# REVISION OF THE GENUS SERGIA (DECAPODA: DENDROBRANCHIATA: SERGESTIDAE): TAXONOMY AND DISTRIBUTION 

ALEXANDER L. VERESHCHAKA<br>P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences Nakhimovsky Pr. 36, Moscow 117851, Russia<br>E-mail: alv@ecosys.sio.rssi.ru


#### Abstract

Extensive Danish collections of sergestid shrimp taken during the "Dana I" (1920-22), "Dana II" (1928-30), and "Galathea" (1950-52) Expeditions have been examined. These samples comprise a total of 7,910 specimens: 4,497 females, 3,018 males and 395 juveniles. Additional material (244 specimens) from Dr. Th. Mortensen's expeditions, "Atlantide", "Tenyo-Maru", and Russian expeditions has been used to describe several additional species known from local areas; in all, over 8,150 specimens have been examined. All 28 hitherto known valid species and 6 new species of the genus (Sergia kensleyi, S. burukovskii, S. vityazi, S. jeppeseni, S. oksanae and S. crosnieri) are considered, and the taxonomic position of one species under description by another author is indicated. The history of the genus is briefly reviewed; morphology, development, and taxonomy are considered. Keys to species groups and speeies within each species group are given. Five species are newly transferred to the genus Sergia: Sergestes inous, S. phorcus, S. plumeus, S. challengeri, and S. stellatus; and Sergestes profundus is newly referred to synonymy with $S$. japonicus. The genus Sergia is divided into 9 species groups or isolated species: $S$. tenuiremis (only species), $S$. inoa (only species), S. japonica ( 2 species), S. gardineri ( 5 species), S. phorca ( 9 species), S. robusta (4 species), S. prehensilis ( 2 species), S. challengeri ( 8 species), and $S$. lucens ( 2 species). Each species group is diagnosed. Division is based upon structure, position and number of photophores; development of hepatic tubercle/spine; prominence of ocular papilla; articulation of first maxilliped endopod; form of posterior branchial lobe on somite XII; structure of petasma (development and armature of processus ventralis; presence of lobus inermis and lobus armatus; presence, division and twisting of lobus terminalis and lobus connectens). All species are described in a uniform manner with special attention paid to the petasma and photophore pattern; numerous morphometric characters are given. The description of each species is provided with a synonymy, list of material, species diagnosis and remarks treating synonymy confusion and interspecific morphological affinities and differences; data on geographical distribution and a brief record of vertical range and the species' mode of life are given. Illustrations of lateral carapace view, scaphocerite, uropods, petasma, male clasping organ and distribution maps are given for each species; figures of other characters are provided if appropriate. Dr. K. Stephensen's watercolours, made during the "Dana I" Expedition, are herein reproduced in colour for the first time. Scanning electron photomicrographs of male copulatory organs are provided for several species.


