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Abstract 
 

This  paper  is a contribution to the  model theory of non-classical first- 
order predicate logics.  In a wide framework of first-order systems  based on 
algebraizable logics, we study several  notions  of homomorphisms between 
models  and  find  suitable definitions   of elementary  homomorphism,  ele- 
mentary substructure and elementary equivalence. Then we obtain (down- 
ward  and  upward)  Lowenheim–Skolem theorems for  these  non-classical 
logics, by direct  proofs and by describing their  models as classical 2-sorted 
models. 

∗ We  would  like  to  thank the  anonymous referees  that  reviewed the  submitted  version of 
the  paper for their useful  corrections and  remarks. 
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2  

 
 
 
 
 

Keywords:  Lowenheim–Skolem theorems,  first-order  predicate  logics, 
non-classical logics, algebraizable logics, model  theory 

 
 

1    Introduction 
 

Classical model theory (see e.g. [3, 18]) studies mathematical structures as first- 
order  models,  that is,  structures that can  be  described  in  terms  of classical 
first-order  predicate  formulas.   These  models  are  sets  (universes,  domains)  of 
elements,  where  monadic  relational symbols  are  interpreted as subsets  of the 
domain  and  n-ary  relational symbols are interpreted as sets of n-tuples  of ele- 
ments of the domain.  One of the main goals of model theory  is the classification 
of such first-order  structures according  to the properties  that can be expressed 
in the  language,  that is, two models are put  in the  same class if they  have the 
same first-order  theory,  i.e. if they  are elementarily equivalent. In this context, 
Lowenheim–Skolem  theorems  are crucial  results  in classical model theory  that 
allow to find models of each infinite cardinal  for a consistent theory. 

Motivated from diverse points  of view, many  non-classical  logics have been 
introduced and studied  in the literature, usually endowing them with first-order 
predicate  formalisms  to guarantee a sufficient expressive power.  The semantics 
of such logics needs some notion  of non-classical  first-order  structure. A useful 
approach, inspired  by the study  of predicate  intuitionistic logic by Rasiowa and 
Sikorski  [28] and  some many-valued predicate  logics by Mostowski  [23], takes 
non-classical  first-order  structures as domains  in which the  relational symbols 
are not interpreted as subsets (or sets of tuples)  of the universe, but as mappings 
from the  universe  (or Cartesian products of the  universe)  into  some algebra  of 
truth-values.  These  algebras  are  those  naturally connected  to  the  underlying 
propositional calculus  and  are  usually  endowed  with  an  order  relation.   Then 
the  existential (resp.  universal)  quantification of a formula  can be interpreted 
as the  supremum (resp.  infimum)  of the  values of its instances  with  respect  to 
that order relation. 

Already  in her monograph  [27] Rasiowa  generalized  this  treatment of first- 
order  logics to  the  wider  class of implicative  logics.   Such  approach has  been 
particularly fruitful  in the  field of fuzzy logics (see e.g. [12, 5]) in the  study 
of first-order  systems  with  a Hilbert-style axiomatization and  a corresponding 
sound  and  complete  semantics  of first-order  fuzzy  models  (where,  naturally, 
predicates are interpreted as fuzzy sets in the  sense of Zadeh  [30]), giving rise 
to several  works on model theory  of fuzzy logics (see e.g. [25, 24, 17, 4, 8, 9]). 
Finally,  the  recent paper  [7] takes  the  mentioned approach to first-order  logics 
to a much  broader  setting  by allowing any  algebraizable logic (in the  sense of 
Blok and Pigozzi [2]) in the place of the underlying  propositional logic, providing 
axiomatization and semantics  and corresponding  completeness  theorems  for the 
resulting  first-order  logics by a suitable  modification  and  generalization of the 
Henkin-style  proof for classical logic. 

The evolution we have briefly described calls for a systematic development of 
a non-classical model theory.  After the few initial steps done in the field of fuzzy 

logics, one can consider the ambitious  endeavour  of studying  non-classical  first- 
order  models in an as wide as possible setting.   Among the  obvious first items 
of its agenda  there  should be, at  least,  the  essential  question  of understanding 
a suitable  notion  of elementary equivalence  that would  allow to  classify non-
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classical  models  according  to  their  first-order  theories, and  the  possibility of 
finding some kind of Lowenheim–Skolem theorems that would show the existence 
of elementarily equivalent models of different cardinals.   The  main  goal of this 
paper is the latter of these two items, which can be seen as well as a contribution 
to the former. 

We choose to work in the framework of non-classical first-order  algebraizable 
logics of [7] because it provides a very wide setting  for first-order  calculi with a 
sound and  complete  semantics  of non-classical  models that generalize the  clas- 
sical ones in a natural way.  We will inspect  the classical proofs of Lowenheim– 
Skolem theorems  and  realize  that, not  surprisingly, they  rely on very  specific 
properties  of classical logic (such as compactness and existence  of witnesses for 
existential quantifiers) that in general  are lost in non-classical  logics.  We will 
need to go around  such difficulties by constructing different direct proofs (partly 
taking  inspiration in the pioneering work of G. Gerla in [11] for first-order  fuzzy 
models)  and,  alternatively, by  means  of translation into  the  classical  many- 

sorted  setting.   This  twofold strategy, as it  will be argued,  will yield different 
(dis)advantages. Moreover,  the  construction of elementarily equivalent models 
of bigger and  smaller  cardinalities will need a previous  development of several 
usual notions  of classical model theory,  now in the non-classical  framework:  el- 
ementary equivalence  itself, elementary embeddings,  substructures, and several 
notions of homomorphism between non-classical structures that will be carefully 
defined and  mutually separated.  We take  this  preliminary study  as a valuable 
by-product of the main results  of this paper. 

The paper  is organized as follows: after this introduction, Section 2 presents 
the  necessary  preliminaries for the  proposed  framework  for non-classical  first- 
order logics; then  Section 3 contains  a step-by-step study  of suitable  notions  of 
homomorphisms for non-classical  structures from three  complementary points 
of view: structure-preserving morphisms,  categorical  morphisms  and the model- 
theoretic approach as formula-preserving morphisms.   Section  4 introduces  the 
necessary  notions  of substructure and elementary substructure and also a non- 
classical version of the Tarksi–Vaught test.  Based on all these auxiliary  notions, 
the  central  part  of the  paper  is Section  6,  which  briefly  recalls  the  classical 
Lowenheim–Skolem  theorems  and  their  usual  proofs,  discusses  the  difficulties 
one meets  when trying  to extend  them  to non-classical  logics, and offers direct 
new general proofs.  Finally, Section 7 explores the alternative route of rendering 
non-classical structures as classical two-sorted structures, obtaining  other forms 
of Lowenheim–Skolem  theorems  with different pros and cons. 

 
 

2    Preliminaries 
 

The framework chosen for the paper is that of non-classical first-order  algebraiz- 
able logics proposed in [7]. The underlying  propositional logics are algebraizable 
logics in the sense of Blok and Pigozzi in [2], which provide a suitable  paradigm, 
arguably  the  best  in abstract algebraic  logic, for a class of logics with a strong 
link with an algebraic  semantics,  staying  as close as possible to the  connection 
between  classical propositional calculus and Boolean algebras. 

We follow the same presentation as in [7], which highlights  the role of impli- 
cation.   Given a set →(p, q) of formulas  in two variables  p and  q, a set E (p) of 
equations  in one variable p, formulas ϕ and ψ, and two sets T and S of formulas:
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ϕ → ψ denotes  the set →(ϕ, ψ), 
 

ϕ ↔ ψ denotes  the set (ϕ → ψ) ∪ (ψ → ϕ), 
 

T ` S means that T ` ϕ for each ϕ ∈ S, 
 

T a` S means that T ` S and S ` T , 

↔[E (ϕ)]  denotes  the set 
S
{α(ϕ) ↔ β(ϕ)  | α ≈ β ∈ E }. 

 
Let  L be  any  propositional language  containing   at  least  a  truth constant  1. 
Let →(p, q) be a finite set of formulas  in two variables  and  E (p) a finite set of 
equations  in one variable  in the  language  L.   We assume  that a propositional 
logic L in L is given by the  provability relation  `L  on Fm L given by a finitary 
Hilbert-style system  such that: 

 

`L  ϕ → ϕ,             ϕ, ϕ → ψ `L  ψ,        ϕ → ψ, ψ → χ ̀ L  ϕ → χ, 
 

ϕ a`L  1 → ϕ,         ϕ a`L  ↔[E (ϕ)], 
 

ϕ ↔ ψ `L  ◦(χ1 , . . . χi , ϕ, . . . , χn ) ↔ ◦(χ1 , . . . χi , ψ, . . . , χn ), 
 

for every n-ary  ◦ ∈ L and i < n. 
 

For any algebra A for the language L, we define the following set and binary 
relation: 

F A = {a | A |= E A (a)},                 a ≤A b   if and only if   (a     A b) ⊆ F A .
 

A is an L-algebra,  in symbols:  A ∈ L, if for each Γ ∪ {ϕ} ⊆ Fm L and a, b ∈ A 
hold: 

 

1.  Γ `L  ϕ implies that for each A-evaluation e we have e(ϕ)  ∈ FA whenever 
e[Γ] ⊆ F A , 

 

2.  a ≤A b and b ≤A a implies a = b. 
 

Observe  that in each L-algebra  A,  ≤A  is actually  an order.   On the  other 
Ahand,  F A = {a | 1 ≤A a}, which is an upper  set with respect  to ≤A and it is

usually  called the filter of A. 
This  propositional framework  is wide enough  to contain  most  of the  usual 

propositional systems  considered  in the literature.  Indeed,  it  encompasses  in 
particular classical logic, intuitionistic logic, usual substructural logics, relevant 
logics with unit,  and fuzzy logics. 

