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A problem on the approximation of

n-roots based on the Viéte’s work
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Ma. Rosa Massa-Esteve i Antonio Mellado Romero

In this paper, after giving a brief approach
about the historical question of how different
authors and cultures handled approximations
of the n-th root of N := A™ + R, we con-
sider the particular case of the approximation
of /N by A+ % (here n, A, d are positive in-
tegers, with n > 2, d = (A+ 1) — A" — 1,
and 0 < R < d), explicitly considered by Viéte
in his De Numerosa Potestatum. Viéte estab-
lished in one of the precepts of his work that
the n-th root is placed between A + FR1 and

A+ %. Indeed, it is easily seen that, of course,

A+ FRl < VN, but unfortunately VN can

be greater than A + % when n > 3. Then the
question arises whether we are able or not of
determining what values of R (fixing the inte-

ger values n and A, so also d) give a true ap- FRANCOIS VIETE
. . n . . MAITRE DES REQUETES DE L'HOTEL
proximation by excess when v/ N is estimated MEMBRE DU CONSEIL PRIVE DU ROI

INVENTEUR DE L'ALGEBRE MODERNE

as A+ %, that is, to find those values of R
producing an excess in relation with the exact
value of the root. We give a complete answer
to the cases n < 7, and we present without proof the main result for a
general n.

1 Introduction

There is not doubt that the History of Mathematics allows us to improve
both our research and docent tasks. In the first case, the reading of ancient

Frangois Viéte, image from [24], https://rcin.org.pl/dlibra/publication/16160/
edition/11661
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texts or the compilation of works of some authors, as well as the rediscov-
ering of some ideas hidden in those texts, provide us a valuable source for
starting new investigations and for fitting them into a more general frame-
work, thus avoiding the centrifugal tendency of specialization in the different
fields of mathematics, or at least to make us see a certain internal unity in
mathematics. Respect to our docent role, it is clear that the introduction of
historical aspects in our different lectures can influence in the positive recep-
tion by our students and, therefore, it contributes to trap their attention and
to bring closer a subject considered a priori rather arid. Another possible
benefit is the eventual elaboration of mathematical materials for breaking
the monotony of classical classroom presentations. A lot of literature is de-
veloped in this direction, let us to mention, for instance, [18], [21]. Bearing
all this in mind, in this paper we are going to give a brief historical note
about the approximation of n-th roots by French mathematician Francois
Viete (1540-1603) in his De Numerosa Potestatum. This historical note will
be the starting point for analyzing a simple mathematical question arising
from the reading of the above mentioned Viéte’s work, and dealing with the
possibility of finding approximations by excess of the n-roots.

The paper is organized as follows. After presenting some well-known
historic episodes on the numerical computation of square and cubic roots,
we present in Section 3, in a broad manner, the procedure employed by
Viéte in his De Numerosa Potestatum to compute general n-roots as well as
a precept for locating irrational roots between two approximations by default
and excess. This precept applies for square roots, but for greater roots the
proposed approximation by excess can be in fact less than the searched root.
This gives us occasion for proposing in Section 4 a mathematical question
about the validity of the precept depending on the value N = A™ + R whose
n-root we are looking for. The question is completely solved in Section 5 for
3 < n < 7 by using elementary mathematics and the Descartes’ rule of signs,
whereas in Section 6 we advance without proof the result for a general value
n. Our paper finishes with some comments about the Viéte’s work, and the
importance of a suitable implementation of the History of Mathematics in
our mathematical task.

2 Historical approach of n-th roots

Let us present some milestone about the topic of extraction of square, cubic,
and general n-roots. For the reader interested in the topic of the numerical
treatment of roots of equations along the history, we strongly recommend
[7], a very complete treatise of arithmetical methods from the Antiquity to
the end of 19-th century, as well as [23].

The computation of square and cubic roots just appears as a practical
subject of undoubted value in the Babylonian and Egyptian cultures. For
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instance, in the Babylonian culture we can find, by a numerical procedure,
the computation of the measure of the diagonal of a door in the clay tablet
BM 96957 +VAT 6598, see [25]. To do it, they used the approximation
a+ %% for the square root of a? + B (for a geometrical explanation of this
approach, the reader is referred to [14], see also Figure 1).

Bit+ Number= Square of approx+Bit
approx it+approx new approx
PP bp Ll new approx=approx+half of BitxIGI approx

+ a = a+ (1/2)B/a

a? B/a ! VN =vVa?¥B~a+18
2+ B (1/2)B/a  /
(1/4) B /a?

Figure 1: Geometrical explanation for the approximation by excess of VN = va?+ B
by a + 1 2 image composed from [14, p. 371]

2a’

Later, we find the topic in the Greek civilization. A simple way to proceed
to the approximation of an irrational square root v/N consists in approaching
N by a suitably nearly ratio ’7%2, with m, n natural numbers, therefore VN &
™. This idea was applied by Aristarchus of Samos (c. 310 B.C.—c. 230 B.C.)
in his work Aristachi de magnitudinibus et distantiis Solis et Lunce Liber |3],
when dealing with the approximation for the ratio between the distance of

the Sun to the Earth and the distance between the Moon and the Earth (|3,

Prop. VII|); to this effect, as a preliminary step in his study, he gives % as

an estimate of the square root of 2 (notice that 2 ~ 49/25). For further
information, consult [3], a Spanish translation of Aristarchus’ work, with
appropriate comments, by the third author of this paper.
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Figure 2: Front of Aristarchus’ work, and part of Proposition VII, image from https:
//bibliotecafloridablanca.um.es/bibliotecafloridablanca/handle/11169/975
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We can mention Archimedes (287 B.C.-212 B.C.) who in his “Measure-
ment of a circle”! shows us his ability for manipulating numerical computa-
tions in order to give an approximation of the ratio between the circumfer-
ence and the diameter of a circle; he needs to estimate the values of several
square roots in order to achieve his task and, for instance, he obtains that
< VB < B2

Also, in the Greek culture, let us cite to Hero of Alexandria (about first
century A.D.); he provides us in his Metric® the method of averages for
approximating square roots: in [1, Livre I, VIII, p. 165] Hero illustrates
his well known formula for the area of a triangle (namely, if p = %b"'c
denotes the semiperimeter of a triangle of sides a, b, ¢, the corresponding
area S is given by Hero’s formula S = \/p(p — a)(p — b)(p — ¢) ) taking sides
of lengths 7, 8,9 and, therefore, he needs to compute the value of v/720. This
is done by taking 27 as the closer integer to /720, and then giving the first
approximation % (27 + 72170) = 26 % % as a more accurately approach; even,
Hero says us that if we do the same operations with the new approach we
will obtain a better approximation. Notice that Hero presents an iterative

method; in current notation, if x, is the approximation of v N, the next

term is xp41 = % (azn + %), the average between z,, and its inverse; realize
that this recurrence is nothing else but the Newton-Raphson method applied
to the equation 22 — N =0 *.

