2011 Site Investigation Report

Eklutna Army Sites Formerly Used Defense Site (FUDS) F10AK0097 Hazardous, Toxic, and Radioactive Waste (HTRW) Project 01 Eklutna, Alaska

> Final July 2012

Prepared By: U.S. Army Corps of Engineers - Alaska District Environmental Engineering Branch P.O. Box 6898 JBER, Alaska 99506-0898

F10AK0097--_01.09_0500_a 200-1e

PAGE INTENTIONALLY BLANK

TABLE OF CONTENTS

1.0		INTRODUCTION	1
	1.1	Site Description/History	1
	1.2	2011 Site Investigation Objectives	2
	1.3	Project Team	
2.0		FIELD INVESTIGATION APPROACH	3
	2.1	Mobilization	3
	2.1.1	Right of Entry	3
	2.1.2	Utility Locates	
	2.1.3	Equipment and Personnel Mobilization	3
	2.2	UVOST Investigation	4
	2.3	Test Pit Investigation	6
	2.4	GPS Survey	7
	2.5	Investigative-Derived Waste	7
	2.5.1	Leftover Sample Soil	
	2.5.2	Solid Waste	
	2.6	Demobilization	
3.0		ANALYTICAL DATA	
	3.1	Data Categories	
	3.2	Sample Identification	
	3.3	Sample Packaging and Transport	
	3.3.1	Sample Preservation	
	3.3.2	Sample Packaging	
	3.3.3	Sample Shipping and Contacts	
	3.4	Quality Control Samples	
	3.5	Chemical Laboratory Deliverables	
	3.6	Chemical Data Assessment	
	3.7	Data Presentation	-
4.0		SITE SPECIFIC ACTIVITIES AND RESULTS 1	
	4.1	UVOST/LIF Investigation Results 1	
	4.2	Test Pit Investigation Results 1	
5.0		CONCLUSIONS/RECOMMENDATIONS 1	
6.0		REFERENCES 1	3

TABLES

Table 3-1	Laboratory	Flag	Definitions

Table 4-1 Test Pit Sampling Results

FIGURES

- Location and Vicinity Map
- Figure 1 Figure 2 Site Map
- Figure 3 UVOST Probe and Test Pit Locations (1964 Imagery)

Figure 4 UVOST Probe and Test Pit Locations (2011 Imagery)

APPENDICES

- Appendix A Select Site Photographs
- Appendix B Survey Data
- Appendix C Analytical Data Package (electronic)
- Appendix D UVOST/LIF Probe Logs
- Appendix E Field Log Books
- Appendix F Chemical Data Quality Review Report
- Appendix G ADEC Laboratory Data Review Checklist
- Appendix H Review Comment Log
- Appendix I Personnel Qualifications

LIST OF ACRONYMS AND ABBREVIATIONS

AAC	Alaska Administrative Code
AAP	Alaska Aggregate Products
ADEC	Alaska Department of Environmental Conservation
AIC	Alaska Interstate Corporation
ASTM	American Society for Testing and Materials
bgs	Below Ground Surface
CDQR	Chemical Data Quality Report
CIRI	Cook Inlet Region Incorporated
cm	centimeter
COC	Chain of Custody
CORS	Continuously Operating Reference Station
DOD	Department of Defense
DQO	Data Quality Objective
DRO	Diesel-Range Organics
EDF	Electronic Data Format
EMI	Environmental Management Incorporated
FUDS	Formerly Used Defense Site
GPS	Global Positioning System
GRO	Gasoline-Range Organics
HTRW	Hazardous, Toxic, and Radioactive Waste
IDW	Investigation-Derived Waste
INPR	Inventory Project Report
JBER	Joint Base Elmendorf-Richardson
LIF	Laser-Induced Fluorescence
LOQ	Limit of Quantitation
mL	Milliliter
mg/kg	Milligrams Per Kilogram
mg/L	Milligrams Per Liter
MS/MSD	Matrix Spike/Matrix Spike Duplicate
NGS	National Geodetic Survey

PA	Preliminary Assessment
PAHs	Polycyclic Aromatic Hydrocarbons
PCBs	Polychlorinated Biphenyls
PID	Photo Ionization Detector
POL	Petroleum-Oil-Lubricant
PPE	Personal Protective Equipment
ppm	Parts Per Million
QA	Quality Assurance
QAPP	Quality Assurance Project Plan
QC	Quality Control
QSM	Quality Systems Manual
RCRA	Resource Conservation and Recovery Act
RI	Remedial Investigation
RRO	Residual-Range Organics
SAP	Sampling and Analysis Plan
SI	Site Investigation
SOP	Standard Operating Procedure
SVOC	Semi-Volatile Organic Compounds
USACE-AK	U.S. Army Corps of Engineers – Alaska District
UTV	Utility Vehicle
UV	Ultraviolet
UVOST	Ultraviolet Optical Screening Tool
VOCs	Volatile Organic Compounds

PAGE INTENTIONALLY BLANK

1.0 INTRODUCTION

This Site Investigation (SI) Report was prepared by the U.S. Army Corps of Engineers, Alaska District (USACE-AK) to present the results from the Ultraviolet Optical Screening Tool (UVOST) and test pit SI conducted by USACE-AK personnel at the Eklutna Army Formerly Used Defense Site (FUDS) at Eklutna, Alaska.

This report is organized into six sections. The first section includes a site description, a summary of previous investigations, the current investigation objectives, and the project team assigned to complete these objectives. Section 2.0 describes the field investigation approach used during the 2011 SI. Section 3.0 references the chemical data categories and quality standards. Data gathered during the 2011 SI is presented in Section 4.0. Conclusions and recommendations for future site work are provided in Section 5.0. The references used in the preparation of this report are located in Section 6.0.

1.1 Site Description/History

The project is located 26 miles northeast of Anchorage, Alaska (Figure 1). The site was used by the United States Army as a supply and storage area from 1957 to 1971. The Army referred to the site as the Mohawk Command Post. Improvements made by the Army consisted of numerous structures, mainly metal Quonset huts and security fencing (Figure 3). In addition, the Army was given use of existing Bureau of Indian Affairs buildings.

A portion of the Eklutna Army Site is currently an active gravel pit and jointly owned by two Alaska Native Corporations: Eklutna, Inc. and Cook Inlet Region, Inc. (CIRI). Eklutna, Inc. owns the surface rights; subsurface rights are owned by CIRI. The landowners have contracted with Alaska Interstate Construction (AIC) to manage the gravel mining operations at the site. The current gravel pit is located approximately 0.6 miles southwest of the Eklutna interchange of the Glenn Highway (Figure 2).

On or about June 25, 2008, during normal gravel extraction operations within the current gravel pit, personnel from Alaska Aggregate Products (AAP), a subsidiary of AIC, uncovered some soil which exhibited a noticeable "volatile" petroleum, oil, and/or lubricant (POL) odor. Mr. Russell Vogel of AAP contacted Environmental Management, Inc. (EMI) to investigate the quantity and type of contamination. EMI performed soil screening and sampling on behalf of AAP on June 26, 2008. Photo Ionization Detector (PID) headspace readings were gathered from five different locations within an approximately 15-foot by 15-foot area where contamination seemed most prevalent. The highest PID readings ranged near 500 parts per million (ppm). The soil sample with the highest PID reading was sent for laboratory analysis of gasoline-range organics (GRO), diesel-range organics (DRO), residual-range organics (RRO), volatile organic compounds (VOCs), semi-volatile organics (SVOCs), pesticides, polychlorinated biphenyls (PCBs), pH, and eight Resource Conservation and Recovery Act (RCRA) metals (arsenic, barium, cadmium, chromium, lead, selenium, silver, and mercury). Notable results were 1,680 milligrams per kilogram (mg/kg) DRO and 15.4 mg/kg GRO. Based on these results, AAP suspended gravel extraction operations in this area.

Between August and September, 2009, AIC contracted TERRASAT, Inc. (TERRASAT) to evaluate baseline ground water conditions as part of the permitting process for the expansion of

the gravel pit. TERRASAT installed four groundwater monitoring wells around the perimeter of the future gravel extraction area (Figure 2). Groundwater sample results from two of the wells (MW-3 and MW-4) contained DRO concentrations of 0.14 milligrams per liter (mg/L) and 0.47 mg/L, respectively.

USACE-AK conducted a site visit on June 3, 2010 to determine if the reported DROcontaminated soil was a result of activities at the Eklutna Army FUDS. USACE-AK visually inspected the area of contaminated soil and met with AAP, TERRASAT, Eklutna Inc., and Native Village of Eklutna personnel. Results of the site visit lead USACE-AK to complete a revised Inventory Project Report (INPR) which authorized a Hazardous, Toxic, and Radioactive Waste (HTRW) project for the site.

A Preliminary Assessment (PA) will be completed during 2012 to identify all potential areas of concern at the Eklutna Army FUDS. Results from the PA will be used to develop a work plan for a Remedial Investigation (RI). A full RI is tentatively scheduled for fiscal year (FY) 2013.

1.2 2011 Site Investigation Objectives

Based on discussions with stakeholders, field observations, and analytical results, USACE-AK determined that an expedited site investigation of the future gravel extraction area was required to avoid future disruptions to the gravel mining operations. The objectives of the 2011 SI are summarized below:

- Identify the extent of POL-impacted surface and subsurface soil contamination at the cleared future gravel extraction area
- Develop a correlation between petroleum contaminants and field screening results.

1.3 Project Team

<u>FUDS Project Manager (USACE AK District)</u> – Christy Baez: Ms. Baez is responsible for granting final approval of project plans and reports and has the authority to commit the resources necessary to meet project objectives and requirements.

<u>Alaska Department of Environmental Conservation (ADEC) Regulatory Representative</u> – **Debra Caillouet**: The ADEC is the lead regulatory authority and Ms. Caillouet is the ADEC representative for this project. Ms. Caillouet will review and comment on this report.

<u>**Quality Assurance / Quality Control Officer** – Lisa Geist: Ms. Geist reviews all work products before submitting them to ADEC. She has signature authority over format, content, and all technical components of work products produced by the investigation team.</u>

Project Chemist – **Sean Benjamin:** Mr. Benjamin served as the lead chemist for the project. He helped prepare the Sample Analysis Plan (SAP), coordinated the laboratory contract, and reviewed laboratory data to assess usability of the data. Mr. Benjamin also performed sample collection, packing, and delivery. Appendix I summarizes Mr. Benjamin's qualifications demonstrating that he meets the requirements of an ADEC qualified person as defined by 18 Alaska Administrative Code (AAC) 75.990(100).

Project Engineer – **Neil Folcik:** Mr. Folcik served as the project engineer on the team. His responsibilities include preparing the work plan and this report. Appendix I summarizes Mr. Folcik's qualifications demonstrating that he meets the requirements of an ADEC qualified person as defined by 18 AAC 75.990(100).

2.0 FIELD INVESTIGATION APPROACH

In May 2011 USACE-AK attempted to perform a UVOST investigation at the Eklutna Army Site. The UVOST investigation was not completed. Site geology resulted in an elevated UVOST detection limit and substantial damage to the UVOST tooling. A revised approach and work plan were developed that included excavating test pits and collecting analytical samples to achieve the 2011 SI project objectives. In general, field work was performed using methods specified in the revised work plan entitled *Site Investigation Work Plan, Eklutna Army Sites, Formerly Used Defense Site F10AK0097, Eklutna, Alaska* (USACE 2011). The field investigation consisted of the following subtasks:

- Mobilization
- UVOST Investigation
- Test Pit Investigation
- Global Positioning System (GPS) Survey
- Investigative-Derived Waste (IDW)
- Demobilization

2.1 Mobilization

Mobilization included gaining site property access, conducting utility locates, and mobilizing equipment and personnel to the project site.

2.1.1 Right of Entry

The investigation area within the Eklutna Army Site is jointly owned between Eklutna Inc. and CIRI. Both property owners granted access to the site for the purpose of performing this SI.

2.1.2 Utility Locates

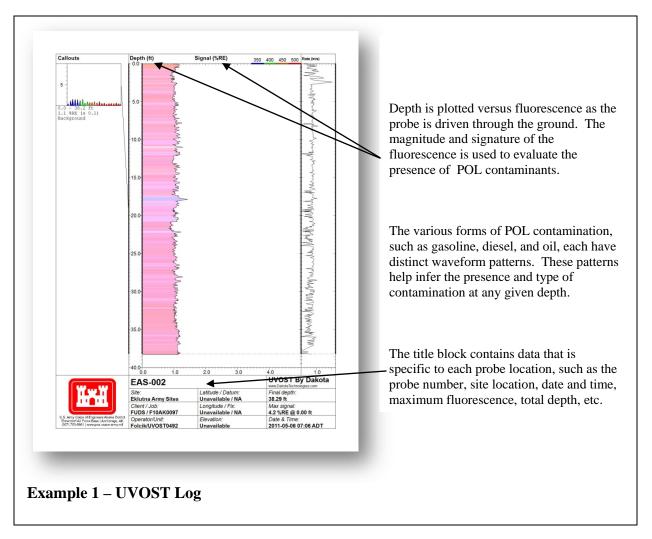
No active utilities were present within the investigation area.

2.1.3 Equipment and Personnel Mobilization

Mobilization for the initial UVOST investigation was performed on May 5, 2011. All equipment was mobilized from Joint Base Elmendorf-Richardson (JBER) to the Eklutna Army Site by the USACE-AK field team. Equipment consisted of a Ford F450 truck, Geoprobe drill rig, Polaris Ranger 4x4 utility vehicle (UTV), and an equipment trailer. The trailer and equipment remained onsite for 3 days. The F450 truck was utilized to travel between the work site and JBER.

Mobilization for the follow on test pit investigation was performed on September 20, 2011. The field crew mobilized from JBER to the Eklutna Army Site using a government vehicle at the start of each duty day. The current gravel mine operator AAP provided an excavator and operator on days that investigation activities were performed. At the conclusion of each duty day, the field crew packaged analytical samples and traveled back to JBER in the government vehicle.

2.2 UVOST Investigation


The primary objective of this SI was to delineate the vertical and horizontal extent of POLimpacted surface and subsurface soil contamination at the cleared future gravel extraction location. Initially the field technology used to accomplish this objective was laser induced fluorescence (LIF) as employed by the UVOST and a direct push, track mounted probe system.

The UVOST uses LIF to identify POL contamination in soil. Fluorescence is a property of some compounds where absorbed ultraviolet (UV) light stimulates the release of photons (light) of a longer wavelength, often in the visible range. Many aromatic hydrocarbons fluoresce. The UVOST uses this property to detect small amounts of a hydrocarbon substance within a larger matrix (e.g., gasoline in soil).

A Xenon Helium Hydrogen Chloride Eximer laser is used as the energy source in the UVOST. Ultraviolet light from the laser is transmitted through a silicon-clad optical fiber wire that exits through a sapphire window on the side of the probe tip. If petroleum hydrocarbons are present in the subsurface soil and within the vicinity of the sapphire window, the laser light excites the PAH fraction into releasing energy as fluorescence.

The intensity of the fluorescence is used as an indicator of the relative contaminant concentration. Fluorescence signals returning back through the fiber wire are relayed to a digital oscilloscope. LIF results are acquired and displayed in real time with depth.

The UVOST software package allows for analysis of the amount of fluorescence at each of the four different response wavelengths that make up the LIF reading. The amount of fluorescence at each of the four wavelengths is called the LIF signature. LIF data is displayed graphically as fluorescence versus depth in real time as the field team operates the UVOST equipment and collects LIF readings. UVOST logs display the data and are created after completing the investigation at a given probe location. Example 1 illustrates a typical UVOST log:

The UVOST system can detect non-chlorinated, multi-ring, poly-aromatic hydrocarbons (fuel) such as gasoline, diesel fuel, kerosene, motor oil, and creosote in saturated and unsaturated soils. However, certain types of POL constituents are more readily detected by the UVOST as compared to others.

Whenever a fuel signature is detected with the UVOST, an approximate identification of fuel type (gasoline, diesel fuel, motor oil, etc.) is made from the LIF signature. The information (collected at each point) is used by the field team to determine optimal locations and depths for collection of soil samples for laboratory analysis. Laboratory results and the UVOST survey are then used to infer the vertical and horizontal extent of contamination.

Naturally occurring fluorescent minerals, such as carbonates, and organics, such as tree roots and peat, can yield false positives. Data from sampling and laboratory analysis of soil samples assists in determining if false positives have occurred. False negatives may occur in the presence of coal tars, heavy creosotes, extremely weathered fuels, and chlorinated solvents. DRO and GRO concentrations near the limit of detection for the LIF probe may also create a false negative.

Listed below are several parameters that the field team monitored while operating the system in order to assure the quality of data.

- Operate the UVOST in accordance with the UVOST-Standard Operating Procedures (SOPs).
- Monitor the wave pattern on the oscilloscope.
- Verify the reference emitter (RE) signal level and the time delay are in the proper position and within limits.
- Calibrate the UVOST with the RE prior to every push.
- Monitor the graphic output on the UVOST computer and verify information is being recorded and the system is functioning properly.
- After every push, place the RE on the probe window to visually verify that the signals are within tolerance.
- Visually inspect the probe prior to and after every push to verify it is in good working order and make any repairs/adjustments as necessary.

When system errors occurred during a UVOST/LIF probe push, the location was probed again until a useable dataset was acquired. UVOST probe holes were immediately sealed with dry bentonite granules and marked with a labeled pin flag.

2.3 Test Pit Investigation

Site geology prevented successful completion of the UVOST investigation. A revised approach that included excavating test pits and collecting analytical samples was utilized to achieve the project objectives. Test pits were excavated with a Caterpillar 320 excavator. The excavator operator would remove a two foot lift of soil with the excavator bucket. The project chemist would then collect a sample from the center of the excavator bucket in an attempt to collect soil that is representative of the target depth. The depth of each sample was estimated based on the reach of the excavator. Gradations were marked on the side of the excavator arm to aid in depth estimation. One headspace field screening sample and collocated analytical sample were collected to represent each two foot lift of soil. The target depth for each test pit was 18 feet bgs. Typically nine soil samples (each representing a 2 foot lift of soil) were collected from each test pit (0-2 feet bgs, 2-4 feet bgs, etc.) The analytical samples were analyzed for DRO.

All sample collections were performed with clean stainless steel spoons while wearing a new pair of nitrile gloves. The desired soil (0.25 inch minus) was placed into a new, large zip-closure plastic bag. The sample was homogenized by mashing and mixing, in the bag, for at least one minute. The DRO sample was collected by completely filling the applicable laboratory supplied container with soil from the homogenized zip-closure plastic bag. Visual classification of each soil sample was performed by the American Society for Testing and Materials (ASTM) D 2488 field classification method and recorded in the field log book.

A PID was used to perform the headspace soil field screening. Headspace vapors were allowed to develop in the sample bag for at least 10 minutes. The bag was then shaken/agitated for 15 seconds at the beginning and end of the headspace development period to assist volatilization. The soil was warmed before reading headspace vapors. PID readings were recorded for several seconds. The highest meter reading was recorded in the field notebook.

All excavated soil was systematically stacked on the side of the excavation. After completion of the test pit and to the extent possible the excavated soil was returned to its original location. The surface of the backfilled test pits were graded to match the surrounding ground surface. The test pit locations were clearly marked with survey lath containing the test pit number and date.

2.4 GPS Survey

UVOST probes (with exception to UVOST-004 and UVOST-006 which were estimated based on field notes) and test pit locations were surveyed using an Ashtech Mobile Mapper 100 mapping grade GPS unit. GPS data was post-processed for differential correction using reference data from a National Geodetic Survey (NGS) continuously operating reference station (CORS). The Eklutna Army Site survey data is presented in the GCS_WGS_1984 coordinate system, with datum D_WGS_1984, and units in decimal degrees. Survey data is included in Appendix B.

2.5 Investigative-Derived Waste

IDW generated during this field effort consisted of:

- Soil remaining from the sampling procedures.
- Solid waste (used sampling equipment, personal protective equipment [PPE], and garbage).

2.5.1 Leftover Sample Soil

Potentially contaminated soil remaining from sampling procedures was of minimal quantity and returned to its original location to the extent practicable.

2.5.2 Solid Waste

Field sampling equipment, PPE, and garbage generated during this SI were disposed of as a nonhazardous solid waste at the Anchorage landfill. The field sampling equipment included sampling spoons and plastic bags. Used PPE generated during this work was generally limited to disposable gloves and hearing protection. The garbage generated during the investigation included paper towels, cardboard boxes, plastic packaging, etc.

2.6 Demobilization

Field activities at the Eklutna Army Site were completed on October 19, 2011. The equipment and supplies were then transported from the project site to JBER by the USACE-AK field team.

3.0 ANALYTICAL DATA

The project's chemical data was generated using methods that conform to the U.S. Department of Defense (DOD) Quality Systems Manual (QSM) for Environmental Laboratories, Final Version 4.2 (USDOD 2010); the USACE Engineering and Design - Requirements for the Preparation of Sampling and Analysis Plans, EM-200-1-3 (USACE 2001); and the ADEC Draft Field Sampling Guidance (ADEC 2010).

3.1 Data Categories

This project generated both screening data and definitive data to meet the project data needs. Screening data was obtained by screening instrumentation and less rigorous methods of analysis that produced rapid, but less precise results compared with fixed laboratory analyses. The UVOST/LIF technology falls under this description of screening data. While these measurements are repeatable and accurate, they lack precision and definitive correlation with absolute values for concentration units.

Definitive data were generated as a result of rigorous methodology developed with extensive evaluation and documentation. Results are quantitative with known precision and accuracy. All samples submitted to the fixed laboratory were generated as definitive data.

3.2 Sample Identification

Samples collected during this field investigation were assigned a unique sample tracking number consistent with the standard operating procedures established by USACE-AK. Each sample was assigned a ten-digit sample number (i.e. 11EAF05ASL). The ten-digit number designation is as follows:

- Digits 1 and 2 are the last two digits of the calendar year (e.g., 11).
- Digits 3 through 5 are the unique three-letter designation of the project site (e.g., EAF Eklutna Army FUDS).
- Digits 6 and 7 correspond to the test pit number (e.g., the sample collected from test pit 5 is assigned number 05).
- Digit 8 corresponds to the depth that the sample is taken (e.g., A = 0 to 2 feet bgs, B = 2 to 4 feet bgs, etc.).
- Digits 9 and 10 correspond to the sample matrix (SL for soil samples).

3.3 Sample Packaging and Transport

Field laboratory samples were preserved, packaged, and shipped to the project laboratory using procedures outlined in the *Site Investigation Work Plan, Eklutna Army Sites, Formerly Used Defense Site F10AK0097, Eklutna, Alaska, Appendix A – Sampling and Analysis Plan.* Precautions for sample preservation, cross contamination avoidance, and environmental and physical stresses were addressed to ensure that samples reached the laboratory intact.

3.3.1 Sample Preservation

All field laboratory samples were preserved at a cool temperature by placing the sample in an insulated cooler shortly after collection. Frozen gel packs were used to establish and maintain sample temperatures of 4 ± 2 °C.

3.3.2 Sample Packaging

Each secured container was cushioned and sealed in a plastic bag. Coolers were prepared for transport by ensuring that the cooler drain was taped closed from both sides and that an approximately 4-centimeter (cm) thick layer of bubble wrap was spread across the bottom of the cooler. Ice packs were placed around and among the sample containers to ensure that the samples remained at 4 ± 2 °C during shipment. A temperature blank (tap water in a screw-top plastic vial) was included in each cooler to estimate sample temperature at the laboratory. Additional inert cushioning was used to take up the remaining space in the cooler. A resealable plastic bag was taped to the inside lid of the cooler to contain the chain-of-custody.

Final packaging was completed at the time of shipment. The chain-of-custody (COC) was completed and sealed inside the cooler. Clear tape was placed over the custody seals to protect them from abrasion, and a minimum of two full wraps of strapping tape was placed around the cooler in two places to secure the lid.

3.3.3 Sample Shipping and Contacts

All samples were hand delivered to SGS in Anchorage, Alaska. The laboratory completed a cooler receipt form upon sample receipt to document sampling and shipping discrepancies. The analytical laboratory emailed a copy of the cooler receipt form to <u>receipt.cooler@usace.army.mil</u> within 24 hours of delivery.

3.4 Quality Control Samples

Field quality control samples included field duplicates and matrix spike/matrix spike duplicates (MS/MSD). Field duplicate samples and MS/MSD samples were collected concurrently with the field laboratory samples. Field duplicate samples were analyzed at a rate of one per ten project samples. MS/MSD samples were collected at a rate of one sample per sample batch (20 samples) for each method.

Field duplicates were blind to the laboratory and contained no codes identifying them as quality control (QC) samples. Field duplicates were identified as if they were primary samples, using the next two-digit number in the sample identification sequence. Because actual collection time for primary and duplicate samples was identical, false collection times were recorded on the sample labels and COC forms for duplicate samples. The actual collection time, duplicate sample identification number, and corresponding primary sample identification number were recorded in the field sampling log book.

MS/MSD samples carried the same identification number and collection time as the corresponding primary sample number. Sample labels and chain-of-custody forms were marked to indicate that additional sample volume was submitted for MS/MSD analysis.

3.5 Chemical Laboratory Deliverables

Analytical data was supplied by the project laboratory to USACE-AK in hard copy and electronic formats. The data package included both the analytical results and sufficient information to demonstrate that the project's data quality objectives (DQOs) had been satisfied. The DQOs included the numerical measurement quality objectives for precision, accuracy, representativeness, comparability, and sensitivity.

A hard copy package was submitted as discrete definitive data package for each sample delivery group. In accordance with ADEC and DOD-QSM Version 4.2 requirements, the definitive data package was a uniquely numbered submittal that contained a cover sheet, table of contents, case narrative, analytical results, laboratory-reporting limits, sample documentation information, and internal laboratory quality assurance/quality control (QA/QC) information. The sample delivery group data package was also submitted as an electronic data deliverable in the Electronic Data Format (EDF) 1.2a format. Appendix C includes electronic copies of the laboratory data packages.

3.6 Chemical Data Assessment

After the samples were analyzed and subsequent reports were received, the raw data was subjected to a data quality review. The data review included evaluation of sample collection, holding time, sample duplicates (to assess laboratory precision), laboratory control samples (to assess accuracy), and matrix spike and surrogate recoveries (to assess matrix effects). USACE personnel prepared a Chemical Data Quality Report (CDQR) to describe the laboratory's performance.

The data quality review was performed in accordance with the requirements of the ADEC Technical Memo 06-002 and the DOD QSM. Appendix F includes a copy of the CDQR. The ADEC laboratory review checklists are included in Appendix G.

Data qualifier flags were assigned by the laboratory and by the project chemist. Data qualifiers are flags that indicate that there is some issue with the data point that impacts the data quality. Flags may be assigned for QC problems, shipping impacts, blank contamination, or laboratory non-compliance with the method or Quality Assurance Project Plan (QAPP). The basic set of flags is listed below in Table 3-1.

Qualifier	Definition
т	Analyte result is considered an estimated value because the level is below the
J	laboratory LOQ but above the detection limit
MH, ML,	Analyte result is considered an estimated value biased (high, low, indeterminate)
MN	due to matrix effects
В	Analyte result is considered a high estimated value due to contamination present
Б	in the method blank
QH, QL,	Analyte result is considered an estimated value biased (high, low, uncertain,
QN	indeterminate) due to a quality control failure
R	Analyte result is rejected - result is not usable

Table 3-1 Laboratory Flag Definitions

3.7 Data Presentation

Results of laboratory analyses are presented in Table 4-1 and included in Appendix C. The laboratory results are compared to standard soil cleanup levels promulgated by the State of Alaska through the ADEC, as published in 18 AAC 75, Oil and Other Hazardous Substances Pollution Control. The abbreviation "LOQ" is used in the text and in the table legends for the laboratory-established limit of quantitation. The data qualifiers established through the chemical data assessment process are incorporated into the summary of analytical tables.

4.0 SITE SPECIFIC ACTIVITIES AND RESULTS

This section describes the field work, observations, and results for each of the tasks specific to the 2011 Eklutna Army Site SI.

4.1 UVOST/LIF Investigation Results

The UVOST/LIF investigation began on May 5, 2011 in the area of suspected contamination along the southwest end of the future gravel extraction area. Only eight UVOST probes were

completed at the Eklutna Army Site. All probe logs are presented in Appendix D. Probe depth during the investigation ranged between 5 feet and 38.3 feet below ground surface (bgs). With the exception of probe EAS-008, all probes were advanced to refusal. Groundwater was not encountered at any of the probe locations. The gravel pit operator indicated that a compacted layer of soil containing large cobbles is present directly above the soil/groundwater interface. It is expected that the refusal encountered at most probe locations is the result of this layer. Holes created during this investigation were immediately backfilled with dry bentonite granules and marked with labeled pin flags.

Figures 3 and 4 identify the location of the UVOST probes in relation to a 1964 aerial photograph and current site imagery, respectively. Elevated fluorescence was encountered at EAS-006 from 0 to 3 feet below ground surface. The soil at this location was an organic fill instead of the clean gravel encountered at other probe locations. The elevated fluorescence is likely the result of organics and not fuel. All other probes contained only background fluorescence. Due to the lack of detectable contamination the field crew installed UVOST probe EAS-008 at the contaminated soil location identified by AAP personnel in 2008 and verified by USACE personnel in 2010. When disturbed the soil at this location had a weathered fuel odor. The petroleum contamination at EAS-008 was below the detection limit of the UVOST. The UVOST investigation was abandoned on May 6, 2011. Site geology resulted in an elevated UVOST detection limit, extremely difficult direct push drilling conditions, and substantial damage to the UVOST tooling.

On May 10, 2011 USACE personnel returned to the Eklutna Army Site and collected two surface soil samples adjacent to UVOST probe EAS-008. The surface soil samples had a weathered diesel fuel odor that dissipated quickly after being disturbed. The soil samples were analyzed for GRO, DRO, RRO, VOCs, and SVOCs. DRO was the only detected analyte at 50 and 80 mg/kg.

4.2 Test Pit Investigation Results

After the UVOST investigation, USACE-AK personnel developed an alternate approach and work plan that included excavating test pits and collecting analytical samples. The test pit investigation included excavating forty-two test pits within and adjacent to the future gravel extraction area (Figures 3-4). The test pits were excavated in four phases and samples were analyzed on an expedited schedule. The phased approach allowed for the evaluation of the analytical results and identification of future test pit locations. Test pit depth typically ranged between 14 and 20 feet bgs. Test pits were excavated until soil sloughing prevented the collection of representative soil samples. A total of 352 soil samples (317 primary and 35 duplicates) were collected from the test pits and analyzed for DRO between September 20 and October 19, 2011. DRO was detected in twelve of the samples. Detected concentrations ranged between 7 and 317 mg/kg. The analytical results are presented in Table 4-1 and on Figure 4.

Four of the forty-two test pits excavated were not sampled. While excavating test pit 14 a concrete slab was encountered at 2 feet bgs. Figure 3 indicates that the encountered slab is the foundation for the former Bureau of Indian Affairs building. Test pits 7, 19, and 35 contained only fill material. The investigation area is being used by the gravel pit operator for overburden storage. It was assumed that the fill encountered at these test pit locations was not present during the Department of the Army's use of the site and therefore was not sampled.

One soil sample exceeded the ADEC Method 2 Migration to Groundwater Cleanup Level for DRO of 250 mg/kg (test pit 17, 0-2 feet bgs) with 317 mg/kg. The soil at this location did not display a fuel odor, was located within the road way, and did include a significant percentage of organics. The elevated DRO result could be the result of organics or potentially associated with the gravel pit equipment that utilizes the road. DRO was not detected in any adjacent test pits or from all other samples within this test pit.

Test pit 11 was excavated along the edge of the future gravel expansion area and the active gravel pit. This is just northeast of the contaminated soil location identified by AAP personnel in 2008. The test pit was excavated to 10 feet bgs. DRO was not detected in any of the samples from the test pit. The excavator was then utilized to collect soil from the base of the embankment (direct below test pit 11) between the current gravel pit and future expansion area. The soil from this area did have a fuel odor. DRO was detected at 71 and 57.6 mg/kg in the primary and duplicate soil samples, respectively. The soil samples (sand/gravel) from this pit were the only samples collected during the test pit investigation that had a fuel odor.

Headspace field screening was performed in conjunction with the analytical soil sampling. With exception to test pits 11, 38, and 39 all field screening head space samples registered 0 with the PID. Test pits 38 and 39 PID readings ranged from 0 to 40. Test pits 38 and 39 contained moist sand instead of gravel. The field chemist did not observe any fuel odors in either test pit. The elevated PID readings are likely the result of the different soil type and elevated moisture content. The field screening sample collected from the slope of test pit 11 did have a noticeable fuel odor and generated a PID reading of 11.

5.0 CONCLUSIONS/RECOMMENDATIONS

The objectives of the 2011 Eklutna Army FUDS SI were to delineate the vertical and horizontal extent of petroleum contaminated soil at the future gravel extraction area and to develop a correlation between field screening results and petroleum contaminants. The lack of POL contamination prevented the development of a field screening/analytical result correlation and the extremely difficult direct push drilling conditions prevented the characterization of soil below 18 feet bgs.

