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LETTER Extended flowering intervals of bamboos evolved by discrete

multiplication
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Abstract

Numerous bamboo species collectively flower and seed at dramatically extended, regular intervals
– some as long as 120 years. These collective seed releases, termed ‘masts’, are thought to be a
strategy to overwhelm seed predators or to maximise pollination rates. But why are the intervals
so long, and how did they evolve? We propose a simple mathematical model that supports their
evolution as a two-step process: First, an initial phase in which a mostly annually flowering popu-
lation synchronises onto a small multi-year interval. Second, a phase of successive small multipli-
cations of the initial synchronisation interval, resulting in the extraordinary intervals seen today.
A prediction of the hypothesis is that mast intervals observed today should factorise into small
prime numbers. Using a historical data set of bamboo flowering observations, we find strong evi-
dence in favour of this prediction. Our hypothesis provides the first theoretical explanation for the
mechanism underlying this remarkable phenomenon.
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INTRODUCTION

Understanding the basis of species’ phenology – the timing of
life history events such as plant flowering and bird migration
– is a key area of ecological and evolutionary research (Visser
2008). Easily one of the most captivating phenomena in this
regard is the extended synchronous flowering and fruiting
intervals exhibited by woody bamboos (Janzen 1976; Gould
1977). Although numerous woody bamboo species flower and
fruit at more modest time intervals, there are many extraordi-
nary examples of bamboos with greatly extended intervals
(Fig. 1). For example, the Asian bamboos Bambusa bambos,
Phyllostachys nigra f. henonis and P. bambusoides flower every
32, 60 and 120 years, respectively (Schimper 1903; Seifriz
1923, 1950; Kawamura 1927; Numata 1970; Chen 1973; Jan-
zen 1976). Historical records of this phenomenon for the lat-
ter two species date back as far as 813 C.E. and 999 C.E.
respectively (Kawamura 1927). In each of these cases, individ-
uals of a species collectively flower and fruit in enormous
quantities (referred to as ‘masting’) only to die back, leaving
behind seeds which subsequently germinate. The cycle then
repeats itself. In some documented cases, this synchrony is
maintained even after plants are transplanted far from their
native ranges (Morris 1886; Brandis 1899; Seifriz 1923; Chen
1973).
Though other plant species exhibit an ability to mast –

most notably Dipterocarpaceae in Southeast Asia (Janzen
1974; Ashton et al. 1988) – none is known to exhibit either
the regularity or the extraordinary interval length of the mast
cycles observed in bamboos. Despite its broad interest to

biologists, however, the evolution of these prolonged regular
flowering intervals has received surprisingly little theoretical
investigation.
The leading explanation for masting in bamboos is attrib-

uted to Janzen (1974, 1976), who proposed that the enormous
number of propagules (fruits or seeds) released during these
episodes satiate local predator populations, ensuring that
more seeds survive than with sporadic, and thus less abun-
dant, propagule release (Kelly 1994; Kelly & Sork 2002). In
the case of bamboos, these predators typically include rats,
birds and pigs (Janzen 1976). The stabilising selection underly-
ing the predator satiation hypothesis requires that a plant
releasing its propagules out of synchrony with its cohort will
likely have them all consumed by predators. Support for this
comes from measurements of seed predation rates during and
outside of masting episodes, including for bamboos (Kitzber-
ger et al. 2007) and other masting species (Nilsson &
W€astljung 1987; Crawley & Long 1995; Wolff 1996; Curran &
Leighton 2000).
A second explanation for bamboo masting is that, in wind-

pollinated plants like bamboos, synchronous pollen production
may increase outcross pollination rates, providing a benefit to
individuals who seed during a mast episode (Nilsson & W€astl-
jung 1987; Norton & Kelly 1988; Smith et al. 1990). Evidence
for this hypothesis comes from the higher fertilisation rates
typically observed during mast episodes in wind-pollinated
plants, including beech (Nilsson & W€astljung 1987), rimu
(Norton & Kelly 1988), and oak (Koenig et al. 1994).
A third explanation, the so-called fire cycle hypothesis

(Keeley & Bond 1999), argues that the large seed release
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during a mast can act as fuel for wildfires (sparked by light-
ning, for example). Under this scenario, bamboo seeds are hy-
pothesised to be resilient to fire, while competing vegetation is
not. However, most masting bamboo species live in humid,
tropical forests, where wildfires are unlikely to have been a
factor in their long-term evolution (Saha & Howe 2001).
Moreover, it is difficult to see how the stabilising selection
required for continued synchrony could be maintained with-
out wildfires recurring frequently and predictably. The preda-
tor satiation and wind-pollination hypotheses, on the other
hand, clearly involve perpetual stabilising selection.
While these theories of stabilising selection provide explana-

tions for the existence of synchronous seeding in bamboos, a
more intriguing puzzle remains: what explains the remarkable
regularity and length of bamboo mast cycles? Here, we pro-
pose and test a novel mathematical model of the evolution of
bamboo masting to solve this puzzle. The puzzle is twofold.
First, how was synchrony achieved on the shorter, regular
multi-year intervals that have been hypothesised to be ances-
tral in bamboos (Janzen 1976)? Second, given the strong sta-
bilising selection for maintaining a regular interval, how did
the shorter ancestral intervals lengthen to the extraordinary
intervals seen today?
In the mathematical models we develop to answer these

questions, we shall primarily make use of the language of the
predator satiation hypothesis, simply because it is the best
known and most widely accepted explanation for masting in
bamboos. The models do not depend on the veracity of the
predator satiation hypothesis, however, only on the existence
of stabilising selection. In general, they can be written in the
language of any of the theories of stabilising selection

proposed for bamboo masting, including the commonly
invoked wind-pollination hypothesis.

MODEL OF INITIAL SYNCHRONISATION

We first hypothesised that initial synchronisation on a multi-
year interval could occur naturally in a population of
annual flowerers when two conditions are met. First, plants
that wait longer to flower may accumulate greater energy
resources to invest in producing more seeds, and/or seeds
that are better protected (Fenner 1985). (The latter scenario,
involving better-protected seeds, seems less applicable to
bamboos, whose ancestral fruit type is a caryopsis, i.e. fruits
with seeds that are generally less well protected than those
of many other flowering plants.) In bamboos, this invest-
ment might, for example, take the form of increased shoot
production between masts. Second, total potential seed pre-
dation varies from year to year, but is typically high,
amounting to a significant proportion of maximum possible
seed release. Evidence for this assertion comes from observa-
tions of enormous predation rates in minor mast years
among well-studied woody tree species (Nilsson & W€astljung
1987; Crawley & Long 1995; Wolff 1996; Curran & Leigh-
ton 2000).
These conditions can be incorporated into a simple mathe-

matical model (Fig. 2; full mathematical details in Appendix
S1). Here, we assume a fixed environmental carrying capacity,
and begin with a population comprising mostly plants that
seed annually, but with some variation in seeding time, so that
a small number of plants seed every 2 years. These 2-year
plants may be distributed across odd and even years in this 2-
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year cycle, forming two reproductively distinct ‘cohorts’.
Under a broad class of parameterisations, a common outcome
of our model is synchronisation onto a single cohort of 2-year
plants, following a year where all annual plants and one
cohort of 2-year plants are eliminated because their entire seed
set is lost to predation (see Fig. 2 for additional details of the
population dynamics involved).
Importantly, our model is not restricted to synchronisation

onto only a 2-year cycle: longer intervals of synchronisation
are possible in a similar model if we extend the variation in
the initial population to include plants with longer flowering
intervals, including three, four and five years (Fig. 3). Also,
by altering the parameters of the model, we can hasten or
lengthen the transition to a multi-year mast cycle, so that the
transition times in Figs. 2 and 3 should not be seen as charac-
teristic of the model (see Appendix S1).

MODEL OF INTERVAL GROWTH BY MULTIPLICATION

Once synchronisation has been established in a population,
say, on a 3-year mast interval, stabilising selection should
maintain synchrony. This is because a plant flowering out of
sync – for example, after 2 or 4 years – would release its seeds
alone, and thus have its entire seed set consumed by preda-
tors. Given such strong selection for synchrony, how then
could flowering intervals have increased to the extraordinary
lengths observed today? Janzen (1976) noted that a plant
flowering at an interval twice that of its population – at
6 years, in the case of a 3-year population mast cycle – would
always flower during a masting year (i.e. every second mast),
and thus be buffered against predation. Indeed, this holds for
a mutant flowering at any multiple of the initial population
mast interval, not just double. And since plants waiting longer
to flower release more propagules, such mutants would likely
be favoured during times of low population growth, when
delaying seeding would not represent a significant ‘missed
opportunity’.
For example, suppose a mutant with a flowering interval

twice that of its population releases s% more seeds than the
average single-interval plant (or, equivalently, seeds that are
better protected, and thus suffer s% less predation). Suppose
too that average population growth is g% per period. Then a
simple population growth model predicts that selection will
favour the mutant if s > g. Over two population masts, an
average population member will yield (1 + g)2 descendants,
while the mutant will yield (1 + g)(1 + s) descendants; the lat-
ter is larger than the former when s > g. This is likely to hold
especially when population growth, g, is low (and owing to
the nature of exponential growth, g cannot be large for too
extended a period of time). Analogous conditions for mutants
of higher multiple intervals can also be derived. In general, if
the population growth rate is g%, a mutant that flowers only
every n mast periods and releases sn% more seeds than the
average population member will face positive selection if
1 + sn > (1 + g)n�1. For small integers n, this is likely to hold
for reasonable long-term values of g. So when population
growth is low, multiple-interval mutants can emerge, be
selected for, and fix. Under this scenario, the population’s

flowering period increases to a multiple of its initial synchro-
nisation interval.
The converse, however, is not true: if a population’s growth

rate increases, mutants with intervals a fraction – say half –
of the cohort’s would not survive, because they would seed
out of sync with the population every second period of their
reduced interval. So, earlier initial flowering intervals are not
recoverable, and thus the population’s flowering interval can
only increase in our multiplicative model. The evolution of
extended flowering intervals in bamboos may therefore repre-
sent an instance of Dollo’s law, or irreversibility in evolution
(Dollo 1893).
The rival hypothesis for the evolution of very long mast

intervals is one of gradual growth. Because mast episodes are
not instantaneous, instead lasting from a few weeks to even a
few years in the case of species with very long mast intervals,
such as Phyllostachys bambusoides (Janzen 1976), seed release
is in fact distributed across a mast episode. If plants that
release their seeds later in the episode are selectively favoured,
then selection over time would gradually shift the distribution
in the direction of longer intervals. However, both theory and
empirical evidence suggest that plants releasing their seeds
later in mast episodes would in fact be selected against. Since
mast episodes tend to result in a surge in local seed predator
populations, either through migration or rapid reproductive
growth, predation pressure is expected to increase as a mast
episode progresses. Seeds released late in a mast are thus
expected to suffer the highest predation rates, and yield fewer
successful offspring (Janzen 1976). This is borne out in studies
that observe predation rates across entire mast episodes, both
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Figure 2 A model of initial synchronisation in bamboos. Blue phase:

Initially, the population comprises mostly annual-flowering bamboos,

with a small number flowering every 2 years (symmetric across odd and

even years). Owing to their higher individual seed release, the 2-year

plants increase in numbers over time (a). Total annual seed release
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population is at risk of having an annual seed release completely

consumed by predators. When this eventually occurs, all of the annual

plants, together with the 2-year cohort seeding that year, are eliminated

(a). Green phase: If predation is not unusually high the following year,

the seed release of the remaining 2-year cohort will fill the environmental

carrying capacity, establishing synchrony onto that cohort’s 2-year cycle.
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for bamboos (Gonzalez & Donoso 1999; Kitzberger et al.
2007) and for Dipterocarpaceae (Curran & Leighton 2000;
Curran & Webb 2000).
On the other hand, seeds released early in a mast episode

do not enjoy the safety in numbers that seeds released
during the mast’s peak do. Despite predator levels initially
being low, therefore, these early seeds are very vulnerable
to predation by the predators that are present. Thus, while
the above argument against gradual interval growth suggests
that gradual interval reduction is a possibility, we do not
expect such reductions to significantly affect mast interval
lengths.
It has been claimed that the very long mast intervals

observed in, for example, Phyllostachys bambusoides
(120 years) and P. nigra f. henonis (60 years) constitute evi-
dence against the predator satiation hypothesis (Keeley &
Bond 1999). It has been assumed that integral to the hypothe-
sis is that long mast intervals have evolved to starve seed pre-
dators between masts, ensuring that predator numbers are low
when a mast eventually occurs (Janzen 1976; Kelly 1994;
Kelly & Sork 2002). But since the longest known mast inter-
vals greatly exceed the lifespans of typical seed predators, the
predator satiation hypothesis cannot alone explain why selec-
tion favoured increases of mast intervals to the extremes

observed today (Keeley & Bond 1999). This argument simi-
larly pits these observations against other theories of stabilis-
ing selection, such as the wind-pollination hypothesis. In our
theory of interval growth by successive multiplication, we
have reconciled the predator satiation hypothesis (and, indeed,
any theory of stabilising selection) with the existence of
extreme mast interval lengths. Though the key selective factor
in longer intervals is greater seed release, rather than preda-
tion (or any other stabilising factor), that these longer inter-
vals must be discrete multiples of their preceding intervals is a
direct result of the heavy predation faced by plants releasing
their seeds in isolation (or, again, any perpetual stabilising
force that maintains synchrony).

STATISTICAL TESTING

The logic underlying this mechanism of interval growth
yields a simple, testable numerical prediction. If the extraor-
dinary flowering intervals observed today are the result of
successive multiplications of the initial synchronisation inter-
val, then they should be decomposable back into those mul-
tiples (and the initial interval). Though the theory is
consistent with multiples of any size if population growth is
sufficiently low, and though the mechanics of the genetic
clock in bamboos are poorly understood (Nadgauda et al.
1990), small multiples seem more likely than larger ones.
The physiological and underlying genetic adjustments neces-
sary for much larger single-interval multiplications would
likely render such multiplications implausible. Thus, we hy-
pothesise that the extended mast intervals of bamboos
should factorise into small positive integers, so that their
unique prime factorisation should include only small prime
numbers.
Do the data support this hypothesis? An initial survey of

the most well-studied examples is promising (Fig. 1): Phyllo-
stachys bambusoides (120 years = 5 year initial synchronisa-
tion interval 9 3 9 2 9 2 9 2), P. nigra f. henonis
(60 years = 5 years 9 3 9 2 9 2), and Bambusa bambos
(32 years = 2 years 9 2 9 2 9 2 9 2) (Schimper 1903; Seifriz
1923, 1950; Kawamura 1927; Numata 1970; Chen 1973; Jan-
zen 1976). These examples support our hypothesis on several
fronts. First, all of these intervals are factorisable into small
primes (5 or smaller). Second, the smallest primes appear
most often in each factorisation, consistent with smaller prime
multiples being more likely. Third, the 120 year mast interval
of P. bambusoides is a small multiple of the 60 year interval
of the closely related P. nigra f. henonis, suggesting a common
ancestral interval from which the two have evolved.
Other bamboo species with extended intervals are less well

studied. For these species, a number of factors are likely to
increase measurement error in estimates of mast intervals
(Janzen 1976). These include geographic variation in observa-
tions of masting, observations gathered at different stages of
consecutive masting episodes (many of which can last more
than 1 year), and misidentification of species, as well as natu-
ral variation around mean flowering intervals within species
(Franklin 2004). A more detailed discussion of the factors that
contribute to mast interval measurement error is included in
Appendix S2.
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Nonetheless, a broader inspection of the estimated mast
intervals of these less well-studied species, together with their
phylogenetic placement, corroborates our hypothesis. In the
two monophyletic genera in our data that exhibit variation in
mast intervals across more than two species, Phyllostachys
and Chusquea, these mast intervals show evidence of having
arisen through a multiplicative process (Fig. 4). The three
Phyllostachys species in our data share a common base inter-
val of 15 years (15 years, 60, 120), which under our hypothe-
sis would itself have arisen from a shorter (3 or 5 years)
initial synchronisation interval. Allowing for measurement
error, the three Chusquea species appear to share a base inter-
val of 8 years (16 years, 23, 32). Similar patterns of multiples
in bamboo flowering intervals have previously been noted as
anomalous (Guerreiro 2014) – this anomaly is resolved as a
natural consequence of our multiplication model.
To test our hypothesis more formally, we developed a sim-

ple, robust nonparametric test to determine if estimated mast
intervals (Fig. 1) are more tightly clustered around numbers
factorisable into small primes (‘NFSP’, here defined as primes
5 or smaller) than would be expected by chance under an
appropriate null hypothesis. Here, our null hypothesis is that
extended mast intervals evolved gradually (instead of via the
discrete multiplications we have hypothesised), resulting in a
smooth, continuous distribution of interval lengths (see
Appendix S3 for details of the estimation of the null distribu-
tion). Compared to samples generated from this null distribu-
tion, the measured flowering intervals are significantly closer
to NFSP (P = 0.0041) and contain significantly more NFSP
(P = 0.0024). These results strongly support our hypothesis.
Moreover, they are robust to changes in the construction of
the null distribution, and alternative definitions of NFSP (see
Appendix S3).

DISCUSSION

To our knowledge, our study is the first to develop a mathe-
matical theory of the mechanism underlying extended mast
intervals in bamboos. In our model, an initial phase of syn-
chronisation onto a small interval is followed by successive
multiplication of the interval by small numbers. Three key
assumptions underlie our multiplication model: (1) strong sta-
bilising selection that maintains interval synchrony, (2) that
later seed release allows for greater seed release (and/or for
better-protected seeds) and (3) approximately regular, endoge-
nously timed mast intervals. These assumptions may explain
why other masting plant species, such as members of the
Dipterocarpaceae clade, do not exhibit such greatly extended
intervals as the bamboos do. In particular, while assumptions
(1) and (2) above are likely to apply to many masting plants,
assumption (3), which is likely under genetic regulation,
appears to be unique to bamboos. This assumption, which is
crucial to the survival of multiple-interval mutants in our
model, may thus be the key distinction that has allowed bam-
boos to achieve such dramatically extended flowering inter-
vals.
The only other organisms that are well known to exhibit

regular long-intervalled synchrony are the periodical cicadas
(genus Magicicada), whose synchronised emergence from an

underground larval state on 13- and 17-year intervals has sim-
ilarly been attributed to predator satiation (Lloyd & Dybas
1966a,b; Bulmer 1977). Evolutionary explanations have been
proposed for their large-prime lifecycles (May 1979; Yoshim-
ura 1997; Goles et al. 2001), which clearly cannot be factor-
ised into small primes, and thus stand in contrast to our
hypothesis for the evolution of long-intervalled masting in
bamboos. This suggests distinct evolutionary and genetic
mechanisms underlying the periodical lifecycle of cicadas in
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comparison to long-intervalled masting in bamboos. For
example, a leading explanation for the large-prime lifecycles
of the periodical cicadas is that they minimise the possible fre-
quency of subharmonic resonances with the multi-year lifecy-
cle of a predator or parasite (Williams & Simon 1995). This
evolutionary mechanism appears not to apply to masting
bamboos, since the major predators of their seeds are typically
either fast-breeding (e.g. rats) or migratory (e.g. fowl and
pigs).
In conclusion, our multiplicative model provides the first

theoretical explanation of long-intervalled masting in bam-
boos, and offers a framework upon which comparative analy-
ses can be devised to explore the genetic and developmental
basis of this striking biological phenomenon.
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S1 Mathematical model of synchronization

In this section, we describe our synchronization model, the key results of which are

displayed in Figs. 2 and 3 in the main text. First, we describe the general specification

of the model. Second, we describe the particular parameter specifications used for the

model, present the results of these specifications, and discuss the results in detail. We

also demonstrate that the results are robust to significant changes in the parameter

specifications.

