accommodate 36-bit words.

In a three-layer carry-skip adder, the left operand, right operand, and output are
the same width within a given slice.22 The first layer of each slice simultaneously
adds subwords locally, producing a local sum s that may wrap around, a local
carry output c, and a local propagate output p that indicates when the local sum
s is all ones, at which time the local carry output c will be zero. The third layer
simultaneously but selectively increments the local sum of each slice with wrapping,
depending on whether the slice’s carry decision indicates a carry into the slice.

A slice’s carry decision is true if and only if either of the following is true:

• The slice’s local carry output is true.

• The slice’s local propagate output is true, a neighboring, less-significant slice
exists,23 and said neighboring slice’s carry decision is true.

The slice carry decisions are therefore recursively defined. In non-SRAM carry-skip
adders, this recursion inserts one AND gate’s delay between each slice, resulting
in a right-to-left ripple that is tiny compared to that of a ripple-carry adder. In
contrast, SRAM carry-skip adders dispense with all ripple,24 because the second
layer’s single RAM looks up all carry decisions simultaneously based on propagate
and carry signals that arrive all at once from the first layer.

Carry-skip adders can be built with two layers instead of three, subject to draw-
backs [2].

22In SRAM ALUs all bit slices are typically the same width, although this is not so in fast
SRAM multipliers.

23When chaining additions to support multiple-word operands, this slice may be in a neighbor-
ing word.

24The internal operation of the second layer’s SRAM is not considered here.

4.3 Swizzlers 49

L3 R3

p c s

L2 R2 L1 R1 L0 R0

Y3 Y2 Y1 Y0

4

4444

4 4 4 4 4 4

old carry

new carry

add carryadd carry add carry add carry

4-bit add4-bit add 4-bit add 4-bit add

Figure 8: A four-slice, 16-bit carry-skip adder. The nine rectangles depict SRAMs.
Paths labeled 4 convey four bits; other paths convey one bit. L, R, and Y indicate left
operand, right operand, and result subwords. p, c, and s indicate each subword’s
propagate bit, carry bit, and partial sum intermediate. d indicates each subword’s
decision whether to add 1 due to a carry. The old carry and new carry wires
facilitate iteration for multiple-word operands.

4.3 Swizzlers
A swizzler is a layer of RAMs that operate on transposed subwords, meaning that
each RAM gets one address bit from each subword, looks something up, and outputs
one data bit to each subword. Figure 9 shows how this transposition is wired for a
16-bit word with 4-bit subwords. From right to left, each of the four RAMs operates
solely on a subword-local place value of 1, 2, 4, or 8. If the four RAMs have the same
contents and same function chosen, subwords will be treated as atomic entities. This
is the case in the illustration: the operation here is copying the leftmost subword
to the rightmost, and copying the inner left subword to the inner right. The four
letters may be interpreted as either literal hexadecimal digits or 4-bit variables.

Like all SRAMs in Section 4, a swizzler’s RAMs contain read-only lookup tables.
For this reason, the firmware designer must determine in advance what functions a
swizzler will implement. Dauug|36’s SWIZ instruction, which operates on six slices
of six bits, currently supports copying each of the six subwords to all of the others,

50 4 ARITHMETIC LOGIC UNIT THEORY OF OPERATION

function

select

Figure 9: A four-slice, 16-bit swizzler acts like a multi-way switch. The four
rectangles depict SRAMs. Identical, self-inverse wire transpositions appear at the
input and output, where the ith bit of the jth subword is moved to the jth bit of
the ith subword. By simultaneously executing the same operation, the four SRAMs
can direct any subword of the input to any subword of the output.

leaving space for another 58 swizzle operations that have not yet been chosen.25

4.4 Logarithmic Shifters
A logarithmic shifter overcomes a key limitation of swizzlers, which are perfect
for fast rotation of subwords, but not of bits. If we assign one bit each to letters
a–p, we can swizzle mnop abcd efgh ijkl to become abcd efgh ijkl mnop. But
when we try to rotate just one bit position from here instead of four, the result
will be ebcd ifgh mjkl anop because place values remain fixed. In fact, only the
leftmost RAM would move anything because the remaining transposed subwords
are already correct. To finish our one-bit rotation, we have to clean up the subwords
individually to yield bcde fghi jklm nopa, which is what we want. This requires a
second layer of RAMs that can operate within subwords rather than across them.
Figure 10 shows this combination, which permits rotation of any number of bits in
a single pass. To shift instead of rotate, appropriate masking is easily added to the
RAM contents of either layer.

Two important requirements pertain to logarithmic shifters. First, the RAMs
within a layer need to all process the same number of bits. Second, the bits leaving
the RAMs of layer one must be evenly distributed to the RAMs of layer two. Thus

25There are 66 = 46 656 “strict” swizzles, where each output bit is a copy of one of six input
bits, that these 58 can be chosen from. But these RAMs could in principle implement any of the
6464 functions that map six bits onto six bits.

4.5 Substitution-permutation networks 51

rotation

amount

Figure 10: A four-slice, 16-bit logarithmic shifter is assembled from a swizzler
followed by a layer of simple lookup elements. The eight rectangles depict SRAMs.
The transposition wiring is identical to Figure 9, although color is used here to
indicate a one-bit left rotation.

when the two layers do use the same number of RAMs, the subword size will be a
multiple of the number of subwords. Equivalently, the word size will be a multiple
of the square of the number of subwords.

Logarithmic shifters can be built with half the number of layers and transposi-
tions (one and one, respectively), but each operation would require two passes to
complete [2].

4.5 Substitution-permutation networks
An S-box is an invertible substitution that can operate on subwords. Its purpose
is to help progressively alter words in a key-dependent manner, until the alter-
ation sequence is impractical to reverse without knowledge of the key that was
used. Table 21 a simple 4-bit S-box expressed in hex. Due to our requirement for
invertibility, no value appears more than once in an S-box or its inverse.

A logarithmic shifter with its SRAM contents replaced by S-boxes is an in-
stance of a substitution-permutation network, or SPN. Its intent is to scramble
and unscramble bits by mixing data as it passes through layers of cross-connected
S-boxes. SPNs are used for constructing hash functions, pseudorandom number
generators, and ciphers. Desirable topologies for SPNs, as well as properties of
cryptographically “strong” S-boxes, have been topics of secret research for half a
century. Figure 11 shows a substitution-permutation network that uses the S-box

52 4 ARITHMETIC LOGIC UNIT THEORY OF OPERATION

Table 21: 4-bit S-box

Input 0 1 2 3 4 5 6 7 8 9 a b c d e f
Output 2 e b c 9 1 8 3 a f 7 4 6 0 d 5

S-boxes

Figure 11: A four-slice, 16-bit substitution-permutation network. Except for the
firmware in its eight SRAMs, this is the same circuit as the logarithmic shifter of
Figure 10.

of Table 21 in every RAM for ease of understanding, but in practice, S-boxes may
vary between RAMs and/or be key-dependent.

There is nothing novel about SRAM SPNs, but their mixing capability is very
useful for ALUs to incorporate. They are best used under non-adversarial circum-
stances; e.g., to implement hash functions and pseudorandom number generators
(PRNGs). Suitability for cryptography is considered in Section 3.7.8.

4.6 Three-Layer Arithmetic Logic Units
The SRAM logic blocks of Sections 4.2–4.5 and Figures 8–11 complement each other
like pieces in a puzzle, as if meant to assemble into still-more-capable circuits. Most
strikingly, the three-layer carry-skip adder of Figure 8 shows a void in its second
layer while and where carry decisions are made. There is space to insert four more

4.6 Three-Layer Arithmetic Logic Units 53

Li Ri

i

i

i

θ

ose

ose

fn sel

fn sel

fn sel

fn sel θ

new carry ag

old carry ag ci

pi

di

c
p

d

6 6

6

6

5

5

6

6

6

6

6

6

6

61

1

1

1

1

.

6 parallel copies

Carry logic
only one is needed

Figure 12: A six-slice, 36-bit arithmetic logic unit. Digit labels indicate number
of wires. Subscript i designates bit slices numbered from 0 through 5. The three
layers are named α, β, and γ solely for their order of occurrence. Carry decision
RAM θ is so-named because it’s “off at an angle” relative to the six β RAMs it’s
parallel to.

