Banner, D. $+A .1973$

THE ALPHEID SHRIMP OF AUSTRALIA

Part I: The Lower Genera

by
DORA M. and ALBERT H. BANNER

RECORDS OF THE AUSTRALIAN MUSEUM Vol. 28, No. 15. Pages 291-382.
 Figures 1-19.

SYDNEY
5 JULY, 1973
Price, $\$_{4}$

Printed by Order of the Trustees

THE ALPHEID SHRIMP OF AUSTRALIA

Part I: The Lower Genera

Ry Hora M. and Alpikt II. Bannigr

$$
2
$$

Hawaii Institue of Marine Biology, University of Hawaii, Honolulu

This study is dedicated to the memovy of our som, Alan Comrad Bamer, weho, rehile serving in the Linted Slates Peace Corps, was killed in a shark allack at Aliefala, Western Samoa, on 15 th Aprit, 1972 . At the age of 25 , Alan acas training to become a marine biologist as he wished to contribute to the development of the protential tropical marine fisheries to aid the island peoples of the Pacific.

SUMMARY

This is the first section of a three-part monograph on the alpheid shrimp of Australia. The study is based upon a collection of 5,000 to 6,000 specimens, in part on loan from varions institutions and individuals and in part collected by the authors. For cach species recognitional characteristics are described and depicted, notes are given on taxonomy, variation, and biology, and the Australian and world distribution is listed. The present paper deals with lower genera; the future two papers will deal with Smalphezs and A lpheus respectively.

This paper discusses the following genera and species, those species marked with an asterisk being cither new species or new records for the Austratian continent:

* Automate dolichognatha De Man
* Athanas areleformis Coutière

Ahanas dibioutensis Coutière

Rec. Ausi. Mus., 28, page 29 .
45712-A
*Athanas japonicus Kubo

* Athanas locincertus sp. nov.
* Athanas dimorphus Orimann

Athanas haswelli Coutière
Athanas granti Coutière

* Athanas omithorhynchus sp. now.
* Athanas sibogae De Man
*Athanas dorsalis (Stimpson)
Athanas indicus Coutière
* Arelopsis anabilis De Man
*Salmoneas tricristalus Banner
Alpheopsis trispinusus (Stimpson) [neotype established]
*Alpheopsis undicola sp. nov.
* Alpheopsis equalis Coutière
*Alpheopsis yaldremi sp. nov.
Betaeus australis Stimpson Lnootype established
* Racilius compressus Paulson

In addition to these reconds of new species and neotypes, we have placed the following species in synonymy:

Automate gardineri Coulicte $=1$, dolichosnather de Man)
Athanas setoensis Kubo ($=$ A. dimorphus Otmam)
Athanas dimorphus seedurg ($=$ A. dimovphus Ortmame)
Aretopsis aggyptioa Ramoden $=$ A. ammalilis de Mani
We have accepted A. siboget as the proper name for . I fomens, based on page: priority (see Banner and Banner, 1gfis, and Miya and Miyake, 1 gi8).

CONTENTS

Page
Introduction 294
Adequacy of Sampling 294
General Notes on Alpheid Shrimp 295
General Distribution and Ecology 296
Support and Acknowledgements 297
The Family Alpheidae $29{ }^{\prime}$
Key to the Genera $296^{\prime \prime}$
The Genus Automate 299
A. dolichognatha De Man 299
The Genus Athanas 303
Key to the Species 303
A. areteformis Coutière 304
A. djiboutensis Coutière 301
A. japonicus Kubo 308
A. locincertus sp. nov. 3^{11}
A. dimorphus Ortmann 35
A. haswelli Coulière 316
A. granti Coutic̀re 3^{16}
A. omithorhynchus sp. nos. 319
A. sibogae De Man 321

1. darsalis (Stimpson) 321
A. indicus (Coutière) 327
The Genus Aretopsis 33°
A. amabilis De Man $33^{\prime \prime}$
The Gemus Salmoneus 334
S. tricristalus Banner 334
The Genus Alpheopsis 33^{6}
Key wo the Species 337
A. Trispinustes (Stimpson) [ncotype established] 337
A. madictla sp. nov. 34^{11}
A. equalis Comièr 342
A. yalderwi sp. nov. 34
The (remus beluens 347
B. mestratis Stimpson [mootype cstablished] 347
The Gemus Rachins 35°
R. compreswes laulson 355°
Appendix-Locality Lists for the Alpheid collection 35:

INTRODUCTION

 the bibliogaphy for the emite study and a discosson of bumalian distribution of all the species with resere to Austratian famal provinces.
 combming stuty of comal ref biota in the toppeal londo-bexibe in which we will

 simple speetes list with focalities and deseriptions of wer speries wond have bere aderpate; however, for later workes me have provided keys deseriptions, ilhestations. atol tefernces os all impontant deseripetive work on the species as well as all

Adequacy of Sampling

 Austatia in the: literature; this work will jucrease the mumber to about 100 dhas
 Ona study collection was primarily on lean lion rach al the Austalian muscums. We also received specimens fiom many of the wiversitics and from individuals (see Achozledgements below). These colleotions we wow able to supplement by personal collections made in Austadia during thee months in $196-68$. [he total collections available amounted to between 5,000 and 6,000 individual sjocimens.

Our collections have come from every State in Australia, as well as Lord Howe Island and Norfolk Island. We have not included any records from Now Zeatand or New Gumea, athough some of the musem collections include specimens from those localities.

As large as is this total, we have no hope that we have seen every species occuming of the coasts of the sub-continent, or that we have been able to delimit the extent of distribution for any species. The degree that these collections will represent the alpheid fauna will vary with region, for as any Australian worker knows the fanna of the Grcat Barrier Reef is more thoroughly sampled than that on reeli of the Northen 'lemitory and the northern part of Western Australia. We also had but few samples from the Great Australian Bight, but whether that was solely because of the infrequency of collecting there, or whether the infrequency of collection was combined with an expected paucity of shrimp, we do not know.

In all, we hope that we have almost all of those species that oceur momath in the usmaty exammed habitats. We would hatame from the basis of on previone

 listing mow ahanstive.

General Notes on Alpheid Shrimp

 carcful exmanation buter the microseope. the tho higher gencea spalthens and Atphens almost ahwass can be recognized by the excessive size and asymetical
 of this chela carries a romeded phonger that can be thrust into a socket at the base of the fixed finger; the viokent chosure of the che ta produces a loud shapping, clearts andible under water and even when the hearer is out of water and walking across a tide flat. The mechanism of this sound production has been somewhat controversial (see Knowhon and Moulton, 1963) but Bewers, 1970 , believes the primar? production of sound is the actual mecting of the tips of the fingers, while the adtesive plapus on the opposing surfaces of the superior sufface of the dactylas and and of propodus are a suction device to increase muscular tension, and the phomer-socke is for the propulsion of a forceful jet of water. Both of the higher genera, and. W: a lesser degres, the fower genera, have shore staked compound cyes covered be a forward extension of their carapace; this chatacteristic, however, is of litale use in the fiedd, for in life the extension is thangatent and the eges ate fidly visible. The species are usually small in size, seldom exceeding 20 to $3^{0} 1 \mathrm{~mm}$ in longth; man! are only 5 mm long when mature.

Sexual dimophism or even polynorphism is found in the family. Amose all of the species in the various gencta of the family show the development of some secondary sexual chatacteristios, the most consistent of which is the presence on the males of two iobes (the appendix intema and the appendix mascutina) on the medta! sideon the condopod of the second pleopods, in eontrast to the appendix imeme alone in the females. Other sexually dimorphic traits may lee the plewa of the abdomen. the size of the aldomen itself, and the form of the large chela; the dimorphism is so pronomed that Couticre, the leading worker on the group in the carly 1 goos. described a male and a female of the same species as two sejarate species in separate: sulgeneric groups of A/pheus.

However, Suzuki (1970) studicd carefully four species of the genus Athanas, especially A. kominatoensis Kubo, and found the species to show protandrous consecutive hermaphroditism. He found the youngest sexually mature forms to be functional males, those of intermediate sizes to be functional females, and the largest sizes again to be functional males; histological studies of the paired gonads showed that at all times both testicular and ovarian tissue could be found. With this partial alternation of sex there was confusion of characteristics previously thought to be dimorphic with the sex, especially in the form of the large chela and even in the appendix masculina, with some ovigerous females bearing the supposedly unique male structure.

Suzuki's work was confined to four species of Athanas, but his conclusions probably can be extended to other species, and possibly to other gencra, cxplaining problems that have long perplexed the workers on the group. Thus, our questions
about the forms of the chelac in our review of the genus Athanas (ig60a) as well ar Kemp's (1915) concern about the multiple forms of his species, A. polymorphus, can probably be answered by Suzuki's studics. Miyake \& Miya (1967) have reported that an ovigerous Aretopsis amabilis De Man from the Ryukyu Islands had the appendin masculina developed, so this species, too, may undergo a similar change in sex. Finally, as discussed in this paper, the sex of the members of Automate cannot l_{x} distinguished by external characters unless they are ovigerous, and this also mat: be the reflection of physiological changes in the sex of the individuals. To date. there is no evidence of sexual ambiguity in the higher genera.

Finally, some species are remarkably constant in their development, so that even such a minor characteristic as the angle of the margins of a groove on the large chela is constant amongst specimens collected as far apart as Hawaii, the Red Sea, and Australia. However, others, as those collected from the spongococl of a singlesponge or single living head of coral, exhibit wide variation in most parts considered to be of taxonomic value.

General Distribution and Ecology

The alpheids are chatacteristically associated with the complex of tropical coral reefs, from the inshore beaches across the growing reefs to the offshore muddy bottoms. 'There appears to be a greater penetration of the family into temperate waters in Australia than in the Northern Hemisphere. The members of the family may penetrate through brackish estuaries into fresh waters. The two cavernicolou species of Metabetans, known only from islands of the Central Pacific, appear in isolated bataish water pools which are largely fresh at time of high rainfall. Two species of Alpheopsis have bern reported from fresh water in Western Africa. Alphem: heterochaelis say is reported liom fiesh water in lakes of southern Jlorida (Kingsler. 1878; Hendrix, 1971). Johnon (1965: 9) has reported Alpheas paludicola Kemp: (as A. paludosus) in "fresh waw above the limit of tidal influence in the Sedili basin of South Johore" in Malaya. Probably the highest penctration through an estuary into fresh water in this region is that of $A / p h e u s$ merorhynchus De Man in the Chaophya River system io at least the canals ("klongs") of Bangkok, Thailand, 15 miles from the river mouth and certainly completely fresh water during the rainy season; is was reported there by De Man 1898: 3 r8) and Banner and Banner (1966b: 133. In Australia we have records of the genus A/phens reaching up various rivers, for example up the Swan River to Perth, in Western Australia, and rivers in New South Wales and Quecnsland, but these are exidenty brackish waters. While the habitate are undoubtedly washed with fresh water at time of heavy rain, we have no recoth of further penetration by apheids into stricoly fiesh water in Austrabia.

In the roral reef complex, however, they wach their maximal developmen. and there they probably are the most common family of the decapod crustaccanboth in number of species and in momber of individuals. A few species live in the open in their habitats, as in tide pools, or free in agat mats. However, most specieate eryptie, living hiden whe sumece A few sjecies live between the fronk of lising comal: one prede makes fismes on the sutace of living heads. Some

 the degre of momatism-parantion been detemined, and in some cases the species are not obligate symbionts.

The role of the alpheids in reef ecology has been inadequately studied. Bowers found the species he studied, Alpheus clypeatus Coutière, to be entirely herbivorous in habit, eating the growing algae incorporated into its tube. We have observed other species which appear to be cither omnivores or carnivores. The capture of food from their sequestered habitats is not understood, but some authors suggest that they stand at the front of their openings and stun prey by the forceful jet of water from the piston-cylinder arrangement of the large chela. Alpheids, of course, constitute a normal food for larger carnivores when they can be captured.

Support and Acknowledgments

Our studies at the University of Hawaii and in Australia were supported by U.S. National Science Foundation grants (iB 3804, GB 6386, and GB 25020. The Great Barrier Reef Committee extended to us the use of the Heron Island field station, and Mr (s. G. T. Harrison, Chief Fisherics Officer, Fisherics Section, Quecnsland, issued a permit to allow us to collect specimens along the Qucensland coast.

We wish to thank the following Australian institutions for the loan of ypecimens for our study:

Aquinas College, Manning, Western Australia; Australian Muscum, Sydnef; New South Wales; James Cook University, Townsville, Qucensland; Macleay Museum, University of Sydney, New South Wales: National Muscum of Victoria, Melbourne, Victoria; Queensland Museum, Brishane, Oucensland; Qucen Victoria Museum and Art Gallery, Launceston, 'Tasmania; South Australian Muscum, Adelaide, South Ausiralia; Tasmanian Museum and Art Gallery, Hobart, 'Tasmania; University of Quensland, Brishane, Quernsland: Western Australian Museum. Perth, Western Australia.

The following museums not in Australia gracinusly Ient collections and individual sjeccimens upon recpuest:

Allan Hancock Foundation, Los Angeles, California; Musćum National d'Histoire Naturclle, Paris; Smithsonian Lnstitution, Washington D.C.; Rijksmusmm van Natumlijke Historie, Leiden; Zoologisch Musemm, Unversiteit van Amsterdam; Muséc Zoologique, Straslourg.

In addition we wish to thank the followine the: the loan of specimens and low the assistance they gave us:

Above all, we would like to exten one dops appectation w Dr Jom Yaldwy, formerly with the Austatian Mteman and won at the Dominon Musem in Wellington, Now Zaland, whomested this momomph, hedped ns amange for the loan of specimens from mosems, and advised we on one fied studies in Anstratia.

Locality Lists

The full collection notes and explanation of the alpha-numerical code used in the text to designate individual collections is given in the appendix.

Family ALPHEIDAE Rafinesque

Carapace smooth, provided with cardiae grooves: restrum reduced, antennal and branchiostegal spines always absent; in most gencra the eyes, or their bases only, are covered by an anterior projection of the carapace. Antemular base cylindrical, with the basal article not longer than sum of other two: scaphocerite rarely longer than peduncles. Mandible always bipartite with palpus of two articles. except in Primatphens. Distal anticle of maxilluke bifurcate at its extremity exepp in Promatphens. Lepipodites of first and second maxillipeds ahways undivided. Chelac of the first thoracie Iegs, when fully developed, alvays latger than other lege, usually of massive and asymmetrical development. Gapus of chelipeds wathaty short, cup-shaped, or hemispherical. Second legs chelate, with chela weakly developed and carpus of three to five articles. Following legs short, compressed, with spinous proporli and dactyli with one to three ungui. Propodus of fifth leg with more or less well-developed "bush" of hristles placed in transverse-oblique rows. Abdomen usually with gradual curve, without any prononned bending at third segment: sixth segment broad and short; size and shape of pleura usually showing sexual dimorphism. The Tranchial fommla always includes live pleurbranchs.

Key to the Genera of Alpheidae in Australian Waters*

1. Cornea of cye fully exposed in dorsal and lateral vicol except for

Cornea of eye conccaled in dorsal view and partially to completely concealed in lateral view hy anterior extension of carapace
2. (i) Cornea only exposed, nomalty developed, mstrum well-developed, raching bryond cyes

- Comea and peduncle exposed in dotsal view, comea somewhat degenerate; rostrum vestigial, not reaching far on peduncle.
\qquad

3. (2) Dactylus of large chela usually carried in lateral position; rostrum long and, in lateral view, acute Athanas (p. 3o3)

- Dactylus of large chela always carried in inferior position; rostrum short and, in lateral vicw, rounded \ldots. Aretopsis (p. 33°)
f. (i) Large chela carried flexed at carpus, fitting precisely into merus; ip of telson notched Salmoneus (p. 334)
- Large chela carried extended; tip of telson convex इ

5. (4) Fingers of large chela with serations of fine to heavy weth, never with a plunger and socket
-. Fingers of large chela without serations or teeth, with a strong plunger on dactylus that fits into socket on base of propodal finger (in some species the device is reduced to a heavy erest and a propodal groove)

[^0]6. (5) Rostrum present of various development; dactylus of large chela carried in superior or lateral position Alpheopsis* (p. 336.
-- Rostrum completely lacking and extended front of carapace rounded in dorsal view; dactylus of large chela carried in inferior position

Betaeus (p. 347,
7. (5) Body highly compressed; carapace with knife-like mid-dorsal keel for its entire length

Racilus (p. 350,
Body not markedly compressed; if carapace bearing a keel, keel not knifc-like posteriorly
8. (7) With pterygostomial margin produced into a definite angle; without anal tubercles: without mastigolranchs and setobranchs Symalpheus (pt 2 :
--- With pterygostomial margin rounded, never angular; with anal tubercles; bearing mastigobranchs and setobranchs at least on anterior thoracic legs

Alpheus (pt 3

Genus AUTOMATE

Automate De Man, i889a, Arch. Naturgesch. 53 (1): 529.
Type Species: Automate dolichognatha De Man.
Definition: Carapace laterally compressed, rostrum if present only slight, without orbital teeth. Fyes not covered by carapace, free with reduced corncas.

Antennular peduncles extremely clongate with second article frefuently the longest. Stylocerite reduced, scaphocerite reduced, carpocerite elongate. Third maxilliped lenger than antemnalar peduncles.

Chelipeds carried extended, asymmetrical and sexually dimorphic, compressed, with surfaces smooth and without sculpture; dactyls without cylinder and plunger characteristic of A/pheus.

Scond legs with five articles in carpus. Following thoracie legs unarmed, with simple dactyl.

Pleura of sixth abdominal somite not articulated. Telson of normal form, without anal tubercles.

Branchial fommula: 5 pleurohranchs, 1 authobranch, and 8 cpipodites.

Automate dolichognatha De Man
Automate dolichognatha De Man, 1888a, Arch. Naturgesch. 53 (1):520, pl. 22, fig. 5 . Lanchester, Igor, Proc. Zool. Soc. Lond. 2 (1): 564, pl. 34, fig. 3. Couticre, 1903, Bull. Soc. Philomath. Paris IX, 5 (2): 74, fig. 8.
Automate gardimeri Coutière, 1902, Bull. Mus. Hist. Nat., Paris 8 (5): 337; 1903, Bull. Soc. Philomath. Paris IX, 5 (2): 72, figs I 7; 1905a, Fama Geog. Mald. Laccad. 2 (4): 854, ligs 127,128 [same as 1903]. Holthuis, 195^{8}. Bull. Sca Fish. Res. Stn., Isracl, Bull. 17 (8): 17, fig. 6. Miyake \& Miya, 1966, J. Fac. Agric. Kyushu Univ. 14 (1): 137 , lig. 2. Banner \& Banncr. 1966b, Siam Soc. Monogr. (3): 37, fig. 8.

[^1]

Figure 1.-Automate dolichognatha De Man. a, anterior region ol ${ }^{2} 7 \mathrm{~mm}$ ovigerous female froms BAU 46 , dorsal view; b, b^{\prime}, large and small cheliped of fig. $a ; c, c^{\prime}$, large and small cheliped of 15 mm ovigerous female from $\mathrm{B} A \mathrm{U} 46 ; \mathrm{d}, \mathrm{d}^{\prime}$, large and small cheliped of 17 mm ovigerous female. from BAU 36 ; e, c^{\prime}, large and small cheliped of 18 mm female from Mirs Bay, Hong Kong; f, f^{\prime}. large and small cheliped of 10 mm ovigerous femalc from US $123609 ; \mathrm{g}, \mathrm{g}^{\prime}$, large and small cheliped of 12 mm ovigerous female from $\mathrm{BAU} 46 ; \mathrm{h}$, second leg of figure a ; i , third leg of figure $a ; \mathbf{j}$, telson of figure a.

Automate sp. De Man, Igir, Siboga Exped. $39^{a^{1}}$ (2): 1 fo, fig. 2.
Itumate johnsoni Chace, r955, Proc. U.S. Natn. Mus. 105 (3349): 13, fis. 7.
Specimens examined: 1 specimen from AM P.8677: 3, BAU $36: 5$, BAL $4^{6 ;}$ \therefore US I23609.

Diagnosis: Central section of anterodorsal margin of carapace recessed above eyestalks, leaving them exposed to near base. Rostrum small, rounded, at times triangular, not reaching to near level of frontal margin of carapace. Eyestalks flattened medially, convex laterally with poorly developed corncal area occupying only a small portion of distolateral surface. Sccond antennular article about 2.5 times as long as portion of first beyond eyestalks, varying from 2.5 to 4.0 times as long as broad. 'I'hird article 0.3 as long as second. Stylocerite reaching to near end of first antennular article. Scaphocerite reaching varionsly from 0.5 to 0.8 length of second antennular article; spuamous pottion shorter than lateral spine. Carpocerite from equal to, to slighty longer than, antemular peduncle. Spine of basicerite small.

Third maxillipeds much longer and stoutcr than antemmatar peduncles. reaching almost the length of the antemular articles.

Large chela compressed, varying from $1.82 .+$ times as long as broad. (iontours of chela, viewed laterally, variable due to differing development of rounded constriction in lower margin proximal to dactylar articulation. Dentition on cutting surfaces of dactylus and fixed finger various (see figs ib g), not correlated with size or sex. Merus swollen in the middle, varying from $1.6-2.6$ times as long as broad. Small cheliped about half as long as large cheliped. Chela 2.5 times as long as hroad, palm and fingers subequal. Carpus similar to that of large chela. Merus over 2 times as long as broad. Ischium as long as carpus, slender, bearing one or 2 strong stiff setae or spines on superodistal margin.

Carpal article of second legs with the ratio: $10: 12: 7: 6: 7$.
Mcrus of third Ieg $3 \cdot+$ times as long as broad. (arpus o, 6 as long as merus. Propodus nearly equal to carpus, hearing 5 spimules on inferior margin; dactylus imple.

Telson shorter than uropods, 3.0 times as long as broad at its posterior margin. Lateral margins slightly curved. Inner spines of posterior pair masually long, outer spines short, as long as spines on upper surface of telson.

Discussion: De Man's original description was based on a single male specimen from Noordwachter, "Indian Archipelago" ($=$ Indonesia?), from which the chelipeds were lacking. In rgoi Lanchester described the chelipeds of a specimen of A. dolichognatha from Penang. However, in his figures he did not depict the complete meri of the chelipeds, nor did he state the length-breadth ratio of that article.

Coutière established A. gardineri in 1903 on three differences that he considered (1) separate it from A. dolichognatha: (1) a ratio of less than 2 for the length : breadth ratio of the large chela in contrast to a ratio of more than 2 for A. dolichognatha; (2) a ratio of $\mathrm{t} .3^{8-1.5}$ for the length : breadth ratio in the merus of the large che liped in A. gardineri, in contrast to $1.6-2.0$ in A. dolichognatha; (3) the proportion in the carpus of the sccond leg wherein his specimens had 3 rd and 5 th article equal with $4^{\text {th }}$ a little shorter, in contrast to having the $4^{\text {th }}$ and $3^{\text {th }}$ equal with the 3 rd a little shorter in A. dolichognatha.