S1.1 General synchronization model

We assume a constant carrying capacity of K individuals (assigned to ‘stands’) through-

out our synchronization models and simulations. Let Xτ,y be the number of plants of

flowering interval τ (in units of integer years) present in year y, where τ ∈ {1, . . . , T}
and y = 1, 2, . . . Assume that each annual plant releases S seeds in a flowering episode,

and that plants of interval τ each release fτS seeds per episode. We invoke a standard

assumption (Fenner, 1985) that plants of greater interval length release more seeds when

they do eventually seed, i.e., 1 = f1 < f2 < . . .

For each flowering interval τ , there are τ possible ‘cohorts’. These seed separately in

years 1, 2, . . . , τ . Formally, we define individual cohorts thus: Let Nτ,y be the number

of bamboos of interval τ starting life in year y. This is the number of seeds released

by interval τ plants in year y that germinate and survive to adulthood. We assume no

mortality of adult plants until they seed (after which, being semelparous, they die), so

for each τ , Xτ,y = Nτ,y +Nτ,y−1 + . . .+Nτ,y−τ+1 (since the τ, y − τ cohort has just died

giving rise to the τ, y cohort).

Seed mortality occurs first from predation, and then, when applicable, from the

fact that more seeds survive predation than can fill the remaining carrying capacity.

Total potential predation in year y is αySK, where αy
iid∼ U [

¯
α, ᾱ]. This corresponds to a

proportion between
¯
α and ᾱ of the total seed release of a population of all annual plants.

We shall assume this proportion to be significant, which is consistent with the enormous

predation rates observed in minor mast years among bamboos (Kitzberger et al., 2007)

and well-studied woody tree species (Nilsson and Wastljung, 1987; Curran and Leighton,

2000). If fewer seeds are released in a year than total potential predation in that year,

all seeds are eaten, and the cohorts seeding that year are eliminated entirely from the

population.

Finally, we assume predation of seeds of interval 1, 2, . . . , T in year y to be propor-

tional to the number of each released that year. Seeds of interval 1, 2, . . . , T surviving

predation are assigned to empty stands (i.e., the remaining carrying capacity) also in

proportion to the number released (and thus also in proportion to the number of each

surviving predation, from the previous sentence).
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This is sufficient information to characterize the population dynamics, which we do

now:

In year y, for each τ , all plants of the cohort τ, y − τ release fτS seeds each, and die.

Total potential predation is αySK. Thus:

• Total population seed release: Sy =
∑

τ SNτ,y−τfτ

• Proportion of seeds that are of interval τ : pτ,y = SNτ,y−τfτ/Sy

• Total number of seeds surviving predation: SPy = max (Sy − αySK, 0)

• Carrying capacity remaining (‘vacant stands’): Vy = K −
∑

τ [Xτ,y−1 −Nτ,y−τ ] ∈
[0,K].

So, Nτ,y = pτ,y min
(
SPy , Vy

)
, and Xτ,y = Nτ,y + . . .+Nτ,y−τ+1 = Xτ,y−1 +Nτ,y−Nτ,y−τ .

S1.2 Parameter specification for two-year synchronization model

For the baseline two-year synchronization model presented in the main text (Fig. 2), we

assume a maximum flowering interval of T = 2 years, a carrying capacity of K = 1000

plants(/stands), and begin initially with a mostly annual population in years 1 and 2:

X1,1 = 998, X2,1 = 2, X1,2 = 998, X2,2 = 2. We assume an equal number of two-year

plants in each of the two two-year cohorts (‘odd’ and ‘even’), so that N2,1 = N2,2 =

1. Having initial symmetry between the two cohorts does not significantly change the

probability that synchronization onto a two year interval will result. Initial asymmetry

tends to result in synchronization onto the initially-larger cohort’s cycle, with probability

slightly lower than that of synchrony onto any two year cycle in the symmetric case (see

robustness checks below).

S, the number of seeds released in an episode by an annual plant, is a dummy variable,

with no effect on the model once predation is defined as some multiple of it. We set it

arbitrarily to 200. Plants flowering every two years release 30% more seeds than annual

plants: f2 = 1.3.

Total potential predation is distributed uniformly between 40% and 70% of the total

seed release of an entirely annual population:
¯
α = 0.4, ᾱ = 0.7. Having such a wide

range of potential predation values is not necessary for synchronization to result in the

model, but does make the mechanism by which synchrony results significantly clearer in

our figures.

S1.3 Results of two-year synchronization model

Under the specifications detailed above, two outcomes are possible from our model. The

first, occurring in ∼ 77% of simulations, is synchronization of the population onto a two
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year flowering interval (Fig. 2a in the main text, Fig. S1a here). The second, occurring

in the remaining ∼ 23% of simulations, is extinction of the population (Fig. S1b).

It is easy to understand how each occurs in this model. First, we note that a popu-

lation comprised only of two-year plants, with approximately equal numbers across the

odd and even cohorts, cannot survive perpetually: in each year, only about half the

population seeds, which amounts to a seed release of ∼ 500 × 1.3 × S = 650S. The

maximum yearly potential predation, on the other hand, is higher than this value, being

0.7×1000×S = 700S. Thus, in a year where potential predation is particularly high, the

cohort seeding that year will experience total predation of its seeds, and be eliminated.

Initially, though, with a mostly annual population, most of the population seeds

each year. Total seed release is then ∼ 1000S > 700S, and so total predation is never a

concern. Under these conditions, the two-year plants are protected from total predation,

and their higher individual seed release ensures that they grow as a proportion of the

population. As they do, though, the population gradually approaches the state described

above where two year plants are a large proportion, and seeding becomes spread across

the two cohorts. Thus, total annual seed release declines below the levels observed under
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Figure S1: The two possible results of the synchronization model’s population dynam-

ics. a. Synchronization onto a two year interval (as presented in the main text). b.

Extinction of the entire population.
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the initial conditions.

Eventually, total annual seed release declines below 700S, and total predation be-

comes a possibility. When it occurs, all of the annual plants, and the two-year cohort

seeding that year (say, the ‘even’ cohort), are eliminated. This is where the two possible

outcomes of the model are clearly observed. If total potential predation the next year

is again very high, the other two-year cohort (the ‘odd’ cohort), releasing its seeds then

without the extra buffer of the annual plants’ release (the annuals having been elimi-

nated, though their numbers were small anyway), will also be eliminated, and the whole

population will become extinct. On the other hand, if total potential predation the next

year is not very high, the remaining two year cohort will release more seeds than can

be eaten by predators, and the surviving seeds will exceed the carrying capacity of the

environment (since total seed release is orders of magnitude higher than the carrying

capacity, it is very unlikely that there will be fewer surviving seeds than the carrying

capacity). 1000 two-year plants flowering in synch will never suffer total predation, since

1.3 × 1000 × S > 700S, and so synchronization onto a two year interval will have been

achieved, and will be sustained.

S1.4 Robustness of the two-year synchronization model

If we keep the requirement that the two two-year cohorts initially be of the same size, then

the result that synchronization can occur is robust to changes in parameter specifications

that maintain the following ‘rule of thumb’ properties of the model (precise conditions

are not possible because of the stochasticity of the process):

• Total potential predation cannot exceed the amount of seeds released by a full

population (K) of only annual plants (or else extinction of the entire population

will always occur early on).

• Total potential predation can sometimes be below, and sometimes exceed, the

amount of seeds released by about a half population (K/2) of two-year plants.

That it can exceed this amount rules out the possibility that two separate cohorts

of two-year plants can coexist perpetually. That it can be below allows for the

possibility that, when the first instance of total predation occurs and eliminates

the annual plants and one cohort of two-year plants, the other two-year cohort can

release enough seeds the following year to avoid total predation.

It is important to note that, since the dynamics are stochastic, and since the num-

ber of annual plants left in the population at the time of first total predation changes

from simulation to simulation, these requirements are not exact. The first requirement

translates to ᾱ < 1. The second translates to
¯
αSK < f2SK/2 < ᾱSK, which simplifies

to
¯
α < f2/2 < ᾱ. So, the evolution of synchrony onto a two-year cycle is possible in our
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model when
¯
α < f2/2 < ᾱ < 1. It is clear that these requirements will hold for a large

number of parameter specifications.

Bearing these rough requirements in mind, we can see that, if two-year plants do

not release many more seeds than one-year plants (f2 values lower than the value of 1.3

assumed above in our simulations), then the evolution of a two year cycle, still possible

under the appropriate parameterizations, occurs after a longer peiod of time. This is

because, with a lower selective advantage, it takes longer for two-year plants to occupy

a large enough proportion of the population that total population seed production is

below the maximum predation level. An example of this longer time until establishment

of a two year cycle is given in Fig. S2a.

Allowing for asymmetry in numbers between the initial two two-year cohorts does not

significantly alter the probability that synchronization onto a two year cycle results in

the model. For example, beginning with five two-year plants in year 1 (‘odd’ cycle) and

one two-year plant in year 2 (‘even’ cycle), and otherwise keeping the same parameter

specification from Section S1.2, population synchronization onto the odd two-year cycle

occurs in ∼ 70% of simulations, while synchronization onto the even two-year cycle

essentially never occurs. Population extinction is the result in the remaining ∼ 30% of

simulations, slightly higher than in the symmetric case.

