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A B S T R A C T   

The Gracilariales is a highly diverse, widely distributed order of red algae (Rhodophyta) that forms a well- 
supported clade. Aside from their ecological importance, species of Gracilariales provide important sources of 
agarans and possess bioactive compounds with medicinal and pharmaceutical use. Recent phylogenetic analyses 
from a small number of genes have greatly advanced our knowledge of evolutionary relationships in this clade, 
yet several key nodes were not especially well resolved. We assembled a phylogenomic data set containing 79 
nuclear genes, 195 plastid genes, and 24 mitochondrial genes from species representing all three major Graci
lariales lineages, including: Melanthalia, Gracilariopsis, and Gracilaria sensu lato. This data set leads to a fully- 
resolved phylogeny of Gracilariales, which is highly-consistent across genomic compartments. In agreement 
with previous findings, Melanthalia obtusata was sister to a clade including Gracilaria s.l. and Gracilariopsis, which 
were each resolved as well-supported clades. Our results also clarified the long-standing uncertainty about re
lationships in Gracilaria s.l., not resolved in single and multi-genes approaches. We further characterized the 
divergence time, organellar genome architecture, and morphological trait evolution in Gracilarales to better 
facilitate its taxonomic treatment. Gracilariopsis and Gracilaria s.l. are comparable taxonomic ranks, based on the 
overlapping time range of their divergence. The genomic structure of plastid and mitochondria is highly 
conserved within each clade but differs slightly among these clades in gene contents. For example, the plastid 
gene petP is lost in Gracilaria s.l. and the mitochondrial gene trnH is in different positions in the genome of 
Gracilariopsis and Gracilaria s.l. Our analyses of ancestral character evolution provide evidence that the main 
characters used to delimitate genera in Gracilariales, such as spermatangia type and features of the cystocarp’s 
anatomy, overlap in subclades of Gracilaria s.l. We discuss the taxonomy of Gracilariales in light of these results 
and propose an objective and practical classification, which is in agreement with the criteria of monophyly, 
exclusive characters, predictability and nomenclatural stability.   

1. Introduction 

Gracilariales is a well-supported red algae clade that is nested within 
Rhodymeniophycidae (Florideophyceae, Rhodophyta) (Verbruggen 
et al., 2010). Species in this clade include economically important crops, 
which provide sources of agarans and bioactive compounds with 

potential pharmaceutical application (Andriani et al., 2016). The order 
is characterized by its unique reproductive ontogeny, including the 
absence of auxiliary cells before fertilization, and the gonimoblast not 
incorporated to the fusion cell during development (Fredericq and 
Hommersand, 1989). The application of widely used nuclear (Bellorin 
et al., 2002) and organellar markers (Gurgel and Fredericq, 2004; Lyra 
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et al., 2015) in this clade has greatly advanced our knowledge of 
infrafamilial relationships. Subsequent expanded plastid and mito
chondrial gene sampling also resolved deep nodes of the phylogeny (Iha 
et al., 2018), though with limited taxon sampling. The current 
morphological circumscriptions of supraspecific taxa (Gurgel et al., 
2018) are primarily based on characters that have been demonstrated to 
be paraphyletic across subclades (Bellorin et al., 2002; Lyra et al., 2015; 
Lyra et al., 2021). 

The controversy regarding taxonomic schemes in Gracilariaceae is 
primarily focused on the acceptance of Gracilaria Greville sensu stricto or 
sensu lato, the latter including Hydropuntia Montagne. Here, the key 
morphological character distinguishing Gracilaria from Hydropuntia is 
spermatangia type. Hydropuntia is characterized by deep and coalescing 
(henriquesiana) spermatangia conceptacles, while Gracilaria has shallow 
(textorii) or deep and non-coalescent spermatangial crypts (verrucosa) 
(Fig. S1). Gurgel and Fredericq (2004) previously reinstated the genus 
Hydropuntia, segregating it from Gracilaria. Lyra et al. (2015), however, 
demonstrated that Hydropuntia was not monophyletic and that the ver
rucosa spermatangia type is likely an early developmental stage of the 
henriquesiana spermatangia type as previously proposed (Abbott et al., 
1991). Both kinds of spermatangia are present in Gracilaria domingensis 
(Kützing) Sonder ex Dickie and G. baiana G.M. Lyra, C.F.D. Gurgel, M.C. 
Oliveira & J.M.C. Nunes (Lyra et al., 2015; Lyra et al., 2016; Lyra et al., 
2021). 

The currently accepted classification in Gracilariaceae (Gurgel et al., 
2018; Guiry and Guiry, 2021) was based on a rbcL phylogeny, which 
recognizes 237 species divided into two subfamilies, two tribes, seven 
genera, and four subgenera. Hydropuntia was again reestablished and, in 
order to resolve the polyphyly of Gracilaria, two new genera, Agar
ophyton Gurgel, J.N.Norris & Fredericq and Crassiphycus Guiry, J.N. 
Norris, Fredericq & Gurgel (Guiry et al., 2018), were segregated from it. 
The subfamily Gracilarioideae Stizenberger includes two tribes (Graci
larieae Willkomm and Gracilariopsideae Gurgel, J.N.Norris & Fredericq) 
and comprises more than 90% of the species in the family, distributed in 
five genera: Agarophyton, Crassiphycus, Gracilaria, Gracilariopsis, and 
Hydropuntia, with distributions concentrated in tropical to subtropical 
areas. The subfamily Melanthalioideae Gurgel, Fredericq & J.N.Norris 
includes the genera Curdiea Harvey and Melanthalia Montagne, with 
most species endemic to Oceania (Gurgel et al., 2018). However, clear 
diagnostic features for the new or reestablished taxa were not presented, 
and the descriptions provided were not stable across all the included 
species (Lyra et al., 2021). The relationships among the clades Agar
ophyton, Crassiphycus, Gracilaria and Hydropuntia remained unsupported 
in the previous single or multi genes phylogenies, which hindered the 
understanding of character distribution and the identification of apo
morphies in these clades. 

Analyses of character evolution have been useful to assess the utility 
of traits for delineating major taxonomic groups in Rhodophyta (Diaz- 
Tapia et al., 2019), and can potentially shed light on evolutionary trends 
in Gracilariales. A recent study using plastid and mitochondrial genomic 
data of a limited dataset of Gracilariaceae species (Iha et al., 2018) 
demonstrated the utility of a larger number of genes to increase support 
in deeper nodes of phylogenies, and also highlighted the importance of 
macrostructural genomic characters for better delimiting clades of 
Gracilariaceae. Recently, divergence time analyses were employed to 
specifically address Gracilariales evolutionary history (Gurgel et al., 
2020), suggesting that most of the diversification in Gracilaria s.l. 
occurred during the late Cretaceous and early Paleogene, while Graci
lariopsis diversified more recently. However, these results were not used 
to evaluate whether the taxonomic classification of Gracilariales in
cludes comparable ranks considering the divergence time of taxa. The 
standardization of time of divergence for the recognition of taxonomic 
ranks has been advocated as a relevant approach for assigning taxo
nomic ranks across different groups of organisms (Avise and Johns, 
1999). 

To accomplish the goals of i) understanding the evolution of 

Gracilariales; ii) better circumscribing supraspecific taxa; and iii) 
adopting a classification system that reflects its history, we present here 
three fully-supported phylogenies of Gracilariales, inferred from plastid 
and mitochondrial genomes, and the largest set of nuclear genes to date. 
Our dataset and analyses, which also include a calibrated phylogeny, 
comparison of organellar genomes architecture and analyses of trait 
evolution, represent the most complete effort to date for a single red 
algal order. Based on our solid genomic analyses, we propose a taxo
nomic scheme that respects the criteria of monophyly, character ex
clusivity (both on morphological and molecular levels) and divergence 
time across clades, attending also to the principles of nomenclatural 
stability and practicality. 