The upper 18 feet of soil at the future gravel extraction area was evaluated through the excavation of forty-two test pits and collection of 352 soil samples (317 primary and 35 duplicates). Only one soil sample exceeded the ADEC Method 2 Migration to Groundwater Cleanup Level for DRO (test pit 17, 0-2 feet bgs) with 317 mg/kg. Widespread vadose zone contamination is not present within the future gravel extraction area. Given the extremely course and highly permeable nature of the vadose zone soil it is likely that very little if any vadose zone contamination exists at the site. Any impacted soil identified during future gravel extraction will likely be easily identified due a noticeable fuel odor.

A PA will be completed during 2012 to identify all potential areas of concern at the Eklutna Army FUDS. Results from the PA will be used to develop a work plan for a RI. A full RI is tentatively scheduled for FY 2013. During the RI, the evaluation of groundwater at the future gravel extraction area is recommended. Knowing the groundwater flow direction and extent of

the dissolved phase DRO plume will help identify the location of a former sources and any associated vadose zone contamination. The RI should also include the evaluation of smear zone soil within the DRO dissolved phase plume.

6.0 **REFERENCES**

- Alaska Department of Environmental Conservation (ADEC), 2011. Oil and Other Hazardous Substances Pollution Control, 18 AAC 75. October.
- ADEC, 2010. Draft Field Sampling Guidance, May.
- ADEC, 2002. Underground Storage Tanks Procedures Manual Guidance for Treatment of Petroleum-Contaminated Soil and Water and Standard Sampling Procedures, November 7, 2002.
- Environmental Management, Inc. (EMI), 2008. Work Plan for Removal of Diesel Contaminated Soils, July 30.
- EMI, 2008. Draft Soil Sampling Report, identified pocket of contaminated gravel AAP Gravel Pit, Eklutna, Alaska.
- TERRASAT, Inc. (TERRASAT), 2009. Evaluation of Groundwater Quality August-September, 2009 Eklutna Gravel Extraction Project.
- United States Army Corps of Engineers (USACE), 2011. UVOST Site Investigation Work Plan, Eklutna Army Sites, Eklutna, Alaska. April.
- USACE, 2011. Site Investigation Work Plan, Eklutna Army Sites, Eklutna, Alaska. August.

Tables

Table 4-1 E	klutna Army S	ite Test Pit Sa	ampling Results												
Tes	t Pit 01	Т	est Pit 02	Tes	t Pit 03	Tes	st Pit 04	Те	st Pit 05	Tes	t Pit 06	Tes	st Pit 07	Tes	st Pit 08
Depth (ft)	DRO (mg/kg)	Depth (ft) DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)
0-2	ND [20.6]	0-2	ND [22.2]	0-2	ND [22.2]	0-2	ND [20.5]	0-2	ND [20.7]	0-2	ND [20.3]	Entire test p	oit was fill	0-2	ND [20.8]
0-2 dup	ND [20.7]	2-4	ND [20.6]	2-4	ND [20.6]	2-4	ND [20.4]	2-4	ND [20.5]	2-4	ND [20.3]	material. N	o native soil to	2-4	ND [21]
2-4	ND [20.7]	2-4 dup		4-6	ND [20.7]	4-6	ND [20.9]	4-6	15.8 [20.5] J	4-6	ND [21.2]	sample.		4-6	ND [21]
4-6 6-8	ND [20.8] ND [20.3]	4-6 6-8	ND [20.7] ND [20.6]	4-6 dup 6-8	ND [20.6] ND [20.6]	6-8 6-8 dup	ND [20.5] ND [20.8]	6-8 8-10	ND [20.5] ND [21.4]	6-8 8-10	ND [20.5] ND [21]			6-8 8-10	ND [21.1] ND [20.8]
8-10	ND [20.5] ND [20.5]	8-10	ND [20.5]	8-10	ND [20.5]	8-10	ND [20.9]	8-10 dup	9.46 [21.6] J	10-12	ND [21.5]			10-12	ND [20.9]
10-12	ND [20.9]	10-12	ND [20.9]	10-12	ND [20.9]	10-12	ND [20.6]	10-12	ND [21.4]	10-12 dup	ND [21.3]			12-14	ND [21.1]
12-14	ND [21]	12-14	ND [20.9]	12-14	ND [20.9]	12-14	ND [20.8]	12-14	ND [21.4]	12-14	ND [21.6]			12-14 dup	
14-16	ND [21]	14-16	ND [21]	14-16	ND [21]	14-16	ND [21.8]	14-16	ND [22.3]	14-16	ND [22]			14-16	ND [21.5]
16-18	ND [21.3]	16-18	ND [21.6]	16-18	ND [21.6]	16-18	ND [22.2]	16-18	ND [21.9]	16-18	ND [22.2]			16-18	ND [20.9]
Tes	t Pit 09	Т	est Pit 10	Tes	t Pit 11	Tes	st Pit 12	Те	st Pit 13		t Pit 14	Tes	st Pit 15	Tes	st Pit 16
Depth (ft)	DRO (mg/kg)	Depth (ft) DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)
0-2	ND [22.2]	0-2	ND [21]	0-2	ND [21.2]	0-2	ND [27.7]	0-2	ND [20.4]	Building four	ndation	0-2	Overburden	0-2	ND [20.7]
2-4	ND [21.2]	0-2 dup		2-4	ND [21]	2-4	ND [27.2]	2-4	ND [20.3]	prevented sa		2-4	Overburden	2-4	ND [20.4]
4-6	ND [21.2]	2-4	ND [25.1]	4-6	ND [21.1]	4-6	ND [20.6]	4-6	ND [20.6]	collection.		4-6	Overburden	4-6	ND [20.3]
6-8	ND [20.7]	4-6	ND [24.9]	6-8	ND [23.6]	6-8	ND [20.4]	6-8	ND [20.5]			6-8	Overburden	6-8	ND [20.6]
8-10	ND [20.7]	6-8	ND [22.8]	8-10	ND [24.7]	6-8 dup	ND [20.7]	8-10	ND [20.5]			8-10	Overburden	8-10	ND [20.4]
10-12	ND [21]	8-10	ND [23.9]	slope	71 [20.8]	8-10	ND [20.8]	8-10 dup	ND [20.6]			10-12	9.33 [21.3] J	10-12	ND [20.5]
12-14	ND [21.5]	10-12	ND [22.9]	slope dup	57.6 [20.9]	10-12	ND [20.9]	10-12	ND [20.7]			12-14	ND [20.7]	12-14	ND [20.7]
14-16	ND [21]	12-14	ND [22.2]			12-14	ND [21]	12-14	ND [20.6]			14-16	ND [20.6]	14-16	ND [20.9]
14-16 dup	ND [21.4]					14-16	ND [20.6]	14-16	ND [20.7]			16-18	ND [20.5]	16-18	ND [21]
16-18	ND [21.4]					16-18	ND [21]	16-18	ND [20.9]					4-6	ND [20.4]
Tes	t Pit 17	Т	est Pit 18	Tes	t Pit 19	Tes	st Pit 20	Те	st Pit 21	Tes	t Pit 22	Tes	st Pit 23	Tes	st Pit 24
	DRO (mg/kg)	Depth (ft			DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)		DRO (mg/kg)	Depth (ft)			DRO (mg/kg)
0-2	317 [21.9]	0-2	ND [20.4]	Entire test pit	twas fill	0-2	Overburden	0-2	ND [21.9]	0-2	ND [21.8]	0-2	12.4 [21.8] J	0-2	ND [20.5]
2-4	ND [22]	2-4	ND [22.1]		native soil to	2-4	ND [21]	2-4	ND [20.6]	2-4	ND [22.5]	2-4	ND [22.1]	2-4	ND [20.8]
4-6	ND [22.1]	4-6	ND [20.1]	sample.		2-4 dup	ND [20.9]	4-6	ND [21.1]	4-6	ND [20.5]	4-6	ND [21.3]	4-6	ND [20.7]
6-8	ND [22]	6-8	ND [20.7]			4-6	ND [20.8]	4-6 dup	ND [21]	6-8	ND [20.5]	6-8	ND [21.2]	6-8	ND [20.7]
6-8 dup	ND [22]	8-10	ND [20.8]			6-8	ND [20.8]	6-8	ND [21.4]	6-8 dup	ND [20.5]	8-10	ND [20.5]	8-10	ND [20.7]
8-10	ND [20.3]	8-10 dup	D ND [20.9]			8-10	ND [20.7]	8-10	ND [20.9]	8-10	ND [20.6]	8-10 dup	ND [20.6]	10-12	ND [20.8]
10-12	ND [20.6]	10-12	ND [20.6]			10-12	ND [20.5]	10-12	ND [21.2]	10-12	ND [23]	10-12	ND [20.8]	10-12 dup	ND [20.9]
12-14	ND [20.7]	12-14	ND [21]			12-14	ND [21]	12-14	ND [20.9]	12-14	ND [22.7]	12-14	ND [20.7]	12-14	ND [21.2]
14-16	ND [21.6]	14-16	ND [21.3]			14-16	ND [20.9]	14-16	ND [20.9]	14-16	ND [22.9]	14-16	ND [21]	14-16	ND [21.2]
16-18	ND [21.5]	16-18	ND [21.1]			16-18	ND [20.8]	16-18	ND [21.8]	16-18	ND [20.9]	16-18	ND [21.1]	16-18	ND [21.3]

Notes:

Bold and highlighted indicates concentrations exceeding the 230 mg/kg Method 2 DRO Cleanup Level for Migration to Groundwater in the over 40 inch zone (18 AAC 75 Table B)

ND(22) - not detected, limit of quantitation shown in parenthesis

slope - sample collected from slope between existing gravel pit and future gravel extraction area test pit

Overburden - The investigation area is being used for overburden storage. It was assumed that the fill encountered at these test pit locations is not related to DOD's use of the site and therefore was not sampled.

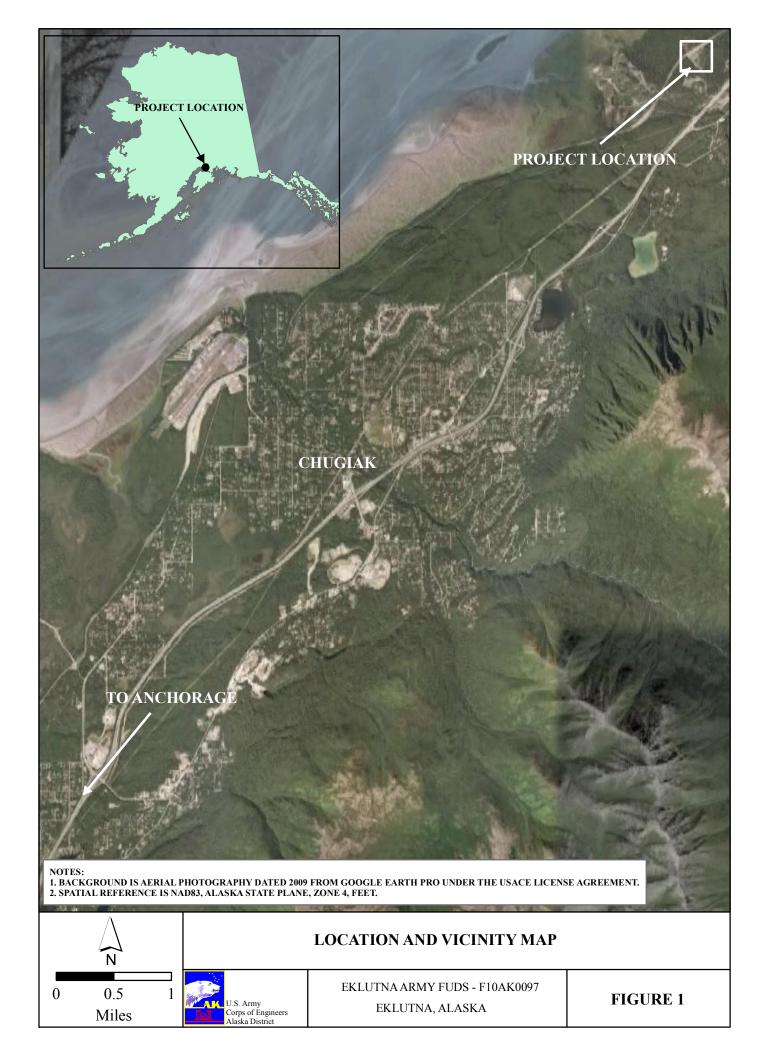
Data Flags:

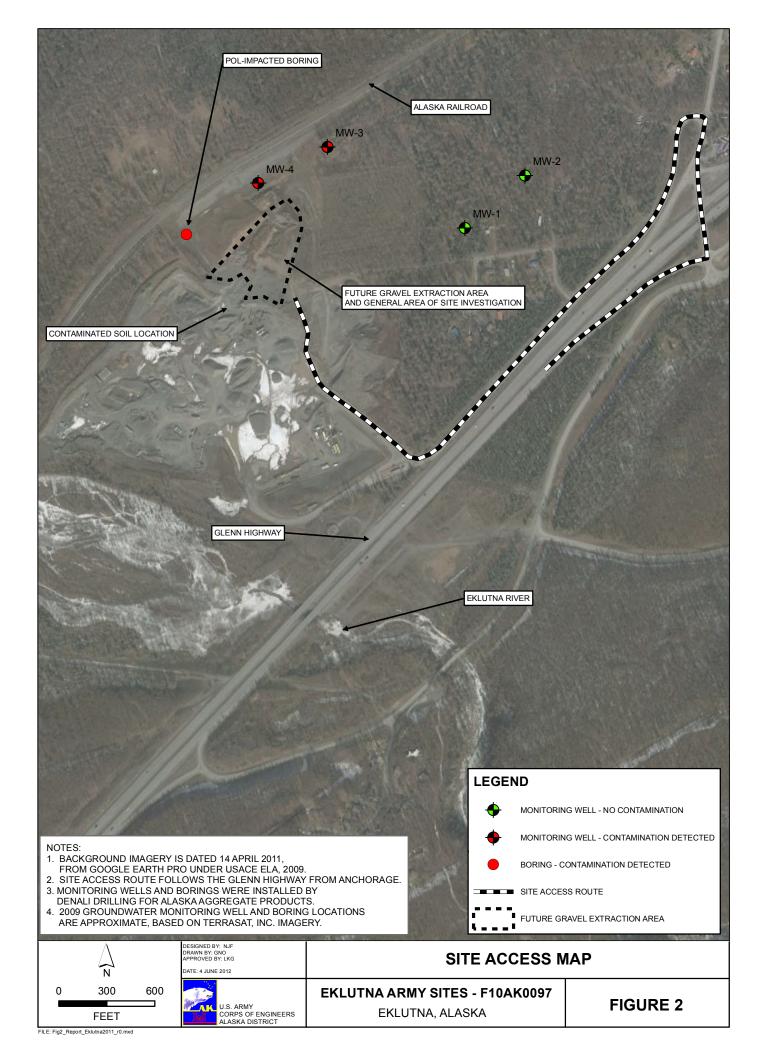
J = Analyte result is considered an estimated value because the level is below the laboratory LOQ but above the detection limit

Table 4-1 E	klutna Army S	ite Test Pit Sa	ampling Results													
Tes	t Pit 25	Т	est Pit 26	Tes	st Pit 27	Т	est Pit 28		Test	Pit 29	Te	est Pit 30	Tes	st Pit 31	Τe	est Pit 32
Depth (ft)	DRO (mg/kg)	Depth (ft) DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Dep	th (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)
0-2	ND [21]	0-2	ND [20.7]	0-2	ND [20.8]	0-2	ND [20.9]	0)-2	ND [20.2]	0-2	ND [20.6]	0-2	Overburden	0-2	Overburden
2-4	ND [22.1]	0-2 dup	ND [20.7]	2-4	ND [21.2]	2-4	ND [20.5]	2	2-4	ND [20.6]	2-4	ND [20.9]	2-4	Overburden	2-4	Overburden
4-6	ND [20.5]	2-4	ND [20.5]	2-4 dup	ND [21.5]	4-6	ND [21.7]	4	-6	ND [20.4]	4-6	ND [20.7]	4-6	Overburden	4-6	Overburden
4-6 dup	ND [20.5]	4-6	ND [20.9]	4-6	ND [20.5]	4-6 dup	ND [21.5]	6	6-8	ND [20.4]	4-6 dup	ND [20.6]	6-8	Overburden	6-8	Overburden
6-8	ND [20.4]	6-8	ND [20.6]	6-8	ND [20.7]	6-8	ND [20.4]	6-8	dup	ND [20.5]	6-8	ND [25.5]	8-10	Overburden	8-10	Overburden
8-10	ND [21]	8-10	ND [21]	8-10	ND [20.6]	8-10	ND [20.9]	8-	-10	ND [20.4]	8-10	ND [20.9]	10-12	Overburden	10-12	Overburden
10-12	ND [21]	10-12	ND [21.1]	10-12	ND [20.7]	10-12	ND [20.8]	10)-12	ND [20.6]	10-12	ND [20.6]	12-14	ND [21.2]	12-14	Overburden
12-14	ND [21.2]	12-14	ND [21]	12-14	ND [20.6]	12-14	ND [20.9]	12	2-14	ND [20.8]	12-14	ND [21]	14-16	ND [21]	14-16	Overburden
14-16	ND [21]	14-16	ND [21.2]	14-16	ND [21]	14-16	ND [21.1]	14	l-16	ND [20.6]	14-16	ND [21.1]	16-18	ND [21.2]	16-18	24.1 [22.6]
16-18	ND [21.1]	16-18	ND [21]	16-18	ND [21.8]	16-18	ND [21.1]	16	6-18	ND [20.7]	16-18	ND [21]	18-20	ND [20.7]	18-20	ND [20.6]
Tes	t Pit 33	Т	est Pit 35	Tes	st Pit 34	Т	est Pit 36		Test	Pit 37	Те	est Pit 38	Tes	st Pit 39	Te	est Pit 40
Depth (ft)	DRO (mg/kg)	Depth (ft) DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Dep	th (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft)	DRO (mg/kg)	Depth (ft	DRO (mg/kg)
0-2	Overburden	Entire tes	st pit was fill	0-2	ND [21.1]	0-2	ND [20.7]	0)-2	ND [21.6]	0-2	7.63 [20.5] J	0-2	Overburden	0-2	ND [22.8]
2-4	Overburden		No native soil to	0-2 dup	ND [20.3]	2-4	ND [20.6]	0-2	dup	7.34 [21.8] J	2-4	ND [20.5]	2-4	7.74 [20.9] J	2-4	ND [20.1]
4-6	ND [20.9]	sample.		2-4	ND [20.3]	2-4 dup	ND [20.5]	2	2-4	24.4 [20.4]	4-6	ND [20.3]	4-6	ND [20.6]	4-6	ND [20.1]
6-8	ND [21.2]			4-6	ND [20.6]	4-6	ND [20.7]	4	l-6	ND [20.6]	6-8	ND [20.8]	6-8	ND [20.6]	6-8	ND [20.5]
8-10	ND [20.5]			6-8	ND [20.4]	6-8	ND [21]	6	6-8	ND [20.5]	6-8 dup	ND [20.8]	8-10	ND [21]	8-10	ND [20.7]
8-10 dup	ND [20.2]			8-10	ND [21.2]	8-10	ND [21.1]	8-	-10	ND [20.7]	8-10	ND [21.1]	10-12	ND [21.2]	8-10 dup	ND [20.7]
10-12	ND [20.9]			10-12	ND [21.5]	10-12	ND [20.7]	10)-12	ND [20.9]	10-12	ND [20.9]	10-12 dup		10-12	ND [20.6]
12-14	ND [21.2]			12-14	ND [21]	12-14	ND [20.7]		2-14	ND [21.1]	12-14	ND [28.9]	12-14	ND [20.6]	12-14	ND [20.6]
14-16	ND [21.6]			14-16	ND [21.3]	14-16	ND [21.3]		-16	ND [20.9]	14-16	ND [20.9]	14-16	ND [21.2]	14-16	ND [20.8]
16-18	ND [21.3]			16-18	ND [21.7]	16-18	ND [21.1]	16	5-18	ND [21.1]	16-18	ND [21.4]	16-18	ND [21.1]	16-18	ND [20.6]
Tes	t Pit 42	Т	est Pit 43													
Depth (ft)	DRO (mg/kg)	Depth (ft) DRO (mg/kg)													
0-2	ND [22]	0-2	ND [22.9]													
2-4	ND [20.2]	2-4	ND [22.2]													
4-6	ND [20.2]	4-6	ND [21.7]													
4-6 dup	ND [20.6]	6-8	ND [20.8]													
6-8	ND [20.4]	8-10	ND [20.8]													
8-10	ND [20.9]	8-10	ND [20.9]													
10-12	ND [20.5]	10-12	ND [21]													
12-14	ND [21.1]	12-14	ND [20.9]													
14-16	ND [21]	14-16	ND [20.9]													
16-18 Notes:	ND [20.6]	16-18	ND [21.5]													

Notes:

Bold and highlighted indicates concentrations exceeding the 230 mg/kg Method 2 DRO Cleanup Level for Migration to Groundwater in the over 40 inch zone (18 AAC 75 Table B)


ND(22) - not detected, limit of quantitation shown in parenthesis


slope - sample collected from slope between existing gravel pit and future gravel extraction area test pit

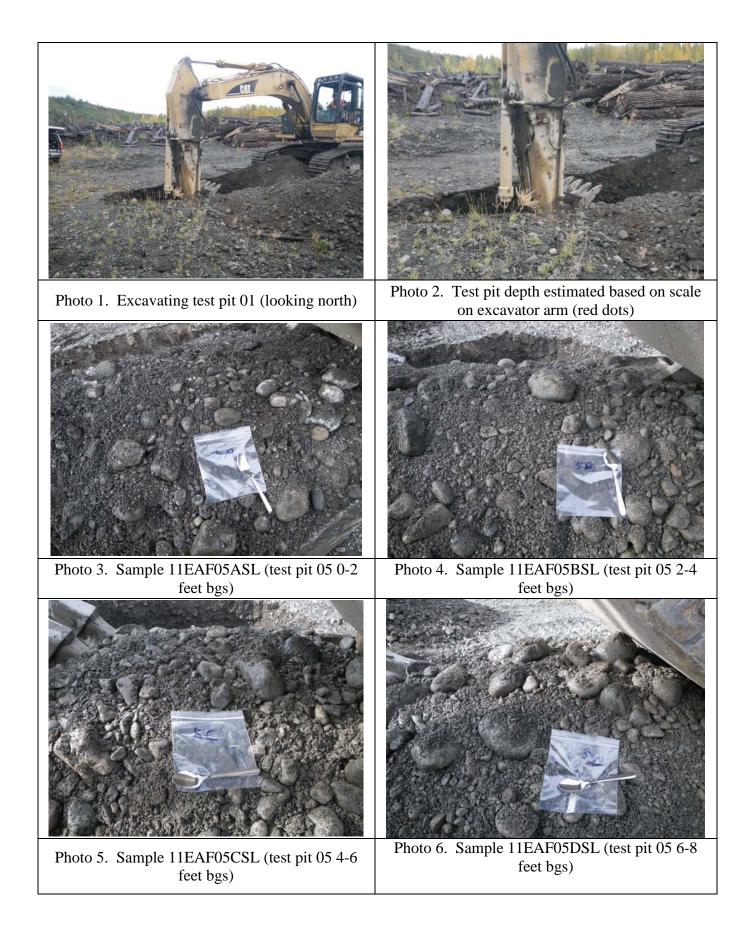
Overburden - The investigation area is being used for overburden storage. It was assumed that the fill encountered at these test pit locations is not related to DOD's use of the site and therefore was not sampled. Data Flags:

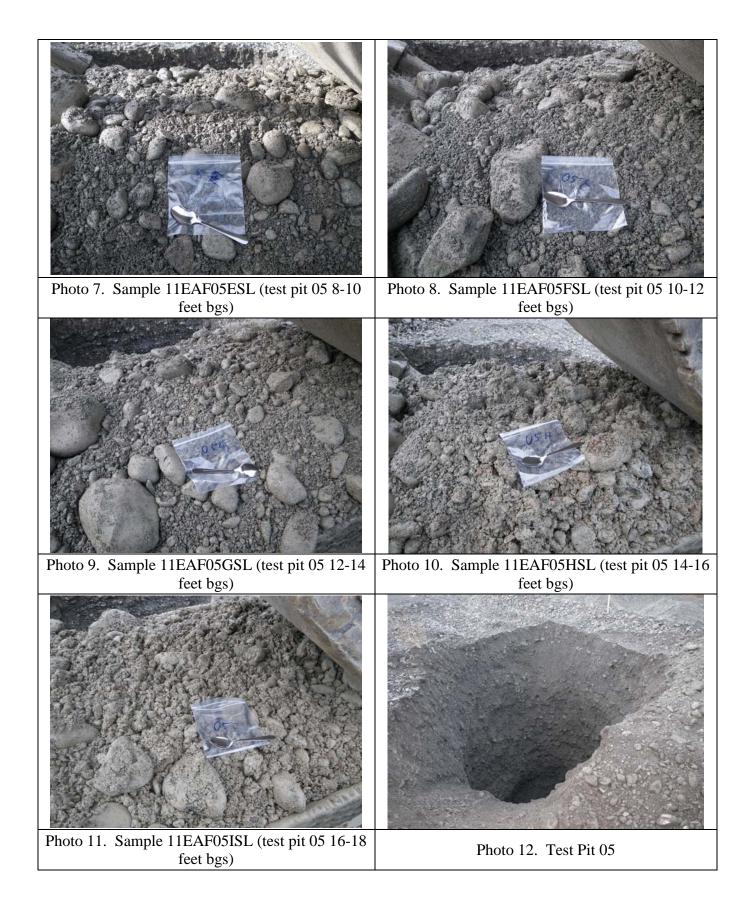
J = Analyte result is considered an estimated value because the level is below the laboratory LOQ but above the detection limit