In the first place, it is diflicult weoncile Contienes statememt with the previous descriptions and with his own specimens. As indicated, mutil coutiere stated the proportions of the che liped they had not been mentioned in the literature. It is the that Lanchesters figures of the che lae of A. dohichogethe were pablished in 1got, but he diel not publish measurements; moteoter, Gouliôe wat apparenty naware of Lanchester's work as nowhere does he mention it. Coutice soge; 7t. states of the large chela of the female: "le rapport de la longuer a la haume pon la pince contière, est toujours inléricur à 2 , alors qu’il dépasse presque onopours ae chiffre chac l'A. dulichugntha $?$ dont la grande pince est plas longue at moins renflec." But in his figure the ratio of the total length to width is 2.0 lo the fiemate (fig. 6) and 2.1 for the mate (fig. 3). It should be noted that figures 3. 1, 4' were drawn from a detached cheta and the appendage was merely presumed the he cone from a male. We have examined sonne specimens at the Natonal Museme of Natural History in Paris from Djibuti wheh Coutiere hat identifed as A delichengathand found that they wariod from typical forms of I d dolichogenthen to torms Contiene later separated as A. surdium.

Our specimens appear ob bridge the gap between the two dexeribed forms. In our 5 ovigerons femate specinems the ratio of hength to height in the barge cheta varicd from $1.8-2.4$. The ratio of the length to the width of the merns of the large cheliped varied from 1.6-2.1. In the cappos of the second legs the extem of raviation in the carpal articles was as follows: $10:(4-25):(6-9):(68): 6-10$, It is obvions that the slight differences in proportions that Contiere used to whatate the two species were not meaningful.

We did note that in this small group of lemate specimens we appared to have 2 types of chelae. The first is stom, squareshaped with laye tereh on opposing surfaces of the dactyls, and the other being more stender and narowing distally with cither smatl or no teeth on dactyls. These 2 types of chelace are the same as those in Contiere's description (Igoja: 7t) which he assumes we the differences between the chela for the mate and the chela for the femate. We have ligured the chelipeds of 6 ovigerous females (lig. IN, 1 , 2, e') to show the wide variation in the chelac as well as meri and cappi. These figures rule ont the eriteria
 the second pleopod cartics only the appendix interna in both sexes. We haw fond no ofter chatacter by which we can separate the sexes. It may be that thomate is hemaphoolitic, as Suzuki (190) has pointed out for some members of the gemus Athomas.

We feel, in view of the many contradictions between Coution: ithetrations and his stated figures, and the variations noted in our own specimens, that A. serdineri is a symonym of A. dulichogmtha. We have altearly placed A. jemensoni (hace in symonymy with A. gardueri (1966at 150). Itolthuis (1958) pointed out that Automatesp. of De Man (19id) might also be referted to this species; we haw placed that form in synonymy.

This leaves 3 valid species of Aummate in the Contral Pacific, i. Whichesumath, A. macanthopus De Man and A. selomomi Couticte. A. salommi is distinguisbed from the other two by the form of the acute brangular mostrom which passes the fromat matein and reaches to the last onc-fouth of the eyestalks. A. andenthotas is separated from the other two loy having no spines on the proporli of the thoracje legs. In addition, there are 6 other presumathy valid species: A. Idismani Gouiere from the Azores; 1. cevmami Rathbu from Porto Rico; A. Kingsleyi Hay © Shore from North Carolina; A. rugosa Coutière and A. haightae Boone from the Bay of Pamama, and A. rectifrons Chace from the (ariblean.

Biological notes: Specimens of this species are most commonly found under rocks in the tidal zone. 'They are usually pale orange in colour with orange eggs. Miyake \& Miya (1966: r39) note ". . . pale orange when alive, with red chromatophores distributed over the entire body. 'I he lateral side of the carapace is dark orange. In the large cheliped the movable finger and margins of the chela are tinged with light-yellowish orange, the carpus is dark orange. Eggs are dark orange".

Austration distribution: This species has been collected off Queconsland in the Capricom and Whitsunday groups.

General distribution: This species has been reported from Djibouti, byath Isracl, Maldive and Laccadive Archipelagocs, Malaysia, Japan. In the Central Pacific it has been collected fiom the Marianas Istands to as far cast as Samoa.

Genus ATHANAS

 134.

Arete Stimpson, 1861, Proc. Acad. Wat. Sci. Philad. 1860: 32.
Type species: Palaemon nitescens (Leach?). [According to Coutière (1899: 8), this species was origimally Cancer (Astacus) milescens (author undesignated), and was placed in the genus Palaemon by Leach on page 4 or of his 18 s 4 work, yet on page 432 he created the genus Athanas for the species.]

Definition: Rostrum well developed; supra-, extra- and infracomeal spines usually present with varying degrees of development; comeas of eyes exposed anterionly and largely dorsally and laterally; chelac of the first legs well developed, cither carried extended or flexed against an expanded merus, usually asymmetric and sexually dimophic, abways without the eylinder and phonger characteristic of Athens; carpus of second leg with four or five articles; dactylus of third legs simple or biunguiculate; pleura of sixth ablominal segment articulated; telson without anal tubercles, tip arcuate. Branchial formula variable.

Key to the Species of the Genus Athanas in Australian Waters

1. Cappus of second leg with 5 a articles 2

- Capus of second leg with 4 artickes 19

2. (1) Dately of third Ieg simple 3

- Dactyl of third leg bimmgiculate 8

3. (2) Anterior margin of catapace bearing supaconcal teech 4

- Anterior margin ol carapace without sumacorncal teeth 5

4. (3) Chelipeds of male camied almost straght forward; chelae oylindrical;extracorncal teeth much more prominent than infracomeal teeth;chelipeds of both male and female: almost symmetrical
A. arelefinmis (p .3 O H)

- Chelipeds of male carried Ilexed; chelae inflated, flexed against excavate merus; infraconcal tecth acute, more prominent than extracorneal teeth; malc chelipeds almost symmetrical, female chelipeds asymmetrical

5. (3) Merus of third leg more than 5 times as long as broad; propodusbearing only an occasional spine on the inferior margin.bearing only an occasional spime on the inferior margin..
Merus of third leg less than 5 times as long as broad; propodusbearing many short spines on inferior margin 6^{*}
(6. (5) At least one chela of mature female enlarged A. locimerlus (p. 311)-- Neither chelae of mature female other than slender7
6. 6) Carpus of female cheliped from as long as to almost wice length of chela A. dimorphus (p. 313)
Carpus of femate cheliped shorter than chela A. hasceelli (p. 316)
1. (2) Chelipeds carried extended A. granti (p. 3!6)
.-..- Chelipeds carried flexed 9
2. (8) Palm of large chela bearing pronounced lobe on inferior margin;fingers of small chela dorsoventrally flattened .. A. ormithorhynchus (p. 3ra)
Patm of large chela smooth, without lobes; fingers of small chela as usial, not dorsoventrally flatened A. sibogae (p .32 I)10. (1) Rostrum r.o-r. 7 times as long as broad; merus of third $\operatorname{leg} 3.0-4.0$times as long as broad; tooth on distal end of inferointernal margin ofmerus of third leg feebleA. dorsalis (p .327)
Rostrum r. $8-2.5$ times as long as broad; merus of third leg 4.I-.5.0 times as long as broad; tooth on distal end of inferointernal marginof merus of third leg well developedA. indicus (p. 327)
Athanas areteformis Couticre
Fig. 2
1/homas areleformis Coutière, 1903 , Bull. Soc. Philomath. Paris 1X, 5 (2): 79, fig. 17,18; 1g05a, Fauna Geog. Mald. Laccad. Arch. 2 (4): 36o, fig. 132 [same as1903]. Banner \& Banner, 1960 , Pacif. Sci. 14 (2): 13^{3} [synonymy].
Athanas naifaroensis Coutiere, 19o3. Bull. Soc. Philomath. Paris IX, 5 (2): 77, figs14-16.
1thomas erpthraeus Ramadan, 1963. Bull. Fac. Sci. Egypt. Univ. 6: 13, pl. 1, fig. i.Athonas dubius Banner, 1956 , Pacif. Sci. 10 (3): 322, fig. 2.Specimens examined: 1 specimen from AM 43;3, AM 305; 9, BAU io; i, BAU13: 1, BAU 55 ; 1, BAU $30 ; 2$, BAU 32 ; 2, BAU $50 ; 2$, BAU 56 ; 1, BAU 56 .

Diagmasis: Rostrwn variable, reaching from near the end of the second antemular article to middle of third. Supracorneal teeth well developed. Extracorneal teeth prominent, reaching beyond comea. Infiaconcal teeth small, rounded or acute. lirst and third antemmular articles equal, second article a little shorter than first and almost as wide as long. Stylocerite reaching just past end of second antemular article. Scaphocerite reaching slightly past end of antennular peduncle. Carpocerite reaching middle: of third antennular article. Well-developed spine on basicerite.

[^2]

Figure 2.-Athanas areteformis Coutière. a, b, anterior region of 10 mm male from BAU 10 , lateral and dorsal view; c, large cheliped, male, inner face; d, small cheliped, male; e, detail of fingers of small chela; f, large cheliped of 9 mm female from BAU 10 . c, d, f, scale a; a, b, c, scale b.

Chelipeds sexually dimorphic and nearly symmetrical. Chelipeds not flexed, but carried directed forward. Large male chela heavy, cylindrical in form, slightle: over twice as long as broad. Fingers, when viewed from the inner face, short, curved, 0.3 as long as palm; fixed finger with broad, rounded projection on cutting surface that fits into cavity on dactyl. Cuting surfaces oficn bearing short, stifl setac. Small chela a litule more slender, cutting surfaces of lingers bearing irregular teeth that mesl when dactyl is closed. Cappus 0.3 as long as merus, rounded with distal end encompassing the base of palm. Merus, measured near the distal cud, 2.2 tines as long, as broad, broader at distal cnd. Ischium as long as carpus, bearing on its superior margin 57 strong spines. fiomate chelar smaller, more slender, cylindrical, 2.j times as long as broad with fingers occupeing 0.6 the total length. Cutting surfaces of fingers bearing many short stifl setar. Carpus cup-shaped, distal end fitting over base of palm. Merus 3.7 times as long as broad. Ischium almost as long as merus, bearing movalle spines on its superior margin similar to large cheliped.

Carpal articles of second les with a ratio of $10: 3: 3: 3: 1$.
Third leg much larger than second leg, merus 5 times as long as broad. Cappus 0.5 as long as merus, almost the same length as the ischimm; propodus equal to merus; dactylus simple.

Discussion: Variations in the diagnostic chatacters of this species were discussed in a revision of the genus Athanas (Banner \& Banner, 1960 : 138). The: Australian specimens show the same variations. The species is casily recognized by the well-developed supraconcal teeth combined with the forward directed chelipeds. Ahonas djiboutensis also bears supacomeal tecth. but the chelas ancarried tlexed into an excavate morus.

Biological notes: 'The specimens were collected onty in dicad coral heads. 'This is a small species, our largest specimen becing only 10 mm in bength.*

Australian distribution: Seventeen of the ig specimens were collected on comal reefs off the Quecusland coast, the remaining two in the Tomes Strait region.

Genernl distribution: South Africa, Red Sca, Philippines, Marshall, Jiji, 'Longe, Samoa, and Society Islands.

Athanas djiboutensis Couticy

Fïg. 3
Athanas djuboutensis Coutière, 1897a, Bull. Mus. Hist. Nat, Pavis, 3 (6): 233 ; 190ja, Fauna Geog. Mald. Laccad. 2 (4): 856, fig. 129. Banner \& Banner, 1g6o, Pacif. Sci. 14 (2): ifo, Table 1. Miya \& Miyake, 1968 , Publ. Amakusa Mar. Biol. Lab. i (2): 181, fig. i [sec for bibliography].
Ahenas sulcatipes Borradaile, 1898, Proc. Zool. Soc. Lond. 1898 : 1011, pl. 65, fig. (1. Previous Australian rccords:

Specimens examined: 5 specimens from AM 74; 8, AM 1o9; 2, AM 123; 2, BAU 50.

[^3]

Diagnosis: Rostrum variable, reaching from past end of first antennular article to proximal third of third antennular article. Supra-, extra- and infracorncal tecth present and acute. First article of antennular peduncle almost twictlength of second; second and third articles subecual. Stylocerite reaching middleof second antennular article. Scaphocerite reaching well beyond antennular peduncles, carpocerite reaching just past end of second antennular article.

Chelipeds of male nearly symmetrical. Palm and merus almost cqual in length, hoth heavy. l'alm round, merus excavated to accommodate palm when Hexed. Fingers only one-quatter length of palm. Carpus short and bulbous. Ischium bearing 2-3 spincs on superior margin. Female chelipeds asymmetrical. Large chela similar to that of male in proportions but more slender. Inner face of merus excavated to accommodate palm when Ilexed. Ischium bearing 3 spines. Small cheliped of female less than one quarter as long as large cheliped. Merus + times as long as wide. Ischiam 0.6 as long as merus. Carpus slender, 0.7 as long as merus. Chela as long as merus.

Second and third legs similar to those of A. areteformis.
Discussion: Athanas djiboutensis is widespread and has often been discussed and figured in the literature. The most perplexing thing about this species is the variation in the chelipeds. We analyzed the chelipeds of 24 specimens, both malrand female, and have presented our findings in tabulated form (ig60: 140). Tattersall (1921: 368) implies that possibly A. difuntensis becomes sexually maturebefore it is fully grown. It is likely there may be consecutive hermaphroditism here: similar to that reported upon by Suzuki (1970 : 15) for some other members of this genus.

Biological notes: This species has been collected intertidally under rocks as well as in heads of dead coral.

Australian distribution: 'This species has only heen collected at Heron Island and some islets in the Coral Sea.

General distribution: Isracl, Red Sea, South Africa, Maldive and Laccadive Arch., Indonesia, Japan. In the Central Pacific it has been collected in the Marshall, Ellice, Fiji, Tonga, Samoa, Phoenix, Society and Marcuesas Islands.

Athanas japonicus Kulo

Fig. 4
Athanas japonicus Kulo, 1936, J. Imp. Fish. Inst., Fokyo 31 (2): 43, pl. 13. Miya Miyake, 1968, Publ. Amakusa Mar. Biol. Lab. r (2): i39, figs 4-6.
Athanas lamellifer Kubo, 1940, Annotnes Lool. jap. 19 (2): 102, figs 3-5.
Specimens examined: I, io mm fernale firm BAL 75.
Diagnosis: Rostrum thin, reaching to end of second antennular article. Rostral carina slight, extending to just beyond orbits. Extra- and infracorneal teeth present and acute, reaching almost to middle of cornea; infracorneal tooth slightly longer than extracorncal. First and second antennular article equal, third a little shorter. Scoond article longer than broad. Solocerite reaching past end of second antennular article. Lateral spime of scaphocerite as long as antennular peduncle, squamous portion a little longer. (arpocerite reaching to end of second antennular article. Lateral tooth of basicerite anute.

Figure q. Ahanas japmicus Kubu. a, anterior region of i mm female from BAL 75, lateral view; b, layg eleha; e, d, et, mertos of harge chela, interior, superior and internal aspect; f, small cheliped; g , second leg; h, third leg.

Large chela stender, 5 times as long as broad, with fingers oreupsine distal 0.3 . Dactylus with knife-like sidge on superior surface; imner sicke of dachyas flattencd, onter a litte convex. Cuting surface with fringe of dometsese setae; cuting surface of fixed finger bearing row of irregutar teeth. (arpus cup-shaped. Mores elongate, slender, 5 limes as long as maximum becadth, exavated in areommodate chela when llexed; superior and inferointemal marem- rounded, inferexternal margin produced and knife-like, bearing 2 dentate prepertions: distal tonh larger than proximal.
small cheliped of the dimophus type, with chela about one-gnamer the length of large chela. Carpus o. 8 length of mexus, subequal 10 ischium mert weda: fingers 0.7 length of palm.

Ratio of articles of second $\mathrm{leg} 10: 1.7: 1.5: 1 .+4$.
Third leg with merus 7 limes as long as broad. Ischimmo. 5 as lome as merne, bearing on its superior margin one movable spine. (arpus 0.7 kened of mexus: propodes thin, equal to length of merus, bearine 2 spines on inferion subace and a pair distally. Dactylus onc-half as hong as propodus, thin, curved and ather.

Telson 4 times as long as wide at posterion magin. Posterion margin slighty arenate.
 oif. jufunicus meviewed the rame of variation for this species. The sosta varied from just beyond the cod of the first antemular article to the end of the third. "In the majority of the specimens the infaconeal toolt is well developed, but in arying degree, and bonger than the extracomeal one, whike in the rest the intrammen thoth is as long as, or shorter than, the extaconeal one." The second antemmar articte varied form $0.7-2.5$ times as fong as broat. The stylocerte varied from reaching the proximal third of the second antemulat artiele to the proximal half of the third article. The chelipeds vanied considerably in the amanement and thane of the tech on the cuting edge of the fingers, and the weth on the infeminteral matgin of the merus varied fiom one os several. The chedipeds varied in develememe anly ronghly with size and sex with the smaller females and sone mats beang symmetrical small chelipeds like om figure fly, larger femates and smaller mates with swometrical chelipeds as deseribed abose, and the lareest males with almost sommetrical large cheligeds like our ligure fo. The chelac also rave mated it: the tecth of the enting edges. and the meros in the weth atome the hamat nargin. 'This lype of variation is net uncommon in the gemus. Thanas.

Bintogical noles: Our specinen was collected fiom a muddy findere intersposed with rock and mangrove rooss near the pier it Darwin, N.I. It is interesting to note that Miya and Miyakes specimens were atso taken fom a modely.
 - . with seatered red chromatophencs. 'The eges are green'. On his gromedconou is a line or varying sorios of boken patches of pale vellow or on pigment atong the: midline of carapace and abdomen, often with smatler patches laterath. especially on the abdemen. The tips of the outer uroperes and at last the bip of the whon

 anoher specimen they extended the it chelae in a the atening fashon.

Austrolian distribution: This specimen came from barwin, N.I. It is the first time this species has been rejorted fiom Austratia.

General distribution: 'This species has previously been reported only from Japan.

Athanas locincertus sp. nov.
Fig. 5
Hotogpe: io mon male from Panchoran Buoy [Western Australia?] WM Gr-65. Coll. ェзí/6ı.

Allowpe: in mm female from same location.
Diagnosis: Rostrum raching to near end of second antemntar peduncle. lyes almost entirely exposed. Supracomeal spine absent; extracorneal spine acute and reaching about hall the length of cornea, infracorneal spine alse acute and a little longer. Antemular articles subequal, second article a litte longer than wide. Pterygostomial angle obtuse, not projecting. Stylocerte reaching to near end of second antennular article. Sophocerite when viewed dorsally reaching just past end of antennular peduncte, lateral spiue a litte longer than squamons portion. Garpocerite reaching almost to cond of antemoular peduncle. Lateral spine of basicerite acutc.

Male chelipeds without marked asymmetry. Basis bearing single spine; ischium short, bearing 3 spines. Merus inflated, 2.4 times as long as wide in the middle; inferior surface deeply excavate to accommodate palm. (arpus shorit, cup-shaped. Chela inflated, 3 times as long as broad, 1.3 times Iength of merus, dactyls occupying distal quarter. Cuting sufface of fixed finger abruptly bent distally toward both medial and inferior plane; with proximal hall smooth and without teeth; with a heavy flattened tooth proximal to bend, and a few small irregular tecth distally; tip cirved and acute (not shown in figures because of angle). Dactyhs crossing fixed finger on its smooth proximal half so that the heavy tooth of the fixed finger lics on inner surface, and acute tip of dactylus lies ontside of fixed finger; dactylus with small serate tecth proximal to tip where it contacts fixed finger. Small make chediped similar to large, but smaller and more slender. (hela itself almost 0.7 length of large cheta, over 1.5 times as long as broad; fingers slender, bearing on their cutting surfeces servated teeth that intermesh when fingers are closed. Serrated edees interspersed with short stiff setac. Female with one cheliped missing. Basis and ischium bearing 7 spines of moderate development. Merus excavated but not markedly inflated. Ration of lengths of articles of cheliped: ischium, 10: merus, 35: carpus, 7: pahm, 31: fingers, 15. Both fingers slighty curved and bearing on onter face in distal wh-thirds servated tecth that intermest when closed, upper teeth interspersed with shor setae; tips crossing when closed. Dactylus bearing on outer face of euting sulace a shori but dense fringe of setae that obscures from view the teeth on the inmer side.

Ischium of third leg marmed. Merus 4 times as long as broad, without spinc. Carpus 0.5 as long as merus, superior margin extending as a bhut tooth. Propodus slender, a litte longer than merus, bearing on its inferior margin 3 short movalle spinules and 2 distally. Dactylus monst, curverl, simple, 0.8 as long as propodus. |Deseription of allotype; holotype too fragmentary.|

Telson 2.7 times as long as posterior margin is broad. Anterior margin 1.6 times wider than posterior.

F"gute 5. Ahanas locincrius sp. nov. at anterior region of holotype, lateral view; b, large cheliped; \because detail of fingers of large clicliped: d, small cheliped, inner face; r, detail of fingers of small cheta; f, small cheliped of allotypr, owter face; g, detail of fingers ol fig. 5 f, imer face; h, second beg of allotype: i. third beg of allotype; i, telson. All ligures bute scale a; e, scale b.

Discussion: These specimens are most closely related to A. japonicus Kubo because of the presence of an infracorncal tooth; the development of the chelac, especially that of the female, falls well within the range of variation given for A. japonicus by Miya \& Miyake (1968). However, the extreme twist of the fingers of the large chela of the male and the fringe of closely set setae on the inner face of the: dactylus of the small chela is different from A. japonicus and apparently unique to the genus. This species also lacks the lamellar extension of the merus and the teeth on its margin so characteristic of A. japonicus. There are also marked differences in the third legs: in A. japonicus the merus is 7 times as long as broad, in this specien but 4 times; in A. japomicus the propodus bears few spines, while in this species they are numerous; in A. japonicus the dactyl is slender and 0.6 as long as propodus, while here it is heavy and 0.3 the length of the propodus. This species differs from A. dimorphus, in which ncither the chelipeds of the female have the inflated paim and merus, nor the very short carpus.

Unfortunately, we cannot give the type locality for this species. The specimens were lent by the Western Australian Museum, and the label carried only "Panchoran Buoy", without a collector's name. The Western Australian Museum could not find a buoy by that name in any gazeteer or sailing directions for any part of Australia; we requested the Honolulu office of the U.S. Hydrographic Oflice to search its references, but they could find nothing. We can only suggest that perhaps the name is mis-spelled, or that it might be in Inclonesian waters where somewhat similar phonetics may be found. All we may presume is that the buoy is some place that can be reached by sailing from Fremantle or other Western Australian ports, and that it lies in the tropics or subtropics.

The name given reflects this lack of specific locality, as it is derived from locus incertus. 'The type and allotype will be deposited at the Western Australian Muscum.

