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Inter-annual variation in the plant-pollinator network of a 

rupicolous plant community 

Iago Izquierdo Ferreiro 

 

Abstract 

Pollination networks are a representation of the interactions between the plant and 

pollinator communities in a particular location. Communities change in composition and 

structure from year to year, and therefore interactions are expected to change in 

accordance. These changes may affect not only the identity and strength (frequency) of the 

interactions, but also the structure of the interaction networks. In this study, we analyse 

the variation over three years of a plant community, its pollinators and the resulting 

interactions. Because the community is restricted to a very particular rupicolous habitat, 

we expect year-to-year variation to be less pronounced than in other plant-pollinator 

communities. We surveyed 14 plant species from April to June and recorded 76 pollinator 

species. The total number of plant-pollinator interactions recorded was 211. The flower 

composition of the plant community showed moderate levels of variation from year to 

year. Instead, variation in the composition of the pollinator community was higher, and 

pollinator species turnover was as high as 35-47%. Interaction composition identity and 

interaction strength was even more variable. Interaction turnover was close to 70%. Some 

metrics describing the structure of the network showed moderate levels of variability 

(connectance, interaction evenness). Generality and Vulnerability, on the other hand 

showed greater variation. The comparison of our results with those of similar studies 

suggests that, in agreement with our initial hypothesis, year-to-year variation is somewhat 

lower in our community.  

 

1. Introduction. 

The increase in studies analysing the importance of interaction between organisms is revealing 

that these relationships are largely supportive of the diversity of life on the planet (Naeem et al. 

1999, Schemske et al. 2009). For instance, a large number of animal species depend closely on 

the resources that plants provide around their reproductive structures (Levey et al. 2002, Waser 

and Ollerton 2006). Among these interactions, there is one, the mutualism of pollination, which 

seems vitally important for the development and maintenance of life on earth. Not surprisingly, 

more than 85% of flowering plants require biotic vectors that transfer pollen between the 

reproductive structures of plants (Ollerton et al. 2011). For this reason, the interest in 

understanding the plant-pollinator mutual systems has become of vital importance both due to 

its importance in the development and maintenance of life on earth and for coping with the 

effects of global change (Potts et al. 2010).  

In this sense, the development of complex network theory is facilitating the study of 

megadiverse ecological interactions (Jordano et al. 2009). Mutualistic webs define the nexus of 

ecosystems services such as pollination and seed dispersal, rather than population dynamics or 

energy fluxes per se (Ings et al. 2008). In fact, in the last years mutualistic interaction networks 

have been increasingly studied especially in pollination ecology. 
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Among other topics, interaction networks are helping to unravel the degree of fidelity between 

floral visitors and flowers. The discussion on whether pollination mutualisms are largely 

mediated by generalist or specialist interactions has sparked a huge debate in recent years 

(Waser et al. 1996, Gómez and Zamora 1999, Johnson and Steiner 2000, Waser and Ollerton 

2006). Reviews of plant-pollinator mutualistic networks show that generalization is a common 

pattern in this type of interaction (Olesen and Jordano 2002) and the temporal fluctuation in the 

abundance and composition of the set of floral visitors is one of the most accepted causes of the 

existence of generalized pollination systems (Gómez 2002).  

However, few studies have attempted to quantify spatial-temporal variation in species 

composition and network structure (Dupont et al. 2009); some (Olesen et al. 2008, Petanidou et 

al. 2008) reflect how the temporal dynamics are evident in the network topology, in addition to 

changes in interactions between plants and pollinators over time. Long-term studies have 

confirmed the opportunistic nature of plant-pollinator relationships, thus demonstrating the 

plasticity of interactions over time (Price et al. 2005).  

In this study, we focus on the temporal dynamics of a community of plants growing in an 

environment of limestone outcrops. Most of these plant species are strictly rupicolous and grow 

exclusively in limestone crevices, overhangs and ledges. The rest of the species grow at the base 

of limestone outcrops. We argue that this dependence on a physiologically demanding and 

spatially limited environment such as limestone outcrops, should be accompanied by a certain 

stability in their sexual reproduction, and, therefore, on the dynamics of their biotic interactions 

such as pollination. However, research at the level of individual plant species has shown how 

the variation in pollination services can be huge, both spatial and temporally (Herrera 1988, 