RAMs within the sum datapaths, with each processing four bits. The swizzler of
Figure 9 matches this description exactly. The resulting circuit would be a mess to
draw on a plane without using numerous overlays, but general idea is that Figure 9,
including both wire transpositions, would be stuffed into the center of Figure 8.

Figure 12 extends the concept to 36 bits and shows the general flow of the arith-
metic logic unit used by Dauug|36. To keep the central ideas prominent, certain
flag-handling details are glossed over.26 Only one of the six bit slices is written out,
and the α–β and β–γ transpositions across slices are simply marked “transpose”
instead of drawn with 72 wires in six colors. A square-matrix explanation of these
transpositions appears in Figure 13.

The ALU of Figure 12 is a quadruple superposition of the circuits earlier consid-
ered. Layers α and γ, with assistance from RAM θ, form a carry-skip adder. Layer
β, the bits of which are transposed relative to the others, form a swizzler. Layers β
and γ, with transpositions, form a logarithmic shifter. And although layers β and γ
form a substitution-permutation network, it turns out that layers α, β, and γ form

26One of several details not discussed is that RAM α5 must tell ζ whether a sum or difference
will fit in its destination register, contingent on whether the register is unsigned or signed, and
whether or not θ detects a carry into tribble 5.

54 4 ARITHMETIC LOGIC UNIT THEORY OF OPERATION

w

z y x w v u
t s r q p o
n m l k j i
h g f e d c
b a 9 8 7 6
5 4 3 2 1 0

w⊤

z t n h b 5
y s m g a 4
x r l f 9 3
w q k e 8 2
v p j d 7 1
u o i c 6 0

Figure 13: Bit transposition as a square matrix reflection. The bit positions of a
36-bit word w can be written as a 6 × 6 square matrix using base 36. The α–β and
β–γ wire transpositions in the Dauug|36 ALU are simply reflections through the
main diagonal, and are therefore self-inverse. The ALU’s α and γ layers operate on
the rows of w, while the ALU’s β layer operates on the rows of w⊤, which are the
columns of w.

a bigger one, so the architecture uses that.
The ALU’s RAMs are soldered in place, so physical reconfiguration is not pos-

sible when switching from addition to rotation, or swizzling to encryption. But
there is no operational conflict so long as the RAMs are large enough to contain
firmware for all of these operations. The α, β, and γ RAMs divide their 18 inputs
equally between a six-bit left operand, six-bit right operand, and six-bit ”function
select” that says what needs to happen. For the γ RAMs only, one of the function
select bits is taken from θ’s carry decision pronouncement. The θ RAM must also
support many functions, as must ζ, an unpictured RAM that manages transitions
for the N(egative), R(ange), T(emporal overrange), and Z(ero) flags. θ and ζ have
five function select bits each. The total firmware is rather complex: among the α,
β, γ, θ, and ζ RAMs, 113 operations are now defined for the function select inputs,
and some operations for α, β, or γ require their six RAMs to use different tables.
Three of these 113 operations are the “identity” operations that α, β, and γ use to
pass their left operand unchanged when the layer in question does not contribute
to a calculation.

The arithmetic logic unit does not treat its left and right operands equivalently.
The left operand is replaced by each layer with a revised operand, but the original
right operand is supplied unchanged to every RAM. There is also no transposition
of the right operand coming into the β layer, so its six RAMs compute on transposed
left subwords with non-transposed right subwords.

A much-expanded description of the Dauug|36 ALU and firmware is in chapters
5 and 7 of [2]. Post-2022 changes can be found in the implementation source code.
Chapter 5 also contrasts 36-bit words with other plausible architecture widths.
Chapter 6 shows how to build a half-decent SRAM ALU that uses two layers instead
of three, although it will have drawbacks.

5.1 Portions That Are Substantially Complete 55

5 Implementation
5.1 Portions That Are Substantially Complete
The logical design and dataflow for the central processing unit and memory subsys-
tem have been stable and testable since April 2023. The remainder of this section
describes several derivative products that are to a large degree operational.

5.1.1 Netlist Generation

Although open-source tools for designing and simulating CMOS ICs exist, I did
not find an open-source tool that is suitable for designing and simulating circuit
boards. Efforts to use a leading open-source electronic design automation suite were
catastrophically unable to cope with the 244 parts and 6948 pins that comprise
Dauug|36 as of early 2024. Failing to identify an existing tool, I designed a macro
language for describing components and their interconnections, another language
for assigning components to 21.1 × 27.1 mm “tiles” and placing the tiles on a
grid, and a Python script to transform the two languages into a machine-readable
netlist. The same script estimates pin-to-pin delays based on estimated track lengths
and capacitances extracted from component positions. It also checks for obvious
mistakes such as shorting an output to ground.

5.1.2 Electrical Simulation

I wrote an electrical simulation of every type of component used in the architecture,
including timing and capacitance information from datasheets, in the C language,
along with a discrete-event simulator. This simulator models the CPU and memory
subsystem exactly as the netlist describes them. Its purpose is not only to seek out
wiring and logic errors, but also to detect timing conflicts and overcurrent condi-
tions. The model includes the most-recent Dauug|36 firmware, so the model can
run various regression tests and assembly-language programs. In one, the electrical
simulation causes the modeled CPU to run a short bootloader. The bootloader, in
turn, then loads and starts Osmin, the first operating system for Dauug|36, and
then Osmin loads several user programs and executes them simultaneously. These
tests support my opinion that Dauug|36’s preemptive multitasking and memory
protection work correctly.

One of the electrical simulator’s strengths is also its principal limitation, specif-
ically, its modeling of signals between 6948 IC pins with picosecond granularity. If
an SRAM has an 18-bit address input, the 18 bits arrive at separate times. In fact,
they arrive more than once each because many of their connected output pins will
transition to an uncertain state prior to reaching a settled state. For each arriving
transition, the simulation must check for conflicts from other components that may
have recently driven the same input pin. My workstation takes 23 hours to elec-
trically simulate one second of the early-2024 Dauug|36 netlist, and the simulation
does not parallelize.27

27For illustration only, the workstation CPU is an Intel Core i5-6200U running at 2.30 GHz.

56 5 IMPLEMENTATION

Dauug|36’s targeted speed is 20 MIPS (million instructions per second), based
on an 80 MHz clock and a surface-mount board that can be hand-soldered. This
speed has not been reached in simulation as yet, but 16 MIPS from a 64 MHz clock
runs cleanly. The emulated architecture fits on a 20 × 20 cm board. Separation
between components is at least 4.1 mm in all cases, which is probably sufficient in
light of the much-tighter 0.5 mm pitch for pins on certain components.

5.1.3 Virtual Machine

While developing the arithmetic logic unit, I wrote a virtual machine that could
quickly emulate the ALU without considering the electrical implementation. Soon,
the JUMP variants and a few other instructions were emulated also. The VM’s
ability to run hundreds of thousands of Dauug|36 instructions per second is ideal
for ALU firmware regression tests, including long multiplication verification and
many needed T(emporal) and R(ange) flag checks.

The virtual machine’s “wiring” of the ALU is implemented in the C language,
not in the macro language that defines the circuit board. Although having a VM
that can quickly emulate the remainder of the architecture would greatly enhance
regression tests for operating system correctness, a significant risk is that through
an oversight, the VM’s logical model may not stay synchronized with the electrical
model. The best solution would be to rewrite the virtual machine to accept a
netlist as input, and to redesign the netlist macro language and software so that a
common specification produces the circuit board, electrical simulation netlist, and
virtual machine model. This would also be a good point to adopt a subset of an
already-standardized language such as VHDL or Verilog for specification. But as of
early 2024, no fast emulation of the full instruction set exists.

5.1.4 Assembly Language

Dauug|36’s assembly language seeks a balance between ease of use and ease of
implementing the assembler. As a language illustration, Figure 14 presents a two-
page working solution of the familiar Tower of Hanoi puzzle, where a “tower” of
progressively-smaller disks must be moved between two spindles one disk at a time,
using a third spindle as a spare to rest disks. The invariant that no disk may be
placed atop a smaller disk must be maintained.