Athanas dimorphus Ortmann

Fig. 6
Athanas dimorphus Ortmann, 1894, Denkschr. med. naturw. Ges. Jena, 8: 12, pl. 1, fig. I.
Athanas setoensis Kubo, 1951, J. Tokyo Univ. Fish., 38 (2): 265, figs 5, 6. Miya \& Miyake, Ig68, Amakusa Mar. Biol. Lab. 1 (2): I $_{50}$, fig. 8.
Athanas dimorphus seedang Banner \& Banner, 1966b, Siam Soc. Monogr. (3), 28, fig. 4.
Specimens examined: 1 specimen from AM P.9077; 1, BAU 4; 5, BAU 6; 33. BAU 46; 12, BAU 51; 5 , BAU 72; 3, US 123608; 1, WM 105-65; 3, WM 229 65.

Diagnosis: Rostrum reaching to or past end of second antennular article, Supracorneal teeth lacking, extracorncal tecth acute, infracorneal teeth slightly projecting and rounded, pterygostomial angle subacutc. Visible part of first antennular article .6 times longer than second, second and third article subequal. Stylocerite reaching variously from end of second antennular article to middle of third antennular article. Scaphocerite broad, raching past end of antennular peduncle. Carpocerite reaching past end of second antennular article. Basicerite with strong inferolateral tooth.

Figure 6.--Athanas dinorfhus Ortmann. a, anterior region of 4 men male from BAU ftateral vice; b, e, large and small chelipeds of 11 mm mate from BAU 46 inner face; d, detail of fingers of large chela; e, f, chelipeds from 9 mm mate from $B A U 46 ; \mathrm{g}, \mathrm{h}$, chelipeds of it mom female
 All figures but d, scale a: d, scale b.

Chelipeds sexually dimorphic, but of nearly symmetrical development in both sexes and carried flexed at the meral-carpal articulation. In the female the chelipeds are small and slender. The articles opposed in flexion-the chela and ischium. the merus and carpus-are of similar lengths. The merus varies from 6.5 to 8.8 times as long as broad. 'The adult male chelipeds are large, robust, inflated. The chela is cylindtrical in section but not unifom in diameter, 3 times as long as broad at the greatest diancter at midsection and tapering owards fingers. Dactylus curved, 0.4 as long as palm, fingers at times bearing rounded tecth on both cutting surfaces which pass each other when datelys is closed, at times without teeth. Cutting surface of dactylus bearing fringe of setac in lully mature males. (arpus one-sixth length of cheda. Merus 0.8 length of chela; 3 times as long as broad with inferior face strongly excavated to accommodate chela when flexed. Ischium a little longer than broad, bearing one or two spines on superior margin.

Carpal articles of second legs with ratio of $10: 1: 1: 1: 4$.
Mcrus of third leg f. 6 times as long as broad. Carpus 0.5 as long as merus. Propodus as long as merus, bearing several spines on inferior margin. Dactelus simple.

Telson as usual, 3.2 times as long as posterior margin is wide.
Discussion: Our specimens agree well with Ortmann's description and figures. The: only important variation appeared to be in the small cheliped of the femate. We compared the ratio of the chela to the merus in 25 specimens, 14 of them from the same location, and found that the chela varied from half as long as, to egual to, the merus. This variation could not be correlated with size. We also were able to examine ro fernales from the Red Sca identified by Coutiere at the National Museum of Natural History in Paris and found that in these specimens the chela varied from $0.6-0.9$ times as long as the merus.

Ortmann's original figure shows the chela to be o. 6 as long as the merus and Ortmann states only ". . . der merus schlanker, der carpus ebenfalls schlank, mindestens cbenso lang als der merus. Die Scheere ist kurz, kürzer als der carpus'.

In 1966b we erected a subspecies Alhanas dimorphus seedang which we separated rirom the nominate form by having the chela and merus almost equal in length. The variation we now report destroys the validity of the separation.

In 1951 Kubo established a new species, A. setoensis, based on a single 8.6 mm ovigerous female collected in Japan. In rg68 Miya \& Miyake further elaborated the description of this species. They had 2 specimens, a male without chelipeds and a female with chelipeds which they found agreed well with the type. The only difference between Kubo's and later specimens was apparently in the infracorncal tooth which Kubo stated was lacking and Miya \& Miyake found to be produced but blunt. Ortmann does not mention a tooth and his figure is not clear on this point. We feel that no great importance should be attached to this as this is known (1) be a variable character in the genus.

Both Kubo and Miya \& Miyake separate A. setoensis from A. dimorphus principally by the relative length of the rostrum to the second antemmatar article, and the relative lengths of the carpus and merus in the female cheliped. We asked Dr Miya his opinion of the validity of the separation in view of our findings on the variation in these characteristics. He kindly cxamined 22 specimens from the type locality (near the Seto Marine Biological Laboratory) and found the same type of variation as in our specimens. IIe supports our conclusion that A. seloensis is a synonym of A. dimorphus. (Personal communication; perhaps Dr Miya will publish the details of his study in the future.)

Biological notes: Most of our specimens were captured in pools under rocks and coral heads at low tide, but they have also been taken from broken-up coral. The specimens from Thailand were bright red in colour. The specimens from Wistari Reef (US 123608) were described by Moulton as "tan and white striped; bhe spot on dorsum of thorax". Our specimens ranged from 8-15 mm in length.

Atstralian distribution: A. dimorthus has been collected near Perth in Western Australia, from Darwin in the Nothern Territory, and in castern Australia from Xeppoon, Queensland to Port Jackson, N.S.W.

General distribution: This species has been recorded from Last Arica, the Red Sea, Thailand, Japan, and New Caledonia. We have some umreported specimens from Hong Kong and the southem Philippines in our collections.

Athanas haswelli Coutière

Ahauas hasswelli Contière, Igo3, Bull. Soc. Philomath, Paris IX, 11 (5): 2. |coutière was in crror in the spelling of W. A. Haswell's name in his original description; it is hercby officially changed to A. haswelli according to Article 33 (a) is of the International Code of Zoological . Vomenclature, rg6i.]

IHmas haswelli Hale, 1927, Cnist. of S. Australia, pt. i; 47 [citation of Coutière: only].

Transtation of original description: "Athanas hassacelli 11 . sp. This specics is chocly related to A. dimorphus Ontmann and A. mimhoensis I. C. It differs by the difterent proportions of the first pair on the female, the only known specimen. The capus is equal to the meropodite in A. dimorphens and larger than the chela (about i.8). The carpos is here shoter than the mempodite and shorter than the chela (around w. BF 2. The appendage has the same cylindrical and slender form, which distinguished it from the speries A. minikensis, where the dola is more robust and Lhe carpus sibnt. 1 mutiated fomate from South Adelaide coast, coll. W. H. Batex". [Deseription withent ilhatratoms.]

Dismsion: 'Ihis species thes bot been reported sine Coutiores orginal
 its validity, for if Genime was a wember an inmature fonaic, then its separaion

Athenas eranti (Gution

$$
1
$$

 1927, Chest, S. Austalia, 47 dcitation of Cutieme mily].

 1.11793; 7, WM1533/173.

 antromalat aticta

 small chedae latking tooh; however, in one specimen the fived linger carried a

 cop-shaped, a litele mome than half as long as menes, expanded distally for atommodate proximal end of palm; merus 2.0 times as long as lsoad. Isohmo half an homg as capus, carying a superion distal spioce. Inforion face of capm-
 jom is Ifexed Pomimal articles of small cheliped similan.

Scond leg with ratio ol carpal artictes $10: 2: 2: 2: 5$.

 fenger than ish hime, 3 times as hog as broad, baring strong tooth on its superios
 carving on lower margin 7^{-12} spines and a pair distatly. Dactylus howy and bimgniculate: 0.17 as long as mesus and less than o tmes as fong as broad at hase. Superior mgen markedly lomer and heavier than inferior; inferior unguis ofien carricd at almose right angles to propodus, at other times only slighty cuved on inferior surface.

Telson as usual for the group, 3 times as long as broad at posterior margin: anterior margin .8 times broader than posterior.

Discussion: Coutic̀re's description, though briof, was explicit. We were atso able wenfirm the identity of our specimens bemparison with the type at the Muscum of Natural History in Paris. A. grani most closely resembles A. areteformis Goutiere, but can be separated by the lack of suptacorneal tecth and the biunguculate dactylus of the third leg. A. sibogae De Man and A. jedanensis De Man also have biunguiculate dactyli on the thoracie legs, but both show sexual dimorphism in the chelac.

Many of the males of this species bear the small flat process on the fifth abdominal sternum extending posteriorly, similar to that reported for A. dorsalis (see fig. Iof).

Pi, mine meses: Amost all of the specimens were collected intertidally. Two wese mponet from liviog conal and one was asocectated with the sea wehne

 bhe chanmophoms: farer wed rhmotophors on campace than on iest of bode: close examinato showed a pater stripe down back where there are lese med

 specinens were collected in Westem Mustalia an Rotmest; in castem Australia the were collened only from the coasts of New South Wales. As Goutieres Iype came from somb hastatia the species may extend atong the entire southen const of Austratia.

Athanas ornithorhynchus sp . nov.
 laken from pray shell growth by V. Wells and A. A. Racek, Oct. 19 ger AN1 1.apagi).

 If fins. (S. $2 a, 2$,

Desciphim: Rostrum narowly triangular and acute, reaching well beond antembar peduncle; with doesal catina that extends from tip to pesterion of entmeas. tomadening stighty in region of eyes. Supacomeal teeth lacking; extracomeal
 almost io cond of list antemolar article; sligh prominence at usual location of infracomal tooth. Visible part of first antemular peduncle 2 times longer than second: thise 1.5 bimes longer than second. Second artick a litte broder than long. Stylocerite heavy, reaching to middle of third article. Scaphocerite with: prominent lateral spine reaching past squamous portion; squamous portion reaching almost to end of antennular peduncle. Carpocerite reaching to near end of third antennular article. Spine on basicerite prominent, triangular, reaching almost to end of first antennular article.

Chelipeds asymmetrical. Large cheliped as long as carapace. Ischium 2.3, times as long as broad, bearing 5 spines on superior margin. Merus excavated io accommodate the propodus, 6 times as Iong as wide in middle, broadening slightly: distally; inferomedial margin expanded into a thin lobe that lies over part of the carpus and the carpal-propodal articulation when appendage is flexed. Carpus small, shorter than ischium, cup-shaped, exactly fitting base of palm except for pronounced lobe which extends distally on inferior side (lobe visible in lateral view. Large chela 4.4 times as long as broad in middle. On the inferior side, about two-thirds length of palm, lies a thin lobe which extends over the inferolateral edge of merus when cheliped is flexed. Tips of fingers rounded and slightly crossing. Fixed finger with a low ridge occupying about two-thirds of length, abruptly

terminating proximally and rising to a low truncate tooth distally that terminates at right angles to cutting surface; distal tip narrow and acute. Dactylus slender, with slight flange proximally and towards middle of article that covers ridge on lixed finger; ridge again expanded into rounded lobe at and beyond truncate tooth of fixed finger; tip curved and acute.

Small cheliped about one-third the length of the large chela. Ischium almost 2 times as long as broad, 2 spines on superior margin. Merus 2.7 times as long as broad, inermous, not excavated. Carpus only 0.3 as long as merus, cupshaped, slightly broadened at its distal end. Chela 3.2 times as long as wide, fingers 0.7 as long as palm. Fingers flattened and broadened, only iwice as long as hroad when viewed from lateral aspect. 'Tips of dactyli broadly rounded and forming a closure like the bill of a duck with opposing surfaces excavated or spoonhaped. Sparse patches of setae on chela.

Ratio of carpal articles of second leg: io: 1: 1: $1: 2$. Ischium 0.6 as long as merus bearing 3 spines on superior margin. Inferior margin bearing several strong setae.

Third leg with ischium 0.7 as long as morus and bearing one spine on superodistal margin. Merus 3.8 times as long as broad, incrmous. Carpus o. 6 as long as merus, superodistal margin projected. Propodus slender, 7 times as long as broad, slightly longer than merus and bearing numerous spines on inferior margin. Dactylus 0.3 as long as propolus, biunguiculate with inferior unguis only 0.2 as long as superior.

Celson as usual, 3.2 times as long as posterior margin is broad.
Disuasion: This species differs from all others known from this genus by the moadened and spatulate mature of the fingers of the small chela and by the flat lobe on the inferior margin of the large chela. Possibly the closest related species is A. eqsa Banner \& Bannes, which bears 4 small protuberances on the bower margin of the large chela and a similar extracomeal spine; however, in A. noga the smath chela thes not bear spatulate fingers, and the dactelus of the third leg is not biungucnate.

The name is derived frem the similarity of the lingers of the smatl chela to the bith or the Aumalian platypus.

The hotespe will be depesited in the Ausialian Musemon; the paratypes will

Athanas sifogae De Mian

$$
\operatorname{Hg} .9
$$

 99, figs 1, 2. Banncr \& Banner, igfo, Pacif. Sci. If (2): If, fig. r.
Specimens examited: I specimen from AM $5 ; 3, \mathrm{AM} 68 ; 1, \mathrm{BAU} 27 ; 4$, BAU
 WM 187-65; I, WM $265-65 ;$ I, WM $266-65$; I2, WM 288-65; I, WM 302-65.

 cheliped of fig. a; d, small cheliped of fig. a; c, f, large and small chelipeds of ix nm femate from -M 68; g, sccond leg; h, thirci leg; i, dactylus of third leg; j, large cheliped of 14 mm male from $208-65 ; \mathrm{k}$, detail of fingers of fig. $\mathrm{j} ; 1$, detail of fingers of 8 mm male from $B A U_{27} ; \mathrm{m}, \mathrm{n}, 0$, small chelipeds of three females showing variation. All figures but i, scale $a ; i$, scale b.

Dingnosis: Rostrum reaching to end of second antennular article, with strong rostral carina on anterior half of rostrum which completely disappears at base of orbits. Supracomeal teeth lacking; extracorneal teeth acute, extending far beyond conna; infracorncal teeth acute, extending slighty beyond cornca. Visible part of first antemular article longer than either second or third article, which are suberpual. Stylocerite extending beyond end of second antemmbar article. Scaphocerite extending beyond cud of antemmatar pedmele, squamous portion broad, tateral wooth acute, as long as squamous potion. Inferolateral spine of basicerite broad at base, acute.

Chelipeds almost symmetrical, sexually dimorphic. Mate cheliped stout with chela cylindrical, folding back into an expanded and excavated merus. Chela 3.5 times as long as broad. Ischium o. 2 as long as merus, bearing on its superior margin several strong spines. Dactylus creseent shaped; dentition of opposing margins of fingers variable, bearing either a row of small irregular teeth or one or two large rounded teeth (see fig. ge, d, j, k, l). Fernale chelipeds feeble. Ischium bearing about 6 strong spines and cqual in length to cylindrical carpus. Mcrus slightly excavated at distal end, unarmed and equal in Iength to chela. Fingers slender, ahmost straight, tapering. Ratios of chelipeds beginning with ischium lic in the range from 10:23: 1:23 to 50:15:8:15.

Ratio of carpal articles of second $\operatorname{leg} 10: 3: 3: 3: 5$.
Ischium of third leg with single superior spinule; merus 4.5 times as long as broad; carpus distally with rounded tooth on superior margin, spinules on inferior; propodus with 9 spinules; dactylus biunguiculate, inferior unguis much shorter and more slender than superior.

Discussion: In a group of 13 specimens from Rockingham, W.A., the rostrum was found reaching variously from the end of the second to the end of the thired antennular peduncle, the second antennular article of the antennular peduncle was at times longer than wide and at times wider than long, and the numbers of spines on the ischium of the chelipeds varied from $5-5$.

In our collection we found only one male with chela that carried the large tecth on the opposing surfaces of the fingers that both De Man, and Miya \& Miyake, figure. However, in the genus Athanas, characteristically the largest specimens bear the heaviest teeth, and perhaps the specimens in our collections were not fully mature. The other males in the collection carried the type of dentition as shown in our figure ad, i, j, k.

De Man established as type and allotype for S. sibogue what was apparently a mature male and a younger mate which he regarded as a non-ovigerous female, while he separated an ovigerous fomate with chelipeds typical of this species into another new species, 1. parus. We (Banmer \& Banner, 1960: 214) pointed this out
 ported our findings, but pointed out that, on the basis of page priority, A. siboget is the senion name. We accept their views.

Biological notes: This species has been collected in dead coral as well as sponges. It is common intertidally under rocks on sandy leaches. It has been dredged as deep as 70 metres. Our specimens ranged in size up to 13 mm . Miya \& Miyake (1968) supply some colour notes for specimens collected in Japan. "The cutire animal is generally pale blue in ground-colour, densely scattered with carmine red chromatophores. A broad longitudinal stripe frec from pigment or of pale yellow,
occurs along the median from the tip of the rostrum to the posterior margin of the sixth abdominal segment. The antennular peduncle except the portion of the stylocerite is free from pigment or pale yellow. The tail fan is uniformly pale bluc to decp purplish blue. The eggs are yellowish red."

Australian disiribution: This species was collected from Dampier to Rockingham W.A. In the north it was collected from Van Diemen Gulf and Torres Strait. On the eastern coast it was collected from the Whitsunday Group and from the Capricom Group.

General distribuion: Red Sca, Singapore, Indonesia, Japan, Philippines, Tonga, and Samoa Islands.

Athanas dorsalis (Stimpson)
Arete dorsalis Stimpson, 1861, Proc. Acad. Nat. Sci. Philad. 1860: 32. Coutière, rg05a, Fauna Gcog. Mald. Laccad. 2 (4): 866, figs 196, 137.

Ithanas dorsalis Banner \& Banner, 5960, Pacif. Sci. 14 (2): 141, figs 5, 6 [sce for synonymy]. Sankarankutty, ig62, J. mar. biol. Assoc. India, 4(2): 167. Hipeau-Jacquotte, 1965, Bull. Recl. 'rav. Sta. mar. Endoume, 37 (53): 247. Suzuki, 1970, Sci. Rep. Yokohama Natn. Univ. Sec. 1I, \#/217, p. I2.

Specimens examined: I specimen from AM 24; 2, AM 59; 4, AM 90; 2, AM
 P.10312; 2, NM P.13553; 1, RG 536; 1, RG 540; 1, RG 551; 11, RG 620a; 1, RG 620c; 4, RG62od; 6, RG 620(2)d; 5, RG62ra; r3, RG622a; 25, RG622(3)c; 5 , RG 623 I $/ 2$; 1, WM $22-65$; 2, WM $368 / 9$.

Diagnosis: Rostrum broad, varying from r.o-t. 8 times as long as broad; reaching variously from end of first antennular article to middle of third antennular article, with most specimens reaching to end of second antennular article. Lateral margins of rostrum sometimes slightly depressed to form a narrow shelf. Occasionally anterior margins of orbits, lateral to rostrum, with slight prominences. Extracorncal teeth well developed, reaching variously from middle to end of cornca. Supra- and infracorncal teeth absent. Stylocerite curving inward, reaching to near end of antennular peduncle. Scaphocerite reaching to end of antennular peduncle, lateral tooth strong, longer than lamellar portion. Carpocerite stout, as long as scaphocerite.

Large and small chelae similar in size and shape, directed forward. Chelac exhibiting strong growth and sexual differences (see discussion).

Second legs with four carpal articles with the approximate ratio: 10: 2.5: 2.5: 5
Thoracic legs stout. Length-breadth ratio of merus of third leg varies from 3.3-4.0. Tooth on distal end of inferointernal margin is sometimes only an obtuse angle. Dactylus biunguiculate.

Lower border of telson arcuate. Telson varics from 3.2-4.0 times as long as posterior margin is broad.

 dorsal view; b, e, latge chela and merus, inner face; d, large cheta from 10 mm male fiom ANi P.5275; e, third leg; f, ventral view of lower abdomen.

Disussion: In Igto we discussed the extrence variations of this spectes. That

 dorsalis in the Austratian collection, and 15 complete specimens of 1 . indions for deme
 conclude that these wo species ate separate and can be dilferentated by f chatatome but cach of these chatacheristion is variable:

	1. Horsalis	1. intious
1 cometh of rostrman	Usually to near encl of second antemmar article.	Usually to neav cond of thind antemmular ar ticle.
Length/hradth ratio of rostrum.	$1.0 \cup 1.7$	1.82 .5
Length/breadth ratio of merus of third Ieg.	3.04 .0	$4.1-5.0$
Size of tooth on distal end of	Fecble	Well developed

Four male specimens of Ahamas dorsalis (all living commensally with sea unchins) arry on the fifth abominal sternum a long, rounded flap (see fig. me) that protrudes ventrally and posteriorly. We also have on hand many specimens of at. dorsalis from other ateas in the Pacific such as Guadalcanal, New Hebrides, New Britain, Renncll, ete. in which the males cary this llap. Male specimens as small as 5 mm ofen have this chatacter. One ovigerous femate from Samoa carried the llap, hut it was much reducel. We also observed a similar flap in . Ihamas grami, but did not observe it in any other species or gencra. We offer no suggestions as to the function of the flap, nor of its possibly systematic significance.

As we mentioned in the introduction, Suzaki sogo: shows that 1 . dorsalis and 1. indicus are protandrous consecutive hermaphrodites. He states: "The externai mate character can be found in the first pereiopod and second plenpod; in the typical male, the first pereiopods are symmetrical and on the cuting edges of fingets there are prominent teeth, besides minute serrations, and the second pleopod is provided with both an appendix masculta and an appendix interna on the inner middle portion of it. rendopodite; in the typical fomale the forst pereiopods are symmetrical, there are nothing but minute serrations and the second pleopod has no atpembix masculima, the appendix imerna only". However, as the gonads have both ovarian and testiculat tissue at all times, but of varying proportions, these external characteristics are variable in appearance related to clegree of male female function at any particular stage in its life-history.

Biological notes: 'This species is commonly associated with sea urdins, living hemeen the spines on the onal surface and assuming the colour of its host (Hipeau-
 Istand were reported associated with 6 species of sea urchins: Heliocilaris eyythrogame (Vatencicnnes), Heliocidaris tuberculata (Lamarck), Combostephamus tomuspinus II. I.. Clanke, Controstephanus rodgersi (A. Agassiz), 7 ripmustes gratilla (Linnacus), and Ehimothrix diadema (Limmacusi. Julic Booth reported upon wo different specimens from Ifeliocidaris tuberculata with 2 different colour pattorns (notes in collecting vial One specimen was "orange-red with flesh-coloured dorsal stripes", the other specimen
"dark greenish brown. Masses of small green chromatophores and a scattering of simple red chromatophores to give an overall dorsal colour gee enish, but laterally and on limbs much pater. No dorsal stripe and mo pattern on trand. liyes back. . .. Suzuki's epecimens from Japan were all fom Stomotmetestes sp. and were uniformb black in colome At Eniwetok in the Mastmall Istands it has been found associated with a species of britte star, Ophooma maglydica Bly. In our own collections we found this species only in dead comal hads from seef flat water of fideep; however. they may have been associated with echinederms in the coral heads.

Austratian distribution: This species has Iseen collected off Western Australia and in eastern Australia fiom New South Wales to the Iterald Group in the Coral Sea. We also have specimens from Lord Howe Istand and from Norfolk Istand.

General distribution: Stimpson's original specimens came from Hong Kong. It has been reported from the Red Sea, Indian Ocean, Indonesia, Thailand, Japan, China, Kermadec Is., S. Africa, and across the central Pacific from the Marianas Islands to the Tuamotu Archipelago.