Thompson 2001, Duan et al. 2007, Gómez et al. 2010, Castro et al. 2013). These temporal 

fluctuations have the potential to profoundly influence the ecological dynamics of plant 

populations and communities (Ashman et al. 2004). The characteristics of the plant community 

that we have studied, spatially restricted to a stressful environment, leads us to hypothesize that 

in this situation there should be a high fidelity between plants and pollinators, with low 

temporal variations. In this sense, our starting hypothesis is that the interactions of pollination in 

these plant species inhabiting a physiologically demanding environment, cannot vary too much 

in time, in order to ensure stable sexual reproduction over time. Therefore, we try to verify if the 

inter-annual variation of these plant-pollinator mutualistic networks is low, so that this ensures 

the persistence of the species.  

The general objective of the study is to analyse temporal variation during 3 years in a 

pollination network. The specific objectives are to quantify: (I) changes in the composition and 

structure of the plant community; (II) changes in the composition and structure of the pollinator 

community; and (III) changes in the composition and structure of the plant-pollinator interaction 

networks. 

 

2. Material and methods. 

2.1 Study area and species. 

The study was conducted in the El Bierzo region, in Northwestern Spain. The study area is 

characterized by an abrupt topography, dominated by limestone outcrops that give the landscape 

strong differences in altitude. This conditions a very rugged topography with deep gorges and 
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very marked reliefs in which the differential erosion has accentuated the fractured aspect of the 

landscape. The region has a Mediterranean climate, and the study community is located in 

limestone outcrops in a landscape composed of a mosaic of habitats with cultivated land and 

native vegetation, such as holm oak woodland (Quercus ilex, Arbutus unedo and Quercus 

suber), and different Mediterranean shrubland and pasture communities, many of them growing 

on former cultivated lands. Phytosociologically, the community of plants studied is integrated in 

the rupicolous associations Petrocoptidetum grandiflorae and Petrocoptidetum viscosae (Losa 

et al. 1975). Three of the populations studied are located in the Natural Park Serra da Enciña da 

Lastra (Fig 1): Vilardesilva (640m a.s.l.; 42°27’32’’N, 6°49’34’’W), Cobas, (477m a.s.l.; 

42°28’15’’N, 6°49’48’’W) and Estrecho (438m a.s.l. 42°29’15’’N, 6°49’58’’W). A fourth 

population is located in La Chana (588m a.s.l. 42°28’31’’N, 6°44’15’’W).  

 

 

 

 

 

 

 

 

 

 

Figure 1. Location where the study was carried out. Three study sites (Vilardesilva, Cobas and Estrecho) are located in 
the Natural Park Serra da Enciña da Lastra and the fourth (La Chana) in the surroundings (42°28’40.2’’N, 6°50’47.5’’W) 
in Northwestern Spain. 

 

2.2 Field observations and data collection 

Data collection was conducted by Luis Navarro (University of Vigo) during the years 1992, 

1993 and 1994. Sampling was carried out focusing on patches of rupicolous plant species in 

limestone walls of four localities.  

In the limestone walls, plant-flower visitor interactions were sampled in sunny windless days 

during from April to June, covering the period of floral visitor daytime activity (08:00 – 21:00 

GMT). Sampling consisted of both fixed and haphazard transects in which the sampling effort 

per plant species was proportional to flower abundance. We considered a visit only when the 

flower visitor clearly touched the anthers or stigma of the flower. The sampling dates varied 

between years owing to differences in weather conditions and trying to survey the flowering 

peaks of the species of plants studied. Thus, the beginning and ending of the surveys varied 

among years (1992:  9 April - 4 June; 1993: 11 April - 13 June; 1994: 7 April - 24 June). 

Total sampling effort was 12,051 visits, recorded in 169.8 hours of sampling.  
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2.3 Data analysis. 

With the data obtained in the surveys, a database was created containing all the observations of 

the 3 years of study. Each observation is classified with a rank (identification number), name of 

the observed plant and family to which it belongs, date and time of sampling, number of open 

flowers (abundance), location, survey duration (in minutes), pollinator species, and the number 

of visits recorded. The database contains information on14 plant species, 76 pollinators species 

and 211 different interactions. 

To describe plant community structure, we used the relative abundance (measured as the sum of 

open flowers over each study year) of each of the 14 plant species. Pollinators community 

structure was characterized by the number of individuals of each species recorded over each 

study year. To characterize plant-pollinator interaction strength (frequency), and since survey 

time differed across plant species, the number of visits recorded was divided by the number of 

open flowers surveyed and by the time (in minutes) spent in each survey. 