This sample program encodes the three spindles as the integers [0, 1, 2], which
are stored in registers from and to when planning a disk motion. No register
indicates the spare spindle because it is computable as spare = 3 − from − to.
Because the architecture does not support recursive function calls (Section 3.1.1,
“What the stack is not”), a stack grows upward from virtual address 0 for iterative
subproblem queuing. Each word on the stack encodes one subproblem, using 2 bits
each for the “from” and “to” spindles and an overkill 32 bits for the number of disks.
Because zero is not a valid subproblem encoding, it is used to indicate the bottom
of the stack. Program output is a series of lines in the format 2 -> 0 (move a disk
from spindle 2 to spindle 0).

5.1 Portions That Are Substantially Complete 57

The sample program contains four defects. First, the stack data should use
12 bits for each field, and rotations instead of shifts, to reduce the number of integer
constant registers. Second, the stack will overflow if too many disks are requested.
Third, this example uses the privileged WPT (write page table) instruction to seize
page 0 of physical data memory. It should instead obtain memory through an
operating system request. Fourth, the program should terminate via a RETURN to
the operating system, because although the simulator has a HALT instruction, real
machines won’t.

Most language features of Figure 14 can be understood with little or no coach-
ing. The operators +, -, +=, -=, &, and | are borrowed from C and have their
familiar meanings. From any semicolon rightward is a comment, as is everything in
parentheses. Although comments don’t nest, they can be subordinated by using a
different number of parentheses, e.g.:

(((This comment takes three (3), not four)))), parentheses to close.)))

Registers are not numbered, but declared using signed and unsigned keywords,
with shortcuts s. and u. offered. Register names are local within callable scopes,
which are introduced with double colons. Jump labels, introduced with single
colons, are also local within scopes. A program begins at the first scope in the
file, which is automatically named main::. Because most instructions have no
room for immediate operands, the assembler generates and calls a subroutine that
pre-loads all necessary constants into registers.

Registers are dead when a scope is not active, allowing future assemblers to
coalesce registers using liveness analysis. The exception is when a register is “kept”
using the keep keyword, in which case the register is always live and can be accessed
from any scope via a double colon. A scope need not contain instructions, but may
simply introduce a register namespace, as in the example’s g:: scope.

Numeric suffixes ‘u, ‘b, ‘o, ‘d, ‘h, and ‘t indicate radices 1, 2, 8, 10, 16, and
64 respectively, and a decimal suffix ≤ 64 indicates its radix, such as ‘21 for radix
21. Periods and apostrophes (’, not ‘) in names behave as if they are letters.

Because the I/O subsystem for Dauug|36 is not yet implemented, the electrical
simulation emulates a simple I/O subsystem containing a real-time clock and limited
filesystem. It is accessed via a PVIO (paravirtualized I/O) instruction and has its
share of quirks.

The assembly language does not yet support record structures or initialized data.

5.1.5 Cross Assembler

Multi-million line compilers such as GCC, Clang, and LLVM, as well as their as-
sociated tools, are impractical to assess for exploitable defects or protect against
tampering. It was shown 40 years ago that backdoors can survive toolchain self-
compilations, even without malicious content in the source code [39]. Perhaps worse,
a proof that static code analysis cannot ever detect all malware, even if artificial
intelligence is used, has been known for 70 years [31]. But both problems can be
escaped for a specific toolchain if it is small enough for a human to audit its source

58 5 IMPLEMENTATION

; ==
; Tower of Hanoi puzzle (invented by E. Lucas, 1883)
; ==

wpt (write page table) 0 = 0 ; map virtual page 0 onto phys. page 0
g::tos = 0 ; stack grows upward from virt. addr 0
sto (store) g::tos = 0 ; place 0 as bottom-of-stack guard

g::from = 0 ; tower originally on spindle #0
g::to = 2 ; tower finishes on spindle #2
g::n.disks = 8 ; 8 disks will result in 255 motions
call push.work ; to stack: move 8 disks from #0 to #2

u. f(ilename) ig(nored) ; declare two unsigned registers
f = pts‘t(etrasexagesimal) ; base-64 filename is "000pts"
ig = f pvio out8‘t ; 000pts points to /dev/pts/0 (stdout)

loop: ; top of main problem-solving loop
call pop.work ; pop from, to, n.disks from stack
jump == solved ; Z(ero) flag means problem is solved

cmp g::n.disks - 0 ; test for n.disks == 0, which should
jump == loop ; never occur, but would be a no-op

cmp g::n.disks - 1 ; simple case: just one disk to move
jump != multi.disk
call print.move ; just print out the move
jump loop

(The multi.disk case will move more than one disk. We must move:
n-1 disks: ’from’ to ’spare’
1 disks: ’from’ to ’to’
n-1 disks: ’spare’ to ’to’

Because these steps go on a stack, we push them in reverse order.)

multi.disk: ; we get here to move more than one disk
u. save ; declare unsigned register
save = g::n.disks ; will need prev. value of n.disks

g::from = 3 - g::from ; THIRD step that will happen:
g::from -= g::to ; use current ’spare’ spindle as ’from’,
g::n.disks = save - 1 ; move n-1 disks
call push.work

Figure 14: Dauug|36 assembly language demonstration: Tower of Hanoi puzzle
solution (part 1 of 3).

5.1 Portions That Are Substantially Complete 59

g::from = 3 - g::from ; SECOND step that will happen:
g::from -= g::to ; use current ’from’ spindle as ’from’,
g::n.disks = 1 ; move 1 disk
call push.work

g::to = 3 - g::to ; FIRST step that will happen:
g::to -= g::from ; use current ’spare’ spindle as ’to’,
g::n.disks = save - 1 ; move n-1 disks
call push.work
jump loop ; multi.disk case is now pushed on stack

solved: ; we get here when solution is complete
ig = 10 pvio write‘t ; write final newline
ig = f pvio close‘t ; close the terminal output
halt ; return from simulation

; --
push.work:: ; subroutine: push sub-problem on stack

u. work ; bit fields: from, to, n.disks
work = g::from
work = work asl 020202020202‘o ; left shift 2 bit positions; ‘o = octal
work = work | g::to
work = work asl 404040404040‘o ; left shift 32 bit positions
work = work | g::n.disks
g::tos += 1
sto (store) g::tos = work
return

; --
pop.work:: ; subroutine: pop sub-problem from stack

u. work ; bit fields: from, to, n.disks
work = ld (load) g::tos
jump == done ; if loaded 0, then stack is empty
g::tos -= 1
g::n.disks = work & 037777777777‘o ; bits 31--0 is ’n.disks’
work = work asr 040404040404‘o ; right shift 32 bit positions
g::to = work & 3‘o ; bits 33--32 is ’to’ spindle
work = work asr 424242424242‘o ; right shift 2 bit positions
g::from = work & 3‘o ; bits 35--34 is ’from’ spindle
work = 1 ; ensure Z(ero) flag is not set

done:
return

Figure 14: Dauug|36 assembly language demonstration: Tower of Hanoi puzzle
solution (part 2 of 3).

60 5 IMPLEMENTATION

; --
print.move:: ; subroutine: called when n.disks == 1

u. ig(nored) ; declare unsigned register
ig = g::from pvio dec‘t ; print g::from in decimal
ig = 32 pvio write‘t ; print " -> "
ig = 45 pvio write‘t
ig = 62 pvio write‘t
ig = 32 pvio write‘t
ig = g::to pvio dec‘t ; print g::to in decimal
ig = 10 pvio write‘t ; print newline
return

; --
g(lobal register namespace):: ; invariant: from + to + spare == 3

u. from ; spindle to move from (0, 1, or 2)
u. to ; spindle to move to (0, 1, or 2)
u. n.disks ; number of disks to move
u. tos (top of stack) ; stack grows up, zero guard at bottom
keep from to n.disks tos ; allow global access to these registers

Figure 14: Dauug|36 assembly language demonstration: Tower of Hanoi puzzle
solution (part 3 of 3).

code and executable code. The toolchain’s “root of trust” would be a self-hosted
assembler, a short program that, when given its own source code as input, produces
its own executable as output. But as Ken Thompson demonstrated, this is not
sufficient. The “trust” part of a self-hosted assembler becomes final when a human
audits every word of the executable code and attests to its perfect transcription
from the source code.