Athanas indicus (Coutière)

Fig. It
Arete dorsalis indicus Coutière, roo3, Soc. Philomath. Paris IX, 5 (2): 84, figs 25-30; 1go4, Bull. Mus. Nat. Hist., Paris, to (2):59 [notes on commensalism].
Arete indicus Coutière, 1905a, Fauna Gcog. Mald. Laccad. 2 (4): 863, figs 134, 135.
Athanas indicus Banner \& Banner, refor, Pacific. Sci. i4 (2): r49 [see for synonymy]. Hipcau-Jacquotte, 1965 , Recl. Trav. Stn. mar. Rindoume 37(53): 247 [notes on commensalism|. Miya \& Miyake, 1968 , Publ. Amakusa Mar. Biol. Lab).. I (2): 151, figs 912. Suzuki, 1970, Sci. Rep. Yokohama Natn. Univ. Sec. II, $\neq 17,5$, figs $4,5,6,7$.
Previous Australian recorls: Mc:Neill ig603. Sci. Rept. Gi. Barrier Reef Exped. 7 (1): 18. Low Isles.

Specimens examined: 2 specimens from MM 74; 6, AM 109; 4, АM 272; i. AM 392; 1, AM P.8027; 1, BAU 23; 2, RG 536; i, RG 538; 2, RG 45 ; r, R(,

Diagnosis: Rostrum triangular, lateral margins slighty depressed forming slight platforms, tip reaching past first cuarter of third antennular article. Extracorncal teeth well developed, reaching usually to end of cornca; supra- and infiracorneal tecth absent. Antennular peduncle stout, second article broader than long. Stylocerite curved inward, reaching almost to end of antennular peduncle. Scaphocerite reaching to end of antennular peduncle. Carpocerite stout, a little shorter than antennular peduncle.

Chelipeds slighty asymmetrical, carried ferward. Carpus eup-shaped. inferior face excavate. Chela exhibiting the same variation in dentition as discussed for A. dorsalis.

Four articles of carpus of second leg with ratio: $10: 2.5: 2.5: 5$.
Thoracic legss stout. Merus of third lery 4 to 5 times as long as broad, and bearing strong acute tooth on distal end of inferointernal margin of merus. Dactylus biunguiculate.

Posterior border of telson arcuate. Telson 3.4 times as long as posterior margin is broad.

Discussion: The similarities between this species and its close relative, A. torsalis, were discussed under that species (sce Banner \& Banner, r960: r49). This species, like A. dorsalis, has been reported by Suzuki to be a protandrous consecutive hermaphrodite ($5970: 32$).

Suzuki (1970:5) feels that A. kominatoensis is different from A. indicus in 2 characteristics: the pterygostomial angle is rounded in A. kominatoensis while it is more angular in A. indicus, and the distolateral margin of the palm is rounded in A. kominatoensis while it is angular in A. indicus. We have found these two characteristics to be variable and we reserve judgement on the validity of his separation.

Suzuki also gives a colour key to the species of Athanas from Japan. He mports for Japan but a single echinoderm host for cach individual species. As we and some of the individuals who furnished specimens for this study have remarked, the colour of the shrimp matches that of the host echinoderm (see also Potts, 1915a:6r), and as these species apparently are associated with various hosts in the richer tropical Indo-Pacific fauna, we doubt if these colour distinctions will be valid for the tropics.

Biological notes: This specics is apparently always associated with various echinoderms, and in our collections it was reported from urchins of the genera Echinometra, Diadena, Centrostephanus, and Echinothrix. Perhaps it is most common in association with Echinometra (Banner \& Banner, 1g60: 149) both amongst the spines and in the cavity ground into the substrate by the urchin. On Gillett Cay and on swain Recfs it was found associated both with the urchin Diadema and an unidentified crinoid.

For some specimens associated with Diadema sp. (AM 392) the following colour notes were supplied by J. C. Yaldwyn. "White line dorsally along carapace; laterally a red-brown band above and below with a white band between, all longiludinal; irregular white along ventral edges of abdominal segments; hands, legs, pleopods all bluish-green, but colour not dense." When scen through the lens he olserved "simple, stellate, red chromatophores, granular bluc chromatophores usually associated with simple red ones) and simple opaque white chromatophores. li,yes black and visible under carapace, white dorsal and abdominal ventrolateral bands with opaque white chromatophores. Lateral white stripe along body clear with no chromatophores; lateral red-brown band of simple red chromatophores and some granular blue; hand with more granular blue chromatophores than red; legs, pleopods and tail fan with both simple red and granular blue; fresh eggs yellow-brown'".

Our specimens ranged in size up to 15 mm .
Australian distribution: In Western Australia this species was collceted at Rottnest and Cape Naturaliste. In castern Australia it has been collected from south Queensland to the Coral Sca. We also have 3 specimens from Norfolk Island.

General distribution: Red Sca, Persian Gulf, Indian Occan, Madagascar, Indonesia, China, Japan; across the Central Pacific from the Marshall Islands to the 'Iuamotu Archipelago.

Genus ARETOPSIS
Aretopsis De Man, rgmot, 'Iijdschu, ned. dienk. Vereen. II, 1:3ro.
Type sfecies: Arctopsis amabilis.
Offitiom: (From De Man, loc. cit.j". . . closely rdated to Are tic stimpon. Looked at from above, the shot wostrm appas atute, thiagolat, carimate, whout duy tuace of supraconcal teeh; in a lateral view it appears strongly compeserd, with rounded tip, as in the genus thomopsis. Dxtacomeal teed wanting, inflasoncal teetls (outer angles of the orbits) acute, dentiform. Dyes as in Arete. Pterygostomian angle rounded. Pleura of sixth alodominal somite articulate, movable.
"Antemal region as in Arete, but stylowte shorter, only one cheliped is known, it resembles the smaller of . 1 ote. Meropodite short, not vaginiform; carpus short, cyathiform. [Small] chela compressed, tumed outward, with both margins of the palm entire, but with a small groove on the upper (inner) surface just behind the articulation of the dactylus. Fingers compressed, cutting-edges sharp, that of the dactylus finely denticulate.
"Legs of second pair with the carpus as in Synalpheus, 5 -articulate. Following legs stout, meropodite unarmed, dactylus biunguiculate."

To De Man's analysis can now be added: large chela laterally compressed, superior and inferior margins sharply carinate, fingers with heavy molar processes. Anal tubercles present; posterior border of telson truncate to rounded.

Aretopsis amabilis De Man

Fig. 12

.Iretopsis amabilis De Man, rgiob, 'Tijdschr. ned. dierk. Vereen. in (4):3I; 191f, Siloga Lxped. 39a (2):171, fig. 14. Miyake \& Miya, 1g67, J. Fac. Agric. Kyushu Univ., 14 (2): 267, figs I, 2. Banuer \& Banner, 1968 . Micronesica $4(2): 272$. Bruce, 1969 , J. Mar. Biol. Ass. India 11 (1 \& 2):175, figs $1-4$.

Iretopsis aegoptica Ramadan, 1936, Bull. Fac. Sci. Layptian Univ., No. 6: 16, pl. 1, figs 9, 10; pl. 2, figs 9 17. Holthuis, r95\%, Bull. S'a Fish. Res. Stu., Istacl, No. 17: 1f, fig. 5.

Sfecimens examined: I specimen from MM ı2и; 1, АМ Р. 8028.
Dogmesis: Rostrum triangular, broader an hase than long, tip monded and radhing just past first antonnular aticle; inferion side of rostum compressed taterally. Infracomeal tooth stoong, acute, reaching past mideomea in lateral vew; ptrygostomial angle roundel, not protruding. Comeas almost fully exposed in lateral view, but half concealed in dorsal view. Antemular atticles subequal; second article as long as wide, third article the longest. Acute tip of stylocerite reaching to middle of second antennular article. Squanous portion of scaphocerite broad, reaching to end of autennular peduncle. 'ferminal spine on outer margin heavy, twice as long as broad at base and reaching well beyond squamous portion. Carpocerite heavy, reaching more than the length of the third article beyond that article. Basicerite bearing strong tooth latcrally.

Figure 12.-Aretopsis amabilis De Man. a, b, anterior region of 21 mon male from AM 120, dorsal and lateral views; c, large cheliped, outer face: d, e, merus of large cheliped, inmer and outer face: f, small chela; g, h, merus of smath cheliped, inner and outer face: i, second leg; j, third leg; k , dactylus of third leg; I, telson.

Chelipeds asymmetrical, carricd extended in an inverted position with propodal finger uppermost. Large chela laterally compressed, 2 times as long as broad with fingers occupying distal third. Superior and inferior margins sharply carinate. Dactylus strong, curved towards fixed finger. Dactylus with 2 heavy molar processes while fixed finger carries a similar process which fits into the curve of the dactylus proximally. Distally both fingers carry a series of rounded serrations that mesh when fingers are closed; serrate ridge on fixed finger demarcated proximally 1 w smaller molar process; serrate ridge on dactyli continues almost to hooked acute tip; tips of fingers acute and crossing. Garpus cup-shaped, i. 5 times as long as broad. distally carrying one broad flat pojection reaching over basal portion of palm and on opposite distal edge a more narrow projection (see fig. i2 c, d, e). Mceus almost 2.0 times as long as broad, bearing distally on outer face two rounded projections and on inferointernal face a slight rounded projection.

Small chela 2.7 times as long as broad with dactylus also in inverted position. Fingers equal to palm. The cutting edge of dactylus bearing rounded serrations its full length while fixed finger is smooth and sparsely setose. Fingers crossing at tips. Carpus of small chela similar to that of large chela. Mcrus 3.0 times as long as broad, bearing distally on inferointernal margin two acute tecth; distally on inferoexternal margin only a rounded projetion.

Second leg bearing numerous fine sctac on carpal articles particularly on end of terminal article. Fingers hirsute. Ratio of carpal articles $10: 2: 2: 2: 5$.

Third leg with ischium umarmed, 3.5 times as long as broad and 0.7 as long as merus. Merus 4 times as long as broad, unarmed. Carpus 0.5 as long as merus; superodistal margin not projected; distoinferior margin bearing spinc; superion margin with a few setae. Propolus only slightly longer than carpus, inferior margin bearing 6-8 movable spines on proximal half and 5 pairs of spines on distal hall. Dactylus biunguiculate with ungui subequal in basal breadth, but with superior unguis much longer.

Telson as normal for family, 3.2 times as long as broad posteriorly, spines on dorsal surface small, posterior margin slightly convex.

Discussion: Our specimens agree well with De Man's (igif: ifi) except for the ratio of the antennular articles, small differences in the appearance of the chela, and the appearance of the distal margin of the telson. In his I I mm specimen from Indonesia the second antennular article is shorter than the visible part of the first while in our specimens the antennular articles are very nearly equal. The chela figured by De Man was without doubt the small chela which normally lacks the heavy molar processes that occur in the large chela of the adult form. Finally in De Man's specimen the posterior margin of the telson is truncate while in ours it is rounded. The significance of this character is difficult to interpret. De Man stated of his II mm female "Anal tubercles probably wanting". In all of our specimens the amal tubereles were present, int in the small specimens they are difficult to see.

Miyake \& Miya (1967:267) described and figured an 18 mm ovigerous female from Okinawa. The only difierence between their specimen and our specimens is the length of the scaphoccrite, which extends well beyond the antennular peduncle in their specimens.

The matter of sccondary sexual characteristics in this species may be confused, as it is in the genus Athanas which has specics that are protandrously hermaphroditic (sce Suzuki, 1970: r). Miyake \& Miya (loc. cit.) reported that their ovigerous female carried an appendix masculina on the second pleopod. We have cohabiting
"pairs" collected from the interior of shells of hemit crals in the Marshall Islands. In all cases one specimen was notably larger than the other and none were ovigerous. We presumed that the individuals in the pair would be of opposite sexes, as they are in the higher genera. However, in one pair both individuals carried an appendix masculina although their body lengths were if man and 12 mm ; in the other two pairs one had the male the farger, the other had the femate the larger. In a specimen from Swain Reefs of 25 mm the appendix masculina was larger than the appendix interna, while in Miyake \& Miya's ovigereus female and in a 15 mm specimen from the Marshalls the appendix masculina is markedly shorter and thimer than the appendix interna.

In two of our specimens less than 12 mm in length the fingers of the large chela lacked the heavy molar processes and bore serrated edges on the cuting surfaces similar to the small chela for the larger specimens (ige. 12l). We feel that the type of dentition on the fingers of the lage chela may be an indication of maturity, but we do not have coough specimens to present a growith series.

Ramadan (1936) described another closely relater species of this genus, A. aegypilica. He separated the wo species by only two criteria; first, in . I. aegytica the eyes were completely covered by the carapace; second, A. agsptica had anal tubercles. In the ovigerous female of . 1. ammbitis described ln Miyake \& Miya the eyes appear to be half covered by the carapace; in De Man's figure If (1915) the catapace covers about one-fourth of the cese. In the specimen of A. acgypice ligured by Hotinuis 1953: fig. 5) the carapace covers more than half the cyes. Holthois said that he believed in the case of Ramadan's specimens the eyes were merely retracted and we support this view. We have seen rotation of eyes in respect to carapace margin in other genera as well. We do not believe that such a variation in the coverage of the eyes by the carapace can constitute a valid character for specific separation.

On the basis of examination of our specimens and careful comparison of those reported in the literature, we have concluded that we are dealing with a single species that is variable in degree of cye coverage, chela formation, antennular proportions, and other slight variations. We therefore place A. aegypticn into synonymy and combine the reported ranges.

Only one other species of this genus has been described, that of A. mamazuruensis by Suzuki (1971: 19) from Sagami Bay, Japan. It is separated from A. amabilis principally by having symmetrical first chelipeds.

Biological notes: This species has been reported as dwelling on coral reef flats by De Man, by Miyake \& Miya, and in the Australian collection notes. However, all of our Marshall Island specimens were symbionts, one pair in the pelecypod Plerocera and three pairs in the shells of hermit crabs. Bruce (1969) reported three pairs from the Seychelles Islands, each pair living in the shell carried by a large hermit crab [Dardanas sanguinolentus (Quoy \& Gainard. Dardanus megistos (Herbst)]. He suggested that they may be "faccal feeders and help to keep the cavity of the gastropod shell clean". Bruce also reports that the basic colour of these specimens was a deep red with a broad, white, dorsal strip lying mid-dorsally. The band is separated from the red by a narrow zone of orange. A. mana uruensis was also living commensally with a hermit crab Anculus aniculus (labricius).

Austratian distribution: The only two Austalian specinens were found on the southern portion of the Great Barrier Reef.

General distribution: Gulf of Aqaba; lylath, Isract; Seychefles Is.; Indian Ocem; E. Bornco; Okinawa and Marshall Islands.

Genus SALMONEUS

Salmoneus Holthuis, 1955, Zool. Verh., I.ciden (26): 38.
Jousseaumea Coutière, 1896 , Bull. Paris Mus. Hist. Nat., 2 (8): 38 r.
Type species: Jousseaumea serratidigitus Coutière.
Definition: Carapace anteriorly projecting far beyond eyes as a broad triangular rostrum, and usually with shorter orbital tecth. Wyes completely concealed dorsally and usually laterally.

Chelipeds markedly asymmetrical. Large chela massive, carried under the body, flexed at meral-carpal articulation. Carpus of large cheliped cyathiform, anterior border triblobate, merus of palm of chela excavate to accommodate flexion. Small chela diminutive, with chela shorter than carpus; carpus clongate and slender.

Second legs with carpus of five articles. Posterior thoracic legs as usual for Alpheus, dactyli simple.

Pleura of sixth abdominal segment not articulate.* Telson attentuated, no anal tubercles, posterior border usually emarginate.

Branchial formula: 5 pleurobranchs; I arthrobranch; 3 epipodites.

Salmoneus tricristatus Banner

Fig. I3
Salmoneus tricristata Banncr, 1959, Pacif. Sci. 13 (2): 131, fig. I. Banner \& Banner, 1968, Microncsica 4 (2): 270.
Specimen examined: I specimen from BAU 46 .
Diagnosis: Triangular rostrum and orbital tecth each bearing slight carinac which extend posterionly almost the full length of the carapace. Rostral carina bearing slight rounded projection about mid-carapace. Antennular articles short and thick. Siylocerite large, bearing on inner proximal section a slight ridge that demarcates a medial triangular area. Squame broad with lateral tooth small. Carpocerite reaching only to end of second antennular article.

Large chela angular, somewhat square in section, 2.7 times as long as broad, finger occupying distal 0.4. Upper margin with ridges, lower margin with two ridges extending from base of finger to full length of palm, area lateral to the ridge on inner side slightly flattened. Shallow depression on proximal portion of inner face of palm to accommodate merus when cheliped is flexed. Opposing surfaces of fingers gaping, carrying $10-12$ distinct tecth that intermesh when fingers are closed. Distal section of fingers free of tecth; tips acute, curving and crossing. Carpus corolla-shaped with 5 lobes on distal margin in part enclosing, and in part fitting into, the irregularities of the proximal end of palm (see fig. Ige). Inter face flatened but not excavated. Small chela extremely small and thin, not longer than second leg.

Ratio of carpal articles of second leg: 10:2:2:2:3.

[^4]

Figure 13.- Solmonets tricristatus Banncr. a, b, anterior region, dorsal and lateral view of 17 mm remale from BAU $46 ; c$, large cheliped, dorsal view; d, large cheliped, ventral view; e, merus of large chela, inner view; f, small cheliped; g, third leg; h, telson.

Merus of third leg 5 times as long as broad, incmous; carpus about twothirds as long and less than half as broad as merus; propodus slightly shorter and thinner than carpus, armed with 4 feeble spines on superior margin and two similar spines on inferior, distally bearing a pair of strong spines; dactylus half as long as propodus, slender, tapering, and with slight curve.

Telson 4 times as long as broad at posterior end; posterior margin with deep notch with parallel sides and anterionly rounded.

Discession: We do not know how much of the seupuring that we have depicted on the large chela is natural and how much is from shrinking in preservation. Our \& specimens with intact chelae from the Marshall Islands were lost (Banner \& Banner, 1968), bu from our nocs it is cviden they carried the longitudinal ridges and flatened areas. Thus the kongitudinal ribles on the lower side of the chela as well as the groove for the ments ate chatacteristic, but the depessed area noar the base of the fingers on the lower face the depressed arcas on the upere face and the noth on the margin towards the mones may be attifets.

This species is most closely selated to S S. sibogae (De Man) the only differences being: (1) in the lateal crests of the carapace which are lacking in S sibogef; (2) in the more stender proportions of the thied leg; and (3) in the notch in the posterior end of the telsom which in this species has parallel sides while in S. sibgge it is more triangular in shape.

Biotogical notes: This specimen, like all previonsly mported specimens of this species, was found under beach wock at low tide; no symbiotic association has been observed.

Austratian distribulion: Our only specimen was found at Heron I. in the: Capricorn Group.

General distribution: Caroline and Marshall Istands.

Genus ALPHEOPSIS

1/pheofsis Coutière, I896, Bull. Mus. Hist. Nat., Paris, 2 (8): 382.
Type species: Betacus trisfinosus Stimpson.
Defintion: Frontal border of carapace produced into rostrum and projecting flange that screens cyes from above; orbital teeth present or absent. Cornca of eycs always visible from front and in some species from sides.

Antennular peduncle short and stout; stylocerite: variable. Scaphocerite usually broad, lateral spine of moderate development. Carpocerite long.

Chelipeds showing asymmetry. Large chela carried extended, without sheaths or grooves. Carpus cup-shaped, merus roughly triangular. Palm either entire and subcylindrical or with lines and depressions. Fingers compressed, cither without tecth or with simple arangement of exactly fiting terth.
second thoracic legs with carpus of three (A. idotorpus Coutiere), four A. tetrathai Banner) or five secondary atickes.

Following Icgs mobst, without teeth on merus; propodus wakly spinose; dactylus bionguiculate or simple. Propodus of fifth legs with or without "brush" or hristles.

Sixth aldominal segment lacking articulated pleura only in A. biunguiculatus Banter. Posterior horder of telson convex.

Branchial fommula: 5 pleurobranchs, $0-1$ arthrobranch, 6,7 or 8 epipodites.

Key to the Species of the Genus Alpheopsis in Australian Waters

1. Anterior region of carapace with rostrum and orbital teeth 2

- Antcrior region of carapace without orbital teeth :3

2. (1) Chela with longitudinal as well as transverse groove.... A. trispinosus (p. 337)

- Chela without sculpturing A. undicola (p. 34o)

3. (1) Chela subeylindrical A. equalis (p. 342)Inner face of chela flattened, outer face rounded A. yaldwyni (p. 314 .
Alpheopsis trispinosus Stimpson)*
Fig. 14

Betaeus trispinosus Stimpson, 186r, Proc. Acad. Nat. Sci. Philad. i860: 32 |Port Jackson]. Haswell, 1882, Cat. Australian Cast.: 192 [translation ol Stimpson's description].

Apheopsis trispinosus Coutière, 1896 , Bull. Mus. Hist. Nat., Paris 3: 382. Hale, 194t Rep. BANZ Auarct. Res. Exped. 4 (9): 266, fig. 4 [L. Tasmania]. Holthuis 1951, Atlantide Rep. (2): 94. Coutière, 1899, Les Alphcidac: 73, 190, 259 3^{15}, figs $26,96,120,168,228,231,355,396$.

Nec Alpheopsis sp. De Man, 1922, Siboga Exped. 399^{4} (5): 24, pl. 3, lig. 12.
Nec Alpheopsis sp. Banner \& Banner, 1966a, Pacif. Sci. $20(2): 156$.
Additional Australian records:
Whitclegge, 1889, J. Roy. Soc. N.S.W., 23 (2): 224. [Port Jackson.]
Neotype: 19 mm male from Green Cape, N.S.W. Trawled from $3^{\circ} \mathrm{fms}$. Coll. M. Boardman, 20/7/25 (AM P.8230).

Addilional specimens: i, 14 mm female from Two Fold Bay, N.S.W. AM 122); I, 14 mm male from $4^{\circ} \mathrm{mi}$. W. of Kingstone, S.A. (AM E.6274); 1, 11 mm male, 1, is mm femalc from Norah Head, N.S.W., $26-28$ fms. (AM P.5349); i, 16 mm male from Ulladulla, N.S.W., 74 fms. (AM P.922ı); i, 17 mm female, i, 11 mm female, $\mathrm{I}, 15 \mathrm{~mm}$ female and I , 12 mm malc from off Green Cape, N.S.W., 39-40 fims. (AM P.7379).

Diagnosis: Rostrum reaching half the length of the first antennular article and a little longer than wide, with concave margins. Orbital tecth acute, broader and shorter than rostrum. Eyes largely covered in dorsal and half covered in lateral view. Pterygostomial angle not produced, rounded. Articles of antennular peduncle subequal, sccond antennular article i. 5 times as long as wide. Stylocerite reaching to middle of second antennular article. Squamous portion of scaphocerite relatively narrow and reaching just past middle of third antennular article, lateral spine well developed, reaching to end of antennular peduncle. Carpocerite almost as long as squame. Lateral spine of basicerite heavy and acute.