We used the Bipartite package (Dormann et al. 2009) for R (R core team 2017) to build an 

“Interaction matrix” for each year, with plants in rows, pollinators in columns and interaction 

frequencies in the cells. We used the same package to build a plant-pollinator interaction graph 

for each year.  

In order to measure inter-annual changes in the composition (relative flower abundance of each 

species) plant community, we used the Bray Curtis dissimilarity index (  
∑  |        |
 
   

∑  |        |
 
   

) (Bray 

and Curtis 1957). This index ranges between 0 and 1, where 0 indicates that the two years have 

the same flower composition and 1 that they differ completely. We used the same index to 

measure variation in pollinator composition (abundance of each recorded species). Specific 

plant-pollinator interaction can be treated in the same way as species, with interaction frequency 

being equivalent to species abundance. Therefore, we again used the index of Bray Curtis to 

compare differences in interaction composition between years.  

To describe the structure of the plant-pollinator network we used “connectance” (realized 

proportion of possible links) (Dormann et al. 2009) and “interaction evenness” (Shannon’s 

diversity of interactions divided by ln –plants species richness x pollinators species richness-) 

(Dormann et al. 2009), which indicates how equitable are the different interactions, where 1 is 

the maximum attainable. We also used the quantitative metrics “vulnerability” (weighted 

average number of pollinator species per plant) and “generality” (weighted average number of 

plant species per pollinator) (Bersier et al. 2002).  

All metrics were calculated with Bipartite v.2.08 (Dormann et al. 2009). 

 

3. Results 

3.1 General description of the community 

The 14 plant species studied bloomed each year (Table 1). Over the three years, 76 different 

pollinator species were recorded. The number of pollinator species showed little variation across 

years. The number of interactions recorded was highest in 1994. Importantly, the number of 
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interactions recorded did not increase with the number of pollinator species recorded. 

Interactions are presented in Fig. 2.  

Table 1. Descriptors of the plant-pollinator community and interaction network metrics. Connectance is calculated as 
“number of interactions/(plant species X pollinator species)”. Interaction evenness indicates how equitable are the 
different interactions (maximum of 1); Generality is a quantitative measure of the degree of pollinators; Vulnerability is a 
quantitative measure of the degree of plants. 

             1992 1993 1994 TOTAL 

Plant species 

Pollinator species 

Interaction number 

Connectance 

Interaction evenness 

Generality 

Vulnerability 

14 

55 

100 

12.98 

0.578 

2.168 

6.012 

14 

56 

107 

13.65 

0.546 

2.619 

4.679 

14 

52 

124 

17.03 

0.536 

2.985 

4.211 

14 

76 

211 

- 

- 

- 

- 

 

The interaction matrix (Fig. 2) presents a nested structure, with more interactions in the upper 

left corner. As expected, the most frequent interactions tend to occur in more than one year, as 

indicated by the accumulation of red and orange cells in the upper left corner of Fig. 2. It is 

important to note, however, that some rare interactions are also consistent in time and occur in 

more than one year. Based on the number and strength of interactions, Petrocoptis grandiflora  

and Jasminum fruticans appear as to two main plant species organizing the structure of the 

interaction matrix.  

 

 

 

 

 

 

 

 

 

Figure 2.  Interaction matrix of the 14 plants species and the 76 pollinators species recorded over the 3 years. 
Interactions occurring in three, two and one years are represented in red, orange and green, respectively. Plant (rows) 
and pollinator species (columns) are ordered left to right and top to bottom according to their number of interactions 
recorded (over the three years). 

 

3.2 Plants community: 

The timing of the maximum number of open flowers (flowering peak) occurred on 7 of May in 

1992, on 30 of April in 1993, and on 8 of May in 1994. There are important changes year to 

year in the amount of flowers produced by the different plant species form year to year (Fig. 3). 

In 1992, the flower community is dominated by Aethionema marginatum, Rhamnus legionensis 

and Petrocoptis grandiflora; whereas in 1993 it is clearly dominated by Anthyllis vulneraria 
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and Armeria rothmaleri. In 1994, the distribution of flower abundances is much more equitable, 

without clearly dominant species.  