2. Material and methods 

2.1. DNA extractions and library preparation 

Taxa included in our sampling represent the main lineages in which 
the recent circumscription of Gracilaria s.s. and the proposition of new 
genera, infra and suprageneric taxa in Gracilariaceae (Gurgel et al., 
2018) were based. Our samples were obtained from silica dried tissues 
or herbarium material, including the type specimens of Gracilaria cras
sissima (P.Crouan & H.Crouan) P.Crouan & H.Crouan (holotype: 
NY966805), Gracilaria pachydermatica Setchell & Gardner (type: 
NY3685560) and Gracilaria textorii (Suringar) De Toni (isotype: 
NY937576) (Data S1). We obtained samples of Curdiea coriaceae (J.D. 
Hooker & Harvey) J.Agardh and C. crassa A.J.K.Millar, but the DNA 
library for both samples failed and we could not obtain the genome data 
for this genus. We extracted DNA using Maxwell® 16 DNA Purification 
Kit (Promega, Mannheim, Germany). The resultant DNA was quantified 
on the Qubit® 3.0 Fluorometer using the Qubit® dsDNA HS Assay Kit 
(Thermo Fisher Scientific Inc, Waltham, USA). The quality of extracted 
DNA was verified on Agilent 2100 Bioanalyzer with DNA High Sensi
tivity chip. We first sheared the genomic DNA to 550 bp using the 
Covaris S-series (Woburn, MA). We then followed (Bentley et al., 2008) 
to prepare DNA libraries for samples with at least 1 µg of DNA using the 
TruSeq® DNA PCR-free LT sample preparation kit (Illumina, San Diego, 
USA). For samples with lower DNA inputs (at least 7 ng of DNA), we used 
the KAPA HyperPlus Library Preparation Kit (Kapa Biosystems, Wil
mington, USA) for library preparation instead. We used Real-Time PCR 
(BioRad CFX96 Touch, BioRad Laboratories, Hercule, USA) with the 
NEBNext Library Quant Kit (New England Biolabs, Ipswich, USA) to 
verify the final concentrations of the libraries. Finally, we sequenced 
libraries on the Illumina NextSeq 500 (Illumina, Inc.) with 150 bp 
paired-ended runs at the FAS Center for Systems Biology at Harvard 
University. 

2.2. Nuclear genome assembly and annotation 

Raw Illumina reads were gently trimmed with Trimmomatic (pa
rameters: ILLUMINACLIP:IlluminaContaminants.fa:2:30:10 SLI
DINGWINDOW:4:10 MINLEN:36) (Bolger et al., 2014). 21mers 
frequencies were counted using Jellyfish (v.2.2.10) (Marcais and King
sford, 2011) and submitted to Genomescope v1 (Vurture et al., 2017) to 
obtain estimates of genome size, repeat content, and ploidy. Trimmed 
reads were assembled with Megahit (v.1.1.1) (Li et al., 2016), using the 
default setting. As the tissue samples were collected from the wild and 
red algae are a known habitat for a variety of organisms, we anticipated 
that the libraries would be contaminated with exogenous DNA. Thus, we 
relied on some bioinformatic methods to decontaminate the libraries in 
silico. Our expectation was that the majority of each library would be 
endogenous DNA with a unique distribution of GC content. Following 
assembly, we calculated 27mer frequencies and GC content in both the 
reads and their corresponding assemblies using KAT v2.1.1 (the K-mer 
Analysis Toolkit) (Mapleson et al., 2017). KAT plots were visually 
inspected for high-multiplicity clusters to establish boundaries for the 
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unique portion of the nuclear genomes. We determined filtering 
thresholds for GC content and 27mer frequency for the 22 genomic li
braries displaying clear differentiation at the expected coverage and 
filtered the assemblies to retain contigs with mean values within the 
boundaries. Our strategy for filtering out exogenous contigs based on 
27mer frequency and GC content worked well for 22 of the assemblies. 
However, filtering thresholds could not be established for the 11 of the 
assemblies, as there were no observable boundaries between the 27mer 
distributions and/or GC content in the plots. This was the case for the 
libraries sequenced at shallower depth and was likely due to overlap in 
coverage and/or GC content between contaminant and target DNA. 
Thus, we also devised a simple taxonomically informed approach for 
removing contaminated contigs from the 11 assemblies that could not be 
filtered using the first approach. We assumed that the 22 assemblies that 
we could successfully filter using the first approach retained only low 
levels of contamination, that any remaining contaminants still present in 
those assemblies were unlikely to be shared, and that endogenous con
tigs in the 11 unfiltered assemblies would share sequence similarity to 
contigs in the 22 filtered assemblies. Unique taxon identifiers were 
added to the headers of the contaminant-free contigs for the 22 filtered 
assemblies and were then concatenated into a single fasta file. A Blast 
database was constructed from this set of sequences. Next, we aligned all 
contigs from each of the 11 genome assemblies (queries) that could not 
be filtered in the first approach to the database of 22 filtered assemblies 
(targets). We examined the blastn alignments for taxonomic support 
favoring inclusion. Contigs from the query assemblies were retained if 
blastn alignments with bit scores of at least 100 were found for a min
imum of three taxa in the target database; contigs that did not meet this 
threshold were removed prior to further analysis. 

We annotated the assemblies using three lines of evidence. 12,550 
EST accessions from Gracilariales (txid31468) were downloaded from 
Genbank and aligned to the assemblies using the splice-aware GMAP v5 
program (Wu et al., 2016). 27,255 protein accessions from Rhodophyta 
(txid2763) were downloaded from Genbank. Genome assemblies were 
aligned to the protein database using Diamond blastx in the –more- 
sensitive mode. Splice-aware alignments were made using the AAT 
pipeline r03052011 (Huang et al., 1997) for contig/protein pairs iden
tified by Diamond v0.8.17 (Buchfink et al., 2015). Ab initio gene pre
dictions were made with Augustus v3.2.2 (Stanke et al., 2004), using the 
built-in training for Galdieria Merola. Evidence from the ESTs, proteins, 
and ab initio predictions were assigned respective weights of 3, 2, 1, and 
used as input to Evidence Modeler v1.1.1 (Haas et al., 2008) to produce 
the final gene annotations. 

2.3. Organellar genomes assembly and annotation 

We used Trimmomatic to clean and trim low-quality reads and bases 
from raw read data and BBnorm (Bushnell, 2019) to normalized raw 
reads to 100x coverage for the DNA libraries with exceptionally high 
coverage. We assembled the genomes with SPAdes (Bankevich et al., 
2012) setting different k-mer sizes (i.e., 22, 33, 55, 77, 99, and 127) and 
“careful” flag. Mitochondrial and chloroplast assembled contigs were 
identified using BLASTn (Altschul et al., 1990) searches against a 
custom-built database containing published organellar genomes from 
Gracilariaceae. Most of the organellar genomes were identified in a 
single contig. The genomes split in more than one contig were re- 
assembled using the de novo assembly plugin in Geneious to create a 
consensus contig. We mapped filtered reads against the contigs using 
Bowtie 2 (Langmead and Salzberg, 2012) to confirm the assembly 
quality. We confirmed the completeness of the organellar genomes by 
comparing the architecture and gene synteny with the published Gra
cilariales genome. 