## CONTENTS

Introduction ..... 70
Materials and Methods ..... 72
Material studied ..... 72
Abbreviations ..... 73
Measurements ..... 75
History of the genus Sergia ..... 76
Development ..... 77
Taxonomy ..... 78
Summary of the sergestid genera ..... 78
Synonymy and diagnosis ..... 78
Genus Sergia Stimpson, 1860 ..... 78
Generic morphology ..... 79
Generic taxonomy ..... 81
Key to species groups and isolated species of Sergia ..... 83
Sergia tenuiremis (isolated species) ..... 84
Sergia tenuiremis (Krøyer, 1855) ..... 84
Sergia inoa (isolated species) ..... 88
Sergia inoa (Faxon, 1893), n. comb. ..... 88
Sergia japonica species group ..... 90
Key to species of the Sergia japonica species group ..... 91
Sergia japonica (Bate, 1881) ..... 91
Sergia laminata (Burkenroad, 1940) ..... 95
Sergia gardineri species group ..... 98
Key to species of the Sergia gardineri species group ..... 98
Sergia bigemmea (Burkenroad, 1940) ..... 99
Sergia gardineri (Kemp, 1913) ..... 102
Sergia inequalis (Burkenroad, 1940) ..... 106
Sergia kensleyi n. sp. ..... 110
Sergia splendens (Sund, 1920) ..... 112
Sergia phorca species group ..... 116
Key to species of the Sergia phorca species group ..... 116
Sergia bisulcata (Wood-Mason in Wood-
117
Mason \& Alcock, 1891) ..... 121
Sergia filicta (Burkenroad, 1940) ..... 124
Sergia grandis (Sund, 1920) ..... 127
Sergia maxima (Burkenroad, 1940) ..... 131
Sergia phorca (Faxon, 1893), n. comb. ..... 133
Sergia plumea (Illig, 1927), n. comb. ..... 136
Sergia potens (Burkenroad, 1940) ..... 139
Sergia wolff Vereshchaka, 1994 ..... 142
Sergia robusta species group ..... 144
Key to species of the Sergia robusta species group ..... 144
Sergia extenuata (Burkenroad, 1940) ..... 145
Sergia regalis (Gordon, 1939) ..... 149
Sergia robusta (Smith, 1882) ..... 153
Sergia vityazi $\mathbf{n}$. sp. ..... 157
Sergia prehensilis species group ..... 159
Key to species of the Sergia prehensilis species group ..... 159
Sergia prehensilis (Bate, 1881) ..... 160
Sergia scintillans (Burkenroad, 1940) ..... 164
Sergia challengeri species group ..... 167
Key to species of the Sergia challengeri species group ..... 167
Sergia challengeri (Hansen, 1903), n. comb. ..... 169
Sergia fulgens (Hansen, 19199 ..... 172
Sergia hansjacobi Vereshchaka, 1994 ..... 176
Sergia jeppeseni $\mathbf{n} . \mathbf{s p}$. ..... 179
Sergia oksanae n. sp. ..... 182
Sergia stellata (Burkenroad, 1940), n. comb. ..... 185
Sergia talismani (Barnard, 1946) ..... 188
Sergia umitakae Hashizume \& Omori, 1995. ..... 192
Sergia lucens species group ..... 195
Key to species of the Sergia lucens species group. ..... 195
Sergia crosnieri n. sp. ..... 196
Sergia lucens (Hansen, 1922) ..... 199
Concluding Remarks ..... 201
Acknowledgements ..... 201
References ..... 203

## INTRODUCTION

Numerous obstacles encountered when I tried to identify specimens of one of the most abundant and regularly sampled group of shrimps, the family Sergestidae, especially the genera Sergia and Sergestes, suggested that the group needed to be
revised. This monograph was initially proposed by members of the Johannes Schmidt Foundation, Drs. Erik Bertelsen, Jørgen Nielsen, and Torben Wolff, as a full redescription of Burkenroad's types. A closer examination of the material has revealed the
necessity of complete examination of the "Dana" material, because the type specimens seem to have been simply picked at random from the collection; many new species and specimens of the species described by Burkenroad remained unnoticed.

Therefore, when the late Dr. Bertelsen and Dr. Nielsen suggested examining the extensive Danish "Dana" collections and Dr. Wolff, former curator of Crustacea, confirmed the possibility of such longterm studies, I was glad for the opportunity to begin this work. During several visits to the Zoological Museum, University of Copenhagen (ZMUC) over 5 years, I studied the main part of the collections and prepared this monograph, which is just about half of the total work, as revision of the genus Sergestes, equal to Sergia in size, has yet to be completed. Sergestes is characterised by the presence of the organs of Pesta, which have recently been shown to vary in number, shape, and position (Foxton 1972, Walters 1976).

Among dendrobranchiate shrimps, the Sergestidae remains one of the most poorly understood families. This is due to several reasons. The habitat has strongly influenced their external morphology, and such reliable taxonomic characters as spines, setae, grooves, etc., vary very little within the family. The female external copulatory organ (thelycum) shows insignificant and often uncertain variation, and dissection, preparation, and mounting of this organ for examination is a time-consuming procedure that makes the practical value of this character very low. It is the male organ (petasma) that is the only important character for the final identification of sergestid shrimps.