The results of the Bray-Curtis dissimilarity index for the three pairs of years are: 1992-1993: 

0.28; 1993-1994: 0.25; 1992-1994: 0.21. These results indicate that the variation between years 

in flower composition is quite high and similar across the years. That is, even if the identity of 

the flowering species does not vary (the 14 plant species bloom every year), the relative number 

of flowers produced by each species is highly variable. In other words, a plant species may 

bloom profusely in one year but very little in other years, and therefore the flower resources 

available to the pollinators are subject to strong fluctuations.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Relative abundance of flowers produced by each plant species in the three years of study. Relative abundance 
is the percentage obtained from the quotient of the maximum abundance of each species divided by the sum of the 
maximum abundances of all plants (separately for each year). Species ordered according to their total abundance (sum 
of the three years). 

 

3.3 Pollinators community: 

Over the 3 years of study 76 species of pollinator were recorded (Fig. 4). The distribution of 

abundance is characterized by a few very abundant species and a long tail of rare species. Many 

of these rare species were only recorded in one year. The number of pollinator species recorded 

each year is quite similar (Table 1), but the identity of the species varies a lot from year to year. 

Thus, the percentage of pollinator species turnover or replacement is  36.76% between 1992 and 

1993, 45.71% between 1993 and 1994, and  47.14%, between 1992 and 1994.  

Overall, the 4 most abundant pollinators are Anthophora acervorum, Bombus terrestris, 

Bombylius major and Macroglossum stellatarum. These specis are present every year, but their 

abundance varies considerably between years. Others species, such as Eucera Longicornis, are 

very abundant one year (1994), but are absent or very rear the other years. As a result, the Bray 

Curtis dissimilarity index are relatively high: 1992-1993: 0.52, 1993-1994: 0.54 1992-1994: 

0.61. It is important to note that these dissimilarities between years are higher than for plants, 

indicating that pollinators are more variable.   
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3.4 Plant-pollinator interactions: 

A total of 211 different interactions were recorded over the 3 years of study (Fig. S1). As with 

pollinators, the distribution of interaction strengths is characterized by a few very strong 

interactions and a very long tale of weak interactions. Many of these rare interactions only occur 

in one year. Even though the number of interactions recorded does not vary greatly from year to 

year (100 to 124), their turnover (replacement from year to year) is high: 1992-1993: 68.79%; 

1993-1994: 74.32%, 1992-1994: 74.57%. Therefore, these turnovers are higher than those 

registered for pollinators.  

To better visualize the inter-annual variation in interaction strength, only the 20 most important 

interactions for any of the three years (48 interactions) are represented in Fig. 5. A few 

interactions (e.g., Petrocoptis grandiflora X Anthophora acervorum, Anthyllis vulneraria X 

Anthophora acervorum) are strong in all three years. However, there are even more interactions 

(e.g., Anthyllis vulneraria X Bombus terrestris, Petrocoptis grandiflora X Bombus terrestris, 

Leontodon farinosus X Eucera longicornis) that are very strong in one year and very weak or 

even absent in the other years. As a result, the Bray Curtis index comparing dissimilarity of 

interactions between years is high: 1992-1993: 0.67; 1993-1994: 0.68; 1992-1994: 0.73. That is, 

the interaction dissimilarity between years is higher than for pollinators and much higher than 

for plants.   

 

 

Figure 5. Rank-abundance distribution of the plant-pollinator interactions in each study year. Only the 20 most important 
interactions in any of the three years are represented (48 interactions). Interactions ordered according to their total 
strength (sum of the three years).  
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3.5 Networks structure: 

Network metrics describe the structure of the network (Table 1). Connectance is similar in 1992 

and 1993, and increases slightly in 1994 because the number of interactions is higher even 

though the number of pollinator species is lower. Variation in interaction evenness is also 

moderate, being slightly higher in 1992 that in the other years, when interactions are more 

similar in their strength (Fig. 6). Changes between years in generality are more important, 

increasing from 2 in 1992 to 3 in 1994 (Table 1). Vulnerability is also highly variable, and 

follows a trend opposite to generality, with highest values (6) in 1992 and lowest values (4) in 

1994 (Table 1).  