Finally, we might expect the total potential predation in a given year to depend on the

number of seeds released. For example, the predator population surges that typically

accompany mast events might be more rapid when seed release is greater, leading to

higher total predation pressure. On the other hand, since bamboo seed predators do

feed solely on bamboo seeds, we should also expect a non-density-dependent component

to total potential predation. To model this, let αb be a stochastic baseline (i.e., non-

density-dependent) predation pressure, drawn independently each year from the uniform

distribution on [0.1, 0.3], and contributing αbKS potential predation each year. Let αd
be a stochastic density-dependent predation pressure, drawn independently each year

from the uniform distribution on [0.4, 0.6], and contributing αdSy predation pressure in

a year where the total population seed release is Sy. Then the total predation pressure

in year y is αbKS + αdSy. Synchronization onto a two year cycle is possible under this

model (Fig. S2b), with the logic the same as before.

S1.5 Higher-interval synchronizations

Is synchronization onto an interval that is greater than two years possible? Maintaining

a carrying capacity K = 1000, we allow a maximum interval in the population of T = 5,

set (f2, f3, f4, f5) = (1.3, 1.5, 1.7, 1.9), and again start with a mostly annual population:

for y = 1, 2, . . . , 5, X1,y = 996;X2,y = 1;X3,y = 1;X4,y = 1;X5,y = 1. We assume

symmetry across cohorts: for τ ≥ 2, Nτ,5 = Nτ,5−1 = . . . = Nτ,5−τ+1. Again, this

assumption is not crucial to the possibility of multi-year synchronization in the model;
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Figure S2: Robustness of the two-year synchronization model. a. In the two-year

synchronization model, if two-year plants do not release many more seeds than one-year

plants, then synchronization onto a two year cycle takes longer. Here, we have assumed

that two-year plants release only 5% more seeds than one year plants (f2 = 1.05),

and have set minimum and maximum predation rates at
¯
α = 40% and ᾱ = 60% of

the total seed release of an all-annual population. b. We can incorporate density-

dependent predation rates into the two-year synchronization model, and still observe

synchronization onto a two year cycle. Here f2 = 1.3, and each year, a baseline predation

rate αb is drawn randomly from [0.1, 0.3], and a density-dependent rate αd from [0.4, 0.6];

the total possible predation for that year is then calculated as αbKS + αdSy, where

KS = 1000S is the total seed release of an all-annual population, and Sy is the true seed

release of the population in year y.
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initial asymmetries tend to promote synchronization onto the cycles of initially larger

cohorts.

Annual plants release S = 200 seeds each, and here we assume predation again to

be significant, independently and uniformly distributed each year between 30% and 70%

of the seed release of a full population of annual plants:
¯
α = 0.3, ᾱ = 0.5. Again, dis-

tributing predation across narrower or wider intervals preserves the results of the model,

although specifying predation as high as for the two-year synchronization model tends

to result in total extinction in the current multi-year specification. This is because,

as higher-interval plants account for an increasing proportion of the population in this

model, seeding becomes even more spread out across years than in the two-year synchro-

nization model, and so lower levels of predation can kill off the entire population than

in the two-year model.

Under this specification, synchronization onto a multi-year interval occurs in ap-

proximately 62% of simulations. Synchronization occurs onto a single cohort’s cycle in

roughly 46% of simulations; the remainder of synchronization occurrences are onto two

cohorts’ cycles (e.g., cohorts 2 and 4 of the four-year plants). Extinction of the entire

population is the result in the remaining 38% of simulations.

Of the single-cohort synchronizations, approximately 14% were onto a three year

interval, 28% onto a four year interval, and 58% onto a five year interval. No simulations

were observed to result in synchronization onto a two year interval.

The rationale underlying synchronization in this model is similar to that for the two-

year model. As multi-year plants increase in numbers in the populations (owing to their

higher individual seed release), the population’s seed release becomes increasingly spread

over multiple cohorts, and so annual seed release declines. Once it declines below the

maximum possible predation rate, successive eliminations of cohorts can occur, leaving

(under this specification) either zero, one, or two cohorts.
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S2 Noise in flowering interval estimates

The broad implication of our model is that the extended mast intervals exhibited by

bamboos have evolved through successive multiplications of intervals on which synchro-

nization initially occurred. This in itself does not yet yield a hypothesis that distinguishes

the model from other hypotheses for interval growth, since any observed multi-year in-

terval could be factorized into integers which are claimed to be the multiples through

which evolution of the interval occurred. That is, any set of observed/measured mast

intervals, measured in integer years, could be consistent with our hypothesis.

However, a distinguishing implication can be derived if we introduce the simple,

plausible assumption that small multiples in our model would be more likely than large

multiples. This would be true if a more complicated, rarer mutation were required to

immediately increase flowering time to, say, eleven-fold one’s parent’s flowering interval

than to double it. This seems a reasonable assumption, though, as we have stressed

in the main text, the molecular genetics of the biological clock underlying flowering

time in masting bamboos are still poorly understood (Nadgauda et al., 1990). It would

also be true if, even allowing for the possibility of a mutant with an eleven-fold flowering

interval of its parent’s, the rest of the genome was not able to cope with such a rapidly and

dramatically extended lifecycle. We do not expect the genetics of vegetative construction

and maintenance, for example, to be the same as that for flowering time; massive changes

in the latter would likely find the former ‘unprepared’.

If, then, we restrict our attention to the evolution of extended mast intervals by

successive small multiplications of an initial synchronization interval, a prediction of the

model is that the mast intervals observed today should factorize back into these small

multiples and the initial synchronization interval, and as an implication, should factorize

into small primes.

That is not to say that we can test the hypothesis by simply observing flowering in-

tervals and checking that they strictly factorize into small primes. Variation in measured

intervals needs to be accommodated; it can occur for a number of reasons:

• Timing of observations in mast episodes: Mast episodes can, for some species,

last several years (Janzen, 1976; Kelly, 1994). To calculate the true mast interval,

we require flowering observations to be made at precisely the same stage within

successive masts. This is unlikely to be the typical case with our data (or any

data of this sort). If a flowering observation is reported at the beginning of one

such mast episode, and another is reported at the end of the next mast episode,

then our estimate of the mast interval will be higher than the true interval. If vice

versa, our estimate will be lower than the true interval.

For example, the data in Janzen (1976), which we use here, record two mast

episodes for Phyllostachys bambusoides in China in 999 C.E. and 1114 C.E. From
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the rest of the observations for this species, made much later in Japan, we know

that it typically experiences multi-year masts. Thus, we know that the obser-

vations made in China record only a stage of the masts in which they occurred.

Without knowing the stage within each mast, we cannot know what the exact mast

interval was, and thus our estimate of 115 years (1114−999) from the two Chinese

observations is likely to be imprecise.

• Location of observations in mast episodes: Geographically separated populations of

the same species are not under selective pressure to maintain synchrony with each

other, and so their mast times might differ. Even for a geographically contiguous

but large population, mast ‘waves’ have been observed, so that the precise flowering

time differs for plants far apart in the population at opposite ends of the wave

(Franklin, 2004). To calculate the true mast interval, we would ideally require

observations in successive masts from exactly the same small region.

Again, this will often not be the case in the data. For example, Janzen (1976)

records two flowering observations for Chusquea ramosissima in 1893 and 1916,

with the most precise geographic location for both observations reported simply as

‘Brazil’. It is possible that these observations are from the same small region, but

it is also possible that the observations were made far apart in Brazil. Without

knowing this, we must allow for the possibility that our estimate of a 23 year

interval between the masts is imprecise.

• Recording of aberrant flowering: In some cases, a small number of plants in a

population might flower and set seed out of synch with the rest of the population.

A naturalist might correctly record this as an instance of flowering in that species,

but not record that it was not a mast. Not being a mast, of course, it is of no use

in calculating the mean inter-mast interval of that species. Without being able to

discern this in the data, we include it, and it adds noise to our final estimate of

the mast interval of the species.

• Natural variation in the mast interval: Though a species may be characterized by

a clear mean mast interval, there may be slight natural variation in the interval

from mast to mast. With enough observations, we may accurately calculate the

mean mast interval, but with very few observations, accuracy will be lower.

For example, in Janzen (1976), observations of masting in the long-intervalled

Phyllostachys nigra f. henonis suggest intervals of 59, 63, 60, and 62 years. This

variation may be a result of the issues mentioned here in the first two bullet points,

or it may reflect natural variation around the well-known mean interval of 60 years

in this species.
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Accepting that there will be noise in the measurement of mast intervals, our hypoth-

esis predicts they should be clustered around numbers that factorize into small primes

(‘NFSP’ hereafter).

It is important to note that the claim that larger multiples are possible is not a coun-

terargument to our model. To see why, we should distinguish clearly between the model

we propose–one of interval growth through any multiples–and the plausible assumption

we have had to make to render the hypothesis testable–that these multiples will usually

be small. Countering that large multiples are also possible assumes the mechanism that

we propose, and is therefore not a counterargument against it. Whatever the case, since

the data strongly support our hypothesis (see Section S3), they also implicitly support

our assumption that small multiples are more likely.
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S3 Statistical testing

In this section, we present the formulation and results of the statistical methodology we

use to test our hypothesis that mast intervals have evolved through successive multipli-

cation, by small factors, of an initial interval. We first present the mast interval data,

with a detailed description of the process by which the final data set was reached. We

provide an informal assessment of our mast interval data, and discuss the patterns in

them that are suggestive of our model of interval multiplication. We then turn to a

discussion of exactly what hypothesis should be tested, given the data issues mentioned

in the previous section. We then describe the development of a nonparametric approach

for testing this hypothesis against an appropriate null hypothesis, the construction of

which we also discuss in detail. We then provide the baseline results of this testing,

which provides strong evidence for our hypothesis. Finally, we show that these results

are robust to many changes in the setup, including the precise hypothesis that we test,

the construction of the null, and alterations of the underlying data.