Many species of the genus Sergia are circumglobal and very often demonstrate significant geographical variation. Only a very extensive material, like that taken during the Danish circumglobal "Dana" expeditions, can provide an opportunity for successful systematic analysis. Gurney \& Lebour (1940), studying Sergestes larvae in the Atlantic Ocean, found unidentifiable larvae that were believed to represent several unknown species. A preliminary examination of the "Dana" collections led to the following remark by Burkenroad (1940: 35): "the proportion of unnamed forms is greater than even such [an] extensive collection might have been expected to include...". This citation is from the first preliminary report on the pelagic penaeids with schematic descriptions of 21 new species without illustrations. The second, more detailed
examination of the same collections presented here has resulted in the erection of several additional new species and synonymization of some described ones, because a more complete systematic analysis has become possible, and a more mature picture of the group taxonomy could be obtained.

As the genus Sergia Stimpson, 1860 comprises almost one half of the sergestid species, I decided to begin studies on the sergestids with this genus. The work was split into two stages: (1) studies on the morphology, systematics (with the description of new species), geographical and vertical distribution, and biology of the North Atlantic and Caribbean species based on the material collected by the "Dana I" North Atlantic Expeditions in 1920-22, and (2) studies on the world fauna of the genus Sergia with the emphasis on the taxonomy, systematics, and geographical distribution of the species, based on the material collected during the "Dana II" Expedition in 1928-30. Extensive data on distribution of the shrimps, obtained through the examination of pelagic collections of the "Galathea" Expedition 1950-52, are a supplement to the second part of the work. The first part of these studies has been published (Vereshchaka 1994a). A detailed analysis of the vertical distribution and biology of the genus based on the "Dana" cruises is in preparation.
The present monograph contains descriptions of the morphological characters used in the taxonomy and systematics, keys to and descriptions of the species, a description of the geographical distribution of each species, with maps, and brief remarks on the vertical range. In addition to the necessary description of several new species, redescription of all known species is done in a uniform manner with a standard set of figures including at least: lateral carapace view, antennal scale, uropod rami, petasma, and male clasping organ. This should help marine biologists to identify these shrimps quickly and reliably; redescriptions are necessary because some original descriptions are very old and do not contain the necessary information for identification. Although morphological proportions presented in the descriptions might appear too detailed, they are necessary as a replacement for quantitive characters such as number of spines, setae, etc. commonly used for other penaeids but absent in this group. Sometimes, in the description of mouthparts and appendages, they replace numerous detailed figures of the same organs, differing only
in proportions. Sergestids in the pelagic collections are usually not in good condition, but smashed and with most appendages broken. At the same time, the "Dana" material provides a unique opportunity to find those very rare undamaged specimens with all appendages present that can exemplify the complete external morphology of the species. This information (shape and articulation of maxilliped 3 and pereopods 1-3, photophore position, etc.) has been included in the descriptions; otherwise, it would either be lost or too voluminous (in the form of figures) to be represented in the monograph.

When possible, I examined and figured type specimens. In some cases this was not possible. My requests to Calcutta and some other places where certain types may have been kept since the beginning of the 20 th century received no replies, or none until after the manuscript had been completed (ZSI). Some types were lost during a loan from the Zoological Museum, University of Copenhagen. When a loan was too difficult to obtain, types of some well known species were not examined as the original description was complete enough for species identification and the abundant "Dana" material agreed with the description.

In a morphologically uniform genus such as Sergia with only small differences between species, divergence is mainly due to the geographical isolation. Therefore, the geographical distribution of
species may provide additional arguments for separation/synonymization and identification of species. In addition to the general biogeographical interest, this makes it necessary to provide as detailed information as possible on the geographical distribution, based both upon new data presented herein and information published earlier.

In spite of their planktonic mode of life, the sergestids show different relationships to the main oceanic biotopes: the pelagic, the benthopelagic, and the benthic. Although even comparatively modern publications (e.g., Judkins 1978) call them "holopelagic", the information available makes it possible to refer known species either to pelagic or to benthopelagic ecological groups of organisms. Following Marshall \& Merrett (1977) and Vereshchaka (1995a), organisms dependent on the benthos at any stage of their ontogeny will be considered benthopelagic; the others, not related to the seafloor and spending all their life in the water column, will be regarded as pelagic. Vertical and geographical distribution of animals have been shown (Vereshchaka 1995a) to be reliable criteria for referring a species to either one of these groups. As vertical distribution of species is not discussed in detail here, I provide several biological remarks and arguments to characterise the species either as pelagic or benthopelagic.