Moreover, in the problem XX of Book III of the Metric it is proposed
the division of a pyramid by a plan parallel to the basis holding a certain
proportion between the pyramids; in the development of the problem, it
is necessary to obtain a numerical approximation, based on double false
position, of the cubic root of 100, and Hero gives us the value 4+ %, having,
currently we will say, two exact decimals. In our current notation, if a? <
N < (a+1)3 and d; = N—a?,dy = (a+1)3— N, then /N is approximated
by a + %’ so for ¥/100 we find —notice that a = 4,d; = 36,dy =
25— the value 4 + %5.

'The translation into English of the Archimedes’ works can be consulted in [2], in
particular the referred ‘Measurement of a Circle’.

2For an explanation of this approximation, based on geometrical considerations, we
recommend the reading of [6].

3The reader can consult [1], a French translation, jointly with a critical edition, of the
Hero’s Metric, one of his more important works.

4As a delightful curiosity, and based on the idea that the recurrence to obtain vN
can be viewed as the mean between a term z and %, in [15] the author establishes the

following generalization for the approximation of ¥/N : by considering the average between

—1) i ko . k—1 Nal=F
x, B times 2 and Na'=F it is easily seen that the recurrence 41 = (ﬁ%

gives
a sequence that converges quickly to ¥/N if the initial condition is close to the desired
k-root, and surprisingly if we apply the Newton-Raphson method to f(z) = z* — N, we
derive the same recurrence.

5Hero says us ([1, p-351]): “Mais comment faut-il prendre un coté cubique des 100

unités, nous le dirons maintenant. Prends le cube le plus proche de 100, aussi bien celui
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(i.) drea of @ Triangle Giver the Sides
Heron, Metrica i. 8, ed. H. Schone (Heron fii.) 18. 12-24. 21

There is a general method for finding, without
drawing a perpendicular, the area of any triangle
whose three sides are given, For example, let the
sides of the triangle be 7, 8 and 9. Add together
7,8and 9 ; the result is 24. Take half of this, which
?’mes 12. Take away 7 the remainderis 5. Again,

m 12 take away 8; the remainder is ‘!- And
again@; the remumder is 8. Multiply 12 by 55 the
resu]t is 60. Multiply this by 4; the resul t is 240.
Multiply this by 3; the result is 720. Take the
square root of this and it will be the area of the tri-
angle. Since 720 has not a rational squarc root, we
shall make a close approximation to the root in this
manner. Since the square nearest to 720 is 720,
having a root 27, divide 27 into 720 ; the result is

P 26% 5 add 27 ; the result is 533. Take half of this ;
xal -rp:.'ra. Suio- 'rpoaﬂ(s‘ 'ras Pre ytzv_e'ruu vy 'rpn'a the result is 26} +3(=263). l'herefﬂre the square
%vo. ’:Df’lmf' N ’”"L‘w:" WWET?‘_N’ 42" * ‘w‘r_m root of 720 will be very nearly 265, For 263 multi-
dpo Tob Y 1) mAeupd EyyioTa T8 'f; 67 3 ’:a ‘)/ltP pheﬂ by itself gives 720 ; 'so t}\'\t the dJ(f'erence
RE Ly ¢ lavrd ylywerar e ’\5: - dote 78 Bd- g L. If we wish to make the difference less than ..
dopov rovddos éorl pdpiov X7, v B¢ BovAdpeda  instead of 729 we shall take the number now found,
470 . 72045, and by the same method we shall ﬁnd an
approximation differing by much less than

Figure 3: Text of Hero’s formula as collected in [30, v. II]

As another instance of the approximation of square roots, let us mention
to Theon of Alexandria (c.335-¢.405). In his Commentary on Ptolemy’s
Syntaxis®, Theon explains how to make an approximation to the irrational
side of a square, and he shows the approximation of 1/4500° to be (in sexa-
gesimal numeration) 67° 4’ 55" that is, v/4500 = 67+ 64—0 + %. His procedure
is based on a figure in which by a process of exhaustion he completes the
square by using the well-known fourth proposition of Euclid’s Book II, to
wit, if a straight line is cut at random, the square of the total is equal to the
squares of the segments and twice the rectangle contained by the segments
—see [16]. For a picture of this geometrical process, see Figure 4.

The fact of the universality of this mathematical problem about approxi-
mating square and cubic roots is reflected, indeed, in its ubiquity in different
cultures, apart from the Western one, as it occurs, for instance, in the Chi-
nese and Hindu civilizations. In this way, from the Chinese culture, we can

par excés que celui par défaut; or ce sont 125 et 64. Et ce par quoi I'un excéde est 25
unités, ce par quoi l'autre est en défaut est 36 unités; et fais les 5 par les 36: il en résulte
180; plus les 100: il en résulte 280; et applique les 180 aux 280: il en résulte 9/14; ajoute-
les au coté du plus petit cube, c’est-a-dire au 4: il en résulte 4 unités et 9/14. Autant que
cela sera le coté cubique des 100 unités a trés peu prés.” /We are going to say how to take
the cubic side for 100 units. Take the cube closer to 100, as well by excess as by default;
they are 125 and 64. So, the excess is of 25 units, and the defect of 36 units; multiply 5
by 36: it outcomes 180; to add 100: it is 280; and apply (divide) 180 to 280: it outcomes
9/14; add them to the side corresponding to the less cube, that is, to 4: it outcomes 4
units and 9/14. Therefore, this will be the cubic side for the 100 units, more or less. [Our
translation]

5For example, consult A.Rome (ed.), Commentaires de Pappus et de Théon d’Alezan-
drie sur I’Almageste. Texte établi et annoté. Tome II. Théon d’ Alexandrie, Commentaire
sur les livres 1 et 2 de I’Almageste. (Studi e Testi 72). Citta del Vaticano: Biblioteca
Apostolica Vaticana, 1936.