[^5]

Figure 1., --Alpheotsis trispinosus (Stimpson), ncotype a, b, anterior region of neotype, darsat and lateral views; c, anterior rexion of 16 mm female from $A M 1722 \mathrm{~F}$; darge chela inner foo (tip of fixed finger broken); c, merus and carpus of large chola: f, small cheliped, innor face: g, scond leg: h, thied leg; i, propodus and dactylus of third leg conlarged; j, fourth leg; k, telsou: and uropods. All figures scale a, except i; i, scale b.

Chelac of nearly the same size, with identical sculpture and exhibiting onlslight differences in dentition of fingers. Large chela viewed laterally 3.5 times as long as broad with fingers occupying the distal 0.4. Inferior margin without grooves. superior margin marked by decp and narrow longitudinal groove between 2 sharp ridges running from dactylar articulation to end of palm. Distal shoulder on medial ridge more abrupt than on lateral ridge. Proximal to dactylus the groove extends laterally as a shatlow depression for about half the width of the chela. Outer face without groove. Fixed finger of neotype broken but bearing 2 heavy teeth proximally: that mesh with dactylus. Dactylus with one truncate tooth proximally, and 2 small rounded teeth near middle. Superior surface of dactyl bearing a brush of fine curving setae that extends three-fourths the length of the dactyl. Cappus cup-shaped. encompassing the hase of the chela. Merus slender and unamed, 2.4 times as lone as broarl. Dactylus of small chela proximally armed with heavy blunt tooth that fits between 2 on the fixed finger; distal to proximal teeth on fixed finger are 4 irregularly spaced, low rounded teeth; tips of fingers curved, acute and crossing. (arpus and merus similar to large chela.

Second leg with ratio 10: $2.0: 1.7:$. $.7: 3.3$.
Ischium of third leg 0.4 as long as merus, bearing on its inferior margin 2 movable spinules. Merus inermous, 8 times as long as wide. Carpus o.5 as long as merus, propodus only a little longer than merus bearing 8 movable spinules on it inferior margin and 2 distally, proximal to dactylus. Dactylus conical, simple. almost 0.3 as long as propoclus.

Telson 3.0 times as long as its posterior margin is broad. Proximal article of outer uropod beating a rounded lobe on the transverse articulation.

Discossion: None of Stimpson's type specimens can be located in any American muscum (see Banner, $1953: 34$, and elsewhere) so a specimen from this collection has been selected as a neotype. While (ireen Gape, the locality for the neotype, is about foo km away from Port Jackson, the type locality, the species ranges along the coast of New South Wales without great variation, and the Creen Cape specimen is the largest and best preserved. Our specimens range in size from 1 I mm to 19 mm with only minor differences. The rostrum was longer in relation to the orbital tecth in some; the breadth of the bases of the orbital tecth also varied (fig. i4a, c). Onty: 3 specimens had both chelac; in all 3 the cholac were symmetrical, but in one the small chela was about io per cent smaller than the large chela.

We believe Hale's specimen from Tasmania is definitely A. trispinosus. The rostrum in his figure appears extremely thin but we suggest this may be a poor drawing. Alpheopsis sp. (Banner \& Banner, rg66a: $55^{(6)}$ might also belong to this species, but, as the specimen was fragmentary, we hesitate to make a firm statement. The telson of this specimen agrees with that of the neotype:

It has been suggested several times (Hale, 1941:266; Holthuis, 1951:94: Banner \& Banner, rg6iba: 157) that Alpheopsis sp. De Man (1922:24) from Indonesia was this species. However, we doubt this identity, for: (i) the anterior portion of the carapace is more projected; (2) the antemmes are stouter; (3) the scaphoceritis shorter in relation to the antennules; and (4) the dactyl of the third leg is more slender and longer in relation to the propodus than the neotype. 'The dentition on the cutting surfaces of the fingers of the chelac are minimal compared to the neotype. but this is well known as a variable character, depending for the most part on age and sex. Finally, De Man states the telson is " 0.08 mm long, to times as long as the
distance between the postero-lateral angles, while the width at the base, 0.4 mm is almost half the length". In our specimens the telson is not more than 3.5 times as long as the posterior margin is broad. We (rg66a: 57) have suggested that De: Man's figures for the telson may be in error. De Man's specimen was only 8 mm long and apparently young, so its thue status will hase 10 await description of an adult form.

Couticres specimens from the Azores fumished the material for many figures in Les Alpheidae, and we have compared our nootype with these figures. There are no obvious major differences between the Australian specomens and Coutiere's from Azores, but until material from this region is compared with the Australian specimens there will still be question as to the true identity of Comiere's specimens.

On the Jasis of distributional pattern, we feel as we did in our 1966 paper that there may well be 3 species, one from the tropical Pacific, one from the south temperate: Pacific, and another from the tropical and subtropical Atlantic.

Biological notes: Stimpson's specimen was takeu from 6 fathoms. . Il of ow Australian specimens were collected with tawls in water from 25-75 fms. De Man's specimen was taken from about 7 fins. Couliere did not state the depoth of lis specimens from the Azores, but Sollaud ($1932: 376$) reponted specimens that were dredged near the Azores, presumably from deep water. Hpheopsis sp. Banmer \& Banner (ig66a) from Samoa was collected intertidally.

Australian distribution: Stimpson's specimen came: from Port Jackson. N.S.W., and Hale's from Tasmania. All of our specimens cane from the coasts of Now South Wales except for one specimen from South Australia.

General distribution: Until the true identity of De Man's, Coutièress, Sollaud's, and our specimens are confirmed, we are loath to ascribe ans non-Australian distribution to this species.

Alpheopsis undicola sp. uos:

Fig. 15
Holotype: 10 mm male from coral head collected on outernost margin of the Great
Barrice Recf on Opal Reef (AM P.ı8ooz). In ara of normal violent wave action, in 5 ft of water.
Allotepe: in mom female without chela from same locality as type (AM P.ıboos.
Description: Rostrum t. 8 times as long as broad, tip reaching past end of second antenmular article. Orbital teeth similar but slightly shorter. Rostral from without grooves. Pterygostomial angle produced into small acute tooth. Antennular articles almost equal; second atticle a third wider than long. Stylocerite reaching: slightly beyond end of second antennular artick. Scaphocerite with strong lateral tooth reaching to end of antennular peduncle; squamous portion almost as long as latcral tooth. Carpocerite 2.8 times as long as broad, reaching past end of antennular peduncle. Basicerite with both superior and inferior lateral tecth acute and equal in development, reaching beyond middle of first antennular article.

Chelipeds nearly symmetrical, rounded and without grooves. Large chela 2.7 times as long as broad with fingers 0.4 as long as entire chela. Inferior margin concave opposite articulation of dactylus. Opposing surfaces of fingers bearing blunt teeth arranged close to medial face of appendage, lacking mear tips; tips acute and crossing. Teeth on dactylus beset with short stiff setar on looth sides, but teeth on

 C larg cheliperl, inner face; d, detail of fingers of large chela; e, small cheliped, inner face;
 a, b, d, i, seale, , h, scale c.
fixed finger with stiff setae only on outer side. Carpus cup-shaped, a litie longer than broad distally. Merus of large cheliped heavy, 1.7 times as long as broad, infero-internal margin loaring a small strong spine near middle and heavy pine on proximal portion of superior margin, superior margin of ischium bearing 2 strong movable spincs.

Small chela similar to large chela, but with less teeth on opposing surfaces of fingers. Merus $3-4$ times as long as wide, incrmous. Ischium similar to that of large cheliped.

Ratio of carpal articles of second leg: 10:3:3:3:5.
Ischium of thind leg 0.6 as long as merus, unarmed. Mcrus 3.7 times as long as wide, inermous. Carpus as long as ischium, superior margin projecting as rounded tooth. Propodus as long as merus, bearing on inferior margin 8 movable ypimules. Dactylus biunguiculate, with superior unguis curved and slighty longer than inferior unguis, ungui almost equal at base.

Telson 3.6 times as long as posterior margin is broad. Anterior margin 2.7 times as wide as posterior margin. Posterior margin very slightly arcuate.

Discussion: This species is related to the group of species in the genus Hpheopsis which bear orbital teeth. However, only Alpheopsis diabolus Banner of this group has both orbital teeth and the dactylus biunguiculate on the thoracic legs. In A. diabolus the dactyl of the large chela is twisted on its axis, and the orbital teeth are much shorter in relation to the rostrum than those of this species.

Biological notes: The two specimens, probably a pair, were collected when breaking up an encrusted head of dead coral in a location which, under normal weather conditions, bears the full brunt of the open ocean waves. (See Capt. James Cook's and Sir Joseph Banks' account of the near shipwreck of the Endeacour on this barricr a few hundred miles north.) Other species that are known to live in this zonc are Athanas rhothionastes Banner \& Banncr (1960: 142) and species of the .1 pheus obesomanus group throughout the Indo-Pacific.

The name is derived from Latin, meaning "one that lives below the wave".

Alpheopsis equalis Coutic̀re

Fig. if
Alpherpsis cqualis Coutière, 1896 , Bull. Mus. Hist. Nat., Paris, 2 (3): 382 ; Fo5a, Fauna Goog. Mald. Laccad. 2 (4): 868, fig. 133. Armstrong, I94i. Am. Mins. Novit. 1137): 5, fig. 1, table X. Banmer, 1953 , Pacil. Sci. 7 (1 : 15 , fig. \&
Alfheopsis equalis truncotur Coutière, rgo3, Bull. Soc. Philomath., Paris IX, $5: 21: 89$, figs $37,3^{3}$.
Alpheopsis comsobrinus De Man, 1gob. 'Tijdschr. ned. dierk. Vereen. II, it $4: 305$.
Specimens cxamined: 2 specimens from AM17; 2, BAU 23; 1 , BAU 47 ; BAC 54.

Diagnosis: Rostrum narrow, triangular, reaching to end of fist antemular: anticle. Pterygostomial angle cither acute or ronnded. Antennular pertuncte with articles subequal, but first article usually slightly the longest. Stylocerte reaching to near end of sccond antennular article. Scaphoccrite as long as antennular peduncle, lateral spine a little longer than squamous portion. Carpocerite equal to antenmular peduncles.

Figure $16 .-$ Alfheopsis equalis Coutière a, anterior region of 10 mm male from $A \mathrm{M} 73$, dorsal view; b, large cheliped; c, small cheliped; d, second leg; c, third leg; f, anterior region of ramm male from BAU 23, dorsal view. b, c, d, e, scale a; a, f, scale b.

Cheliped at times symmetrical in size and shape, but usually showing about wo per cent differnce in size. ('helipeds of female similar to those of males, but about onc-hatf the size. Fingers and palm of small chela almost equal in length, but in large chela patm longer than fingers. Opposing surfaces of fingers bearing slight irregular servations or a series of variably shaped truncate tecth. Carpus clongate with oustanding flange into which proximal end of propodus fits, with slight constriction before this flange. Merus appoximately 3 times as long as wide, Draring on its superior marging or mone spines; inchium also usually bearing movahke pimules on superior margin.
(atpal articles of second legs with ratio: Io: 5: 5: 3: i .

Discussion: Of the six reasonably intact specimens is the collection there were 2 in which the rostran wedhed well past the end of the first antennuar artiche and the styberente reached to the end of the thind artiele (see dis. stif). The wide range of sariatien in: mans chatacteristios of this specier ha: been disensed by Armstrong, 194^{\prime}, and Bance, 953 ; and we fel that whon enough specimens of A equalis ate collected from Australia these specimens may fall within the range.

Biologiad notes: Ont specimens were taken from dead coral broken off the reet flat in water not over of fecp. (ioutiere reported that some specimens he collected at Djibouti (1808 : 198) wer unifom orange in colour with the extremities of the chelar davker. Our specimens langed in size up to :5 mm.

Austration distritution: This speries has been collected only at Heron Istand and Girese Island near Cairns.

Goneral distribution: Istad, Red Sca, Maldive and Laccadive Archipelagoes, Philippines (to be reported), liji, Tonga, Samoa, Phoenix and Society Islands, and Hawaii.

Alpheopsis yaldwyni ヶp. nov.

Fig. 17
Hototype: 25 mm female collected by J. C. Yaldwyn, December, 1966 , at One Irce Island, Capricorn Group, Qld. ADI P.ıBm5.

Paratyes: 1,25 mon mate and 1 , 19 mom lemate. collected by Melboume Ward, נget, at Heron I., (apricom Group (AM P.18006); I: 25 mm ovigerous lemate and 1, 22 nom male collected at Heron I. by Julie Booth, ry65 (AM P.18007); 1, 22 mun female and 1 , 18 mm mate without chelaw collected by A. P. Meciultoch

Diagnasis: Rostrmen triangular, i.j limes as long as broad at hase, reaching; (1) cond of first antemmbar article. Carapace mangin anterior to eyes and lateral to rostral base truncate, almost staight in dorsal view. Eyes conccaled in dorsal and lateral view; carapace not inllated over cyes. Pheygostomial angle itself rounded, but margin of carapace slighty dorsal to angle produced into a short acute tooth.

Figure $17 .-A l p h e o p s i s$ yaldeyni sp, nov. a, b, anterior region of holotype, dorsal and lateral view: c, large cheliped, inner face; d, large cheliped, outer face; c, large cheliped of paratype, 22 mm male from AM 390; f, large chela of paratype, 25 mm male from AM 283 ; g, second leg; h , third leg; i, telson.

Antemnular peduncle thick, articles subequal, and each article about as broad as long. Stylocerite slender, acute, reaching almost to end of third antennular: article. Scaphocerite reaching to end of stylocerite; lateral margin curved slightly inward distally, lateral spine a litte longer than broad sfuamous portion. (arpocerite slightly longer than antennular peduncte. Inferolateral margin of basiccrite projecting as a heavy blunt tooth.

Only one cheliped available in holotype. (hela 2.2 (imes as long as broad, with fingers 0.4 as long as entire chela. Palm of large chela inflated in lateral siew. constricting on lower margin towards fingers. Palm without grooves, outcr face convex, inner face completely lat; superior margin rounded, inferior margin knifecdged. Fingers 0.7 length of palm, slighty crossed at ends, opposing faces with if pairs of low rounded teeth which intermesh. (arpus heavy, broader than long: distally bearing superior transverse constriction or wroove and expanding into collar around base of palm. Merus 2.2 times as long as broad, superior margin distally incised with groove continuing a short distance on adjacent face; distal margins of lateral and medial faces extended. Ischium bearing 3 short heavy spines on superion margin.

Carpal aticles of second leg ratio: $10: 3: 3: 3: 4$.
Third leg with ischium 0.4 as long as merus, proximally bearing strong spine. Merus 5 times as long as broad, inermous. Carpus o. 6 as long as merus, distally with a single spine on the inferior margin and rounded tooth on superior margin. Propodus o.g length of merus, bearing 5 spinules along inferior margin and 2 proximal to dactylus. Dactylus simple, conical, o. 3 as long as merus.

Telson 1.7 times as long as broad at its anterior end. Inner spine of posterolateral spines about 2.0 times as long as outer spinc, outer spine the same size as those on clonsal surface.

Discussion: In the two paralypes from Heron Island collected by Miss Booth in 1905 there are two loose chelae -one exactly like the one which was attached to the holotype (fig. 170) and one like we have figured fig. s 70 . This type of chela was also found attached to the 25 mm specimen collected by Mel Ward. This is not enough evidener to prove that lig. 17 c is the typical female chela and that fig. 175 represents the male chela, but it suggests the possibility that here is sexual dimorphism in the chelac.

This species conforms well on almost all point 10 . Atheopsis equalis when the variability of that species is considered. 'The only important difference is the form of the large chela both in gencral configuration and in its unifue llatened imer face In A. yaldreym the first carpal article of the second leg is 3 times the second, while in A. equalis it is never more than 2.3 times. However, this character is so variable we do not attach much importance to this difference. This species is also larger with 25 mm in length in the type as opposed to 15 mm , the largest . 1. equatis in our collection. The two specimens from Cooktown were withou chelas and are therefore doubtful.

This species is named in honour of Dr John Yaldervn, not only for the collection of the bolotype, but also for the help and encouragement he las given to this study.

Biological notes: J.C. Yaldwy made the following colour notes on this species in the field: "Body, hard, compact with 8 broad transverse bands of bright red. One across each antemular appendage, one across distal end of palm, one down carapace medially, across each leg, and one actoss tail". Miss Booth's field notes read, "red stripe, one per segment". All of the specimens were taken from broken-up coral heads from shallow water.

Genus BETAEUS

Betacus Stimpson, 1861, Proc. Acad. Nat. Sci. Philad. 186io:3i.
Type species: Beturus mustralis Stimpson.
Definition: Rostral front without rostrum or any tech , rounded or demessed to varying degrees medially. Wese completely covered by catapace. Perygestomial angle rounded.

Stylocerite fonger than first antemular artiche.
Chela rounded, showing sligh asymmetry, carried in an inverted position with propodal finger uppermost. Chelipeds carried extended. Fingers often with heavy molar processes; often with simple arrangement of meshing tecth. Dentition sarious.

Second leg with carpus of 5 secondary artictes.
Dactylus of third leg simple or binnguiculate. Merus usually with movable spinules proximally on outer face.

Plcura of sixth abdominal segment articulated. Males bearing appendix masculina. 'Telson with anal tubercles; posterior margin rounded.

Betaeus australis Stimpson

Fig. 18
Betacus australis Stimpson, 186ı, Proc. Acad. Nat. Sci. Philad., 1860: 3 I [Port Jackson, N.S.W.]. Haswell, 8882 , Cat. Australian Stalk and Sessile Lyed Crust: 192 [translation of Stimpson's description]. Hale, 1927, Crust. S. Australia, pt 1: 48.
Veolype: 21 mm non-ovigcrous female from Long Recf, Collaroy, N.S.W. Collected from intertidal rock platform by J. C. Yaldwyn, 20/4/62 (AM P.i8oo8).

Idditional specimens: a specimens from AM 6i ; 1, AM 284; 1, AM 344; 3, AM 413 ; 1, AM 427; 1, AM P. 4073 ; 2, AM P. 4933 ; 1, AM P.5305; 4, AM

Diagnosis: Anterodorsal margin of carapace extended and convex, with neither rostrum nor notch; eses completely covered dorsally and latcrally. First and second antenmular article suberqual in Iength; second atticle i. 6 times as long as broad; third antomular article o. 6 as long as second. Stylocerite slender, of uniform raper, reaching to middte of thited antemnular article. Squamous portion of scaphocwite reaching past end of antemonar peduncle Latcral spine a litte longer than spuamous portion and separated fiom it by a decp incision. Carpocerite a litte longer than scaphocerite. Latcral spine of basicerite stong and acute. Pierygostomial angle rounded.

Chelac almost symmetrical, slightly compressed withont sexual dimorphism, carried extended with dactrlus in inferior position. One chela 3.8 the other $3 \cdot t$ times as long as broad; fingers a little shoter than palm; inner surface of palm locars a small rounded tooth flanking the articulation of dactylus. Lower margin of palm bearing fine hairs forming a "brush". Large chela with catting surface of both fingers bearing small rounded teeth almost the full length. Small chela (fig. 18c)

Figure 18.-Betaens austratis Stimpson. a, b, anterior region of neotype, dorsal and lateral view; c, large chela, inner face; d, merus and carpus of large chela, inner lace; c, small chela, inner face; f, merus and carpus small chela, inner face; g, fingers of 27 mm male; h, fingers of 24 mm male; i, fingers of 25 mm female ($\mathrm{g}, \mathrm{h}, \mathrm{i}$, from AM P. 6 g 10) ; j, second leg; k , third leg; l, telson.
with cutting margin of fixed finger bearing io small rounded teeth, opposing margin on dactyl not dentate. Tips of fingers of both chelae crossing. Carpus cup-shaped. 0.2 as long as chela, distal margin flared and encompassing base of chela. Distal margin bearing 2 strong rounded projections proximal to lateral sides of chela: between these 2 projections lics a smaller rounded projection. Merus 2.5 times as long as broad, inner face slightly papillose, inferointernal margin strongly papillose, appearing roundly serrate in profile. Inferior face bearing a triangular flattencel portion on distal section which accommodates carpus when cheliped is flexed. Ischium unarmed and smooth.

Carpal articles of second legs with ratio: 10:3:3:3:5.
Third leg with spine on lateral face of ischium. Merus 5 times as long as broad and bearing spine proximally on its lateral surface. Carpus half as long as merus; superodistal margin produced into rounded tooth, inferodistal corner bearing small movable spine. Propodus slender, o. 8 as long as merus and bearing at least 6 movable spines on inferior margin, with fine sctac adjacent to most spines. Superior margin also bearing several strong setac.

Pleura of sixth abdominal segment articulated.
Telson of usual form for family, 3.7 times as long as posterior margin is wide; anterior breadth r .6 times as wide as tip; posterior margin strongly convex, posterolateral spinules not reaching level of distal margin.

Discussion: None of Stimpson's original type material is available (see Alpheopsis trispinosus, p. 339) and it is desirable to establish neotypes for his species. Stimpson's specimen came from Port Jackson and was 25 mm in length. Our specimen is smaller (21 mm), but we chose it because it was the best complete specimen we had from close to where Stimpson's specimen was collected.

In the neotype the antennules were deflected downward, thus in the drawings the scaphocerite and carpocerite appear a little longer than in the majority of specimens where the antennular peduncle is extended, making the scaphocerite and carpocerite: more nearly the length of the peduncle. The stylocerite varied in length from the end of the second antennular article to the middle of the third article. In our 4° specimens the greatest amount of variation occurred in the dentition of the fingers of the chelae. We have figured 3 of the most common types (figs $18 \mathrm{~g}, \mathrm{~h}$, i), but occasionally we found a specimen in which both chelae were almost devoid of teeth. In the genus Athanas only the older and larger specimens bear the heavy irregular teeth, but in B. australis the development of the teeth could not be correlated with either size or sex. The roughness of the inner side of the meri of the chelipeds appeared to be influenced by age as the inner face of the large specimens were more strongly papillose than in the small specimens. In very large specimens the surface of the carpus was also rough.

Biological notes: 'This species is found intertidally under rocks. Our largent specimen was 35 mm long.

Stimpson states his specimen was green and llate (1927:48) states: "Upper surface rich purplish-l)rown; sides and tips of uropods white". J. (. Saldwyn, who collected the neotype, supplied the following colour notes for it: "Dorsally purplish, laterally much lighter; transparent areas along lack donsally on each segment: hand reddish purple contrasting with the dark purple of the body; hranchial region of carapace and lateral area of first few abdominal segments, as well as watking leos, virtually colourless. Purple colour due to dense mat of small, simple, stellate, red
chromatophores with the whole area of red chematophores surounded by a mass of granular bhe chomatophores extending a litale beyond the red mat in places: anterodersal pat of the catapate is grew wiba mat of gramular grech chomatophom
 carapace; the eyes are back and dearly visible molde the catapace hoods as the hoods are extenting to the front of the catapare betwe the cyes. I an convinced that the red chromatopbores are simple and not compoumted with the bhe. The white edge of the uropods which Hale (1927) mentions for this species is presumably the white setal finge and not the appendage itself. This white finge is quite obvious and shows uo sign of colour".