Both mitochondrial and chloroplast genomes were annotated using 
MFannot (https://megasun.bch.umontreal.ca/cgi-bin/mfannot/m 
fannotInterface.pl) to find coding sequences (CDS) and ARAGORN 
(http://www.ansikte.se/ARAGORN/) and RNAweasel (https://megas 

un.bch.umontreal.ca/cgi-bin/RNAweasel/RNAweaselInterface.pl) to 
find RNA and intron sequences. Large and Small ribosomal RNA were 
checked using the SILVA rRNA database (Quast et al., 2013). We also 
performed manual inspections and corrections looking for open-reading 
frames (ORFs) using the ORF finder plugin available in Geneious 9.1.8 
(Biomatters, Auckland, New Zealand). Doubtful ORFs were verified 
using BLASTx on the GenBank website. 

2.4. Phylogenetic analyses 

For our nuclear dataset, we prepared protein and the corresponding 
coding sequences (CDS) for every gene annotation. To avoid including 
un-collapsed alleles, alternative annotated isoforms, and very recently 
duplicated genes, we clustered CDSs at 98.5% identity using CD-HIT 
v4.6.6 (Li and Godzik, 2006) for each species, selecting the longest 
representative for further analyses. Gene clusters were determined by 
OrthoMCL (Li et al., 2003). Protein pairs were identified via an all-by-all 
Blast alignment. Orthology and paralogy were predicted using the 
InParanoid algorithm (Remm et al., 2001) as implemented in OrthA
gogue (Ekseth et al., 2014). Homologous clusters were then grouped 
using the MCL graph-clustering algorithm mcl v14-137 (van Dongen and 
Abreu-Goodger, 2012). 

Gene trees were computed for clusters that: 1) included at least four 
species with high-quality sequencing libraries, 2) included at least 100 
amino acids for each sequence, 3) had a mean of less than five homol
ogous sequences per species, and 4) had a median of less than two se
quences per species. Protein sequences were aligned with Muscle 
v3.8.1551 (Edgar, 2004). High entropy sites in the alignment were 
identified with TrimAl v1.02 (Capella-Gutierrez et al., 2009). Protein 
alignments were back translated to codons, masking those identified as 
high entropy. We retained sequences covering at least 70% of the 
alignment and confirmed that the alignment still contained at least four 
species with high-quality sequencing libraries. Aiming to minimize 
biased missing data and generate robust species tree reconstructions, we 
selected a subset of 79 genes with at least 27 species (73% taxon 
completeness) and also requested Gracilaria cervicornis to be present in 
these genes. The specific requirement for the presence of Gracilaria 
cervicornis avoided excessive biased missing data in this species because 
we found it to be represented in only 2.2% of all genes. Nuclear gene 
alignments and individual trees are available at https://figshare. 
com/s/94bd4c3456b5d40c061f. A phylogeny was calculated for each 
gene cluster using RAxML v8.2.9 (Stamatakis, 2014) under the 
GTRGAMMA model with 100 bootstraps. All ortholog trees were used 
for further analyses if the pruning resulted in more than one. We then 
extracted orthologous sequences from the cluster and repeated the 
procedure, from filtering through phylogeny building, for each orthol
ogous set. Gene trees were used to build the species tree using the 
ASTRAL-II coalescent method (Mirarab and Warnow, 2015) (Fig. 1). 

We combined available mitochondrial and chloroplast genomes of 
Gracilariaceae from GenBank with our newly sequenced genomes to 
generate concatenated protein sequence alignments for mitochondrial 
and chloroplast genomes, respectively. The resultant matrices contained 
24 mitochondrial genes from 37 species (42 specimens; GenBank 
accession number MZ336076-MZ336099) and 195 plastid genes from 
37 species (48 specimens, with 32 new ones; GenBank accession number 
MZ336044-MZ336075), respectively (Data S1, Fig. 2). These alignments 
were subsequently generated by MUSCLE v3.8.1551. We performed 
maximum likelihood (ML) analyses using IQ-TREE 1.6.12 (Nguyen et al., 
2015) with 1,000 replicates of ultrafast bootstrap (Minh et al., 2013). 
The best alignment partition scheme was determined by PartitionFinder 
(Lanfear et al., 2012) was implemented in IQ-TREE (-m TEST-MERGE). 
Rhodymenia pseudopalmata (J.V.Lamouroux) P.C.Silva was selected as 
the outgroup for rooting purposes (Kim et al., 2014; Lee et al., 2016). 
Here, we applied a threshold of 75% bootstrap support to define well- 
supported clades, which is higher than the widely used 70% bootstrap 
percentage cut-off associated with 95% confidence that the clade is 
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likely real (Hillis and Bull, 1993). 

2.5. Divergence time estimation 

Our divergence time estimation analysis used 195 chloroplast pro
tein data from 50 samples. We chose the chloroplast dataset because the 
ML phylogenetic tree is almost fully supported, it has a larger gene 
content matrix compared to the mitochondrial dataset, and it presents 
adequate phylogenetic signal (Janouškovec et al., 2013). We performed 
a time-calibrated Bayesian analysis with PhyloBayes v4.1 (Lartillot and 
Philippe, 2004) using a fixed topology from the ML analysis described 
above. Age estimates from four points in the red algal phylogeny pre
sented by (Nan et al., 2017) were used for calibration. These calibration 
points include the constrained ages of the most recent common ancestor 
(mrca) of Gracilariales and Rhodymenia pseudopalmata at 180–350 
million years ago (mya); the mrca of Gracilariopsis and Gracilaria at 
125–220 mya; the mrca in Gracilaria sensu lato at 90–172 mya, and the 
mrca of Gracilaria chilensis and Gracilaria tenuistipitata was 35–60 mya. 
Divergence time estimation of Gracilariales was conducted under the 
log-normal autocorrelated relaxed clock using these constraints to 
generate a relative molecular dating for Gracilariopsis, Gracilaria sensu 
lato and the four genera proposed by (Gurgel et al., 2018). 

2.6. Morphological character evolution 

We chose five characters that have been previously discussed in the 
literature for ancestral trait reconstruction: i) thallus shape; ii) sper
matangia type; and, in the cystocarp, iii) organization of gonimoblasts 
and carposporangial chains; iv) presence and position of traversing fil
aments (also known as nutritive tubular cells) and v) presence of inner 
pericarp (Table S1, Fig. S1). For the thallus shape category, we grouped 
the “compressed” and “flattened” thalli in the trait “not-cylindrical”, 
because it is hard to set the threshold between the two shapes. 

We constructed a selected ML phylogenetic tree using chloroplast 
protein data with 30 species representing the currently accepted genera 
in Gracilariales and information in the literature on the chosen 
morphological characters. When the morphological character was un
known in a species, we removed this species from the tree using the 
drop.tip function in R v3.6.0 (R CoreTeam, 2018). The phylogeny was 
built using IQ-TREE and Phylobayes as described above. The ancestral 
status of each trait was inferred using the R package Phytools v0.7.70 
(Revell, 2012). For each trait, we first determined the best model for 
trait evolution using AIC criterion. For traits that do not exhibit poly
morphism, we used the function fitMk to evaluate the fitness of three 
models including equal-rate, symmetrical rate and all-rates-different 
(ARD). For traits that exhibit polymorphic status, which include sper
matangial type and traversing filaments, we used the fitpolyMk function 

Fig. 1. ASTRAL tree with 79 nuclear genes. Bootstrap support values are indicated on the branches. Main lineages are highlighted in different colors: Melanthalia in 
pink, Gracilariopsis in blue, and Gracilaria sensu lato in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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to determine the best model. For “spermatangial type”, we ordered the 
trait transitions as “superficial → textorii → verrucosa → henri
quesiana”. For “presence and position of traversing filaments”, we 
assessed three alternative transition matrices: “absent → connected to 
the inner pericarp → connected to the outer pericarp”, “absent → con
nected to the outer pericarp → connected to the inner pericarp”, and 
unordered (Table S1). Finally, the ancestral status reconstruction was 
carried out using the make.simmap function in Phytools with 100 
simulations. 