"See also [8, pp.204-205].
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Figure 4: The process for squaring 4500, image from [30, p.56, v.I]

mention Liu Hui (¢.220-¢.280), who commented the treatise Computational
Prescriptions in Nine Chapters (Jiuzhang suanshu) based upon the ancient
Chinese tradition collected in more ancient manuscripts. In Chapter 4 (shao
guang), we find methods for calculating square and cubic roots. For more
information about the treatise and Liu Hui, consult [9, pp. 133-153] and [5,
Chapter 7|, and for a textbook on the Chinese Mathematics, see [20].
Concerning Hindu tradition we can cite the Sulvasutra (‘the rule of
chords’), where we find for instance the construction of a square having dou-
ble area than another given square of side L, under the rule L+ % + % — ﬁ
for the side of the new figure (for an interpretation of this formula, consult
[10, p.189 and ss.]). From Figure 5 we see that 1+ % + 1—12 is an approximation

by excess to v/2; to obtain 1+ % + 1—12 - flm, a modern explanation may be to

realize that % is close to v/2 (it is a convergent of the continued fraction
associate to v/2 ), thus making 1 + % + % —x = % yields to x = ﬁ'

Let us notice that to Hindu tradition is credited to have contributed with
the computation of square and cube roots by dividing the number in periods
and to arrange the process into columns and lines (see |23, p. 8]). Moreover,
according to |7, pp. 174-175|, in the Lilavati of Bhaskara (1114-1185) we
can appreciate the high level of perfection that the art of computation had
reached among Hindus and, despite the Greek writers on root extraction,
the importance of the transmission of Hindu methods to the Arabs and by
them to the Europeans.
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(duply the area)

1+1/34+1/12

Figure 5: Image elaborated from [10]

In relation, thus, with the Arab tradition, the Arabic mathematicians
also handled different numerical approximations for the resolution of square,
cubic and affected equations. In fact, it is said that they extended the
concept of square and cubic roots to general powers (|7, p. 175]). For
square roots, apart from the Hero’s rule Va2 +b ~ a + 2—’;, used among
others by Al-Battani (c.858-929) ([23]), other rules were also applied, as

a?+b = a+ ﬁ in the case of Al-Karaji (c.953-¢.1029) (]|23]) or Al-

Nasawi (c.1011-¢.1075) (see [29]); concerning cubic roots Va3 + r, the same
Al-Nasawi uses a + 3a++1 to give 154 + % for approximating /3652296 ,
even the formula a + 55— is considered according to [29].

Following with this quick tracing on the approximation of n-th roots,
let us mention to Leonardo of Pisa (c.1170-c.1250), commonly known as
Fibonacci, who in Chapter XIV of his Liber Abaci shows us how to proceed
with the extraction of square and cubic roots (for an English translation of
Liber Abaci, see [27]). We emphasize that this procedure is based on the
developments, from a geometrical point of view, of the square and cube of a
binomial a + b. Leonardo of Pisa also deals with square and cubic roots in
Chapters IT and V, respectively, of De Practica Geometria (for an English
translation of this work, consult [17]). In Chapter II we find, for instance,
884 + % = 884 + % as the approach for /781488 = /8842 + 32; and
in Chapter V we find again a + when, for instance, he approaches

Sa(a D)1
V900 = v/93 +171 by 9+ % or approximately 9 + % We can say that
Fibonacci was aware of the Indo-Arabic numbering and of the calculation
methods associated with it, see [5]. Let us notice that the formula a+ m
was also employed for the cubic root, for instance we can mention the Spanish
mathematician Juan de Ortega (1480-1568)%.

As an instance of a new technique, let us finish with a comment to
the work of Rafael Bombelli (1526-1572), who in his Algebra proposes a

81n his book “Tratado subtilissimo de Arismetica y de Geometria”, Juan Cromberger:
Sevilla, 1537, we have, e.g., V/18889 ~ 26 4 1313
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recursive process to approximate /13, which currently we identify with
the generation of a continued fraction. Indeed, if in modern notation we
put V13 = V32+4 = 3+ 2, then 13 = 9 + 6z + 22 or z(z + 6) = 4,
that is, x = ~—. If we repeat the argument, we have V13 = 3 + z =

64
3+ %. The reader can consult a detailed explanation of Bombelli’s
6+F6ﬁ
method in [26]. For v/2, we obtain v/2 =1+ ﬁ, and its first conver-
24—

L3.7.17.41., 99, 239. 577
gents are {15 35 55 135 957 705 1605 108

3 The Viéte’s procedure

During the 16-th century we know different texts devoted to Arithmetic in
which we find the solution of square roots, both in exact and approximated
manners, still following the guideline of Flements, and in general the ex-
traction of roots of bigger powers by a numerical procedure based on that
we actually we denominate Newton’s binomial. In this way, let us cite to
Pérez de Moya (c.1512-1596), and his book Arithmetica practica y specula-
tiva, 1562; when Pérez de Moya expounds how to compute the square root
of 524176, that is, 724, after dividing 524176 in binary groups (52 - 41 - 76),
he explains: “And you will say that the root of 52 is 7 and it remains 3. Con-
tinue in order to extract the root of that 3 remaining and of those 4 placed
between the two marked points, you will do that by doubling the number 7
obtained previously as the root. How it is shown in the fourth proposition
of the Book II of the Elements, they are 14 and put these 14 under 34 as if
14 be a divisor, and do not worry about 7 of the first point,...”".