Iustration distribution: Our specimens, like Stimpson's, came mostly fiom the: Sydney area. They were collected as far noth as Yamba, N.S.W. One specimen was collected of Victoria, and Hale (1927:48) reports it from South Australia. The species is apparently limited to south and southeastern Austraha.

Genus RACILIUS

Racilius Paulson, 1875, Invest. Red Sca Ciust., 1: 107.
Type species: Racilius compressus Paulson.
Definition: "The body is unusually compressed, in the form of a shect fof cardboard] and has sharp edges on the abdominal segments; there is a crest on the ephatothorax which continues in a short rostrum. The eyes are covered by the spinous cephalothoras. The antennules have two flagella. Appendages, simitar to those of Alpheoides, are present at the base of the perciopods. The first pair of legs are the same length and equally strong and have giant chelac; their dactyli move in the verical plane. The carpopodite of the second patir of legs is made up of five joints. The mandibles are like those of Alphezs. The anterior joint of the last maxilliped is not as short as that of Apheus. The uropod is quite different from that of Alphezs and Alpheoides. This genus is closely related to the genera Appheus, Alpheoides, Arate and Betaens, forming a homogenots group with the subfamily of the Alpheinte with them." [Translated from the Russian by F. D. Por, ig6r.]

To this deseription we should add that the pleura of the sixth abdominal segment are not articulated, and that in the type and only species the outer uropod bears a strong movable spine and on the inner uropod often a strong triangular projection.

We agree with both Paulson and Coutiere (1899:397) that this genus is near to Alpheus and was probably derived from it. The second leg bears five articles as is troe of all A theus; the chela, though extremely compressed, has the general appearance and bears a plunger so typical of that genus.

Racilius compressus Paulson

Fig. ra

Racilus compressus Paukson, 1875 , Recher. (irust. Mer Rouge, 107 , pl. 14, fies 2. Couticre, 1890, Les Apheidae, 87, lig. 46; 243, fig. 296 (description and figures after Paulson). Balss, 1927, Trans. Zool. Soc. Lond., 22 (2): 220. Barnard, $195^{8,}$ Amn. Mag. Nat. Hist. XII, io (118):732. Banner \& Bamer. 19667, Siam Soc. Mono. No. 3: 199, fig. 62. Bruce, 1972. Crustaccana 22 (1): 91, 92.

 telson of a mon male fiom $A X, 327$; h, lateral view of anterior region of 14 mm fomaic front AN 337 ; i, lateral view of anterios region oí mo wem male from A 1337 .

Specimens examined: 2 specimens from AM 327; 3, AM 337.

Diagnosis: Entire body and chelac with strong lateral compression. Lace covered by carapace, but without inflated orbital hoods; with anterior orbital teeth. Rostrum broadly triangular, reaching to middle of second antennular article. Dorsal carina of carapace high and knife-like, extending from rostrum to posterior end of carapace; with variable notches. Stylocerite as long as first antennular articli: Antemular articles short and thick. Scaphocerite reaching beyond end of second antennular article. Cbelae similar in size, almost f. (b times as long as broad, but on "large" chela, dactylus romeded and less than half as long as palm, white om "small" chela dactylus is curved and acute, equal to length of palm. Carpus cxpanded distally. Merus triangular in section, slender unarmed.

Carpal articles of second leg with ratio: $10: 2: 2: 1: 4$.

Merus of third leg inermous, 2.6 times as long as broad. Propodus bearine distally on inferior margin one spine and a few setae, bearing proximally occasional patches of setac. Dactylus simple, broad at its proximal end, tapering abruptly to acute tip; tip so curved that it lies at a right angle to the propodus.

Telson strongly tapering, 6 times as long as posterior margin is broad. No movable spinules on upper surface. Posterior margin of proximal portion of outer uropod forms a flap bearing strong teeth with a large movable spine inserted between the two teeth. Distally outer uropod bears usual transverse articulation. Inner uropod with lateral margin projected into a triangular tooth of varialsle size, at times very small (lig. 19).

Discussion: 'The notch in the dorsal carina near the level of the eyes showed the usual variation in shape (Igh, i; see also Banner \& Banner, 1966 b : 162). 'The variation in the lateral tooth on the inner uropod is described above (fig. igf, q. About 25 specimens from a large collection of R. compressus from the Philippince exhibited the same variations.

Biological notes: All of our specimens were symbionic on living coral of the genus Galaxia; all Australian specimens came fiom G, resiculatus. We will repon from the Philippines that it occurs in those species of Gelexia with closely-set polyps, occasionally in those with moderately-set polyps, and never in species with large, widely-set polyps. The lateral compression of the body and chelace allow the specins to move about in the narrow spaces between the corallites. The body is transparent with a close scattering of minute red chomatophores. The cyes are blue-h hack and the femate bears green eggs. (Colour notes supplied ly J. C. Yaldwyn.) This species is usually small, but we had one specimen that was 15 mm .

Australian distribution: Our 5 specimens were collected on the recf llat on On Tree I. in the Capricorn Group.

General distribution: South and East Africa, Red Sca, Suez Canal, Smeporr, Thailand, and the Philippines (the last to be reported on in a future paper.

APPENDIX

Locality Lists for the Alpheid Collection

In the listing given below are the localities and, at times, cological notes for all specimens of all genera of the alpheids from Australia presently at hand. This, then, is the master listing for all three portions of the paper to be published. If additional specimens are obtained before the publication of the second and third parts of the paper, those listings will be added to Part 3. In an effort to keep the listing as short as possible, we have at times summarized the information on the lalocls of the specimens or referred back to an carlier listing.

The specimens came to us with a variety of designations, sometimes with muscum catalogue numbers, either numerals alone or alphamerics, at other times without any coded reference. ' To shorten locality lists under the various species, and to facilitate the use of this master listing, we have prefaced each separate collection from an institution or an individual with a two to three letter code which is followed cither by the official catalogue numbers or, where these were lacking, by numbers that we have assigned for this study. It may be presumed that if the institutions assign new catalogue numbers to the specimens that we have numbered, they will keep a cross-rcference file.

In the listing below, the collections are arranged alphabetically by code designations. The codes are assigned as follows:

```
AC: Aquinas Collegc.
AH Mlan Hancock Foundation.
.lM The Australian Muscum, our assigned numbers.
MM E. The Australian Museum, F.I.S. Endeavour Register numbers.
AM G. The Australian Museum, General Invertebrate Register numbers.
NMP. The Australian Museum, Crustacea Register numbers.
BAL Banner, Australian collection.
(S) C. R. Smalley.
IB Jolm Boasc.
JC James Cook University.
AIM Macleay Muscum.
QM1 Quecnsland Museum.
(2) Quen Victoria Museum.
RG R.l. Gooding.
SM South Australian Museum, our assigned numbers.
SMC South Australian Muscum.
TMI Tasmanian Museum and Art Gallery.
UQ University of Queensland.
US United States National Museum.
VM National Museum of Victoria.
vM Wcstern Australian Muscum.
```

All specimens on loan will be returned to their inslitutions; we have indicated the repositors of collections made by individuals.

COLLECTIONS FROM AQUINAS COLLEGE, MANNING

These collections, lent by the (oblege, were made by students during yearly expeditions on

 ravites in comat and ponge. (onl. A. James and (3. Davempert.
 and (r Davemport.
 sandy botom. Goli, A. James and G. Dawomport.
 James and (n. Davempori.
 (i. Davenport
 Murphy.
 nfonge Coll. Ci. Marphy.
A(: S. 3. \& mi. N. of Gun 1. to fins. 27/8/70. (ioll. G. Murphy.
AC S. f. 4 mi. N. of Gun l., Pobart Group. 19 lims. $8 / 27 / 70$.
 crinoid. Coll. G. Murphy.

COLLECTIONS FROM THE ALLAN HANCOCK FOUNDATION, LOS ANGELES, CALIFORNIA

Alf Aecession number re68-13.

1. Heron 1., Gapricom Group, Qkl. Coll. Miss J. Haig, from Ieropora cwneata.
2. Same as Hz. Under rocks on exposed sand flat.
3. Same as \#1. 11/6/68. From live Porillofura damiomis.
4. Same as 势1. ix/6/68. Outer wel flat from Acropora.
5. Same as \#1. Coll. S. Domm. From focillofora damicomis in 35 ft of water oner edge of rowl.
6. Dyora, Stradbroke I., Qld. Coll. Miss J. Haig, $27 / 6 / 68$. Dmong oysters and moder wster clumps in mud and and flat.

COLLECTIONS FROM THE AUSTRALIAN MUSEUM, SYDNEY

For collections not yet assigned at mosem catalogne number we have ansigned numbers
 rations.

 Ender beach rock.

 Valdwyn, Dec. 1ges.
B. Between Cape Bossull ant Broome, W.A. 5 lins. Coll. A. A. Livingstont. 11.929.
9. Cape Leveque, W. . Coll. intertichal, coll. A. A. livingsone, po/Bt:20.
 Livingstone, $15 / 7 / 29$. Dredged among dead coral and sponges.
11. Faillight, Manly, Port Jackson, N.S.W. Coll. Miss E. Poper, 1/afif. Subuidal.

```
A.\
```



```
        B'd, Ig(oj
```



```
    1&. Samar at \\\ &2.
```



```
        Arofoma sp.
    18. 'Ihumsday I.. ''ormes Su., Ol&.
```



```
        s(oners.
```



```
    21. Samm at \N 1%.
```



```
    23. Ahoremon bay. (old. Ammeram lin|mats Smore.
```



```
        monsal will atm Nevontamams.
```



```
        rock plathuma.
```



```
        2,秎!一
```



```
31.Samm a, \\ % 
```



```
        IF,%-20.
```



```
37. Same as NN127. Fab, т@(15.
30. Same is \A 36. 9/345.
```



```
fo. Same as AN 35.
```



```
    pools.
12. Same as \M13.
43. Gille| (aty, Swain Reds, Qld. ('dll. Wy AM Ighz Swain Roefs Expeol. Sta. I, OCt.
        soba, Fromimooken coral fromm reef dat.
    t+. Same as \Al ro.
4. Same as A.\18.
f6, Iomg Rowf (oblaroy, N.S.W. Coll. Niss E. Pope, re/3/64. From intertidal platorm.
17. Samme as MMI mo.
```



```
    with comatulid Comambuss angulata. intermidal.
```



```
    5o. Samer as AM1 3%-
    51. Manly. near Syrmey, N.S.W. (onl. A. F. Basset-Hn|l.
    32. Same as \N1.3.
    53. Sam, as \M1 4,3, undor beach rock.
    5% Same as \\l 4%
    55. OGB Broome Jetty, W.A. f fms. Coll. A. A. Livingstonr, mb/&/20. Commmensal on
        crimoids.
    j6. Scarborough, Moreton Bay, ()ld. 2 lms. J.S. Iynd collection, 5/7/4G. From wecd.
    37. Same as AMI 22.
-57:2.0
```

AM 58. Heron I., Capricom (iroup. Qkd.
59. Lord Howe 1., Tasman Sca. Coll. Miss J. Booth, 18/9/62.

6o. Same as AM 27 .
61. Same as AM151.
62. Same as AM 27
63. Same as AM1 10, 2/7/29.
64. West Cay, Diamond Istets, Coral Sea, Old. Coll. J. C. Valdwyn and D. F. McMichat $23 /$ of/63. From intertidal poots in beach rock.
65. South end lagoon, Iord Howe I., Tasman Sca. Specimens from dead roral.
66. Thurslay I., Eorres Str.. Qid. Goll. M. Ward.
67. Same as AMI 5.
68. Heron I. Capricom Group, (2ld. Coll. Outward bound School Party, Dece igho. From coral red.
60. Same as AM 27.
70. Scarborengh. Diomon Bay, Qkd. J. S. Hynd collection, 19/5/46. Trawled behow low water mark.
71. Wistari Red, (apmicom (iroup, Old. J. S. Ilynd collection, 2/6/47.
73. Heron I. Capricom (imoup, Qlel. Coll. Miss J. Boonh, alz63.
74. Same as AM164. 7/14/64. From coral bead washings.
75. Sellicks Beach. St Vincent Gulf, S.A. wh below tiche lewe sargasem zone, 25330
76. Long Recl, Gollaroy. N.S.W. Coll. Miss J. O. Camploll. 12/i/63. Under rocks.
77. Long Reof, Callatoy, N.S.W: Goll Miss L. Poper, 22/m/57. Intertidal rock platom
73. Ned's Beach. Lord Ifowe I., Taman Lica. Coll. E. Pope, July ig59. Intertidal, among bouldirs.
 coral.
80. Heron I.. Capricorn Goup, Qld. Coll. Miss 1. Bennett, 18/8/6i.
81. Monkey 1., Rows Creek, 'Townsville, Qlel. Coll. W. McNac. y/z/62.

B2. Ellion Iteats, S. of Bundaberg, Qde. J. S. Hynd collection, 3/fifi.
83. Same as AM 73.

85 Same as AM 50
87. Scamand F. Pasmania. W. A. Maswell collertom.

By. Samm as N 7 .
 mel.
 Exped Sta f, Oct 1962.

at. Lady Ellion 1. Odd. Coll. Mrs C: Wright. egtif.

 table. Whehin weshwork of interomnceing fosame crab butows and chambers.
97. Pearl bhoak, off Broome. W.. . Coll. A. A. Livingsome, figeg. On disc of crinoid (imman!lus sp.

(49.) Linteavom Rjer. (ooskown. Uld.

 on "ow whar" sponge.

ma. Incom I. (apricorn (iroup (eld.
loj. Same as . M1 le4.
100. Same as AM43.
107. Same as AM43.
rob. Same as AM ro4.
109. North East Cay, Herald Group, Qld. Coll. J. C. Yaldwyn, 9/a/6iz. From coral wasliings.
110. Tyroom Roads, Sandy Str., Qld. Io fms. J. S. Itynd collection, 66Gfi. From alcyomarian.
112. South Bank, Pancake Channel, Port Gurtis, Qld. J. S. Hynd collection, 25/8/4h. Under living coral, on dead coral.
113. Scal Rocks, Port Curtis, Qld. J. S. Hynd collection, 28/8/46.
114. Gulf of Carpentaria, $17^{\prime \prime} 24.7^{\prime}$ S., 14o' $31.7^{\prime} \mathrm{E}$, CSIRO Prawn Survey. Sta. I 1,5 fims, 2/8/63.
114 a. Sandgate, Morcton Bay, ()ld. J. S. Hynd collection. $25 / 6 / 44$.
115. Norfolk I., 'Tasman Sca. Coll. Mrs L.. March, Oct. igeo.
116. Shark Bay, W.A. Collected by CSIRO Fisheries, 27/9/48. Trawled from sponges.
117. Scarborough, Morcton Bay, Old. J. S. Hynd collection, 3/9/45. From weed flat.
118. Shoals light buoy, ofl Cape Moreton, Qld. 11 fms. Coll. J. S. Hynd on S.S. Cafre Leenwin.
119. The Brook, Lord Howe I., Tasman Sca. Coll. Miss J. Booth, 3/6/62.
120. Same as AM 43.
121. Abany Passage areat, Tomes Str., Qld. Goll. M. Warel, Sept. ig20.
122. Two Fold Bay, Eden, N.S.W. W. A. Haswell collection.
123. Same as AM_{M} ro4.
124. West Side, Fort Hill Point, Darwin, N.T. Coll. A. A. Livingstone, rgzg. Intertidal.
125. Same as AM tor.
126. Elliot llads, S. of Bundaberg, Qld. J. S. Hynd collection, 3/6/46. Uneler stones.
127. Proulee Beach, $1 / 2$ miles from foobloridge, South Coast, N.S.W. Coll. R. E. Barwick, 14/5/62.
t28. Cape Leveque, W.A. Coll. A. A. Sivingstone, ig/8/28. Intertidal.
129. Sante as AM 27.
jgi. Off Mary River, North Head, Sandy Str., Old. J. S. Hynd collection, 6/6/46. From sandy mud tlat.
131. Same as AM127, Feb. mgti5.
132. Woody Haal. Clarenee River mouth, N.S.W. Coll. A. A. and M. Camemon, 29, 2/65. Intertidal.
133. Same as AM 79, 273/46. Prom oner sandbank.
13. Same as Nal 9.
135. 1.ond Howr I., Tasman Sa. Coll. Miss J. Booth, Nos. 1g62. Found in comal south and of lagons.
136. Same as N N 1 w.
137. Same as AN 10. 1/7/29.
130. Same as Ma fo
 15 (6)23.

1ft. Stme as M 50

 rock pooks.
175 Sanc as SN10.
1f6. Same as All 41.
fo7. Same as
 (Ameron. Bent 19for
 lgins 6os.
150. Namm as $1 \times 1=7$.

F号1.

1%
1:!
1bin.
 Alsua: 1,

 lumertilal ponsti.

17 Samm an S S 1: -
 (BCD I for

17. S. Sun :

 alins, 2f tho.

fir. Samm as Al|
 bece igfor.

1\%9. Same as $\Delta A 12 \%$.
 region an rock's reed shome.
1!日. Same as $\begin{aligned} & \text { N } \\ & 3\end{aligned}$
192. Same as $\backslash \Lambda \frac{11}{} \quad 20 / 162$

 Srom brokern comal on mellat.

 intertidal rock platiome.
I99. Same as $X \backslash 155$.
200. Same as $\Delta \lambda$ fo.

20t. Heron I., (apricom (ifonp, ()k. (
 hormows (exp within river banl. Same loce as AM gf.
 rocky reef shore.
20j. Somb emd lagoon. Lard Howe l., Jasman Sea. From dead coral.
206. Nomman River Mouth, Kammob, Gulf of Carpentaria, Qhe. (ioll. J. (. Yalduy: Dec. 1963.
207. Same as AN 79. 28/9/46
208. Same as $\triangle A 159$ 8, $8 / 29$.

20g. Lady Elliot I. off Bundaberg, Old. Coll. Mrs C. Wrighe, igG4.
2 ma . Same as $\mathrm{AM} \because 7$.
2rt. Lord Howe I., Tasmam Sea. Coll. Miss J. Booth, 6/3/63.
2ta. Long Reef. Collaroy, N.S.W. Goll. Miss I. Bennett, May ighy. Interidal, um! rocks.
213. North of Noman River, Gulf of Carpentaria, Qld. Coll. D. F. Mc.Michacl and J. (.. Yaldwyn, Dec. ig63. Ender intertidal beach rock boulders.
21f. Ofl Cape Morelon, ()ld. 'lrawhed a fms. S.S. Cabe Leeuwin, J. S. Hynd collection.
255. Same as AN14, 20/4f62.
216. Same as AM 27 , Feb. 1965.
217. Sam: as AN 216.

AM 273. Dredged off Shark I., Port Jackson, N.S.W. W. A. Haswell collction, 25/9/15 274. Cape Don, Darwin, N.'T. Coll. Miss E. Pope. i7/ro/65. On reef.
275. North West I., Capricorn Group, Qld, Coll. M. Ward and W. Boardman, July 1929.
276. Same as AM 275.
277. SE. comer, Gulf of Carpentaria, Qld. CSIRO Prawn Survey ig6z-Gj. Gatght on mod flats of Norman River at Karumba.
278. Port Curtis, Qkd. Coll. M. Ward, 1930.
279. Edge of ereck near Sanders Beach about 20 mi. noth of Townsville, Qld. Coll. W. Macnae, $17 / 3 / 62$. Edge of Rhizophora fringe.
$2 \% \%$ Dredged off Catombe IHead, Facing I.. Port Curtis, Qld. 912 fms. Coll. M. Ward. Dec. 1929.
28t. Fannic Bay rocks, Darwin, N.T. (6ill. Miss L: Pope and J. Boase. 1//00/65.
282. Same ats AM 275.
283. Heron I., Capricom Group, Old. Coll. M. Ward, 1926.
284. Long Reel, Gollatoy, N.s.W. Coll. J. C. Yaldwyn. Intertidal.
285. Last Point, Darwin, N.'T. Coll. Miss L. Pope and J. Boase, 25/10/65. Intertidal.
2866. Dredged oll Peak Point, Gape York, Torres Str. Qht. 3^{-6} fms. Coll. M. Ward, $3+8 / 20$.
227. SE. comer, Gull of Carpentaria, Olel. CSRRO Prawn Survey Trawl Stn. 555. 17'24'S. $1 / 0^{\prime} 72^{\prime} \mathrm{E} .21 / 2$ fins. $161 / 64$.
293. Trawled off Yimma, near Clarence River mouh, N.S.W. Coll. G. Biddle, Dlay 1965 .
289. Long Reef Collaroy, N.s.W. Coll Miss Ji. Pope Oct 1965.

2go. Ond Tree I., (apricom Group, Gecat Batrict Rowf, Qld. Coli, Muscum Party, 25 oflig. (oral rew stn bit. 30.
291. Same as AX1 277.

 revies.
29t. Same as 1.11233.
295. Same as NX1 277.
 On stallop bataks.
 Smver, abzigt.

299. Same as XM 275

3oc. Pott (umis, Old. (Aoll. M. Warel. 1930.

304. Kance as MN sol, 12/10/95.

307. Same as dM 236.

 Th2,62. From samt mut in isted in creck.

?1. © seld

 , 4.

 almat be li derp.
320. Same as All 3 , 6.

AM 32t. Same as AM 316. Among living corals on sandy bottom of lagoon, shallow water. Nov. 1966.
322. Same as AM 316.
323. Same as AM $_{32}{ }^{2}$.
324. Same as ΛM 316. Lagoon, in Hatimeda and mixed weed in "bombies" and piecrusi near southern tip of rect, i mile from island. Coll. M. Cameron and D. J. Griffin, 7/10/67.
325. Samc as AM 3 I6.
326. Same as Λ M 316. From broken piccrust, ransect B. Nov. ig66.
327. Same as AM 326. From large head of Galaxea vesiculatus from lagoon.
328. Same as AM 316. 6 ft FT 202, outer southern face of reef, near island from Acropora sp. Coll. F. H. Talbot and party, 28/9/67.
329. Same as AM 328. Io fi. 29/9/67.
330. Same as $\triangle \mathrm{M} 3 \mathrm{3} 6$. From living coral. $18 / \mathrm{II} / 66$.

33'. Same as AM 318.
332. Same as $A M 3^{1}$ G. From algal mat, lagonn shallows.
333. Same as AM 316. 20 fi. F"T 205. Outer southern face of reef, near island. Coll. F. H. Talbot and party, 23/9/67.
334. Same as $\Delta \mathrm{M}$ 316. From broken coral piccrust, lagoon near island, transcet B., Nov. 1966.
335. Same as AM 332.
336. Same as AM 332.
337. Same as AM 327.
338. Same as \triangle.M 321 .
339. Same as AM 32 I .
340. Same as MM 324. Reef crest in Halimeda and mixed weed and under stones, NW: face, low tide. Coll. M. Cameron and D. J. Griflin. 9/50/67.
341. Same as AM 334.
342. Same as NM 334.
343. Same as AM 334.
344. Long Rect, Collaroy, N.S.W. Coll. I. Smith, 16/7/67. In rock pool.
345. Darwin, N.T. Coll. B. Mecamm, 1966.
346. Minnic Waters, near Grafon, N.S.W. Goll. (B. Bidelle carly in 1967 from intertidal rock platiorm.
347. Port Hacking, N.S.W. Coll. G. Lewin, 1966 . Taken with bait prawns.
348. Hunter River between Neweasle: Harbour and Raymond Terrace, N.S.W. Coll. N. Ruelto and J. C. Yaldwyn. $2 / 1 / 67$. Prawn trawl from mud tottom.
349. Same as AM 346.
350. Wellington Point, Brishane. Qid. (ohl. E. F. Reik, $30 / 8 / 60$.
354. Same as AM 1oz.
356. Hunter River, between Neweastle Harbontr and Raymond Terrace, N.S.W. Coll. N. Rucho and J. C. Yaldwyo, 2/11/67.
 Cisiro Survey, Sta. 4.
383. Off Meadland, Quarantine Bay. Noth Head. Sydncy Harbour, N.S.W. Musemm party $5 / 4 / 67$. Shallow water.
384. Stradbroke I. Noreton Bay, Qhe. Subtidal, Scpt. Oct. igi8. From yollow crinoid.
385. Same as AM 27 , May 1967 .