3. Results 

3.1. Whole genome sequencing and annotation of nuclear genes 

We assembled the nuclear genomes for 35 individuals (Data S1) to 
the contig level. The mean assembly size is 209,971,090+/- 
171,104,661 bp. The mean number of contigs per assembly is 
410,030+/-493,754 with a mean n50 of 1,197+/-989 bp. The high 
number of contigs and low n50s are unexpected given that the libraries 
were prepared from dried tissue, highly contaminated, and sequenced 
with short reads. While the nuclear assemblies are generally highly 
fragmented, regions containing protein-coding genes assembled well 
enough for robust phylogenetic analysis. We annotated 10,947+/-6,172 
protein-coding nuclear genes per assembly on average, with a mean 
length of 342+/-69 amino acids per gene. As a proxy, we count genes as 
complete if they begin with a methionine and end with a stop codon. On 
average, 75+/-12% of annotated genes are complete. 

3.2. Organellar genome features 

The mitochondrial genomes from various Gracilariales lineages were 
similar in length, GC content and gene content (Data S1). These mito
chondrial genomes were found to be 25,340–27,466 bp in length and 
25.4–29.1% in GC content. They typically contain between 25 and 27 
protein coding genes, three ribosomal genes (rrl, rrs and rrn5), and an 
intron in the trnI gene. Most mitochondrial genomes presented between 
22 and 25 tRNA, but G. edulis and G. urvillei presented 27 and 31 tRNA 
genes, respectively (Data S1). 

Similarly, the length and GC content of the chloroplast genomes were 
also found to be conserved in Gracilaria and Gracilariopsis. We obtained 
fully circularized plastid sequences for all samples except Gracilaria 
pacifica I.A.Abbott (herbarium voucher FH1170263). These plastid ge
nomes were 178,239–190,895 bp in length and had 27.2–29.3% GC 
contents. They included between 202 and 216 protein coding genes, 31 
tRNA (including an intron in trnM) and three rRNA genes. However, 
both G. cornea and G. birdiae lack the rrn5 gene (Data S1). 

3.3. Phylogenies and divergence time estimation 

We obtained three highly consistent and well-supported phylogenies 
inferred from 79 nuclear genes, 24 mitochondrial genes, and 195 plastid 
genes, respectively (Figs. 1 and 2). Melanthalia obtusata (Labillardière) J. 
Agardh was placed as sister to the two other major clades in Gracilar
iaceae, comprising species of Gracilariopsis and species currently clas
sified in Gracilaria (subgenera Gracilaria and Corallopsis Gurgel, J.N. 
Norris et Fredericq), Hydropuntia [subgenera Hydropuntia and Poly
cavernosa (C.F. Chang et B.-M. Xia) Gurgel, J.N.Norris et Fredericq], 
Agarophyton Gurgel, J.N.Norris et Fredericq and Crassiphycus Guiry, J.N. 

Fig. 2. Organellar phylogenetic trees. On the right, the maximum likelihood (ML) tree is based on 24 concatenated mitochondrial protein sequences. On the left, ML 
tree is based on 195 concatenated plastid protein sequences. All branches are 100% Bootstrap supported, except when other values are indicated. Main lineages are 
highlighted in different colors: Melanthalia in pink, Gracilariopsis in blue, and Gracilaria sensu lato in yellow. Genome’s architecture features are plotted on the trees. In 
the chloroplast, the loss of the petP gene is indicated in the clade Gracilaria s.l. clade. In the mitochondrion, the different positions of trnH, between trnG and sdhB in 
Gracilaria s.l., and between cob and trnL in Gracilariopsis are indicated. The trnH gene is absent in Melanthalia obtusata. In the mid section, the genera proposed by 
Gurgel et al. 2018 are indicated by letters, Hydropuntia (H), Agarophyton (A), Crassiphycus (C) and Gracilaria s.s. (G). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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Norris, Fredericq & Gurgel (as Crassa Gurgel, J.N. Norris et Fredericq). 
All these groups were strongly supported in all phylogenies from 
different genomes, except for the subgenera Corallopsis, which includes 
G. salicornia, G. gracilis, and G. pacifica, do not form a monophyletic 
clade in any of our phylogenomics analyses (Fig. 2). The conflicts be
tween our phylogenies involve Gracilaria ferox, which was not mono
phyletic in the nuclear tree, while our organellar trees resolved this 
species as monophyletic. Also, the parasitic species Gracilariopsis ory
zoides was sister to Gp. andersonii in the mitochondrial tree, but closely 
related to Gp. tenuifrons and Gp. longissima in the nuclear tree. Our re
sults resolved the hitherto unclear relationships among inner clades of 
Gracilaria s.l., placing Hydropuntia as its earliest diverging lineage. The 
Agarophyton clade is well-supported as closely related to the sister clades 
Crassiphycus and Gracilaria s.s. 

The molecular dating analysis (Fig. 3) from the chloroplast protein 

dataset showed the split between Gracilariopsis and Gracilaria s.l. during 
middle Jurassic ~ 169 Mya (199–152 Mya). The range between the 
mrca of Gracilariopsis and Gracilaria s.l. lineages overlap, and the origin 
of each clade occurred between the late Jurassic and the very early 
Cretaceous, ~160 Mya (187–141 Mya) and ~ 143 Mya (167–129 Mya), 
respectively. The four currently accepted genera Gracilaria, Hydropuntia, 
Agarophyton and Crassiphycus have similar ages dating from the middle 
of Cretaceous, ~120 Mya (140–105 Mya), ~111 Mya (132–90 Mya), 
~115 Mya (131–102 Mya), and ~ 111 Mya (131–92 Mya), respectively 
(Fig. 3). 

3.4. Organellar genomes architecture 

Mitochondrial and plastid genomes were highly conserved in gene 
synteny and the architecture of the organellar genomes were consistent 

Fig. 3. Bayesian divergence time estimation tree. The scale date is in million years ago (mya). Error bars on node ages are indicated in blue horizontal bars. The 
green circles indicate the origin of the Gracilariopsis and the Gracilaria sensu lato lineages. Each red star indicates the origin of the lineages in Gracilaria sensu lato, 
which have been described as genera by Gurgel et al. (2018), from top to bottom: Hydropuntia, Agarophyton, Crassiphycus, and Gracilaria s.s. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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through the evolutionary history of Gracilariales (Fig. 2). Species of 
Gracilaria s.l. lost the cytochrome b6f complex subunit P gene (petP) in 
the chloroplast genome, while this gene is present in Gracilariopsis and 
Melanthalia obtusata. In the mitochondrial genome, the transfer RNA for 
histidine gene (trnH) is located in different positions: between cob and 
trnL genes in Gracilariopsis and between trnG and sdhB in Gracilaria sensu 
lato. This gene is absent in M. obtusata (Fig. 2). 