Figures

UVOST PROBE AND TEST PIT LOCATIONS EKLUTNA ARMY SITES FUDS 2011 INVESTIGATION

EKLUTNA ARMY SITES - F10AK0097


EKLUTNA, ALASKA


FIGURE 3

· Design of the local distance of the	and the other states in the			A REAL PROPERTY AND A REAL	and the second second		-		A CONTRACTOR OF A		the second s	
Test Pit TP-01	Test Pit TP-02	Test Pit TP-03	Test Pit TP-04	Test Pit TP-05	Test Pit TP-06	Test Pit TP-07		Test Pit TP-24	Test Pit TP-25	Test Pit TP-26	Test Pit TP-27	Test Pit TP-28
Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)	Test pit was fill.		Depth (ft) DRO (mg/kg)	Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)
0-2 ND [20.6]	0-2 ND [22.2]	0-2 ND [22.2]	0-2 ND [20.5]	0-2 ND [20.7]	0-2 ND [20.3]	No sample.		0-2 ND [20.5]	0-2 ND [21]	0-2 ND [20.7]	0-2 ND [20.8]	0-2 ND [20.9]
0-2 dup ND [20.7]	2-4 ND [20.6]	2-4 ND [20.6]	2-4 ND [20.4]	2-4 ND [20.5]	2-4 ND [20.3]			2-4 ND [20.8]	2-4 ND [22.1]	0-2 dup ND [20.7]	2-4 ND [21.2]	2-4 ND [20.5] 4-6 ND [21.7]
2-4 ND [20.7] 4-6 ND [20.8]	2-4 dup ND [20.6] 4-6 ND [20.7]	4-6 ND [20.7] 4-6 dup ND [20.6]	4-6 ND [20.9] 6-8 ND [20.5]	4-6 15.8 [20.5] J 6-8 ND [20.5]	4-6 ND [21.2] 6-8 ND [20.5]			4-6 ND [20.7] 6-8 ND [20.7]	4-6 ND [20.5] 4-6 dup ND [20.5]	2-4 ND [20.5] 4-6 ND [20.9]	2-4 dup ND [21.5] 4-6 ND [20.5]	4-6 ND [21.7] 4-6 dup ND [21.5]
6-8 ND [20.3]	6-8 ND [20.6]	6-8 ND [20.6]	6-8 dup ND [20.8]	8-10 ND [21.4]	8-10 ND [21]			8-10 ND [20.7]	6-8 ND [20.4]	6-8 ND [20.6]	6-8 ND [20.7]	6-8 ND [20.4]
8-10 ND [20.5]	8-10 ND [20.5]	8-10 ND [20.5]	8-10 ND [20.9]	8-10 dup 9.46 [21.6] J	10-12 ND [21.5]		P-20	10-12 ND [20.8]	8-10 ND [21]	8-10 ND [21]	8-10 ND [20.6]	8-10 ND [20.9]
10-12 ND [20.9]	10-12 ND [20.9]	10-12 ND [20.9]	10-12 ND [20.6]	10-12 ND [21.4]	10-12 dup ND [21.3]	MW-4	TP-20	10-12 dup ND [20.9]	10-12 ND [21]	10-12 ND [21.1]	10-12 ND [20.7]	10-12 ND [20.8]
12-14 ND [21]	12-14 ND [20.9]	12-14 ND [20.9]	12-14 ND [20.8]	12-14 ND [21.4]	12-14 ND [21.6]	TP-43		12-14 ND [21.2]	12-14 ND [21.2]	12-14 ND [21]	12-14 ND [20.6]	12-14 ND [20.9]
14-16 ND [21]	14-16 ND [21]	14-16 ND [21]	14-16 ND [21.8]	14-16 ND [22.3]	14-16 ND [22]			14-16 ND [21.2]	14-16 ND [21]	14-16 ND [21.2]	14-16 ND [21]	14-16 ND [21.1] 16-18 ND [21.1]
16-18 ND [21.3]	16-18 ND [21.6]	16-18 ND [21.6]	16-18 ND [22.2]	16-18 ND [21.9]	16-18 ND [22.2]			16-18 ND [21.3]	16-18 ND [21.1]	16-18 ND [21]	16-18 ND [21.8]	16-18 ND [21.1]
Test Pit TP-08	Test Pit TP-09	Test Pit TP-10	Test Pit TP-11	Test Pit TP-12	Test Pit TP-13				Test Pit TP-29	Test Pit TP-30	Test Pit TP-31	Test Pit TP-32
Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)				Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg)
0-2 ND [20.8]	0-2 ND [22.2]	0-2 ND [21]	0-2 ND [21.2]	0-2 ND [27.7]	0-2 ND [20.4]	Charles and the states	TP-16		0-2 ND [20.2]	0-2 ND [20.6]	0-2 Overburden	0-2 Overburden
2-4 ND [21]	2-4 ND [21.2]	0-2 dup ND [21.2]	2-4 ND [21]	2-4 ND [27.2]	2-4 ND [20.3]				2-4 ND [20.6]	2-4 ND [20.9]	2-4 Overburden	2-4 Overburden
4-6 ND [21]	4-6 ND [21.2]	2-4 ND [25.1]	4-6 ND [21.1]	4-6 ND [20.6]	4-6 ND [20.6]				4-6 ND [20.4]	4-6 ND [20.7]	4-6 Overburden	4-6 Overburden
6-8 ND [21.1]	6-8 ND [20.7]	4-6 ND [24.9]	6-8 ND [23.6]	6-8 ND [20.4]	6-8 ND [20.5]			TP-21	6-8 ND [20.4]	4-6 dup ND [20.6]	6-8 Overburden	6-8 Overburden
8-10 ND [20.8]	8-10 ND [20.7]	6-8 ND [22.8] 8-10 ND [23.9]	8-10 ND [24.7]	6-8 dup ND [20.7]	8-10 ND [20.5]	TP-15			6-8 dup ND [20.5]	6-8 ND [25.5]	8-10 Overburden 10-12 Overburden	8-10 Overburden 10-12 Overburden
10-12 ND [20.9] 12-14 ND [21.1]	10-12 ND [21] 12-14 ND [21.5]	8-10 ND [23.9] 10-12 ND [22.9]	slope 71 [20.8] slope dup 57.6 [20.9]	8-10 ND [20.8] 10-12 ND [20.9]	8-10 dup ND [20.6] 10-12 ND [20.7]				8-10 ND [20.4] 10-12 ND [20.6]	8-10 ND [20.9] 10-12 ND [20.6]	12-14 ND [21.2]	12-14 Overburden
12-14 dup ND [21]	14-16 ND [21]	12-14 ND [22.2]		12-14 ND [21]	12-14 ND [20.6]				12-14 ND [20.8]	12-14 ND [21]	14-16 ND [21]	14-16 Overburden
14-16 ND [21.5]	14-16 dup ND [21.4]	State Sail	A free to	14-16 ND [20.6]	14-16 ND [20.7]				14-16 ND [20.6]	14-16 ND [21.1]	16-18 ND [21.2]	16-18 24.1 [22.6]
16-18 ND [20.9]	16-18 ND [21.4]			16-18 ND [21]	16-18 ND [20.9]	A CONTRACT OF A CONTRACT	TP-19		16-18 ND [20.7]	16-18 ND [21]	18-20 ND [20.7]	18-20 ND [20.6]
								The second s				Test all TR AT
Test Pit TP-15	Test Pit TP-16	Test Pit TP-14				C. M. BERK			Test Pit TP-33	Test Pit TP-34	Test Pit TP-36	Test Pit TP-37
Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg) 0-2 ND [20.7]	Building foundation prevented sample				A CONTRACTOR	TP-	31	Depth (feet) DRO (mg/kg		Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg) 0-2 ND [21.6]
0-2 Overburden 2-4 Overburden	0-2 ND [20.7] 2-4 ND [20.4]	collection.	All and a			MEX of although N		and the series of	0-2 Overburder 2-4 Overburder	0-2 ND [21.1] 0-2 dup ND [20.3]	0-2 ND [20.7] 2-4 ND [20.6]	0-2 ND [21.6] 0-2 dup 7.34 [21.8] J
4-6 Overburden	4-6 ND [20.3]	A CONTRACTOR	TP-39			TP-14		TP-22		2-4 ND [20.3]	2-4 dup ND [20.5]	2-4 24.4 [20.4]
6-8 Overburden	6-8 ND [20.6]	the second			San Part Street	TP-2			6-8 ND [21.2]	4-6 ND [20.6]	4-6 ND [20.7]	4-6 ND [20.6]
8-10 Overburden	8-10 ND [20.4]								8-10 ND [20.5]	6-8 ND [20.4]	6-8 ND [21]	6-8 ND [20.5]
10-12 9.33 [21.3] J	10-12 ND [20.5]		- Charles and the second		The second states				8-10 dup ND [20.2]	8-10 ND [21.2]	8-10 ND [21.1]	8-10 ND [20.7]
12-14 ND [20.7]	12-14 ND [20.7]	TP-37	the second						10-12 ND [20.9]	10-12 ND [21.5]	10-12 ND [20.7]	10-12 ND [20.9]
14-16 ND [20.6] 16-18 ND [20.5]	14-16 ND [20.9]				TP-43	TP-30		TP-23	12-14 ND [21.2]	12-14 ND [21]	12-14 ND [20.7]	12-14 ND [21.1] 14-16 ND [20.9]
16-18 ND [20.5]	16-18 ND [21] 4-6 ND [20.4]								14-16 ND [21.6] 16-18 ND [21.3]	14-16 ND [21.3] 16-18 ND [21.7]	14-16 ND [21.3] 16-18 ND [21.1]	14-16 ND [20.9]
and the second	in the second	TP-42	775 40						To To Ho family			
Test Pit TP-17	Test Pit TP-18		TP-38				TP-32					
Depth (feet) DRO (mg/kg)		The second se			a second in			TP-24	Test Pit TP-38	Test Pit TP-39	Test Pit TP-40	Test Pit TP-19
	Depth (feet) DRO (mg/kg)	N. The second			1		6. P	TP-24	Test Pit TP-38 Depth (feet) DRO (mg/kg	and the second diversion of th	Test Pit TP-40 Depth (feet) DRO (mg/kg)	Test Pit TP-19 Test pit was fill.
0-2 317 [21.9]	Depth (feet) DRO (mg/kg) 0-2 ND [20.4]				SAPE -	TP-29		TP-24		and the second diversion of th		
0-2 317 [21.9] 2-4 ND [22]	0-2 ND [20.4] 2-4 ND [22.1]				Alles -	TP-29		TP-24	Depth (feet) DRO (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1]	Test pit was fill. No sample collected.
0-2 317 [21.9] 2-4 ND [22] 4-6 ND [22.1]	0-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1]					TP-29			Depth (feet) DRO (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1]	Test pit was fill. No sample collected. Test Pit TP-35
0-2 317 [21.9] 2-4 ND [22] 4-6 ND [22.1] 6-8 ND [22]	0-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7]			TE	36			TP-24	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill.
0-2 317 [21.9] 2-4 ND [22] 4-6 ND [22.1] 6-8 ND [22] 6-8 dup ND [22]	0-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8]			TP.		TP-28		TP-24	Depth (feet) DRO (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8] 6-8 dup ND [20.8]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7]	Test pit was fill. No sample collected. Test Pit TP-35
0-2 317 [21.9] 2-4 ND [22] 4-6 ND [22.1] 6-8 ND [22]	0-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7]				TP-03			TP-24	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill.
0-2 317 [21.9] 2-4 ND [22] 4-6 ND [22.1] 6-8 ND [22] 6-8 dup ND [22] 8-10 ND [20.3]	O-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9]		TP			TP-28		TP-24	Depth (feet) DRO (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8] 6-8 dup ND [20.8] 8-10 ND [21.1]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21] 10-12 ND [21.2]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 8-10 dup ND [20.7]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill.
0-2 317 [21.9] 2-4 ND [22.1] 4-6 ND [22.1] 6-8 ND [22] 6-8 dup ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7] 14-16 ND [21.6]	O-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3]				TP-03	TP-28 TP-18			Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8] 6-8 dup ND [20.8] 8-10 ND [21.1] 10-12 ND [20.9] 12-14 ND [28.9] 14-16 ND [20.9]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21] 10-12 ND [21.2] 10-12 dup ND [21.4] 12-14 ND [20.6]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.8]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill.
0-2 317 [21.9] 2-4 ND [22] 4-6 ND [22.1] 6-8 ND [22] 6-8 dup ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7]	0-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21]		TP-40	-12 UVOST-001	TP-03	TP-28 TP-18		TP17	Depth (feet) DRO (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8] 6-8 dup ND [20.8] 8-10 ND [21.1] 10-12 ND [20.9] 12-14 ND [28.9]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21] '10-12 ND [21.2] 10-12 dup ND [21.4] 12-14 ND [20.6]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 8-10 dup ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill.
0-2 317 [21.9] 2-4 ND [22] 4-6 ND [22.1] 6-8 ND [22] 6-8 dup ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7] 14-16 ND [21.6] 16-18 ND [21.5]	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3] 16-18 ND [21.1]	Tert Dit TD 33	TP-40	-12 UVOST-001	TP-03	TP-28 TP-18			Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8] 8-10 ND [20.8] 10-12 ND [20.9] 12-14 ND [28.9] 14-16 ND [20.9] 16-18 ND [21.4]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21] 10-12 ND [21.2] 10-12 dup ND [21.4] 12-14 ND [20.6] 14-16 ND [21.2] 16-18 ND [21.1]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.8]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill.
0-2 317 [21.9] 2-4 ND [22] 4-6 ND [22.1] 6-8 ND [22] 6-8 dup ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7] 14-16 ND [21.5] Test Pit TP-20	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3] 16-18 ND [21.1]	Test Pit TP-22 Depth (ft) DB0 (mg/kg)	TP-40 Test Pit TP-23	-12 UVOST-001 TP-02	TP-03	TP-28 TP-18 TP-27		TP-17	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8] 6-8 dup ND [20.8] 8-10 ND [21.1] 10-12 ND [20.9] 12-14 ND [28.9] 14-16 ND [20.9] 16-18 ND [21.4]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21] 10-12 ND [21.2] 10-12 dup ND [21.4] 12-14 ND [20.6] 14-16 ND [21.2] 16-18 ND [21.1]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.8]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill.
0-2 317 [21.9] 2-4 ND [22.1] 6-8 ND [22.2] 6-8 dup ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7] 14-16 ND [21.5] Test Pit TP-20 Depth (ft) DR0 (mg/kg)	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3] 16-18 ND [21.1] Test Pit TP-21 Depth (ft) DR0 (mg/kg)	Depth (ft) DRO (mg/kg)	TP-40 Test Pit TP-23 Depth (ft) DR0 (mg/kg)	-12 UVOST-001 TP-02 UVOST-002	TP-03 TP-01	TP-28 TP-18 TP-27	TP-33	TP-17	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 12-14 ND [20.9] 14-16 ND [20.9] 14-16 ND [20.9] 16-18 ND [21.4]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21] 10-12 ND [21.2] 10-12 ND [21.4] 12-14 ND [21.2] 16-18 ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg)	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.8]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill.
0-2 317 [21.9] 2-4 ND [22.1] 6-8 ND [22.2] 6-8 dup ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7] 14-16 ND [21.5]	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3] 16-18 ND [21.1]		TP-40 Test Pit TP-23	-12 UVOST-001 TP-02 UVOST-002 UV	TP-03 TP-01	TP-28 TP-18 TP-27	TP-33	TP-17	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 12-14 ND [20.9] 14-16 ND [20.9] 14-16 ND [20.9] 16-18 ND [21.4]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21] 10-12 ND [21.2] 10-12 dup ND [21.4] 12-14 ND [21.2] 16-18 ND [21.1]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.8]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill.
0-2 317 [21.9] 2-4 ND [22.1] 4-6 ND [22.1] 6-8 ND [22] 6-8 dup ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7] 14-16 ND [21.5] Test Pit TP-20 Depth (ft) 0-2 Overburden	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3] 14-16 ND [21.3] 16-18 ND [21.1] Test Pit TP-21 Depth (ft) DR0 (mg/kg) 0-2 ND [21.9]	Depth (ft) DRO (mg/kg) 0-2 ND [21.8]	TP-40 Test Pit TP-23 Depth (ft) DR0 (mg/kg) 0-2 12.4 [21.8] J	-12 UVOST-001 TP-02 UVOST-002	TP-03 TP-01 OST-003 UVOST-005	TP-28 TP-18 TP-27	TP-33	TP-17	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8] 8-10 ND [21.1] 10-12 ND [20.9] 12-14 ND [20.9] 14-16 ND [20.9] 16-18 ND [21.4] Test Pit TP-42 Depth (feet) 0-2 ND [22]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21] 10-12 ND [21.2] 10-12 ND [21.4] 12-14 ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg) 0-2 ND [22.9]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.8] 16-18 ND [20.6]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill.
0-2 317 [21.9] 2-4 ND [22] 4-6 ND [22.1] 6-8 ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7] 14-16 ND [21.6] 16-18 ND [21.5] Test Pit TP-20 Depth (ft) D-2 Overburden 2-4 ND [21] 2-4 dup ND [20.9] 4-6 ND [20.8]	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21] 14-16 ND [21.3] 16-18 ND [21.1] Test Pit TP-21 Depth (ft) DR0 (mg/kg) 0-2 ND [21.9] 2-4 ND [20.6] 4-6 ND [21.1]	Depth (ft) DRO (mg/kg) 0-2 ND [21.8] 2-4 ND [22.5] 4-6 ND [20.5] 6-8 ND [20.5]	TP-40 Test Pit TP-23 Depth (ft) DR0 (mg/kg) 0-2 12.4 [21.8] J 2-4 ND [22.1] 4-6 ND [21.3] 6-8 ND [21.2]	-12 UVOST-001 TP-02 UVOST-002 UV	TP-03 TP-01 OST-003 UVOST-005	TP-28 TP-18 TP-27 TP-08	TP-33	TP-17	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.3] 6-8 ND [20.3] 6-8 ND [20.8] 6-8 dup ND [20.8] 8-10 ND [21.1] 10-12 ND [20.9] 12-14 ND [20.9] 16-18 ND [21.4] Test Pit TP-42 Depth (feet) DR0 (mg/kg 0-2 ND [22.] 2-4 ND [20.2] 4-6 ND [20.2] 4-6 ND [20.2] 4-6 ND [20.2] 4-6 dup ND [20.5]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21.] 10-12 ND [21.2] 10-12 dup ND [21.4] 12-14 ND [20.6] 14-16 ND [21.2] 16-18 ND [21.2] 2-4 ND [22.2] 2-4 ND [22.2] 4-6 ND [21.7] 6-8 ND [20.8]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.8] 16-18 ND [20.6]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill.
0-2 317 [21.9] 2-4 ND [22.1] 6-8 ND [22.2] 6-8 dup ND [22] 8-10 ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7] 14-16 ND [21.6] 16-18 ND [21.5] Test Pit TP-20 Depth (ft) DR0 (mg/kg) 0-2 Overburden 2-4 ND [21] 2-4 dup ND [20.9] 4-6 ND [20.8] 6-8 ND [20.8]	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21] 14-16 ND [21.3] 16-18 ND [21.1] Test Pit TP-21 Depth (ft) DR0 (mg/kg) 0-2 ND [21.9] 2-4 ND [20.6] 4-6 ND [21.1] 4-6 dup ND [21.4]	Depth (ft) DRO (mg/kg) 0-2 ND [21.8] 2-4 ND [22.5] 4-6 ND [20.5] 6-8 ND [20.5]	Test Pit TP-23 Depth (ft) DRO (mg/kg) 0-2 12.4 [21.8] J 2-4 ND [22.1] 4-6 ND [21.3] 6-8 ND [21.2] 8-10 ND [20.5]	-12 UVOST-001 TP-02 UVOST-002 UV	TP-03 TP-01	TP-28 TP-18 TP-27 TP-08	TP-33	TP-17	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.3] 6-8 ND [20.3] 6-8 dup ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 12-14 ND [20.9] 12-14 ND [20.9] 14-16 ND [20.9] 16-18 ND [21.1] Depth (feet) Depth (feet) Depth (feet) DR0 (mg/kg 0-2 ND [22] 2-4 ND [20.2] 4-6 ND [20.4]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21] 10-12 ND [21.4] 12-14 ND [21.2] 16-18 ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg) 0-2 ND [22.9] 2-4 ND [22.2] 4-6 ND [21.7] 6-8 ND [22.9] 2-4 ND [22.9] 2-4 ND [22.8] 8-10 ND [20.8]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.8] 16-18 ND [20.6]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill. No sample collected.
0-2 317 [21.9] 2-4 ND [22.1] 6-8 ND [22.2] 6-8 dup ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7] 14-16 ND [21.5] Test Pit TP-20 Depth (ft) DR0 (mg/kg) 0-2 Overburden 2-4 ND [21.9] 2-4 dup ND [20.8] 6-8 ND [20.8] 6-8 ND [20.8] 6-8 ND [20.8] 8-10 ND [20.7]	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.9] 10-12 ND [21.3] 16-18 ND [21.1] Test Pit TP-21 Depth (ft) DR0 (mg/kg) 0-2 ND [21.9] 2-4 ND [21.1] 4-6 ND [21.1] 6-8 ND [21.1] 6-8 ND [21.4] 8-10 ND [21.9]	Depth (ft) DRO (mg/kg) 0-2 ND [21.8] 2-4 ND [22.5] 4-6 ND [20.5] 6-8 ND [20.5] 6-8 dup ND [20.5] 8-10 ND [20.6]	TP-40 Test Pit TP-23 Depth (ft) DRO (mg/kg) 0-2 12.4 [21.8] J 2-4 ND [22.1] 4-6 ND [21.3] 6-8 ND [21.2] 8-10 ND [20.5] 8-10 dup ND [20.6]	-12 UVOST-001 TP-02 UVOST-002 UV	TP-03 TP-01 OST-003 UVOST-005	TP-28 TP-18 TP-27 TP-08	TP-09	TP-17	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8] 6-8 dup ND [20.8] 8-10 ND [21.1] 10-12 ND [20.9] 12-14 ND [20.9] 12-14 ND [20.9] 14-16 ND [21.1] Depth (feet) DR0 (mg/kg 0-2 ND [21.4] Test Pit TP-42 Depth (feet) DR0 (mg/kg 0-2 ND [20.2] 2-4 ND [20.2] 4-6 ND [20.6] 6-8 ND [20.4] 8-10 ND [20.9]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21] 10-12 ND [21.2] 10-12 dup ND [21.2] 10-12 dup ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg) 0-2 ND [22.2] 4-6 ND [22.2] 4-6 ND [22.2] 4-6 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 8-10 dup ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.6] 16-18 ND [20.6]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill. No sample collected.
0-2 317 [21.9] 2-4 ND [22.1] 6-8 ND [22.2] 6-8 dup ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7] 14-16 ND [21.5] Test Pit TP-20 Depth (ft) DR0 (mg/kg) 0-2 Overburden 2-4 ND [20.9] 4-6 ND [20.8] 6-8 ND [20.8] 8-10 ND [20.7] 10-12 ND [20.5]	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3] 16-18 ND [21.1] Test Pit TP-21 Depth (ft) DR0 (mg/kg) 0-2 ND [21.9] 2-4 ND [20.6] 4-6 ND [21.1] 4-6 dup ND [21.1] 6-8 ND [21.1] 6-8 ND [21.4] 8-10 ND [20.9] 10-12 ND [21.2]	Depth (ft) DRO (mg/kg) 0-2 ND [21.8] 2-4 ND [22.5] 4-6 ND [20.5] 6-8 ND [20.5] 6-8 dup ND [20.5] 8-10 ND [20.6] 10-12 ND [23]	TP-40 Test Pit TP-23 Depth (ft) DRO (mg/kg) 0-2 12.4 [21.8] J 2-4 ND [22.1] 4-6 ND [21.3] 6-8 ND [21.3] 6-8 ND [21.2] 8-10 ND [20.5] 8-10 dup ND [20.6] 10-12 ND [20.8]	-12 UVOST-001 TP-02 UVOST-002 UV	TP-03 TP-01 OST-003 UVOST-005	TP-28 TP-18 TP-27 TP-08 TP-08	TP-33	TP-17 TP-34	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8] 6-8 dup ND [20.8] 8-10 ND [20.1] 10-12 ND [20.9] 12-14 ND [28.9] 14-16 ND [20.9] 16-18 ND [21.1] Depth (feet) Depth (feet) DR0 (mg/kg 0-2 ND [22] 2-4 ND [20.2] 4-6 ND [20.2] 4-6 ND [20.2] 4-6 ND [20.6] 6-8 ND [20.4] 8-10 ND [20.9] 10-12 ND [20.9]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21.1] 10-12 ND [21.2] 10-12 Up [21.4] 12-14 ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg) 0-2 ND [22.9] 2-4 ND [22.7] 4-6 ND [21.7] 6-8 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 10-12 ND [21]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 8-10 dup ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.6] 16-18 ND [20.6]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill. No sample collected.
0-2 317 [21.9] 2-4 ND [22.1] 6-8 ND [22] 6-8 dup ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7] 14-16 ND [21.6] 16-18 ND [21.5] Test Pit TP-20 Depth (ft) DR0 (mg/kg) 0-2 Overburden 2-4 ND [21.] 2-4 dup ND [20.8] 6-8 ND [20.8] 6-8 ND [20.8] 8-10 ND [20.7]	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.9] 10-12 ND [21.3] 16-18 ND [21.1] Test Pit TP-21 Depth (ft) DR0 (mg/kg) 0-2 ND [21.9] 2-4 ND [21.1] 4-6 ND [21.1] 6-8 ND [21.1] 6-8 ND [21.4] 8-10 ND [21.9]	Depth (ft) DRO (mg/kg) 0-2 ND [21.8] 2-4 ND [22.5] 4-6 ND [20.5] 6-8 ND [20.5] 6-8 dup ND [20.5] 8-10 ND [20.6]	TP-40 Test Pit TP-23 Depth (ft) DRO (mg/kg) 0-2 12.4 [21.8] J 2-4 ND [22.1] 4-6 ND [21.3] 6-8 ND [21.2] 8-10 ND [20.5] 8-10 dup ND [20.6]	-12 UVOST-001 UVOST-002 UV UV TP-10	TP-03 TP-01 OST-003 UVOST-005 UVOST-004UVOST-006 UVOS	TP-28 TP-18 TP-27 TP-08 TP-08	TP-09	TP-17 TP-34	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8] 6-8 dup ND [20.8] 8-10 ND [21.1] 10-12 ND [20.9] 12-14 ND [20.9] 12-14 ND [20.9] 14-16 ND [21.1] Depth (feet) DR0 (mg/kg 0-2 ND [21.4] Test Pit TP-42 Depth (feet) DR0 (mg/kg 0-2 ND [20.2] 2-4 ND [20.2] 4-6 ND [20.6] 6-8 ND [20.4] 8-10 ND [20.9]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21] 10-12 ND [21.2] 10-12 dup ND [21.2] 10-12 dup ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg) 0-2 ND [22.2] 4-6 ND [22.2] 4-6 ND [22.2] 4-6 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.5] 8-10 ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.6] 14-16 ND [20.6] 16-18 ND [20.6]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill. No sample collected.
0-2 317 [21.9] 2-4 ND [22.1] 6-8 ND [22.1] 6-8 dup ND [22] 8-10 ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [21.6] 16-18 ND [21.5] Test Pit TP-20 Depth (ft) DR0 (mg/kg) 0-2 Overburden 2-4 ND [20.9] 4-6 ND [20.9] 4-6 ND [20.8] 8-10 ND [20.7] 10-12 ND [20.5] 12-14 ND [21]	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3] 16-18 ND [21.3] 16-18 ND [21.1] Test Pit TP-21 Depth (ft) DR0 (mg/kg) 0-2 ND [21.9] 2-4 ND [20.6] 4-6 ND [21.1] 6-8 ND [21.4] 8-10 ND [20.9] 10-12 ND [20.9] 10-12 ND [20.9]	Depth (ft) DRO (mg/kg) 0-2 ND [21.8] 2-4 ND [22.5] 4-6 ND [20.5] 6-8 ND [20.5] 6-8 dup ND [20.5] 8-10 ND [20.6] 10-12 ND [23] 12-14 ND [22.7]	Test Pit TP-23 Depth (ft) DRO (mg/kg) 0-2 12.4 [21.8] J 2-4 ND [22.1] 4-6 ND [21.2] 8-10 ND [20.5] 8-10 dup ND [20.5] 8-10 dup ND [20.6] 10-12 ND [20.8] 12-14 ND [20.7]	-12 UVOST-001 UVOST-002 UV UV TP-10	TP-03 TP-01 OST-003 UVOST-005 UVOST-004UVOST-006 UVOS	TP-28 TP-18 TP-27 TP-08 TP-08	TP-33	TP-17 TP-34	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8] 6-8 dup ND [20.8] 8-10 ND [20.9] 12-14 ND [20.9] 12-14 ND [20.9] 14-16 ND [20.9] 16-18 ND [21.1] Depth (feet) Depth (feet) DR0 (mg/kg 0-2 ND [22.] 2-4 ND [20.2] 4-6 ND [20.2] 4-6 dup ND [20.2] 4-6 dup ND [20.6] 6-8 ND [20.4] 8-10 ND [20.9] 10-12 ND [20.4] 8-10 ND [20.4] 8-10 ND [20.5] 12-14 ND [21.1]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21] 10-12 ND [21.2] 10-12 Up [21.4] 12-14 ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg) 0-2 ND [22.9] 2-4 ND [22.2] 4-6 ND [21.7] 6-8 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 10-12 ND [21] 12-14 ND [20.9]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 8-10 up ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.6] 16-18 ND [20.6] 16-18 ND [20.6] 16-18 ND [20.6] WONTORING W MONITORING W	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill. No sample collected.
0-2 317 [21.9] 2-4 ND [22.1] 6-8 ND [22.2] 6-8 dup ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [21.6] 16-18 ND [21.5] Test Pit TP-20 Depth (ft) DR0 (mg/kg) 0-2 Overburden 2-4 ND [20.9] 4-6 ND [20.8] 6-8 ND [20.8] 8-10 ND [20.7] 10-12 ND [20.5] 12-14 ND [20.5] 12-14 ND [20.5] 12-14 ND [20.9]	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3] 16-18 ND [21.3] 16-18 ND [21.1] Petht TP-21 Depth (ft) DR0 (mg/kg) 0-2 ND [21.9] 2-4 ND [20.6] 4-6 ND [21.1] 4-6 dup ND [21.4] 8-10 ND [20.9] 10-12 ND [20.9] 10-12 ND [20.9] 10-12 ND [20.9] 14-16 ND [20.9]	Depth (ft) DRO (mg/kg) 0-2 ND [21.8] 2-4 ND [22.5] 4-6 ND [20.5] 6-8 ND [20.5] 8-10 ND [20.5] 10-12 ND [20.6] 12-14 ND [22.7] 14-16 ND [22.9]	TP-40 Test Pit TP-23 Depth (ft) DRO (mg/kg) 0-2 12.4 [21.8] J 2-4 ND [22.1] 4-6 ND [21.3] 6-8 ND [21.2] 8-10 ND [20.6] 10-12 ND [20.8] 12-14 ND [20.7] 14-16 ND [21]	-12 UVOST-001 UVOST-002 UV UV TP-10	TP-03 TP-01 OST-003 UVOST-005 UVOST-004UVOST-006 UVOS ST-008 TP-11 TP	TP-28 TP-18 TP-27 TP-08 TP-08	TP-33	TP-17 TP-34	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.3] 6-8 ND [20.3] 6-8 ND [20.8] 8-10 ND [20.8] 8-10 ND [21.1] 10-12 ND [20.9] 12-14 ND [20.9] 14-16 ND [20.9] 16-18 ND [21.4] Test Pit TP-42 Depth (feet) DR0 (mg/kg 0-2 ND [22] 2-4 ND [20.2] 4-6 ND [20.4] 8-10 ND [20.4] 8-10 ND [20.5] 10-12 ND [20.5] 12-14 ND [21.1] 14-16 ND [21]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21] 10-12 ND [21.2] 10-12 ND [21.2] 10-12 ND [21.2] 10-14 ND [21.2] 16-18 ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg) 0-2 ND [22.2] 4-6 ND [21.7] 6-8 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 10-12 ND [21.2] 12-14 ND [20.9] 10-12 ND [20.8] 8-10 ND [20.9] 10-12 ND [21.2] 12-14 ND [20.9] 14-16 ND [20.9]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.5] 8-10 ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.6] 14-16 ND [20.6] 16-18 ND [20.6]	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill. No sample collected.
0-2 317 [21.9] 2-4 ND [22.1] 6-8 ND [22.2] 6-8 dup ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [21.6] 16-18 ND [21.5] Test Pit TP-20 Depth (ft) DR0 (mg/kg) 0-2 Overburden 2-4 ND [20.9] 4-6 ND [20.8] 6-8 ND [20.8] 8-10 ND [20.7] 10-12 ND [20.5] 12-14 ND [20.5] 12-14 ND [20.5] 12-14 ND [20.9]	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3] 16-18 ND [21.3] 16-18 ND [21.1] Petht TP-21 Depth (ft) DR0 (mg/kg) 0-2 ND [21.9] 2-4 ND [20.6] 4-6 ND [21.1] 4-6 dup ND [21.4] 8-10 ND [20.9] 10-12 ND [20.9] 10-12 ND [20.9] 10-12 ND [20.9] 14-16 ND [20.9]	Depth (ft) DRO (mg/kg) 0-2 ND [21.8] 2-4 ND [22.5] 4-6 ND [20.5] 6-8 ND [20.5] 8-10 ND [20.5] 10-12 ND [20.6] 12-14 ND [22.7] 14-16 ND [22.9]	TP-40 Test Pit TP-23 Depth (ft) DRO (mg/kg) 0-2 12.4 [21.8] J 2-4 ND [22.1] 4-6 ND [21.3] 6-8 ND [21.2] 8-10 ND [20.6] 10-12 ND [20.8] 12-14 ND [20.7] 14-16 ND [21]	-12 UVOST-001 UVOST-002 UV UV TP-10	TP-03 TP-01 OST-003 UVOST-005 UVOST-004UVOST-006 UVOS ST-008 TP-11 TP	TP-28 TP-18 TP-27 TP-08 TP-08	TP-33	TP-17 TP-34	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.3] 6-8 ND [20.3] 6-8 ND [20.8] 8-10 ND [20.8] 8-10 ND [21.1] 10-12 ND [20.9] 12-14 ND [20.9] 14-16 ND [20.9] 16-18 ND [21.4] Test Pit TP-42 Depth (feet) DR0 (mg/kg 0-2 ND [22] 2-4 ND [20.2] 4-6 ND [20.4] 8-10 ND [20.4] 8-10 ND [20.5] 10-12 ND [20.5] 12-14 ND [21.1] 14-16 ND [21]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21] 10-12 ND [21.2] 10-12 ND [21.2] 10-12 ND [21.2] 10-14 ND [21.2] 16-18 ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg) 0-2 ND [22.2] 4-6 ND [21.7] 6-8 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 10-12 ND [21.2] 12-14 ND [20.9] 10-12 ND [20.8] 8-10 ND [20.9] 10-12 ND [21.2] 12-14 ND [20.9] 14-16 ND [20.9]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 8-10 up ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.6] 16-18 ND [20.6] 16-18 ND [20.6] 16-18 ND [20.6] WONTORING W MONITORING W	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill. No sample collected.
0-2 317 [21.9] 2-4 ND [22] 4-6 ND [22.1] 6-8 ND [22] 8-10 ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [21.6] 16-18 ND [21.5] Test Pit TP-20 Depth (ft) DR0 (mg/kg) 0-2 Overburden 2-4 ND [21.] 2-4 dup ND [20.9] 4-6 ND [20.8] 8-10 ND [20.7] 10-12 ND [20.7] 10-12 ND [20.8] 8-10 ND [20.7] 10-12 ND [20.7] 10-12 ND [20.7] 10-12 ND [20.7] 14-16 ND [20.9] 16-18 ND [20.8] 8-10 ND [20.8] 16-18 ND [20.8]	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [21.1] 14-16 ND [21.3] 16-18 ND [21.1] Test Pit TP-21 Depth (ft) DR0 (mg/kg) 0-2 ND [21.9] 2-4 ND [20.6] 4-6 ND [21.1] 6-8 ND [21.1] 6-8 ND [21.2] 6-8 ND [21.2] 10-12 ND [20.9] 10-12 ND [20.9] 10-12 ND [20.9] 10-12 ND [20.9] 14-16 ND [20.9] 14-16 ND [21.8]	Depth (ft) DRO (mg/kg) 0-2 ND [21.8] 2-4 ND [22.5] 4-6 ND [20.5] 6-8 ND [20.5] 6-8 dup ND [20.5] 8-10 ND [20.5] 10-12 ND [23] 12-14 ND [22.7] 14-16 ND [22.9] 16-18 ND [20.9]	Test Pit TP-23 Depth (ft) DRO (mg/kg) 0-2 12.4 [21.8] J 2-4 ND [22.1] 4-6 ND [21.3] 6-8 ND [21.2] 8-10 ND [20.5] 8-10 dup ND [20.6] 10-12 ND [20.8] 12-14 ND [20.7] 14-16 ND [21] 16-18 ND [21.1]	-12 UVOST-001 UVOST-002 UV TP-10 UVOST	TP-03 TP-01 OST-003 UVOST-005 UVOST-004UVOST-006 UVOS ST-008 TP-11 TP	TP-28 TP-18 TP-27 TP-08 TP-08	TP-33	TP-17 TP-34	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8] 6-8 dup ND [20.8] 8-10 ND [20.1] 10-12 ND [20.9] 12-14 ND [20.9] 12-14 ND [20.9] 14-16 ND [21.1] Depth (feet) DR0 (mg/kg 0-2 ND [22.] 2-4 ND [20.2] 4-6 ND [20.2] 4-6 ND [20.2] 4-6 ND [20.2] 4-6 ND [20.4] 8-10 ND [20.4] 8-10 ND [20.5] 12-14 ND [20.5] 12-14 ND [21.1] 14-15 ND [21.1] 14-16 ND [21.1] 14-15 ND [20.6]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21.1] 10-12 ND [21.2] 10-12 Up [21.4] 12-14 ND [20.6] 14-16 ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg) 0-2 ND [22.9] 2-4 ND [22.2] 4-6 ND [21.7] 6-8 ND [22.9] 2-4 ND [22.9] 2-4 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 10-12 ND [21.1] 12-14 ND [20.9] 10-12 ND [21.1] 12-14 ND [20.9] 14-16 ND [20.9] 16-18 ND [21.5]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.5] 8-10 ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.6] 14-16 ND [20.6] 14-16 ND [20.6] 16-18 ND [20.6] VOST PROBE MONITORING W MONITORING W RESULT > ADE	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill. No sample collected. WELL - NO CONTAMINATION WELL - CONTAMINATED C CLEANUP LEVEL
0-2 317 [21.9] 2-4 ND [22.1] 6-8 ND [22] 8-10 ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7] 14-16 ND [21.5] Test Pit TP-20 Depth (ft) DR0 (mg/kg) 0-2 Overburden 2-4 ND [21.9] 2-4 dup ND [20.8] 6-8 ND [20.8] 6-8 ND [20.8] 10-12 ND [20.8] 10-12 ND [20.9] 14-16 ND [20.9] 16-18 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.8] 16-18 ND [20.8] 16-18 ND [20.8]	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3] 16-18 ND [21.1] Test Pit TP-21 Depth (ft) DR0 (mg/kg) 0-2 ND [21.9] 2-4 ND [20.6] 4-6 ND [21.1] 4-6 dup ND [21.1] 6-8 ND [21.2] 16-12 ND [20.9] 10-12 ND [21.2] 12-14 ND [20.9] 16-18 ND [21.8]	Depth (ft) DRO (mg/kg) 0-2 ND [21.8] 2-4 ND [22.5] 4-6 ND [20.5] 6-8 ND [20.5] 6-8 dup ND [20.5] 8-10 ND [20.6] 10-12 ND [23] 12-14 ND [22.7] 14-16 ND [20.9] 16-18 ND [20.9]	Test Pit TP-23 Depth (ft) DRO (mg/kg) 0-2 12.4 [21.8] J 2-4 ND [22.1] 4-6 ND [21.3] 6-8 ND [21.2] 8-10 ND [20.5] 8-10 dup ND [20.6] 10-12 ND [20.8] 12-14 ND [20.7] 14-16 ND [21] 16-18 ND [21.1] TH PRO UNDER THE USAC	-12 UVOST-001 UVOST-002 UV UV UV UV UV	TP-03 TP-01 OST-003 UVOST-005 UVOST-004UVOST-006 UVOS ST-008 TP-11 TP	TP-28 TP-18 TP-27 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08	TP-33	TP-17 TP-34	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.3] 6-8 ND [20.8] 6-8 dup ND [20.8] 8-10 ND [20.9] 12-14 ND [20.9] 12-14 ND [20.9] 14-16 ND [20.9] 16-18 ND [21.4] Test Pit TP-42 Depth (feet) DR0 (mg/kg 0-2 ND [20.2] 2-4 ND [20.2] 4-6 ND [20.4] 8-10 ND [20.5] 10-12 ND [20.5] 12-14 ND [20.6]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21.] 10-12 ND [21.2] 10-12 dup ND [21.4] 12-14 ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg) 0-2 ND [22.9] 2-4 ND [22.2] 4-6 ND [21.7] 6-8 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 10-12 ND [21.1] 12-14 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 10-12 ND [21.1] 12-14 ND [20.9] 14-16 ND [20.9] 10-12 ND [21.5]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.6] 14-16 ND [20.6] 16-18 ND [20.6] 16-18 ND [20.6] MONITORING W MONITORING W MONITORING W MONITORING W ND TEST PIT ND NONITORING W ND TEST PIT ND NONITORING W	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill. No sample collected. No sample collected.
0-2 317 [21.9] 2-4 ND [22.1] 6-8 ND [22.1] 6-8 dup ND [22] 8-10 ND [22] 8-10 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7] 14-16 ND [21.5] Test Pit TP-20 Depth (ft) DR0 (mg/kg) 0-2 Overburden 2-4 ND [20.9] 4-6 ND [20.9] 4-6 ND [20.8] 8-10 ND [20.7] 10-12 ND [20.8] 8-10 ND [20.7] 10-12 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 16-18 ND [20.8] 16-18 ND [20.8] 16-18 ND [20.8]	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3] 16-18 ND [21.3] 16-18 ND [21.1] Test Pit TP-21 Depth (ft) Depth (ft) DR0 (mg/kg) 0-2 ND [21.9] 2-4 ND [20.6] 4-6 ND [21.1] 6-8 ND [21.2] 14-6 ND [21.2] 12-14 ND [20.9] 10-12 ND [21.2] 12-14 ND [20.9] 10-12 ND [21.2] 12-14 ND [20.9] 16-18 ND [21.8]	Depth (ft) DRO (mg/kg) 0-2 ND [21.8] 2-4 ND [22.5] 4-6 ND [20.5] 6-8 ND [20.5] 6-8 dup ND [20.5] 8-10 ND [20.6] 10-12 ND [23] 12-14 ND [22.7] 14-16 ND [20.9] 16-18 ND [20.9]	TP-40 Test Pit TP-23 Depth (ft) DRO (mg/kg) 0-2 12.4 [21.8] J 2-4 ND [22.1] 4-6 ND [21.3] 6-8 ND [21.2] 8-10 ND [20.6] 10-12 ND [20.8] 12-14 ND [20.7] 14-16 ND [21] 16-18 ND [21.1] TH PRO UNDER THE USAC	-12 UVOST-001 UVOST-002 UV TP-02 UV UV TP-10 UV UV	TP-03 TP-01 OST-003 UVOST-005 UVOST-004 UVOST-006 UVOST-004 UVOST-006 ST-008 TP-11 TP AGREEMENT, 2009. ANGED SINCE THE SAMPL	TP-28 TP-18 TP-27 TP-05 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08	TP-33 TP-09 -07	TP-17 TP-34 P-35	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.3] 6-8 ND [20.3] 6-8 dup ND [20.8] 6-8 dup ND [20.8] 8-10 ND [21.1] 10-12 ND [20.9] 12-14 ND [28.9] 14-16 ND [20.9] 16-18 ND [21.4] Test Pit TP-42 Depth (feet) DR0 (mg/kg 0-2 ND [20.2] 4-6 ND [20.2] 4-7 ND [20.5] 12-14 ND [20.5] 12-14 ND [21.1] 14-16 ND [20.6] 16-18 ND [20.6]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21.1] 10-12 ND [21.2] 10-12 Up [21.4] 12-14 ND [20.6] 14-16 ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg) 0-2 ND [22.9] 2-4 ND [22.2] 4-6 ND [21.7] 6-8 ND [22.9] 2-4 ND [22.9] 2-4 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 10-12 ND [21.1] 12-14 ND [20.9] 10-12 ND [21.1] 12-14 ND [20.9] 14-16 ND [20.9] 16-18 ND [21.5]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.6] 14-16 ND [20.6] 16-18 ND [20.6] 16-18 ND [20.6] MONITORING W MONITORING W MONITORING W MONITORING W ND TEST PIT ND NONITORING W ND TEST PIT ND NONITORING W	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill. No sample collected. No sample collected.
0-2 317 [21.9] 2-4 ND [22] 4-6 ND [22.1] 6-8 ND [22] 8-10 ND [22] 8-10 ND [20.3] 10-12 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7] 14-15 ND [21.5] Test Pit TP-20 Depth (ft) DR0 (mg/kg) 0-2 Overburden 2-4 ND [21.] 2-4 dup ND [20.9] 4-6 ND [20.8] 8-10 ND [20.7] 10-12 ND [20.7] 10-12 ND [20.8] 8-10 ND [20.7] 10-12 ND [20.7] 10-12 ND [20.8] 8-10 ND [20.7] 10-12 ND [20.8] 12-14 ND [20.8] 12-14 ND [20.3] 14-16 ND [20.8] 16-18 ND [20.8] 16-18 ND [20.8] 16-18 ND [20.8] <	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3] 14-16 ND [21.1] Test Pit TP-21 Depth (ft) DR0 (mg/kg) 0-2 ND [21.9] 2-4 ND [20.6] 4-6 ND [21.1] 6-8 ND [21.2] 6-8 ND [21.4] 8-10 ND [21.2] 10-12 ND [20.9] 10-12 ND [20.9] 10-12 ND [20.9] 10-12 ND [20.9] 14-16 ND [20.9] 14-16 ND [21.2] 12-14 ND [20.9] 14-16 ND [21.8] SELOW GROUND SURFACE ED BOX EXCEED THE AD SKIPPED IN THE TEST PT	Depth (ft) DRO (mg/kg) 0-2 ND [21.8] 2-4 ND [22.5] 4-6 ND [20.5] 6-8 ND [20.5] 6-8 dup ND [20.5] 8-10 ND [20.5] 8-10 ND [20.6] 10-12 ND [23] 12-14 ND [22.7] 14-16 ND [22.9] 16-18 ND [20.9] 2011 FROM GOOGLE EAR? EC AT THE TIME OF EXCAV EC AETHOD 2 SOIL CLEA T SEQUENCE. SOIL CLEA	Test Pit TP-23 Depth (ft) DRO (mg/kg) 0-2 12.4 [21.8] J 2-4 ND [22.1] 4-6 ND [21.3] 6-8 ND [21.2] 8-10 ND [20.5] 8-10 dup ND [20.6] 10-12 ND [20.8] 10-12 ND [20.8] 10-12 ND [20.8] 10-14 ND [20.7] 14-16 ND [21] 16-18 ND [21.1] TH PRO UNDER THE USAC ATION. GROUND SURFAC	-12 UVOST-001 UVOST-002 UV TP-02 UV UV UV UV UV UV UV UV UV UV UV UV UV	TP-03 TP-01 TP-01 OST-003 UVOST-005 UVOST-004UVOST-006 UVOS ST-008 TP-11 TP ST-008 TP-11 TP AGREEMENT, 2009. ANGED SINCE THE SAMPL	TP-28 TP-18 TP-27 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08	TP-33	P-35	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.3] 6-8 ND [20.8] 6-8 dup ND [20.8] 8-10 ND [21.1] 10-12 ND [20.9] 12-14 ND [20.9] 14-16 ND [20.9] 16-18 ND [21.4] Test Pit TP-42 Depth (feet) DR0 (mg/kg 0-2 ND [22.] 2-4 ND [20.2] 4-6 ND [20.2] 10-12 ND [20.4] 8-10 ND [20.5] 10-12 ND [20.5] 12-14 ND [21.1] 14-16 ND [21.5] 12-14 ND [20.6]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21.] 10-12 ND [21.2] 10-12 dup ND [21.4] 12-14 ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg) 0-2 ND [22.9] 2-4 ND [22.2] 4-6 ND [21.7] 6-8 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 10-12 ND [21.1] 12-14 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 10-12 ND [21.1] 12-14 ND [20.9] 14-16 ND [20.9] 10-12 ND [21.5]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.1] 6-8 ND [20.5] 8-10 ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.6] 14-16 ND [20.6] 16-18 ND [20.6] 16-18 ND [20.6] MONITORING W MONITORING W MONITORING W MONITORING W ND TEST PIT ND NONITORING W ND TEST PIT ND NONITORING W	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill. No sample collected. No sample collected.
0-2 317 [21.9] 2-4 ND [22.1] 6-8 ND [22] 8-10 ND [22] 8-10 ND [20.3] 10-12 ND [20.3] 10-12 ND [20.6] 12-14 ND [21.6] 14-16 ND [21.5] Test Pit TP-20 Depth (ft) DR0 (mg/kg) 0-2 Overburden 2-4 ND [21.3] 2-4 dup ND [20.8] 6-8 ND [20.8] 6-8 ND [20.7] 10-12 ND [20.8] 6-8 ND [20.8] 6-8 ND [20.7] 10-12 ND [20.8] 8-10 ND [20.7] 10-12 ND [20.5] 12-14 ND [20.3] 14-15 ND [20.9] 16-18 ND [20.8] ND S ND S 10-12 ND [20.8] 116-18 ND [20.8] 16-18 ND [20.8]	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3] 16-18 ND [21.3] 16-18 ND [21.1] Test Pit TP-21 Depth (ft) DR0 (mg/kg) 0-2 ND [21.9] 2-4 ND [20.6] 4-5 ND [21.1] 4-6 dup ND [21.2] 16-7 ND [20.9] 10-12 ND [21.2] 12-14 ND [20.9] 16-18 ND [21.8]	Depth (ft) DRO (mg/kg) 0-2 ND [21.8] 2-4 ND [22.5] 4-6 ND [20.5] 6-8 ND [20.5] 6-8 dup ND [20.5] 6-8 dup ND [20.5] 8-10 ND [20.5] 10-12 ND [23] 12-14 ND [22.7] 14-16 ND [22.9] 16-18 ND [20.9] 2011 FROM GOOGLE EART EC METHOD 2 SOIL CLEA T SEQUENCE. R IT IS SHOWN IMMEDIAT	Test Pit TP-23 Depth (ft) DRO (mg/kg) 0-2 12.4 (21.8) 2-4 ND (22.1) 4-6 ND (21.3) 6-8 ND (21.2) 8-10 ND (20.5) 8-10 dup ND (20.6) 10-12 ND (20.8) 12-14 ND (20.7) 14-16 ND (21.1)	-12 UVOST-001 UVOST-002 UV TP-02 UV UV UV TP-10 UV UV SE ENTERPRISE LICENSE E ELEVATIONS HAVE CHA GURE.	TP-03 TP-01 OST-003 UVOST-005 UVOST-004 UVOST-006 UVOST-004 UVOST-006 ST-008 TP-11 TP AGREEMENT, 2009. ANGED SINCE THE SAMPL	TP-28 TP-18 TP-27 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08	TP-33 TP-09 TP-09 -07	P-35	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.3] 6-8 ND [20.3] 6-8 ND [20.8] 6-8 ND [20.8] 8-10 ND [20.9] 12-14 ND [20.9] 12-14 ND [20.9] 14-16 ND [20.9] 16-18 ND [21.4] Test Pit TP-42 Depth (feet) DR0 (mg/kg 0-2 ND [20.2] 2-4 ND [20.2] 2-4 ND [20.2] 4-6 ND [20.2] 10-12 ND [20.5] 12-14 ND [21.1] 14-16 ND [20.6] 12-18 ND [20.6]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21] 10-12 ND [21.4] 12-14 ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg) 0-2 ND [22.9] 2-4 ND [22.2] 4-6 ND [21.2] 16-18 ND [21.2] 4-6 ND [21.2] 16-18 ND [22.9] 2-4 ND [22.9] 2-4 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 10-12 ND [21.2] 12-14 ND [20.9] 14-16 ND [20.9] 14-16 ND [21.5]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.5] 8-10 ND [20.5] 8-10 dup ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.6] 14-16 ND [20.6] 16-18 ND [20.6] IEGEND TEST PIT UVOST PROBE MONITORING N MONITORING N RESULT > ADE ND TEST PIT I SFUDS 2011 IN	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill. No sample collected. No sample collected.
0-2 317 [21.9] 2-4 ND [22] 4-6 ND [22.1] 6-8 ND [22] 8-10 ND [22] 8-10 ND [20.3] 10-12 ND [20.3] 12-14 ND [20.1] 14-15 ND [21.5] Test Pit TP-20 Depth (ft) DR0 (mg/kg) 0-2 Overburden 2-4 ND [20.9] 4-6 ND [20.8] 8-10 ND [20.7] 10-12 ND [20.8] 8-10 ND [20.3] 10-12 ND [20.5] 12-14 ND [20.7] 10-12 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.8] 112-14 ND [20.8] 114-15 ND [20.8] 114-16 ND [20.8] 116-18 ND [20.8]	D-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3] 16-18 ND [21.3] 16-18 ND [21.1] Peth (ft) DRO (mg/kg) 0-2 ND [21.9] 2-4 ND [20.6] 4-6 ND [21.1] 4-6 ND [21.1] 6-8 ND [21.2] 12-14 ND [20.9] 10-12 ND [21.2] 12-14 ND [20.9] 10-12 ND [21.2] 12-14 ND [20.9] 10-12 ND [21.2] 12-14 ND [20.9] 16-18 ND [21.8]	Depth (ft) DRO (mg/kg) 0-2 ND [21.8] 2-4 ND [22.5] 4-6 ND [20.5] 6-8 ND [20.5] 6-8 dup ND [20.5] 8-10 ND [20.5] 8-10 ND [20.6] 10-12 ND [23] 12-14 ND [22.7] 14-16 ND [20.9] 16-18 ND [20.9] 16-18 ND [20.9] EC AT THE TIME OF EXCAV EC METHOD 2 SOIL CLEA T SEQUENCE. R IT IS SHOWN IMMEDIAT BEIND USED FOR OVERB	Test Pit TP-23 Depth (ft) DRO (mg/kg) 0-2 12.4 [21.8] J 2-4 ND [22.1] 4-6 ND [21.3] 6-8 ND [21.2] 8-10 ND [20.5] 8-10 dup ND [20.6] 10-12 ND [20.8] 10-12 ND [20.8] 10-12 ND [20.8] 10-14 ND [20.7] 14-16 ND [21] 16-18 ND [21.1] TH PRO UNDER THE USAC ATION. GROUND SURFAC	-12 UVOST-001 UVOST-002 UV TP-02 UV UV UV UV UV UV UV UV UV UV UV UV UV	TP-03 TP-01 TP-01 OST-003 UVOST-005 UVOST-004 UVOST-006 UVOST-004 UVOST-006 UVOST-007 UVOST-004 UVOST-006 UVOST-007 UVOST-004 UVOST-006 UVOST-007	TP-28 TP-18 TP-27 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08	TP-33 TP-09 TP-09 -07	TP-17 TP-34 P-35	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.5] 4-6 ND [20.3] 6-8 ND [20.8] 8-10 ND [21.1] 10-12 ND [20.9] 12-14 ND [28.9] 14-16 ND [20.9] 16-18 ND [21.1] Depth (feet) DR0 (mg/kg 0-2 ND [22.2] 2-4 ND [20.2] 4-6 ND [20.2] 4-6 ND [20.2] 2-4 ND [20.2] 4-6 ND [20.2] 4-6 ND [20.2] 4-6 ND [20.4] 8-10 ND [20.4] 8-10 ND [20.4] 8-10 ND [20.5] 12-14 ND [20.5] 12-14 ND [21.1] 14-15 ND [21.1] 16-18 ND [20.6]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21.] 10-12 ND [21.2] 10-12 dup ND [21.4] 12-14 ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg) 0-2 ND [22.9] 2-4 ND [22.2] 4-6 ND [21.7] 6-8 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 10-12 ND [20.9] 10-12 ND [20.9] 10-12 ND [21.5]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.5] 8-10 ND [20.5] 8-10 dup ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.6] 14-16 ND [20.6] 16-18 ND [20.6] IEGEND TEST PIT UVOST PROBE MONITORING N MONITORING N RESULT > ADE ND TEST PIT I SFUDS 2011 IN	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill. No sample collected. No sample collected.
0-2 317 [21.9] 2-4 ND [22] 4-6 ND [22.1] 6-8 ND [22] 8-10 ND [22] 8-10 ND [20.3] 10-12 ND [20.3] 10-12 ND [20.6] 12-14 ND [20.7] 14-16 ND [21.5] Test Pit TP-20 Depth (ft) DR0 (mg/kg) 0-2 Overburden 2-4 ND [20.9] 4-6 ND [20.8] 6-8 ND [20.8] 6-8 ND [20.8] 6-8 ND [20.9] 10-12 ND [20.9] 10-12 ND [20.8] 8-10 ND [20.9] 10-12 ND [20.9] 16-18 ND [20.8] ND [20.8] ND [20.8] 112-14 ND [20.8] 12-14 ND [20.8] 14-15 ND [20.8] 15 ND (SOROUND IMAG 2. DEPTHS ARE FEET E 3. BOLD RESULTS I	0-2 ND [20.4] 2-4 ND [22.1] 4-6 ND [20.1] 6-8 ND [20.7] 8-10 ND [20.8] 8-10 dup ND [20.9] 10-12 ND [20.6] 12-14 ND [21.3] 14-16 ND [21.3] 16-18 ND [21.1] Test Pit TP-21 Depth (ft) DR0 (mg/kg) 0-2 ND [21.9] 2-4 ND [20.6] 4-6 ND [21.1] 6-8 ND [21.2] 12-14 ND [20.9] 10-12 ND [21.2] 12-14 ND [20.9] 14-16 ND [20.9] 16-18 ND [21.8] SERY IS DATED 14 APRIL 2 SELOW GROUND SURFACE DBOX EXCEED THE AD SKIPPED IN THE TEST PI' ATED AT T	Depth (ft) DRO (mg/kg) 0-2 ND [21.8] 2-4 ND [22.5] 4-6 ND [20.5] 6-8 ND [20.5] 6-8 dup ND [20.5] 8-10 ND [20.5] 8-10 ND [20.6] 10-12 ND [23] 12-14 ND [22.7] 14-16 ND [20.9] 16-18 ND [20.9] 16-18 ND [20.9] EC AT THE TIME OF EXCAV EC METHOD 2 SOIL CLEA T SEQUENCE. R IT IS SHOWN IMMEDIAT BEIND USED FOR OVERB	TP-40 Test Pit TP-23 Depth (ft) DRO (mg/kg) 0-2 12.4 [21.8] J 2-4 ND [22.1] 4-6 ND [21.3] 6-8 ND [21.2] 8-10 ND [20.5] 8-10 dup ND [20.6] 10-12 ND [20.8] 12-14 ND [20.7] 14-16 ND [21] 16-18 ND [21.1] TH PRO UNDER THE USAC ATION. GROUND SURFAC NUP LEVEL. ELY ADJACENT IN THIS FIL SURDEN STORAGE. IT WAS	-12 UVOST-001 UVOST-002 UV TP-02 UV UV UV UV UV UV UV UV UV UV UV UV UV	TP-03 TP-01 OST-003 UVOST-005 UVOST-004UVOST-006 UVOST-004UVOST-006 UVOS ST-008 TP-11 TP ST-008 TP-11 TP TP AGREEMENT, 2009. ANGED SINCE THE SAMPL CONYMS AND ABBREVIA KG = MILLIGRAMS PER KI = MONITORING WELL	TP-28 TP-18 TP-27 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08 TP-08	TP-33 TP-09 TP-09 -07	TP-17 TP-34 P-35	Depth (feet) DR0 (mg/kg 0-2 7.63 [20.5] 2-4 ND [20.3] 6-8 ND [20.3] 6-8 ND [20.8] 6-8 dup ND [20.8] 8-10 ND [21.1] 10-12 ND [20.9] 12-14 ND [20.9] 14-16 ND [20.9] 16-18 ND [21.4] Test Pit TP-42 Depth (feet) DR0 (mg/kg 0-2 ND [20.2] 2-4 ND [20.2] 2-4 ND [20.2] 4-6 ND [20.2] 10-12 ND [20.5] 12-14 ND [21.1] 14-16 ND [20.5] 12-14 ND [20.6]	Depth (feet) DRO (mg/kg) 0-2 Overburden 2-4 7.74 [20.9] J 4-6 ND [20.6] 6-8 ND [20.6] 8-10 ND [21.1] 10-12 ND [21.4] 12-14 ND [21.2] 16-18 ND [21.1] Test Pit TP-43 Depth (feet) DRO (mg/kg) 0-2 ND [22.9] 2-4 ND [22.2] 4-6 ND [21.2] 4-6 ND [21.2] 4-6 ND [21.2] 16-18 ND [21.2] 4-6 ND [22.9] 2-4 ND [22.9] 2-4 ND [20.8] 8-10 ND [20.8] 8-10 ND [20.9] 10-12 ND [21.2] 12-14 ND [20.9] 14-16 ND [20.9] 16-18 ND [21.5]	Depth (feet) DRO (mg/kg) 0-2 ND [22.8] 2-4 ND [20.1] 4-6 ND [20.5] 8-10 ND [20.5] 8-10 dup ND [20.7] 10-12 ND [20.6] 12-14 ND [20.6] 12-14 ND [20.6] 14-16 ND [20.6] 14-16 ND [20.6] 16-18 ND [20.6] IEGEND TEST PIT UVOST PROBE MONITORING N MONITORING N RESULT > ADE ND TEST PIT I SFUDS 20111 IN	Test pit was fill. No sample collected. Test Pit TP-35 Test pit was fill. No sample collected. No sample collected.