A self-hosted assembler for Dauug|36 is not implemented as of early 2024, but
something very close is. The Dauug|36 cross assembler, which runs on a wide range
of conventional CPUs, is written not in a familiar high-level language, but in a terse,
human-written bytecode which a small interpreter executes. Notwithstanding its
alien specification, this is the assembler that builds all present Dauug|36 software,
including the Figure 14 example and the Osmin kernel. To become a self-hosted
assembler, only the bytecode interpreter needs rewritten in assembly language—the
bytecode itself will port unmodified to any host architecture. Needed work to finish
a self-hosted assembler is minimal because the bytecode interpreter is well under
2500 lines of C and is already tested.

5.1.6 Firmware

The distinctive characteristic of Dauug|36 is that of being solder-defined (Section 2),
giving the end user decisive control and final say over all aspects of its electrical and
firmware design. The firmware is a not a “program” in the customary sense that it
“runs.” Rather, the firmware is a collection of random-access tables, in which each

5.1 Portions That Are Substantially Complete 61

table determines the output of a single SRAM for a single clock cycle based on that
SRAM’s input. The firmware might be said to be written in C, but this is not true.
The firmware is “written in” a list of integers that are computed by a program that
is written in C. In other words, a C compiler does not compile the firmware, but
compiles a program that outputs the firmware.28

The present firmware is by far the most stable part of the implementation.
In-use computers are too busy, too inaccessible, too numerous, and/or too support-
constrained to rationally or ethically require firmware updates. Moreover, a temp-
tation to introduce breaking changes to firmware may be too strong to resist. This
is why so much attention has been given to the architecture’s instruction set, se-
mantics, CPU flags, extraordinary situations, and regression tests. No firmware
release for a real-world minicomputer should ever contain an exploitable defect.

Notwithstanding the present firmware’s comparative maturity, version 1 still
feels faraway. Flag handling wasn’t considered when the IMx (immediate both/
high/negative/positive) opcodes were conceived. The stacked unary opcodes and
their right operands are not yet stable. There are no opcodes to accelerate division,
nor opcodes to aid signed multiplication. A planned, firmware-affected assembler
macro scheme is not ready. Floating-point arithmetic isn’t available even in single
precision, nor have any I/O instructions been determined.

5.1.7 Documentation

By far the largest task implementing the Dauug|36 architecture has been its high
documentation workload. An architecture no one knows how to use or maintain
may as well not exist. Resources [2] and [3] alone exceed 200 000 words, and several
further writeups exist.

5.1.8 Operating System

It is crucial that the first release of the hardware and firmware include not only a
toolchain for programming, but also a preliminary operating system. Supporting
adoption is not the only reason. A functioning OS is indispensable for developing
and testing memory management, multitasking, the I/O subsystem, and device
drivers. Writing an OS also helps identify capabilities that should be added to the
firmware before its first release. For example, an ability to reverse a word’s bit
order in one instruction can be useful in CPU schedulers. Another reason to release
an operating system is knowledge transfer, because the hardware is treacherously
subtle. The operating system and its documentation will offer future architects and
maintainers an executable specification as to how the architecture is intended to
work.

In the near term, the scope of a Dauug|36 operating system is very minimal.
Conformity with external specifications such as POSIX is not in scope because of

28To shield the firmware from corruption by a buggy or compromised C toolchain, the firmware
generator may someday be rewritten in Dauug|36 assembly language. This project is not on my
radar yet.

62 5 IMPLEMENTATION

their breadth and unmet preconditions, such as existence of a C compiler. Instead,
the OS’s purpose is to enable programs to share the CPU and memory without
interfering with one another, and that’s pretty much it. Any other service can in
principle be left for user programs to implement themselves, but a higher power—
a kernel—must apportion memory and CPU time among multiple programs.

This kernel is already written and is named Osmin, after the comic villain of
Mozart. Even with its discardable bootloader and single-use initialization routines
that run at startup, Osmin weighs in at a scant 1339 instructions.29 Implemented
functionality as of early 2024 includes:

• Fetch the kernel from external storage, check for several possible errors, and
start it.

• Quantify the host system’s installed code, data, and page table memory.

• Wipe all primary storage at system startup.

• Wipe all primary storage when a shutdown is requested.

• Allocate, deallocate, and wipe pages of physical memory.

• Manage reference counts for physical memory pages.

• Obtain physically-backed virtual memory for the kernel.

• Create, manage, and retire hashed process ids.

• Load programs from external storage.

• Segment programs to run in fragmented code memory with negligible over-
head.

• Update branch instructions to follow code relocation.

• Maintain reference counts for programs that may run multiple copies.

• Recover code memory from programs no longer running.

• Leave marked-to-remain programs in code memory even if not running.

• Reject nonprivileged programs that contain privileged instructions.

• Reject nonprivileged requests to manage privileged programs.

• Reject programs that can branch outside of their address space.

• Reject malformed executable files.

• Issue meaningful error codes for declined operations and kernel panics.

29For length comparisons with kernels for other architectures, each Dauug|36 instruction is 4 1
2

bytes.

5.1 Portions That Are Substantially Complete 63

• Start and terminate programs present in code memory.

• Terminate programs that underflow their call stack.

• Manage the multitasking preemption timer.

• Use round-robin scheduling to switch programs at timeslice boundaries.

• Manage internal kernel data structures and collections.

• Respond to API requests.

• Prevent nonprivileged access to unauthorized pages of data memory.

• Prevent writes to read-only data memory.

• Annotate and print any of several kernel data structures.

All the above already work and fit in a total of 1339 instructions. Osmin truly is OS
MIN. The specificity, brevity, and simplicity of assembly language, combined with
Dauug|36’s expressive instruction set, make kernel programming straightforward
and enjoyable. Much harder is writing the documentation needed to explain Osmin
to a human.

Osmin suffers from some missing features, principally because I froze its devel-
opment to catch up on documentation. Although the OS has an API, only two
functions are implemented: terminate the calling program, and shut down the op-
erating system. The latter offers no permission checking and was only put in as a
stub to demonstrate that more than one API function is working. The next API
calls to implement will request and relinquish virtual memory, which amount to
minimal effort because all the physical memory management is already complete.
Next after those are calls for interprocess memory sharing; the largest task here will
be identifying how discovery and authorization semantics should work.

Although today’s kernel already identifies certain operations as requiring privi-
leges, I need to think through how permissions should work. For many embedded
uses, an immutable table that lists what programs to start and what calls each may
make would be optimal because of its simplicity and low susceptibility to mischief.
But this mechanism can’t handle a diverse set of programs that begin and end at
various times. Similar choices lie ahead in determining if and how resource limits
will be applied. Generally these limits will be maximums, but some programs will
also need guaranteed resource minimums such as CPU availability.

Osmin is intended to be a real-time operating system (RTOS) that can meet
hard scheduling deadlines. This isn’t the case yet, because certain length-dependent
kernel operations are done without interruption. These operations involve validating
programs and moving them into code memory, allocating multiple pages of data
memory, wiping memory that has been deallocated, etc. They become a problem,
for example, when program X misses a deadline while the kernel is serving a large
malloc to program Y. The solution will be to move such tasks out of the scheduler
loop to a queue that is serviced by an interruptible kernel subprogram. After this is

64 5 IMPLEMENTATION

done, Osmin will reliably meet programs’ hard deadlines irrespective of other users’
system calls. Until then, Osmin can run as an RTOS for some uses by (i) completing
all variable-time kernel operations such as memory allocation during startup, and
(ii) disabling any problematic API calls thereafter.

Because Dauug|36 does not have any I/O yet, neither can Osmin. The “external
storage” for the purpose of booting the OS, loading programs, and I/O within
programs, is via the electrical simulation’s PVIO (paravirtualized I/O) instruction.
This does no good for real-world machines, but it provides usable scaffolding for
implementing Osmin, which in turn provides scaffolding to test the ensuing I/O
subsystem and device drivers.

Regression testing for Osmin is messy on account of the electrical simulation’s
low instruction throughput. Wiping a million-word data memory at startup would
take more than two hours, so the instruction set and simulation offer a MEMSET
pseudo-instruction that can fill contiguous memory in a moment. But no tests
presently monitor the kernel’s internal data structures for symptomless bugs. Such
tests should be written in parallel with kernel development. To speed testing and
maximize independence from possibly-defective kernel source, these checks should
be written in C to run as part of the simulator itself instead of run slowly within a
simulation.