3.5. Trait evolution 

Our trait evolution analyses indicated that ARD model with ordered 
transition states was suitable for spermatangial type analysis and 
traversing filaments with the transition stated ordered as “absent → 
connected to the inner pericarp → connected to the outer pericarp”. For 
the non-polymorphic traits, equal-rates and symmetric models were 
equally suitable for both thallus shape and the organization of goni
moblasts and carposporangial chains, and ARD was the best model for 

Fig. 4. Trait evolution in Gracilariales. A. Spermatangial type. B. Presence and position of traversing filaments (also known as nutritive tubular cells). C. Thallus 
shape. D. Organization of gonimoblasts and carposporangial chains in the cystocarp. E. Presence or absence of inner pericarp in the cystocarp. The pie charts at the 
nodes indicate the proportion of the ancestral character reconstruction based on the best model defined for each trait. The genera proposed by Gurgel et al. (2018) 
Hydropuntia (H), Agarophyton (A), Crassiphycus (C) and Gracilaria s.s. (G) are highlighted in grey. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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presence of the inner pericarp in the cystocarp. 
The ancestral character estimation for spermatangial type indicated 

that the mrca between Gracilariopsis and Gracilaria s.l. probably pre
sented both superficial and textorii spermatangial type (Fig. 4A). After 
Gracilariopsis diverged from Gracilaria s.l., the spermatangial type tran
sitions to superficial, which is seen in the extant species. The ancestor of 
Gracilaria s.l. had the textorii type spermatangia. The deeper sperma
tangia (verrucosa and henriquesiana) that are present in species of 
Hydropuntia, Agarophyton, Crassiphycus and Gracilaria s.s. arose inde
pendently several times. All the transition events that gave rise to the 
henriquesiana type were accompanied by the verrucosa type, which is 
observed in the mrca of Hydropuntia, Crassiphycus, Gracilaria baiana and 
G. domingensis. The exclusive presence of the henriquesiana type of 
spermatangia was observed only in a subclade of Crassiphycus 
comprising G. birdiae, G. cornea, G. crassissima and G. usneoides. Graci
laria changii and G. caudata, also placed in Crassiphycus, present both 
henriquesiana and verrucosa types (Fig. 4A). Genera adopted in the 
classification by Gurgel et al. (2018) are plotted on Fig. 4 to facilitate the 
evaluation of the support of these categories in light of our analyses of 
trait evolution. 

We cannot determine if the traversing filaments (Fig. 4B) were pre
sent in the mrca of Gracilariales. Based on our model, this feature was 
independently lost several times. It was probably lost in the ancestral of 
Gracilariopsis and three times independently in Hydropuntia, Crassiphy
cus, and Gracilaria s.s. (Fig. 4B). The trait is not consistent throughout 
the lineages of Gracilaria s.l. 

The most recent common ancestor of Gracilariales probably pre
sented a cylindrical thallus (Fig. 4C). The non-cylindrical shape arose at 
least three times during the evolution: in Melanthalia obtusata, Gracilaria 
rangiferina and in part of the Gracilaria s.l. clade (Fig. 4C). 

The organization of gonimoblasts and carposporangial chains were 
probably radial in the origin of Gracilariales and this state remained in 
Melanthalia and Gracilariopsis (Fig. 4D). The transition to irregular or
ganization occurred in the ancestral of Gracilaria s.l. and this state 
returned to radial in the sister group of G. changii, the subclade 
Crassiphycus. 

The presence of the inner pericarp in the cystocarp is the dominant 
state in Gracilariales (Fig. 4E). However, it was independently lost in 
G. tenuistipitata, G. isabellana, G. cervicornis, and G. flabelliformis. 

4. Discussion 

In the absence of molecular phylogenetic data, generic delimitation 
in Gracilariaceae had been based primarily on the morphology and 
ontogeny of reproductive structures, including cystocarp and sperma
tangial features (Fredericq and Hommersand, 1989). In the last 30 years, 
DNA markers such as SSUrDNA, ITS, rbcL and COI-5P have greatly 
advanced our knowledge of the evolutionary history of Gracilariaceae. 
However, uncertainties remained in the phylogeny on the account of 
limited gene and taxon sampling. Our results provide fully resolved 
phylogenies of the Gracilariales across all three genomic compartments 
(Figs. 1 and 2). The topologies of our trees bring novelties to previous 
phylogenies based on smaller datasets (Bellorin et al., 2002; Gurgel and 
Fredericq, 2004; Gurgel et al., 2018; Iha et al., 2018; Lyra et al., 2015; 
Lyra et al., 2021), and our analyses strongly support (greater than 75%) 
all major clades, which represent the main lineages of Gracilariales. 
Unfortunately, we could not obtain a larger dataset of the subfamily 
Melanthalioideae, which is represented here only by Melanthalia obtu
sata. According to previous single gene phylogenies, Curdiea is placed as 
a sister-group to Melanthalia (Gurgel et al., 2018; Lyra et al., 2021). 
Future studies with genomic data of Curdiea species and other Meta
nthalia representants will be essential to better understand the evolution 
of this lineage and its relationship with other Gracilariales clades. 

A major contribution of our results is the resolution of the relation
ships in Gracilaria s.l., which have been uncertain to date. The re
lationships among the currently accepted Hydropuntia, Agarophyton, 

Crassiphycus and Gracilaria s.s. clades were not well-supported in pre
vious phylogenies (Lyra et al., 2015) or only values of posterior proba
bility were presented (Gurgel et al., 2020), which consistently 
overestimate support (Simmons et al., 2004). Our results resolve the 
Hydropuntia clade as sister to all other clades in Gracilaria s.l., while 
Agarophyton is sister to the clade including Crassiphycus plus Gracilaria s. 
s. This finding is relevant to the understanding of character evolution in 
Gracilariales and, therefore, to the definition of taxa in accordance with 
well-supported evidence of the clades’ evolutionary history. 

Conflicts among our phylogenies were observed i) regarding the 
placement of Gracilaria ferox, which was recovered as paraphyletic in 
the nuclear tree; and ii) in the placement of the parasitic species Gra
cilariopsis oryzoides, sister to Gp. andersonii in the mitochondrial tree and 
closely related to the sister species Gp. tenuifrons and Gp. longissima in 
the nuclear tree. Incongruent phylogenetic signals between mitochon
drial, plastid, and nuclear genomes have similarly been observed in 
other groups of red algae (Broom et al., 2008; Lee et al., 2018). The 
molecular evolutionary processes involved in the source of this conflict 
between nuclear and organellar genomes require further investigation, 
which is beyond the scope of the present study. In light of our highly 
congruent phylogenies, we investigated various sources of morpholog
ical and molecular evidence to better circumscribe genera of Gracilar
iaceae, including genomic architecture, comparison of time divergence 
of Gracilariaceae subclades, and trait evolution of characters historically 
used to circumscribe genera. 

4.1. Organellar genome architecture 

Comparative genomics has been increasingly used for taxonomic 
purposes in many different plant groups (Asaf et al., 2019; Farwagi et al., 
2015; Khan et al., 2020; Turmel et al., 2017). Although the genomes 
were highly conserved in gene synteny across the Gracilariales, losses 
and differences in gene positions marked the evolutionary history 
among the Melanthalia, Gracilariopsis and Gracilaria s.l. (Iha et al., 2018). 
The plastid genomes of Melanthalia obtusata and members of the Graci
lariopsis clade present the gene coding for the cytochrome b6f complex 
subunit P gene (petP), which was lost in Gracilaria s.l. In the mitochon
drial genome, the transfer RNA for histidine gene (trnH), absent in 
M. obtusata, is differently positioned in Gracilariopsis and Gracilaria s.l. 
(Fig. 2). Differences in genome architecture among inner lineages of 
these three clades were not observed, including the taxa described by 
Gurgel et al. (2018). Therefore, the results of our analyses of plastid and 
mitochondrial architecture did not support the division of Gracilaria s.l. 
into more than one genus. 

4.2. Divergence time estimation for the standardization of taxonomic 
ranks 

The hierarchical classification of organisms is important for scientific 
communication. Classification systems are not absolute and can have a 
high degree of arbitrariness. Efforts have been employed, however, in 
the development of methods to standardize the delineation of taxonomic 
ranks across the tree of life (Avise and Johns, 1999; Avise and Liu, 2011; 
Giribet et al., 2016; Kraichak et al., 2017). The temporal banding 
approach is one such method, which assigns taxonomic ranks based on 
similar ages of the nodes in a phylogenetic tree (Avise and Johns, 1999). 