FILE: O:\EN\Public\Engineer\Projects\FUDS\EKLUTNA_GIS\01_MXD\REPORT\Fig4_Report_Eklutna2011_r0.mxd, DATE: 04 Jun 2012

APPENDIX A Select Site Photographs

APPENDIX B Survey Data

Location	Lattitude	Longitude
Test Pit 01	61.456347	-149.377661
Test Pit 02	61.456318	-149.378072
Test Pit 03	61.456516	-149.377668
Test Pit 04	61.456402	-149.377303
Test Pit 05	61.456228	-149.377108
Test Pit 06	61.455992	-149.376908
Test Pit 07	61.455978	-149.376411
Test Pit 08	61.456256	-149.376681
Test Pit 09	61.456208	-149.376159
Test Pit 10	61.456005	-149.378031
Test Pit 11	61.455951	-149.377604
Test Pit 12	61.456484	-149.378592
Test Pit 13	61.456898	-149.377302
Test Pit 14	61.457109	-149.376988
Test Pit 15	61.457480	-149.376574
Test Pit 16	61.457647	-149.376045
Test Pit 17	61.456396	-149.375724
Test Pit 18	61.456508	-149.376524
Test Pit 19	61.457304	-149.376186
Test Pit 20	61.457936	-149.376303
Test Pit 21	61.457509	-149.375612
Test Pit 22	61.457085	-149.375274
Test Pit 23	61.456907	-149.375621
Test Pit 24	61.456775	-149.375509
Test Pit 25	61.457084	-149.376451
Test Pit 26	61.455935	-149.377256
Test Pit 27	61.456425	-149.376875
Test Pit 28	61.456630	-149.377037
Test Pit 29	61.456690	-149.376674
Test Pit 30	61.456894	-149.376739
Test Pit 31	61.457172	-149.375888
Test Pit 32	61.456795	-149.376148
Test Pit 33	61.456514	-149.376127
Test Pit 34	61.456350	-149.375362
Test Pit 35	61.456034	-149.375849
Test Pit 36	61.456568	-149.377939
Test Pit 37	61.456973	-149.379342
Test Pit 38	61.456810	-149.378920

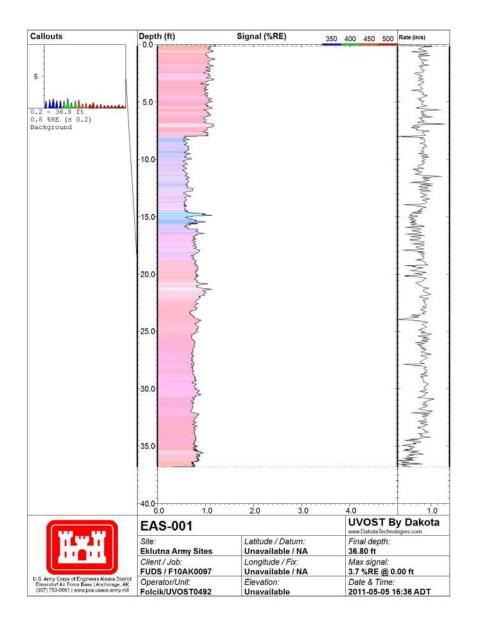
Location	Lattitude	Longitude
Test Pit 39	61.457135	-149.378890
Test Pit 40	61.456444	-149.379044
Test Pit 42	61.456834	-149.379696
Test Pit 43	61.457849	-149.376688
UVOST 001	61.456375	-149.378396
UVOST 002	61.456268	-149.378161
UVOST 003	61.456224	-149.377876
UVOST 004*	-	-
UVOST 005	61.456209	-149.377502
UVOST 006*	-	-
UVOST 007	61.456005	-149.376991
UVOST 008	61.455951	-149.377604

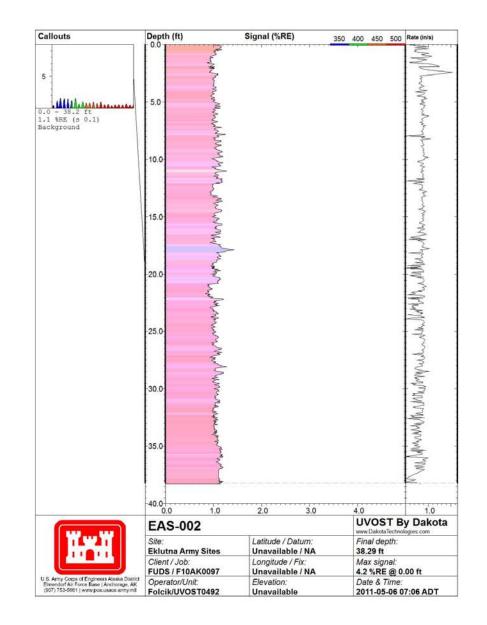
<u>Horizontal</u>

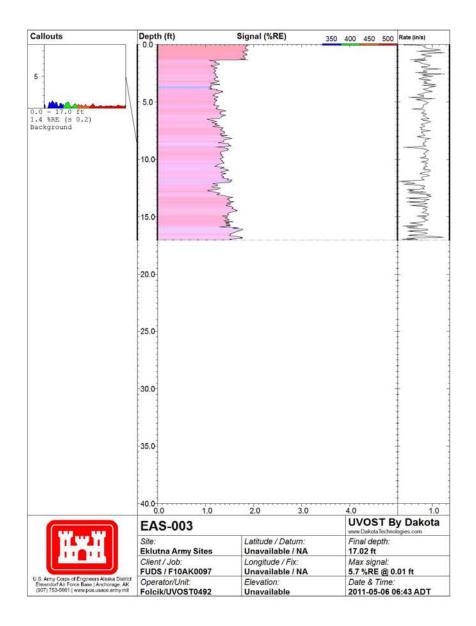
System:	GCS_WGS_1984
Datum:	D_WGS_1984
Units:	Decimal Degrees

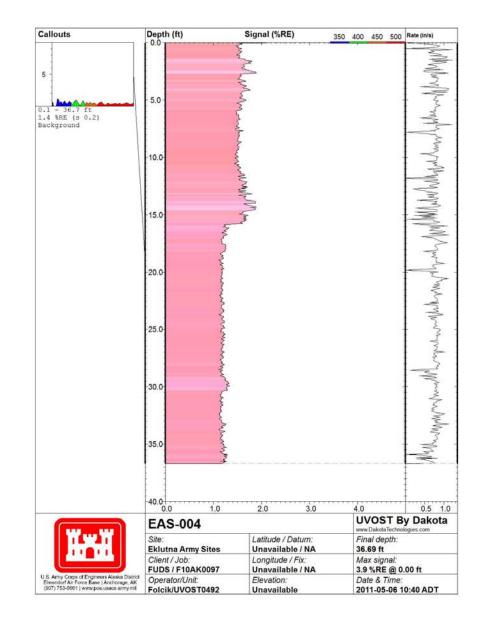
* No GPS data was collected. Location was estimated based on field notes.

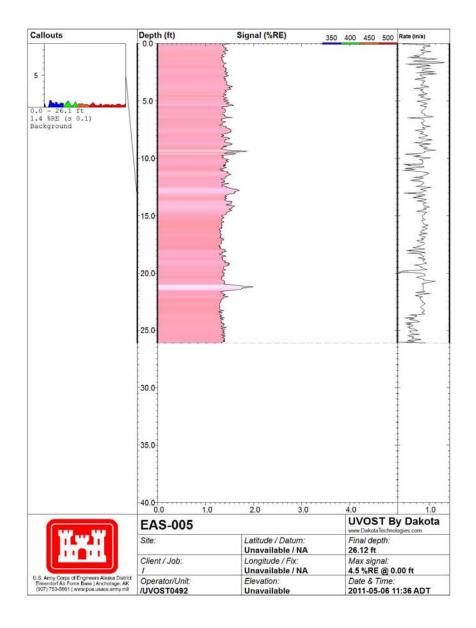
** This GPS data was collected using an Ashtech Mobile Mapper 100 running ArcPad Version 10 software. Tracklog data was not collected, therefore PDOP and the number of satellites acquired are not known. The GPS data was post-processed for differential correction using reference data from CORS stations ATW2 (in Palmer, Alaska) and ZAN1 (in Anchorage, Alaska) using Mobile Mapper Office Version 2.0 software.