To better understand the rule, firstly realize that from the division of
the number into pairs of figures, we know that the integer part of the root
has three digits, abc = 100a + 10b + ¢. Once we know that the number
is placed between 700 and 800 (because 7> < 54 < 82, so a = 7), for
obtaining the second digit b in our current notation we would proceed as
follows: (700 + 10b)? = 524176 or 14000b + 1006 = 524176 — 490000, that
is, 140006(1 + %%bo) = 34176; then, b < %, and as an approximation
we take b as the integer part of ‘rﬁégg or, even, the integer part of %, that
is, b = 2; since 730% > 524176, at the moment we have 720 < /524176 <
730. To obtain the third digit, take into account the development 524176 =
(700 4 20 + ¢)? = 490000 + 28400 + 1440c + ¢, or 5776 = 34176 — 28400 =
1440¢c(1 + 175); now ¢ = % = %, that is, we do the attempt ¢ = 4, and
we finally obtain the integer root 724.

%Y asi diras, que la rayz de 52 es 7 y sobran 3. Prosigue para sacar la rayz de los 3
que sobraron, y de los 4 que estén entre los dos puntos, lo qual haras doblando los 7 que
te han venido por rayz. Como muestra Euclides en la quarta del segundo, que son 14,
pon estos 14 debaxo de los 34 como si fuessen los 14 algun partidor, y no cures del 7 que
pusiste en el puncto primero,...” (page 457).
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CapituloITI 1. 57
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qual haras doblando los.7. § te han venido por
rayz, Como mueftra Buclides ¢n la quartadel
{egundo,que fon.14.p6 cltos. 14. debaxo de los
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52 4176(7 —_
7 4
1

Ff s Aona
Figure 6: A fragment of /524176 in Arithmetica practica y speculativa by Pérez de Moya

All these ideas and procedures will crystallize masterfully in the work De
Numerosa Potestatum (1600/1646), from Francois Viéte.

The first edition of this work was in charge of Marino Ghetaldi (1568
1626) in 1600 (see [31]). After, in 1646 a new version appeared, inside the
posthumous book Opera Mathematica of Viéte, edited by Frans van Schooten
(1615-1660) (see [32]), also in Latin'". The work is divided into three parts:
De Numerosa Potestatum Purarum Resolutione (|31, ff. 2-6], [32, pp. 163-
172]), where Viéte solved numerically the so-called pure equations, 2" = a in
our actual notation; De Numerosa Potestatum Adfectarum Resolutione (|31,
ff. 7-34], [32, pp. 173-223]), devoted to the numerical resolution of (poly-
nomial) equations having other terms apart from the biggest degree term
and the independent coefficient (this kind of equations are called affected
equations in the Viéte’s terminology), and in that part Viéte extended the
method applied for the extraction of pure roots; finally, the last part, titled
Consectarium Generale ad Analysim Potestatum Adfectarum, Et praecepto-
rum quae ad eam pertinent, recollectio (|31, ff. 34-36|, [32, pp. 224-228|),
contains a summary of general consequences about the analysis developed
in the previous part as well as an enumeration of precepts to be considered
for the resolution of equations. For more information about this work, the
reader is referred to the comments appearing in [33] and the study developed
by J. Stedall in [28] and, more recently, by A. Mellado in [22, Cap. 7|.

Concerning pure equations, Viéte proposes the resolution of five equa-
tions, Problems I-V, from the square root to the sixth root of a positive inte-
ger number. In our current notation, they are 2 = 2916; 2> = 157464; 2* =

'We have to mention that there exists an English translation, [33], although incomplete.
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Figure 7: Extraction of the cubic root of 157464, [31]

331776; 2% = 7962624; 2% = 191102976, which correspond in the cosist nota-
tion given by Viéte to IQ sequari 29,16; IC sequari 157,464; 1QQ) =quari
331,776; IQC sequari 7,962,624; ICC @quari 191,102, 976, respectively.

The resolution of these equations (all of them having an exact root) is
carried out under very ingenious tables, original from Viéte, on which he
relies so that, supported in the development of the power of a binomial, he
can obtain their solutions. (For instance, in Figure 7 we have the table to
obtain the cubic root of 157464, 31, p.4]; see also [33, pp.317-320| for a
detailed explanation).

Respect to the numerical approach of n-th roots, in the precept 9 preced-
ing the resolution of pure equations, Viéte proposes to approach by above
and below in the case of irrational roots, and explains:

But if, although they are less, there is no dot for a power left over,
it is clear that the root of the term to be resolved is irrational.
To the collective root, therefore, add a fraction the numerator
of which is the remainder of the term to be solved and [the de-
nominator of which is| the same as what the divisors would be
if another point were added to the term to be resolved. This
fraction, added to the sum of the individual roots, makes a root
for the power to be resolved larger than the true root. If, in the
second power, the denominator is increased by 1, it makes a root
smaller than the true one. The root lies implicitly between these
divisors. It may be elicited as closely as you wish by, say, adding
zeros to that which is to be solved and continuing the work. And

UNRB
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this is necessarily within the limits of the tenth, otherwise the
operation has not been carried out correctly'’.
Translation from [33, pp. 313-314].

That is, in actual notation, the following approximation is proposed for
VA™ + R, namely: Integer root + Rest/(Divisor+1)< Solution < Integer
root + Rest/Divisor, or

R R
A+ —— ' A+ =
+ i+ 1 < Solution < A + R

where the divisor d is 2A (square root), 3A2+3A (cubic root), 443 +6A2+4A
(fourth root), etc. Let us say that the precept 9 is correct for the approxima-
tion of square roots, but it fails to be true in some cases whenever the index of
the searched root is greater than or equal to 3. To see it, consider for instance
the computation of v/20000. This root appears at the end of Problema III
in [31]. Viéte itself provides us the corresponding estimations, and gives
11+% and 11+%, because in this example we have 20000 = 11445359 =
A* 4+ R, and the divisor is d = (A+1)* — A* — 1 = 443 + 6A% + 44 = 6094.
When checking the values, we find 11 + 2339 < 11+ 3359 < {/20000, that is,
the two approximations are in fact by defect. If we look at [32], in this edition
the precept 9 remains invariable with respect to the Ghetaldi’s edition, but
now when estimating the value of v/20000, we appreciate a slight difference,
because now we see that the text changes and, instead of the procedure of
the former edition, now quaternary groups of zeros are added to the integer
part in order to extract as many decimal digits as desired, in particular we
have 11 + 180901070 and 11 + 180901080, see Figure 8 (notice that, although now the
strategy is correct -we suppose that by truncating at some place the chains
of quaternary groups-, however we also have two approximations by below
of v/20000). At no time is noticed and justified the slight change in the
new edition. Nor the question in [33]| is mentioned, in fact, it is omitted
(“Problems IIT and IV, here omitted, deal with the extraction of the roots of
pure fourth and fifth powers”, [33, p.320]). Moreover, as far as we know, no
mention to this fact has been signaled in the literature. With this note, we
have tried to fill this lack.