5.2 Portions That Are Substantially Missing
For three reasons, I have not undertaken to build a physical computer yet. First,
real costs are incurred constructing partial machines. Second, SRAM supply strain
during the pandemic threatened component availability for more than two comput-
ers. Third, the maker community is quick to clone open-source CPUs, and I do not
want to penalize early adopters with the shortcomings of a premature release. So
although a partial, proof-of-concept implementation has been possible for a while,
I intend to finish a fully-standalone, fully-solder-defined specification before I build
machine zero. The rest of this section describes this prerequisite work.

5.2.1 Clock Distribution

The largest risk to early prototypes is that their clock skew may be too large for
the design to work. The problem is one of precision, not speed, so reducing the
clock frequency will not help. There is only a 1.5 ns tolerance in clock arrival time
between adjacent RAMs. This corresponds to about nine inches of track length,
which is easy to balance, but there are other concerns. Even if rising edges arrive
simultaneously at two RAMs, how will the parts themselves interpret these arrivals?
What will the effects of noise be? There are good reasons why most 7400-series ICs
intentionally are not as fast as the 74AUC family. Thus work remains to address
clock skew and clock distribution.

5.2 Portions That Are Substantially Missing 65

5.2.2 I/O Subsystem

One of computer history’s long-running memes is the practice of attaching crip-
pling, afterthought I/O to otherwise-promising CPUs. At least we have an example
of what not to do—fritter a 36-bit CPU to bang I/O one bit at a time. So in-
stead, much-smaller, dedicated controllers will transfer data between I/O RAM
and serially-attached peripherals. Each I/O controller will be very simple, consist-
ing primarily of an SRAM IC that is configured as a finite state machine (FSM),
and another SRAM IC for I/O buffer memory. This design frees the CPU to run
other code while the controller handles I/O transfers. Support is planned for the
Serial Peripheral Interface (SPI) and Inter-Integrated Circuit (I2C) bus specifica-
tions, to which most modern hardware can attach directly or via commonly-available
adapters.

The I/O subsystem is the internal firewall (Section 2) between the solder-
defined, user-auditable minicomputer and the opaque, proprietary, uncertain world
of commodity peripherals. The only thing a peripheral is electrically able to do
to the minicomputer is drive one wire high or low in reply to an I/O bus strobe.
All interpretation of what high or low means is deferred until the bit safely reaches
the CPU. Although SPI and I2C support bus sharing, solder-defined hygiene de-
mands that all peripherals use a dedicated bus to prevent them from interfering
with or eavesdropping on each other. Because most minicomputers should support
at least eight connected peripherals, serial buses’ comparatively small component
and footprint demand will be advantageous.

An I/O controller may service several buses. Its two RAMs will be segmented
by address input bits according to bus number, so no electrical path will exist from
any peripheral to another peripheral’s buffer memory. Moreover, if there is an error,
corruption, or crash caused by defective firmware for one peripheral, the controller’s
other peripherals can recover.30 Most Dauug|36 computers should have at least two
I/O controllers, so that transfers between two peripherals can keep both busy.

5.2.3 Device Drivers

At least two small device drivers will be written and tested before a physical com-
puter is built, to validate the I/O subsystem’s ability to transfer serial data. One
driver may support a real-time clock such as Maxim’s DS3231, and the other may
support interactive testing via Ethernet packets or an RS-232 device. Device drivers
will be implemented in three layers:

I/O device layer. The highest (closest to user code) of the three driver layers,
the I/O device layer will be written specifically for the peripheral it controls. Its job
is to produce and interpret serial packets that are exchanged with the peripheral.

I/O kernel layer. The middle of the three driver layers, the I/O kernel layer will
exchange packets between the CPU’s data memory and an I/O controller’s separate
buffer memory. Less frequently, the kernel layer will schedule the controller’s work,

30The CPU may need to shut down an infinite FSM loop before another peripheral can use the
controller.

66 5 IMPLEMENTATION

respond to controller requests, patch controller firmware to specify timing, packet
size, and other configuration, and download firmware to the controller. Generic
across all devices, this layer will be a permanent part of the kernel.

I/O bus layer. The lowest (closest to peripheral) of the three driver layers,
the I/O bus layer will bit bang data exchanges between an I/O controller’s buffer
memory and a serially-connected peripheral. Except for on-the-fly patching to se-
lect among SPI- and I2C-supported configurations, this layer is generic to its bus
protocol, not customized to a device.

5.2.4 Firmware Loader

When the system powers up, about 100 million bits of firmware must be retrieved
from their serial NOR flash memory to the arithmetic logic unit’s 20 SRAM ICs,
2 control decoder RAMs, and the code memory RAM. This firmware is pushed
to the RAMs via D flip-flops that afterward “vanish” by disabling their outputs.
These flip-flops are already present in the design in order to account for their drag
on board capacitance, and most are visible in Figure 2. But the control logic that
drives these flip-flops and the SRAM write signals remains to be designed.

5.2.5 Proof of Separation Between Programs

Although a mathematical, semi-formal, or formal proof that the hardware, firmware,
and kernel are immune to hacking and malware is not anticipated prior to the first
physical prototype, the usefulness of having such a proof must not be forgotten.
Such proof must specify and derive from a set of assumptions and expectations,
including how immunity is defined for the architecture.31

5.2.6 Circuit Board Finalization, Routing, and Fabrication

Once the Dauug|36 specification is able to self-load and run from power-up when
simulated, bypass capacitors will be added and placed, and regulated power will
be supplied and distributed.32 Connectors and logic will be added for testing the
board and flashing firmware. By design, the minicomputer cannot alter its firmware
without onsite assistance. JTAG won’t help for circuit testing or firmware loading,
because JTAG and hand-solderability are rarely offered in the same IC package.

Substantial extra work may be needed to find or write software to route circuit
board tracks. Although open-source hardware should not necessitate use of closed-
source tools to design and maintain, I have not found an open-source, off-the-shelf
electronic design automation tool that can tackle a project of this size.

After these tasks, machine zero will be ready to assemble and test.

31The proof should cover all time when power is applied. One assumption that may be necessary
is that the kernel is retrieved from the firmware loader’s serial NOR flash memory instead of from
an attached device outside the security perimeter. Otherwise, the proof may have to extend over
filesystems, device drivers, and non-solder-defined hardware.

32Power consumption is hard to estimate from datasheets and simulation, so it will be measured
from a prototype.

6.1 Security Advantages 67

6 Implications and Conclusions
6.1 Security Advantages
6.1.1 Open Hardware and Open firmware for Running Open Software

I have read many forum posts complaining that a purchased device’s firmware is
closed-source, inaccessible to the owner, and/or encrypted. All Dauug|36 firmware
is fully open-source, accessible to those who install it, and nothing is encrypted.
Even the S-boxes for the ALU’s substitution-permutation networks are fully derived
via a transparent algorithm. The system owner has absolute and final authority
over every bit of the firmware, and the purpose of each bit is explained in the
documentation.

The openness of the architecture’s firmware extends also to its electrical design
and implementation. Its only secrets are the die-level design of discounted logic
ICs—synchronous static RAMs and basic glue logic—with clear interface defini-
tions and publicly available datasheets. There are no secret functionalities in the
architecture, no vendor lock-in, no encrypted or closed-source firmware, no license
fees to build, use, or modify, no purpose of use limitations, no patents on any tech-
nology originating from me, and no infringements on the owner’s right to repair.

All hardware is visually and electrically inspectable after manufacture and pur-
chase. Firmware is easily accessible for inspection and modification via appropriate
in-person tools.

6.1.2 Security Perimeter for Solder-Defined Logic

A security perimeter surrounds the CPU, memory subsystem, firmware loader, and
I/O subsystem, inside which there is no purchased complex logic such as micropro-
cessors, FPGAs, PLDs, or ASICs. The only perimeter crossing points are the serial
buses between the I/O controllers and peripherals, with no serial bus attaching to
more than one peripheral. The serial bus boundaries form an internal firewall, such
that any peripheral’s defects that might be exploitable cannot propagate into other
parts of the system.