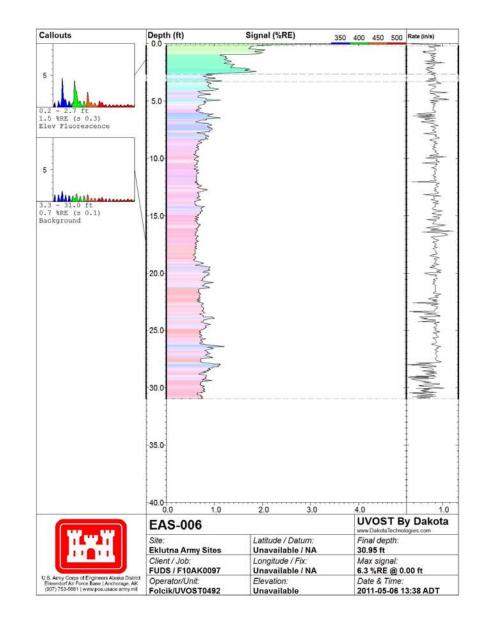

PAGE INTENTIONALLY BLANK

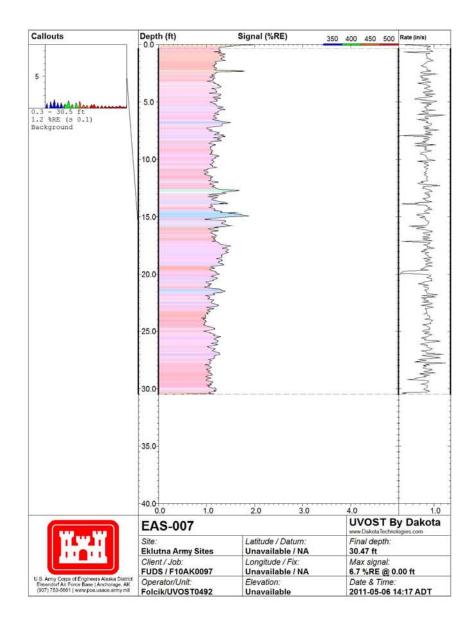

APPENDIX C Laboratory Data Package

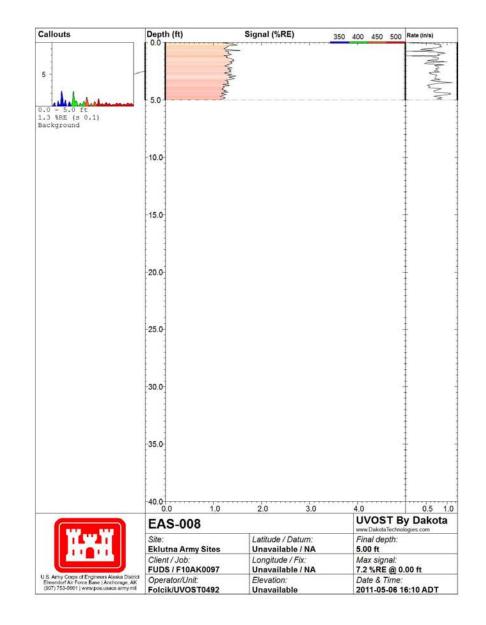

(included on Report CD)

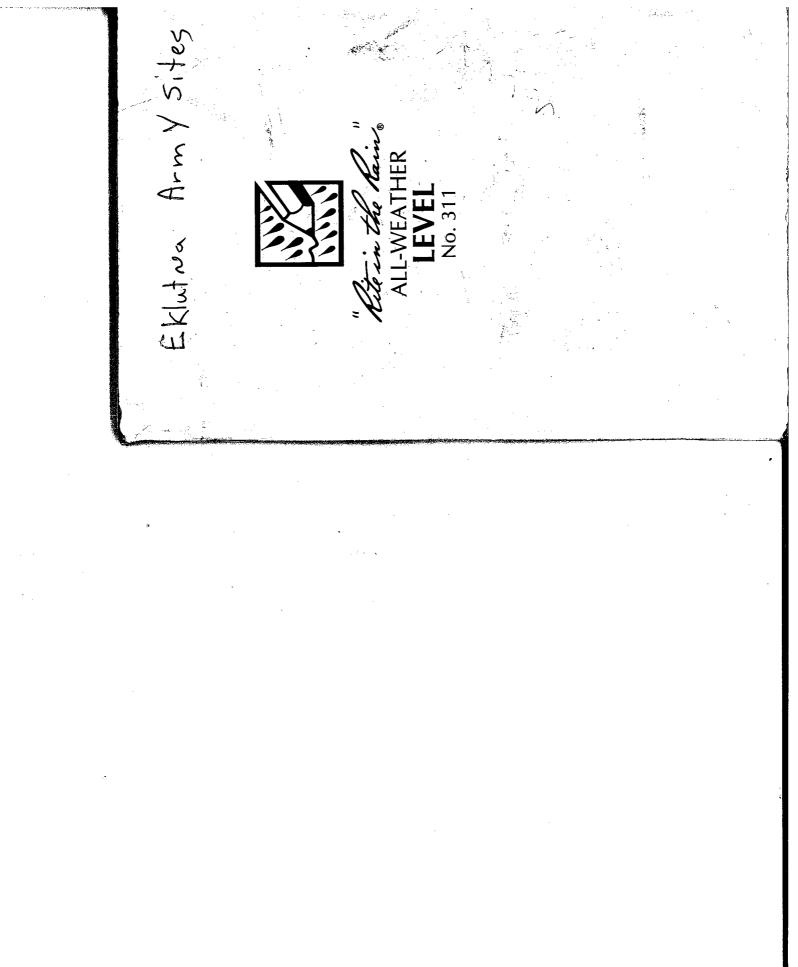

PAGE INTENTIONALLY BLANK

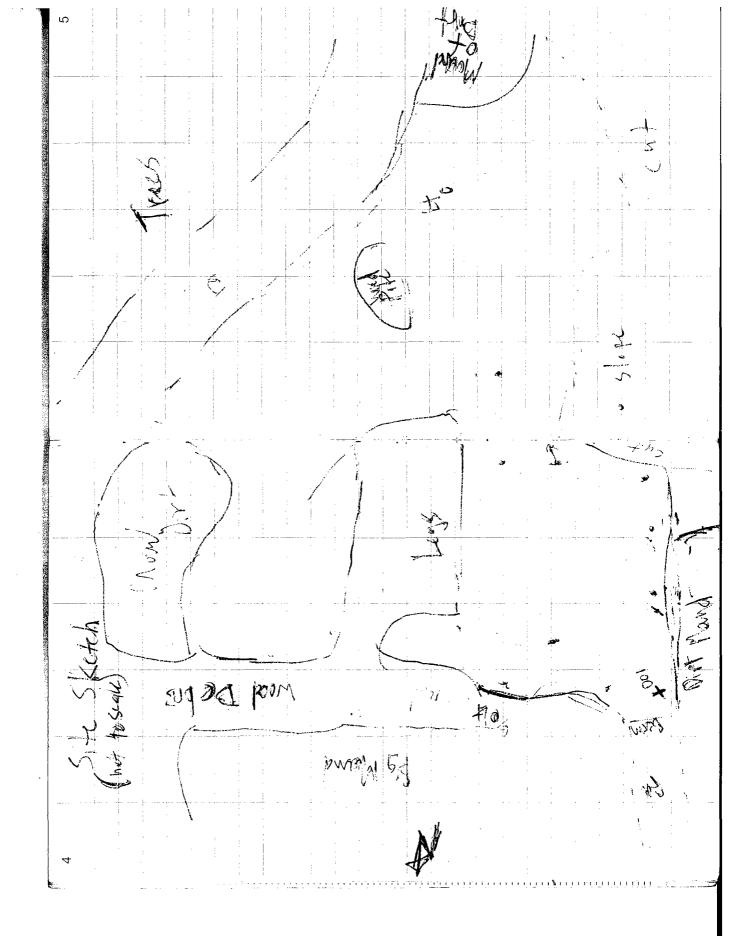

APPENDIX D UVOST/LIF Probe Logs










PAGE INTENTIONALLY BLANK

APPENDIX E Field Log Books

Prebe points Site access is limited at a loci time due - remove window harmage + first 15:30 layout 51 fireliminury phalo 4 - Invistigation correct Notes: - Dumpuer broke ut 20' - réds were not vertical. - hanc pushing ut 34 - polsorial feel at 15' to soil / timber piles TD= 36.8 " retues) 16:30 E EKS -001 RE=13K 19:15 - OF sile looking east. rod bent. ret 100 Molo 3 - NUCUTIGATION Arce LOOKing Phote 2 - equipment staging locking correctly. 120 + brakes wires were 0230 Travel to Ekiman grave trailer + stage equipments Actol - equipment staging aron on Truck. New truck was not wind · 10:00- 12:00 - Repair trailer bracks Or awize truiter - repur trailer coor 13:30 mole to Ekluther Icoking cust Buch lunch Nerth. С Ú Crossed. 13:30

. •

,	
	1 cracked window
	-, winn twodi I zbor though 2 - 354ed
Epical Break 12:15-12:45	III = 17.02 [e] (min)
stor water in trad noinul , trad stor 8 -	151,7 ; 645 biba 1245 800-547
Poter: Potential fuel at 21' bag	
TO = 7.32 26.12 (= UT	1 variun mode, Loch vode, 1 wolvie kosteres
5== to K-0 10/	I warnen these I show head a is dial
251 0 c2+1 2+5 0 3 e++ : 1-2 ps 500 sta	Th= 35,29 rolain
500 SV7	
	EKS-003
10725 Clean.	
	······································
Josef 21 25.98 = JI	
DE= 10K	- <u> </u>
Soll Ster Ster touts	
EAS CCA EAS LOK EAS CCA EAS CCA	2630 Fuel Verier Avilling 2830
two perit + 3m, + tismes as 400	a alling cisto, and low OEUC
Show -of against + Sungar Afilis 06:01 the south + son it tasses as tou	
	The solution is the solution to the top of top of the top of top
Atus pu: 1301 630 -283 to	1. store to within the state 3000 month withing a petalos apris t
chan trud priseles - jotang	
star to have a start	Fred Wight
Photo S - Replacing Cracked -	0540 Purhasi 10 gal dices fuel
Kether cracked	
	1-0.0
Δ	9

withest er to the tout saft tradt bernes me = - 00:21 -5700 -20-States wire during to a luci va pushi Etter 1 rod 1 waion 1 4 files Spor beeke eff @ TD, Mared into pit 5 71 ,577 11 147 11 John 109 'E.E 130462 le hes with Et 'CE : dr Mae ~; DARN yo ashering 716 221 78, 71 ; 20-5 8/11 -1 12/3 七00 573 S2TON Ver June L TD: 30.95 KB1 315 ESSI dits Et El +245 903 577 8

, voitor maturo statestable to tack of detectable House to the difference the abundance Duck ground flow only contained reter

bur vousburge 184 / 49, fitusbi

even text was location that was

wenthered diesel ador This

most lise set asites instructures

awand to usue are in tig

willeters y dy youth sint test live

- 3

6

a Probe at the base of the

su time not set by high o

the inpation area has a

C1943

, o'S =01

2121 -1-215

711=27

1x 402 ALEW, UN, 124,537, 65.58 , W8-4-13 A w w , use , iza 31, 65 My 1 w 8 - 4 - 13 t, ří had decel - like volver quickly dissipating HARE, SUMA califyrated PID. w/ 100 ppm 100 buty level A hand should will Decon will consist of urging the shored off with a rus. - had dreted - true oder, quickly disinguit 010 cobbles, quel sund cubbles, gunded Sand Extra soil will go buck into ia me. P.D. cerul = 5K 106-003300 hend dig CA for whence it hoc-han-01 020, 220, PAH Dec, eku, pAH sumples Scan Benjamin el frios arrived an site; Safety brefing Neil Folcik hole from PID be veed . holes for 0 and lysis. Le be , 1-5'0 12405 11-FKL-02 1242 70471 0,5-1' depth ١. 11-1-11 0630 0 8 4 (0520 0400 T še 4 - Vienner minnen

Eklutna Army Sites Fuds FloAK 0097 Project 01 ALL-WEATHER LEVEL No. 311 م ب tim the 20-56p- 2011 7 Book

			· · ·	
20-560-2011	± <u>-</u>	TP-01	70-520-2011	RUI (Q. N. Part's clarely 48
		0655	Allived on site &	-
Samples will be labeled in the	in the			
ч			ESS bottles used	X
`			2 ar (273	462770
ILEAF XX Y SL	*** <u>-</u> <u>t</u> _			2× 452 001
II = Year (fized)				041596
Army	Fords			•
Д			4 or lot &	<i>&0</i> 70hq
eo th	A: '6-0-			3
-	2-4-8	0737	met up with	heavy equipment
	7- 9-4		Ň	Rex Lewis
	(1 = & - 9		ň	its, hence equipmen
	8-10 = E	•		•
	2 - 11 - 01	0757	Sumple OI-A	ne other
	ti	01m/1m	() Dupe 01-J	
	14-16-2 H		FID: C 2029/11	20% grand , 80 h said
_	1 - 5-11	1080	5 umple 01-B	no ador
SL = Sul sumple	<u></u>			20 h glovel, 80% zuel
		0804	Sample Oi-C.	in aday
Ltry .	R.A.G. PGM-3000		FIO=0 20 horse	20 h gravel , 82% sund
518-00-051 * NS		0815	(-1) 2 2/ har 2	me celer
~	Ler sygg7		PED=0 20% spa	207. sparel, 80% earl
		9150		no color
			PLDED 20% Star	20% ward, 80% rund

4 T1-01		11-12-0-C			i () - 0 <u>1</u> ,		<i></i>	
6.80	PID=0 PID=0 PID=0 PID=0	01-F. 2021 gruel 01-9	ne celor 80 à sand Ne celor 857, Sund	ler eler aler	Phot	photos: 2863 2864 2865 2865	s - excavator - i. e 6'	Lepth
1530	Sample Pto = 0 Semple PLO = 0	t grand	757, sund, 252 fu no velov no velov 187, sund, 25 fraes	ne ochor 2. sund, 252 fixes 2. velov 1. sund, 28% fixes				
					and a star with the start of the			
• ·					ç	· · ·	· ·	
					· · · · · · · · · · · · · · · · · · ·			

407	200-200-11 Overcest 3 2-00	photo. 2875-	backfilling TP-04
`	0 10 hours 2		TP-02 but he fired.
09 0G	Ð-E0	1.567	sumple of A
	1-70	7865	Pipe in helle
	PEDEO Eligended, 95% sund	ן. איז וינן	pipe in hile
⅔	エッナ・ロ	78.10	Sumple Ori
	- 1416 2568 2369	2571	Sumple 071)
ていろつ	5	11.80	ends of pipe in TP
	ול	2873	Sumple ozt
0916	Fungle 02-D 2871 No ocher	4250	Sample 0212
	i gravel a	56.37	Sumple CEG
¥	ather half of pipe even photo 2872	787L	Sumple 02 H
0440		2677	Sumple 02 E
	PD0=0 . 1071 grand, 90 % sund		
0925	7574		
680	2875		•
	PID: 0 10% growt, 90% sweet		
04 3H	UZ-H 1876 no eclor		
	PED: 0 15 " growed, 95 % swaf		
0937	02-I 60 Tapawal, 35 à said, 5% Fins		
	150:0 11577 nº 2001		
	- nituable chifference inginel, swal contact &		
	Some Eres Showing in		

STATISTICS CONTRACTOR AND INCOMENTS

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1007		20-529-11	hozy lifter rain Sing		11-125-0E	<u> </u>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		63-A	2850	ne eder	pheto 2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				10% grand 40% sund	4	550	Sumple	`
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	010	03-8	2581	ne short	.	185	~ ~	£
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				10 % grined, 90% sand	ε,	-532	, r.	J
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	hial	03-6	2882	Sh grand, 95 Hind	C	2833	1	Q
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	USM/SW			ne oder	Ċ	-884	11	ىم
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Pupe 035		-	<i>с</i> ,	385	1	ιŢ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1018	0-20	2883	no oder	4	-8 5 6	C)	G
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		PID= 0		10 h gravel 90 % Surel	<u> </u>	282	۲.	Ţ
27 03-F 2885 27 03-F 2885 150=0 150=0 150 150=0 150=0 150=0 150=0 10 10 10 10 10 10 10 10 10 1	(j. 3	03-E	1882	ne reder		683	,	()
27 03-F 2885 PED=0 153 33 03-6 156 150=0 153 100=0 100 100=0 100 100=0 1000 100=00000000000000000000000		$\beta \mathcal{L} \mathcal{D} \subset \mathcal{O}$		20% ground 80 % Sand				
73 63-67 2856 155 77 63-44 2857 75 63-44 2857 75 75 75 75 75 75 75 75 75 75 75 75 7	しての	03-1-	2885	no octor				
33 03-6 2556 PED=0 152 37 63-4 2887 PED=0 25 041 03-1 2855 PED=0 60		PED - C		15 11 staved \$5 11 sevel				
7 65-4 2887 810-0 15% 810-0 75 11 03-1 2888 810-0 60	Σ	03-60		m odst				
7 63-4 2887 PID: 0 36 11 03-1 2888 PID: 0 60		PLD= 0		15hgruel, 85% sevel				
11 treable of 250	037	03- H	6588	no aler				
urticuble of 2888 0 bo		PIP= 0	•	318 60% gravel, 352, Ewel, 5 %				
2888 C			to ficable	l'Elerence in invisition				
con con	140		588 C	No oder				
		PL0= 0		bongwirdly 35% sund, 5% fres				

S

.-

surfice A	-	s r h f f			
TPO4 Su		r r 1P-04 10theres			
also in	5682 6682 7682	2965 2985 2985 2985			
phe to					
hund for the start	no odor 90% surd 110 octor	15% quel 85% quel 2877 no octor 10%gravel 90% sund	2599 no oder 1526 grand 80% sud, 52 frees no odor 2390 40 ligrand , 55 ased 51 frees 2835 no oder	289 & he color " 194, 51, tues 289 & he color 2898 ne color 2898 ne color 40% scared 57 hourd 82 frees	
20-26-11-02-02	2891 10% gived, 2892	15% grevel 2893	25.99 15% grand no chor 40 ingrand	289 & 289 & 50 % gravel, 2898 40% gravel	
04-4 PED=0	9-1-B 0-0-19 04-C	11)= 0 0 -01-1 0 -04-0 0 -04-1	0-1-10 0-1-10 0-1-10 0-1-10 0-1-10 0-1-10 0-1-10 0-110 0-110	1 - HO 1 - HO 1 - HO	
10 1 P-04 1115	e	: 	(178 1153 1133	(14 3 14 7	* * * * * * * * * * * *

•

•

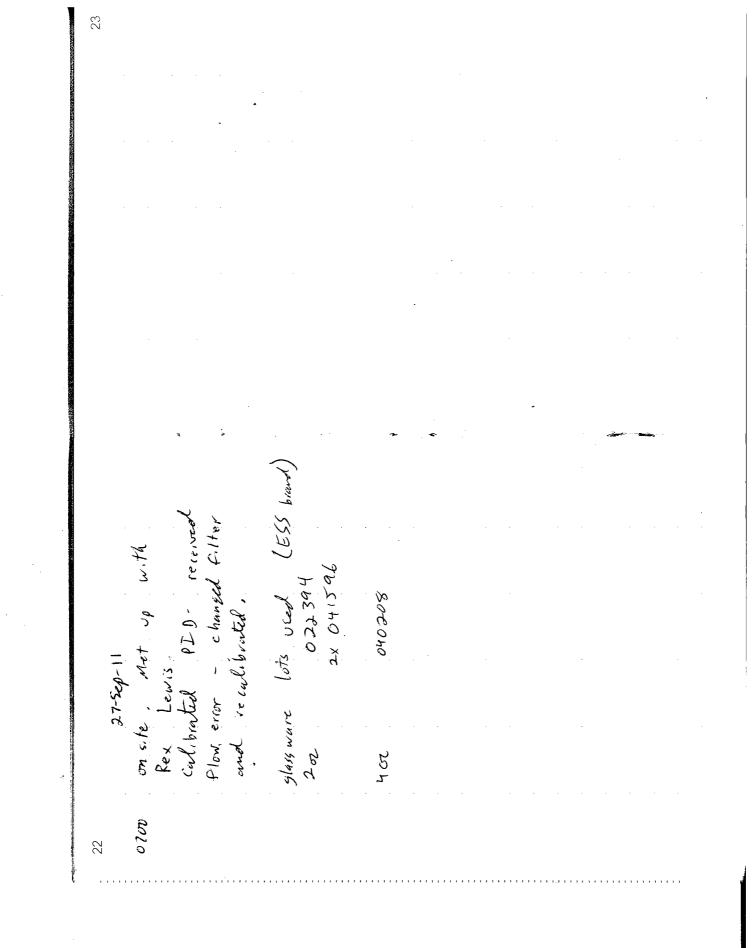
...

.

.

Manager Street,

3 ΝN TP-05, lesking Sumple 05 A \$ 0 Z ÷ 71-05 205 C 5050 2 900 2002 3-0105 1062 2903 Lowe 1065 2906 3910 p hoto 50° igland, 45° k sud 30 Pros. 2907 no oder 50 % grouel, 45% End, 5% from 25% gravel 75% said is righted 40% send quilding terrars 10 7, grand, 70% sard 20% gravel 50% Fund 10 % growth, 90 % sund 15% gravel. 85% sead 'showed, 85% sand no ochor no oder no order no other 2 guo in ada 2904 てのかん 2894 2906 1062 11-03-05 05 W/5 W DURES PIDE 0 D -01 d 05-B PID=0 PLDio 920:021 05-P 110=0 05-G PID = 0 PID= 0 120:0 05 - H 0-20 2-50 05-3 8-50 50-91 12 30 heri シナイニ 010 1213 1339 1212


liture wing here on this borns - check 20 06-H 1 correct 398 - 7 F-06 Sung te Picture 398 2904 2413 2911 ていして 7914 Ziger しょく 24(1 5461 95% Sand (ware 60% start, 40% sand 20% Early 15% gravel, 85% swot 20% gravel, 80% sure 2917 no color 50% groud, 50% sand re oder put the summer 20 / plaved, 80 h sured 2911 no ocher 5% gravel, 95% surd no obor No eddr ne oder no octor 15% gravel \$ 5% send no odar no abor 10% glavel 2915 5% gravel 2409 2913 そして 2aiy 11-00-00 120:0 PI0 - 0 0 = O I \$ 0=070 \$ 50 - O Q = 071 0 = 0 = 0 0 = 0 = 0 Q = OII 06 - 8 っしてり 06-6 06-H 1309 06-C J-90 06-4 1325 06-F 06-E 0.10 06-5 1327 06-6 JO-J 1 13 00 1313 1320 1305 1333 1339 4

excurating 7P-07 (5) 014 8 S exemple 2921-このひん 292 erout 2919 No ochor organics photo 29,21 - UN-guidel pit-like dist in bucket photo 29,32 - buck Filing TP - this is non-nature material. It looks like full-unuanted gravel- duging down to 20'-still wit nature- canceling huzy StiF 29-30 - no volar m || Sniven Ъ 10-08 A & 11-03-00 be dis current Test-p.t - this is Sumples on to 07-4 Q-10 PIQ-1403 1355 1 8-0 g

no odor no odor Signated no odor Signated no odor Signated no odor Signated no odor Signated no odor Sister no odor Sister no odor Sister no odor Sister no odor Sister no odor Sister no odor Sister no odor Sister no odor No odo	der der Obserd Signed Signed eder Signed Signed Sissed Sis	STATE TO A STATE OF THE STATE O																							
photo 2003 Mere 2003 Mere 2003 Mere 2018 Mere 2018	and 25% grand and 20% sund no odor no odor no odor no odor 29% 29% 29% 29% 29% 29% 29% 29%	THE REAL PROPERTY AND A DESCRIPTION OF THE REAL PROPERTY AND A	08 4	æ	J	Q	ىد⁄	12	6	IJ	ţ+3													·	
and a stand of the	and, no eder and, reder and signed no eder no		Sumpre		11	17	4	ر. ۲	.	ر .	¥.														
ind a star star at	well "2012 such well "2012 such and "2012 such me alor well "80" scal and "85" such no ador no				stot	2976	Ltbt	2425	29.26	2436	2531													·	
ne ader TUZ sund ne ader ne ad	and, we we we		phites																						
no ador to'i sand no ador no ador s'i sand no ador no	ind, we we				-ye	· - • - • - •					2 -17 - 19		••••••		merone injek	يورو مسترجع			ून्य कथुन्द			 	 مىلى بەر بىلىمىنى بىلىمىنى بىلىمىنى بىلىنى بىلى يەر بىلىنى بىل		_,
	and, "well, "		no velor	70%, sand	ne oder	5% groved	ne cidar	So is sard	No cohor	8 5 hi Sand) 75 is said	ne ocher	70 R sad	ne addor	aog send		he ador	80% said		JSh surd				
084 084 087 0910 090		18 TP-08	ってち		+241		1435		1439		444		448		454	asm/swi	Dup	459		1503					

3 2 2 108 21000 0 2011 COSIE Eng 0-011 I-60 1091 CPC 242 340 80% giand, 20% care seed Q = 01d sapo ou 10,000 bE50 Jours 1256 Janois 125 H-60 6551 0:011 1011 912 UN 2000 8546 5-60 1551 0 = 020 1920 24 LESE 1-30 5451 12 1 2/ ang 456 15 0 =011 18p0 04 925-6 7-60 8251 15% Burney, 85% sand 0 =0-10 100 0U 526-C (1-60 fest 10% dianap 202 Eand 0 -011 no oddr 2-60 BESI わをかて Q = 011 58,30 8-60 hrsi 2% dioner 35 / share give and Q = 9]d no ocher 1-60 1591 7658 50-01 50 01-0m-0-C

Í. のったで 17 H 4160 5 8660 6860 1260 7 Sisc 4660 2 2260 Sumple \$ 50 666C 2017/201 (60-01 -145C et oyd MN

24 TP-10		parthe clurch 350F						
T. Mč	Sumple # / Picture	Description	picture 2	それゃく	Sumple	10 B	-	
0757	104 w4	Schighwerd, TO à scord	4	2943	1-8-10,	latens	N	
	PI0 - 0	no edor	~	2222	Sumple	106		
	Q 510/5W			كمملا	· · +	С		
	Dupe * 10 H	7 inc = 0835		1 <i>h</i> 5t	5	لا		
1950	103 2947	~ 5		7947		·۲		
	Q.	no celer		<u> </u>	13	Ģ		
0800	0 = 0 = 0 10 = 2944	silty sends > send	6	6244	F.II.ng in	TP - 16,	tor king N	
1180	100 2945	dump 101, grand 90% saved						
	Pro- O	3						
61 20	10E 2946	damp 15 1, go wel 852 sund						
	0 = 0 I d	se ader						
5230	10 1- 3947	Damp 152, growly 852, soul						
	PI0 = 011	<u>ت</u>						
0530	10 9 2448	Damp 20 hostovel, 803 swed						
	$h_{I,0} = 0$	5						
	~	off the boxing have,			·	÷		
						-		
			•					
							·	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccc} \hline $					27
11.4 2451 Reingrand, Sei, Rand 2451 Rand 2451 Rand 12, 2452 Reingre 11.4 2451 Reingre 12.5 Rand 1572 Rand 2452 -152 $-$	Sumple ID/ Picture # PID	phi tr	7-950	7 P - 11 100 king SE	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 11 A 2951 Rongravel,	5 -	24.51	Sample 11 A	
113 FOR PST grand, Dr Fart 2053 125 = 0 no order 2015 and 2015 and 2015 11.C 2453 462; grand, 60' cand 2015 11.C 2453 462; grand, 60' cand 2015 11.C 2453 462; grand, 60' cand 2015 11.C 2454 Fores layer 3gain 11.C 2454 Fores layer 3gain 12.0 2454 Fores layer 15 12.0 2454 Fores layer 15 12.0 2454 Fores layer 15 12.0 2454 Fores layer 16 12.0 2454 fores layer 2015 12.0 2454 fores layer 2015 13.0 2454 fores layer 2015 14.0 2454 fores layer 2015 15.0	PED= 0 no color		7 S 60		·
04pr = 11	(June 15%, grand, 25%, grand, 21) =0 alor	· .	2953		
11 C 2953 40: quard, 60° cand FD: O ar odor 11 D 2954 thes layer gain 11 D 2954 thes layer gain 12 2954 thes layer gain 12 2954 thes layer gain 12 2955 these sinds gived 12 2955 these sinds gived 12 2955 these sinds gived 12 2957 157, fund g57, sand 12 2957 157, fund g57, sand 15 2957 157, fund 15 2051 157,	- -		2955		
FED: O no eder 1) 2454 Fines layer again PTO: O suds 8, the sade no eder PTO: O suds 8, the sade no eder PTO: O suds 8, the sade no eder PTO: O Stands 8, the sade PTO: O Stands 8, the sade PTO: O Stands 8, the sade PTO: O Stands 957, suds PTO: O Stands PTO: O Stands PTO: O PTO: O Stands PTO: O PTO: O PT	11 2 2453		954C		
1) 2454 (nos layer again FD: 0 2454 (nos layer again FD: 0 suds 2, (hr sends - no color IE 2455 From & sind 8 g, in C PED: 0 52, g, ud, 357, sund PED: 0 57, g, ud, 357, sund PED: 0 50, 0, ud, 37, sund PED: 0 50, 0, ud, 30, s	0		7957		
FED: 0 Sunds 8. (Ar sends - he calor ITE 2955 Fines 8 sinds 8., incl PED: 0 Signal, 957, sands ITE 2957 152, stands ITE 2957 152, stands PED: 0 Signal, 957, sands TED: 0 Signal, 957, sands PED: 0 Signal, 957, sands The Fines odor a The Fines - reput (10 - no odor a The Fines - reput 10 - no odor a The Fines - The Lance of color a - Time 2 0917 - Time 2 0917	1) 2454	•.	7954	here sumple	1° takea, E
11 E 2955 Fires & sends & a PED=0 57, sends & 57, send 11 F 2957 157, send, 957, send 11 F 2957 157, send, 957, send 11 F 2957 157, send, 857, send 11 F 297, send, 851, send 11 F 297, send, 851, send 10 F 10 F	PTD= C Sunds & 1/2 Euclos-				
PED=0 Signal, 95% Far 11 F 2957 15%, 11 and 85% 120= Sold 11 ppm 0.5 ml odor 0.0pe to replace environder The fines The fines - vout to the discolored and sumpled there Tork dyne here becave	11E 2955 Fines 8				
11 F 2957 152, gravel 85% 120= Sol 11ppm Oscul adar 0.pe to replace envice dup The Films - vient to the discolored and sampled there Tork dupe here becave - Tork dupe here becave	PLD= 0 Singhurl,			-	
1202 De 11 ppm Osciel ador Oupe to replace erivier dupe stropped (10' no ado The Fines went to the discolored and sampled there and sampled there - Tort dupe here becave	11 F 2957 152 Stavel	·			
Orge to replace earlier drip 5- copped (10' - no odd The Fines went to the discolored and sumpled there fore dripe here becare - Tork dripe here becare	120= 20 11 ppm 0, end				
(e) 10° - no ode Fires to the discolored sampted there dyne here becave Time 2 0917	Dupe to replace ear				
Filmes to the discolored sumpled there dyne here because - Time = 0917	(@ 10' - no odor				
sampled there dyne here because	files distanced	,			
dype here becave - Time = 0917	sampled there				
-) 1120	dye here because	. 1			
	-) 1456	-			

	در مرمر	9 = 6 7 8	
	pung 1.58 'pung 1.51	0660 I CI	Cfil
	12 li demag 82 li sang	Q = 01d	
	30 h yound, 70 h wow we such	8960 H -11	6101
	repo no	0=010	
	1.51 dianag ' 8.8 1 200 4,51	6962 511	-(10)
	المام معهما	0 2019	
	101, grand 90 20 5 10 1	9950 -1 TI	\$ 2.01
	ne add	0=621	-
	20% dimay' 2021 Eaned	59be = 91	-6901
	1.me = 102 b	A	
		0=010	
	no octor	JSW/SW	
	1.5% diardy 88 11 sand	h960 (19)	8560
	na agas	0 =021	
	10% groud , 90% sourd	5955 7-11	8560
	napo ou	0 -010	
	12.11 dening 2.5% 2004	2958 5-11	9600
	איר סקיסג	Q 2010	
	10 to graved, do hourd	0962 H-CI	6260
ət əh q	Deserviftion	62 m + 2 1 d 1 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	T INL
	J. S.M 11-6		-C1-J1
	hung	e 🗶 –	28

sidmus I 0665 t if it in smasal it. 9 1 6960 8960 Ы \mathcal{D} 5 2756 り 196C ±I h Ŧ 5960 71 Ú 696e 1) £96-C 11 7 97! *1duns 7960 'hop, 1-0 't1-d1 MS 1920 aldung ¥-11 0965 1-0-1 62 - 1 20 1 so M 6500

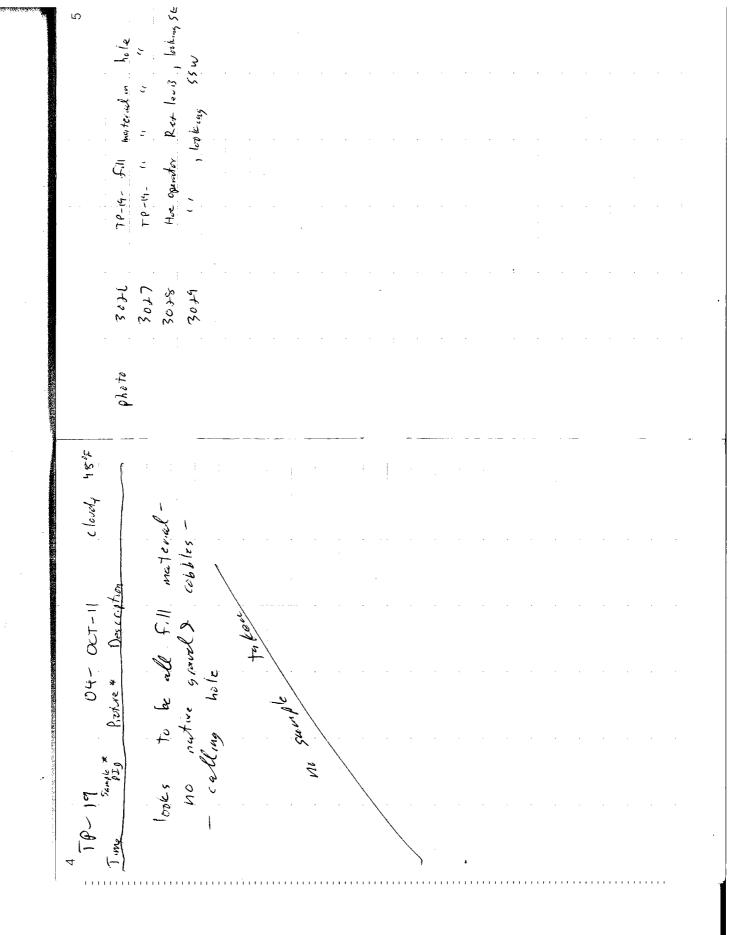
30	11-43-20	Sunny 11 Scen	÷ .,			31
Time	Sumple IQ Picture #	Description	phi to	1202	mibing to TP-13 W	
1107	13-4 2974	Dirt-rather 10 To gravel	.· .	2972	Ш Ш	to TP-US
	120 - 0	2	· ·	5250	بر تر	
1	13-0 2975	lot of grovel - no order	r.	アルフリ	Seimple 13A	
	Ś	60 To grand, 40 % and	•.	2975	Sumple 13 B	
1119	13-6 2477	80 h Sund, 20 h grand	· · · · .	1414	FP-13, 41 align, SW	
	U.	5	•	1259	Sumplæ 13 C	
りつけ	13-12 2978	15% gover, 85% sound	•	8646	(1)	
	0	no octor	· · ·	5256	(, E	
1131	13E 2479	1076 growed, 20% seemed		0866	1.1.	
	0= 01d	ne oder	<i>i</i>	1221	ŕ Ġ	
	۱.	7 me 2 1153	16. A .	7982	F ³ ³	
1135	180	10% grand 20 h sund	· 	884C	1 1	
		no color				
041	13-6 3481	No cebbles in bucked 30%	, Ale je			
	Ś	gread, 80 % sand, we where				
141	13 it 2982	157, 5 (mul, 35 %, 5 cmd	21 T.			
	0 = 623	ne extor				
1148	13 I 7983	10 To growth 90% sand				
	PID: O	we ober				
			sinst an al			
		· · · · · · ·	1			-
		· ·	×			
			- 21			