Fig. 6 provides a direct comparison of the structure of the interaction networks of the three 

years. They emphasize in colour the most important interactions according to their strength. In 

1994, these 4 interactions have a similar strength. The only interaction that maintains a high 

level of strength in the other two years is Petrocoptis grandiflora X Anthophora acervorum. The 

other 3 marked interactions have a much smaller strength in 1992 and 1993 or even are 

completely absent Leontodon farinosus and Bombus terrestris. 
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A) 1992 

 

 

 

B) 1993 
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C) 1994 

 

 

 

 

 

 

 

 

Figure 6. Plant-pollinator networks of the year 3 years of study. The width of the grey bands reflects interaction strength. 
The 4 most important interactions considering the three years are marked with different colours (1) Petrocoptis 
grandiflora x Anthophora acervorum (Red); (2) Anthyllis vulneraria x Bombus terrestris (Blue); (3) Leontodon farinosus x 
Eucera longicornis (Green); (4) Petrocoptis grandiflora x Bombus terrestris (Yellow).  
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4. Discussion. 

Our study analyses the inter-annual variation in the flower production of a plant community, as 

well as that of its pollinators and resulting plant-pollinator network. Our initial hypothesis is 

that, because this community is restricted to a very specific and localized kind of habitat, the 

level of variation of its interactions should be low.  

The 14 plant species surveyed bloomed every year. This result may seem obvious, but years in 

which some species do not bloom are frequent in other drier habitats (Flo et al. 2017). The study 

of Flo et al. (2017) also shows that most of the variability between years is due to differences in 

flower production rather than in flowering phenology. Although all species of plants studied 

flower each year, their relative dominance varies between years, as reflected by the results of 

the Bray Curtis index. Importantly, this variability not only affects rare plants, but also some of 

the most abundant ones. This variation in flower abundance may have repercussions on the 

attractiveness of pollinators, as demonstrated by Heithaus et al. (1982) where pollinators are 

often attracted after the plant reaches a threshold density of flower availability. It is also 

important to keep in mind that the variation in flower abundance may be due both to abiotic 

factors – since precipitation is directly related to the production of flowers (Prieto et al. 2008) – 

and to biotic factors, such as seed production (mediated by pollination interactions) and flower 

or seed predators (Elzinga et al. 2007), which could influence bloom of the following year. 

Changes in flower density and composition have an effect on the community of pollinators, 

varying their choice of flowers and visitation rates, and therefore it has consequences on the 

reproductive success of plants (Lázaro et al. 2013). 

Pollinators have a higher variation in abundance than plants, as indicated by the results obtained 

with the index of Bray Curtis. Pollinator species turnover from year to year was high (36-47%), 

but no as high as in other studies (Petanidou et al. 2008, Dupont et al. 2009, Olesen et al. 2011) 

in which turnover ranges from 44 to 73%. Among the group of more important species only 3 of 

them (Anthophora acervorum, Bombus terrestris and Bombylius major) maintain high 

abundance over the years of study. It is important to note that some species, such as Eucera 

longicornis indicating, like with plants, that the variation in abundance not only affects rare 

species, but also abundant ones. As found in other studies (Bosch et al. 2009, Potts et al. 2003), 

the pollinator community is characterized by a few very abundant species and a long tail of rare 

species. Even with their low interaction frequency, these rare species provide important support 

to the network when their interaction strength is considered collectively, and due to the high 

number of interactions in which they collectively participate. There are also some species, such 

as Andrena fulva, Gonepteryx cleopatra and Syrphus ribesii that in spite of their low interaction 

strength are present in the 3 years. This situation in which a small group of taxa has many 

interactions and many species have few interactions has already been documented in other 

networks (Dicks et al. 2002, Medan et al. 2002, Jordano et al. 2003).  

The life history of pollinators may have effects on their abundance in the face of disturbances. 

Among the most important pollinator species, Anthophora acervorum is the one that remains 

more stable from one year to another, something also found in Navarro (2000). On the other 

hand, other abundant pollinators species, such as Bombus terrestris, show great variation. This 

variation of Bombus terrestris has already been noticed in other studies (Bosch et al. 2009, 

Navarro 2000).  According to Owen et al. (2013), this variation could be attributed to climate 

change. These authors show that in years with warm autumns, Bombus terrestris queens do not 

enter winter diapause, and instead initiate colony development. However, workers of this 
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species are less capable to withstand freezing temperatures. As a result, these premature 

colonies may collapse if temperature fall below zero during the winter.  

When important year-to-year changes occur in the communities of plants and pollinators, it is 

expected that their interactions will be even more dynamic. As a result, the interactions between 

both communities show a high turnover (68-74%). However, comparing our results with those 

of other studies, our community appears to be somewhat more stable. Dupont et al (2009) 

document interaction turnovers between 78-89%, and Petanidou et al (2008) conclude that 

interaction turnover can be as high as 95%. 