386 . Cared Bay, Pitwater, mear Sydney, N.S.W. Goll. J. (. Yalrwyn and A. Healy. 26/10/68.
387. 22 mi. off moull of Yardi River, NE. of Onslow. W.A. 23 fi. CSIRO Survery $13 / 966$. Commensal on erinoid. Coll. I. Monro.
383. Botle and Glass Rocks, Syducy Harbour, N.s.W. Coll. J. (. Yaldwyn and parts, 29/11/68.
389. Ashburton River north of Exmoth Gulf, W.A. Coll. 1. Momo, (SIRO Survey.
390. Heron L. Capricom Group, Qla. Coll. Julie: Beoth, 1965.
391. Strand, near Queens Howd, Fownsville, Qld. Coll. 1). R. Fielder, Oct. 1 g66.
392. Gilleth Cay, Swain Reff. Qld. Australian Musem Swain Reefs Exped. 20/10f6z. From crinoid.
393. Long Recf, Collaroy, N.S.W. Coll. J. Holloway, 5/9/67.
394. One Tree I., Capricom Group, Qkl. 4o ft. Coll. J. C. Yaldwyn, 28/4/66. From lemon-ycllow comatulid (Sta. FT 97).
394a. East Point, Darwin, N.T. Coll. E. Pope, Oct. 1965 . Among arms of dark crinoids.
395. Intertidal rock platform, Long Reet, Collaroy, N.S.W. Coll. A. Healy, 1/1/68.
396. Long Reef, Collaroy, N.S.W. Coll. J. C. Yaldwyn and party, 21/1/68. On reef fla .
 Swann Rerlis lispod．Sin． 6
子保．Same as AN 30才．

fose Same as AM 317 Now 10 get
fer，Scarborengh，Nomemon Bay，（2ld．J．S．Hyad collection，a pigife．

fol．Sam＂as NM H3． 35 forms，Sta． 1.

for．Summ ats \M1 10 ．

 mombital mok phathom．

引anh！m．

430．Samm as
M27．

？33．Sanm as $A N 1+3$ ．

1．f．Sanme as AM50．
4．f1．Same as $\backslash M 1$ ， $20 / 162$.
4f2．Same as A N 4 1 ，20／4／62．

 14 fmes．（ioll．D）．F．McoMichatland I．（：．Yaldwyt．Dec． 1 g6g．
4．5．Anchoraye Spit，Manly，near Brashane，Momon bay，Qid．J．S．Hynd collection， $27 / 7 / 46$.

 rect，under stonns．

 $20.7 / 16$

 comatulicl．

 bridge salinity at low water e. gotoon within metwork of interconnecting formet eat, bumess ant chambers, of below surface of river bank at water dable. Same lin. of MMerti.

 1009-19\% 1
ANE. 3159.

4095. Spencers (indi, S.. 10 fins. Befont rata.
4197. Same locality. entims. 1913.

627. 中 mi. N. of Kingstom. S.

12月. Dammestom. Tasmamia. Dewhaged boes.

1.ff1. Sante as 1 ght fefore ugen.
1.523. Same a 1 tif.
 prawn haw.

228. Nad I. Moman Bay. N.s.W. Pmo A. R. Accalloch. bago.

22e3g. Dum I.. mar Tults. Odi. Pres. I. I. Banfidd, rome

35 \% No collection informatom.

AMP.4229. Port Denison, Qld. July 1918. Coll. E. H. Rainford.
4283. Finches Bay, Gooktown, Qid. Sept. 1gi8. Coll. A. R. McCulioch.
4303. Outer edge, St. Crispin Reef, ofl Port Douglas, Qld. Scpt. Igi8. Coll. A. R. McCullocts.
4313. Hope 1., ntar Qld. Coll. A. R. McCulloch. Scpt. 1913.

4430 . Port Arther. Tasmania. Pres. E. Mawle 1019.
4497. Woolwich, lane Cove River, Sydney, N.S.W. Coll. R. Kinghomn, 18/12/19.

460t-2. Lagoon, South West Rocks, Trial Bay, about i/4 mi, from occan beach, N.S.W. Coll. J. R. Kinghom, before 19:20.
468ı. Port Hunter Newcastle. N.S.W, Pres. D. G. Stcad, $15 / 3 / 07$.
4760 . Straw Beach Quarantine, Port Jackson, N.S.W. Pres. B. G. Suad. Rec. 1920.

4863, Pot Stephens, N.S.W. Jan. 1920. Dredged. Exch. E. A. Briggs, Sydmey Univ.
4933. On coast al Conger, mar Syducy, N.S.W. Pres. f . A. MoNeill. Dugust igen.

1950 Long Recl. Collaroy, N.S.W. Pres. Miss E. Hehom, 6/3/12.
4996. Notelk I.. S. Pacilic. Pres. R. M. and W. Laing. and J. (. Quintal by Prot. Chilton and A. Liddefl. Ree. tgeo.
 1g20. lionn rock prot.
516 . Rowe Bay. Port Jackom, N.s.W. Pres. State Trawling Industry, 1gen Fram dromes.
5137. Trial may, M.S.W. (abli. A. Kinghorn, before 1921.

5275 77. Lord llowe L, Tasman Siaa Pres. A. R. Neculloch, before rges.
 lum rock prol.

 Weshed up after stome

 blom raze.

 cavince $i=$ dead coral dedgad from depth of 20 tit.

635053 . Cotomatra, Old. Coll. A. A. Livingotone, it/id/22.

G4B7-88. Dredged betwen Low and Pigs Red and Crme Point, Port Jackson, N.S.W. (6ill. H. O. FIAcher, $25 / 8 / 23$.
6495. Bonte and Glass Rockis, Port Jackson, N.S.W. Coll. A. A. Livingstone, 28/7/23Interictal.
6-54-15. Dredged beweco Sow and Pigs Reer and Shark I., Port Jackson, N.S.W. 5 ; Ims. Coll. F. A. McNith, iG/5/23.
6526-27. Fairyhoiver, Manly, N.S.W. Goll. A. A. Livingstonc, 20/10/22.

6005. Base Beach. Vanderlin 1., Lir Edw. Pellew Group, Gulf ol Gapentaria, Qhd. Pres. W. E. J. Paradice, betom wez3. Prom a clump of live coral hauded in by scine ne: on a beach.
Go32. Shat I.. Port Jarkon, N.S.W. Coll F. A. Meveill and A. A. Livingstome, Jan. 1022.

67ro. Gimnamatua Bay, Pot Hacking, N.S.W. Goll. F. A. McNeill, G/io/za.
6736. Grea Barrier Reef, Qhi. Pres. W. L. J. Paradice, R.A.N., 1g23.
6825. Rail Pier. Port Darwin, N.T. Coll. W. E. J. Pararlice, 1923.

686i. Freshwater Beach mear Manly, sydney, N.S.W. 6 - wo tithew low tide mark. Pres. A. F. Basset-Hull, $5 / 1 / 24$.
6862-3. Lord Howe I., T'asman Sca. Pres. G. P. Whitley, 1924.
6g10-14. On coast 2 mi . south of entrance of Tuggerah Lakes, N.S.W. Coll. A. A. Livingstone and H. Fletcher, 1924. From intertidal rock pools.

AM P. 7027. Bowen Harbour, Port Denison, Qld. Pres. E. H. Rainford, 1924. Dredged, hard sand and mud bottom, 15 -20 ft .
7050 . Alongsicle Bowen Jetty, Port Denison, Qld. Pres. E. II. Rainford, 192.4. Hand netted in patch of weed, low tide in 3 it of water.
$7164-65$. Sheltharbour, N.S.W. Coll. F. A. McNeill, r924. Intertidal, under stomes.
7187. Long Reef, Collaroy, N.s.W. Pres. W. Boardman. 5/4/24. Interidal under stones on sandy beach.
7221. E. of Ulladulla, N.S.W. 3520 S. 15047^{\prime} E. 74 fms. Pres. C. W. Mulver, May 1g24. Oir conglomerate boulder taken by trawler Goonambee.
722. . $16-18 \mathrm{mi}$. NE. of South Had. Port Jackson, N.S.W. 750 Bm fis. Pres. J. Wright, 192. From Conglomerate bouleter taken by trawler Goonambet.
7234. Ofl Towra Point, Botany Bay, N.S.W. Pres. J. H. Wright, April rg24. From kelp holdfast.
7240. Shellharbour, N.S.W. Intertidal. Pres. (. McAndrew, ig24.

7377.79. 1222 mi. NE. from Cape Greon, N.S.W. $3^{66} 4^{6}$ fins. Goll. A. A. Livingstone and 11. O. Ftetcher Junc 10?

 amongst sand and poblides, under boulders.

775 . No collecing imformation.

 Batratmel. 20/725.
 1925.

826it. Port Phillip, Victoria. Pres. M. Ward. iges Dredged.
 From didal fats.

 1925.

Son-r2. Sar Port. Por Phillip, Victoria. Pres. M. Ward, regot.

ajob. Sca Port, Por Phillip, Victoria. Pros. M. Ward. igeti.

8793. (it Bartier Red, war Bowen, Old. Pros. Sure Liena. I.. Lockwood, 1927.

8866. She thartoour, N.S.W. Pres. (i. AlcAndrew. 1927.

B963. Botany Bay, N.S.W. 15 li. Coll. F. A. McNioll, G/10/27.
 On piece ol test timber.
gofi4. Long Reof, Collaroy, N.S.W. Intertidal. Pres. M. Ward, 2:/4/28.
go68. Woodord Bay, Lane (dove River, Sydney, N.S.W. Pres. (i. R. Kinghorn. In shallows on tidal llats.
9072 . Long Red, Collaroy, N.S.W. Pres. M. Ward, wifle3.
Qop6 77. Shore, Woolloomooloo Bay, Port Jackom, N.S.W. Intertidal. Pres. M. Ward. 7/3/28.
9337. Shell Harbour, N.S.W: Pres. (i. Mcandrew, 1929.
9422×23. Port Willunga, S.A. Pres. H. M. Hale, 1930.
9431. Long Rect. Collaroy, N.S.W. Coll. F. A. McNeill, 193°.
9443. WSW. from Gabo I.. Victoria. 7ofms. Pres. Capt. K. Moller, 9
9481. Port Darwin, N.T. Pres. L. B. Wilson, 193°.
9670. Port Curtis, Qld. Pres. C. Bedsor, 993°.
roog'b. North West I., Capricorn Group, Qld, 9 fms. Coll. A. A. Livingstone and W. Boardman, Dec. 1930 Jan. 1931.

IV P. moge, Sow and Pigs Shoal, Pont fackan, N.s.W. Low water math. Pas. (apt. L.
(©omesor. impl.

 Anril 193^{6}.

 Camemon. Day mgs.

 1/ent. Oll rerf.

 metod in woed ont lidal flat.
 stones.
11734. Near Watson's Bay, Port Jackson, N.S.W. Coil. E. Iope mpt. From growhs on boom pile defence drawn alfer war.
 bawler.

12127 Iong Rof, (bllamy, N.S.W. Pres. P. Colman, Jan, Porz. Fom coastal met at low-hate in ractusting sponge.

 mel han.

 3ator.

B5pti Watomis Day. Pors Jacksen, N.S.W.

 breelsed.
855\%. Port Jackson, N.S.W.
${ }^{3} 356$. Watson:; Bay, Port Jackson, N.K.W.

13562 . Nelson's Bay, Port Stephens, N.S.W.
13563. Port Jacksm, N.S.W.
1356. Port Ciurtis, Old. Dredged 4 fins.


```
    59570. Part Jackson, N. S. W\%
    1957. Lowl Ilowe l. Tasman Sta.
```



```
    13575 - \({ }^{6}\). Pont fachson, N.i.W.
    13,77. Bolany Bay, N.S.W.
    1350. Nelomis Bay, Pomt Smonems. N.s. N:
    1357t. Victoria. (ioll F. li. (ilamt.
    fogios. Porl Jackom, N. S.
    13.0.0. Pow Supheres. N.S.W.
```



```
        Irllime fig, 62.
```



```
        prawn llawl.
```



```
    1.fos. Bowen, (2ld.
```



```
    18005. Same as NM \(33^{\circ}\).
    rBoog. Sante as A A1 20\%
    pomy. Name as \$N1 300.
    1800\%. Sanm as \(\ \sqrt{6} 25\).
```


PERSONAL COLLECTIONS MADE BY A. H. AND D. M. BANNER

 dateol.
 with holess, within the sumbleme.
 froms shore ond onder reot.
 bonddem treyond a maroow torrace.

 action.

 and overgrown Acomonasp.

BAL: 12. Same locality. 5/1/63. Intertidal, under rocks.
13. Same locality. Intertidal, reef lati. From dead base of small head of Pocillofora sp.

1f. Arlington Red (abom 1.5 mides off Grem I.), Qdd. 68 ft . 6/1/6\%. Vigorous reed
5. Same locality, 6\% li deep. Near ree edge.
16. Same locality from midde reef expesed at low watar.
17. Same locality. O At deep. From massive Ioriter sp.
13. Same locality. Noar red edere.

20. Same Iomaliy. Redf flat mar expesuse at low-low wator. From various dad and overgrown heads.

 forimes spornale dead.

 samd w dichay madiy sama.

 gramie and coral.
 Bontom of sand with muth sea werd; only oncasional leose pieces of dead comal.
 some growing (o)
 genoms recks and moder beach rock, both lying embedided in coarse w fine samb, apparently in acas of fresa water secpage.
 sp. from reen in middle of cave.
 but curconts stronger that B. WU 4^{2}. Aostly fom overgrown heads of deropora sp . and one massive head. genus unkmown.
4. Hayman I., Qld. 26 fi, on W. and of nomhern meef. 23/土/68. Bottom mosily comsolidated cead coral with some coral rubble.
45. IO mi. N. of St Lawrence, Qld. $25 / \mathrm{s} / 68$. Under rocks at mid-tide level. Quite a bit of organic matter mised with substrate.
fi. Heron l., Gapricom Group. Qld. $28 / 1 / 68$. Shore collecting on a 12.8 tide. Under pices of broken beach sandstone, low in intertidal where sand substrate was wet from beach run off. Water salty to brackish.

BAU 47. Same locality. From low-low tide level to about - 5 ft . 20/1/63. At outer edge of coralline ridge on reef dieecty S. of Heron I., QId. Pieces pried off consolidated ridge surface, some overgrown with coralline algar, some living coral.
48. Same locality. Depths - 5 5 $10-25 \mathrm{ft}$. From seaward face of ref. Face mostly consolidated living and dead corals cemented by coralline atgac. Specimens mostly from small fragments broken from consolidated coral, many from associated sponges.
49. Same locality. About o tide level. 30/1/68. On coralline ridge directly N. of istancl. Ridge composed of solid plates, cemented together with a thick layer of coralline algae with almoss no holes for shrimp.
50. Same locality $30 / 1 / 68$. On SE. side of island, at rdge of tidal "stream" next to island on ref that. At low tide this is jo fo wide and it deep and carries the water from the reef llat at high speed. Collection from mostly deacl, coascly branched heads and between layers of encosting coral.
51. Same locality, Same as BNU qfor 2. Shore collecting under stones, tide slightly lower Han in BSU 4^{6}.
52. Same locality. From ref flat - 2 to - -3 li below low-low water. 31/1/6\%. About t.5 miles due wast of island. lsolated coral patehes on samd sobstrate; coral mostly loose: Deads in patches atising several fect above samel flats.
53. Same locality, further cast than BAU 52. at odge of "lagom". Conditions similar
 tew of sand. Specimens mondy from dead hearls of Podilofera sp. A massise head of corallime agga yictled atmost mothing.
54. Same boalify. Same as BAL go, but midde of :erlat at fideph. Sand botom with momerous loosely consolidated comal massos of many specis. Dominant conal a heavily brancled Pories sp.

 near monnols.
 nutw growing wad arca. Tops of coral and lithothamian ridge exposed at how-low bide, moderate wave action. Specimens tare.
 and beyod amsolidatad rider. Comals mosty living and fimbly lixed Specimen

 Specimens came from behand dead zone where sam packets were 30 foll acoss, and 2 fi below ref sulace with vigomely growing cotal on eders.
 At eflere of neap tids.
 No assectiated rocks.

62. Shelley Beach, Port Macquaric, Qld., at 2.6 tisle. so/2/63. Under rocks on ocean bach, Specimens found only in aras where medinm sized mocks. wp wh inchen acrose fested in a stable configution on a substate of small rocks and sand. Livedenty this arrangement could withstand hor onstanght of waves.
 rocks on shore. Mach of shore moddy and wiboul abpheds. bat specturns were

 tide. Area mprotected fron momberly winds and waves. hand well wabed without any sill and the rocks ate ustally depply modeded. Nospecimese wow found under lilly exposed rocks lying in Joose samd but occurted under rocks bodded in sand at odge of tide poots; this lather area semi-protected from ondatugh of waves by momerous much latger rocks.
 smooth ochre clay sulstrate with small fissures drough which water from beach "werp" fowed. Specimens under fine rocks (up to $2=3$ inches across) wedged in fissumes.
75. Darwin Harbour, N.T. 20/2/68. S. of piors at odge of mangrow ara, Substrate: soft mud with gravel and small rooks embedided and intertaced with mangrove roots. Apheids found in shallow burrows in more gravely areas, relatively high in tide zone.

COLLECTIONS LOANED PERSONALLY BY C．R．SMALLEY＊

 bis lidd work and profaciog them wish（S．


```
        pmos.
```



```
        sam!.
```


COLLECTIONS MADE BY MR JOHN BOASE OF FANNIE BAY，DARWIN，N．T．

 ctimutho
f．Sanar as \｜B；

COLLECTIONS FROMI JAMES COOK UNIVERSTTY OF NORTH QEEENSTAND． TOWNSVILIE

 1 मinのはil？

7．Magturic I．．Old！$\quad 166$.

1ヶ．Mastict 1. ．（1）

20. No collection intomation.
 pool.
22. No colbection inlommation.

COLLECTIONS FROM MACLEAY MUSEUM, UNIVERSITY OF SYDNEY

MM 72 Pon Darwin. N.'T.

11. Pomy I.. (2ld.

16i. Tasmanat.
16if. Pert Dambin, N.T.

20:. Tasmania.

COLLECTIONS FROM THE QUEENSLAND MUSEUM, BRISEANE

rime. Some a 16 geg.

1033. Sam as II fogs.

12g6. Angomic. N.S.W, ntifs.

1fif\%. Nacl I.. Momacon Bay. (Jhe.
2165. Coll G: (atals. 2354.


```
()M N1 2238. Moreton lsay, Qld. Coll. 1). Gonnor.
    2230%. South Port, SE: Qurensland.
    2240. Sandgate, Qld. Goll. T. C. Marshall and G. P. Whitey, 25/io/28.
    22.42. Dunwich, Qld. -/4,62. Mid shore Kostera.
    2243. Victoria Point, Moreton Bay, Qld. ig/2/62. F. C. Vohra's Sta. 3. Zovera.
    2244. Norcon lBay, Qho. Coll. F. C.. Vohra, 1g62.
    2245. Vichoria l'oint, Mormon Bay, Qld. Is/6/Gn.
    2246. Noreton JBay, ()d. Goll. F. C.. Vobra, 25/7/62.
    2247. Southpurt, SF. ()kl. Coll. R. Puhhman, ig2o.
    224%. Princess Charlotte bay, Qla. Coll. (apt. 'J. Kemr.
    2249. Bribie I, SL: Old.
    2361. Trawled off (: Moreton, SL, Old. Goll. B. Marris, April 1gG5.
    2gyr. Nommam River, N. (2ld. Coll. Dept Harbours & Marine, %/6/G5. Irom prawm
        |rawl.
```


COLLECTIONS FROM THE QUEEN VICTORIA MUSEUM AND ART GALLERY, LAUNCESTON

The mombers ace of the Mancom"s catalogue; the" "Q "" is our designation.
 westem side of month of Tamar River, N. Tasmania, foma 19650 . 68.

COLLECTIONS MADE BY R, U. GOODING, BARBADOS, W.I.

 Lerges in rouk pools.
 washings of Diadem womem colleceded ender comb heads and rocks in the deeper perols.
 in niches and caves in corst rock on red.

Ste. Bate I.. mar N. head ol Botany Bay, N.S.W. 3-1 m. Goll. R. Gooding and Enderwater Rescatch (iroup mombers. 2g(6) 69.
 fien Ed hinometre in rock pool.
 hollow at hase of coral lisad.
 rodgersi in lagoon under rocks and coral.
figoc. Same as Gzo. From Trimetstes gratilla.
Gzod. Same as 6ooa. From helocidaris 'aberolath.
foongod. same as 6zod.
 rontors collected in hothors on rocks and coral.
 rodgeri collected in hollows and cocsices of rochs and comal.
fi23a. Nortolk 1. From lagon side of red at E. and of Sydnce bay near entrance to Emily Bay. $12 \mathrm{~m} .152 / 20$. From Gonrovphome wdersi collected from spaces under rocks and coral.
Gigh. Same as 623a. 1 1/2 11 . From Diadrma satigha.
 sratilla.
623 12. Norfolk I., rocks on S. side ol Anson Bay. $1-1.5 \mathrm{~m} .22 / 2 / 7 \%$. From charctone washings of Heflocidaris tubercuiata.
62.4. Norfolk I., "Crystal Pool" on W. side of Point Ross. 13 m . Coll, R. Gooting and S. Blaxland, $2 / 2 / 71$. From Comrosthams rodeersi found in holes and rocky sides of pool.