33 TP-14, concrete slap ", 40° of slap Edge of slap side of slap Edge of slap Crystal Taling photo Crystal " 6835 りょやん 3485 2440 2985 7562 たみゃく 1964 photo - his what looks to be a Foundation 15 wide 54/11 and small test pt to the test of foundation was 79-15 Supre JD/ P. thurk Description - excurted 2' depth, , und ~ bi' longth at privor anothe 200 the there 1) 41-41 TIME 32

sunay 54. F
Description photo
pile reed
r 10° feet
native duit
ul , 95% a
- Slight ober than about not tralls 10% gravel, 30% sand
1574 gravel, 857, surl
10% yourd, 90%, sand nexty ne ed of concessmed
15-F, labeled
= 12-5; =
n tanı antê

TP-11, 4' deep sumple 16 E ', F Sumple 16 A 5660 ξaoξ 3005 しっしゃて 3004 3000 f hi Fr re abor 1571 grand, 55 % comes 5.95 15% gravel, 85% sand 20% gravel, 80% same 85% Earl ne exter - bulled had wet 20% gravel, 80 % sund 3007500 10% glacely 20% sund 15th gravely 85h sund 5% gravel, 95 h gand 15 in growth Duper 16J "mer 1940 16-16 Z mer 1940 16-16 Z mer 1940 no color ne ocher Reservort. un no odor 27-560-11 PID: 0 511 16-7 30 55 Phuto # ちちゃて 16-0 5000 3002 4 202 1 202 5505 16- G1 3B1 3 P26 = 0 Q = 024 6I0 ~ 01 0 ~ 02d 0 0 Sumple # / PIO 0 = 070 16-21 ヨーリ 16 - F 16-D 120-16-H jt B ~dT0 -e 2h1 J. Me 1350 9241 toni 1436 91-d 1 1354 1407 1412)1 hj

38 FP-17 F.m					
j. w	27-5	27- En 2011 54*E	.	Ņ	
	sample + Protuct	of war	alita 30	3005	TP17- Haking NALE
1447		Organizs 10 % gravel, 20% sind		3002	441
	0 = 0 IV	no adat	2 60 2) k	
1450	17B 3007	10 % greend, 90 % sand .	B.e. 2	B .	ч С
	PID - D	no indor	Joro	10	a then
1454	5008 7-21		30 ut	ú¢	د ۲
	0 = 624	ne oder	3010	ġ.	TP=17, 10° deep
1459	170 no plate	" plits 10% gravel, 20 % surel & fruid	3013		TP-17 Side will
	P10 0	no clor	3012	Ŕ	", roats @ 10'
	177 Dupe - 1 me 2	· 1525	30/3	р́л Г	1, routs cliecp
1504	×	10 is graved, 70% send	HIOE .	(4	
	0	no ader	3013	iz-	
1505	17-F 3015	20 11 gravel, 50 4, soul	306	B	
	129= 0	no octor	30	7017	H y
121	176 3016	20 hynort, 50 h gund.	30	30 8	H
1515	720 - 7017	50% good, 50% sund			
	P20= 0	no odor	· · · · ·		
にろよい	810£ I-CI	15% gravel, 85% sand			
	120-0	no croker			
			- - - - 		
			.1 . 14		


40 TP-18	27-54	0-11 50°					
Time	Sumple # Photo #	Description		g ho to	3019	Sumple	18 A
15 35		10% gravel, 20% Sand	· . ·		30,20		B
		no oder			3021		9
1539		25% gravel, 75% ser	A		30+7		Ē
	-	no odor			30+3		F
1545	18-c no photo	20% grand, 80 K Eary	/		3024		6
		no odor	· •		3025		н
1549		98% sand , 2% gravel	/				
	PID-O						
1554	•						
		no order					
	MSIMSD	- ((
11- •	Dupe 18-J -	• ·	· ·				
1558		10 h gravel, 90 h San	ef in the second se				
	PID= G	no odor	1				
1601	186 3079	15 is gravel, 35 is some nu odor	1				
11.0	PID=	no our					
1607	18 H 5025 pIp= 0	3% grovel, 97% sand					
1616	18I 3076	10% gravel, 90% Sun	el				
		no edor					
			· . ·				
			•				

Eklutur Army Sites FUDS Flogk 0097 PROJECT 01 ALL-WEATHER LEVEL No. 311 Fin the Back 2 ct 3

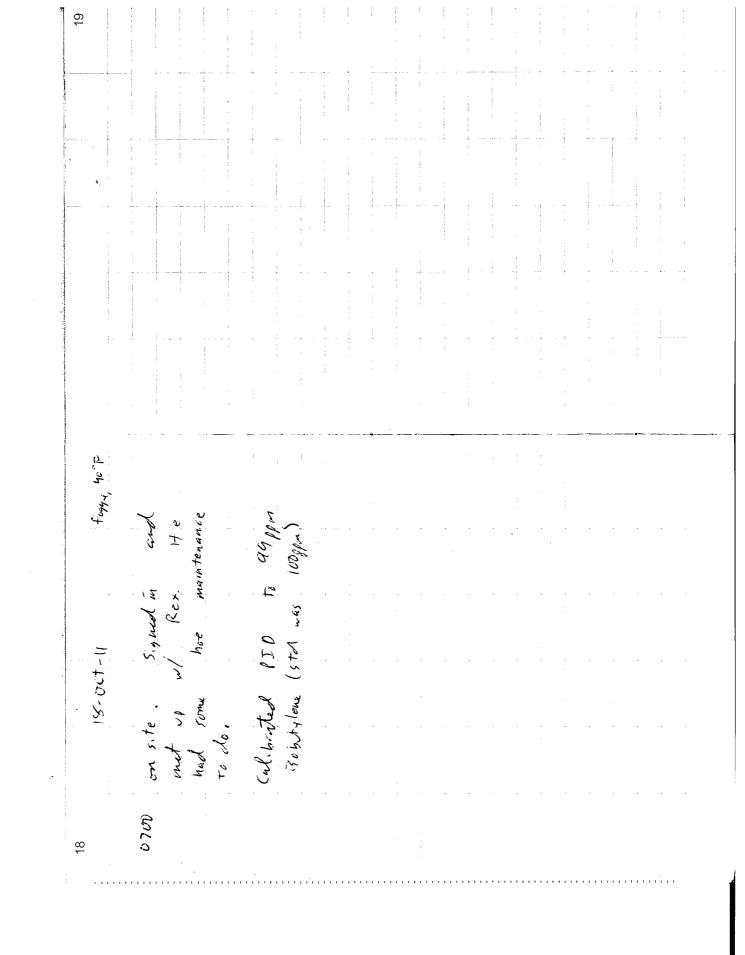
. I

glassmere Lot &s 041596 ×2 022394 glassimone lot & 202 ۲ ت 100 11 m egu juur P. le l operativ on site culibrat meit up ,**.** 07*0*0 \sim

с

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 19-20					-
Rec. such the per T' of T_{11} of T_{11} of T_{11} but the in The server so are stilled T_{10} T' sumptions T_{10} T' sumptions T_{10} T' sumptions T_{10} T' sumptions T_{10} T' sumptions T_{10} T' sumptions $T_{10} = 0$ $T_{10} = 0$	Inc	Sample * Pic # Deferingtion	plut to	30 30	JeB	·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0538	Rex such he put 3' of full		3031	0-4-0	at Www.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		The A scientit		3033	>05	 •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20 B. 45 (450 32 40 15/1 gravel, 85% sund		3034		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		b I D = O		3035		·
1 206 3633 107_{910} 90% read PID= 0 203 3034 202 gravel, 802 scard 120= 0 120= 0 120= 0 205 3037 152 gravel, 803 caref PID= 0 205 3037 152 gravel, 852, scard PID= 0 PID= 0 PID				3¢ 3%		
20) 3034 20) grand, 80) read 140= 0 206 3035 3034 , 70) read 170= 0 170= 0 170= 0 206 3035 3034 , 80) seed P20: 0 206 3037 $15h$ grand, 80) seed P20: 0 206 3037 $15h$ grand, 85), sud P10: 0 207 3037 $15h$ grand, 85), sud P10: 0 208 2037 $15h$ grand, 85), sud P10: 0 208 2037 $15h$ grand, 80) seed P10: 0 208 2037 $15h$ grand, 80 $15h$ $10h$	0854	201 3033 1071 grand 90/1 Terred		3037		
120-0 206 3035 302 gand, 3 110-0 206 3036 20ngraud, 3 207 3037 15hgraud, 3 207 3037 15hgraud, 3 201 3038 20ngl, 4 110-0 010-0 110-0 120-0 201 3038 202, 202, 202, 15h 30 and, 5	0847	201) 3034 20% gravel, 80 % same		65 92		
20E 3035 302 grand, 8 110- 0 20F 3036 20ngrand, 8 20G 3037 15hgrand, 8 20H 3037 15hgrand, 8 20H 30 910 20H 30 9400 15hgrand, 8 20H 30 9400 15hgrand, 8 20H 30 9400 15hgrand, 8						
110= 0 205 3036 20igiand, 8 205 3037 15hgrand, 8 204 30 910 15hgrand, 9 204 30 910 15hgrand, 8 201 3038 20hgrand, 8 201 3038 20hgrand, 8	7050	30% glavel,	. بە ئەرى			
PID: 0 PID: 0 PI	0000					
2.0 G 3.037 15h grand, PED-0 PED-0 PED-0 PED-0 PED-0 PED-0 PED-0 PED-0 PED-0 PED-0 PED-0 PED-0	9020	20 is gravel.				
PED-0 20H 30 Anter 157, Scard, 5 PID=0 RID=0 RID=0 RID=0	0711	-				
PID: 0 THUN 01. STURK, PID: 0 2012 3035 2025 Struck 5	161					
2017 3038 20% sind	a 					
	6633					
		·				
			- (·
			. <u>.</u>			·

5-91	¢	-40	04- oct- 11							
Time	Sam/c +	Photo #	Desc		p he to	30 20	18-01	TP-21, 0-2, duep	lot king	5
1260	21.4	3041	5/1 graved	95 h sand organ.	· · ·	304	Sample	12 210		
	PLD: 1	Q			•• ,	んよっん	1.	<i>E</i>		
0434	213	2405		90 %; such		3043	11	J		
	-628	0	ne ochv			3044		0		
0040	24 C	3043	20 h gland	80% sud		3045	.	تارىخى 		
	21 Jordunte		NO other			3046	y	<u>N</u>		
	PI0- 0			1017	· ·	3047		ি		
5450	210	704	(0) × 500	- 		3048	1.	Ţ		
	PTD = O	0	2.5	er.		3049	3	Ч,		
じららつ	л И	3045		l 90% Sand		3050	16-9-1	0-18, dero	lating	ŚW
	=070	0	no odor		•	7	• ·		.	
695%	5-1-6	JUYL	STI gravel	0 55 to sand		· · ·				
	= 0 I d	0	ne orle		•					
てな)	219	3047	15% grand	85% swel						
	6 2 0 2 J	ຍ	he ed	- >	·					
10 01	J-1 H	3078	202 grand	50 is seemed						
	+I 0 -	Q	ne ador	~						
1101	FI1	3079	5% grand	90 10 Sand						
	-021	Û.	5% 5.14	no other						
					·					
										
				·	-	·				
						•		-		
	-	×		·		•••				


.

10 7 F- 22	04-00	+_)					
T.me_	Sumples Photo 2 PIO Photo 2	· · · · · · · · · · · · · · · · · · ·	photo	3052	tP-22	0-2' deg,	lotking N.
1028	22A 3053	5% growel, 95% sund 8	•	3053	Sumple	•	· · ·
	PID= 0	organits no order		3054	му Ч	B	•
031	22B 3054	100% Fund & Fine sand		3055	4	C	
	FID: O	no odor		3056	((0	·
034	226 3055	1071sravel, 80% sound		3057	Ċ,	É	
	PID= 0	ore ador		3058		1Z	·
1043	220 3056	20 To gravel, 80% sund		3259	()	G	
	MS/MSD D	upe 225 no odor		3060	, t	Giret	nke
	PZO= O	» siven time of 1112		3061	()	Н	·
48	27E 3057	15% gravel. 85 To sand		3062	TP-22	0-16 deep	
	PID= 0	no odor		·	,	, , , , , , , , , , , , , , , , , , , ,	
055	22F 3058	95% sand Silly sand, 5719 word		,			
	PIDEO	no odor					
100	226 3059	9571 Sund, 57, gravel					
	p20: 0	no odor					
103	22H 3061	100% sand				·	
	PIO= 0	no oder.				•	
107	227 3063	202 grovel, 80% sand		· ·			
	PID-0	no oder		· · ·			
							·
				ч .			
	•						

1 4 2-2 T 411 -	2			,					13
1 41.0 -	>	50-1-0				:			
IM'S	PIO	9 hiter	Description		ghi te	3013	moving duit	, + to sindly,	6, NAW
1157	23.4	3066	L-	857 2and	•	3064	، بر رد	7 1 - 1	<i>,</i> ,
	FID' C		no other			3065	Startins	TP-23	5
apel	230	546-3067	10 h gravely 90%	h seul		3066	Sum ale	73 A	-
	0 2 O E d		no ober			3067	- =	ß	
50-51	736	ni phito	1071 51avel, 20	20 % Sund		3068	11	Δ	• .
	PID - C		no alor			3069	4	. \ 1	-
2071	230	3069	~	35 74 sund Bows ind		3070	را	1 (L	
	PID= C	.0				3011	. J	J	
ふっ	23E	3069	30% srach, 7	70 Pr Earl		3072	بو	Ţ	
	D. De 235		5			3273	_ U	H	
	PID: 0			e-f 122-9		4638	TP-23 10	buckfulled.	ler lens N
いい	23 F	3070	2-57 gravel, 7	75 / gand				-	
	o =OId		no eler						-
1219	736	3071	20'n gravel, 8072	B jund	<u> </u>				
	PID= 0		No odor						
(٤)3	yu H	2072	20% grand, 803	DW sweet					-
	PID: 0		ne color			•	•		
うらてい	235	3073	20 Th gravel, 8	SUR Swed		•			
	6 L D 2 (,	· · · ·					
))		-	;				
				- - -	•		a.		
	÷			- Ic	- B - G		·		
		-			<u></u>				
								·	

		and and the second s 			and the second state of the second	na da anna an an anna anna anna anna an
14 JP-24						
الح م	pt 0 X 0 Ye	cr. at . cr				. ,
135	1 3075	1 staul SDA Sard				
	Ð	no volor				
8271	2413 3076 10% grave	gravel, 50 is seened				
		endlor				
イトイン	245 3077 (0%, and	work Son sund, 1091	-			
		, no ocher				
1245	3078	gravel , 80 %; Sund				
		e do				
きしてし	24E 3079 2076 Star	gravel, 80% and	<u></u>			
	•	ray2			-	
1253	24F 3080 15% grave	gravel , 85 71 Sand				
	24J D	() (1 = 1 m = 1)				
		no oder	•			
1358	349 3081 257	Tigrard, 7571, jound	<i></i>			
	Q	no odor				
1301	tht 3082 15% the	Scovel 85 7 Said				
	PIO- C no oden	edur				
1357	24I 3084 151 Silver	gravel, 857, course suil				
	0					
).					
			;	×		

10:02 10:02 10:02 10:03 10	16 7 D	1 tongo				:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ple * photo *	escriptum	 		
P20= 0 P20= 0 P25 3084 57, grand, 75) sund ISA sund P20= 0 P20= 0	1337	7057	6			
256 737 sade, symich 1573 sade 2 free 120: 0 Sade, symich (1993) 256 3059 $5ade$, symich (1993) 257 3059 $5ade$, 923 same 727 0 573 same 810 0 107 grand, 953 same 810 0 100 color 257 3092 53 grand, 853 same 810 0 100 color 251 3092 50 grand, 853 same 810 0 100 color 251 3092 50 grand, 853 same 810 0 100 color 251 3092 50 grand, 853 same 810 0 100 color 100 - 0 100			orten			
PID: 0 Superior (capita) 25C - 3089 3553 Dep - Taken (07) gravel, 903 sand $pTD = 0$ sime me n = odor $pTD = 0$ an odor pTD = 0 an odor pTD = 0 an odor pTD = 0 are odo	1354	3056	~ ~			
256 3089 355 Dig Taken 10% gravel, 90% sand pT0 = 0 wint man an adar pT0 = 0 wint man an adar pT0 = 0 wint and $qS%$ sand pT0 = 0 min adar pSF = 309.4 10% gravel, $gS%$ sand pT0 = 0 min adar pSF = 309.4 10% gravel, $gS%$ sand pT0 = 0 min adar pSF = 309.4 10% gravel, $gS%$ sand pT0 = 0 min adar pSF = 309.2 5% gravel, $gS%$ sand pT0 = 0 min adar pT0 = 0 min adar pT0 = 0 min adar pT0 = 0 min adar pS% scarel pT0 = 0 min adar pT0 =			richmi			
25.3 Byte Taken 10% gravel, 95% sourcel p p p 0 = 3042 Sis gravel, 95% sourcel p p p = 0 are obtained p p p = 0 are obtained p p p = 0 are order p p p p = 0 are order p p p = 0 are order p p p = 0 are order p p p p p p p p p p p p p p p p p p p	1338	3039	•			
PIDEO Sing the above of the object of the ob		355 Dupe Taken 107	r z			
25D 3092 5% grud, 95% sand RD=0 no order 25E 3093 15% syand, 85% sand RD=0 no order 25 F 3094 10% gravd, 80% sand PD=0 no order 25 F 3095 15% gravd, 85% sand PD=0 no order 25 H 3096 50% gravd, 50% sand PD=0 no order 25 H 3092 25% gravd, 75% sand PD=0 ne order 25 H 3092 50% gravd, 75% sand PD=0 ne order 25 H 3092 50% gravd, 75% sand PD=0 ne order 26 H 200 ne order 27 H 2004 10% gravd, 75% sand PD=0 ne order 26 H 200 ne order 27 H 2004 10% gravd, 75% sand PD=0 ne order 26 H 200 ne order 27 H 2004 10% gravd, 75% sand PD=0 ne order 28 H 2004 10% gravd, 75% sand PD=0 ne order 28 H 200 10% gravd, 75% sand 28 H 200		PEDEO STIME HIL	ኦ			
PID= 0 II odder 25E 3043 157 stand, 55 is scored PID=0 In order 25F 3094 107 speach, 908 scored 25F 3094 107 speach, 308 scored PID=0 In order PID=0 In order P	-6451	25D 3092 5%	4 93			
25E 3093 1572 spared, 35% scened 120-0 are order 25F 3094 16% gland, 90% scened 120-0 no order 25G 3095 15% grand, 85% scened 120=0 no order 120=0 no or			her			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1346	2603	Z			
25 F 3094 10% gland, 90% sand PID= 0 no order 25 G 5% grand, 85% sand PID= 0 no odor PID= 0 no o			5			
PID-0 no oder 25G 3095 157grand, 857, sand PID=0 no oder PID=0 no oder P	1350		l'Ya			
255 3095 15/191000, 857, sear			کر			
PID=0 ho ador 25H 3096 50's groud SOBrand PID=0 he ador PID=0 he ador PID=0 he ador PID=0 he ador PID=0 he ador	1353	3095	l 85			
25H 3096 50 provel, SOMsand PID-0 ne ador 25I 3097 25/6 provel, 75N sand PID-0 un color			e edur			
PID-0 ne color PID-0 ne color PID-0 Ne color	1401	3096	sel,		•	
25I 3097 25% goer 75% sond PID-0 ure color			hor			
61) - C	1406	690	Heard 757 south			
			X and I and	-		·
· · ·		>				·
· ·						
				·		
			· · · ·			

20 TP-26		18-001-1			-				н .				
Time d	dept Apro Pistur &	pisture &	Deswin	tim									
	264 120= MS/MS	471F 0.0	D. altration	1 1 2	800 rank	··· ·· ·	÷ .	· · · · · · · ·		• • •	··· · ·	· · · · · · · · · · · · · · · · · · ·	
Q8 54		7173 0	25/25/au	1 - 2 1 - 2 1 - 2	1) sund								
4050	296	alay to		2 y	75% sund								
6 9060	– .		30% gran	J's 's	70 in sauch	م میں اور							
04:0 3		1215 0	60 1 510	ind,	40% such								
0913 9 1 1 1	1011	100 C	10 20 m	at les	so's such	· · · · · · · · · · · · · · · · · · ·			· · ·				
		0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 1, 51 an	les for	70 11 5 mal	<			•		· · · · · ·		. <u>.</u>
9 6 (.690	10" 10 To 10 To	3180	202 on 202 grave	Aer L. S.	0 is seend					• • •	· · ·		
													. ,

22		ale en en ante de la compañía de la De la compañía de la c		N and the set of the	n - N ^{an}
エアーン	18-out-11 puttanny				
Time Sumple Picture	Pietre Reception				
ATE 3490			·		
S	ergances we reder				
815 +290	154 5% slavel , 95% jury				
PLOT C					
8455 275 B					
045F 27C	well, 75% samet				
5010	no ester				÷
(12 1540	el 85 1: send				
PLD: C	ne o clor				
(007 27E	se 15% gravel, 55% surel				
p 2 0 2 0 2 6	nu cider				
1006 27F 319	57 20 h gravely 50 h curve surver				
	ne oder				·
1010 279 3188	15% grend, 85% sund				
	ne color		·		
HCE LIDI	-				
rig- O	ne other				
	3190 35 is grivel, 65 is surgh		·		
0 20 ZJ	ne crater				
				·	
			·		

24 T D-28		18-007-11) - <u>(</u>	partly sund					· :		
T ime	Sample	Phé To	Ascription								
1036	4.82	3191	$\left \mathbf{v} \right $	90 is said	:			. :	:		
	50 C d	0	up other		ندا قىسىتە			:		•	
10 39	280	3192	10 is gravel	90 % sand							
	0 2011	ۍ ا	No oder					:	•		
4401	28C	286 3193	100 in Sand			-		:	:		
	= 0 Id	S	no oder						-		
	OSWAW	+ Dupe	28]								
1019	550	28 D 3194	10% sparl	70% sund	÷.						
	5029	0									
1050	781	285 3144	35% 51440	1, 65% Sund				. <u>.</u>			
	120:	0		-	°						
1056	チギド	28F 3195	ц	80 ps sud	· .		: - -				
	DIDE	0							-		
(10)	286	286 3196		70 h Sard					-		
	120:	0									
1103	HSE	3197		8021 5000	•	•	; 	-			
	FL0:	0									
107	180	3198	5	85 il Fare			- 1			•	
	0:070	0	no oder							-	
					 .						
			2					•			
					<u>-</u> .			•		·	
	·						·				

27																							
																		-					
							-											·					
	· · · · ·																						
																			·				
		- '				*			•			•											
											-					-				·			
i																		÷					
		1	-	may	,		~	Þ	-		P		- And		Ì	• . •	, A		A		•	-	
Rent ly clevely		657% yer	-	15/11			70 % Sund	10% Sun			65% xu		70% ju	s.	55% 34		80% Su	•	90% Sun		,	÷	
	t en	31.1.5	der	ravel,	-dor	Nur	avel, ?		adar		sevel, l	when	-		Y	L.	م م	tor -	well 9				
t-11	Desce	•	100	25% 4	с, 2 2	N, 0	107 516	10 1 51	De l	tated	5		, E	ne odle	454 010	le oli	20 6.6	NC 00	10 1 510				
18-001-11	phu to	3202	×	3303							33,06		3207		5	•	3207		3210			·	
			с О		0	24C 0	1	3305	11	t'	b.	0				20			ŕ	- (
	Sample	244	5 C D =	243	やむりこ	24C	PI 0	240	P£ D	Diple	Jat	:020:	795	028	29 5	920 C	79 H	4 I.D :	291	, , , , , , , , , , , , , , , , , , ,	2 4 -		
26 TP-19	Time	118		1135		1139		1143			147		1156		1201		1204		602				

28 TP-30		18, oct-11	بلد (ا	50 ппу	·····					
Time	Sample	p. 1.1	Descript in				:			
1221	30.4	1148	10 % grower	20% juna				•		
	PID: (0	no oder							
1275	30 3	イリイト	157 glavel, "	85% sund						
	PIDE O		no octor						:	
1234	306 3	3213	40% yeared	60 h sund						
	12021	0	ne oder					-		
	Q5W/SW	1 & OLP	licate taken	307						
1316	3003	7214 50%	50% gravel	, Sdisen						
	PID: C		ne color		-		÷			
99621	30 8	3215	15 hquel	85-4 corar e	scul					
	620	0	pape on		1					
1343	30 1-	32-16	25% gravel	75% sera			-	-		
	PEO -	0	no edor		i T					
1327	306	3712818	12 h querel	SSN come h	Sud	·				
		C C	0°	7			:			
1331	30 H	B 2	So h growed	20% counter Su	je Je					
	1021	0	ter		•					
1335	30 F	3221	25 h gravel	75% 54						
		\mathcal{O}	5		:					
					-					
				·		·				·
				·		·				•
	·			·	:	÷			-	
		·			•			:		

Suny 5% fines in oter 30% gravel, 70% said Rex thought he smelt Something while swinging the bucket. But nothing work 10 hogewel. 90 h soude no when 90 h soude hune, 435 i Singroud, 85 h soud no oder 5% gravel, 75% send So X Eant <5% FILES 10% grand, 90% sout 80 % Sand SI. graved, Si'i send, no water Description in spect with 20 il growl, no where m oder 20 h grower Sands w/ 15-007-11 436 3231 120= 0 43H 3232 130= 0 432 3233 0.pliedte taker 43F 3230 820-0 43C 3226 PID: 0 photo 5448 FERS 430 3227 43E 3279 0-011 PL 0 = 0 610=0 PE0 = 0 620 ÷ 0 Sumple 430 434 TP-43 55 -ech | 1355 1419 gehi 1416 r Z 1359 1409 1403

33 - odor of decomposing vegitation (amerobic) Tundes 30% gravel 70% sund av dreul oder 10% gravel, 90° sund 10 brul oder 10 dreul oder 50° gravel, 50° sund 11 dreul oder We come ş 20 Tisand chirt and start sau pile . no dered oder F.4 UP いた 10 ingraud we are on a full will dry down i To matin durt say 18-02t-11 170= 0 11 7240 120= 0 31H 3239 45 m dug 319 3238 315 3241 0:012 Ģ -011 32 TP-31 7471 1443 0441 1451

The Septer 1 Scort 1 Scort 1 Train Scort 1 Train September 1 Scort 1 dent to $\frac{5}{2}$ Train $\frac{1}{2}$ Train	34	lar 1					
Sampe Phit direction f_{ampe} Phit direction f_{ampe} This, The fill first f_{ampe} The is fill first f_{ampe} The is fill first f_{ampe} The fill first f_{ampe} f_{a	18-007-11				,		
From as TP31 we have to d_3 Thur, the Fill Eust 32 ± 33 Thur, the Fill Eust 170: G in direct 25% ind 170: G in direct order $p \pm 0^{-2} O$ in developed of $p \pm 0^{-2} O$	Phite description						
4, theory, the FII First Starty the FII First -31 where 146 75% into 75% into 120% 51% model of 25% into 120% 61% 52% into 120% 61% 120%	as TP-31 we he						
- Shuty 14. The TP-31 32 ± 3248 (Shrand SShrand SShrand 32 ± 3249 (0) γ_{mad} , γ_{000} sad 32 ± 3249 (0) γ_{mad} , γ_{000} sad 910 ± 0 η_1 dead odd	think the Fill						
32.1 7348 15/1 , much 85/1 ; much 85/1 ; much 85/1 ; much 85/1 ; much 82/1 ;	1, ke TP-31	:					
120: 6 un direct and 20% such that 20% such 10^{-1} gives 20% such 10^{-1} gives 1	7. 4.51 Suf 2	:					
$3.3.7$ 3.45 (0) γ_{mul} 90 k γ_{m}							
$\beta = 0$	37 4 3145 107						
		: 		·			
	р 14 0	x.2	·	·			
			·				
		-			·		
		:	·				
						·	
						·	
		·					
		ġ.		·			
		· •.		·	·		
					·	-	
 			·				
		• 1 2.		·			
		25 41					

	37	: :				:												
							••								•			
					:				:									
	-			· .	• •		T											
				-		-						• -	-	. ,				
					, .		:											
				-			·											
		:		:	:					;				:			:	a.
	>		•	4. c			and the			. <i>1</i> 75.		15.1.4,	eta su		o all'e	 ···		
	Suny	thour	-)and	8-5% june	>	40 h sand	<i>2</i>	Jand	•	Sund	and	Fires	Sim				
		dus	4 4 4	201	5.5	er er	2 · 7 ·	ken he	85% Sau		25% 20	290 in Ear	Sundle	10%		a.		
	~	- 2 (+		gravel,	Sicuer	v wal	c day	J) 1,	2 1440 l	color	'savel	: ~ ⁻	دب ر	lovel.	volv			
	18-007-11	other (Lest)	. Б .	10 he grav	~	20	601, 516 40 00	Due (335)	1572 9144	NC	25%90	10 / 5/4ve	climps	101 5104	2			
	- 18	94670 074		1470	10/0 5 1 2 5 101	0 7 7 7 7			2753	0	121°C	3755	0	ろうらん				
							· - 4i	S OS			. 0		\mathcal{O}	• •	 .)			
3		·ple as	v she	5 6	$\widehat{}$	0	10	14	U	<u> </u>	00	Ξ.	0	6.1	0			
	36 11-33) ample	2	15371 1200		120-	PID	w/sw	335	2 QIN	336	33 H	: OId	7 2 L	2 O I.J			

ALL-WEATHER LEVEL No. 311 Book 3 of 3 11-061 Eklutna

$\begin{array}{cccccccccccccccccccccccccccccccccccc$										2
$\begin{array}{cccccc} & & & & & & & & & & & & & & & & $	the full conversion of the second	and the second second			Overeast					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74		19-00	it-11	38*12					Ω
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Sum	Photo	Deservetion				:		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	555	34	se phite	15% gravel, 85 "	sured organic	•				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		DI d	ଚ	ave a dor	1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ての	340	3257	25 h stored	75% Secret					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		610	Ð	no odor						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Dupe	34J tak	Le la		·		·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ÓĠ	346	33.53	50 ligrand 5	Cli Sand		·			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		PIO-	. O	no oder	· .		·			
$PLD = 0$ $PLD = 0$ $34E$ $34E$ $32E0$ $10^{3}gravel, 95/15erf$ $74F$ $34F$ $34F$ $51/2ravel, 95/15erf$ $74F$ $34F$ $32E1$ 20^{2} $10^{3}/2ravel, 60^{2}/2ravf$ 120^{2} $10^{3}/2ravf, 60^{2}/2ravf$ 120^{2} 120^{2} $10^{3}/2ravf, 60^{2}/2ravf$ 120^{2} 120^{2} 120^{2} 120^{2} $10^{2}/2ravf, 60^{2}/2ravf$ 120^{2} 120^{2} $10^{2}/2ravf, 50^{2}/2ravf$ 120^{2} 120^{2} $10^{2}/2ravf, 50^{2}/2ravf$ 120^{2} $10^{2}/2ravf, 50^{2}/2ravf$ 120^{2} 120^{2} $10^{2}/2ravf, 50^{2}/2ravf$ $120^{2}/2ravf$ 120	6	340	3254	Z	1 Sand		·			
346 3260 10^{3} gravel, 20% sand 120 \cdot 0 \cdot 10 \cdot 0 \cdot 0 \cdot 10 347 \cdot 3461 \cdot 51 \cdot 5 \cdot 10 \cdot 0 \cdot 10 \cdot 20 \cdot 0 \cdot 10 \cdot 0 \cdot		- O I d	0	no color						
120-0 in order 347-3461 571 stand, 9571 sand 120-0 in order 3463-3262 20% stand, 80% sand 120-0 in order 120-0 in order 847-3264 20% stand, 60% sand 120-0 in order 120-0 in order 1	n	346	3260	10 1, gravel	Il Sand					
345 3261 57 start, 957 send 200-0 no velov 34G 3262 20% gravel, 80% send 12020 no velov 82020 no velov 12020 no velov 8212 3264 206 gravel, 80% send 12020 no velov 12020 no velov		120%	9	ne oder		-				
120.0 no coler 34G 3261 20% grand, 80% sound 120.0 no order 34H 3263 40% grand, 60% sound 12020 no order 12020 no order 12020 no order 12020 no order	•	345	34.5	5 1) Spared	1 seved					
34G 3262 20% gravel, 80% somethy 120-0 40% gravel, 60% somethy 34A 3263 40% gravel, 60% somethy 120-0 40 acter 60% somethy 84Z 3264 20% gravel, 80% somethy 120=0 400 ave octor		- OII	ß	ne valer	×					
120-0 us order 34H 3213 40% grand, 60k sud 120-0 us order 84I 3264 20k grand, 80 h sud 120-0 us order	0-	るよび	7976	20 il gravel	1. second			·		
34H 3263 40% grand, 60% send 120= 0 an octor 34I 3264 206 grand, 80 h. send 110= 0 we octor		- OZI	Ð	ne volor	• • •••••		×		-	
120= 0 un acter 34I 3264 206 grand, 50 P. send 120= 0 un actor	14	Hhi	3263	and	1 Eurol	×				
342 3264 206 stand, 80 send		1 D z	. 5	Ler	a,					
17 J	zst	ZhE	tors	ma	d R. Seard					
		20 T V	D	cher	••		·			
		<u>~</u>		, , ,						
	·							·		

av order - may be fil-1076 graved, Fixes Reconnics PED: 0 dising deger - caneding hile - dug to 14' 57.11 f.11 Eamples callecte - Discurding Eamples collected TON Sang description 30 m gravel 19-067-11 Sample Phita 35A no phita PIO: 0 350 3267 NU pleta 6 TP35 Time 0440 11111

. . .