S3.1 The data

The raw data used are those assembled by Janzen (1976), presented therein as Table

1. This is, to our knowledge, the largest systematic collection of bamboo flowering

observations published to date. Additions to it from more modern observations might be

possible, though without clear knowledge of Janzen’s criteria for admission and omission,

we risk introducing additional sources of noise to Janzen’s data set. For this reason, and

for the reason that the original data is adequate for our purposes, we do not add to

Janzen’s data set.

Janzen’s data set contains flowering dates (years) for 42 species of bamboo, repre-

senting most subtribes within the subfamily. For some species in the data set, flowering

intervals, approximate or exact, can be determined from these observations. For some

species, however, only very vague conclusions can be made about flowering intervals

(e.g., ‘greater than 60 [years], probably greater than 100’ for Phyllostachys reticulata).

We necessarily exclude such species from our data. For other species, though flowering

appears to take place at multi-year intervals, no evidence of a regular interval can be

discerned from the data. This may be for a number of reasons: issues with measurement

such as those described in Section S2, or perhaps true irregularity in those particular

species’ flowering patterns. Whatever the case, these species were necessarily excluded

from our final data set.

In updating species names to modern usage, we discovered observations for two

species listed separately in Janzen (1976), named there as Arundinaria spathiflora and

Thamnocalamus spathiflorus, that are in fact one species with the currently-accepted

name Thamnocalamus spathiflorus. The observations listed by Janzen under the name

12



Arundinaria spathiflora represent an estimated seven intervals across a span of 71.5 years,

at an average (rounded) interval of 10 years (see Table S2). On the other hand, only two

observations are listed under Thamnocalamus spathiflorus, geographically separate from

those listed under Arundinaria spathiflora, and representing either one or two intervals

(unknown) across 16-17 years. For some reason, Janzen appends a question mark to

his estimate of a 16-17 year flowering interval here. Since the estimates are inconsistent

across the two listings, and since we have more observations across a greater number

of intervals listed under Arundinaria spathiflora, and since there is uncertainty both in

the number of intervals represented by the observations listed under Thamnocalamus

spathiflorus and in Janzen’s estimate of the mast interval from these observations, we

choose to include the observations listed under Arundinaria spathiflora in estimating a

mast interval for this species.

Finally, we excluded species for which our estimate of mean flowering interval is lower

then 10 years – these species we do not consider to exhibit long-intervalled masting. The

species omitted by these criteria are listed in Table S1.

13



Table S1: Species listed in Janzen (1976) that are omitted in our data, and reasons for these

omissions. For ease of reference with his data, we first report the species names as they appear

in Janzen (1976), followed by updated species names. Regions, observations, and intervals are

as reported by Janzen.

Species name (Janzen) Species name (updated) Regions Observations Intervals (yrs) Reason for omission

Arundinaria alpina Yushania alpina Kenya ? about 40-plus No dates reported;

interval measure vague.

Arundinaria maling Yushania maling Eastern Himalaya not in living memory 50-plus Only one date reported;

1951 interval measure vague.

Bambusa indusager ? Paraguay 1972 long interval Only one date reported;

interval measure vague.

Bambusa polymorpha Bambusa polymorpha Burma ? at least 68 No clear evidence of regular

1853 at least 50 interval.

Prome Division 1859-1860

Burma 1914 54-55

Bambusa vulgaris Bambusa vulgaris Pantropical ? 150 years plus No dates reported;

interval measure vague.

Chimnobambusa Chimnobambusa Japan and Europe, in ? greater than 100 No dates reported;

quadrangulus quadrangulus cultivation interval measure vague.

Chusquea culeou Chusquea culeou Chile ? 15-20 No dates reported.

Continued on next page
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Table S1 – continued from previous page

Species name (Janzen) Species name (updated) Regions Observations Intervals (yrs) Reason for omission

Chusquea quila Chusquea quila Chile ? 15-20 No dates reported.

Dendrocalamus Dendrocalamus Burma-Ceylon 1831? Uncertainty in dates

giganteus giganteus (introduced) 1908-plus about 76

Dendrocalamus Dendrocalamus Lakhimpur Forest, 1905 30? No clear evidence of regular

hamiltonii hamiltonii Assam interval.

Cachar, Assam 1912

1956 44

Dendrocalamus Dendrocalamus Gahrwal, outer 1872-1876 No clear evidence of regular

strictus strictus Himalayan tract 1909-1913 36-40 interval.

Madhya Pradesh ? 20-30

Paniali 1909

1948 39

Cachar Hills, Assam 1879

1922 43

1966 44

India 1921-1922

1968 46

Continued on next page
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Table S1 – continued from previous page

Species name (Janzen) Species name (updated) Regions Observations Intervals (yrs) Reason for omission

Saharanpur Siwaliks 1883-1886

1926-1927 40-44

Bhadravathi, Mysore 1905-1908

State 1932-1933 24-28

Uttar Pradesh 1870

1909-1910 39-40

1949-1953 39-44

Taiwan (introduced) 1922

1969 47

Burma:

Tharawaddy none reported 23

Zigon none reported 15, 27

Ruby mines none reported 9

Thayetmyo none reported 21

Henzada none reported 32

Prome none reported 12-15

Tauguin none reported 8

Central Provinces:

Chanda none reported 21

Seoni none reported 22

Balaghat none reported 20

Continued on next page
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Table S1 – continued from previous page

Species name (Janzen) Species name (updated) Regions Observations Intervals (yrs) Reason for omission

Madras:

Vizagapatam none reported 28

United Provinces:

Garwhal Outer none reported 36

Himalayas

Saharanpur Siwaliks none reported 40

Melocanna Melocanna Mizo Hills, Assam 1863-1866 No clear evidence of regular

bambusoides baccifera 1892-1893 26-30 interval.

1900-1902 7-10

1933 31-33

1960 27

Lushai Hills, Assam 1864

1911-1912 47-48

Chittagong, East 1863-1866

Pakistan 1908-1912 42-49

1958-1959 46-51

Merostachys fistulosa Merostachys fistulosa Brazil ? 30-34 No dates reported.

Merostachys sp. ? Brazil ? 11 No species, dates reported.

Ochlandra Ochlandra Travancore 1875 Interval too short.

travancorica travancorica 1882 7

Continued on next page
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Table S1 – continued from previous page

Species name (Janzen) Species name (updated) Regions Observations Intervals (yrs) Reason for omission

Phyllostacys edulis Phyllostacys edulis Japan ? greater than 48 No dates reported;

interval measure vague.

Phyllostachys Phyllostachys Japan ? greater than 60, No dates reported;

reticulata reticulata probably greater than 100 interval measure vague.

Sasa tessellata Indocalamus Japan, in cultivation ? greater than 115 No dates reported;

tessellatus interval measure vague.

Schizostachyum Nastus Bandong, Java ? 3 No dates reported;

elegantissimum elegantissimus interval too short.

Thamnocalamus Thamnocalamus Jaunsar-Bawar, 1865-1866 Uncertain estimate;

spathiflorus spathiflorus Northwestern 1882 16-17? inconsistent with data

Provinces listed under Arundinaria

spathiflora (same species).
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Thus, the species that we include are those that are seen in Janzen’s data to exhibit

regular, or nearly regular, flowering intervals within a defined region (we do not calculate

intervals from observations from different regions, since we do not expect geographically

disparate populations to maintain perfect synchrony with each other over long periods

of time). Flowering observations for such species often span more than one year (e.g.,

‘1875-1876’), which is expected since mast episodes of long-lived bamboos often span

multiple years (Janzen, 1976; Kelly, 1994). The process by which we determine the

mean flowering interval for each of these species is described below.

For observations of a mast episode over a number of years, we take the midpoint of

the observations. So an observation for 1875-1876 is treated as 1875.5.

For cases where there are multiple observations, and they do not suggest a precisely

regular interval, we take the earliest and latest midpoint observations for a region, and

divide by the number of masts to obtain the average mast interval for that region. This is

equivalent to calculating the individual midpoint-to-midpoint intervals for a region and

averaging them thereafter (since (t2−t1)+(t3−t2)+...+(tn+1−tn)
n = tn+1−t1

n ). Occasionally, the

number of intervals between two observations must be inferred under the assumption

that intervals are roughly constant. For example, if a species was observed to mast in

1850, 1860, 1870 and 1890, we infer that there was an unobserved mast around 1880,

and that the total number of mast intervals is therefore 4 (i.e., between 5 mast episodes).

If observations exist for multiple regions, we carry out the above procedure for each

region, and average across regions, weighting by the number of observed intervals per

region.

Final mast interval estimates are rounded to the nearest whole number. Halves are

rounded upwards, as per convention.

So, for example, in the case of Arundinaria falconeri, introduced to England from the

Himalaya, the mast observations are for dates 1847, 1875-1877, 1902-1908, 1929-1932,

1964-1967. We note that there are four mast intervals of roughly 30 years each, and

thus include this species in our data, since it appears to exhibit roughly constant mast

intervals. We find the midpoints of the observation periods: 1847, 1876, 1905, 1930.5,

1965.5. These imply intervals of 29, 29, 25.5, 35 years respectively. To get the final

estimate, we note that the four intervals span 1965.5−1847 = 118.5 years, at an average

of 118.5/4 = 29.625 years per interval. This we round to 30 years, which is the final

estimate that we include in our data.

Only in cases where a flowering interval is well known and there is significant variation

in the Janzen intervals (leading to an estimate that differs from the well-known interval)

do we impute the well-known interval value instead of carrying out the above calculations.