Some peripherals, such as mass storage, are not available as solder-defined sub-
systems. The operating system should use encryption mechanisms within the CPU
that are designed to prevent, for example, a rogue disk controller from reading or
modifying programs contained on its disk. This protection can be at low compu-
tational cost on account of the MIX and XIM opcodes. Encryption keys would be
installed by the firmware loader from the serial flash memory. These keys need only
be kept secret from the peripherals they defend against.

6.1.3 Memory Hygiene for Hardware

The architecture is intrinsically immune to certain memory exploits. A complete
absence of DRAM eliminates the RowHammer class of leaky-capacitor exploits,
and may also reduce susceptibility to radiation upsets. Absence of cache memory

68 6 IMPLICATIONS AND CONCLUSIONS

and speculative execution also rules out Spectre- and Meltdown-type attacks and
reduces the range of side channel attacks that may be possible.

The firmware as written has no opcode that can result in data exchange between
the stack and registers. Figure 2 does not suggest firmware modifications that
could read data from the stack, short of having to pass through the code RAM.
There are two electrical routes to write to stack memory, which would require
complicit firmware using an elaborate control decoder scheme. The shorter route
passes through via flip-flops “a,” “t,” and “c” in Figure 2.

In the presence of well-behaved firmware, the only access to stack memory is via
the CALL, RETURN, and their variants. No privilege escalation can result from stack
overflow, and there is no possibility of harmful stack underflow if the kernel adheres
to certain rules.

It is not possible to branch to locations in code memory that are not already
present in a branch instruction in code memory. This allows exclusive ownership
of portions of code memory by various users, along with arbitrary sharing of code
memory as may be supported and permitted by the operating system.

Unprivileged users are subject to paged virtual memory for data segregation.
The I/O controller’s buffer memory and finite-state machine memory will be

electrically segregated on a per-serial-bus (that is, per-peripheral) basis.
For software, the architecture contributes little if anything new to memory hy-

giene.

6.1.4 Control of the CPU

All nonprivileged opcodes are such that they cannot cause privilege escalation on
their own. They would need a complicit human, operating system, or control de-
coder RAM to do this. Of these three routes, the control decoder RAM is easiest
to defend against—its firmware is tiny—and a complicit human is the most difficult
to defend against.

The minicomputer contains no persistent state within the security perimeter
except for the firmware’s serial flash memory, which the CPU does not have write
access to.

6.1.5 Arithmetic

The arithmetic logic unit has effective means for detecting out-of-range condi-
tions for addition, subtraction, multiplication, arithmetic shifts, and absolute value.
These means can look back to the last time the R(ange) flag was cleared, therefore
permitting long computation sequences to run without overhead to check for out-
of-range conditions. These arithmetic improvements can help redeem out-of-favor
programming languages such as C and assembler, which current arithmetic hygiene
expectations for traditional architectures have made unsuitable for secure program-
ming.

6.2 Performance and Applications 69

6.1.6 Why Tamper Resistance Is Out of Scope

Some vendors and some cybersecurity practitioners may dismiss this architecture
over concern that it is not tamper-resistant. This would be a valid complaint for
electronics that safeguard a physical asset against on-site compromises, such as
locks to prevent a handgun from firing, a missile from detonating, or a bank card
from exposing a private key. The complaint may also be valid for small personal
platforms that could be stolen, such as smartphones. But for fixed assets such as
desktop computers in homes and offices, routers in network closets, industrial con-
trollers, and farm machinery, the presence of on-location, technically-sophisticated
adversaries is possibly not today’s top threat. More likely, the adversaries will be
equipment manufacturers, part suppliers, governments of interested jurisdictions,
or international criminals.

Buyers who require tamper resistance for Dauug|36 are at liberty to add it,
subject to their weight, size, and cost budgets, using physical barriers and surveil-
lance that are suitable for their needs. But technological security controls have both
active and passive failures, and in the case of tamper resistance, an active failure
usually infringes on the buyer’s rights.

6.2 Performance and Applications
Dauug|36 pursues the world’s first “gold standard” for transparently function-
ing, fully auditable, user-constructable controllers, CPUs, and minicomputers for
integrity- and confidentiality-critical missions. This 36-bit architecture executes
16 MIPS in simulation and is free of wait states, and has an eventual goal of
20 MIPS, despite a total absence of purchased complex logic such as microproces-
sors, FPGAs, PLDs, and ASICs within its security perimeter. Relative to today’s
off-the-shelf alternatives, the architecture’s drawbacks are added size, cost, and
power consumption, inability to run existing software, and a ceiling on installable
memory.33 Summary specifications appear in Table 22.

Table 23 lists potentially compatible and incompatible uses for Dauug|36. The
minicomputer will be fast enough to control most systems that physically move:
industrial and commercial devices, factory automation, electric grids, wells and
pumps, heavy machinery, trains, dams, traffic lights, container cranes, chemical
plants, engines, and turbines. It will also be fast enough for many uses not involv-
ing motion, such as measurement and sensing, peripheral and device controllers,
telephony, and even Ethernet switches to medium speeds. It will also permit desk-
top use such as writing and editing documents, making spreadsheets, sending and
reading email, and writing and building software, although desktop software would
need to be specifically written for or adapted to the architecture. Dauug|36 is not
small or fast enough for smartphones or video.

For servers, Dauug|36’s applicability will depend on workload and surrounding
components, especially software. A web platform intended for an eight-core CPU

33The present board and available ICs support 8Mi × 36 and 4Mi × 36 bits of data and code
memory respectively.

70 REFERENCES

Table 22: Specifications

System classification solder-defined minicomputer
Logic family SRAM with 74AUC
Memory protection paged virtual memory
Multitasking cooperative or preemptive
Word size 36 bits
CPU speed 16–20 MIPS
Maximum data RAM 8Mi × 36 bits
Maximum code RAM 4Mi × 36 bits
Registers per program 512
Programs ready to run 256
I/O buses SPI and I2C
Hardware license CC BY 4.0 Intl.
Firmware license CC BY 4.0 Intl.
Operating system Osmin or owner-supplied
Manufacturer anyone

and 64 GB of RAM is not within reach of this technology. Even if an application
on this scale could be accommodated, the sheer size of the software will often
present a larger attack surface than the hardware it runs on. On the other hand,
server applications specifically designed to run on and thoughtfully matched to the
emergent architecture will run fine. For more than 75 years, engineers have proven
stunningly adept at making systems fit within computing hardware constraints when
sufficient motivation and talent are present.

Acknowledgments
This work has been partially sponsored through the Assured Digital Microelectron-
ics Education & Training Ecosystem (ADMETE) grant awarded through Air Force
Research Laboratory (AFRL).

Thank you to Glenn Alexandra Ochsner of Miami University for feedback and
suggestions related to the architecture’s operation, terminology, drawings, and un-
derstandability since its inception.

Figure colors were selected with guidance from [8].

References
[1] Marc W. Abel. 2022. Parallel Multiplier Synthesis Software. Harvard Data-

verse. (Sep. 4, 2022). doi: 10.7910/DVN/DABIBJ

https://doi.org/10.7910/DVN/DABIBJ

REFERENCES 71

Table 23: Dauug|36 potential applications

Fast enough for Too slow for
process controls contemporary Web surfing
controlling objects that move AI model training
peripheral and device controllers image recognition
light- to moderate-use servers fast raster or vector graphics
modest Ethernet switches fast symmetric cryptography
telephony fast asymmetric cryptography
hardened desktop applications video compression
electronic mail computational biology

[2] Marc W. Abel. 2022. A Solder-Defined Computer Architecture for Back-
door and Malware Resistance. Ph.D. Dissertation. Wright State Univer-
sity, Fairborn, OH, USA. http://rave.ohiolink.edu/etdc/view?acc_num=
wright167489700770166

[3] Marc W. Abel. 2023. The Dauug House: Dauug|36 Minicomputer Documen-
tation. https://dauug.cs.wright.edu/

[4] Olivier Bailleux. 2016. A CPU made of ROMs. Watched Apr. 4, 2020 from
https://www.youtube.com/watch?v=J-pyCxMg-xg

[5] Olivier Bailleux. 2016. The Gray-1, a homebrew CPU exclusively composed
of memory. Retrieved Apr. 4, 2020 from https://bailleux.net/pub/ob-
project-gray1.pdf

[6] Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson.
2013. Stealthy Dopant-Level Hardware Trojans. In Cryptogr. Hardw. Em-
bed. Syst. – CHES 2013, August 18–23, 2013, Santa Barbara, CA, USA. Lect.
Notes Comput. Sci. 8086 (July 30, 2013), Springer, Berlin, Heidelberg. doi:
10.1007/978-3-642-40349-1_12

[7] Sergey Bratus, Travis Goodspeed, Peter C. Johnson, Sean W. Smith, and Ryan
Speers. 2012. Perimeter-crossing buses: A new attack surface for embedded
systems. In Proc. 7th Workshop Embed. Syst. Secur. (WESS 2012), (Tampere,
Finland).