Typical  examples of fuzzy logics are Godel–Dummett and L  ukasiewicz logics 
(see e.g. [5]). Let us briefly recall them,  so we can they be used in the paper  to 
provide some counterexamples. Both logics can be given in a language with three 
binary  connectives  (→, ∧, ∨) and one constant (0).  The constant 1 is defined as 
0 → 0.  The  semantics  in both  cases is defined over the  real unit  interval  [0, 1] 
and  the  algebraic  interpretation of the  connectives  tries  to keep them  close to 
the Boolean operations, giving rise to two different algebras:  [0, 1]G  and [0, 1]Ł . 
In  both  cases  ∧, ∨ and  0 are  interpreted respectively  as  the  minimum,   the 
maximum  and the number  0, while the interpretation of implication  differs:
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a →[0,1]G  b = 
   

1,    if a ≤ b, 
b,    otherwise.

 
a →[0,1]Ł  b = 

    
1,              if a ≤ b, 
1−a+b,    otherwise.

 

for every a, b ∈ [0, 1]. Note that the defined constant 1 is then  interpreted as 1. 
Then  the  logics are semantically obtained by the  following definition.  Given a 
formula  ϕ and of set of formulas  Γ: 

 
1.  Γ `Ł  ϕ if and  only if there  is a finite Γ0  ⊆ Γ such that for every [0, 1]Ł - 

evaluation e, if e(γ) = 1 for every γ ∈ Γ0 , then  e(ϕ)  = 1. 
 

2.  Γ `G  ϕ if and  only if for every [0, 1]G -evaluation e, if e(γ)  = 1 for every 
γ ∈ Γ, then  e(ϕ)  = 1. 

 
An  important definable  connective  in L  ukasiewicz  logic is the  strong  con- 

junction,  semantically interpreted as a &[0,1]Ł  b = max{a + b − 1, 0},  for every 
a, b ∈ [0, 1].   From  this  conjunction, one  can  define  powers  as  a1    = a  and 
an+1  = an &[0,1]Ł a for every n ≥ 1.  It  is usual  in the  fuzzy logic literature to 
extend  the language  with a unary  connective  4 always semantically defined as 
4(a) = 1 if a = 1 and 4(a) = 0 otherwise. 

A predicate  language  P  is a triple  hP, F, ari, where  P is a non-empty set 
of predicate   symbols,  F is  a  set  of function  symbols,  and  ar is  a  function 
assigning  to  each  symbol  a  natural number   called  the  arity   of the  symbol. 

Let  us further  fix a denumerable set  V   whose elements  are  called object vari- 
ables. The sets of P -terms,  atomic  P -formulas,  and hL, P i-formulas are defined 
as  in  classical  logic.   A  P -structure M  is  a  pair  hA, Mi where  A  ∈ L  and 
M = hM, hPM iP ∈P , hFM iF ∈F i, where M is a non-empty domain; PM is a func- 
tion  M n → A, for each n-ary  predicate  symbol P  ∈ P;  and  FM is a function 
M n → M  for each n-ary  function  symbol F  ∈ F. An M-evaluation of the  ob- 
ject variables  is a mapping  v : V  → M ; by v[x→a] we denote  the M-evaluation 
where v[x→a](x) = a and v[x→a](y)  = v(y) for each object variable  y = x.  We 
define the values of the terms  and the truth  values of the formulas  as: 

kxkv          =   v(x), 
M                             M                  M 

kF (t1 , . . . , tn )kv          =   FM (kt1 kv   , . . . , ktn kv   ),          for F ∈ F, 
M                             M                  M 

kP (t1 , . . . , tn )kv          =   PM (kt1 kv   , . . . , ktn kv   ),          for P ∈ P, 
M               A          M                    Mk◦(ϕ1 , . . . , ϕn )kv          =   ◦ 
M 

(kϕ1 kv   , . . . , kϕn kv   ),         for ◦ ∈ L, 
Mk(∀x)ϕkv          =   inf ≤A {kϕkv[x→a]  | a ∈ M }, 

M                                  M 
k(∃x)ϕkv          =   sup≤A 

{kϕkv[x→a]  | a ∈ M }. 
 

If the infimum or supremum  does not exist, the corresponding  value is undefined. 
We say that M  is safe if and only if kϕkv     is defined for each P -formula ϕ and 
each M-evaluation v. We say that M is a model of ϕ if it is safe and kϕkv     ∈ F A 

for each  evaluation v.  A P -formula  ϕ  is a semantical consequence  of a set  of 
formulas  T , in symbols T |=L ϕ, if each model of T is also a model of ϕ. 

Observe  that in this  general presentation we do not  require  the  presence of 
an equality  symbol in the language.  One can add it and force its interpretation 
to be crisp equality  in the  models (see [5]).  In the  paper,  we will not  assume 
(and  not exclude either)  the presence of equality,  unless stated otherwise.
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Definition 1 ([7]). Let L be a logic in L presented  by an axiomatic  system AS . 
The minimal  predicate  logic over L (in a predicate  language P ), denoted as L∀, 
is given by the following axiomatic  system: 

(P)  the axioms and rules resulting  from those of AS  by substituting 
propositional variables  by P -formulas, 

(∀1)     `L∀  (∀x)ϕ(x, ~z) → ϕ(t, ~z), where t is substitutable  for x in ϕ, 
(∃1)    `L∀  ϕ(t, ~z) → (∃x)ϕ(x, ~z), where t is substitutable  for x in ϕ, 
(∀2)     χ → ϕ `L∀  χ → (∀x)ϕ, where x is not free in χ, 
(∃2)    ϕ → χ ̀ L∀  (∃x)ϕ → χ, where x is not free in χ. 

 

Theorem 2  ([7]).  Let  L be a logic and  T ∪ {ϕ} a P -theory.   Then  we have: 
T `L∀  ϕ if and only if  T |=L ϕ. 

 
Therefore,  these logics have indeed a completeness  theorem  with respect  to 

the  class of non-classical  models  defined  over their  algebraic  counterpart and 
it  makes  sense  to  develop  a  general  model  theory  to  study  them.    In  some 
non-classical  logics, however,  the  intended semantics  is restricted to a specific 
subclass  of these  models;  for instance,  in fuzzy logics, typically  one considers 
only models based on linearly  ordered  algebras.  To this end, the minimal  pred- 
icate logic from the previous  definition  is extended  to a stronger  one by adding 
the following axiom: 

(∀3)     (∀x)(χ∨ϕ)→χ∨(∀x)ϕ,    where x is not free in χ. 
 

This  strengthened axiomatization corresponds  indeed  to  the  semantics  of 
models  based  on chains.   More  generally,  one can  give an  axiomatization  for 
the  logic of the  models based  on relatively  finitely subdirectly irreducible  alge- 
bras,  which in the case of fuzzy logics are exactly  the linearly  ordered  algebras 
(see [7] for details).   If we consider,  for instance,  the  two  particular  examples 
of propositional fuzzy logics mentioned above,  we will denote  by  Ł∀  and  G∀ 
their  first-order  versions complete  with respect  to models over linearly  ordered 
algebras. 

Finally,  another  variant of the semantics  is that based on witnessed  models 
(see  [13, 14, 15, 16, 19]).   A P -model  M  is witnessed  if for each  P -formula 

M 
ϕ(x, ~y) and  for each ~a ∈ M  there  are bs , bi  ∈ M  such that: k(∀x)ϕ(x, ~a)k    =
kϕ(bi , ~a)k and  k(∃x)ϕ(x, ~a)kM = kϕ(bs , ~a)  M .   Not  all  logics are  complete
with  respect  to  witnessed  models.   In fact,  it  has  been shown (in  the  context 
of fuzzy logics, see e.g. [5]) that a logic is complete  with  respect  to witnessed 
models if and only if it has the following theorems: 

 
(∃x)((∃y)ψ(y, ~z) → ψ(x, ~z)) and (∃x)(ψ(x, ~z) → (∀y)ψ(y, ~z)). 

 
 

3    Homomorphisms 
 

In this section we start by discussing several notions  of homomorphism for non- 
classical structures aiming to find a suitable  definition  upon which we can base 
a non-classical  model theory.   Different definitions  have been introduced so far 
in the  literature for homomorphisms of structures. In particular, the  notion  of 
elementary morphism  of fuzzy models in [10], elementary embeddings  in [17], el- 
ementary fuzzy submodel and isomorphism  of structures of first-order  logic with
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graded  syntax  in [25], complete  morphism  in languages  with a similarity  predi- 
cate  in [1], the  notion  of σ-embedding  in [4]. Finally,  taking  all these  previous 

works as starting point,  the  notions  of weak homomorphism, homomorphism 
and  strong  homomorphism are  introduced in [8], where  the  challenge  was to 
encompass  the  most  commonly  used  definitions  in the  literature and  extend, 
still in a fuzzy logic framework,  the corresponding  notions  of classical predicate 
logics in satisfactory way. 

The  present paper  can be seen as a continuation of [8] by generalizing  it to 
homomorphisms of models  of a wide class of non-classical  logics, beyond  the 
context  of fuzzy logics.  We  will propose  three  notions  of homomorphism  for 
non-classical  logics: one in a structure-preserving fashion, another one of a cat- 
egorical kind and, finally, another  one of model-theoretic nature. As we will see, 
these three  notions  coincide in the case of classical logic, when homomorphisms 
are strict.  In the next three  subsections  we formulate  and discuss such notions. 

 
3.1     Structure-Preserving  Homomorphisms 

 

Firstly  we introduce  the notion  of homomorphism as a mapping  that preserves 
the  structure, that is, all operations  and  relations.   Originating in the  notion 
of homomorphism in Abstract Algebra,  in classical  logic homomorphisms are 
introduced as  structure-preserving mappings  (see  [3, 18]).   Let  us  recall  this 
notion  as it is defined in classical model theory. 

 

Definition 3.  (Cf.  [18, Section  1.2]) Let  P  be a  first-order language  and  let 
M  and  N  be P -structures.   A  homomorphism from  M  to  N  is  a  mapping 
g : M → N  such that: 

 

1.  For  every n-ary  functional  symbol F ∈ P , and elements  d1 , . . . , dn ∈ M , 
 

g(FM (d1 , . . . , dn )) = FN (g(d1 ), . . . , g(dn )). 
 

2.  For  every n-ary  predicate  symbol P ∈ P , and elements  d1 , . . . , dn ∈ M , 
 

PM (d1 , . . . , dn ) = 1 ⇒  PN (g(d1 ), . . . , g(dn )) = 1. 
 