4Quod si dum cedunt non supersit aliquod addictum Potestati punctum, argumentum
est magnitudinis resolvendee latus esse irrationale. Collecto itaque lateri adiungitur frag-
mentum cuius numerator est numerus ¢ magnitudine resoluta reliquus. Divisores iidem,
qui essent si aliquod punctum Potestati addictum superesset resolvendum, & tale frag-
mentum singularium laterum summea adiunctum facit latus Potestatis resolutee maius
vero. Kt si denominatori addatur unitas, facit latus minus vero. In divisoribus enim inest
implicité latus, quod alioqui proximé esset eliciendum, ut pote productd per numerales
circulos ed quee resolvitur, Potestate, & continuato opere. At illud constat necesse est
intra denarii metam, alioquin rité non fuit operatum?”.



12 A problem on the approximation of n-roots. ..

fg:l"f;gwi. #quetur 20000. Quoniam 20000 non ¢t quadrato-quadratus numerus ac-
= curate, hﬂm’mm. adjedtis quaternis numeralibus circulis in infinitum , & erit
302 Latms primus vero, vel 1x 2 latus mapws vero. Medium [atw propinguuns 11 by,

Figure 8: Extraction of the cubic root of 20000, [31] (above), and [32] (below)

4 A question arises

We look for an approximation of
VA" + R,

where A > 1 is an integer number, 0 < R < (A+1)" — A" -1 = d
(notice that we assume R > 0, that is, the root is irrational, and that for

R=(A+1)"— A" we in fact evaluate /A" + R = /(A +1)"; and recall
that d is called the divisor of the approximation).
Then we consider the two following approximations of /A" + R,

R

and B
AB(n, A, R) = A+ . (2)

It is clear that AD(n, A, R) < AE(n, A, R). Then, we propose the problem
of determining whether these approximations are or not approximations by
default or excess, respectively, of /A" + R.

For the case by default, it is a simple task to show that

AD(n,A,R) < /A" + R, (3)

or equivalently (A + FRl)n < A" + R, merely use the Newton’s formula for
the power of a binomial and notice that R <d+1=(A+1)" — A".

For the case of square roots, n = 2, indeed AD(2, A, R) and AE(2, A, R)
are true approximations by default and excess, respectively (for vV A2 + R <
AFE(2, A, R) consider that d = 2A and square to obtain A2+ R < (A + %) 2).

Therefore B B
7 2 _
A+2A+1<\/A +R<A+2A.

At the moment, we know that in general AD(n, A, R) always provides a
default approximation for all n > 2. Also, AE(n, A, R) gives an approxima-
tion by excess when n = 2, that is, the precept 9 in [31] is appropriate when
we look for the approximation of the square root of A™ + R.

UNRB



P. J. Herrero, A. Linero, Ma. R. Massa i A. Mellado 13

Next, fixing A and n > 3, we are interested in knowing when the value
AE(n, A, R) generates a true approximation by excess of /A" + R. The
next section is devoted to this task, for the cases 3 < n < 7 since they can
be treated in a direct way (the case n > 8 is more involved, see Theorem 4
below, and will be commented at the end jointly with the conclusions of this

paper).

5 The solution for cases 3 <n <7

According to the results presented in Section 4, we assume n > 3. When
we try to find the integer values R, with 0 < R < d, such that A + g is an
approximation by excess of v/ A™ + R we have to analyze whether inequality

(A+§>H>A"+R (4)

holds or not. To stress the dependence of d on the values n and A, sometimes
we will write d = d(n, A).

We are interested in computing the amount of integer values R,0 < R <
d, for which (4) is true. Then, it makes sense to define

z/:z/(n,A):Card{R:O<R§d(n,A),AE(n,A,R) > "An+R}. (5)

Putting s = d — R, the inequality (4) is converted to

s\ n
1+s+<A+1—&) > (A+1)", (6)
therefore
v(n,A) = Card{s € Z:0 < s <d(n,A),(6) is true}. (7)

Fixn >3,A > 1, and hence d = d(n,A) = (A+1)" — A™ — 1. We define
the function f, a(x) = f(x,n, A), fna:[0,d] = R as

foa@) =14+ (4+1-2)" — A+ 1) (8)

For simplicity of notation, we will write f, 4 by f when no confusion can
arise.

It is straightforward to check that f(0) = 1 and f(d) = 0. Moreover,
it is a simple exercise to check that f,, 4(z) is a conver map, attaining its

minimum value at a point s, € (0,d), in fact s,, = d{ A+ 1— "]1/% .

Figure 9 shows us the general aspect of the graph of f, 4: is strictly decreas-
ing in the interval (0, s,,), having a zero ( in such a zone, and it strictly
increases in (8, d).
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f(x)
"

0 10 20 30 40 50 60 70 80 90
Case n=3, A=5, d=90

Figure 9: One example for fr, a(z)

T T T T T
0 5 10 15 20
Case n=2, A=10, d=20

Figure 10: For n =2, A+ % approximates by excess the exact value of vV A2 + R

Observe that if we extend f to the case n = 2, the corresponding map f2 o
is non negative, which confirms the already known fact, seen in Section 4,
stating that all the approximations A + % are by excess (see also Figure 10).
In the sequel, it will be fruitful to apply the well-known Descartes’ rule

of signs'?.