## MATERIALS AND METHODS

## Material studied

These studies on the genus Sergia are mainly based upon the huge material collected during the Danish "Dana" expeditions. Collections of the "Dana I" Expedition in the North Atlantic and Caribbean Sea in 1920-22 were examined thoroughly (Vereshchaka 1994a). Re-examination of several species from the "Dana I" as well as examination of the "Dana II" round the World Expedition material have, however, made it possible to correct some errors in my previous conclusions. A station list of the "Dana I" Expedition can be found in Schmidt (1929) and Tåning (1944).

The most voluminous and essential part of the material derives from the collection taken during the "Dana II" Expedition round the World in 192830. This extensive material was thoroughly exam-
ined from the beginning through St. 4000 . Further stations, taken in the North Atlantic and Mediterranean, were not used as they represent the North Atlantic fauna more poorly than do collections of the "Dana I" Expedition, stations of the latter covering all the temperate and tropical North Atlantic. A station list of the "Dana II" Expeditions with more detailed information can be found in the Introduction to the report from the Carlsberg Foundation's Oceanographic Expedition Round the World 1928-30 (Jespersen \& Tåning 1934).

The third important collection used for the present paper is that taken during the Danish "Galathea" Expedition round the World in 1950-52. About half of the known species of Sergia are represented in the "Galathea" material, and information on their geographical distribution in many
cases makes it possible to extend the known areas of the species' occurrence. The "Galathea" shrimp collection was sorted totally, and all Sergia specimens found were examined. The list of the "Galathea" stations and more detailed information can be found in Bruun (1958). Available material of some other Danish expeditions was used, for example, that of Dr. Th. Mortensen's Pacific Expedition, and the West African "Atlantide" Expedition. Since the well known carcinologist Dr. H. J. Hansen also worked at ZMUC, the crustacean collection includes specimens collected during the "Talisman" and "Tenyo-Maru" expeditions, and this material has also been studied.

Material of Russian expeditions has been examined and published in several Russian papers (e.g., Vereshchaka 1990b, 1995b). These collections are not considered in this paper except for $S$. umitakae, which was first found in 1988 during one of the Russian expeditions and later was recorded and described by Hashizume \& Omori (1995) from Japanese waters (see details in the remarks to this species). Since the Danish collections have only few specimens of this newly described species, the material of the 17 th cruise of the Russian R/V "Vityaz" was examined for the redescription of $S$. umitakae. A station list and more details of this expedition can be found in Vereshchaka (1995a).

During the "Dana I" Expedition, Dr. K. Stephensen painted several watercolours showing the appearance of freshly caught sergestids. Since the colour of most species is still unknown, it was decided to reproduce Stephensen's pictures and to include them in this revision as Plates 2-3. Members of the genus Sergia were believed to be red; Stephensen's watercolours of S. talismani and $S$. hansjacobi show both species to be almost completely transparent.

In the maps of the species' geographical distri-
bution, black symbols always refer to the "Dana I" and "Dana II" material, and similar white symbols usually correspond to other available material.

Pelagic shrimps were mainly collected by stramin nets (S 50, S 150, S 200): open, conical, 50, $150,200 \mathrm{~cm}$ in diameter at the opening, respectively. Some were caught by a ring trawl (E 300), an open, conical net, 300 cm in diameter at the opening; in the upper third of the length, meshes of the net, from knot to knot, are 24 mm ; in the middle part 18 mm ; and in the lowest third only 12 mm . Duration of hauls usually ranged from $60-90 \mathrm{~min}$ at $50-300 \mathrm{~m}$ to $120-180 \mathrm{~min}$ below 300 m of actual depth.