Observation 4.  Note that in Definition  3 we write PM (d1 , . . . , dn ) = 1 instead 
of the usual  notation for classical  logic M  |= PM (d1 , . . . , dn ).  Our  purpose  is 
to highlight that  classical homomorphisms  are a special case of the non-classical 

definition that will be formulated  later with that notation. Although this notation 
is not the usual one,  we can  find it in the work of Mal’cev [20] and  in Hájek’s 

book [12, Section  1.3] when they introduce  classical  first-order logic. 
 

Now we introduce  the notions of mapping  and homomorphism  between non- 
classical structures. 

 

Definition 5 (Mapping). Let hA, Mi and  hB, Ni be P -structures. Let f be a 
mapping  from  A to B,  and  g be a mapping  from  M  to N .  The  pair  hf, gi  is 
said to be a mapping  from hA, Mi to hB, Ni. 

 
Definition 6 (Homomorphism). Let hf, gi be a mapping from hA, Mi to hB, Ni. 
We say that  hf, gi is a homomorphism if and only if 

 
1.  f is a homomorphism  of  L-algebras.
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2.  g is a homomorphism  between the algebraic reducts  of the first-order struc- 
tures,  that  is, for every n-ary  function  symbol F ∈ P and d1 , . . . , dn ∈ M , 

 
g(FM (d1 , . . . , dn )) = FN (g(d1 ), . . . , g(dn )). 

 
3.  For  every n-ary  predicate  symbol P ∈ P , and every d1 , . . . , dn ∈ M , 

 
PM (d1 , . . . , dn ) ∈ F A  ⇒  PN (g(d1 ), . . . , g(dn )) ∈ F B . 

 
We  say  that  a  homomorphism   hf, gi  is  strict   if instead  of 3  it  satisfies  the 
stronger  condition: 

 

3s.  For  every n-ary  predicate  symbol P ∈ P  and d1 , . . . , dn ∈ M , 
 

PM (d1 , . . . , dn ) ∈ F A  ⇔  PN (g(d1 ), . . . , g(dn )) ∈ F B . 
 

We say that  the pair  hf, gi is an  embedding  if it is a strict  homomorphism  and 
both functions  f and  g are  injective.   We  say  that  an  embedding  hf, gi  is an 
isomorphism  if both functions  f and  g are  onto.  If f preserves  all the existing 
infima and suprema, then hf, gi is called a σ-homomorphism. 

 
Note  that this  definition  extends  the  classical  notion  of homomorphism in 

Definition 3, where the Boolean notion of truth (the element 1) has been replaced 
by the corresponding  filters F A and F B . 

 
Example 7.  Recall  the  three-valued  algebra  L  3    for  the  corresponding three- 
valued L  ukasiewicz logic, in the language {→, ∧, ∨, 0}, whose universe is {0, 1 , 1} 
and  the operations are  interpreted as ψa →L   3  b = min{1, 1 − a + b},  a ∧L  3  b = 

L  3min {a, b},  a ∨L  3  b = max{a, b},  and  0 = 0.  The  truth-constant 1 is defined 
L  3as 0 → 0 and,  hence,  its  interpretation is 1 = 1.  Let P  be a language  with

a binary  predicate  symbol P  and  a binary  functional  symbol F .  Consider  the 
P -structures hA, Mi, and  hA, Ni, where A = L  3 , M  = N  = {0, 1, 2},  and  the 
interpretations of P  and F  in both structures are  defined in the following way: 

PM is the relation  given by the matrix: 
         

2       1   
  

2       0    2     
1    1 

2       0 
 

PN is the relation  given by the matrix: 
  

0 1 0 
 

 1 0 0  
 0 0 0  

Thus,  PN  is the  crisp  relation  {h0, 1i, h1, 0i}.   The  operators FM  and  FN  are 
equally defined, FM = FN = ⊕, by the following table: 

 
⊕ 0    1    2 
0 
1 
2 

0    1    2 
1    2    0 
2    0    1 
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Now consider  the mapping hf, gi from hA, Mi to hA, Ni, where f = IdL   3  and 
g : {0, 1, 2} → {0, 1, 2} is defined by g(x) = x⊕x.  The identity on L  3  is obviously 
a homomorphism, and  it is easy to check that  g is a homomorphism  from  the 
algebraic  reduct  of the first structure to the algebraic  reduct  of the second one. 
Now we show that  hf, gi is a strict  homomorphism. Since F L  3  = {1}, we must 
prove that,  for every a, b ∈ {0, 1, 2}, 

 
PM (a, b) = 1     ⇔     PN (g(a), g(b)) = 1. 

 
Indeed,  PM (a, b) = 1 ⇔  a  = 0 and b = 2 or a  = 2 and b = 0,  and  this  is 
equivalent to say that  PN (g(a), g(b)) = 1. Thus hf, gi is a strict  homomorphism 
from  hA, Mi to  hA, Ni.  Moreover,  since  f and  g are  bijective,  we have that 
hf, gi is an isomorphism. 

 

The  next  example  shows that there  are homomorphisms hf, gi where both 
f and g bijective  and yet hf, gi is not an isomorphism. 

 

Example 8.  Let P  be as in Example  7.  Consider  now a P -interpretation N0 

with the same domain  than  M,  the same interpretation of F , but such that  PN0 

is defined by the matrix:  0 1 1  
 1 0 0  

 0 0 0  
Thus,  PN0     is  the  crisp  relation  {h0, 1i, h1, 0i, h0, 2i}.   Now,  take  the  mapping 
hf, gi  from  hA, Mi to hA, N0 i defined as  in  the previous  example.   This  map- 
ping  satisfies  conditions   1  and  2  in  Definition   6.    Moreover,   we have  that 
PM (a, b) = 1 is equivalent  to  a  = 0 and b = 2 or a  = 2 and b = 0 and  this 
implies  that  PN (g(a), g(b))  = 1.   However,  the  converse  is  not  true  since  we 
have PN0 (g(0), g(1)) = PN0 (0, 2) = 1, but PM (0, 1) = 1 .  Thus  hf, gi is a homo- 
morphism  from hA, Mi to hA, N0 i which is not strict. 

 
3.2     A Categorical Definition of Homomorphism 

 

Di Nola  and  Gerla  introduced in  [10] the  notions  of valuation  structure and 
fuzzy model of a given first-order  language in a categorial  setting  (see also [11]). 
They  worked  with  models  where  each  quantifier  is definable  by  a formula  of 
the classical first-order  language  with equality  and a unique monadic  predicate 
P  [11, Definition  8.1].  In [10] they  presented also a notion  of homomorphism 
for this  kind  of models from a categorical  perspective.   Let  us recast  it in our 
notation: given two structures hA, Mi and hB, Ni a homomorphism in the sense 
of [10] is a pair  hf, gi,  where  f is a homomorphism from A  to  B, and  g is a 
homomorphism between  the algebraic  reducts  of M  and N  in such a way that, 
for every k-ary relational symbol P  the following diagram  commutes: 

 
G 

M k                         N k 
 

P M                            P N 

f 
A                     B 

 
where G : M k  −→ N k  is the mapping  hd1 , . . . , dk i 7→ hg(d1 ), . . . , g(dn )i.
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0    1 1  

2 
 1 0 1  

 2 1 0  
 

2

0    1

1

2

2

 
 
 
 
 

We encompass this categorical  notion of homomorphism introduced by Gerla 
and  Di Nola in the  present paper  by means  of the  following notion  of strong 

homomorphism . 
 

Definition 9  (Strong  Homomorphism).  Let hf, gi be a mapping  from hA, Mi 
to hB, Ni. We say that  hf, gi is a strong  homomorphism if and only if 

 
1)  f is a homomorphism  of  L-algebras. 

 
2)  g is a homomorphism  of the algebraic reducts  of the first-order structures. 

 

3)  For  every n-ary  predicate  symbol P ∈ P  and d1 , . . . , dn ∈ M , 
 

f (PM (d1 , . . . , dn )) = PN (g(d1 ), . . . , g(dn )). 
 

Observe  that every strong  homomorphism is a homomorphism in the  sense 
of Definition 6. Next we give an example  of strong  homomorphism: 

 
Example 10.  Let P  be the predicate  language considered  in Example 7.  Con- 
sider  the  P -structures hA, Mi, and  hA, Ni, where again  M  = N  = {0, 1, 2}, 
and A is the linearly  ordered  commutative  residuated lattice  defined on {0, 1 , 1} 
by the uninorm  given by the table: 

 
∗ 0     1       1 2 
0 
1 
2 
1 

0     0     0 
0     1 

2       1 
0     1     1 

 

The interpretation of F in both structures is the sum ⊕ defined in Example 7. 
PM is now defined by the matrix: 

         
2      1   

  
2       0    1   
1    1    0 

 
and PN is now defined by the matrix: 

 
 
 

1 

 
Now consider  the mapping hf, gi, with f = IdA , and g is the function  defined by 
g(x) = x ⊕ x.   We have that  F A = { 1 , 1} (because  in this uninorm-based logic 
the  constant 1 is interpreted as  1 ).   This  mapping  is a  strict  homomorphism 
because 

 

1                                                                 1 
PM (a, b) ∈ { 

2 
, 1}     ⇔     a = b    ⇔     PN (a, b) ∈ { 

2 
, 1}. 

 

An easy computation shows that  f (PM (a, b)) = PM (a, b) = PN (g(a), g(b)),  for 
every a, b ∈ {0, 1, 2}.  Consequently,  hf, gi is a strong  homomorphism.  

 
Next example  demonstrates that not all strict  homomorphisms are strong.
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3

3

 
 
 
 
 

Example 11.  We take two structures hA, Mi, and  hA, Ni as in Example  10 
with the only difference  that  the definition  of PN is given by the matrix: 

  
0 1 1 

 

 1 0 1  
 1 1 0  

We take  the same  mapping  hf, gi.   On  the one hand,  this  mapping  is a strict 
homomorphism  because 

 
1                                                                            1 

PM (a, b) ∈ { 
2 

, 1}     ⇔     a = b    ⇔     PN (a, b) ∈ {1} ⊆ { 
2 

, 1}. 
 

On the other hand we have that,  for instance, PM (0, 1) = 1  and PN (g(0), g(1)) = 
PN (0, 2) = 1.  Thus,  we have f (PM (0, 1)) = PN (g(0), g(1)).  Therefore, hf, gi is 
not a strong  homomorphism.  