Changes in the identity of the interactions do not necessarily imply changes in network 

structure. Not having performed statistical analyses of the metrics, we cannot state whether the 

observed variation in network metrics is significant or not. Nonetheless, our results suggest 

some trends. Connectance decreased with species number. In other words, large networks are 

less connected. This result is in agreement with other studies (Cohen, 1978, Dunne et al. 2002a, 

Jordano, 1987, Pimm, 2002), and it is explained by the fact that as the number of species in the 

community increases, the number of interaction also increases, but not as quickly as the number 

of potential interactions. Another suggestive trend in our network structure results is the 

negative trend between generality and vulnerability (understood as the generality of plants). 

When one diminishes the other increases. This result is contrary to expectations, since increases 

in generality are usually accompanied by increases in vulnerability (Dormann et al. 2009). In 

our case, vulnerability is highest in 1992, probably because interactions are more equitable 

(higher interaction evenness) in this year. That is, even though there are more pollinator species 

in 1992 (which would tend to increase vulnerability), the fact that these pollinators partition 

their interactions more equitably among the plants available makes vulnerability increase. In 

1994 more interactions were recorded for the same number of plant species (14), but some of 

these interactions were strongly dominant (low interaction evenness), thus reducing 

vulnerability.  

In conclusion, we find a certain level of variation in our plant-pollinator community and in the 

structure of the interaction network. However, and in agreement with our initial hypothesis, this 

variability seems to be somewhat lower than in other similarly studied plant-pollinator 

communities (Dupont et al. 2009, Olesen et al. 2011, Petanidou et al. 2008). These results show 

the important repercussion that the stability in the reproductive success of the plants, measured 

as variation on pollination interactions, of this peculiar rupicolous community has for its 

maintenance over long periods of time. However, our results should be interpreted with caution. 

We can ignore the fact that some Tertiary relictic plants, specialized to live in these limestone 

walls, are long-lived species (individuals of Petrocoptis grandiflora of more than 150 years 

have been described; L. Navarro unpublished data). These long-lived species can withstand 

periods of low reproductive success because longevity confers demographic stability regardless 

of small fluctuations that may occur in the communities of mutualists (García et al. 2012). 
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6. Appendix. 

Table S1. Plant species used in the study. 

Specie Family 

Acinos alpinus (L.) Moench Lamiaceae 

Aethionema marginatum (Lapeyr.) Montemurro Brassicaceae 

Anthyllis vulneraria L. Fabaceae 

Antirrhinum meonanthum Hoffmgg. & Link. Plantaginaceae 

Armeria rothmaleri G. Nieto Feliner. Plumbaginaceae 

Campanula adsurgens Leresche & Levier. Campanulaceae 

Cymbalaria muralis P. Gaertner, B. Meyer & Scherb. Plantaginaceae 

Erinus alpinus L. Plantaginaceae 

Erysimum linifolium (Pers.) J. Gay. Brassicaceae 

Jasminum fruticans L. Oleaceae 

Leontodon farinosus Merino & Pau. Asteraceae 

Petrocoptis grandiflora Rothm. Caryophyllaceae 

Polygala vulgaris Asso. Polygalaceae 

Rhamnus legionensis Rothm. Rhamnaceae 

 

Table S2. Pollinator species identified in the study. 