The divergence time estimation presented here (Fig. 3) brings in
sights to the understanding of the Gracilariales evolutionary history and, 
consequently, to the debate around its classification. Our calibrated tree 
reveals that the clades Gracilariopsis and Gracilaria s.l. have similar ages, 
in opposition to recent findings (Gurgel et al., 2020), in which analysis 
was performed based only with rbcL and presents a much later origin of 
Gracilariopsis. The age of the cladogenesis between Gracilariopsis and 
Gracilaria s.l. (~169 Mya) agreed with a previous divergence time 
estimation phylogram for Rhodophyta based on a chloroplast dataset 
(171 Mya; Nan et al., 2017), earlier than the 126 Mya (139–117 Mya) 
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reported by Gurgel et al. (2020). Our results also differ from the previous 
divergence times analysis of Gracilariales (Gurgel et al., 2020) regarding 
the ages of the currently accepted genera Hydopuntia, Agarophyton, 
Crassiphycus, and Gracilaria s.s. We found their origin in mid Cretaceous 
(between 120 and 110 Mya), while the previous analysis had shown the 
origin of these clades during late Cretaceous and Paleogene (between 71 
and 32 Mya; Gurgel et al., 2020). 

Based on the temporal banding approach, our results indicate that 
Gracilariopsis and Gracilaria s.l. are comparable taxonomic ranks. Gra
cilaria s.l is considerably more diverse than Gracilariopsis, and our results 
indicate a clear difference in the speed of evolutionary events leading to 
diversification in both clades. 

4.3. Morphological trait evolution 

Our results indicate that the genera classification proposed by Gurgel 
et al. (2018) are monophyletic, but Hydropuntia, Gracilaria, Agarophyton 
and Crassiphycus are not clearly circumscribed. Spermatangia types are 
not useful for distinguishing taxonomic categories above the species 
level in Gracilaria s.l., as our analyses of character evolution revealed. 
The most recent common ancestor of Gracilaria s.l. probably presented 
only the shallow, textorii type of spermatangia, while the deeper sper
matangial conceptacles arose independently several times in these lin
eages. It is interesting that all the transition events that gave rise to the 
henriquesiana type also gave rise to the verrucosa type, indicating that the 
henriquesiana type may be a modification of the verrucosa type or a later 
stage of development of the same structure, as Abbott et al. (1991) 
suggested. Gracilaria baiana and G. domingensis, for example, possess 
both verrucosa and henriquesiana type of spermatangia and are nested in 
the Gracilaria s.s. clade, characterized by shallow, textorii type sperma
tangia according to (Gurgel et al., 2018). 

Spermatangia types, textorii, henriquesiana or verrucosa, are used as 
diagnostic features of Agarophyton, Crassiphycus and Hydropuntia, as well 
as features of cystocarps, such as presence of inner pericarp, presence 
and position of traversing filaments, or organization of gonimoblast and 
carposporangial chains (Gurgel et al., 2018; Gurgel et al., 2020). The 
results of our analyses of ancestral character reconstruction (Fig. 4A, B, 
D and E) demonstrate that each of these reproductive characters overlap 
among the taxa proposed or reinstated by (Gurgel et al., 2018). 

Vegetative characters, such as thallus shape, also overlap among 
Gracilaria s.l. clades and among Gracilariopsis species (Fig. 4C). Melan
thalia obtusata, sister to all the other Gracilariales clades in our phy
logenies, presents non-cylindrical thallus, mostly compressed, while 
Gracilariopsis mostly includes species with cylindrical thallus, except for 
Gracilariopsis silvana (Gurgel et al., 2003), not included in our analyses. 
Even in the Gracilaria s.s. clade, which mostly includes species with 
flattened thalli, cylindrical thalli can be observed (e.g., Gracilaria 
microcarpa Dreckmann, Núñez-Resendiz & Sentíes, not included in our 
analyses; Dreckmann et al., 2018). 

5. Conclusion 

Results of our analyses, which included genomic architecture, com
parison of time divergence of Gracilariales subclades, and trait evolution 
of characters historically used to circumscribe genera, strongly support 
Gracilaria s.l. as a well-delimited genus, while the alternative and 
currently accepted proposal for supraspecific taxa delimitation is not 
supported under the criteria we adopted. Classification systems need to 
reflect aspects of the evolutionary history of the group, including the 
amount of change and relative time of branching, being also useful in 
several different ways, such as predictability, mnemonic ease, therefore 
being functional and convenient for science practice (Stevens, 1985). 
The definition of exclusive characters, or exclusive combinations of 
characters, demands the comprehension of plesiomorphic and apo
morphic states in a given clade. Granting taxonomic status to a clade in 
accordance with a clear circumscription that covers all its members 

supports both the criteria of predictability and stability. Several species 
of Gracilariopsis and Gracilaria s.l. are highly important for the aqua
culture, food, pharmaceutical and biotechnological industries. There
fore, the application of functional taxonomic names is essential for the 
maintenance of these applied fields. 

The acceptance of the genus Gracilaria s.l. respects the criterion of 
monophyly and is fundamental on the presence of an exclusive combi
nation of morphological characters, which makes this clade a practical 
and relevant unit of taxonomic information (Lyra et al., 2021). Gracilaria 
s.l. allows the prediction of features of taxa that may not yet be 
described, as it bears a set of characters not shared with its sister clade, 
Gracilariopsis. The adoption of a temporal banding approach is far from 
ideal for taxonomy, but it is useful in the absence of apomorphic 
morphological features in a single lineage as Gracilaria s.l. Although it is 
very difficult to estimate the population size in the mrca of Gracilaria s.l. 
and Gracilariopsis, the earlier origin and low diversification of Gracilar
iopsis compared to Gracilaria s.l. would indicate a possible (or multiples) 
bottleneck during its evolutionary process that constrained the specia
tion through the time, while Gracilaria s.l. fast evolved to differ into 
internal lineages. Bottleneck effects decrease biodiversity and can fix 
alleles (Nei et al., 1975). This hypothesis would explain the low biodi
versity and the fixation of morphological traits in Gracilariopsis, while 
Gracilaria s.l. presents a higher diversity of morphological features 
(Fig. 4). 

6. Taxonomic changes 

Based on the findings from our robust analyses, combining phylo
genomics and morphological data, we propose a revised taxonomic 
scheme, which expands the circumscription of the genus Gracilaria, 
accepting the sensu lato concept. Nomenclature and respective synonyms 
followed AlgaeBase (https://www.algaebase.org) (Guiry and Guiry, 
2021). 

Gracilariales Fredericq and Hommersand, 1989: 225 
Gracilariaceae Nägeli, 1847: 240 
Gracilaria Greville, 1830: 121 
Lectotype species: Gracilaria compressa (C.Agardh) Greville, 

1830:121; see (Steentoft et al., 1991); basionym: Sphaerococcus com
pressus C. Agardh, 1822: 308. The currently accepted name of the type 
species is Gracilaria bursa-pastoris (S.G. Gmelin) P.C. Silva, 1952: 265; 
basionym: 

Fucus bursa-pastoris S.G. Gmelin, 1768: 121. 
Pertinent synonyms: Agarophyton Gurgel, J.N.Norris and Fred

ericq, 2018; Congracilaria Yamamoto, 1986; Corallopsis Greville, 1830; 
Crassiphycus Guiry, J.N.Norris, Fredericq and Gurgel, 2018; Gracilar
iocolax Weber-van Bosse, 1928; Hydropuntia Montagne, 1842. 