 
We also have  that there  are strong  homomorphisms that  are not  strict,  as 

the following example  shows. 
 

Example 12.  Let P  be a predicate  language with only one predicate  symbol P 
of arity  1.  We take  two P -structures hB, Mi, and  hB, Ni, where M  = N  = 
{a, b},  and  where B is the standard Gödel  algebra  [0, 1]G .  Thus  now the filter 
is  F B  = {1}.    The  interpretations for  P  in  both  structures are  as  follows: 
PM (a)  = 1, PM (b) = 2 ,  and  PN (a)  = PN (b) = 1.   We  take  now a  mapping 
hf, gi, where g is IdM , and f is the algebraic  homomorphism  f : [0, 1] −→ [0, 1] 
defined as follows:    

1,     if x ∈ ( 1 , 1],f (x) = 2 
x,     otherwise.

 

It is easy to check that hf, gi satisfies,  for every d ∈ M , that f (PM (d)) = PN (d) 
and hence it is a strong  homomorphism. Nevertheless,  we have that  PN (b) = 1 
but PM (b) = 2  = 1. 

 
Remark  that in the classical case, the notions of homomorphism and strong 

homomorphism do not  coincide (if the  homomorphism is not  strict).  Indeed, 
consider two first-order  structures M  and N with only two elements  a and b in 
their domain and take f and g be the identity mappings.  If the language has only 
one monadic  predicate  symbol P  interpreted as PM (a)  = 1 = PN (a)  = PN (b) 
and PM (b) = 0, then  hf, gi is a homomorphism, though  not strong. 

Now we introduce  an intermediate categorical  notion of homomorphism, that 
we will call filter-strong  homomorphism. 

 
Definition 13  (Filter-strong  Homomorphism). Let  hf, gi  be a mapping  from 
hA, Mi to hB, Ni. We say that  hf, gi is a  filter-strong  homomorphism if and 
only if it satisfies  Conditions 1) and 2) in Definition  9 and the following condi- 
tion instead  of 3): 

 

3’)  For  every n-ary  predicate  symbol P ∈ P , and every d1 , . . . , dn ∈ M , 
 

PM (d1 , . . . , dn ) ∈ F A  ⇒  f (PM (d1 , . . . , dn )) = PN (g(d1 ), . . . , g(dn )).
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0    1 1  

2 
 1 0 1  

 2 1 1  
 

2 

2

2

A BA B

 
 
 
 
 

Notice  that every  filter-strong  homomorphism is a  homomorphism in  the 
sense of Definition 6. Remark  that in the classical case the notion  of homomor- 
phism and filter-strong  homomorphism coincide.  Example 11 shows a homomor- 
phism which is not a filter-strong  homomorphism since PM (0, 1) = 1  ∈ F A but 
f (PM (0, 1)) = PN (g(0), g(1)).  Observe also that every strong homomorphism is 
a filter-strong  homomorphism. The next example shows that the converse does 
not hold: 

 

Example 14.  We take two structures hA, Mi, and  hA, Ni as in Example  10 
with the only difference  that  the definition  of PN is given by the matrix: 

 
 
 

1 

 
We take the same mapping hf, gi.  Recall that  F A = { 1 , 1}. 

 

•  hf, gi is a homomorphism  since for every a, b ∈ {0, 1, 2} we have: 
 

1                                                                                     1 
PM (a, b) ∈ { 

2 
, 1} ⇒ a = b ⇒ g(a) = g(b) ⇒ PN (g(a), g(b)) ∈ { 

2 
, 1} 

 
•  An easy computation shows that,  for every a, b ∈ {0, 1, 2},  we have that 

PM (a, b) = PN (g(a), g(b)) whenever PM (a, b) ∈ { 1 , 1}. 
 

•  However, f (PM (1, 1)) = PM (1, 1) = 0, but PN (g(1), g(1)) = PN (2, 2) = 1. 

Thus,  hf, gi is a filter-strong  homomorphism  but not a strong  homomorphism.  
 

3.3     A Model-theoretic Definition of Homomorphism 
 

There are several works in the literature of fuzzy logics in which the notion of ho- 
momorphism  and other related  notions have been defined from a model-theoretic 
perspective  as mappings  preserving certain  classes of first-order  formulas,  in the 
sense that if a formula  (of the corresponding  class) is true  in the first structure 
then  so it is its image in the second one.  In [10] the  authors define elementary 
homomorphism  as a homomorphism (a strong homomorphism in our sense) that 
preserves  all the formulas.  In [17] an elementary  embedding is defined as a pair 
hf, gi where f is an embedding  of L-algebras  and g is an injection  such that all 
formulas  are  preserved.   In the  papers  [8, 9], weak homomorphism  and  homo- 
morphism  are required  to preserve  quantifier-free  formulas.   Similarly,  we now 
introduce  a model-theoretic characterization  of the  notion  of homomorphism 
given in Section 3.1. 

 
Definition 15.  Let hA, Mi and hB, Ni be P -structures and let hf, gi be a map- 
ping from hA, Mi to hB, Ni. Let Φ be a set of P -formulas.  We say that the map- 
ping hf, gi preserves the formulas in Φ if and only if, for every ϕ(x1 , . . . , xn ) ∈ Φ, 
and d1 , . . . , dn ∈ M ,

 
kϕ(d1 , . . . , dn )kM ∈ F 

 
⇒  kϕ(g(d1 ), . . . , g(dn ))kN ∈ F  .
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Theorem 16.  Let hA, Mi and hB, Ni be P -structures and let hf, gi be a map- 
ping from hA, Mi to hB, Ni. The pair  hf, gi is a homomorphism  from hA, Mi 
to hB, Ni if and only if 

 

1.  f is a homomorphism  of  L-algebras. 
 

2.  g is a homomorphism  between the algebraic reducts  of the first-order struc- 
tures. 

 

3.  hf, gi preserves  all the atomic  formulas. 
 

Proof.  If (f , g) preserves all the atomic formulas,  then  for every n-ary  predicate 
symbol P ∈ P and d1 , . . . , dn ∈ M , if we consider the formula P (x1 , . . . , xn ) we 
have that

 

kP (d1 , . . . , dn )kM ∈ F 
 

⇒     kP (g(d1 ), . . . , g(dn ))kN ∈ F  ,
 

and thus  we have condition  3 of Definition 6: 
 

PM (d1 , . . . , dn ) ∈ F A     ⇒     PN (g(d1 ), . . . , g(dn )) ∈ F B . 
 

Now suppose  that hf, gi is a homomorphism.  To show that under  this  hy- 
pothesis  condition  3)  is also  satisfied,  we first  prove  that, for  every  P -term 
t(x1 , . . . , xn ), and every d1 , . . . , dn , 

 

g(kt(d1 , . . . , dn )kM ) = kt(g(d1 ), . . . , g(dn ))kN .                       (1) 

We proceed  by induction over the  complexity  of the  term.   If t is a variable  x, 
then  g(kx(d)kM ) = g(d) = kx(g(d))kN .  If t = F (t1 , . . . , tk ), and  the  variables 
of the terms  ti are in {x1 , . . . , xn } we have: 

g(kF (t1 , . . . , tk )(d1 , . . . , dn )kM )    = 

g(FM (kt1 (d1 , . . . , dn )kM , . . . , ktk (d1 , . . . , dn )kM ))    = FN 

(g(kt1 (d1 , . . . , dn )kM ), . . . , g(ktk (d1 , . . . , dn )kM ))    = FN (kt1 

(g(d1 ), . . . , g(dn ))kN , . . . , ktk (g(d1 ), . . . , g(dn ))kN )    = 

kF (t1 , . . . , tk )(g(d1 ), . . . , g(dn ))kN . 

The  second  equality  is by  Condition 2),  and  the  third  one  by  applying  the 
induction hypothesis. 

 

In order  to prove 3), let ϕ(x1 , . . . , xn ) be an atomic  formula.  Suppose that 
ϕ = P (t1 , . . . , tk )(x1 , . . . , xn ).  We have: 

kP (t1 , . . . , tk )(d1 , . . . , dn )kM ∈ F A       ⇔ 

PM (kt1 (d1 , . . . , dn )kM , . . . , ktk (d1 , . . . , dn )kM ) ∈ F A     ⇒ PN (g(kt1 

(d1 , . . . , dn )kM ), . . . , g(ktk (d1 , . . . , dn )kM )) ∈ F B     ⇔ PN (kt1 (g(d1 ), . 

. . , g(dn ))kN , . . . , ktk (g(d1 ), . . . , g(dn ))kN ) ∈ F B     ⇔ 

kP (t1 , . . . , tk )(g(d1 ), . . . , g(dn ))kN ∈ F B . 

The implication  between second and third  lines is by condition  3 in Definition 6; 
the biconditional between  third  and forth  lines is justified  by applying  (1).
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Table  1: Relationship among three  different notions  of homomorphism 
 

Strong  Homomorphism 
⇓               

6⇑ 
Filter-Strong  Homomorphism 

⇓               
6⇑ 

Homomorphism 
⇑               

6⇓ 
Quantifier-free Preserving  Homomorphism 

 
 
 

Let us compare  the characterization in Theorem  16 with the corresponding 
result  in classical logic. 

 
Theorem 17.  (Cf. [18, Theorem  1.3.1]).  Let P  be a first-order language,  M 
and N be P -structures, and g a mapping of M into N . The following conditions 
are  equivalent: 

 
1.  g is a homomorphism  of  M  into N. 

 

2.  For  every atomic  P -formula  ϕ(x1 , . . . , xn ) and d1 , . . . , dn ∈ M, 
 

kϕ(d1 , . . . , dn )kM = 1 ⇒  kϕ(g(d1 ), . . . , g(dn ))kN = 1. 
 

Moreover,  if the  homomorphism is strict,   by  induction on the  complexity 
of the  quantifier-free  formulas,  using Theorem  17 and  the  fact that in classical 
logic any  quantifier-free  formula  is logically equivalent  to one in normal  form, 
we can prove that strict  homomorphisms preserve  all quantifier-free  formulas. 