	19-007-11			
INE	Sumple thete Description	•		
A	36 A night 15% gravel, 353 sound	 • •		. ,
	120 = On orter			
0	36 8 3+70 30 1 yrand, 70 h sund			
	pID. C no order	-		
5	36 C 37 71 25/1 grad, 15% and	-	-	
	MS/MSD2 D. Re 365 Typen			
9.6	360 3272 Wind All course same			
	14			
5-00	3477 20% 6			
	: 0 as adar			
7	3274 SINGINAL			
30				
	120=0 and no det			
34	1.06			
	PIDE O metato no coler			
37	36 I 731 15 % 5/2000, 85 % Sing		-	
	PID= 0 no oder			
	• • • • • • • • • • • • • • • • • • •			

σ

3276 Shyrad , 93h sund & Sim and 50 h gravel, So h sun 27J Depleated - taken from 37A becave of the elevented pro hut 20 Kyravel , & 1 K ian 20% gover, 80% sur - New diffins from 2-4', came eccoss a steel & toraidth pipe (phito 327878) 3713 3279 2029 ground, 8025 serve w orber 15 h gravel, 55 / sand 10% start, 91% seed 27 av octor Bue that 10 highered, 90 hours 65% server Description No oder . 35% gravel, are color as order ne orker in order ne wher 19-067-11 phite 3783 *275 Deplint 3180 9882 3784 3382 1872 26 $\overline{}$ 10 1-1-2 iv L oh = ozd ir V -021 f20: H72 P10: Sumple 105 + 37A 370 Cic E P20 = - 010 610 -110 27F 120 -エムセ 376 276 7 8-37 Time 0-611 1125 1135 1102 1108 1013 してい 1016

.

· · · ·

~

10° growt, 96% surf 10° octor 70° hyruch 30° work in 3 28 20 his weber SSY ling 75-21 Semer 20% yravel, 80% Sund of the elevertual PID a dublicate was 20 % gravel, 80 % scored 15/1 yourd, 85% and 3 10 cm 15 2 gravel, 35 J Faller Description 100 3 Sant From This bas. no orles no other ווני הבקימ ne wher 19-02tull 38 D Malinso & * April 5793 3387 38D 3280 7294 2625 Phi TI 1655 38E 3290 ---5 Ţ Μ 0 D= QId be lavel taken H & S & H h. t 😡 38A -02d 33.8 -010 35 F - 0 I J 389 386 28 Z 120= -021 Sul mple 120: 38-38 Time 1159 5571 りくらい E071 15-21 いこ 1213 3061 ので 2

5 Sumple Photo Descerption 30,13 3297 10%, grand, 90% sind, crownes PJD= 0 Some Free no oder 79E 3301 207. gravel, 803 served PJD=0 on order 39F 7702 1572 gravel 855 1 sind P2D=0 no order 40'7, gravel, 60% card 10 % gravel, 90 % Severoverest - hull to remove 3' of fill to start 0,plicute 37 + 1 + ten 3953 330 3 10% gravel, 90% semel pLD=0 20 20 color 39 H 7 704 30% growd, 70% iene no other 15/1 grand, 85/1 sund no color wi redw ne ester 19-007-11 820= 0 346 3298 390 330D 3305 P 2 0 - 0 I62 PTD= 2911 56-39 1245 TIME . 30 3 1322 1251 トイミー 1300) 1313 1317

-	5	o	CI - 11		÷			
		Phe to	Description					
1346	404	د ا	102% Sund & Fine Seemed					
	0		nu ader			·		
1350	403	202	15 % gravel, 852 sevel					
	6:01V		no order			·		
1354	406 3,	308	10 % gravel 90 % Jand				·	
	PID=		no citor					
1358		3309	15% gravel, 85% seemed					
			he voter					
1403	405	3310	20% gravel. 80% 2000					
	- 01J		ne caler					
	40J dup	l'cute	ta kes	·				
1407	401-	3 314	20 hgravel, 80 % send		·			
	5 D I d		no exter					
1111	406	374	405 332 102 gravel, 20% Sand		·			
	PID >		ne oder					
1415	HoH.	33.74	40% gravel, 60% sand					
1419	407	3314	10% gravel 20 % such					
	PID=				·			
					·			
I.					÷			
			~					

.

۲. ۲

· · ·

ile ser, ption 51 grand, sade pm sad 70 h Eug 80% Surel So is swal 801, 5 und 75% Sand 30 h gravel, 70 h same 20 h grand, 80% Ewer organics 111 oder se'h gravel, ne eder no wher 30% gravel, no celor 20% growl or other 25/1 gravel 10% gravel 42J Maken no cdr no volor 19-067-11 Josephine Phi Ta 3318 3320 3371 3322 M5/M50+ 0.pe 33415 3319 331> 3316 ЛСH うてん 124 F んぐと Sumple Ч2G 420 :071 PID: = 0 I 1 コイト 92029 20IV もんて よずい Qzd P I D -th dl 1439 1443 レイト イント 1445 1500 Three 1-Shi 92 81 19571 0

APPENDIX F Chemical Data Quality Review Checklist

CEPOA-EN-ES-M (200-1d)

23 February 2012

MEMORANDUM FOR CEPOA-PM-ESP (Baez)

SUBJECT: Chemical Data Quality Review, Eklutna FUDS Investigation (11-061).

1. Reference Email, CEPOA-PM-ESP (Baez), 30 March, 2011, Subject: Chemists assigned to projects.

2. Attached is the Chemical Data Quality Review for this project. This report will be included as an appendix to the complete Eklutna FUDS Site Investigation Report.

3. Questions should be directed to Sean Benjamin, ext. 5514.

JAMES W. PEKAR, P.E. Chief, Geotechnical Services United States Army Corps of Engineers Alaska District P.O. Box 6868 JBER, AK 99506-6898

Chemical Data Quality Review

Eklutna FUDS Investigation (11-061) Eklutna, Alaska

Chemistry and Industrial Hygiene Section Geotechnical and Engineering Services Branch

February 2012

1. Introduction

1.1. The U.S. Army Corps of Engineers Alaska District ((USACE-AK), Engineering Division, Geotechnical and Engineering Services Branch, Chemistry and Industrial Hygiene Section (CEPOA-EN-GES-CIH) prepared this data review at the request of the USACE Environmental and Special Projects (CEPOA-ESP) branch. This report presents a review of the results from the Eklutna FUDS Site Investigation (SI) conducted by USACE-AK personnel at the Eklutna FUDS Site located in Eklutna, Alaska. (11-061).

2. Project Description:

- 2.1. See Sections 1.1 through 1.3 of the Eklutna FUDS Site Investigation Report for a complete site description and history. The purpose of this sampling event was to delineate the vertical and horizontal extent of fuel impacted surface and subsurface soil associated with historical releases. The results of the chemical analyses were screened against State of Alaska soil cleanup levels under 18 AAC 75, Oil and Hazardous Substances Pollution Control (ref 10.2). The most stringent Method Two cleanup levels for the Under 40 Inch Zone were used as evaluation criteria.
- 2.2. To that end, 317 soil samples and 35 duplicates were collected during the time period 20 September through 19 October 2011 to determine the horizontal and vertical extents of fuel contamination at the Eklutna FUDS project location. Project chemist Sean Benjamin (CEPOA-EN-GES-CIH) collected the chemical samples from the specified locations and depths using an excavator operated by Alaska Aggregate employee Rex Lewis.
- 2.3. A total of 352 soil samples (including 35 duplicates) were submitted in five Sample Delivery Groups (SDGs) (ref. 10.4, 10.5, 10.6, 10.7, and 10.8) to SGS Laboratories of Anchorage, Alaska with proper custody procedures. This lab is approved by ADEC through the Underground Storage Tank (UST) Program and is approved by the Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP) for all analytical methods utilized under this project.
- 2.4. AK102 (DRO) was the only analytical method utilized for this project. Table 1, located in Appendix C presents the field identification of collected samples, the laboratory assigned identification, and the analyses performed at the laboratory. Table 2, also located in Appendix C, presents a comprehensive data tabulation with data qualifiers as detailed herein.
- 2.5. The project data was reviewed for deviations to the requirements presented in the Sampling and Analysis Plan, the DOD-QSM (Version 4.2) (ref. 10.3), and the Alaska Department of Environmental Conservation (ADEC) Technical Memorandum 06-002 (dated March 2009) (ref. 10.1) in the following areas precision, accuracy, representativeness, comparability, completeness, and sensitivity (PARCCS). Elements reviewed include sample handling, holding times, method and trip blanks, laboratory control sample/laboratory control sample duplicate (LCS/LCSD) recoveries and relative percent differences (RPDs), matrix

spikes and matrix spike duplicates (MS/MSD) recoveries and RPDs, surrogate recovery, and field duplicate comparability. Calibration curves and continuing calibration standard recoveries were not specifically reviewed; however, laboratories are required to document such failures in the appropriate case narratives. These narratives were reviewed for each sample delivery group.

- 2.6. The laboratory electronic data format (EDF) for this project was used to generate this report. When discrepancies between the hardcopy data and the EDF are found, the EDF has been modified to reflect values from the hardcopy, unless the hardcopy is found to be in error. Results used to generate this report are deemed to be accurate.
- 2.7. The following qualifiers, listed below in order of increasing severity, are used in the data tables to indicate quality control deficiencies. With the exception of J and B which provide additional usability information, the most severe flag will be utilized when quality issues indicate the use of more than one qualifier.

Qualifier	Definition
	Analyte result is considered an estimated value because the level is below the laboratory PQL but above the MDL
	Analyte result is considered an estimated value (bias high, low, indeterminate) due to matrix effects
К	Analyte result is considered a high estimated value due to contamination present in the method or trip blank.
	Analyte result is considered an estimated value (biased high, low, indeterminate) due to a quality control failure
R	Analyte result is rejected - result is not usable.

2.8. Details of the data review are presented by SDG below:

3. SDG 1114573

- 3.1. Collection and Preservation: Seventy-two primary and 8 duplicate soil samples were hand delivered to the SGS Laboratory office in Anchorage, Alaska in cooler "1". The temperature blank in cooler "1" was recorded at 5.4°C. This temperature is within the acceptable range. There were no issues with collection or preservation that affected data quality.
- 3.2. Holding times: This SDG required a 48 hour turnaround time and all samples were extracted and analyzed within required hold time.
- 3.3. Method blanks were analyzed at the required frequency. Target analytes were not detected in any blank.
- 3.4. LCS/LCSDs were analyzed at the required frequency. Recoveries were within the QSM acceptance limits for all analytes.

- 3.5. LCS precision: LCS/LCSD samples were run at the required frequency. All LCS/LCSD precision criteria were met in all samples.
- 3.6. Surrogate recoveries for all samples were within method and/or QSM acceptance limits.
- 3.7. MS/MSD samples were analyzed at the required frequency for all analyses. Recoveries for all samples were within QSM acceptance limits.
- 3.8. The MS/MSD precision did not exceed QSM acceptance limits or did not affect data quality in any sample.
- 3.9. There were 72 primary samples and 8 duplicates submitted in this SDG, thus meeting the 10% frequency requirement. In addition, the 10% frequency requirement was met for the entire project. The following samples are duplicate pairs: -01JSL and -01ASL; -02JSL and -02BSL; -03JSL and -03CSL; -04JSL and -04DSL; -05JSL and -05ESL; -06JSL and -06FSL; -08JSL and -08ESL; and 09JSL and -09HSL and were submitted to the laboratory in this SDG. All results are compliant with the criteria specified in ADEC Tech Memo 06-002 except as noted below:
 - One DRO sample pair (05ESL and -05JSL) had an undetermined RPD because DRO was found in low concentrations in one half of the pair and not in the other. Data is not affected and is not flagged.

4. SDG 1114707

- 4.1. Collection and Preservation: Sixty-two primary and 7 duplicate soil samples were hand delivered to the SGS laboratory office in Anchorage, Alaska in cooler "TAL-AK". The temperature blank in cooler "TAL-AK" was recorded at 2.4°C. This temperature is within the acceptable range. There were no issues with collection or preservation that affected data quality.
- 4.2. Holding times: This SDG required a 48 hour turnaround time and all samples were extracted and analyzed within required hold time.
- 4.3. Method blanks were analyzed at the required frequency. Target analytes were not detected in any blank.
- 4.4. LCS/LCSDs were analyzed at the required frequency. Recoveries were within the QSM acceptance limits for all analytes.
- 4.5. LCS precision: LCS/LCSD samples were run at the required frequency. All LCS/LCSD precision criteria were met in all samples.
- 4.6. Surrogate recoveries for all samples were within method and/or QSM acceptance limits.
- 4.7. MS/MSD samples were analyzed at the required frequency for all analyses. Recoveries for all samples were within QSM acceptance limits.
- 4.8. The MS/MSD precision did not exceed QSM acceptance limits or did not affect data quality in any sample.

4.9. There were 62 primary samples and 7 duplicates submitted in this SDG, thus meeting the 10% frequency requirement. In addition, the 10% frequency requirement was met for the entire project. The following samples are duplicate pairs: -10JSL is a duplicate of sample -10ASL. Sample -11GSL is a duplicate of sample -11FSL. Sample -12JSL is a duplicate of sample -12DSL. Sample -13JSL is a duplicate of sample -13ESL. Sample -16JSL is a duplicate of sample -16CSL. Sample -17JSL is a duplicate of sample -17DSL. Sample -18JSL is a duplicate of sample -18ESL. All results are compliant with the criteria specified in ADEC Tech Memo 06-002.

5. SDG 1114876

- 5.1. Collection and Preservation: Fifty-three primary and 6 duplicate soil samples were hand delivered to the SGS Laboratory office in Anchorage, Alaska in cooler "SGS". The temperature blank in cooler "SGS" was recorded at 10.0°C. This temperature is above the acceptable range. The samples were kept in a cooler with 8 ice packs overnight from the day of collection. The next day, the samples were inspected and it was noticed that the temperature blank was not included with the samples. As no temperature blank was in the refrigerator, a new one had to be made up. The temperature blank only had about an hour to cool before being delivered to the laboratory. As the DRO is a semi-volatile, the time between sample collection and delivery was minimal for outgassing to occur. There were no other issues with collection or preservation that affected data quality.
- 5.2. Holding times: This SDG required a seven day turnaround time and all samples were extracted and analyzed within required hold time.
- 5.3. Method blanks were analyzed at the required frequency. Target analytes were not detected in any blank.
- 5.4. LCS/LCSDs were analyzed at the required frequency. Recoveries were within the QSM acceptance limits for all analytes.
- 5.5. LCS precision: LCS/LCSD samples were run at the required frequency. All LCS/LCSD precision criteria were met in all samples.
- 5.6. Surrogate recoveries for all samples were within method and/or QSM acceptance limits.
- 5.7. MS/MSD samples were analyzed at the required frequency for all analyses. Recoveries for all samples were within QSM acceptance limits.
- 5.8. The MS/MSD precision did not exceed QSM acceptance limits or did not affect data quality in any sample.
- 5.9. There were 53 primary samples and 6 duplicates submitted in this SDG, thus meeting the 10% frequency requirement. In addition, the 10% frequency requirement was met for the entire project. The following samples are duplicate pairs: Sample -20JSL is a duplicate of sample -20BSL. Sample -21JSL is a duplicate of sample -22JSL is a duplicate of sample -22DSL. Sample -23JSL is a duplicate of sample -23ESL. Sample -24JSL is a duplicate of sample -23ESL.

sample -24FSL. Sample -25JSL is a duplicate of sample -25CSL. All results are compliant with the criteria specified in ADEC Tech Memo 06-002.

6. SDG 1115182

- 6.1. Collection and Preservation: Sixty-four primary and 8 duplicate soil samples were hand delivered to the SGS Laboratory office in Anchorage, Alaska in cooler "TA". The temperature blank in cooler "TA" was recorded at 5.2°C. This temperature is within the acceptable range. Two sample jars in this SDG were labeled with the same ID number. The lab was instructed to use the number on the lid of the jar. Data quality was not impacted as another means of sample identification was available. There were no other issues with collection or preservation that affected data quality.
- 6.2. Holding times: This SDG required a 30 day turnaround time and all samples were extracted and analyzed within required hold times.
- 6.3. Method blanks were analyzed at the required frequency. Target analytes were not detected in any blank.
- 6.4. LCS/LCSDs were analyzed at the required frequency. Recoveries were within the QSM acceptance limits for all analytes.
- 6.5. LCS precision: LCS/LCSD samples were run at the required frequency. All LCS/LCSD precision criteria were met in all samples.
- 6.6. Surrogate recoveries for all samples were within method and/or QSM acceptance limits.
- 6.7. MS/MSD samples were analyzed at the required frequency for all analyses. Recoveries for all samples were within QSM acceptance limits.
- 6.8. The MS/MSD precision did not exceed QSM acceptance limits or did not affect data quality in any sample.
- 6.9. There were 64 primary samples and 8 duplicates submitted in this SDG, thus meeting the 10% frequency requirement. In addition, the 10% frequency requirement was met for the entire project. The following samples are duplicate pairs: Sample -33JSL is a duplicate of sample -33ESL. Sample -34JSL is a duplicate of sample -34ASL. Sample -36JSL is a duplicate of sample -36BSL. Sample -37JSL is a duplicate of sample -37ASL. Sample -38JSL is a duplicate of sample -38DSL. Sample -39JSL is a duplicate of sample -40ESL. Sample -42JSL is a duplicate of sample -40ESL. Sample -43LSL is a duplicate of sample -42CSL. Sample -43JSL is a duplicate of sample -43ESL. The extra duplicate here makes up for the one short in lab report #1115183. All results are compliant with the criteria specified in ADEC Tech Memo 06-002 except as noted below:
 - Duplicate pair -37A and -37J had an incalculable RPD because a low detection was found in one of the pairs while the other was non-detect. Data is not affected and is not flagged.

7. SDG 1115183

- 7.1. Collection and Preservation: Sixty-six primary and 6 duplicate soil samples were hand delivered to the SGS Laboratory office in Anchorage, Alaska in cooler "coleman". The temperature blank in cooler "coleman" was recorded at 5.0°C. This temperature is within the acceptable range. There were no issues with collection or preservation that affected data quality.
- 7.2. Holding times: This SDG required a 30 day turnaround time and all samples were extracted and analyzed within required hold time.
- 7.3. Method blanks were analyzed at the required frequency. Target analytes were not detected in any blank.
- 7.4. LCS/LCSDs were analyzed at the required frequency. Recoveries were within the QSM acceptance limits for all analytes.
- 7.5. LCS precision: LCS/LCSD samples were run at the required frequency. All LCS/LCSD precision criteria were met in all samples.
- 7.6. Surrogate recoveries for all samples were within method and/or QSM acceptance limits.
- 7.7. MS/MSD samples were analyzed at the required frequency for all analyses. Recoveries for all samples were within QSM acceptance limits.
- 7.8. The MS/MSD precision did not exceed QSM acceptance limits or did not affect data quality in any sample.
- 7.9. There were 66 primary samples and 6 duplicates submitted in this SDG, thus falling just short of meeting the 10% frequency requirement. Due to an extra duplicate pair in SDG 1115182, the 10% frequency requirement was met for the entire project. The following samples are duplicate pairs: Sample -26J is a duplicate of sample -26ASL. Sample -27JSL is a duplicate of sample -27BSL. Sample -28JSL is a duplicate of sample -28CSL. Sample -29JSL is a duplicate of sample -43JSL is a duplicate of sample -43ESL. All results are compliant with the criteria specified in ADEC Tech Memo 06-002.

8. Reporting Limits:

The laboratory reporting limits meet or exceed ADEC regulatory requirements for all compounds.

9. Overall Assessment:

All results for this project are usable as reported and flagged. The overall completeness goal of 95% was met.

10. References:

- 10.1. Alaska Department of Environmental Conservation, Technical Memorandum 06-002, Environmental Laboratory Data and Quality Assurance Requirements, March 2009.
- 10.2. Alaska Department of Environmental Conservation (ADEC), <u>18 AAC 75 Oil and</u> Other Hazardous Substances Pollution Control, October 2008.
- 10.3. Department of Defense, <u>Quality Systems Manual for Environmental Laboratories</u>, <u>Final Version 4.2</u>, October 2010.
- 10.4. SGS Laboratory Data Report SDG # 1114573, Laboratory Analytical Report: <u>Eklutna FUDS</u>, September, 2011.
- 10.5. SGS Laboratory Data Report SDG # 1114707, <u>Laboratory Analytical Report:</u> <u>Eklutna FUDS</u>, October, 2011.
- 10.6. SGS Laboratory Data Report SDG # 1114876, <u>Laboratory Analytical Report:</u> <u>Eklutna FUDS</u>, October, 2011.
- 10.7. SGS Laboratory Data Report SDG # 1115182, <u>Laboratory Analytical Report:</u> <u>Eklutna FUDS</u>, November, 2011.
- 10.8. SGS Laboratory Data Report SDG # 1115183, <u>Laboratory Analytical Report:</u> <u>Eklutna FUDS</u>, November, 2011.

APPENDIX G ADEC Laboratory Data Review Checklist

Laboratory Data Review Checklist

Completed by:	Sean Benjamin
Title:	Chemist Date: 12/05/2011
CS Report Name:	
Consultant Firm:	US Army Corps of Engineers
Laboratory Name	SGS Laboratory Report Number: 1114573
ADEC File Numb	Der: ADEC RecKey Number:
■Y Yes, SG for all an b. If the s	ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Ves No NA (Please explain.) Comments: S of Anchorage, Alaska received all samples. This lab is ADEC and DoD ELAP certified alyses. samples were transferred to another "network" laboratory or sub-contracted to an alternate tory, was the laboratory performing the analyses ADEC CS approved?
	Yes No NA (Please explain.) Comments:
•Y	ody (COC) nformation completed, signed, and dated (including released/received by)? (es No NA (Please explain.) Comments:
■Y	et analyses requested? Yes No NA (Please explain.) Comments:
Yes.	
a. Sampl	ample Receipt Documentatione/cooler temperature documented and within range at receipt $(4^\circ \pm 2^\circ C)$?VesNoNA (Please explain.)Comments:
Yes. Sar	nples were hand delivered in one cooler. The temperature blank temperature was $5.4 \degree C$.
Volati	e preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, le Chlorinated Solvents, etc.)? Yes No NA (Please explain.) Comments:

No preservation except for cooling was needed for the analyses requested.

c.	Sample conc ∎Yes	lition No	documented – broken, leal NA (Please explain.)	king (Methanol), zero headspace (VOC vials)? Comments:
	There were no	disci	repancies noted.	
d.		reserv .?		ocumented? For example, incorrect sample outside of acceptable range, insufficient or missing Comments:
	All discrepand	ies w	ere noted in the case narrat	ive and the sample receipt form.
e.			ability affected? (Please ex	
	Data quality is	not a	ffected.	
	Narrative Present and ∎Yes	under No	standable? NA (Please explain.)	Comments:
	Yes.			
_	Ýes	No	ors or QC failures identifie NA (Please explain.) Tailures with this batch of s	Comments:
c.	Were all cor Yes		e actions documented? ■NA (Please explain.)	Comments:
-	No corrective	actio	ns needed to be initiated.	
d.	What is the	effect	on data quality/usability a	ccording to the case narrative? Comments:
	All data is usa	ble as	flagged.	
-	<u>les Results</u> Correct anal ∎Yes	yses j No	performed/reported as requ NA (Please explain.)	ested on COC? Comments:
	Yes.			
b.	All applicab ∎Yes	le hol No	ding times met? NA (Please explain.)	Comments:
-	Yes all sampl	es we	re on a RUSH basis.	
	, sa pi	•		

4.

5.

	∎Yes	No	NA (Please explain.)	Comments:
Y	es.			
d.	Are the rep project?	orted P	QLs less than the Cleanup I	Level or the minimum required detection level for
	∎Yes	No	NA (Please explain.)	Comments:
Y	es.			
e.	Data quality	y or usa	ability affected?	
				Comments:
A	Il data is us	able.		
	mples			
a.	Method Bla i. One		d blank reported per matrix	x. analysis and 20 samples?
	∎Yes	No	NA (Please explain.)	Comments:
Y	es.			
	11. All ∎Yes	method No	l blank results less than PQI NA (Please explain.)	L? Comments:
V	es.			
	05.			
	iii. If al	bove PC	QL, what samples are affect	ted? Comments:
				Comments.
N	[/ A			
N	[/A			
N			ected sample(s) have data fl ■NA (Please explain.)	ags and if so, are the data flags clearly defined? Comments:
	iv. Do Yes	No		
	iv. Do Yes to samples v	No vere bla	■NA (Please explain.)	Comments:
	iv. Do Yes to samples v	No vere bla	■NA (Please explain.)	Comments:
N	iv. Do Yes to samples v	No vere bla a qualit	NA (Please explain.) ank contaminated. ank or usability affected? (Pl	Comments:
N	iv. Do Yes lo samples v v. Data Data is usable	No vere bla a qualit e as flag	NA (Please explain.) ank contaminated. ank or usability affected? (Pl	Comments: lease explain.) Comments:

Yes.

6.

- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
 - Yes No ■NA (Please explain.) Comments:

None of these analyses were requested.

 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
 ■Yes No NA (Please explain.) Comments:

Yes.

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
- ■Yes No NA (Please explain.) Comments:

Yes, all RPDs were less than 20%.

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

N/A - there are no affected samples.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No NA (Please explain.) Comments:

N/A - there are no affected samples.

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

N/A, all LCS/LCSDs were within acceptance criteria.

c. Surrogates – Organics Only

i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples? Yes No NA (Please explain.) Comments:

Yes. All surrogates and MS/MSDs were within acceptable criteria.

- Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
- ■Yes No NA (Please explain.) Comments:

All surrogate and MS/MSD recoveries were within acceptable criteria.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

Yes No ■NA (Please explain.) Comments:

No sample results failed.

iv. Data quality or usability affected? (Use the comment box to explain.) Comments:

Data is usable.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
 - Yes No ■NA (Please explain.) Comments:

No volatile analyses were requested, trip blank not necessary.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
 Yes ■ No NA (Please explain.) Comments:

Only one cooler was used to transport all of the samples to the laboratory.

iii. All results less than PQL? Yes No ■NA (Please explain.) Comments:

N/A – no trip blank necessary.

iv. If above PQL, what samples are affected?

Comments:

N/A

v. Data quality or usability affected? (Please explain.)

Comments:

N/A

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

∎Yes	No	NA (Please explain	.)	Comments:

Yes. There were 72 primary samples and 8 duplicates. Sample -01J is a duplicate of sample -01A. Sample -02J is a duplicate of sample -02B. Sample -03J is a duplicate of sample -03C. Sample -04J is a duplicate of sample -04D. Sample -05J is a duplicate of sample -05E. Sample -06J is a duplicate of sample -06F. Sample -08J is a duplicate of sample -08G. Sample -09J is a duplicate of sample -09H.

ii. Submitted blind to lab?

∎Yes NA (Please explain.) No

Yes.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD(%) = Absolute value of: $(R_1 - R_2)$ - x 100 $((R_1+R_2)/2)$

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration ■Yes No

NA (Please explain.) Comments:

One DRO sample pair (05ESL and -05JSL) had an RPD undetermined amount because DRO was found in low concentrations in one half of the pair and not in the other half of the pair.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Comments:

Data is usable as the affected sample results are far below screening criteria.

f. Decontamination or Equipment Blank (If not used explain why).

Yes No ■NA (Please explain.) Comments:

Disposable equipment was used for sampling.

i. All results less than POL?

No ■NA (Please explain.) Comments: Yes

Not applicable.

ii. If above PQL, what samples are affected?

Comments:

iii. Data quality or usability affected? (Please explain.)

Comments:

Not applicable.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

■Yes No NA (Please explain.)

Comments:

The only data qualification flag used in this data set was the "J" flag.

Laboratory Data Review Checklist

Completed by:	Sean Benjamin
Title:	Chemist Date: 12/06/2011
The.	Date. 12/00/2011
CS Report Name:	Eklutna FUDSReport Date:10/04/2011
Consultant Firm:	US Army Corps of Engineers
Laboratory Name	: SGS Laboratory Report Number: 1114707
ADEC File Numb	Der: ADEC RecKey Number:
•}	ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Ves No NA (Please explain.) Comments: S of Anchorage, Alaska received all samples. This lab is ADEC and DoD ELAP certified
for all an b. If the s	alyses. samples were transferred to another "network" laboratory or sub-contracted to an alternate
labora	tory, was the laboratory performing the analyses ADEC CS approved? Yes No ■NA (Please explain.) Comments:
No samp	bles were transferred.
	ody (COC)nformation completed, signed, and dated (including released/received by)?VesNoNA (Please explain.)Comments:
Yes.	
	et analyses requested? Yes No NA (Please explain.) Comments:
Yes.	
a. Sampl	ample Receipt Documentatione/cooler temperature documented and within range at receipt $(4^\circ \pm 2^\circ C)$?VesNoNA (Please explain.)Comments:
Yes. Sar	nples were hand delivered in one cooler. The temperature blank temperature was 2.4 ° C.
Volati	e preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, le Chlorinated Solvents, etc.)? Yes No NA (Please explain.) Comments:

No preservation except for cooling was needed for the analyses requested.

c.	Sample conc ∎Yes	lition No	documented – broken, leal NA (Please explain.)	king (Methanol), zero headspace (VOC vials)? Comments:
	There were no	disci	repancies noted.	
d.		reserv .?		ocumented? For example, incorrect sample outside of acceptable range, insufficient or missing Comments:
	All discrepand	ies w	ere noted in the case narrat	ive and the sample receipt form.
e.			ability affected? (Please ex	
	Data quality is	not a	ffected.	
	Narrative Present and ∎Yes	under No	standable? NA (Please explain.)	Comments:
	Yes.			
_	Ýes	No	ors or QC failures identifie NA (Please explain.) Tailures with this batch of s	Comments:
c.	Were all cor Yes		e actions documented? ■NA (Please explain.)	Comments:
-	No corrective	actio	ns needed to be initiated.	
d.	What is the	effect	on data quality/usability a	ccording to the case narrative? Comments:
	All data is usa	ble as	flagged.	
-	<u>les Results</u> Correct anal ∎Yes	yses j No	performed/reported as requ NA (Please explain.)	ested on COC? Comments:
	Yes.			
b.	All applicab ∎Yes	le hol No	ding times met? NA (Please explain.)	Comments:
-	Yes all sampl	es we	re on a RUSH basis.	
	, sa pi	•		

4.

5.