This we do for three species: (i) Bambusa bambos, where the Janzen data includes many

observations consistent with the well-known 32 year interval, as well as some much longer

∼ 40-50 year intervals. Including only the observations consistent with a < 40 year
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interval, our methodology yields an estimated flowering interval of 31.71 years, which

rounds to the known 32 year interval. (ii) Phyllostachys bambusoides, where Janzen lists

two ancient data points for China suggesting an interval of 115 years, and three more

recent observations in Japan, beginning 602 = 5 × 120.4 years after the last Chinese

observation, and themselves documenting intervals (midpoint to midpoint) of 120 years

and 122 years. Here, we use the well-known 120 year interval. (iii) Phyllostachys nigra

f. henonis, where the well-known interval of 60 years is nearly matched by the Janzen

data, which yield a 60.83 year estimate. Excluding the isolated ancient data (first

millennium C.E.; last such observation > 300 years before next observation), we get

an estimate of 60.09 years, which accords almost perfectly with the well-known 60 year

cycle.

The resulting estimates of mast intervals are displayed in Table 1 in the main text.

The details of their derivation are given in Table S2.
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Table S2: Details of the application of our procedure of mast interval calculation from the data

in Janzen (1976). For ease of reference with his data, we first report the species names as they

appear in Janzen (1976), followed by updated species names. Regions are as reported by Janzen.

The three observations for which we have imputed well-known intervals in place of those that

would be estimated from Janzen’s data are marked with a star (∗).

Species name (Janzen) Species name (updated) Regions Observations Midpoints Average interval (yrs) Rounded

Arundinaria falcata Drepanostachyum Lansdowne, U.P. 1911 1911 (1946− 1911)/1 35

falcatum 1946 1946 = 35.00

Arundinaria falconeri Himalayacalamus England (introduced 1847 1847 (1965.5− 1847)/4 30

falconeri from Himalaya) 1875-1877 1876 = 29.63

1902-1908 1905

1929-1932 1930.5

1964-1967 1965.5

Arundinaria intermedia Drepanostachyum Eastern Himalaya 1848 1848 (1879− 1848)/3 10

intermedium 1868 1868 = 10.33

1879 1879

Arundinaria racemosa Sarocalamus racemosus Sikkim 1857 1857 (1888− 1857)/1 31

1888 1888 = 31.00

Arundinaria simonii Pleioblastus simonii England (introduced) 1877 1877 (1907− 1877)/1 30

1907 1907 = 30.00

Arundinaria spathiflora Thamnocalamus Western Himalaya 1821 1821 (1892.5− 1821)/7 10

spathiflorus 1881-1882 1881.5 = 10.21

1892-1893 1892.5

Continued on next page
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Table S2 – continued from previous page

Species name (Janzen) Species name (updated) Regions Observations Midpoints Average interval (yrs) Rounded

Bambusa arundinacea Bambusa bambos Malabar, South 1804 1804 (1866− 1804)/2 32∗

Kanara (Wynaad 1836 1836 = 31.00

& Corg) 1866 1866

Narbudda River 1839 1839 (1870− 1839)/1

1870 1870 = 31.00

Kanara 1878 1878 (1912− 1878)/1

1912 1912 = 34.00

Dehra Dun 1836 1836 (1926− 1836)/2

1881 1881 = 45.00

1926 1926

Brazil (introduced) 1804 1804 (1899− 1804)/3

1836 1836 = 31.67

1868 1868

1899 1899

Upper Weinganga 1818 1818 (1867.5− 1818)/1

Valley, Balaghat 1865-1870 1867.5 = 49.50

District

Dehra Doon 1832 1832 (1882− 1832)/1

1882 1882 = 50.00

Chandka Range, Puri 1929? 1929? (1969− 1929)/1

Forest Division, Orissa 1969 1969 = 40.00

Continued on next page
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Table S2 – continued from previous page

Species name (Janzen) Species name (updated) Regions Observations Midpoints Average interval (yrs) Rounded

South Travancore 1816-1817 1816.5 (1869.5− 1816.5)/1

1869-1870 1869.5 = 53.00

Martaban ? ? 32.00

Intervals < 40 yrs, and

omitting Martaban obs.:

(31.00× 2 + 31.00× 1

+34.00× 1 + 31.67× 3)/7

= 31.71

Chusquea abietifolia Chusquea abietifolia Jamaica 1884-1886 1885 (1948.5− 1885)/2 32

1918 1918 = 31.75

1948-1949 1948.5

Chusquea ramosissima Chusquea ramosissima Brazil 1893 1893 (1916− 1893)/1 23

1916 1916 = 23.00

Chusquea tenella Chusquea tenella Brazil 1901 1901 (1932− 1901)/2 16

1916 1916 = 15.50

1932 1932

Dendrocalamus hookerii Dendrocalamus hookerii Assam 1850 1850 (1967− 1850)/1 117

1967 1967 = 117.00

Guadua trinii Guadua trinii Argentina 1923 1923 (1953− 1923)/1 31

1953 1953 = 30.00

Continued on next page
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Table S2 – continued from previous page

Species name (Janzen) Species name (updated) Regions Observations Midpoints Average interval (yrs) Rounded

Brazil 1902 1902 (1934− 1902)/1

1934 1934 = 32.00

(30.00 + 32.00)/2

= 31.00

Merostachys anomala Merostachys multiramea Brazil 1876 1876 (1906− 1876)/1 30

1906 1906 = 30.00

Merostachys burchellii Merostachys claussenii Brazil 1877 1877 (1907− 1877)/1 30

1907 1907 = 30.00

Neehouzeaua dullooa Schizostachyum dullooa Cachar, Assam 1951-1953 1952 (1967.5− 1952)/1 16

1967-1968 1967.5 = 15.50

Oxytenanthera abyssinica Oxytenanthera abyssinica Malawi 1925-1930 1927.5 (1943− 1927.5)/1 16

1943 1943 = 15.50

Phyllostachys bambusoides Phyllostachys bambusoides China 999 999 (1114− 999)/1 120∗

1114 1114 = 115.00

Japan (introduced) 1716-1735 1725.5 (1967.5− 1725.5)/2

1844-1847 1845.5 = 121.00

1966-1969 1967.5

(115× 1 + 121× 2)/3

= 119.00

Continued on next page
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Table S2 – continued from previous page

Species name (Janzen) Species name (updated) Regions Observations Midpoints Average interval (yrs) Rounded

Phyllostachys henonis Phyllostachys nigra Japan (introduced) 813 813 Including ancient data: 60∗

f. henonis 931 931 (1908− 813)/18

= 60.83

1247 1247

1666 1666

1786 1786 Omitting ancient data:

1848 1848 (1908− 1247)/11

1908 1908 = 60.09

Phyllostachys aurea Phyllostachys aurea Europe (introduced) 1876 1876 (1936− 1876)/4 15

1904-1905 1904.5 = 15.00

1919-1921 1920

1934-1938 1936

Sinocalamus copelandi Bambusa copelandii Northern Shan States, 1896 1896 (1943− 1896)/1 47

Upper Burma 1943 1943 = 47.00

Thyrostachys oliverii Thyrostachys oliverii In cultivation from 1891 1891 (1939− 1891)/1 48

Burma 1939 1939 = 48.00
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S3.2 What are we formally testing?

The problems with measuring mast intervals precisely, mentioned in the Section S2,

prevent us from testing our hypothesis in the simplest manner possible: checking that

measured mast intervals almost always factorize into primes below a certain small thresh-

old. Errors in measurement of a mast interval might lead to an estimate of a 47 year

interval (does not factorize into small primes) when the true interval is in fact 48 years

(factorizes into small primes). Alternatively, while the mean mast interval might be

48 years, small endogenous fluctuations around this mean might lead to a single mast

interval of 47 years being correctly measured, but incorrectly inferred to be the mean,

or typical, interval for that species.

Given this, two hypotheses are natural to test here. The first is that measured

mast intervals should be unusually closely clustered (at an appropriate significance level)

around numbers that factorize into small primes (NFSP). That is, for each observation

in our data set of measured flowering intervals, we calculate the smallest distance to

a NFSP, and find the average of this quantity for our sample. If this average is very

low, relative to what we would expect under an appropriate null (at standard significance

levels), we would conclude that our measured mast intervals are tightly clustered around

NFSP, and consider this evidence in favour of our hypothesis.

The calculation of this sample statistic is simple. For example, given a data set of

measured flowering intervals (reported as integer years): {31, 32, 60, 67}, defining ‘small

primes’ as 2, 3 or 5, we find the NFSP nearest each observation: {30 (or 32), 32, 60, 64}.
The distances from the actual observations to these NFSP are {1, 0, 0, 3}, and so the

average distance to a NFSP in this data set is (1 + 0 + 0 + 3)/4 = 1. This value can then

be compared to those of samples generated under an appropriate null.

The second hypothesis is that, in our data set of measured mast intervals, NFSP

should be more common than we would expect under an appropriate null hypothesis.

Here, we simply calculate the proportion of NFSP in our data set, and test if this propor-

tion is larger than we would expect under an appropriate null, at standard significance

levels. Finding that NFSP are unusually common in our data set would of course be

strong evidence in favour of our hypothesis.

Calculating this statistic is also simple. In the above data set {31, 32, 60, 67}, 32 and

60 factorize into small primes, while 31 and 67 are not. Thus, the proportion 2/4 = 0.5

of the data are NFSP; this value can then be compared to those of samples from the

null.