2In his original text, see [13, La Géométrie, Livre III, p.373], R. Descartes (1596-1650)
states the rule as follows: “On connoist aussy de cecy combien il peut y avoir de vrayes
racines, & combien de fausses en chasque Equation. A scavoir il y en peut avoir autant de
vrayes, que les signes + & — s’y trouvent de fois estre changés; autant de fausses qu’il s’y
trouve de fois deux signes +, ou deux signes — qui s’entresuivent”. / We know how many
true (positive) roots, and how many false (negative) roots, can exist in every equation. To
wit, it can have so many true roots as changes of signs + and — occur; and it can have so
many false roots as the times that two signs + or two signs — appear consecutively [our
translation]. Descartes does not provide any proof of this fact, and he limits himself to give
an example, the equation z* — 42® — 1922 + 106z — 120 = 0 whose positive roots (‘vrayes
racines’) are x = 2,3,4, and x = —5 is the unique negative root (‘fausses racines’); let us
notice that the above equation is constructed by multiplication of the equations x —2 = 0,
x—3=0,z—4=0, and = + 5 = 0. For a short proof, the reader is referred to [34]; for
a historical account of this result, and its first completely rigorous proof, we suggest the
reading of [4].
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Theorem. (Descartes’ rule of signs) Let P(x) = apz® +a12% + ...+ a,z’»
be a polynomial with nonzero real coefficients a;, 0 < j < n, and where the b;
are integers satisfying 0 < by < by < ... < by. Then, the number of positive
real zeros of P(x) (counted with multiplicities) is either equal to the number
of variations in signs in the sequence of the coefficients ag, a1, ..., a, or less
than that by an even whole number.

Corollary 1. Under the hypothesis of the above Descartes’ rule of signs, if
the number of variations in signs of ag, a1, . .., a, is exactly 1, then P(x) has
a unique positive root.

To obtain v(n, A) we adopt the direct strategy of finding values 1, o
close enough such that f, a(xz1) > 0 and fy, a(x2) <O0.

5.1 Cubic, fourth and fifth roots

In the case of cubic roots (n = 3), for A > 1,d = 342 +3A,0 < R < d, we
only need to compute f3 4(A) and f3 4(A+ 1) (remember (8)):

(3A+2)(3A +4)
f3,4(A) YA+ 1) >0,
1, (642 +4A—-1)(6A%+ 1442 + 84— 1)
faaldts3) = - 216A3(A + 1)3 <0

We deduce that the root ¢ of f3 4(z) = 0 belongs to the interval (A4, A+ %)
So, by the properties of f3 4 presented at the beginning of this Section,
f3.4(s) > 0 for the integers s = 0,1,..., A, that is, AE(3, A, R) > VA>+ R
for d — A < R < d, and consequently, by (5),

v(3,A)=A+1.

Example 2. We approach /990 = v/A3 + R = /93 + 261 by A—l—% =94
% =9+ %. We obtain an approximation by excess since (9 + %)3 > 990.
In this case, d—A:3-92+?i-9—9:261SR:261§d:270.

On the other hand, A + % =9+ % =9+ %—? is less than /989 =

VA3 + R =93+ 260 . Now, we obtain a default approzimation, which is
in accordance with 0 < R =260 < d— A = 261. (|

For the case of fourth roots, now we obtain

V(4 A) = ﬁﬂ +1- VAH’J.

3

Similarly to the cubic case, this is an immediate consequence of the values

2A 24 +1
fa.n <3> >0, and f47A( 3+ ) <0

(easily checked by a personal computer) and of the properties of the convex
function f4 4.
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Example 3. Let us revisit the Viete’s example v/20000 = v/114 + 5359 . In
this case, the approximation 11+ % 18 by default as d = 6094, A =11, R =
5359, and | 2552 | = 8. 0

For quintic roots, n = 5, we follow the same strategy of the previous
cases and obtain that

A A+2

A)=|— 1=|—.

o= 5] - [5]

To see it, with the help of a mathematical software,

A 1

fsalo )= 50 A2 5

2 )~ 100000(A +1)5(A2+ A + 1)
x (50004 + 3600047 + 127000A% + 288500A" + 464600A°

+ 552400A4° + 490750A4* + 321860A°
+ 149620A4% + 44770 A + 6561) > 0,

x (1043 + 2042 + 20A + 9)

and

A1l 1
J5.4 <2 + 2) ~ " 100000(A + 1)5(A2 + A + 1)5
x (104% 41042 + 104 — 1)
x (100004 + 350004 + 79000A4° + 1110004
+ 11550047 + 81400A° + 41300A° + 11250 A*
+ 1390A4% — 510A% + 404 — 1) < 0.

Thus, the zero ¢ of f5 a(x) = 0 lies in the open interval (%, g +1). Since A is
a positive integer, we deduce that f5 4(s) > 0 only for s = 0,1, ... L%J This

means that AE(n, A, R) > /A5 + R whenever R =d,d—1,...,d— L%J O

5.2 Sixth and seventh roots

We compute now the value of v(6, A), that is, the cardinal of values R €
{1,...,d(6, A)} such that AE(6, A, R) > v/ A5 + R. We will obtain

2A+4

5 )

(6. 4) = VA_1J

To prove it, we do a discussion on the values of A.

(i) Let A=1. Thend =d(n,A) = (A+1)" — A" —1=20—1—-1=62.
We have

1\6 123\% 58788614519
D=2+(2-=) —2=-—624+ (=) =—"—""""" <
for(1) =2+ ( 62> * < 62 > 56800235581
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By the properties of f,, 4, it follows that we have a unique approx-
imation by excess when s = 0, or equivalently R = d. Notice that
LQATHJ = LgJ =1 in this case.

(ii) Let A =2. Now, d =d(n, A) = 3% — 26 — 1 = 664. Again

< 0.

1\% ¢ —16543657942216431
664 B

1) =2 S
Joa(1) =2+ <3 85705457236443136

So, our unique approximation by excess corresponds to s = 0, or R = d.
As in the previous case, LMTJAJ = 1.

(iii) Let A =3. We have d = 4% — 3% — 1 = 3366. By a direct computation
(check it) we find that

6
f6,3 <5> > 07 but f6,3(2) < 07

so the unique values giving us an approximation by excess are s = 0
and s = 1, that is, R € {d,d — 1}. Notice that LQATHJ = 2.