Type locality: Mediterranean Sea, Cádiz, Iberian Peninsula, south
western Spain (Gargiulo et al., 1992). 

In light of the newly proposed taxonomic scheme, we herein 
formalize the consequent changes to the names of species formerly 
placed under synonimized genera. 

Gracilaria birdiae E.Plastino and E.C.Oliveira, 2002: 390 
Homotypic synonyms: Crassa birdiae (E.Plastino and E.C.Oliveira) 

Gurgel, J.N.Norris and Fredericq, 2018, nom. inval; Crassiphycus birdiae 
(E.Plastino and E.C.Oliveira) Gurgel, J.N.Norris and Fredericq in Guiry 
et al., 2018. 

Gracilaria caudata J. Agardh, 1852: 598 
Homotypic synonyms: Ceramianthemum caudatum (J. Agardh) Kun

tze, 1891; Hydropuntia caudata (J. Agardh) Gurgel and Fredericq, 2004; 
Crassa caudata (J.Agardh) Gurgel, J.N.Norris and Fredericq in Gurgel 
et al. 2018, nom. inval.; Crassiphycus caudatus (J.Agardh) Gurgel, J.N. 
Norris and Fredericq in Guiry et al., 2018. 

Gracilaria cornea J. Agardh, 1852: 598 
Homotypic synonyms: Ceramianthemum corneum (J. Agardh) Kuntze, 

1891; Hydropuntia cornea (J.Agardh) M.J.Wynne, 1989; Crassa cornea (J. 
Agardh) Gurgel, J.N.Norris and S.Fredericq in Gurgel et al. 2018, nom. 
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inval.; Crassiphycus corneus (J.Agardh) Gurgel, J.N.Norris and Fredericq 
in Guiry et al., 2018. 

Gracilaria changii (B. Xia et I.A. Abbott) I.A. Abbott, J. Zhang and B. 
Xia, 1991: 23 

Basionym: Polycavernosa changii B. Xia and I.A. Abbott, 1987: 407. 
Homotypic synonyms: Hydropuntia changii (B.Xia and I.A.Abbott) M. 

J.Wynne, 1989; Crassa changii (B. Xia and I.A.Abbott) Gurgel, J.N.Norris 
and Fredericq in Gurgel et al. 2018, nom. inval.; Crassiphycus changii (B. 
Xia and I.A.Abbott) Gurgel, J.N.Norris and Fredericq in Guiry et al., 
2018. 

Gracilaria chilensis C.J.Bird, McLachlan and E.C.Oliveira, 1986: 2928 
Homotypic synonyms: Gracilaria sordida W.A. Nelson, 1987; Agar

ophyton chilensis (C.J. Bird, McLachlan and E.C.Oliveira) Gurgel, J.N. 
Norris and Fredericq, 2018. 

Heterotypic synonyms: Gracilaria secundata f. compacta V.May 1948; 
Gracilaria secundata f. pseudoflagellifera V.May 1948; Gracilaria sordida 
W.A.Nelson, 1987. 

Gracilaria crassissima (P. l. Crouan and H. M. Crouan) P. l. Crouan and 
H. M. Crouan in Schramm and Mazé, 1866: 46 

Basionym: Plocaria crassissima P. l. Crouan and H. M. Crouan in 
Schramm and Mazé, 1865: 20. 

Homotypic synonyms: Polycavernosa crassissima (P. l. Crouan and H. 
M. Crouan) Fredericq and J. N. Norris, 1985; Hydropuntia crassissima (P. 
l. Crouan and H. M. Crouan) M. J. Wynne, 1989; Crassa crassissima (P. 
Crouan and H.Crouan) Gurgel, J.N.Norris and Fredericq in Gurgel et al. 
2018, nom. inval.; Crassiphycus crassissimus (P.Crouan and H.Crouan) 
Gurgel, J.N.Norris and Fredericq in Guiry et al., 2018. 

Heterotypic synonym: Gracilaria horizontalis F.S. Collins and Hervey, 
1917. 

Gracilaria edulis (S. G. Gmelin) P.C. Silva, 1952: 293 
Basionym: Fucus edulis S. G. Gmelin, 1768: 113. 
Homotypic synonyms: Fucus lichenoides var. edulis (Gmelin) Turner, 

1808; Fucus lichenastrum var. edulis (Gmelin) Poiret, 1817; Hydropuntia 
edulis (S.G. Gmelin) Gurgel and Fredericq, 2004; Fucus coralloides Poiret, 
1808 (nom. superfl. & illegit.); Sphaerococcus lichenoides var. tenuis C. 
Agardh, 1822 (nom. superfl. & illegit.). 

Heterotypic synonyms: Fucus lichenoides Turner, 1808. (non S. G. 
Gmelin, 1768); Gigartina lichenoides J. V. Lamouroux, 1813; Sphaer
ococcus lichenoides (J. V. Lamouroux) C.Agardh, 1817; Fucus lichenastrum 
Poiret, 1817; Gracilaria lichenoides (J. V. Lamouroux) Greville, 1830; 
Plocaria lichenoides (J. V. Lamouroux) J.Agardh, 1847; Ceramianthemum 
lichenoides (J. V. Lamouroux) Kuntze, 1891; Sphaerococcus vieillardii 
Kützing, 1863; Sphaerococcus lemania Kützing, 1868; Gracilaria lichen
oides f. lemania (Kützing) V.May 1948; Sphaerococcus setaceus Kützing, 
1868, illegit (non J. Agardh ex Frauenfeld, 1854; Sphaerococcus spinescens 
Kützing, 1868; Gracilaria spinescens (Kützing) Agardh, 1876; Ceram
ianthemum spinescens (Kützing) Kuntze, 1891; Polycavernosa fastigiata C. 
F. Chang and B.M. Xia, 1963; Hydropuntia fastigiata (Chang and B.M. 
Xia) M.J. Wynne, 1989; Gracilaria taenioides J.Agardh, 1852; Ceram
ianthemum taenioides (J. Agardh) Kuntze, 1891; Gracilaria lichenoides f. 
taenioides (J. Agardh) V. May 1948; Gracilaria bifaria J. Agardh, 1901. 

Gracilaria eucheumatoides Harvey, 1860:331 
Homotypic synonym: Ceramianthemum eucheumatoides (Harvey) 

Kuntze, 1891; Hydropuntia eucheumatoides (Harvey) Gurgel and Fred
ericq, 2004. 

Gracilaria excavata (Setchell and Gardner) G.M.Lyra, C.Iha, M.C. 
Oliveira, J.M.C.Nunes comb. nov. 

Basionym: Corallopsis excavata Setchell and Gardner, Proceedings of 
the California Academy of Science, Fourth Series 12(29), 756, pl. 23: 
figs. 24, 25; pl. 44 b; 48, 1924. 

Gracilaria firma C.F.Chang and B.M.Xia, 1976: 143 
Homotypic synonyms: Crassa firma (C.F.Chang and B.-M.Xia) Gurgel, 

J.N.Norris and Fredericq in Gurgel et al. 2018, nom. inval; Crassiphycus 
firmus (C.F.Chang and B.-M.Xia) Gurgel, J.N.Norris and Fredericq in 
Guiry et al., 2018. 

Gracilaria millardetii (Montagne) J.Agardh, 1885: 64 

Basionym: Rhodymenia millardetii Montagne in Montagne and Mill
ardet, 1862: 9. 

Homotypic synonym: Hydropuntia millardetii (Montagne) Gurgel, J. 
N.Norris and Fredericq, 2018. 