S3.3 Nonparametric testing approach

With these sample statistics defined, it remains only to specify an appropriate null

hypothesis, from which we can derive a null distribution.
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Our model states that the long mast intervals of bamboos have increased through

discrete interval multiplications. The alternative model would posit that interval growth

has proceeded gradually, through small increments. Thus, while our model suggests

that measured mast intervals should be clustered around discrete lengths (in particular,

NFSP), the alternative model of gradual interval growth predicts a much smoother

distribution of mast intervals. For example, our hypothesis would consider measured

mast intervals of 30 and 32 years (both factorize into primes 5 or less) to be more likely

than 31 years (a large prime), while other models of interval growth would not make

such a distinction.

The implication of this is that, under the null hypothesis where intervals have not

grown by discrete multiples, the distribution of mast intervals should be smooth, without

the many local modes predicted by our hypothesis. Our statistical strategy is thus along

the following lines:

1. If our data have in fact come from a smooth distribution, as the null hypothesis

would imply, what would this distribution look like? We estimate such a smooth

distribution from our data, and use this estimate as the null distribution.

2. Drawing samples from such a distribution in a Monte Carlo fashion, how are the key

sample statistics (average distance to a NFSP; proportion of NFSP) distributed?

3. In particular, what proportion of samples drawn from such a distribution exhibit

sample statistics more extreme (in the sense of being tightly clustered around small

primes) than those exhibited by our data? These are the p-values from which our

judgments of the evidence in favour of our hypothesis will be derived.

It is important to consider why the choice of a null distribution might alter our con-

clusions. NFSP become more sparsely distributed higher up the (integer) number line;

a null distribution that places too much weight on higher intervals would overestimate

the average distance to a NFSP, and underestimate the average proportion of NFSP.

This would increase the chance that the values in our data set appear more extremely

clustered around NFSP (in favour of our hypothesis). On the other hand, a null dis-

tribution that places too much weight on small intervals will tend to produce samples

artificially clustered around NFSP, making our data appear less clustered around NFSP,

and thus biasing the test against our hypothesis. For this reason, the choice of the null

distribution must be estimated from the data set, and robustness to the original choice

of null distribution must be demonstrated. Our results are demonstrated to be robust

to changes in our choice of the null distribution (see Section S3.5). In particular, the

data will be shown to be significantly more clustered around NFSP than samples taken

from even unfairly bottom-heavy null distributions.
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The natural approach to generating a null distribution from the data is to apply kernel

density estimation. Since the support of our kernel density (possible mast intervals) must

be positive, we employ a transformation method to ensure this. In particular, wanting

to restrict the support of the kernel density to between 0 and 150 years, we transform

the mast intervals xi using the transformation ln(xi/[150 − xi]), and estimate a kernel

density of the transformed data using normal (Gaussian) kernels and a bandwidth of 1

(the bandwidth is unitless, since it applies to the transformed data) We then transform

the data back to the original support of 0 to 150 years, resulting in our final kernel

density estimate.1

We restrict our Monte Carlo sampling to the domain 10-140 years, chosen to accord

with our definition of long-intervalled masting (10 years or greater), and to bound the

support from above appropriately, so that the null distribution does not generate mast

intervals much higher than the highest in our sample. This is a conservative approach,

since we have no theoretical reason to believe that the distribution, and our sampling

from it, should be bounded so close to our highest observed interval (120 yrs). To

allow the null distribution to generate intervals much higher than those in our sample

would decrease the typical null clustering around NFSP (for the reasons mentioned in

the previous paragraph), and increase the chance that our data look relatively more

clustered around NFSP.

Kernel density estimation with these parameters yields the estimated distribution

displayed in Fig. S3a. Though the choice of kernel bandwidth is essentially arbitrary,

scaled bandwidths (again, the bandwidths discussed here and hereafter apply to kernel

density estimation on the transformed data, and are therefore unitless – for this reason,

we shall refer to them as ‘scaled bandwidths’) larger than 1 tend to generate distributions

tightly collapsed on the lower end of the distribution (Fig. S3c), which the data do

not suggest. On the other hand, scaled bandwidths smaller than 1 tend to produce

distributions with more than one mode (Fig. S3b). Though, under the null hypothesis

of gradual interval growth, an interval length distribution with multiple modes might

be expected if frequency-dependent selection were operating on sympatric species, or

if there were discrete ecological conditions that selected for shorter and longer interval

lengths, these are additional explanatory factors, and the most parsimonious expectation

would be of a distribution with a single mode. In any case, we shall show our results to

be robust to both changes in the bandwidth.

Finally, having constructed a null distribution, we randomly draw samples from it

(Monte Carlo sampling), the same size as our data set, and round their entries to whole

numbers (since this is the form in which our data appears). We then calculate the

proportions of such samples that exhibit: (i) as low, or lower, an average distance to

1This is the methodology employed, for example, by Matlab’s (v. R2011a) ksdensity function when

the support is restricted to a finite interval.
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NFSP than our data set, and (ii) as high, or higher, a proportion of NFSP than our data

set. These are the p-statistics we use to determine the strength of evidence in favour of

our hypothesis.

The hypothesis that we are testing is an unusual one, viz., whether a set of numbers

is more clustered around NFSP than chance would predict. As a result, the methodology

that we use to test it is also nonstandard. Because of this, before we present the results

of its application to our mast interval data, it is worth checking that the methodology

does not exhibit systematic confirmation bias. That is, we shall apply the methodology

to data generated randomly from some smooth distributions (which should show no

statistical tendency to be clustered around NFSP), to make sure that the methodology

does not spuriously find evidence that these randomly generated data are significantly

clustered around NFSP.

Implementing such a test on data sets generated randomly from a uniform distribu-

tion on [10, 140] and rounded to natural numbers (as for the tests carried out on our

true data, the kernel density estimates have support [0, 150] while the Monte Carlo sam-

pling from these densities is restricted to [10, 140]), we find that the methodology does

not systematically find the data to be more clustered around NFSP than chance would

predict (distance test: average p ≈ 0.47; proportions test: average p ≈ 0.43). We carry

out a similar procedure on (rounded) samples drawn from a log-normal distribution with

parameters µ = 3.36 and σ = 0.65 chosen, using Matlab’s (v. R2011a) fitdist function,

so that the distribution provides a good fit to our data. Samples are restricted to re-

side in [10, 140], with the kernel density estimated on support [0, 150], and Monte Carlo
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Figure S3: Kernel density estimates of the null distribution, resulting from the null

hypothesis of gradual interval growth. Vertical dashed red lines indicate the restricted

support, 10-140 years, from which we draw our samples. a. The baseline null distri-

bution: Scaled bandwidth = 1.0. b. Scaled bandwidth = 0.5, resulting in a bimodal

distribution. c. Scaled bandwidth = 1.5, resulting in a distribution that places too much

weight on small intervals.
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samples from the kernel density resricted to [10, 140]. Again, our methodology does

not systematically find that such samples are more clustered around NFSP than chance

would predict (distance test: average p ≈ 0.33; proportions test: average p ≈ 0.44).

Thus, we conclude that our methodology does not suffer from systematic confirmation

bias, giving us greater confidence in the results presented in the main text and in Section

S3.4.

S3.4 Test results

Distance test

Under the specification above, samples from the null distribution exhibit a mean average

distance to NFSP (primes 5 or smaller) of 0.8755. Our data set of mast intervals, on

the other hand, exhibits an average distance to NFSP of just 0.3810. This is as low or

lower than 99.59% of samples drawn from the null distribution. Thus, by the distance

measure, our data are more tightly clustered around NFSP than we would expect under

the null hypothesis at significance level p = 0.0041. This is a remarkably strong finding

given the small sample size, and constitutes powerful evidence in favour of our hypothesis.

Proportions tests

Samples drawn from the null distribution contain, on average, 38.79% NFSP (primes 5

or smaller). Our data set of mast intervals, on the other hand, contains fully 71.43%

NFSP. This is as high or higher than 99.76% of samples drawn from the null distribution.

We thus find that, by the proportions measure, our data set contains a larger number of

NFSP than we would expect under the null hypothesis at significance level p = 0.0024.

Again, this is a very strong result, and is further evidence in favour of our hypothesis.

S3.5 Robustness of test results

In this section, we demonstrate that our results are robust to many possible changes in

the empirical testing. The robustness tests and their results are summarized at the end

of this section in Table S3.

What numbers should our data be clustered around?

In the baseline specification, the results of which we have reported in Section S3.4, we

tested whether our data are significantly clustered around numbers that factorize into

small primes, where we define ‘small primes’ as primes 5 or smaller (i.e., 5, 3, and 2).

This is an appropriate specification if we believe that initial synchronization would be
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unlikely to occur onto an interval greater than 6 years (we cannot distinguish ‘greater

than 5’ here, since 6 itself factorizes into small primes 3 and 2), and that mutants

with flowering intervals seven-fold (or higher) their population’s mast interval are very

unlikely.

Perhaps mutants with flowering intervals five-fold their population’s mast interval

are also very unlikely. If we still allow for initial synchronization onto intervals of up

to 6 years, but do not allow for subsequent multiples of 5 or higher (with 4 factorizing

as 2 × 2, an interval quadrupling is empirically indistinguishable from two instances of

interval doubling), then we should test if our data are significantly clustered around

numbers with the following property: the number factorizes into primes 5 or less, but

5 may appear at most once in the factorization (that is, the multiplicity of 5 should

be one or zero). Maintaining the rest of the properties of the baseline specification,

the test of whether our data are significantly clustered around such numbers yields the

results reported in column (b) of Table S3. We find very strong evidence that our data

are clustered tightly around such numbers (distance test, p = 0.0009; proportions test,

p = 0.0007 respectively). These results are even stronger than in the baseline test.