COLLEGTIONS FROM THE SOUTH AUSTRALIAN MUSEUM, ADELAIDE

The "SM" is our preface: the "C"' numbers are the museum catalogue numbers, while the four collections without the "(:" are our designations.

```
SM (:-16t. East side of Groote Eyland, N.'T. Coll. N. Tindale, Aug. 192 I.
    G-jon. Quemstime Reef, Kangaroo I.,S.A. Goll. W. II. Anderson, registered i025.
    S-50z, St Vincent Gulf, S.A. Goll. W. HI. Baker.
    Q-504. Marino Red, W.A. Coll. W. H. Baker and H. M. Hake, 1923.
    O-305. Nowthem Territory, registered rg25.
    (i-51t. Gilenelg. Si Vincent GulC. S.A. Goll. H. M. Ha! Aug. Igro. Collected after
    storm.
    (-515. (Mucmseliff Recf, Kangaroo l., S.A. Coll. A. Z.ret . 1383.
    Q:-517. Noyis Mrh. S.A. 3 1 lms. Coll. F. Wood-Jones, registered 1925.
    (:-518. Kangaroo I., S.A. (all. A. Zivt.
    (B05. Qucenselif. Kangatoo 1., S.A. Goll. Malr: & Tinclale, January, 1g20. Intmidal
        from uncler stones.
    &- 10G6. 5mi. off Semaphore. S.A. 5 Fms. Coll. H. M. Hals.
    (:-107%. Gkembs, i.&. Coll. H. N. Hake, mgisterel rged.
```



```
    2. Hallem Cove, S.N. (ionl. J. Fommby (ollin.
    3. Poina Limooln. S.A. (oll. NI. Dretge egomb,
```


COLLECTIONS FROM THE TASMANIAN MUSEUM ATND ART GALEERY, HORART

 Cominghatm.

 woodiook of wreds
 Jilly sotize Jirm seathen dertes.

COLLECTIONS FROM THE UNIVERSITY OF QUEENSLAND, BRISBANE

These coltertions were made by varmo individuals in the Brishane area, including some
 specimens came fom due Unisersity of Otomatabd. All will be reformato the Univesity of Quensland. and probably will eventually be placed in the Queenstand Musum. The full designation in ous:
 Juty, substrate sandy-mud.
2. Moreton Bay. 36 fins. Coll. (. R. Smaller, $13 / 5 / 68$. Collected in one-half hour prawn trawl during day, from channels of a large sponge caughe in trawl, substrate sandy-mud.
3. Nomen Bay. Cohl. (.. R. Smalke . $4 / 5 / 68$. Dug up on intertidal Zostera beds at Dumwich. Sheimp oceupied burrows dug about 6 inches into sandy-mud substrate.
f. Moreton Bay. Coll. S. Gook, May 1 g 68 . Canght intertidally mear jetty at Vetoria Point. Substrate mud and rubble.
5. Moreton Bay. Coll. (:. Ellway, 25/5/67. From prawn trawl ncar Dunwich.
(i. Moreton Bay. Coll. (: Ellway, 25/5/67. Collected by hand from piles at and of Dunwich Jetty. Substrate sandy-mud.
7. Moreton Bay. Coll. C. Ellway, 25/5/67. From near Dunwich.
8. Moreton Bay. 3 fms. Dredged in morning. Substrate gritty-muddy sand.
9. Jumpinpin, Qld. 5 fms . Coll. T. Helbig, $30 / 4 / 68$. In bottom of plankton haul. Substrate sandy.
11. Moreton Bay, Qld. $3-6 \mathrm{fms}$. Coll. C. R. Smalley, $13 / 5 / 68$. From one-half betr shrimp trawl at day. From channels of targe sponge. Substrate sandy-mud.
 a wowl momed al joty. Solstrate vady-mat.

15. Whatm Bay Givelsidar 17. Mantla Sim.

26. Nowem Bay. witio. Vof firther data.
 peots amomen weters and mosed lats

 From moter manes.

 Stin. 3°
 smallo Gofl. No. ©
 Smalloy (oll No. $15 . \quad$ l: moul
29. Same as loge Smathe (bill. No. 17.

32. Same as U(), Sh Smally © Coll. No. fo.

COLLECTIONS FROM THE NATIONAL MUSEUM OF NATURAL HISTORY, SMITHSONIAN INSTITUTION, WASHINGTON, D.C.

 Ahswilla.


```
    moifig. Same as lis momba.
```



```
        sand mom
```



```
        amel coame valul.
```



```
        racks. Muddysilt, mangmose island.
```



```
        homen coral
```



```
        Triduna.
```


COLLECTIONS FROM NATIONAL MUSEUM OF VICTORIA, MELBOURNE

 (insignation.

\Mifi. Poritand. Vicioria. Coll. Mr Buter, Dec. 1883.
17. Coast of Adetaide to Kangaroo I., S.A. Coll. K. H. Cummins, 1902.
18. Same as VM14.
19. Barricr Reef of Cape Vork, Qld. Goll. (. French, Sept. 881.
20. Same as VM: Oct. 6, 1879.
21. Phillip l.. ofl Cowes. Victoria. 16 20 lms. $1 / 6 / 195 \mathrm{I}$.
22. Port Wilhmea, S.A. (boll. R. 1I. Cummins, $6 / 4 / 1900$. Fulton collection.
23. Ethion Heade wear Bundabreg. Qhd. Dec. rege3.

25. Norfolk I.
26. Same as VM2. In rocks, dredged.

26. Hobsons Bay, Victoria, (ioll. J. A. Korshaw, regor,
20. Low Ister, (imat Bamior Rodi, Old.
30. Oif Rhyll. Westem Pont Viontia.
35. Normanvilc, SA.
32. Si Vinctul Gulf S.A. Coll. R. Cummins. agoz.
33. Pon Altert Vimoria. (ioll. Datingly, tow. Dredged.
31. New Sonth Vales. July mot. Purchated from Ah Brown. N.S.W.
39. Western Pori bay. Victoria. Pres.S. W. Fahton. a3totoge.

 the Wosema pedex followed be the Fisherise am! Wildilie sation mombers.!

COLLECTIONG FROM THE WESTERN AUSTRALIAN MUSEUM, PERTH

 Damath frotio.

 Sand and cotal.
26 65. Same as $256,1 / 6, t 60$.
 pos.
 Danome sistor.

3265_{5} Rotmest I. W.A. Coll. (; Ditumer, $/$ /his. From sponge.
 6,62.
3. 85 E Emonth Gulf or Shark Bay, W.A. Trawtect. Coll. R. M. Mekay on the Peron. Winter rofor.
3565. NE. of Gardon 1., W.A. i5 fi. Coll. P. Barretticmated, $4 / 3 / 59$. From an oht boom pile.
36 6ig. Lardir Creck Station, North West Cape. W.A. Coll. Douglas and Mees, $2 / 8 / 59$. Linder stomes on sandy beach.
3765 . Dirk Hartog I., W.A. Cohl. J. Solls, /4/57. From crayfish pots.
$3^{8-65} \quad 7$ mi. SW. of Bunbury, W.A. rims. Coll. F. R. V. Lancelin, $13 / 4 / 63$.
39-65 Yule l'oim. N. of Cairns, Qld. Coll. G. F. Mees, ti/1o/6i.
40-65. Careening Bay, Garden I., W.A. Coll. B. R. Wilson and Marine Croup, 26/ri/6t.
f-65. Shark Bay, fo mi. SW. ot Carnarvon, W.A. Trawled. Coll. A. Sncll, 1/6/6o.
42 -65. Lancelin 1.. W.A. Coll. Neptune Submariners, 14/1/58.
43 -if. Point Quobha, W.A. 24.30^{\prime} S., 11324 E. Coll. Jan. 59.
44 tis. Exmoth Gulf, W. A. Coll. W. Dall, $10 / 9 / 53$.
 CSIROSta. 3, 25it/64. Sponge and bryozoa.

WM 47-65. Victoria Station, Coticsloc, cable station, Perth, W.A. Coll. W. H. Buter. 16/3/6I.
48-65. Trawled off Mandurah, W.A. Coll. Poole Bros, $4 / 1 / 63$.
49-65. D'Estrecs Bay, S.A. Sample 47. 5/4/53.
51-65. Carnac I., S. reel platform, W.A. Coll. E. P. Hodgkin, 20/12/6I.
52-65. South Reef, Penguin I., W.A. Coll. B. Lindsay, i4/ir/64. From sponge.
53-65. North of Darwin, N.T. Coll. R. Kersting, 12/1i/19?.' From buoys and bracom near light house.
54-65. W. of Bluff Point, Gatalion, W.A. 24 4o' S., w3 o3'E. 20 fins. CSIRO) Sia. r3r. 22/8/68.
55-65. Exmouth Gulf, W.A. Trawled at i-mofms. Coll. R. W. Mckay on the Peron. Winter, 1960 . From sponge.
50-65. Same as WM 35-65.
60-65. W. side of Exmouth Gull, W.A. 8-9 fms. 23/9/53. From sponge.
61-6i5. Panchoran luoy, 13/7/6r.
62-65. Woody I. Honman Alhoohos. W.A. Coll. R. P. McMillan.
 16/2/64.
 10/10,6\%.
$65-\mathrm{f} 5$. Betwon Lomg and Table Is. NW. of Onslow, W.A. F. R. V. Lancelin, 18/63. Coarse satel and dead shells.

70-65. Cockaton I. W... (ioll. N. Holiman, March ig63. In dad coral cracks ant hollows.
 $22 / 8 / 63 ;$

 6/3/63.
79-6.5. Gomi. W. and N. bedout I. W... Dredged at 25 lims. Coll. R. W. George on the Doroltere.
 on the Dorothet watore.
32 6i5. Lancelin I. W. A. Coll. R. Ackerman, -/3/61
 Cawthorn on Lancelin.
β_{f} Gof. NNW. of Busedon Jedy, W.A. Dredged at 5 fins. Coll. B. R. Wilson and J. Scabmesk on Lanctin.
856.5 . Near Natonal Fitomes Camp, Point Peron. Coll. R. W. George, 1/a/6i. In "worm" rock.

8763 . Kwinana, Cockburn Sd, W.A. aoo 300 yds NW. off Hz broy. Coll. B. R. Wilsum. $10 / 1 / 5^{8}$.
38.6.j. NW. ol Blall Poim, W.A. 27 13'S., 13 1 G^{\prime} E. 54 fms. CSIRO Star 2of. 9/10/63.
89-65. Yampi Sol, W.A. Coll. (i. A. Robinsom, r/togigo.
go-65. W. of Graldon, W.A. $29^{1} 4^{\prime}$ S., $13^{\prime} 28^{\prime}$ E. 60 fms. CSIRO Sta. $4^{\prime \prime}$. 1/2/6.4.
 Sta. 17, 31/1/6.1.
ge 65. Triges 1., near Perth, W.A. Cull. W. H. Butler, 20/4/6i.
9365. Oll Cleveland Cape, Qld. Dredged in 16 fims. Coll. W. Goode, 24/1/63.

94-65. NW. of Cape Naturaliste, W.A. $33^{\prime \prime} 4^{6} \mathrm{~S} . \mathrm{S}^{14} 4^{\prime \prime} 29^{\prime} \mathrm{E} .75 \mathrm{fms}$ CSIRO. Aug. 1963.
95 65. Near har ol Sonth Passage. Shark Bay, W.A. Coll. R. W. Goorge on Davemr. $1+4 / 60$.
9665, Cockhurn Sid, W.A. Coll. F. V. Damte, 9/2/57.
9765. Emu Point Chamel. Abany, W.A. Coll. R. W. Grorge, $5 / 5 / 59$.
9^{86} G5. Reff fat Yanchep, W.A. Coll. B. Wilson, 27/1/59. Low tide, under stones.
99-65. Same as WM $85-65$. 1 /in/61.
10r-65. Roeburne, W.A. Coll. C. Lambert, 21/9/59. Uncler stones on reef flat.
102-65. "Flat Rocks", Greenough, near Geraldion, W.A. Coll. B. R. Wilson, 23/8/58.

 - dge under motio.

11. anal mok N. of somo.

 grase.

 - 4

 50s. From crinoids.

1-3 15 . San :

 bidal gratik bulleto.

 mathic.

 Whbom and (i. W. Kondrek.

 Wathed tom Comtopa.
 Cofl. Royor an Dasata 3:5mb
 (11) Lantion 6:205)
 ()) 16

[^6]WM 217-65.
220-65.
221.65.

2220-65
$223-65$.
$225-65$ $226-65$.
$227-65$. $208-65$ $229-65$. 23065. 23565.

233-65. $235-65$. 23765. $238 \cdot 65$. $239-65$. $24^{\circ}-6 \overline{3}$ 24165. $242-65$ 2.4365. $244-65$ 245-65. $246-65$
$2.7-65$
$2+365$.
$290-65$.
$251-65$
$252-65$
$255-65$
$256-65$.
257^{-65}
$25^{3} 65$
265 b 5.
$266-65$
2676
26865
$26 i 965$.
$27^{\circ} 65$
271.65 -726

27365
27.46
$275-65$
$276-65$.
$277-65$
278-65.
$279-65$

2 mi. SW. of Pak I., W.A. Honolulu dredge at 10 fims. Coll. B. R. Wilson on Davena, $8 / 6 / 60$.
Shark Bay, W.A. Pres 1/7/64.
Yampi Sd, W.A. Coll. G. A. Robinson, -2/3/6o.
Same as WM $2 \mathrm{If}-65,8 / \mathrm{I} / 62$.
NW. of Bluff Poim, W.A. $27^{\prime \prime} 18^{\prime} \mathrm{S}, 113^{\prime} 16^{\prime}$ E. 54 fms. CSIRO Sta., 9/10/63.
Wood I. Houtman Abrohos, W.A. Coll. R. P. Mc.Millan, -/5/63. 40 mi. W. of Cape Jaubert, W.A. 23 fms. Coll. R. W. George on Dorothea, 13/10/62. On sponge.
Yanchop, W.A. $31^{\prime} 33^{\prime}$ S., $155^{\prime \prime}$ E. 15 fms. Coll. B. Hughill, -15/59.
Same as WM 95-65. 14/5/60.
Same as WM $92-65-14 / 3 / 61$.
 34 mi. oll end of Delambre I., Dampier Arch. Coll. B. R. Wilson on Datena, $5 / 6 / 60$.
NW, Malus Is, Dampier Arch., W.A. io fms. Coll. Royce on Darena, 31560. Woody I., Houman Abrolhos, W.A. Coll. R. P. McMillan.
bay of Exmouth Gulf-- data uncertain, W.A. Coll. K. Godfrey of CSIRO.
Eagle Hawk I., Dampier Arch.. W.A. Coll. B. R. Wilson, $13 / 6 / 60$.
Cockburn Sd, Sta. 31. Colt. W. A. Naturalist Club, 22/2/59.
Point Peron, W.A. Coll. B. R. Wilson, 1/9/63. Among "worm" rocks.
Shark Bay, W.A. Coll. Poole Bros, -i7/63.
Kuri Bay, northern W.A. Goll. Kuri Pearl Lad, -/17/64.
Shark Bay, W.A. Coll. Dy F. R. V. Peron, block 16, 8/7/62.
Shark Bay, W.A. Goll. by F. R. V. Peron, haul $1,13 / 62$.
Heron 1., Capricorn Group, Qld. Coll. R. W. George, 23/6/Gr. From rect that. NW. of Rotnest I., W.A. Dredged go gi fms. Coll. R. W. George on Bluefin Sta. 32. 5/8/62.
10-20 mi. W. of Lafrangs. W.A. ${ }^{12-15} \mathrm{mms}$. Coll. R. W. George on Dorothea, $13 / 10 / 62$.
I 12 mi. W. of S. cond of Garden l. W.A. Dredged at to fms. Coll. R. W. George on Bluefin. $13 / 10 / 62$.
NW. of Rothest J., W.A. Dredged at 37 fims. Coll. R. W. George on Bhefine 12/3/62. From sponese.
Riddell Beach. Bromme. W' A. (Goll. R. Baird and M. MacDonald, 28/i2/6i. Intertidal, under roeks.
Between Roeboume and Onslow, W.A. Coll. R. B. Sharp, 8/9/62. Intertidal.
 From sponges.
Porthediand. W.A. (ioll. Capt. Beamish, g/7/63. Intertidal.
Jorvois (iroyne, (ackbum Sd, W.A. Coll. B. R. Wilson, 3/12/6r. 1 1/2 wi. W. of S. end of Gamen I., W.A. 10 lims. Coll. R. W. George on Bhuc/ur. 19/302.
Garden I., mear Perth, M:A. 100 yds ombore. Cioll. R. Dawson and Marine Gromp. 25/1; 6i. for conal.
Garden li. Caceming Bay, under naval jetty, WA. Coll. Marine Group and Nats (lub, $1 / 3 / 59$ From ponge.

W. of W. end ol Remmest I., W.A. Drederd in 7475 bins. Coll. R. W. (icorge on Bhefln, wh/62.
WNW. Rotnest I. W.A. Dredged 95 gf fins. Coll. R. W. George on Bluefm. 1/362. On sponges.
Bumbury: W.A. (ioll. W. H. Butler, $3 / 6{ }^{2}$.
Mond of Murchison Riser, near (amtheam Ray, W.A. Coll. I. MeDonald. 11/63.
S. side of Point Petorn, W.A. Coll. B. R. Witson, $7 / 12 / 58$. Among worm tube Exmouth Gull, W.A. Dredged at 2 lms. (Goll. F. R. V. Lancelin, 28/8/63.
Port Hedland, W.A. Coll. A. MeKay via P. Barreth-Lennard, 3/5/59. Intertidal. Port Dmison, W.A. $299^{\prime} 7^{\prime} \mathrm{S} ., 114^{\prime} 53^{\prime} \mathrm{E}$. Coll. B. R. Wilson, 24/8/58. Cable Beach, Broome, W.A. Coll. M. MeDonald, 27/i2/6r. In rock pools. Yampi Sd, W.A. Coll. (i. A. Robinson, $/ \mathrm{I} 2 / 60$. W. approaches to Mermatel Str., Dampier Arch., W.A. Coll. Royce on Davena. 27/5/60.
281-65. Adele II., W.A. Coll. W. Goode on Dorothea, 18/n/62. From large clam shell.
 among crinoids.
284-65. Shark Bay. W.A. Coll. Poole Bros on Blucfu, $-1 / 4 / 63$.
285-65. Dampier Arch., W.A. Coll. Neptune Submarincrs.
286-65. Point Gregory, NW. side of Peron Peninsula, Shark Bay, W.A. (ioll. B. R. Wilson, $\mathrm{r} / \mathrm{I} / 60$.
288-65. Palm Beach, Rockingham, W.A. Coll. P. Bartoth-Lonard, 1959. From jetts piles.
289-65. Same as WM $2 \mathrm{tr-65}$. -16/59.
290-65. W. of Carnarvon, W.A. 24 59'S., 11227 E .71 fun. (SIRO) Sta. I97. 8/ro/63.

293-65. N. side of Trigss I., W.A. Coll. W. H. Butler, 8/12/63. Fiom sponge-
294-65. Swan River, P'erth, W.A. Coll. (i. Oloughta, /13;
295-65. Canning River, near Fremantle, W.A. Coll. K. Sheard, /12'65.
29665 . Yanchep recf flat, W.A. Coll. B. R. Wilson, 27/1/59.
297-65. Same as WM 2ı-65. - $6 / 59$.
29^{8-65}. Same as WM a ir -65. $-16 / 59$.
299-65. Yampi Sd, W.A. Coll. G. A. Robinson, -/12/6i.
300-65. Same as WM 2ы 65 . $-6 / 59$.
$301-65$ NE. of Garden I., W.A. Coill. P. Barrett-Lenmard, $15 / 3 / 50$ On old boom piles. 30265 . Same as WM 30165 . +/3/50.
304-65. Oft Cheyncy Beach, Cheyne Point. W.A. 33 54's.. tan 3é E. (ioll. S Barker. - /5/59.
30565 Busselton, W.A. Coll. Univ. W.A. $3 / 4 / 50$.
4449 . Manchurah, W.A. (oll. P. H. Game, 2/4/49.

251-78-32. Cottestor, W.A. Coll. L.. Cilamert. July 1032.
 under urchin Heliocitaris orythogamme.

 11. B. Alevamer, 19 is.
4936. Sanie as llat fas.

8972 Browne, W.A. (ioll. W. B. Alexamer, Oct. Ifif.

g982. Crolesion, W.A. July 1922.

10229 34. Same as WM 10igghmozo. Goll. A. E. Wear, 1023.
10274. Same as WM! wose 31.

1040. Same an WM rogho.
10.67. Same its Wh 10011, [2/12/22. Frem living sponge.

10,

[^0]: * To prevent added confusion in this difficult family, we have limited the key to those genera knewn to Australian waters. If a species is found that does not lit the key, the reader is refered to Holdhus' key to the fatuily ($19555:\{3$), which includes cight genera not known from Australia. In the use of Hollhwis' key, bowever, it should be wealled that the genus Arete has been placed in synonymy (Banner \& Banner, 196o: 135) and that the Pacific species of 7 hanor are placed in the genus Al/heus (Banner \& Banner, ig66a) but the genus is setained for the Atantic species (Chace. 1972: 104). Since the publication of Hothuis' key, three new gencra have been added (Prionat) heus Banner \& Banner rg6o, Leftalfhew Williams 1965 , Betacopsis Yaldwyn r97r) and the genus Metalthens Coutière 1908 has been revived by Chace (1972).

[^1]: * Under this dichotomy also falls Batella Holthois ($=$ (heirohtrix Bate, a888), described on the basis of a single specimen fom Cape York. It can be distinguished from Alfheopsis principally by the lack of a mandibular palp, extremely small and hairy fingers on the chelae of the second legs, and the tack of atticulated pleura on the sixth abominal segment. It will be discussed iat Part III of this paper.

[^2]: * We know nothing of the thire legs of A. hastecli, but as Coutiere described it as resembling both 1. dimorthes and I. minhomess, we assume the third legs are similar.

[^3]: *In this study the "length of specimens" is always the total Jemght from rostrum to tip of telson unless carapace lenglh is sheciliod.

[^4]: * Dr Chace has called our attention to an croo we made in the discussion of Satmoneas bafangae Banner \& Bamer (1966: 156) wherein wo stated the species, has, rather than lacks, the articulated plema of the sixth ablominal somite. We have re-examined the original notes the holotype was lost) and discover the crror crept in during the rewriting of the paper for publication.

[^5]: * In personal correspondence Jr J. C. Yaldwyn has indicated that he believes his species A. garrich (1971:87) may prove to be a synonym of this species as redeffned. We will await his further analysis.

[^6]: ill
 10265

 Lamelin. asims

 \%

 $36 ; 60$.
 :73-65.
 $17+65$.
 $175-65$
 $=-6-65$

 : 2 :
 $\therefore 8$.
 $\therefore 6$
 $\therefore-$:-
 \therefore an
 (iir, $\%$
 $\therefore \quad 45$
 4 $1-3$.
 1215
 293-4

 206 65
 $9-65$
 $196-65$

 :90-65. Exmouth (inth. W.A. Trawled 6 fims. Coll. CSIRO, Oct 1955.
 zeif fig W. side if Friday Bay, Houman Ahrohes, W.A. Dredged iotig fims. Coll. F. R. V. Lenclim. $3 / 36$.
 Patweon, tibi. From craypot.
 195\%. From cravish pots or ropes.
 203-65. Same as Wh 95-65. Honolth Dredge at 6 fins. $1.4 / 5 / 60$. Sand and weed.

 20565 . Cockburn hd. W... 8 fi. Marine Naturalist (Ilnb). Inshore.
 Living under sea urchins /hatiocidaris spe.
 $209-65$
 $210-65$
 $211-65$
 $212-65$.
 $11 / 1063$.
 tidal, under sioncs.