On  the  other  hand,  by  Theorem  16,  if hf, gi  preserves  all  quantifier-free 
formulas and f and g are homomorphisms, then  hf, gi is a homomorphism. But 
the converse is not true:  take any non-strict classical homomorphism g such that 
for an n-ary  predicate  symbol P  and d1 , . . . , dn ∈ M , PN (g(d1 ), . . . , g(dn )) = 1 
but  PM (d1 , . . . , dn ) = 0, then  the formula  ¬P (x1 , . . . , xn ) is not preserved. 

In Table 1 we summarize  the relationships between the notions of homomor- 
phism considered  in this  section.  We conclude by adding  yet a stronger  notion 
of homomorphism that  will be essential  for the rest of the paper. 

 
Definition 18 (Elementary Homomorphism). Let hf, gi be a homorphism  from 
hA, Mi to hB, Ni. We say that  hf, gi is an  elementary homomorphism if and 
only if, for every formula  ϕ(x1 , . . . , xn ), and d1 , . . . , dn ∈ M , 

 
A                                            B 

f (kϕ(d1 , . . . , dn )kM ) = kϕ(g(d1 ), . . . , g(dn ))kN . 
 

Observe  that this  last  notion  combines,  in  a  way,  the  three  perspectives 
(structure-preserving, categorical and formula-preserving) considered in this sec- 
tion.  More precisely, an elementary homomorphism is a strong  homomorphism 
in which the defining condition  3 is required,  not only for atomic  formulas,  but 
for all formulas,  and  hence  it  also preserves  all formulas  in the  sense of Defi- 
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nition  15.  This  observation naturally brings  us to  the  notion  of elementarily 
equivalent structures.
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kM

denote  by X
A

Y  = X hA,Mi 

 
 
 
 
 

Definition 19.   We  say  that  two  P -structures  hA, Mi and  hB, Ni are  ele- 
mentarily equivalent  if  for  every  P -sentence   σ,  kσ  A   ∈ F A  if  and  only  if 
kσkN  ∈ F B . 

Clearly,  if there  is a strict  elementary homomorphism between  two  struc- 
tures,  then  they  are elementarily equivalent. 

 
 

4    Substructures 
 

As in classical logic, we want to define a substructure of a bigger one in such a 
way that quantifier-free  formulas take  the same truth-value in both  structures. 

Definition 20  (Substructure).  Let  hA, Mi and  hB, Ni be P -structures.   We 
will say that  hA, Mi is a substructure of hB, Ni if the following conditions  are 

satisfied: 

1.  M ⊆ N . 
 

2.  For  each n-ary  function  symbol F ∈ P , and elements  d1 , . . . , dn ∈ M , 
 

FM (d1 , . . . , dn ) = FN (d1 , . . . , dn ). 
 

3.  A is a subalgebra of B. 
 

4.  For  every quantifier-free formula  ϕ(x1 , . . . , xn ), and d1 , . . . , dn ∈ M , 
 

A                                B 
kϕ(d1 , . . . , dn )kM = kϕ(d1 , . . . , dn )kN . 

 
Moreover, if both structures are safe, it is said that hA, Mi is an elementary 

substructure  of hB, Ni if and  only  if conditions  1, 2 and  3 (of substructure) 
are  satisfied  and  condition  4 holds  for arbitrary formulas.    When  hA, Mi is 
an  elementary substructure  of hB, Ni we say  that hB, Ni is an  elementary 
extension  of hA, Mi. 

Observe  that hA, Mi is a substructure of hB, Ni if and only if M ⊆ N  and 
A ⊆ B and hIdA , IdM i is a quantifier-free  preserving  strong  homomorphism, in 
the sense of the previous section.  Similarly, hA, Mi is a elementary substructure 
of hB, Ni if and only if hIdA , IdM i is an elementary homomorphism; in this case, 
obviously, hA, Mi and hB, Ni are elementarily equivalent. 

One  of the  first  important results  on classical  model theory  regarding  ele- 
mentary substructures is the  Tarski–Vaught Test  [29], which give us necessary 
and  sufficient criteria  for a structure to  be an  elementary substructure of an- 
other  one.  Here we prove a non-classical  version,  using the  notion  of definable 
set of elements  of the algebra  of the structure: 

Definition 21  (Definable  set of the  algebra  with  parameters).  Let hA, Mi be 
a P -structure, K  ⊆ M , e1 , . . . , en ∈ K , and  ϕ(x, y1 , . . . , yn ) a P -formula.   We

hA,Mi 
ϕ,e1 ,...,en ,K the following subset of A: 

 
{kϕ(d, e1 , . . . , en )kM | d ∈ K }.

It is said that  a subset Y  of A is definable  with parameters in hA, Mi if there 
are  K ⊆ M , e1 , . . . , e n , and a P -formula  ϕ(x, y1 , . . . , yn ) such that 

 

ϕ,e1 ,...,en ,K .
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ϕ,e1 ,...,en ,M and X

ϕ,e ,...,e  ,M and X 

 
 
 
 
 

Proposition 22  (Non-Classical  Tarski–Vaught Test). Let hA, Mi and hB, Ni 
be safe P -structures. Then  the following are  equivalent: 

 

1)  hA, Mi is an elementary  substructure of hB, Ni. 
 

2)  hA, Mi is a substructure of hB, Ni and, for every formula ϕ(x, y1 , . . . , yn ),
and elements e1 , . . . , en ∈ M , the sets X hA,Mi

 
hB,Ni 
ϕ,e1 ,...,en ,N have

the same infimum and supremum  in A. 
 

Proof.  1) ⇒ 2):  Since hB, Mi is an elementary substructure of hA, Ni, given a 
P -formula 
ϕ(x, y1 , . . . , yn ), and elements  e1 , . . . , en ∈ M , we have: 

 
A                                           B 

k(∀x)ϕ(x, e1 , . . . , en )kM = k(∀x)ϕ(x, e1 , . . . , en )kN ,    and 
 

A                                           B 
k(∃x)ϕ(x, e1 , . . . , en )kM = k(∃x)ϕ(x, e1 , . . . , en )kN .

 

This implies that the sets X hA,Mi 
1         n 

 
hB,Ni 
ϕ,e1 ,...,en ,N 

 
have the same infimum

and the same supremum. 
 

2) ⇒ 1):  Since hA, Mi is a substructure of hB, Ni, we have that, for every 
quantifier-free  formula  ϕ(y1 , . . . , yn ), and elements  e1 , . . . , en ∈ M , 

 
A                               B 

kϕ(e1 , . . . , en )kM = kϕ(e1 , . . . , en )kN . 
 

We  must  prove  that this  identity holds  for  every  P -formula.    Suppose  that 
ϕ = (∀x)ψ(x, y1 , . . . , yn ) (the  case for existential formulas is analougous). Now, 

by using 2), we have: 
 

A                hA,Mi k(∀x)ψ(x, e1 , . . . , en )kM = inf Xψ,e1 ,...,en ,M   = 
 

= inf X hB,Ni                                                                    B 
ψ,e1 ,...,en ,N = k(∀x)ψ(x, e1 , . . . , en )kN . 

 
 
 

5    Löwenheim–Skolem theorems for classical logic 
 

Before we present our versions of Lowenheim–Skolem theorems  for a wide class 
of non-classical  logics, let us recall their  classical formulations and  their  usual 
proofs identifying  the use of classical properties  and the difficulties to generalize 
the results  to a non-classical  framework. 

 

Theorem 23  (Classical  Downward  Lowenheim–Skolem  theorem). Let P  be a 
predicate  language and  M  a P -structure. For  each subset A ⊆ M , and κ a car- 
dinal such that max{ω, |P |, |A|} ≤ κ ≤ |M |, there is an elementary  substructure 

N  of  M  such that  |N | = κ and A ⊆ N . 
 

Let us recall the  main  ideas behind  the  usual  proof of this  result.   Given a 
P -formula ϕ(~x, y) and a tuple  →−a  of elements  of M  such that M |= (∃y)ϕ(~a, y), 
we can  always  choose  a  witness  for that satisfied  existential formula,  i.e.  an 
element bϕ,~a  ∈ M  such that M |= ϕ(~a, bϕ,~a ).  For any X ⊆ M , define 

X 0  = 
[ 

{bϕ,~a  | ~a ∈ X n , ϕ a P -formula  with n + 1 free variables}. 
n∈ω
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n

M

2 
4

         
j 
 

1

 
 
 
 
 

Now, extend  A to a subset  X0   ⊆ M  of cardinality κ.  For  each n ≥ 1, define 
Xn+1 = Xn ∪ (Xn )0  and N = 

S
n∈ω Xn . Clearly,  for each n ∈ ω, |Xn | = κ and, 

hence, |N | = κ.  By the Tarski–Vaught Test,  N  is the domain  of an elementary 
substructure of M. 

This reasoning cannot  be repeated in non-classical  logics, because in general 
it is not  guaranteed that the  satisfaction of an existential formula  is witnessed 
by a particular element of the domain. 

 
Example 24 (Failure  of witnessing in non-classical logics). Consider  the Gödel- 

Dummett  first-order logic G∀, P with a unary  predicate  P  and h[0, 1]G , Mi with 
[0,1]GM  = N and  PM (n)  = n−1 for each n ∈ N.  Then:  k(∃x)P (x)kM = 1, while

for  each  n  ∈ N,  kP (n)k[0,1]G  < 1.   G∀  is  not  even  complete  with respect  to 
witnessed models (one  can easily check that  6`G∀  (∃x)(ϕ(x) → (∀y)ϕ(y))). 

 
Theorem 25 (Classical Upward  Lowenheim–Skolem theorem). Let P be a pre- 

dicate  language,  M  an infinite  P -structure, and κ ≥ max{|P |, |M |} a cardinal. 
Then  there  is an elementary  extension  N  of  M  such that  |N | = κ. 