If we make the stronger restriction that initial synchronization must have occurred

on intervals of 4 years or lower, and that subsequent multiples must have been 4 or lower,

then we should test whether our data are clustered around NFSP, where ‘small primes’

are taken to be 3 or 2. Maintaining the other properties of our specification, the results of

this test are reported in column (c) of Table S3. We do not find evidence that our data are

unusually tightly clustered around such numbers (distance test, p = 0.6881; proportions

test, p = 0.3624). This might reflect the low power of our statistical methodology given

the very small sample size, or it might suggest, given the strong results of the previous

tests, that initial synchronization onto intervals of 5 (or more) years has been common

in bamboos.

If we make the even stronger restriction that initial synchronization must have oc-

curred onto intervals of at most 2 years, and that intervals could subsequently at most

double, then we should test whether our data are significantly clustered around NFSP,

where ‘small primes’ refers only to 2. Maintaining the other properties of our speci-

fication, the results of this test are reported in column (d) of Table S3. Here, we do

find evidence that our data are tightly clustered around such numbers (distance test,

p = 0.0137; proportions test, p = 0.0100).

We conclude that our results are, for the most part, robust to changes in the numbers

the hypothesis predicts our mast interval data should be clustered around.

Bandwidth of kernel density estimation

Here we test if our results are sensitive to changes in the bandwidth used for our ker-
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nel density estimation. As shown in Fig. S3a and discussed in Section S3.3, a scaled

bandwidth of 1 yields a density estimate that qualitatively accords with what we would

expect under the null hypothesis of gradual interval growth. Scaled bandwidths lower

than 1 tend to result in multi-modal density estimates (Fig. S3b), which would require

additional selective factors to explain. Scaled bandwidths higher than 1 result in densi-

ties concentrated around the lowest observations in our sample (Fig. S3c), which is not

in accord with the observed prevalence of longer mast intervals. So, our choice of base-

line bandwidth is justified. Nonetheless, since its chosen value is somewhat arbitrary,

we would like to know if our results are robust to changes in this value.

Decreasing the scaled bandwidth of the kernel density estimation to 0.5, and main-

taining the other properties of the baseline specification, our data remain significantly

clustered around NFSP (distance test, p = 0.0052; proportions test, p = 0.0025; col-

umn (e) of Table S3). Increasing the scaled bandwidth of the kernel density estimation

to 1.5, our data remain significantly clustered around NFSP (distance test, p = 0.0049;

proportions test, p = 0.0050; column (f) of Table S3).

Further increases in the scaled bandwidth to 2, 3, and 4 result in distributions in-

creasingly collapsed around modes at the lower and upper bounds of the support, with

little weight in between. Though these are of course not distributions we would expect

under the null hypothesis, our results remain robust to their usage (in all cases, cluster-

ing in distance test and proportion test comfortably significant at 5% level – results not

reported in Table S3).

Our results are thus robust to changes in the bandwidth used in kernel density esti-

mation.

Support of kernel density estimation

As noted earlier, over-restricting the support of our density estimation will tend to yield

samples from the null distribution with smaller numbers, and since smaller numbers are

generally more likely to factorize into small primes than larger numbers, this would tend

to make samples from the null look artificially more clustered around NFSP, and our

data relatively less so, biasing our statistical testing against our hypothesis. On the

other hand, under-restricting the support will allow for numbers too large in samples

from the null, and will thus tend to bias the testing in favour of our hypothesis. We

would thus like to know if our results are robust to decreases (especially) and increases

in the support of the kernel density estimation of the null distribution.

Decreasing the support of the density estimation to 0-130 years, drawing samples only

from the 10-120 years region of the resulting distribution, and otherwise maintaining all

the properties of the baseline specification, we still find (column (g) of Table S3) that

our data are significantly tightly clustered around NFSP (distance test, p = 0.0043;
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proportions test, p = 0.0023). This is reassuring, since we can be confident that a

drawing support of 10-120 years is unfairly over-restrictive, given that two observations

in our data set are right up against its upper bound.

Increasing the support of the density estimation to 0-170 years, drawing samples only

from the 10-160 years region of the resulting distribution, and otherwise maintaining all

the properties of the baseline specification, we still find (column (h) of Table S3) that our

data are significantly clustered around NFSP (distance test, p = 0.0038; proportions

test, p = 0.0019).

Thus, our results are robust to changes in the support on which the kernel density

estimate of the null distribution is made.

Kernel type in kernel density estimation

In our baseline kernel density estimation, we used normal (Gaussian) kernels. This

yielded a kernel density estimate that was qualitatively consistent with the null distribu-

tion we would expect under the null hypothesis of gradual interval growth. Nonetheless,

it would be reassuring if our results were robust to the usage of other kernel types.

Using Epanechnikov kernels, and otherwise maintaining all the properties of the

baseline specification, we still find (column (i) of Table S3) that our data are significantly

clustered around NFSP (distance test, p = 0.0050; proportions test, p = 0.0033).

Using triangular kernels, and otherwise maintaining all the properties of the baseline

specification, we still find (column (j) of Table S3) that our data are significantly clustered

around NFSP (distance test, p = 0.0047; proportions test, p = 0.0030).

Our results are thus robust to the choice of kernel in the kernel density estimation

of the null distribution.

Changes in the data

As noted in Section S3.1, we deviated from the regular methodology used to calcu-

late mean mast intervals from flowering observations reported in Janzen (1976) in two

instances (for three species).

First, we imputed the well-known intervals of 60 years and 120 years for Phyllostachys

nigra f. henonis and P. bambusoides respectively, though the data from Janzen resulted

in estimates of 61 years and 119 years respectively. These changes are justified for several

reasons: In the case of P. nigra f. henonis, excluding isolated ancient observations (first

millennium C.E., last such observation more than 300 years before next observation

in Janzen’s data) results in an estimate that is very close to the well-known 60 year

interval of this species (60.09 years). In the case of P. bambusoides, regional variation

in the estimates of this species’ mast interval results in significant uncertainty in our
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estimate by standard methodology, and we prefer to impute the well-known 120 year

cycle.

Second, our methodology would lead us to discard Bambusa bambos from our data,

despite its known 32 year mast interval having been well documented (see, e.g., Seifriz,

1923). The flowering observations in Janzen (1976) are, for many regions, consistent with

the known 32 year interval. For other regions, though, much longer intervals (> 40 years)

are reported, with much variation. If we restrict attention to the observations consistent

with a mast interval less than 40 years, our methodology results in an estimated mast

interval of 31.71 years, which rounds to 32 years, the well-known mean interval of this

species. As a result, we are justified in including the well-known 32 year interval of this

species.

These changes are thus well justified. Nonetheless, we would be further reassured

if our results could be shown not to rely on them. In column (k) of Table S3, we

report the results of our tests, reverting the data points for P. nigra f. henonis and

P. bambusoides to 61 years and 119 years respectively, and otherwise maintaining the

baseline specification. Here, we still find that our data remain significantly clustered

around NFSP (distance test, p = 0.0204; proportions test, p = 0.0268).

In column (l) of Table S3, we report the results of our tests, omitting the data

entry for B. bambos. We find that our data remain significantly clustered around NFSP

(distance test, p = 0.0069; proportions test, p = 0.0044).

Finally, in column (m) of Table S3, we report the results of our tests, reverting

the data entries for P. nigra f. henonis and P. bambusoides to 61 years and 119 years

respectively, and omitting the data entry for B. bambos. Again, we find that our data

are significantly clustered around NFSP by the distance test (distance test, p = 0.0318;

proportions test, p = 0.0455).

We conclude that, even though the changes made to our data are strongly justified

in the first place, our results are largely not sensitive to them.
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Table S3: Robustness tests. Baseline specification in column (a). For each

test (b)-(m), the change from the baseline specification is in bold font.

(a) (b) (c) (d) (e) (f) (g) (h)

Initial synch ≤ 6, Bandwidth Bandwidth

Baseline multiples ≤ 4 Primes ≤ 3 Primes ≤ 2 smaller larger Support smaller Support larger

Cluster around: NFSP, ≤ 5 NFSP, ≤ 5; NFSP, ≤ 3 NFSP, ≤ 2 NFSP, ≤ 5 NFSP, ≤ 5 NFSP, ≤ 5 NFSP, ≤ 5

multiplicity of

factor 5 is ≤ 1

Kernel density:

Support for kernel 0-150 0-150 0-150 0-150 0-150 0-150 0-130 0-170

Drawing support 10-140 10-140 10-140 10-140 10-140 10-140 10-120 10-160

Kernel type Normal Normal Normal Normal Normal Normal Normal Normal

Scaled andwidth 1.0 1.0 1.0 1.0 0.5 1.5 1.0 1.0

Data used: All data, All data, All data, All data, All data, All data, All data, All data,

corrected corrected corrected corrected corrected corrected corrected corrected

pdistance 0.0041 0.0009 0.6881 0.0137 0.0052 0.0049 0.0043 0.0038

pproportions 0.0024 0.0007 0.3624 0.0100 0.0025 0.0050 0.0023 0.0019

Continued on next page
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Table S3 – continued from previous page

(i) (j) (k) (l) (m)

Kernel type 1 Kernel type 2 Data change 1 Data change 2 Data change 3

Cluster around: NFSP, ≤ 5 NFSP, ≤ 5 NFSP, ≤ 5 NFSP, ≤ 5 NFSP, ≤ 5

Kernel density:

Support for kernel 0-150 0-150 0-150 0-150 0-150

Drawing support 10-140 10-140 10-140 10-140 10-140

Kernel type Epanechnikov Triangle Normal Normal Normal

Scaled bandwidth 1.0 1.0 1.0 1.0 1.0

Data used: All data All data, P. nig. f. h. 61; Without B. bamb. Without B. bamb.;

corrected corrected P. bamb. 119 P. nig. f. h. 61;

P. bamb. 119

pdistance 0.0050 0.0047 0.0204 0.0069 0.0318

pproportions 0.0033 0.0030 0.0268 0.0044 0.0455
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