(iv) Let A > 4. We claim that f 4 (%) < 0. With the help of a computer,

we obtain fg o (%) =: gﬁg’;‘g, where Dg(A) = 15625d° and

Ng(A) = (30A* 4+ 754° + 1004% 4 75A + 28)

x (—4050000A° — 324000004 — 10300500047 — 519750004
+912481875A' + 46588162504 4 13800777375A3
+29961127500A4'251357591250 + A 4 71924369500 A°
+ 83733302450 A° + 81679154000A4% + 66842104875A7
+ 45673566250 A% + 25767455655A° + 11766939100A*

+ 420822360043 + 111348320042 + 195334080 A
+ 17210368).

Define Qg(A) := 30A4+75A3ﬁ61(013342+75A+28’ a polynomial of degree 19.
Then Q6(3) > 0 and Qs(4) < 0. From the Descartes’ rule of signs and
its Corollary 1, we conclude that Qg(A) has a unique positive real root,
located at the open interval (3,4) and, since Qg(A) — —oo when A
tends to infinity, Qs(A) < 0 for all A > 4. Thus, Ng(A) < 0 for all

A > 4. Therefore, fs 4 (22) <0 for all A > 4. This ends the claim.
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On the other hand, we get fg, A( —1) > 0, because

24 — 1 1
Jo.a ( 5 ) ~ 15625A6(6A% + 1543 + 2042 + 154 + 6)°
x (30A4% + 75A" + 100A4% + 75A% + 284 + 1)
x (8100000A** + 121500000A% + 875070000.A%
+ 4074840000A4%" + - - - 4 282630 A° + 8395 A%
+140A 4+ 1) > 0.

(all the coefficients of the last polynomial in A are positive).

Now we are in a position to finish Case (iv), A > 4: since fg A(2A Ly >
0 and fs, A(2A) < 0, we conclude that fs 4(s) > 0 for the integer values
s=0,1,. LzA 1J realize that A is a positive integer.

With our discussion of Cases (i)-(iv), we finish the case of sixth roots. O
Finally, for seventh roots we are going to show that

2A+n—2J B VAH)J
= | ==

n—1

(7, A) = {

Similarly to sixth roots, we distinguish several cases.

(i) A =1. Then f7r1(1) < 0 so fr1(s) > 0 only for the integer s = 0.
Thus, v(7,1) =1 = [2455] = |T| = 1.
(ii) A=2. Again fr2(1) <0and v(7,2) =1= || = | 2453
(iii) A > 3. Using a mathematical software, f7,A(%) ‘D EAg with
D7(A) = 1801088541A4%° + 37822859361 434 + 403443833184A4%3 +
+ 403443833184 A% + 37822859361 A + 1801088541

(all the coefficients of D7(A) are positive) and

N7(A) = —600362847A3* — 10806531246 A% — 97258781214 432
— 577549058814 A% — 2514834199962A30 — 8420174695296 A%°
— 21944119719060A4% — 43061625563922A4%7 — 53191033284627A%°
+ 13234913195994 A% 4 303648512134590 4%
+1063881793793574A% 4- 2599443322376040.A%2
+ 5157799213711410A%* + 8755187169969450 A%°
+ 13031632337209290 A + 17242848176742405A'8
+ 20448216949700610 A7 + 21842457224825790 A6
+ 21075654616272900A' + 18392229344961864 A
+14515293924381222 A3 + 10346477812600482A'2
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+ 6644210201266050 A" + 3829261973222007 A'°
+1970068132488204A° + 898255956563028 A%

+ 359478031796604A7 + 124638816387666A° + 36779824104114A°
+ 9007142933166 A% + 1762931499924 A3 + 259451944899 A*

+ 256247430604 + 1280000000.

By the Descartes’ rule of signs, N7(A) has a unique positive real root
lying in the interval (2,3) since N7(2) > 0 and N7(3) < 0 (see Fig-
ure 11).

-2e23 \

-4e23

< 6e23 \
=2

-8e23

-le24 \

-1.2e24

Figure 11: The graph of N7(A) near to its positive zero

Therefore, f7 4 (%) = g:(’:) < 0 for all A > 3.

On the other hand, also with the help of a mathematical software,

ra(557) = e

with
Pr(A) = 38423222208 A*! 4 1075850221824 A + 14062899328128 4%
4+ 118984124 A% + 252459243 4 434776 A% 4 2804 + 1
and

Q7(A) = 230539333248 A*% 4 4841325998208 A% + 51640810647552A%°

+ -+ 4+ 51640810647552A° + 4841325998208 A% + 230539333248 A7
(all the non vanishing coefficients of P;(A) and Q7(A) are positive). Clearly,
f7,A(%G_1) > 0 for all A > 1. Since 2‘4‘%1 ¢ 7, we deduce that f(s) > 0 for
the integer values s =0,1,..., L%J. So, v(7,A) = L2AG%1J +1= LQAT*E’J .
U



20 A problem on the approximation of n-roots. ..

.
6 The generalization

It is worth mentioning that we were able to find a general result for the
value v(n, A). Because its proof is very involved to be presented in this
simple note, we only trace its main steps. We advance that, in general, the

number v(n, A) is either [%J or [%J —-1= [%J .

In the first step we prove that for n > 8 and A = 1, it holds v(n,1) = 1.
This is due to the fact that, for n > 8,

n
Fra) =2+ (2 55 )~ 2 <o
Next, the crucial step is to demonstrate that for n > 8 and A > 2 we
have "
— | <O. 9
foa (225) )

To reach it, we use that 1 —nz < (1—z)" <1—nz+ %ﬁ for z € (0,1)
and nz < 1, and then taking z = 0 24 5 we obtain the inequality

@A) (n—1)d
24
fn,A (n—l)

2A 2A

= 1+n_1+<A+1—(n_1)d)n—(A+1)”

— 12—y (1- (1—@4“?21-1)@1))

24 24n n(n—1) 24 2
n— (A+)(n—-1)d 2 <(A+1)(n—1)d>
24 2An(A+ 1" 24%n(A +1)"?
n—1  (n—1)d (n—1)d?
(n —1)d? + 2Ad? — 2An(A + 1)"1d + 24%n(A + 1)" 2
(n —1)d2 ‘

IN

1+

] —(A+1)"

So, the proof of (9) is complete if we show that
gN(n, A) := (n —1)d* +2Ad* — 2An(A+ 1)"1d +2A4*n(A+1)" 2 < 0.