Specie Family 

Allantus cinctus (Linnaeus, 1758) Tenthredinidae 

Amegilla quadrifasciata (de Villers, 1789) Apidae 

Andrena cineraria (Linnaeus, 1758) Andrenidae 

Andrena fulva (Müller, 1766) Andrenidae 

Andrena haemorrhoa (Fabricius, 1781) Andrenidae 

Andrena pilipes (Fabricius, 1781) Andrenidae 

Anthidium manicatum (Linnaeus, 1758) Megachilidae 

Anthocharis belia (Linnaeus, 1767) Pieridae 

Anthocharis cardamines (Linnaeus, 1758) Pieridae 

Anthophora acervorum (Latreille, 1803) Apidae 

Anthophora hispanica (Fabricius, 1787) Apidae 

Apis mellifera (Linnaeus, 1758) Apidae 

Araschnia levana (Linnaeus, 1758) Nymphalidae 

Attagenus pellio (Linnaeus, 1758) Dermestidae 

Bombus hortorum (Linnaeus, 1761) Apidae 

Bombus jonellus (Kirby, 1802) Apidae 

Bombus lucorum (Linnaeus, 1761) Apidae 

Bombus pascuorum (Scopoli, 1763) Apidae 

Bombus pratorum (Linnaeus, 1761) Apidae 

Bombus terrestris (Linnaeus, 1758) Apidae 

Bombylius canescens (Mikan, 1796) Tabanidae 

Bombylius major (Linnaeus, 1758) Tabanidae 

Bombylius minor (Linnaeus, 1758) Tabanidae 

Calliphora vomitoria (Linnaeus, 1758) Calliphoridae 

Camponotus lateralis (Olivier, 1792) Formicidae 

Cardiophorus gramineus (Scopoli, 1763) Elateridae 

Celastrina argiolus (Linnaeus, 1758) Lycaenidae 

Ceratina cyanea (Kirby, 1802) Apidae 

Coelioxys inermis (Kirby, 1802) Megachilidae 

Colias croceus (Geoffroy, 1785) Pieridae 
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Colletes succinctus (Linnaeus, 1758) Colletidae 

Cynthia cardui (Linnaeus, 1758) Nymphalidae 

Episyrphus balteatus (De Geer, 1776) Syrphidae 

Eristalis tenax (Linnaeus, 1758) Syrphidae 

Eucera longicornis (Linnaeus, 1758) Apidae 

Fallenia fasciata (Fabricius, 1805) Nemestrinidae 

Gonepteryx cleopatra (Linnaeus, 1767) Pieridae 

Gonepteryx rhamni (Linnaeus, 1758) Pieridae 

Halictus rubicundus (Christ, 1791) Halictidae 

Halictus scabiosae (Rossi, 1790) Halictidae 

Halictus tumulorum (Linnaeus, 1758) Halictidae 

Hemaris fuciformis (Graeser, 1888) Sphingidae 

Hylaeus signatus (Panzer, 1798) Colletidae 

Iphiclides podalirius (Linnaeus, 1758) Papilionidae 

Lasioglossum calceatum (Scopoli, 1763) Halictidae 

Lasioglossum smeathmanellum (Kirby, 1802) Halictidae 

Lasiommata megera (Linnaeus, 1767)  Nymphalidae 

Lasius niger (Linnaeus, 1758) Formicidae 

Lucilia caesar (Linnaeus, 1758) Calliphoridae 

Lytta vesicatoria (Linnaeus, 1758) Meloidae 

Macroglossum stellatarum (Fabricius, 1781) Sphingidae 

Maniola jurtina (Linnaeus, 1758) Nymphalidae 

Megachile centuncularis (Linnaeus, 1758) Megachilidae 

Melanostoma scalare (Fabricius, 1794) Syrphidae 

Melecta luctuosa (Scopoli, 1770) Apidae 

Melitta haemorrhoidalis (Fabricius, 1775) Melittidae 

Merodon equestris (Fabricius, 1794) Syrphidae 

Neoascia podagrica (Fabricius, 1775) Syrphidae 

Oedemera nobilis (Scopoli, 1763)  Oedemeridae 

Oncomera femoralis (Olivier, 1803) Oedemeridae 

Osmia rufa (Linnaeus, 1758) Megachilidae 

Oxythyrea funesta (Poda, 1761) Cetoniidae 

Pararge aegeria (Linnaeus, 1758) Nymphalidae 

Pieris brassicae (Linnaeus, 1758) Pieridae 

Pieris napi (Linnaeus 1758)  Pieridae 

Pieris rapae (Linnaeus 1758)   Pieridae 

Polyommatus icarus (Rottemburg, 1775) Lycaenidae 

Scaeva pyrastri (Linnaeus, 1758) Syrphidae 

Sphaerophoria sp. Syrphidae 

Stelis punctulatissima (Kirby, 1802) Megachilidae 

Syrphus ribesii (Linnaeus, 1758) Syrphidae 

Tenthredinidae sp. Tenthredinidae 

Terellia ceratocera (Hendel, 1913) Tephritidae 

Vanessa atalanta (Cramer, 1779) Nymphalidae 

Xanthogramma pedissequum (Harris, 1776) Syrphidae 

Xylocopa violacea (Linnaeus, 1758) Apidae 
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