Gracilaria multifurcata Børgesen, 1953: 42 
Homotypic synonyms: Polycavernosa multifurcata (Børgesen) Chang 

and B. Xia, 1963; Hydropuntia multifurcata (Børgesen) M.J. Wynne, 
1989. 

Gracilaria perplexa K. Byrne & Zuccarello, 2002: 302 
Homotypic synonym: Hydropuntia perplexa (K. Byrne and Zuccarello) 

Conklin, O’Doherty and A. R. Sherwood, 2014 
Gracilaria preissiana (Sonder) Womersley in Min-Thein and 

Womersley, 1976: 109 
Basionym: Rhodymenia preissiana Sonder, 1845: 56. 
Homotypic synonyms: Rhodophyllis preissiana (Sonder) Kützing, 

1849; Calliblepharis preissiana (Sonder) Harvey, 1859; Hydropuntia pre
issiana (Sonder) Gurgel and Fredericq, 2004. 

Heterotypic synonyms: Calliblepharis pannosa Harvey, 1855b; Graci
laria pannosa (Harvey) J. Agardh, 1885; Ciliaria pannosa (Harvey) Kun
tze, 1891. 

Gracilaria punctata (Okamura) Yamada, 1941: 203 
Basionym: Rhodymenia punctata Okamura, 1929. 
Homotypic synonyms: Crassa punctata (Okamura) Gurgel, J.N.Norris 

and Fredericq in Gurgel et al. 2018, nom. inval.; Crassiphycus punctatus 
(Okamura) Gurgel, J.N.Norris and Fredericq in Guiry et al., 2018. 

Gracilaria rangiferina (Kützing) Piccone, 1886: 71 
Basionym: Sphaerococcus rangiferinus Kützing, 1849. 
Homotypic synonym: Hydropuntia rangiferina (Kützing) Gurgel and 

Fredericq, 2004. 
Heterotypic synonyms: Gracilaria dentata J. Agardh, 1852; Ceram

ianthemum dentatum (J. Agardh) O. Kuntze, 1891; Polycavernosa dentata 
(J. Agardh) Lawson and John, 1987; Hydropuntia dentata (J. Agardh) 
Wynne, 1989, Gracilaria henriquesiana Hariot, 1908; Polycavernosa hen
riquesiana (Hariot) Chang and Xia, 1963; Hydropuntia henriquesiana 
(Hariot) Wynne, 1989. 

Gracilaria secundata Harvey, 1863 
Homotypic synonyms: Crassa secundata (Harvey) Gurgel, J.N.Norris 

and Fredericq in Gurgel et al. 2018, nom. inval.; Crassiphycus secundatus 
(Harvey) Gurgel, J.N.Norris and Fredericq in Guiry et al., 2018. 

Gracilaria tenuistipitata C.F.Chang and B.M.Xia, 1976: 102 
Homotypic synonym: Agarophyton tenuistipitatum (C.F. Chang and B. 

M. Xia) Gurgel, J.N.Norris and Fredericq, 2018. 
Gracilaria transtasmanica (M.Preuss, N.Muangmai and Zuccarello) G. 

M.Lyra, C.Iha, J.M.C.Nunes, C.C.Davis comb. nov. 
Basionym: Agarophyton transtasmanicum M.Preuss, N.Muangmai and 

Zuccarello 2020 in Preuss et al. Phycologia 59(3): 240, figs 3-12, 2020. 
Gracilaria truncata Kraft, 1977: 495 
Basionym: Rhodymenia prolifera Harvey, 1855a: 249. 
Homotypic synonyms: Rhodymenia prolifera Harvey, 1855b; Calli

blepharis prolifera (Harvey) J.Agardh, 1876; Palmaria prolifera (Harvey) 
Kuntze, 1891; Tylotus prolifer (Harvey) Kylin, 1932. 

Heterotypic synonyms: Crassa truncata (Kraft) Gurgel, J.N.Norris and 
Fredericq in Gurgel et al. 2018, nom. inval.; Crassiphycus proliferus 
(Harvey) Gurgel, J.N.Norris and Fredericq in Guiry et al., 2018. 

Gracilaria tsudae (I.A. Abbott and I. Meneses) I.A. Abbott 1991: 223. 
Basionym: Polycavernosa tsudae I.A. Abbott and I. Meneses in Men

eses and Abbott, 1987: 195. 
Homotypic synonym: Hydropuntia tsudae (I. A. Abbott and I. Men

eses) M. J. Wynne, 1989: 477. 
Gracilaria urvillei (Montagne) I.A. Abbott, 1991: 23 
Basionym: Hydropuntia urvillei Montagne, 1842: 7. 
Homotypic synonym: Hydropuntia urvillei Montagne, 1842. 
Gracilaria usneoides (C. Agardh) J. Agardh, 1852: 595 
Basionym: Sphaerococcus usneoides C. Agardh, 1822: 333. 
Homotypic synonyms: Laurencia usneoides (C. Agardh) Kützing, 

1849; Ceramianthemum usneoides (C. Agardh) Kuntze, 1891; Hydropuntia 
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usneoides (C. Agardh) Gurgel and Fredericq, 2004; Crassa usneoides 
(Mertens ex C.Agardh) Gurgel, J.N.Norris and Fredericq in Gurgel et al. 
2018, nom. inval.; Crassiphycus usneoides (Mertens ex C.Agardh) Gurgel, 
J.N.Norris and Fredericq in Guiry et al., 2018. 

Gracilaria vermiculophylla (Ohmi) Papenfuss, 1967: 101 
Basionym: Gracilariopsis vermiculophylla Ohmi, 1956: 271. 
Homotypic synonym: Agarophyton vermiculophyllum (Ohmi) Gurgel, 

J.N.Norris and Fredericq, 2018. 
Gracilariopsis E.Y. Dawson, 1949: 40 
Holotype species: Gracilariopsis sjoestedtii (Kylin) E.Y. Dawson, 1949: 

43; basionym: Gracilaria sjoestedii Kylin, 1930: 55. The currently 
accepted name of the type species is Gracilariopsis andersonii (Grunow) 
E.Y. Dawson, 1949: 43, basionym: Cordylecladia andersonii Grunow in 
Piccone, 1886: 62. 

Type locality: Mussel Point, Pacific Grove, California, U.S.A. 
Pertinent synonym: Gracilariophila Setchell and Wilson in Wilson, 

1910. The synonymy follows Wynne (2019), in his proposal of 
conserving Gracilariopsis E.Y. Dawson against Gracilariophila Setchell 
and Wilson, adopting the criteria of stability of nomenclatural practice. 

Melanthalia Montagne, 1843: 296 
Holotype species: Melanthalia obtusata (Labillardière) J. Agardh, 

1852: 614. 
Fucus obtusatus Labillardière, 1807: 111. The currently accepted 

name of the type species is Melanthalia obtusata (Labillardière) J. 
Agardh, 1852: 614. 

Type locality: Southeast Tasmania (Guiry and Guiry, 2021). 
Curdiea Harvey, 1855b: 333 
Holotype species: Curdiea laciniata Harvey, 1855b: 333. The 

currently accepted name of the type species is Curdiea angustata (Sonder) 
A.J.K. Millar, 1990: 342; basionym: Epymenia angustata Sonder, 1853: 
677. 

Type locality: Port Fairy, Victoria, Australia (Guiry and Guiry, 2021). 

7. Synthesized taxonomic scheme 

Gracilariales Fredericq and Hommersand, 1989 
Gracilariaceae Nägeli, 1847 
Gracilaria Greville, 1830 
Gracilariopsis E.Y. Dawson, 1949 
Melanthalia Montagne, 1843 
Curdiea Harvey, 1855b 
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(Ed.), Notes sur l’île de Réunion (Bourbon), Paris, p. 25. 
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