 
To  prove  this  theorem,   one  first  extends  the  language  with  κ-many  new 

constants, that is, we define P 0    = P ∪ {ci   | i  < κ}.   Then,  we consider  the 
P 0 -theory  Σ = D(M) ∪ {¬(ci  ≈ cj ) | i < j < κ}, containing  the  diagram  of M 
and  forcing all new constants to be interpreted in pairwise  different elements. 
Observe that the hypothesis  that |M | ≤ κ allows us to assume that the diagram 
language  is included  in P 0 , i.e. {ā  | a  ∈ M } ⊆ {ci   | i < κ}.   Let  M0  be the 
expansion of M where for each a ∈ M , āM0   = a.  It is clear that M0  satisfies any 

finite subset of Σ.  Therefore,  Σ is finitely consis tent and, hence, by compactness, 
there  is a P 0 -structure N0  |= Σ.  Because of the definition  of Σ, |N 0 | ≥ κ; let N 
be its P -reduct.   Since N0  is a model of the  diagram  of M,  we know that N  is 
an elementary extension  of M.  By the Downward  Lowenheim–Skolem theorem 
we can assume that |N | = κ. 

Again,  we have  used a crucial  property of classical logic, namely  compact- 
ness, that cannot  be taken  for granted in non-classical  logics. 

 
Example 26  ([6], Failure  of compactness in  non-classical  logics). Consider 
the first-order L  ukasiewicz logic with 4 in a predicate  language with two unary 
predicates  R and P , and take the theory 

 
Γ = {¬4¬R(c), ¬4P (c)} ∪ {4(R(c) → P (c)i ) | i ≥ 1}. 

 
Given  an  arbitrary finite  Γ0   ⊆  Γ,  let  j be the  maximum  exponent  i  in  Γ0 .

[0,1]Ł 
4 

[0,1]Ł 
4Take  h[0, 1]Ł4 , Mi such  that  kR(c)kM            = 2    and  kP (c)kM           <  1  and

 [0,1]Ł4
 

 P (c)j  
M        ≥ 1 .  This  is a model of  Γ0 .  Therefore, Γ is finitely satisfiable. 

[0,1]Ł 
Assume  now that  Γ  has  a  model  h[0, 1]Ł4 , Mi.  Then  kP (c)kM           <  1 and

[0,1]Ł kR(c)kM 
[0,1]Ł 4 > 0, and thus there  is j such that    P (c)    M 

[0,1]Ł 4 < kR(c)kM    
4 ;

a contradiction!
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6  Löwenheim–Skolem theorems for non-classical 
logics 

 
In  this  section  we present  direct  proofs  of Lowenheim–Skolem  theorems   
for non-classical  predicate  logics.  An important precedent is the  work of G. 
Gerla in [11], where  he proposed  an  interesting approach to  the  study  of 
first-order fuzzy  models.   He defined  the  notions  of d-filter,  of reduced  
product and  of ultraproduct of a  family  of fuzzy  models  with  definable  
quantifiers, that  is, models such that for each quantifier  there is a formula of the 
classical first-order language  with  equality  with  a  unique  monadic  predicate 
that defines it  (see [11, Definition (8.1)]).  By using these constructions he 
showed analogues  to the Lowenheim–Skolem–Tarski Theorems  for fuzzy 
models.   Here we present new proofs or these  theorems  without making  use of 
the  ultraproduct construction and,  in the  case of the  Upward  Lowenheim–
Skolem  Theorem,  we improve  the theorem  obtaining a model over the same L-
algebra. 

 

Definition 27  (Cardinality of a structure). Given a structure hA, Mi, we say 
that  its  cardinality is the cardinality of the domain  M , denoted  by |M |. 

 

Definition 28.   Given  a  structure hA, Mi, we denote  by p(A)  the  minimum 
cardinal γ  such  that,  for  every  X  ⊆ A definable  with parameters in  hA, Mi 
such  that  its  infimum  and  supremum  exist,  there  is  a  Y   ⊆ X  of cardinality 
≤ γ,  which also has infimum  and  supremum  and  such that  inf X  = inf Y   and 
sup X = sup Y . 

 

Definition 29 (Generated substructure). Let hA, Mi be a P -structure and take 
two sets A0  ⊆ A and  M0   ⊆ M .  The  substructure of hA, Mi generated  by A0 
and  M0   is the intersection of all the substructures hB, Ni of hA, Mi such that 
A0  ⊆ B and M0  ⊆ N . 

 

Theorem 30  (Non-classical  Downward  Lowenheim–Skolem  Theorem).  Take 
a  safe  P -structure hA, Mi and  assume  that  every  subset  of A definable  with 
parameters in  hA, Mi has  infimum  and  supremum.  Then,  for  every Z  ⊆ M 
and every cardinal κ such that 

 

max{|P |, ω, |Z |, p(A)} ≤ κ ≤ |M |, 
 

there is a safe P -structure hA, Ni which is an elementary  substructure of hA, Mi 
such that  |N | ≤ κ and Z ⊆ N . 

 

Proof.  Given  Z  ⊆ M  and  κ such  that max{|P |, ω, |Z |, p(A)}  ≤ κ ≤ |M |, we 
define inductively  a chain hZn  | n ∈ ωi of subsets  of M such that, for every n ∈ 
ω, Z ⊆ Zn and  |Zn | ≤ κ.  We start by choosing Z0  = Z .  Now, given Zn ⊆ M , 
Zn+1 is defined in the  following form:  for every P -formula  ϕ(x, y1 , . . . , yk ) and
e1 , . . . , ek   ∈ Zn ,  we take  a  subset  of X hA,Mi

 with  the  same  supremum
and  infimum,  say Yϕ,e1 ,...,ek ,n , with cardinality ≤ p(A).   Now, for each element 
b ∈ Yϕ,e1 ,...,ek ,n , we choose db ∈ M  such that 

 
kϕ(db , e1 , . . . , ek )kM = b 

 
and then  take  Zn+1 to be the domain  of the substructure generated by 

 

Zn ∪ {db  | b ∈ Yϕ,e1 ,...,ek ,n , ϕ a P -formula,  e1 , . . . , ek  ∈ Zn }.
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From  max{|P |, ω, p(A)} ≤ κ, an easy induction on n shows that for every 
n ∈ ω, |Zn | ≤ κ.  Now, let hA, Ni the substructure with domain  N = 

S
n∈ω Zn . 

Observe that the hypothesis  about  existence of suprema  and infima of definable 
sets implies that hA, Ni is safe. Moreover, it is clear that |N | ≤ κ and Z ⊆ N . 

Finally we must  prove that hA, Ni is an elementary substructure of hA, Mi. 
We  do  it  by  induction on  the  complexity  of a  formula  ϕ(y1 , . . . , yk ).    The 
induction base  and  steps  for quantifier-free  ϕ(y1 , . . . , yk ) follow directly  from 
the  fact  that hA, Ni is  a  substructure of hA, Mi.    Assume  that the  prop- 
erty  holds  for  ϕ(y1 , . . . , yk )  and  we have  to  show  k(∃x)ϕ(x, e1 , . . . , ek )kA   = 
k(∃x)ϕ(x, e1 , . . . , ek )kM , where  e1 , . . . , ek   ∈ N .   By the  induction hypothesis,
X hA,Ni hA,Mi

ϕ,e1 ,...,ek ,N = Xϕ,e1 ,...,ek ,N .  Take  the  minimum  n ∈ ω such that e1 , . . . , ek  ∈ 
Zn .   By  the  construction above  Yϕ,e  ,...,e ,n  and  X hA,Mi              have  the  same 
supremum.  We  show that Yϕ,e  ,...,e ,n  ⊆ X hA,Ni           .   Indeed,  for each  b ∈ 
Yϕ,e1 ,...,ek ,n , by  the  construction we know  that there  is db  ∈ Zn+1  such  that 
b = kϕ(db , e1 , . . . , ek )  A ; since db , e1 , . . . , ek  ∈ N , and  using the  induction hy-

pothesis,  we have b ∈ X hA,Ni
 . Therefore,  we can write:

hA,Ni hA,Mi hA,MiYϕ,e1 ,...,ek ,n ⊆ Xϕ,e1 ,...,ek ,N = Xϕ,e1 ,...,ek ,N ⊆ Xϕ,e1 ,...,ek ,M , 
hA,Ni 
ϕ,e1 ,...,ek ,N 

hA,Mi 
ϕ,e1 ,...,ek ,M also have  the  same supremum as we

wanted.  The induction step for the universal quantifier is shown analogously. 
 

We can also obtain a non-classical Upward Lowenheim–Skolem Theorem,  but 
only assuming  that the language  does not include a symbol for crisp equality. 

 
Theorem 31  (Non-classical  Upward  Lowenheim–Skolem  Theorem). Let P  be 
an  equality-free  language.   For  every infinite  safe P -structure hA, Mi and  ev- 
ery  cardinal κ with max{|M |, |P |} ≤ κ,  there  is a safe P -structure hA, Ni of 
cardinality κ and an elementary  embedding from hA, Mi to hA, Ni. 

 
Proof.  Take  an  enumeration M  = {dj   | j ∈ κ} and  a  set  of new (pairwise 
different) variables  Vκ   = {vj   | j ∈ κ}.   Let  N  be the  set  of all P -terms  built 
from variables  in Vκ . Since κ is infinite, it is clear that |N | = κ. 

We will define a structure hA, Ni. First,  for every n-ary  functional  symbol 
F  and  t1 , . . . , tn ∈ N , we define:  FN (t1 , . . . , tn ) = F (t1 , . . . , tn ).  Now consider 
the  mapping  g0 : Vκ  → M  defined as g0 (vj ) = dj   for each j ∈ κ and  extend  it, 
in the obvious way, to a homomorphism g : N → M . For every n-ary  relational 
symbol P  and t1 , . . . , tn ∈ N , we define: PN (t1 , . . . , tn ) = PM (g(t1 ), . . . , g(tn )). 