[8] Cynthia A. Brewer, ed. 2013. ColorBrewer 2.0: Color Advice for Cartography.
Geography, Pennsylvania State University. University Park, PA, USA. https:
//colorbrewer2.org

[9] Robert G. Brown, Dirk Eddelbuettel, and David Bauer. 2020. Dieharder: A
random number test suite. Retrieved Sep. 6, 2022 from http://webhome.phy.
duke.edu/~rgb/General/dieharder.php

http://rave.ohiolink.edu/etdc/view?acc_num=wright167489700770166
http://rave.ohiolink.edu/etdc/view?acc_num=wright167489700770166
https://dauug.cs.wright.edu/
https://www.youtube.com/watch?v=J-pyCxMg-xg
https://bailleux.net/pub/ob-project-gray1.pdf
https://bailleux.net/pub/ob-project-gray1.pdf
https://doi.org/10.1007/978-3-642-40349-1_12
https://doi.org/10.1007/978-3-642-40349-1_12
https://colorbrewer2.org
https://colorbrewer2.org
http://webhome.phy.duke.edu/~rgb/General/dieharder.php
http://webhome.phy.duke.edu/~rgb/General/dieharder.php

72 REFERENCES

[10] Andrew Butterfield, Gerard Ekembe Ngondi, and Anne Kerr, eds. 2016. A
Dictionary of Computer Science (7th ed.). Oxford University Press, Oxford,
England.

[11] CTS Labs. 2018. Severe Security Advisory on AMD Processors. CTS Labs, Tel
Aviv, Israel.

[12] Roger Dannenberg, Will Dormann, David Keaton, Thomas Plum, Robert C.
Seacord, David Svoboda, Alex Volkovitsky, Timothy Wilson. 2010. As-if In-
finitely Ranged Integer Model (2nd ed.). Technical Note CMU/SEI-2010-TN-
008. Carnegie Mellon University Software Engineering Institute, Pittsburgh,
PA. doi: 10.1184/R1/6572048.v1

[13] Digital Equipment Corporation. 1964. Programmed Data Processor-6 Hand-
book, p. 17. Retrievevd Feb. 13, 2024 from https://bitsavers.org/pdf/dec/
pdp6/F-65_PDP-6_Handbook_Aug64.pdf

[14] Christopher Domas. 2018. Hardware Backdoors in x86 CPUs. At Black Hat
USA 2018, (Las Vegas, NV), white paper.

[15] Mark Ermolov and Maxim Goryachy. 2017. How to hack a turned-off computer,
or running unsigned code in Intel Management Engine. At Black Hat Europe
2017, (London, UK), slides.

[16] Mark Ermolov. 2020. Intel x86 root of trust: loss of trust. (Mar. 2020).
Retrieved Apr. 4, 2020 from https://blog.ptsecurity.com/2020/03/
intelx86-root-of-trust-loss-of-trust.html

[17] Larry Geenemeier. 2017. The Pentagon’s seek and destroy mission for
counterfeit electronics. (Apr. 28, 2017). https://www.scientificamerican.
com/article/the-pentagon-rsquo-s-seek-and-destroy-mission-for-
counterfeit-electronics/

[18] Maurizio Gavardoni. 2016. Microchip AN2340: Immunity of MEMS oscillators
to mechanical stresses. (Nov. 7, 2016). Retrieved Feb. 27, 2024 from https:
//ww1.microchip.com/downloads/en/Appnotes/00002340A.pdf

[19] Mirko Holler, Manuel Guizar-Sicairos, Esther H. R. Tsai, Roberto Dinapoli,
Elisabeth Müller, Oliver Bunk, Jörg Raabe, and Gabriel Aeppli. 2017. High-
resolution non-destructive three-dimensional imaging of integrated circuits. Na-
ture 543 (Mar. 16, 2017), 402–417. doi: 10.1038/nature21698

[20] International Organization for Standardization. 2018. ISO/IEC 27000:2018(E).
Information technology – Security techniques – Information security man-
agement systems – Overview and vocabulary. Retrieved Jul. 14, 2020
from https://standards.iso.org/ittf/PubliclyAvailableStandards/
c073906_ISO_IEC_27000_2018_E.zip

https://doi.org/10.1184/R1/6572048.v1
https://bitsavers.org/pdf/dec/pdp6/F-65_PDP-6_Handbook_Aug64.pdf
https://bitsavers.org/pdf/dec/pdp6/F-65_PDP-6_Handbook_Aug64.pdf
https://blog.ptsecurity.com/2020/03/intelx86-root-of-trust-loss-of-trust.html
https://blog.ptsecurity.com/2020/03/intelx86-root-of-trust-loss-of-trust.html
https://www.scientificamerican.com/article/the-pentagon-rsquo-s-seek-and-destroy-mission-for-counterfeit-electronics/
https://www.scientificamerican.com/article/the-pentagon-rsquo-s-seek-and-destroy-mission-for-counterfeit-electronics/
https://www.scientificamerican.com/article/the-pentagon-rsquo-s-seek-and-destroy-mission-for-counterfeit-electronics/
https://ww1.microchip.com/downloads/en/Appnotes/00002340A.pdf
https://ww1.microchip.com/downloads/en/Appnotes/00002340A.pdf
https://doi.org/10.1038/nature21698
https://standards.iso.org/ittf/PubliclyAvailableStandards/c073906_ISO_IEC_27000_2018_E.zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/c073906_ISO_IEC_27000_2018_E.zip

REFERENCES 73

[21] Dmitry Janushkevich. 2020. The Fake Cisco: Hunting for Backdoors in
Counterfeit Cisco Devices. Version 1.0, Jul. 2020. Retrieved Jul. 19, 2020
from https://labs.f-secure.com/assets/BlogFiles/2020-07-the-fake-
cisco.pdf

[22] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre attacks: Exploiting speculative ex-
ecution. In 40th IEEE Symp. Secur. Priv., (San Francisco, CA), IEEE, 1–19.
doi: 10.1109/SP.2019.00002

[23] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In Proc. 27th USENIX Secur. Symp., (Baltimore, MD), USENIX
Association, 973–990. doi: 10.1145/3357033

[24] Eric Love, Yier Jin, and Yiorgos Makris. 2011. Enhancing security via provably
trustworthy hardware intellectual property. In 2011 IEEE Int. Symp. Hardw.-
Oriented Secur. Trust, June 5–6, 2011, San Diego, CA, USA. IEEE, New York,
NY, USA, 12–17. doi: 10.1109/HST.2011.5954988

[25] Eric Schlaepfer. 2016. The MOnSter 6502. Retrieved Sep. 6, 2022 from https:
//monster6502.com

[26] Onur Mutlu and Jeremie S. Kim. 2019. RowHammer: A retro-
spective. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.. doi:
10.1109/TCAD.2019.2915318

[27] National Security Agency Advanced Network Technology Division. 2008. NSA
ANT catalog. Retrieved Apr. 4, 2020 from https://www.eff.org/files/
2014/01/06/20131230-appelbaum-nsa_ant_catalog.pdf

[28] National Security Agency. 2022. Software memory security. (Nov. 10, 2022).
Retrieved Nov. 14, 2022 from https://media.defense.gov/2022/Nov/10/
2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF

[29] Michael Pompeo. 2020. The tide is turning toward trusted 5G vendors. Press
Statement by the Secretary of State. Jun. 24, 2020, (Washington, DC).
Retrieved Sep. 5, 2022 from https://2017-2021.state.gov/the-tide-is-
turning-toward-trusted-5g-vendors/index.html