	∎Yes	No	NA (Please explain.)	Comments:
Y	les.			
d.	Are the rep project?	orted P	QLs less than the Cleanup	Level or the minimum required detection level f
	∎Yes	No	NA (Please explain.)	Comments:
Y	les.			
e.	Data qualit	y or usa	bility affected?	
				Comments:
A	All data is us	able.		
	mples	_		
a.	Method Bla i. One		d blank reported per matri	x, analysis and 20 samples?
	∎Yes	No	NA (Please explain.)	Comments:
Y	(es.			
	ii. All	method	blank results less than PQ	1.2
	-Vac	No	NA (Plassa avalain)	-
	∎Yes	No	NA (Please explain.)	Comments:
Y	∎Yes Zes.	No	NA (Please explain.)	-
Y	les.		NA (Please explain.) QL, what samples are affect	Comments:
Y	les.			Comments:
_	les.			Comments:
_	∕es. iii. If al √A	bove PC	L, what samples are affec	Comments:
N	Yes. iii. If al V/A iv. Do Yes	bove PC	2L, what samples are affec	Comments: ted? Comments: lags and if so, are the data flags clearly defined?
N	Yes. iii. If al V/A iv. Do Yes No samples v	the affe No vere bla	2L, what samples are affec cted sample(s) have data f ■NA (Please explain.)	Comments: ted? Comments: lags and if so, are the data flags clearly defined? Comments:
	Yes. iii. If al V/A iv. Do Yes No samples v	bove PC the affe No vere bla a qualit	QL, what samples are affec cted sample(s) have data f ■NA (Please explain.) nk contaminated.	Comments: eted? Comments: lags and if so, are the data flags clearly defined? Comments: lease explain.)
	Yes. iii. If al V/A iv. Do Yes No samples v v. Dat	bove PC the affe No vere bla a qualit	L, what samples are affec cted sample(s) have data f ■NA (Please explain.) nk contaminated. y or usability affected? (P	Comments: ted? Comments: lags and if so, are the data flags clearly defined? Comments: lease explain.) Comments:
	Yes. iii. If al V/A iv. Do Yes No samples v v. Dat	bove PC the affe No vere bla a qualit	QL, what samples are affec cted sample(s) have data f ■NA (Please explain.) nk contaminated.	Comments: ted? Comments: lags and if so, are the data flags clearly defined? Comments: lease explain.) Comments:

Yes.

6.

- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
 - Yes No ■NA (Please explain.) Comments:

None of these analyses were requested.

 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
 Yes No NA (Please explain.) Comments:

Yes.

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
- ■Yes No NA (Please explain.) Comments:

Yes, all RPDs were less than 20%.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

N/A - there are no affected samples.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No ■NA (Please explain.) Comments:

N/A - there are no affected samples.

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

N/A, all LCS/LCSDs were within acceptance criteria.

c. Surrogates – Organics Only

i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples? Yes No NA (Please explain.) Comments:

Yes. All surrogates and MS/MSDs were within acceptable criteria.

- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
- ■Yes No NA (Please explain.) Comments:

All surrogate and MS/MSD recoveries were within acceptable criteria.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

Yes No ■NA (Please explain.) Comments:

No sample results failed.

iv. Data quality or usability affected? (Use the comment box to explain.) Comments:

Data is usable.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
 - Yes No ■NA (Please explain.) Comments:

No volatile analyses were requested, trip blank not necessary.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
 Yes ■ No NA (Please explain.) Comments:

Only one cooler was used to transport all of the samples to the laboratory.

iii. All results less than PQL? Yes No ■NA (Please explain.) Comments:

N/A – no trip blank necessary.

iv. If above PQL, what samples are affected?

Comments:

N/A

v. Data quality or usability affected? (Please explain.)

Comments:

N/A

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

■Yes No NA (Please explain.) Comments:

Yes. There were 62 primary samples and 7 duplicates. Sample -10J is a duplicate of sample -10A. Sample -11G is a duplicate of sample -11F. Sample -12J is a duplicate of sample -12D. Sample -13J is a duplicate of sample -13E. Sample -16J is a duplicate of sample -16C. Sample -17J is a duplicate of sample -17D. Sample -18J is a duplicate of sample -18E.

ii. Submitted blind to lab?

■Yes No NA (Please explain.) Comments:

Yes.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

 $((R_1+R_2)/2)$

RPD (%) = Absolute value of: (R_1-R_2) x 100

Where $R_1 =$ Sample Concentration

- $R_2 = Field$ Duplicate Concentration
- ■Yes No NA (Please explain.)

Comments:

Yes.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Data is usable.

f. Decontamination or Equipment Blank (If not used explain why).

Yes No ■NA (Please explain.) Comments:

Disposable equipment was used for sampling.

i. All results less than PQL?

Yes No ■NA (Please explain.) Comments:

Not applicable.

ii. If above PQL, what samples are affected?

Comments:

Not applicable.

iii. Data quality or usability affected? (Please explain.)

Comments:

Not applicabl	e.			
 Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate? 				
∎Yes	No	NA (Please explain.)	Comments:	
Yes.				

Laboratory Data Review Checklist

Completed by:	Sean Benjamin
Title:	Chemist Date: 12/06/2011
CS Report Name:	Eklutna FUDS Report Date: 10/22/2011
Consultant Firm:	US Army Corps of Engineers
Laboratory Name	: SGS Laboratory Report Number: 1114876
ADEC File Num	Der: ADEC RecKey Number:
Yes, SG for all an b. If the labora	samples were transferred to another "network" laboratory or sub-contracted to an alternate tory, was the laboratory performing the analyses ADEC CS approved?
	Yes □ No ■NA (Please explain.) Comments: ples were transferred.
a. COC i	nformation completed, signed, and dated (including released/received by)?Yes \Box No \Box No \Box NA (Please explain.)Comments:
	et analyses requested? A (Please explain.) Comments:
3. <u>Laboratory Sa</u> a. Sampl	umple Receipt Documentatione/cooler temperature documented and within range at receipt $(4^\circ \pm 2^\circ C)$?Yes \blacksquare No \Box NA (Please explain.)Comments:mples were hand delivered in one cooler. The temperature blank temperature was 10.0 ° C.
b. Sampl Volati	e preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, le Chlorinated Solvents, etc.)? Yes □ No ■NA (Please explain.) Comments:

No preservation except for cooling was needed for the analyses requested.

c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? ■Yes □ No □NA (Please explain.) Comments:

There were no discrepancies noted.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

•Yes \Box No \Box NA (Please explain.)

The COC and the sample receipt form had the incoming sample temperature written on it.

e. Data quality or usability affected? (Please explain.)

Comments:

Comments:

Comments:

Samples were kept in a cooler with 8 ice packs overnight from the day of collection. The next day, the samples were inspected and it was noticed that the temperature blank was not included with the samples. As no temperature blank was in the refrigerator, a new one had to be made up. The temperature blank only had about an hour to cool before being delivered to the laboratory. As the DRO is a semi-volatile, the time between sample collection and delivery was minimal for outgassing to occur. Data usability is not affected.

4. <u>Case Narrative</u>

- a. Present and understandable?
 - •Yes \Box No \Box NA (Please explain.)

Yes.

b. Discrepancies, errors or QC failures identified by the lab?
■Yes □ No □NA (Please explain.) Comments:

Surrogate recovery errors in the LCS and method blanks were listed here.

c. Were all corrective actions documented? ■Yes □ No □NA (Please explain.)

No corrective actions needed because sample surrogate recoveries were within parameters.

d. What is the effect on data quality/usability according to the case narrative?

Comments:

Comments:

All data is usable as flagged.

5. Samples Results

a. Correct analyses performed/reported as requested on COC?

•Yes \Box No \Box NA (Please explain.) Comments:

Yes.

b. All applicable holding \blacksquare Yes \Box No \Box NA		Comments:
Yes.		
c. All soils reported on a ■Yes □ No □NA		Comments:
Yes.		
d. Are the reported PQLs project?	less than the Cleanup Lev	vel or the minimum required detection level for the
Yes, all samples were or	n a RUSH basis.	
■Yes □ No □NA	A (Please explain.)	Comments:
e. Data quality or usability	y affected?	
		Comments:
All data is usable.		
i. One method bla ■Yes □ No □NA Yes.	nk reported per matrix, a A (Please explain.)	nalysis and 20 samples? Comments:
Tes.		
ii. All method blar • Yes \Box No \Box NA	hk results less than PQL? A (Please explain.)	Comments:
Yes.		
iii. If above PQL, v	what samples are affected	? Comments:
N/A		
iv. Do the affected □Yes □ No ■NA		s and if so, are the data flags clearly defined? Comments:
No samples were blank c	ontaminated.	
v. Data quality or	usability affected? (Pleas	se explain.) Comments:
Data is usable.		
L		

6.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

- i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
- •Yes \Box No \Box NA (Please explain.) Comments:

Yes.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

 \Box Yes \Box No \blacksquare NA (Please explain.) Comments:

None of these analyses were requested.

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
■Yes □ No □NA (Please explain.) Comments:

Yes.

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
- Yes \Box No \Box NA (Please explain.) Comments:

Yes, all RPDs were less than 20%.

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

N/A - there are no affected samples.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? \Box Yes \Box No \blacksquare NA (Please explain.) Comments:

N/A - there are no affected samples.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

N/A, all LCS/LCSDs were within acceptance criteria.

- c. Surrogates Organics Only
 - i. Are surrogate recoveries reported for organic analyses field, QC and laboratory samples?
 ■Yes □ No □NA (Please explain.)
 Comments:

Yes. All surrogates and MS/MSDs were within acceptable criteria.

- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
- •Yes \Box No \Box NA (Please explain.)

Comments:

All surrogate and MS/MSD recoveries were within acceptable criteria for customer samples. Surrogate recoveries for one each of: method blank, LCS, and LCSD failed.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

 \Box Yes \Box No \blacksquare NA (Please explain.) Comments:

No sample results failed.

iv. Data quality or usability affected? (Use the comment box to explain.)

Comments:

Data is usable.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
 - \Box Yes \Box No \blacksquare NA (Please explain.) Comments:

No volatile analyses were requested, trip blank not necessary.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below) \Box Yes \blacksquare No \Box NA (Please explain.) Comments:

Only one cooler was used to transport all of the samples to the laboratory.

iii. All results less than PQL? \Box Yes \Box No \blacksquare NA (Please explain.)

Comments:

N/A – no trip blank necessary.

iv. If above PQL, what samples are affected?

Comments:

N/A

v. Data quality or usability affected? (Please explain.)

Comments:

Version 2.7

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

•Yes \Box No \Box NA (Please explain.) Comments:

Yes. There were 53 primary samples and 6 duplicates. Sample -20J is a duplicate of sample -20B. Sample -21J is a duplicate of sample -21C. Sample -22J is a duplicate of sample -22D. Sample - 23J is a duplicate of sample -23E. Sample -24J is a duplicate of sample -24F. Sample -25J is a duplicate of sample -25C.

ii. Submitted blind to lab? ■Yes □ No □NA (Please explain.)

Yes.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: (R_1-R_2) _____ x 100

 $((R_1+R_2)/2)$

- Where $R_1 =$ Sample Concentration
- ■Yes \square No \square NA (Please explain.)

Comments:

Comments:

Yes.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Data is usable.

f. Decontamination or Equipment Blank (If not used explain why).

 \Box Yes \Box No \blacksquare NA (Please explain.) Comments:

Disposable equipment was used for sampling.

i. All results less than PQL?

 \Box Yes \Box No \blacksquare NA (Please explain.) Comments:

Not applicable.

ii. If above PQL, what samples are affected?

Comments:

Not applicable.

iii. Data quality or usability affected? (Please explain.)

Comments:

Not applicable.	
 Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, a. Defined and appropriate? 	<u>, etc.)</u>
•Yes \Box No \Box NA (Please explain.)	Comments:
Yes.	

Laboratory Data Review Checklist

Completed by:	Sean Benjamin
1 2	
Title:	Chemist Date: 12/06/2011
CS Report Name:	Eklutna FUDSReport Date:11/14/2011
Consultant Firm:	US Army Corps of Engineers
Laboratory Name	: SGS Laboratory Report Number: 1115182
ADEC File Numb	Der: ADEC RecKey Number:
•}	ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Ves No NA (Please explain.) Comments: S of Anchorage, Alaska received all samples. This lab is ADEC and DoD ELAP certified
b. If the s labora	samples were transferred to another "network" laboratory or sub-contracted to an alternate tory, was the laboratory performing the analyses ADEC CS approved? Yes No ■NA (Please explain.) Comments:
No samp	bles were transferred.
•Y	ody (COC) nformation completed, signed, and dated (including released/received by)? Yes No NA (Please explain.) Comments:
Yes.	
	et analyses requested? Ves No NA (Please explain.) Comments:
Yes.	
a. Sampl	umple Receipt Documentatione/cooler temperature documented and within range at receipt $(4^\circ \pm 2^\circ C)$?VesNoNA (Please explain.)Comments:
Yes. Sar	nples were hand delivered in one cooler. The temperature blank temperature was 5.2 ° C.
Volati	e preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, le Chlorinated Solvents, etc.)? Yes No NA (Please explain.) Comments:

No preservation except for cooling was needed for the analyses requested.

c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? ∎Yes NA (Please explain.) Comments: No

There were no discrepancies noted.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?

Yes No ■NA (Please explain.) Comments[.]

Two sample jars were labeled with the same ID number. The lab was instructed to use the number on the lid of the jar. One of these samples did not match the chain of custody.

e. Data quality or usability affected? (Please explain.)

Comments.

Comments:

Comments:

Data quality is not affected as another means if identification was available.

4. Case Narrative

- a. Present and understandable?
 - NA (Please explain.) ■Yes No

Yes.

b. Discrepancies, errors or QC failures identified by the lab? No ■NA (Please explain.) Yes

There were no QC failures with this batch of samples.

c. Were all corrective actions documented? Yes No ■NA (Please explain.)

No corrective actions needed to be initiated.

d. What is the effect on data quality/usability according to the case narrative? Comments:

All data is usable as flagged.

5. Samples Results

- a. Correct analyses performed/reported as requested on COC?
 - NA (Please explain.) ■Yes No

Yes.

b. All applicable holding times met?

Yes, all samples met holding times.

Comments:

Comments:

	∎Yes	No	NA (Please explain.)	Comments:
c.	-	-	on a dry weight basis?	Commonto
	∎Yes	No	NA (Please explain.)	Comments:
Y	es.			
d.	Are the rep project?	orted P	QLs less than the Cleanup Lev	el or the minimum required detection level for
	∎Yes	No	NA (Please explain.)	Comments:
Y	es.			
·				
e.	Data qualit	y or usa	ability affected?	Comments:
	11 1 / *	1.1		
A	All data is us	able.		
	∎Yes	No	d blank reported per matrix, an NA (Please explain.)	alysis and 20 samples? Comments:
Y	■Yes Zes.	No		
	■Yes Zes.	No method	NA (Please explain.)	Comments:
	■Yes Zes. ii. All ■Yes Zes.	No method No	NA (Please explain.)	Comments: Comments:
Y	■Yes Zes. ii. All ■Yes Zes.	No method No	NA (Please explain.) d blank results less than PQL? NA (Please explain.)	Comments: Comments:
Y	■Yes Zes. ii. All ■Yes Zes. iii. If all V/A	No method No bove PO	NA (Please explain.) d blank results less than PQL? NA (Please explain.) QL, what samples are affected? ected sample(s) have data flags	Comments: Comments:
Y	■Yes Zes. ii. All ■Yes Zes. iii. If al J/A iv. Do Yes	No method No bove Po the affe	NA (Please explain.) d blank results less than PQL? NA (Please explain.) QL, what samples are affected? ected sample(s) have data flags	Comments: Comments: Comments: and if so, are the data flags clearly defined?
Y	■Yes Zes. ii. All ■Yes Zes. iii. If al J/A iv. Do Yes No samples v	No method No bove Po the affe No were bla	NA (Please explain.) I blank results less than PQL? NA (Please explain.) QL, what samples are affected? ected sample(s) have data flags ■NA (Please explain.)	Comments: Comments: Comments: and if so, are the data flags clearly defined? Comments:

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

- i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
- ■Yes No NA (Please explain.) Comments:

Yes.

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes No ■NA (Please explain.) Comments:

None of these analyses were requested.

 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
 Yes No NA (Please explain.) Comments:

Yes.

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
- ■Yes No NA (Please explain.) Comments:

Yes, all RPDs were less than 20%.

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

N/A - there are no affected samples.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No ■NA (Please explain.) Comments:

N/A - there are no affected samples.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

N/A, all LCS/LCSDs were within acceptance criteria.

c. Surrogates – Organics Only

i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples? ■Yes No NA (Please explain.) Comments:

Yes. All surrogates and MS/MSDs were within acceptable criteria.

 Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)

■Yes No NA (Please explain.) Comments:

All surrogate and MS/MSD recoveries were within acceptable criteria.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

Yes No ■NA (Please explain.) Comments:

No sample results failed.

iv. Data quality or usability affected? (Use the comment box to explain.)

Comments:

Data is usable.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
 - Yes No ■NA (Please explain.) Comments:

No volatile analyses were requested, trip blank not necessary.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
 Yes ■ No NA (Please explain.) Comments:

Only one cooler was used to transport all of the samples to the laboratory.

iii. All results less than PQL?Yes No ■NA (Please explain.)C

Comments:

N/A – no trip blank necessary.

iv. If above PQL, what samples are affected?

Comments:

N/A

v. Data quality or usability affected? (Please explain.)

Comments:

N/A

e. Field Duplicate

- i. One field duplicate submitted per matrix, analysis and 10 project samples?
- ■Yes No NA (Please explain.)

Yes. There were 64 primary samples and 8 duplicates. Sample -33J is a duplicate of sample -33E. Sample -34J is a duplicate of sample -34A. Sample -36J is a duplicate of sample -36B. Sample - 37J is a duplicate of sample -37A. Sample -38J is a duplicate of sample -38D. Sample -39J is a duplicate of sample -39F. Sample -40J is a duplicate of sample -40E. Sample -42J is a duplicate of sample -42C. Sample -43J is a duplicate of sample -43E. The extra duplicate here makes up for the one short in lab report #1115183.

Comments.

Comments:

ii. Submitted blind to lab?

■Yes No NA (Please explain.)

Yes.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: (R_1-R_2) ______ x 100

$$((R_1+R_2)/2)$$

Where R_1 = Sample Concentration

 $R_2 =$ Field Duplicate Concentration

Yes ■ No NA (Please explain.) Comments:

No. Duplicate pair -37A and -37J had an incalculable RPD because a low detection was found in one of the pairs while the other was non-detect.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Data is usable because the results are well below screening criteria.

f. Decontamination or Equipment Blank (If not used explain why).

Yes No ■NA (Please explain.) Comments:

Disposable equipment was used for sampling.

i. All results less than PQL?

Yes No ■NA (Please explain.) Comments:

Not applicable.

ii. If above PQL, what samples are affected?

Comments:

iii. Data quality or usability affected? (Please explain.)

Comments:

Comments:

Not applicable.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

■Yes No NA (Please explain.)

Yes.

Laboratory Data Review Checklist

Completed by:	Sean Benjamin
Title:	Chemist Date: 12/06/2011
CS Report Name:	
Consultant Firm:	US Army Corps of Engineers
Laboratory Name	: SGS Laboratory Report Number: 1115183
ADEC File Numb	Der: ADEC RecKey Number:
■Y Yes, SG for all an b. If the s labora	ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes No NA (Please explain.) Comments: S of Anchorage, Alaska received all samples. This lab is ADEC and DoD ELAP certified alyses. samples were transferred to another "network" laboratory or sub-contracted to an alternate tory, was the laboratory performing the analyses ADEC CS approved? Yes No NA (Please explain.) Comments:
	bles were transferred.
	ody (COC) nformation completed, signed, and dated (including released/received by)? Yes No NA (Please explain.) Comments:
	et analyses requested? Yes No NA (Please explain.) Comments:
3. <u>Laboratory Sa</u> a. Sampl ■Y	$\frac{\text{Imple Receipt Documentation}}{\text{e/cooler temperature documented and within range at receipt (4° ± 2° C)?}$ $\frac{\text{Ves No NA (Please explain.)}}{\text{Comments:}}$
b. Sampl Volati	e preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, le Chlorinated Solvents, etc.)? Yes No ■NA (Please explain.) Comments:

No preservation except for cooling was needed for the analyses requested.

c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? ∎Yes NA (Please explain.) Comments: No There were no discrepancies noted. d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.? Yes No ■NA (Please explain.) Comments[.] There were no discrepancies noted. e. Data quality or usability affected? (Please explain.) Comments: Data quality is not affected. 4. Case Narrative a. Present and understandable? ∎Yes NA (Please explain.) No Comments: Yes. b. Discrepancies, errors or QC failures identified by the lab? No ■NA (Please explain.) Comments: Yes There were no QC failures with this batch of samples. c. Were all corrective actions documented? No ■NA (Please explain.) Yes Comments: No corrective actions needed to be initiated. d. What is the effect on data quality/usability according to the case narrative? Comments: All data is usable as flagged. 5. Samples Results a. Correct analyses performed/reported as requested on COC? NA (Please explain.) ■Yes No Comments: Yes. b. All applicable holding times met? ∎Yes No NA (Please explain.) Comments: Yes, all samples met holding times.

	∎Yes	No	NA (Please explain.)	Comments:	
Y	es.				
d.	Are the rep project?	orted P	QLs less than the Cleanup	Level or the minimum required detection level	fc
	∎Yes	No	NA (Please explain.)	Comments:	
Y	es.				
e.	Data qualit	y or usa	bility affected?		
				Comments:	
A	All data is us	able.			
	mples				
a.	Method Bla i. One		d blank reported per matrix	x, analysis and 20 samples?	
	∎Yes	No	NA (Please explain.)	Comments:	
Y	es.				
	ii Λ 11	41 1	11 1 1/1 / DO		
			blank results less than PQ	-	
	∎Yes	No	NA (Please explain.)	Comments:	
Y				-	
Y	∎Yes Zes.	No		Comments:	
Y	∎Yes Zes.	No	NA (Please explain.)	Comments:	
_	∎Yes Zes.	No	NA (Please explain.)	Comments: ted?	
	■Yes Zes. iii. If al	No bove PC	NA (Please explain.) (L, what samples are affec	Comments: ted?	
N	■Yes Zes. iii. If al J/A iv. Do Yes	No bove PC the affe No	NA (Please explain.) (L, what samples are affection) (cted sample(s) have data f	Comments: ted? Comments: lags and if so, are the data flags clearly defined	.?
N	■Yes Zes. iii. If al J/A iv. Do Yes No samples v	No bove PC the affe No were bla	NA (Please explain.) QL, what samples are affect cted sample(s) have data f NA (Please explain.)	Comments: ted? Comments: lags and if so, are the data flags clearly defined Comments:	.?
	■Yes Zes. iii. If al J/A iv. Do Yes No samples v	No bove PC the affe No vere bla a qualit	NA (Please explain.) QL, what samples are affect cted sample(s) have data f NA (Please explain.) nk contaminated.	Comments: ted? Comments: lags and if so, are the data flags clearly defined Comments: lease explain.)	.?
N	■Yes Zes. iii. If al V/A iv. Do Yes No samples v v. Dat Data is usable	No bove PC the affe No vere bla a qualit e.	NA (Please explain.) QL, what samples are affect cted sample(s) have data f NA (Please explain.) nk contaminated.	Comments: ted? Comments: lags and if so, are the data flags clearly defined Comments: lease explain.) Comments:	.?
	■Yes Zes. iii. If al V/A iv. Do Yes No samples v v. Dat Data is usable Laboratory	No bove PC the affe No vere bla a qualit e. Contro	NA (Please explain.) QL, what samples are affected cted sample(s) have data f NA (Please explain.) nk contaminated. y or usability affected? (P I Sample/Duplicate (LCS/I	Comments: ted? Comments: lags and if so, are the data flags clearly defined Comments: lease explain.) Comments:	

Yes.

6.

- ii. Metals/Inorganics one LCS and one sample duplicate reported per matrix, analysis and 20 samples?
 - Yes No ■NA (Please explain.) Comments:

None of these analyses were requested.

 iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)
 Yes No NA (Please explain.) Comments:

Yes.

- iv. Precision All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)
- ■Yes No NA (Please explain.) Comments:

Yes, all RPDs were less than 20%.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments:

N/A - there are no affected samples.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No ■NA (Please explain.) Comments:

N/A - there are no affected samples.

vii. Data quality or usability affected? (Use comment box to explain.) Comments:

N/A, all LCS/LCSDs were within acceptance criteria.

c. Surrogates – Organics Only

i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples? Yes No NA (Please explain.) Comments:

Yes. All surrogates and MS/MSDs were within acceptable criteria.

- ii. Accuracy All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages)
- ■Yes No NA (Please explain.) Comments:

All surrogate and MS/MSD recoveries were within acceptable criteria.

iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?

Yes No ■NA (Please explain.) Comments:

No sample results failed.

iv. Data quality or usability affected? (Use the comment box to explain.) Comments:

Data is usable.

- d. Trip blank Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): <u>Water and</u> <u>Soil</u>
 - i. One trip blank reported per matrix, analysis and for each cooler containing volatile samples? (If not, enter explanation below.)
 - Yes No ■NA (Please explain.) Comments:

No volatile analyses were requested, trip blank not necessary.

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)
 Yes ■ No NA (Please explain.) Comments:

Only one cooler was used to transport all of the samples to the laboratory.

iii. All results less than PQL? Yes No ■NA (Please explain.) Comments:

N/A – no trip blank necessary.

iv. If above PQL, what samples are affected?

Comments:

N/A

v. Data quality or usability affected? (Please explain.)

Comments:

N/A

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples? NA (Please explain.) Yes ∎No Comments.

No. There were 66 primary samples and 6 duplicates. Sample -26J is a duplicate of sample -26A. Sample -27J is a duplicate of sample -27B. Sample -28J is a duplicate of sample -28C. Sample -29J is a duplicate of sample -29D. Sample -30J is a duplicate of sample -30C. Sample -43J is a duplicate of sample -43E. However, there were two coolers brought in at the same time. The two coolers contained 130 primary samples and 14 duplicates. The laboratory split the coolers into two batches because there were over 80 samples (the limit of the lab glassware). The other batch has 8 duplicates, which makes up for the 6 here.

ii. Submitted blind to lab?

■Yes No NA (Please explain.)

Yes.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $(R_1 - R_2)$ - x 100 $((R_1+R_2)/2)$

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration ■Yes No

NA (Please explain.) Comments:

Yes.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Comments:

Data is usable because of the total number of duplicates brought in.

f. Decontamination or Equipment Blank (If not used explain why).

Yes No ■NA (Please explain.) Comments:

Disposable equipment was used for sampling.

i. All results less than PQL?

Yes No ■NA (Please explain.) Comments:

Not applicable.

ii. If above PQL, what samples are affected?

Comments:

iii. Data quality or usability affected? (Please explain.)

Comments:

Comments:

Not applicable.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Defined and appropriate?

■Yes No NA (Please explain.)

Yes.

APPENDIX H Review Comment Log

		PROJECT: Eklutna A DOCUMENT: Site Inv	•	•	une 2012	
U.S. A	RMY CORPS	DATE: 7/31/2012	Action take	en on comment by:		
OF EN	IGINEERS	REVIEWER: Deb Caillouet				
CEPO	A-EN-EE-TE	PHONE: (907) 269-0298				
Item	Drawing	COMMENTS		REVIEW	CONTRACTOR RESPONSE	USAED
No.	Sheet No.,			CONFERENCE		RESPONSE
	Spec. Para.			A - comment accepted		ACCEPTANCE
				W - comment		(A-AGREE)
				withdrawn		(D-DISAGREE)
				(if neither, explain)		· · · · · · · · · · · · · · · · · · ·

1	Please provide an explanation of how the samples for SDG 1114876 were managed from collection on October 4,2011 until they were received above temperature at the laboratory on the afternoon of October 5, 2011.	A	The samples were kept in a cooler with 8 ice packs overnight on the 4th. On the 5th, the samples were inspected. Upon inspection, it was noticed that a temperature blank was not in with the samples. The ice packs were still frozen. A new temperature blank had to be made, as there were none in the refrigerator. The temperature blank only had about an hour to cool in the cooler before being transported to the laboratory.	
			The CDQR and ADEC check sheet have been updated to document the sample management.	

APPENDIX I Personnel Qualifications

QUALIFIED PERSONNEL

- The personnel listed below are "qualified" as defined in 18 AAC 78 and 18 AAC 75. A "qualified person" is a person who actively practices environmental science or engineering, geology, physical science, hydrology, or a related field and meets the following minimum requirements:
- A bachelor's degree or equivalent from an accredited postsecondary institution in environmental science or engineering, geology, hydrology, physical science, or a related field; "equivalent" means that the person earned at least 128 semester hours, 168 trimester hours, or 192 quarter hours, at an accredited postsecondary institution, of which at least 24 semester credits (or at least 18 percent of credits) were in the science major and at least 16 semester credits (or at least 13 percent of credits) were in upper division level courses; and (B) at least one year of professional experience in environmental science or engineering, geology, physical science, or a related field, completed after the degree described in (A) was obtained.

The list below includes names of qualified personnel who were involved in collecting, interpreting, and reporting the 2011 Eklutna Site Investigation data:

Scott D. Kendall

Environmental Engineering Supervisor

Area of Expertise

Area of Expertise	
-	Mr. Kendall has worked in the Environmental Remediation
Environmental Engineer	field since 1991. He reviewed, supervised and managed Army,
6	Air Force and FUDS projects from conception to completion.
Quality Assurance /Quality Control	His field of expertise encompasses Preliminary Assessments/
	Site Inspections (PA/SI), Remedial Investigations/Feasibility
Site Investigation	Studies (RI/FS), Proposed Plan/Decision Documents (PP/DD),
Site investigation	Remedial Designs (RD), Remedial Actions, and Project
	Closeout (PCO). His duties extends to developing scopes of
Site Remediation	work and independent government cost estimates; and
Site Remodulition	evaluating contractor proposals to ensure project scope and
	required federal and state regulations are met. Mr. Kendall has
	worked as supervisor; project manager and project engineer on
	many DoD contaminated site programs and is familiar with the
	standards and procedures for compliance with the federal and
	state agencies.

Education

M.S., 1990, Geological Engineering, University of Idaho, Moscow, ID B.S., 1988, Geology, Campbell University, Buies Creek, NC

Years of experience (19)

UVOST Program Lead

Area of Expertise

Mr. Folcik has over 8 years of Environmental Engineering
experience, including 6 years experience as a ROST/UVOST
operator. His expertise encompasses site investigations, site
remediation, cost estimating, and project management. Mr.
Folcik has worked as project manager or lead technical
engineer on many DoD contaminated sites and is familiar with
the standards and procedures for compliance with the federal
and state agencies. Mr. Folcik is a Dakota Technologies Inc.
certified UVOST operator.

Education

B.S., 2002, Chemical Engineering, Michigan Technological University, Houghton, MI

Years of experience (8)

William F. Mangano

UVOST Investigation Field Officer

Area of Expertise

Civil Engineer

Site Investigation

Site Remediation

Mr. Mangano has over 2 years of Environmental Engineering experience, including work in environmental remediation projects. His expertise encompasses site investigation, groundwater monitoring, and remedial technology selecting and implementation. Mr. Mangano specializes currently serves as the project engineer for several Formerly Used Defense Sites (FUDS) projects and is familiar with the standards and procedures for compliance with the federal and state agencies.

Education

B.S., 2008, Civil Engineering, University of Alaska Fairbanks, Fairbanks, AK

Years of experience (2)

Project Chemist

Area of Expertise

	Mr. Sweet has over 5 years of Environmental Quality and
Materials/Environmental Chemist	Chemical Laboratory experience. His expertise encompasses
	environmental quality, groundwater chemistry, site
Quality Assurance /Quality Control	investigation, and chemical laboratory methods and
	qualifications. Mr. Sweet has worked as chemist in many DoD
Site Investigation	contaminated site programs and is familiar with the standards
	and procedures for compliance with the federal and state
	agencies.

Education

B.S., 2003, Natural Sciences, University of Alaska

Years of experience (6)

Sean P. Benjamin

Project Chemist

Area of Expertise

	Mr. Benjamin has over 7 years of Environmental Quality and 7
Materials/Environmental Chemist	years of Chemical Laboratory experience. His expertise
	encompasses environmental quality, groundwater chemistry,
Quality Assurance /Quality Control	UST removal, and expert on chemical laboratory methods and
	qualifications. Mr. Benjamin has worked as chemist in many
Site Investigation	DoD contaminated site programs and is familiar with the
	standards and procedures for compliance with the federal and
	state agencies.

. .

Education

M.S., 2007, Materials Engineering, Northeastern University, Boston, MA B.S.E.T., 2003, Northeastern University, Boston, MA A.E., 2003, Northeastern University, Boston, MA B.S., 2000, Chemistry, Minor in Mathematics, Salem State College, Salem, MA A.A.S., 1996, Environmental Technology, Paul Smith's College, Paul Smiths, NY A.A.S., 1995, Pre-Professional Forestry, Paul Smith's College, Paul Smiths, NY

. .

Years of experience (14)