First,  let us show that, for every P -term  r(x1 , . . . , xn ), and  t1 , . . . , tn ∈ N , 
we have that 

 
A                                            ,A 

g(kr(t1 , . . . , tn )kN ) = kr(g(t1 ), . . . , g(tn ))kM .                        (2) 
 

Indeed, it can be seen by an easy induction: the base case when r is a variable is 
obvious and the induction step follows from the fact that g is a homomorphism 
with respect  to all functional  symbols.  Now, we prove that, for each P -formula 
ϕ(x1 , . . . , xn ), and each t1 , . . . , tn ∈ N , we have that 

 
A                                           A 

kϕ(t1 , . . . , tn )kN = kϕ(g(t1 ), . . . , g(tn ))kM .
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Assume first that ϕ is an atomic  formula  P (r1 , . . . , rk ).  Then,  by using defini- 
tions and the equation  (2), we have: 

 

kP (r1 , . . . , rk )(t1 , . . . , tn )kN = 
 

A                                      A 
=  PN (kr1 (t1 , . . . , tn )kN , . . . , krk (t1 , . . . , tn )kN ) = 

 
A                                           A 

=  PM (g(kr1 (t1 , . . . , tn )kN ), . . . , g(krk (t1 , . . . , tn )kN )) = 
 

A                                                  A 
=  PM (kr1 (g(t1 ), . . . , g(tn ))kM , . . . , krk (g(t1 ), . . . , g(tn ))kM ) = 

 

=  kP (r1 , . . . , rk )(g(t1 ), . . . , g(tn ))  A  . 

The  induction step  for propositional connectives  is clear.  Finally,  assume  that 
ϕ(t1 , . . . , tn ) = (∀x)ψ(x, t1 , . . . , tn ) (the case of existential formulas is completely 
analogous).  We have: 

A                                            A 
k(∀x)ψ(x, t1 , . . . , tn )kN = inf {kψ(t, t1 , . . . , tn )kN | t ∈ N } = 

 

= inf {kψ(g(t), g(t1 ), . . . , g(tn ))  A  | t ∈ N } = 
 

= inf {kψ(d, g(t1 ), . . . , g(tn ))  A  | d ∈ M } = 
 

= k(∀x)ψ(x, g(t1 ), . . . , g(tn ))  A  . 

(The  second equality  holds by induction hypothesis, the third  one because g is 
onto,  the  rest  by definition;  observe that the  infimum exists because  hA, Mi is 
safe.) 

Therefore,  we have  obtained that hA, Ni is a safe P -structure and,  more- 
over,  hIdA , gi  is  an  elementary  homomorphism.   Now  we  define  a  mapping 
hIdA , hi : hA, Mi → hA, Ni.  For  every  d ∈ M  take  the  minimum  j ∈ κ such 
that d = dj , and  define h(dj ) = vj .  Clearly,  h is an injective  mapping.   It only 
remains  to  show that hIdA , hi is an  elementary homomorphism too.   Take  an 
arbitrary P -formula  ϕ  with  n free variables  and  take  di1 , . . . , din    ∈ M .  Then 
we have (using that hIdA , gi is an elementary homomorphism): 

A                                       A 
IdA (kϕ(di1 , . . . , din )kM ) = kϕ(di1 , . . . , din )kM = 

 
A 

= kϕ(g(vi1 ), . . . , g(vin ))kM = 
 

= kϕ(vi   , . . . , vi   )  A = 
 

= kϕ(h(di   ), . . . , h(di   ))  A . 
 
 

In case the language  contains  no functional  symbols (and  still no crisp equ- 
ality),  we can  improve  the  previous  result  and  obtain  an  upward  theorem  in 
which, instead  of using a mapping,  the  initial  structure is directly  extended  to 
a bigger one in such a way that inclusion is the desired elementary embedding. 

 

Theorem 32 (Non-classical Upward Lowenheim–Skolem Theorem for relational 
languages). If P is an equality-free  purely relational predicate  language.  For ev- 
ery safe P -structure hA, Mi and every cardinal κ with max{|M |, |P |} ≤ κ, there 

is a safe structure hA, Ni of cardinality κ such that  hA, Mi is an  elementary 
substructure of hA, Ni.
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Proof.  Since |M | ≤  κ,  we can  extend  it  to  a superset  N  of cardinal  κ.   Let 
us  take  an  enumeration N  = {ej   |  j ∈ κ}.   We  use  the  same  cardinal   
to enumerate the  smaller  set M , possibly with  repetitions, as follows.  We 
define j0 = min{j < k | ej  ∈ M } and then  we state  M = {dj  | j ∈ κ}, where: 

    
ej ,      if ej  ∈ M,dj  = ej0 ,    otherwise.

Now we define the function:  
g : N → M 

ej  7→ dj
 

Thus,  g so defined, we have that g M = IdM and g (N \M ) = (N \M ) × {ej0 }. 
Now, we define a structure hA, Ni by establishing  that for every n-ary relational 
symbol P , and ej1 , . . . , ejn   ∈ N , 

 
PN (ej1 , . . . , ejn ) = PM (g(ej1 ), . . . , g(ejn )). 

 
From  the  previous  definition,  it is obvious that hA, Mi is a substructure of 

hA, Ni. In order  to check that hA, Ni is safe, we will prove by induction that 
for every formula  ϕ(x1 , . . . , xn ), and elements  ej1 , . . . , ejn   ∈ N , 

 
A                                               A 

kϕ(ej1 , . . . , ejn )kN = kϕ(g(ej1 ), . . . , g(ejn ))kM .                      (3) 
 

Indeed,  suppose  that ϕ  is an  atomic  formula  given by  an  n-ary  predicate  P . 
Since the  language  is purely  relational, it  must  be of the  form P (x1 , . . . , xn ). 
Then,  using the definition  of PN , we have: 

 
kϕ(ej1 , . . . , ejn )kN = PN (ej1 , . . . , ejn ) = 

 

= PM (g(dj   ), . . . , g(dj   )) = kϕ(g(ej   ), . . . , g(ej   ))  A  . 
 

The  induction step  for formulas  built  by using  the  connectives  of the  logic is 
clear; the  step  for quantified  formulas  is proved  analogously  as in the  proof of 
Theorem  31 essentially  using that g is onto. 

Having  condition  (3)  for every  P -formula  ϕ,  we have  obtained, a fortiori, 
that hIdA , gi is an  elementary homomorphism.  We can use this  fact  to  prove 
that hA, Mi is an elementary substructure of hA, Ni. Take  dj1 , . . . , djn    ∈ M . 
Then, 

 
A                                                A                                     A 

kϕ(dj1 , . . . , djn )kM = kϕ(g(dj1 ), . . . , g(djn ))kM = kϕ(dj1 , . . . , djn )kN . 
 

(The  first equality  holds by the definition  of g and the second one is (3).) 
 

None of these  two non-classical  versions of the  Upward  Lowenheim–Skolem 
Theorem  can  be  proved  in  general  for  logics with  equality,   as  the  following 
example  shows. 

 
Example 33  (Failure of the  Upward  Lowenheim–Skolem  Theorem  for logics 
with  equality). Consider  the Godel-Dummett first-order logic with the projec- 

tion  connective  4 and  assume  that  the  language  contains a  unary  predicate 
P  and  an  equality  symbol ≈.   Let  us take  a  semantics  of models  h[0, 1]G , Mi 
over  the  standard G-algebra,  where  ≈ is interpreted as  classical  equality,  i.e.
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for  each  a, b  ∈ M ,  ka ≈ b [0,1]G   =  1  if  and  only  if  a  = b.   A  counterex- 
ample  to  the  upwards  theorem   can  be  obtained  by considering   the  formula1 

χ = (∀x)(∀y)(¬4(x  ≈ y) → ¬4(P (x)  ↔ P (y)))  that  codifies the fact  that  P 
is interpreted as an injective  mapping  from the domain  to the algebra of truth- 
values.  Indeed,  if h[0, 1]G , Mi is a model of χ, then for every a, b ∈ M , we have 
k¬4(a ≈ b) → ¬4(P (a) ↔ P (b))kM         = 1, i.e. if a = b, then PM (a) = PM (b). 
Therefore, h[0, 1]G , Mi is a model of χ if and only if |M | ≤ 2ℵ0 , and hence the 

upward theorem  does not hold. 
 
 

7    A  many-sorted approach 
 

As it is well known, classical many-sorted models also enjoy their  own versions 
of Lowenheim–Skolem  theorems.   Therefore,  if we manage  to describe our non- 
classical  structures in the  framework  of classical  many-sorted models,  we will 
obtain  an alternative approach to the  results  we have just proved.  Let us first 
formally  recall  the  corresponding  definitions  and  theorems.    As references  of 
many-sorted languages  and structures see [21, 22]. 

Definition 34.  A many-sorted predicate  language  P  is a tuple 
 

hS , Pred P , FuncP , Ar P , Sort P i, 
 

where S is a non-empty  set of  sorts,  Pred P is a non-empty  set of  sorted  predi- 
cate symbols, FuncP  is a set (disjoint  with Pred P ) of  sorted  function  symbols, 

Ar P is the arity  function,  assigning  to each predicate  or function  symbol a nat- 
ural  number  called the  arity  of the symbol, and  Sort P is a function  that  maps 
each n-ary  R ∈ Pred P to a sequence of n sorts  and each n-ary  F ∈ Pred P to a 
sequence of n + 1 sorts. 

Definition 35.   Given  a  many-sorted  predicate   language  P ,  we define  a  P -
structure  as  a  tuple  M  =  hM, 

 
RM    R∈Pred P 

, 
 
F M    

f ∈FuncP 
i, where  M  is  a

family  of non-empty  domains  {S(M )  | S  ∈ S };  for  each  n-ary  R  ∈ Pred P , 
Mif  Sort P (R)   = hS1 , . . . , Sn i, R ⊆  S1 (M ) × . . . × Sn (M );  for  each  n-ary 

MF  ∈ FuncP ,  if Sort P (F ) = hS1 , . . . , Sn , Si,  F is a function  from  S1 (M ) ×
. . . × Sn (M ) to S(M ).  By the cardinality |M | of  M  we mean  the sum of the 
cardinalities of the sets {S(M ) | S ∈ S }. 

Definition 36.  Let P  be a many-sorted predicate  language  and  let M  and  N 
be P -structures. We say that  M  is a substructure of  N  if 

1.  for each S ∈ S , S(M ) ⊆ S(N ), 
 

2.  for each  F  ∈ FuncP  with Sort P (F ) = hS1 , . . . , Sn , Si,  and  for each  ele- 
ment  ai ∈ Si (M ), we have F M (a1 , . . . , an ) = F N (a1 , . . . , an ), 

 

3.  for each  R ∈ Pred P with Sort P (R)  = hS1 , . . . , Sn i, we have that  R     = 
RN ∩ (S1 (M ) × . . . × Sn (M )). 