The proof of this last fact requires a laborious manipulation (and we omit
it), as well as the final application of the Descarte’s rule of signs.

In this way, if 24 < n — 1 we can assure that v(n,A) = 1 (because
fn,a(0) =1 >0 and f, a(1) < 0 since f—fl < 1, recall the properties of the
convex function fy, 4); at the same time, if 24 > n — 1, we are able to prove
that there exists k = k(n, A), k € {O, 1,..., VLT_IJ - 1} such that

24— (k+1) _ 24—k
>~ 90 n_17

n—1
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where
d

so = so(n, A) = n(AT 1) —d

is precisely the value of the intersection between the tangent line to f, 4 at
the point (0,1) and the axis Oz (take into account that, by convexity, we
have that f,, a(sg) > 0), see Figure 12.

—f35(x)

T T T T v v T
0 5 10 15 20 25 30
Case n=3, A=5 and its tangent line r

Figure 12: Function f, 4(z) and the tangent line passing by (0,1)

Joining all the above ingredients, we advance the following result:

Theorem 4. Suppose that n and A are positive integers, withn > 8, A > 2.
Let v(n, A) be the number given by (5) or (7); let d(n, A) = (A+1)"— A" —

Cmdfn,A()=1+$+(A+1—d(n7A)) — (A+1)". Then:

(a) If2A<n—1,v(n,A)=1.
(b) Assume that 2A > n — 1.

(b1) TIfn—112A—k for allk =1,2,....|%5] — 1,

n—1

v(n, A) = fA*—”‘QJ .

(b2) If n — 1 | 2A — k for some k = 1,2,...,[”7_” — 1, and we put

so = (AH‘)i,En lA)d( L then in turn:
(b20) If 50> |25t |, w(n, 4) = | 244522 |

(b211) If so < L 24— J and fo A(2A5E) > 0, v(n, A) = {%J

24— J 2A k) <0,v(n,A) = [—QAJ_”I_QJ —1.

(b2111) If so < [
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7 Conclusions

In this note, we have presented a little piece of history relative to the numer-
ical approach of n-th roots, in particular we have seen in the Viete’s work
De Numerosa Potestatum a numerical procedure (based upon the develop-
ment of a binomial) strongly related with the extraction of square roots in
the Babylonian or Greek tradition. According to De Morgan, [12], the Viéte
method was improved by T. Harriot (1560-1621), and used by W. Oughtred
(1574-1660), J. Wallis (1616-1703) as well as the generality of at least En-
glish writers (sic), which demonstrates its spread in England; concerning
the European continent, also several authors considered the method either
in its original version, as Dechales (1621-1678) in his Cursus seu Mundus
Mathematicus, first published in 1674, or trying to adapt it to an incipient
algebraic language, as it occurs in the Cursus Mathematicus of P. Hérigone
(1580-1643), published at Paris in six volumes during 1634 and 1642. Even,
we know that famous mathematicians of the 17-th century referred to it
in cases where was necessary its application, as G.W. Leibniz (1646-1716)
who indicates its suitable use '*. Anyway, following again [12], we can say
that the method continued to be used up to the time at which the Newton
approximation appeared at the last quarter of 17-th century. In this direc-
tion, let us also mention to T. Fantet de Lagny (1660-1734), who in [11,
pp. 9-10] writes: “Il y a prés d’un siecle que le scavant Mr. Viete a donné
une methode generale pour 'extraction des racines de toutes les puissances
pures, dans son livre de numerosa potestatum resolutione... Tous ceux qui
ont écrit depuis sur I'extraction des racines, n’ont fait que copier Viete, & se
copier les uns les autres, & on ne doit pas en estre surpris. Cette methode
paroit si naturelle & si conforme a ce grand principe des Analystes, que la
resolution doit se faire par le voye opposée a la composition, qu’il ne tombe
pas mesme dans l’esprit qu’on en puisse inventer une meilleure”'*.

From the detailed reading of De Numerosa Potestatum, we have detected
a lack in the different editions of this work, in relation with its precept 9 about
approximation by excess of the n-roots, n > 3. In this direction, imagine the
difficulty in Viéte’s time for computing by hand all the problems appearing in
De Numerosa Potestatum, and compare it with the current easy treatment by

13Leibiniz writes “... per extractiones radicum appropinquatrices methodo Vietaea” -by
Viéte’s method of approximately root extraction- in [19, p. 780] for the root extraction
operation, that is, he referred to the De Numerosa Potestatum as a reference for the root
extraction.

144t is almost a century since the learned Mr. Viete gave a general method for extracting
the roots of all pure powers, in his book de numerosa potestatum resolutione. Anyone who
has written about root extraction since then has only copied Viete, and copied each other,
and we should not be surprised. This method seems so natural and so according to
this great principle of the Analysts, that the solution must be done by the way opposite
to the composition, that even our spirit does not think of inventing a better one” (our
translation).
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a personal computer, realize how actually the task is enormously simplified.

In turn, this study gave rise to the pure mathematical question of count-
ing the values of remainders R for which A+ % is an approximation by excess
of VA" + R, 0<R<d,d=(A+1)" — A" — 1. We have done a complete
(and direct, basic) study of the value v(n, A) in the cases 3 < n < 7, and
we have advanced the general result in Theorem 4, whose proof was only
slightly outlined.

Although, of course, the significance of the found main result in Theo-
rem 4 is not transcendental, at least allows us to illustrate the importance
and benefits of the study of History of Mathematics, given rise to questions
and reflections through, in particular, the reading of primary sources. They
can help us to elaborate materials for classroom, from a more human and
didactic approach to the learning of mathematics. Realize that in this note
we have employed a series of basic mathematics, and we think that materials
for classroom could be implemented from it, dealing with different aspects,
among others, for instance, the importance of the algebraization of Mathe-
matics during 17-th century (compare the cosist notation in Viéte with our
modern notation), the handling of inequalities and combinatorial numbers,
properties of convex functions and their drawing, calculus of extremal points,
location of roots, even the student could develop an algorithmic procedure
for testing the validity of Theorem 4.
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