[30] Erica Portnoy and Peter Eckersley. 2017. Intel’s Management Engine is a secu-
rity hazard, and users need a way to disable it. (May 2017). Retrieved Apr. 4,
2020 from https://www.eff.org/deeplinks/2017/05/intels-management-
engine-security-hazard-and-users-need-way-disable-it

https://labs.f-secure.com/assets/BlogFiles/2020-07-the-fake-cisco.pdf
https://labs.f-secure.com/assets/BlogFiles/2020-07-the-fake-cisco.pdf
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/3357033
https://doi.org/10.1109/HST.2011.5954988
https://monster6502.com
https://monster6502.com
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1109/TCAD.2019.2915318
https://www.eff.org/files/2014/01/06/20131230-appelbaum-nsa_ant_catalog.pdf
https://www.eff.org/files/2014/01/06/20131230-appelbaum-nsa_ant_catalog.pdf
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://2017-2021.state.gov/the-tide-is-turning-toward-trusted-5g-vendors/index.html
https://2017-2021.state.gov/the-tide-is-turning-toward-trusted-5g-vendors/index.html
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it
https://www.eff.org/deeplinks/2017/05/intels-management-engine-security-hazard-and-users-need-way-disable-it

74 REFERENCES

[31] Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their
decision problems. Trans. Am. Math. Soc. 74, 2 (Mar. 1953), 358–366. doi:
10.1090/s0002-9947-1953-0053041-6

[32] Joanna Rutkowska. 2015. Intel x86 considered harmful. (Oct. 2015). Retrieved
Apr. 4, 2020 from https://blog.invisiblethings.org/papers/2015/x86_
harmful.pdf

https://blog.invisiblethings.org/papers/2015/state_harmful.pdf

[33] David Schor. 2022. IEDM 2022: Did We Just Witness The Death Of
SRAM? WikiChip Fuse: Chips & Semi News, (Dec. 14, 2022). Retrieved Feb.
27, 2024 from https://fuse.wikichip.org/news/7343/iedm-2022-did-we-
just-witness-the-death-of-sram/

[34] Mischa Schwartz and Jeremiah Hayes. 2008. A history of transat-
lantic cables. IEEE Commun. Mag. 46, 9 (Sep. 12, 2008), 42–48. doi:
10.1109/MCOM.2008.4623705

[35] Robert C. Seacord. 2014. The CERT C Coding Standard: 98 Rules for De-
veloping Safe, Reliable, and Secure Systems (2nd. ed.). Addison-Wesley, New
York, NY, USA, 112–118, 126–135.

[36] Eugene Howard Spafford. 1989. The Internet worm: Crisis and aftermath.
Commun. ACM 32, 6 (June 1989), 678–687. doi: 10.1145/63526.63527

[37] Clifford Paul Stoll. 1988. Stalking the wily hacker. Commun. ACM 31, 5 (May
1988), 484–497. doi: 10.1145/42411.42412

[38] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. Throwhammer: Rowhammer at-
tacks over the network and defenses. In 2018 USENIX Annu. Tech. Conf.,
(Boston, MA), USENIX Association, 213–225.

[39] Ken Thompson. 1984. Reflections on trusting trust. Commun. ACM 27, 8 (Aug.
19984), 761–763. doi: 10.1145/358198.358210

[40] Warren Toomey (Ed.). 2017. Homebrew computers web-ring. Retrieved Sep. 6,
2022 from https://www.homebrewcpuring.org

[41] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin,
Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.
2020. LVI: Hijacking transient execution through microarchitectural load value
injection. 41st IEEE Symp. Secur. and Priv. (S&P 20), (pandemic all-digital
conference). doi: 10.1109/SP40000.2020.00089

[42] Adam Waksman. 2014. Producing Trustworthy Hardware Using Untrusted
Components, Personnel and Resources. Ph.D. Dissertation. Columbia Univer-
sity, New York, NY, USA. doi: 10.7916/D8N014PX

https://doi.org/10.1090/s0002-9947-1953-0053041-6
https://doi.org/10.1090/s0002-9947-1953-0053041-6
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
https://blog.invisiblethings.org/papers/2015/state_harmful.pdf
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram/
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram/
https://doi.org/10.1109/MCOM.2008.4623705
https://doi.org/10.1109/MCOM.2008.4623705
https://doi.org/10.1145/63526.63527
https://doi.org/10.1145/42411.42412
https://doi.org/10.1145/358198.358210
https://www.homebrewcpuring.org
https://doi.org/10.1109/SP40000.2020.00089
https://doi.org/10.7916/D8N014PX

Dauug  | 36 is designed from scratch to preclude exploitable
hardware defects that often arise from longstanding custom
(e.g. arithmetic wraparound), undue complexity (e.g. Spectre,
RowHammer, Meltdown), or intentional backdoors (e.g. Clipper).

Dauug  | 36 does not rely for trustworthiness on foreign countries
or semiconductor companies—regardless of where located—
because the system owner’s own soldering and firmware
determines the computer‛s logical connectivity and operation.

There isn’t a microprocessor or anything like one
(FPGA, PLD, or ASIC) anywhere in the design.

Compare the following Dauug  | 36 characteristics to any other
computer architecture on the planet, and decide for yourself.

• Sticky, consistent overrange flag for arithmetic
• Stratified opcodes for heterogeneous register signedness
• No privilege escalation via stack
• No access to stack except via CALL and RETURN variants
• Code and stack memory inaccessible via LD and STO opcodes
• No branch to addresses not hardcoded in CALL or JUMP
• Faultless paged virtual memory without overcommit
• No privilege escalation via CPU
• No DRAM or DRAM-associated vulnerabilities
• No VLSI complex logic except in attached peripherals
• Every peripheral isolated to its own bus and buffer memory
• No CPU persistent state except for one firmware IC
• No MEMS oscillator for age- and frequency-selected attacks
• No firmware modification without physical access
• No parts that can’t be hand-soldered and probed afterward
• No secret functionality
• No unexplainable S-box constants
• No vendor lock-in
• No encrypted or closed-source firmware
• No license fees to build, use, or modify
• No purpose-of-use limitations
• No planned obsolescence
• No right-to-repair infringements

	Introduction
	Problem Statement
	Seeking a Solution
	Alternatives to VLSI Complex Logic
	Dauug|36 as a Collection of Soldered Components

	Definitions and Abbreviations
	Dauug|36 as a Programmable Machine
	State
	State for User Programs
	State for Privileged Programs

	Firmware
	Instruction Format
	Address Formats, Memory Protection, and Memory Capacity
	Logic
	Arithmetic
	Single-Instruction Arithmetic
	Short Multiplication
	Long Multiplication
	Adding a Hardware Multiplier to the Architecture
	Division

	Advanced ALU Instructions
	Reverse Subtraction
	Minimum and Maximum
	Nudge Integer to Offset from Power of Two
	Population Count (Hamming Weight)
	Tribble Swizzling
	Transposing XOR
	Bit Permutations
	Substitution-Permutation Network Instructions
	Stacked Unary Instructions
	Unusual Memory Instructions

	Multitasking
	Instruction Set Tables

	Arithmetic Logic Unit Theory of Operation
	Simple Lookup Elements
	Three-Layer Carry-Skip Adders
	Swizzlers
	Logarithmic Shifters
	Substitution-permutation networks
	Three-Layer Arithmetic Logic Units

	Implementation
	Portions That Are Substantially Complete
	Netlist Generation
	Electrical Simulation
	Virtual Machine
	Assembly Language
	Cross Assembler
	Firmware
	Documentation
	Operating System

	Portions That Are Substantially Missing
	Clock Distribution
	I/O Subsystem
	Device Drivers
	Firmware Loader
	Proof of Separation Between Programs
	Circuit Board Finalization, Routing, and Fabrication

	Implications and Conclusions
	Security Advantages
	Open Hardware and Open firmware for Open Software
	Security Perimeter for Solder-Defined Logic
	Memory Hygiene for Hardware
	Control of the CPU
	Arithmetic
	Why Tamper Resistance Is Out of Scope

	Performance and Applications

	Acknowledgments
	References