M  is an elementary substructure of  N  (and  N  is an elementary extension 
of  M)  if moreover  for each P -formula  ϕ(x1 , . . . , xn ) and each a1 , . . . , an in the 
sorts  of M  corresponding to the variables  of ϕ,  we have M  |= ϕ(a1 , . . . , an ) if 
and only if N |= ϕ(a1 , . . . , an ). 

 
1 We  have  learned this  formula from  Matthias Baaz.
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Now let  us recall  the  classical  downward  and  upward  Lowenheim–Skolem 
theorem  for many-sorted structures (for  the  proofs see [26, Propositions  1.27 
and 1.31]). 

 
Theorem 37  (Classical  Downward  Lowenheim–Skolem  Theorem  for  many– 

sorted structures). Let P be a many-sorted predicate  language, M a P -structure, 
for each S ∈ S a subset ZS   ⊆ S(M ), and κ a cardinal such that for each S ∈ S , 
max{ω, |P |, |ZS |} ≤ κ ≤ |M |.  Then  there  is an  elementary  substructure N  of 
M  such that  |N | = κ and for each S ∈ S , ZS   ⊆ S(N ). 

 
Theorem 38 (Classical Upward Lowenheim–Skolem Theorem for classical many– 

sorted  structures).  Let P  be a many-sorted predicate  language,  M  an  infinite 
P -structure, and  κ a cardinal such that  max{|P |, |M |} ≤ κ.  Then  there  is an 
elementary  extension  N  of  M  such that  |N | = κ. 

 
Let  us  show  now  how  we can  translate the  predicate   language  P  into  a 

classical 2-sorted  language  P2 : 
 

•  For each sort i ∈ {1, 2}, we take  quantifiers  ∀i  and ∃i . 
 

•  Variables  of sort  1 are denoted  as x, y, z, x1 , . . . , xn , . . ., and  of sort  2 as 
v, w, v1 , . . . , vn , . . . 

 

•  For each sort i ∈ {1, 2}, we take  an equality  symbol ≈i . 
 

•  For each propositional n-ary  connective  λ, we take  the same symbol λ as 
a functional  of type h1, .(n. ). , 1, 1i. 

 

•  For  each n-ary  functional  symbol F  ∈ FuncP , we take  the  same symbol 
F  as a functional  of type h2, .(n. ). , 2, 2i. 

 

•  For each n-ary  relational symbol R ∈ Pred P , we take  the same symbol R 
as a functional  of type h2, .(n. ). , 2, 1i. 

 
Now, given a P -structure hB, Mi, we build a 2-sorted  P2 -structure BM : 

 
•  The universe  of sort 1 is B and the universe  of sort 2 is M . 

 
•  The  symbols  ≈i  are  interpreted as  crisp  equality  in  the  corresponding 

sorts. 
 

•  For each propositional n-ary  connective  λ, define λBM  as λB . 
 

BM•  For each n-ary  functional  symbol F ∈ FuncP , define F 
 

•  For each n-ary  relational symbol P ∈ Pred P , define P 

as FM . 
 
as PM .

 
Lemma   39.   For   each   P -formula   ϕ(v1 , . . . , vn ),   there   is   a   P2 -formula 
Eϕ (v1 , . . . , vn , x) such that,  for every P -structure hB, Mi, and d1 , . . . , dn ∈ M , 

 
kϕ(d1 , . . . , dn )kM = b    ⇔     BM |= Eϕ (d1 , . . . , dn , b).
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Proof.  We proceed  by induction on the  complexity  of ϕ(v1 , . . . , vn ).  If ϕ is an 
atomic  formula  of the  form P (t1 , . . . , tk ), where P  ∈ P  is an n-ary  predicate, 
and  t1 , . . . , tk  are  P -terms  with  their  free variables  among  v1 , . . . , vn , we take 
Eϕ (v1 , . . . , vn , x) to be the formula 

 
P (t1 , . . . , tk ) ≈1  x. 

 
Let  ϕ(v1 , . . . , vn ) = λ(ψ1 , . . . , ψk )(v1 , . . . , vn ), where λ is an n-ary  connective, 

and  we assume  inductively  that, for each formula  ψi (v1 , . . . , vn ), the  property 
holds for the  P2 -formula  Eψi (v1 , . . . , vn , yi ), where i ∈ {1, . . . , k}.  In this  case, 
take  Eϕ (v1 , . . . , vn , x) to be

 
(∀y1 , . . . , yk )

  
∧k 

 
Eψi (v1 , . . . , vn , yi ) → λ(y1 , . . . , yk ) ≈1  x

  
.

 
For  the  universal  quantifier  case ϕ(v1 , . . . , vn ) = (∀w)ψ(v1 , . . . , vn , w),  we as- 
sume inductively  that for the P -formula ψ(v1 , . . . , vn , w) the property holds for 
the P2 -formula  Eψ (v1 , . . . , vn , w, y).  Now take  Eϕ (v1 , . . . , vn , x) to be 

 
(∀z)(z ≤ x ↔ (∀w, y)(Eψ (v1 , . . . , vn , w, y) → z ≤ y)). 

 
The existential quantifier  step has an analogous  proof. 

 

Corollary 40.  A P -structure hB, Mi is safe if and only if, for every P -formula 
ϕ(v1 , . . . , vn ), 

BM |= (∀v1 , . . . , vn )(∃!x)Eϕ (v1 , . . . , vn , x). 
 

This  gives us all the  necessary  ingredients  to  obtain,  via classical 2-sorted 
structures, an alternative form the non-classical  Downward  Lowenheim–Skolem 

Theorem  (cf. Theorem  30). 
 

Theorem 41 (Non-classical Downward Lowenheim–Skolem Theorem  - 2nd ver- 
sion). Let hB, Ni be a safe P -structure. Then,  for every Z ⊆ N , every X ⊆ B 
and every cardinal κ such that 

 
max{|P |, ω, |Z |, |X |} ≤ κ ≤ max{|B|, |N |}, 

 
there is a safe P -structure hA, Mi which is an elementary  substructure of hB, Ni 
such that  |A| + |M | = κ, Z ⊆ M , and X ⊆ A. 

 

Proof.  First  we build  from hB, Ni the  2-sorted  P2 -structure BN  as described 
above.  Observe  that Z and X  are subsets  of the domains  of the corresponding 
sorts of BN and all the hypotheses  of Theorem  37 are satisfied, so we can apply 
it  and  obtain  a  2-sorted  elementary substructure  O  such  that X  ⊆  S1 (O), 
Z  ⊆ S2 (O),  and  |S1 (O)| + |S2 (O)|  = κ.  Define A = S1 (O)  and  M  = S2 (O). 
Since the interpretation of each functional  symbol from P2  in M is the restriction 
of its  interpretation in BN , we obtain  that A is the  universe  of a subalgebra 
A  of B and  we have  a P -structure hA, Mi.   Since hB, Ni is safe, it  satisfies 
the  formulas  from Corollary  40 and  so it does M  (because  it is an elementary 
substructure);  therefore  hA, Mi is also  safe.   Finally,  the  fact  that N  is an 
elementary substructure of BM in the  sense of P2   clearly entails  that hA, Mi 
is an elementary substructure of hB, Ni in the sense of P . 

 
Using classical 2-sorted  structures we can obtain  also a new version  of the 

non-classical  upward  Lowenheim–Skolem theorem  (cf. Theorem  31).
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Theorem 42  (Non-classical  Upward  Lowenheim–Skolem  Theorem  - 2nd ver- 
sion).  Let  hA, Mi be a  safe  infinite  P -structure and  κ  a  cardinal such  that 
max{|P |, |A|, |M |} ≤  κ.   Then  there  is  a  safe  P -structure hB, Ni such  that 
hA, Mi is an elementary  substructure of hB, Ni and |B| + |N | = κ. 

 
Proof.  As in the  previous  proof,  we first  build  the  2-sorted  P2 -structure AM 
from hA, Mi as described  above.   Applying  Theorem  38 we obtain  a 2-sorted 
elementary extension  O of AM such that |O| = |S1 (O)| + |S2 (O)| = κ.  Define 
B  = S1 (O)  and  N  = S2 (O).   Since AM  is an  elementary substructure of O, 
it  is clear  that A  is a  subalgebra of the  algebra  B defined  over  B  with  the 
operations determined by the interpretation in O of the corresponding  functional 
symbols and,  hence, we have obtained a P -structure hB, Ni which has hA, Mi 
as elementary substructure.  The  preservation of safeness is justified  as in the 
previous  proof. 

 
On the  one hand,  the  2-sorted  approach has allowed us to obtain  a better 

form  of the  Downward  Lowenheim–Skolem  Theorem.   Indeed,  Theorem  41 is 
more general than  Theorem  30, because it does not use the rather complicated 
cardinal  p(A)  as an extra  lower bound  for κ and,  moreover,  it allows to select 
a subset  X  in the  algebra  to obtain  a smaller  elementary substructure,  whose 
algebraic  reduct  contains  the selected X . 

On the other  hand,  the situation is quite different when it comes to the Up- 
ward theorems.  Although  Theorem  42 can be seen as an improvement of Theo- 
rem 31 because it can accommodate languages  with equality  (the  counterexam- 
ple shown before in Example  33 does not apply here, because the theorem  would 

provide  models over big enough algebras),  when restricted to equality-free  lan- 
guages, the new result  is not as good as the previous  one.  Indeed,  Theorem  31 
does not  include  the  lower bound  |A| for κ.   This  is due  to  the  fact  that the 
notion  of cardinality of a 2-sorted  structure AM  is different from the  one used 
in the  non-classical  structure hA, Mi,  where  only the  first-order  domain,  not 
the  algebra,  is taken  into  account  when the  cardinality is calculated.  Since in 
first-order  many-valued logics one often wants to keep the same algebra of truth- 
values for all models in a given context  (as they  may be considered  essential  in 
the  inteded  semantics), our previous  version  of the  upward  theorem  would be 
more  appropriate.  These  different  pros  and  cons of the  two  theorems  justify 
the  twofold approach we have  proposed  for Lowenheim–Skolem  theorems  for 
non-classical  first-order  algebraizable logics. 
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