In order to estimate the vertical range of each species, the total meters of wire out was divided by 3 , as was generally accepted by those participating in the "Dana" expeditions. In most cases when various stramin nets were used, the actual depth is generally close to $1 / 3$ of the length of wire paid out. If a ring trawl was attached to the bottom end, the reduction may be closer to $1 / 2$. Some errors may also be caused by catching a few additional specimens while retrieving the net. However, possible deviations from actual vertical ranges should not be so much as to be misleading in estimation of the depths of occurrence of the animals. More detailed information and data on the vertical distribution will appear elsewhere (Vereshchaka, in prep.).

In the description of the material of each species, the following format is used (all lengths are in mm ):

Expedition: station number - sample number (number of females, range of Cp length ( mm ); number of males, range of Cp length; number of juveniles, range of Cp length). For example:
"Dana" station: 1142-2 (3f 6½-8, 4m 7-9 \& 1j $2^{1 / 2}$ ).

If one or two groups ( $f, m$, or $j$, see below) are not found, the format will be incomplete.

| Abbreviations |  |  |  |
| :---: | :---: | :---: | :---: |
| The following abbreviations are used throughout the text and in figure texts: |  | j | - juvenile(s) |
|  |  | LA | - lobus armatus |
|  |  | LAc | - lobus accessorius |
|  | - antenna I (Antennula) | LC | - lobus connectens |
|  | - antenna II | LI | - lobus inermis |
| BMNH - British Museum (Natural History), abbreviation for catalogue numbers at NHM |  |  | - lobus terminalis <br> - male(s) |
| Cp | - carapace | MC | - Museum of Comp |
| f | - female(s) |  | - mandible |




## Measurements

Fig. 1
All measurements were taken with an ocular micrometer. Parts measured are shown in Fig. 1. The narrow triangular telson with paired dorsal movable spines shows no morphological variation within the genus.

All measurements were made on three typical specimens of each species (where available, including holotypes and paratypes). Variation was low and did not usually exceed $7 \%$ of mean values; only averages have been used in descriptions and taxonomic analyses. Some presented values may disagree slightly with measurements obtained from figures; this is because of the 3-dimensional position of morphological structures and the deviation between the presented average values and certain figured individuals.

All observations, measurements, and figures were made using Wild compound or stereo dissection microscopes with drawing apparatus, magnification ranging from 6 to 500 .

Fig. 1. Explanation of measurements. - A, carapace and abdomen: Cp length (a) = posterior margin of ocular sinus to dorsoposterior margin of carapace, measured dorsally; $C p$ height $(b)=$ maximal $C p$ height in lateral view, usually at about $2 / 3$ length of carapace; abdomen length $(\mathrm{c})=$ from anterior margin of somite I to posterior margin of telson. - B, abdominal somite VI: height $(\mathrm{a})=$ maximal height in lateral view; length (b) = shortest distance between anterior and posterior dorsal margins. - C, anterior part of body (eye removed on right side): total length of A I peduncle $(a)=$ measured in lateral view; maximal length of its segments ( $b, c$, $\mathrm{d})=$ measured in lateral view; scaphocerite width (e) and length $(\mathrm{f})=$ measured in dorsal aspect from base to distal point of blade, distolateral tooth not included; length of $A$ II peduncle $(\mathrm{g})=$ measured in lateral view. -D , tail fan: telson length (a) $=$ measured along dorsal midline; telson width ( b ) = maximal width, usually at about $1 / 5$ length of telson; Up basipod length ( c ) = measured in lateral view; Up exopod length ( d ) and maximal width (e) = measured in lateral view; Up endopod length ( f ) and width ( g ) = measured in lateral view. - E, branchial chamber: length of arthrobranch on somite VIII (a) = measured in straightened position along dorso-ventral axis; length of pleurobranchs on somites $I X(\mathrm{~b}, \mathrm{c}), X(\mathrm{~d}, \mathrm{e}), X I(\mathrm{f}, \mathrm{g}), X I I(\mathrm{~h}, \mathrm{i})$, and $X I I I(\mathrm{j}, \mathrm{k})=$ measured as arthrobranch. - F, eye: corneal length (a) and width (b) = measured in lateral view; eyestalk length (c) and width (d) = measured in lateral view; papilla length (e) and width $(\mathrm{f})=$ measured in dorsolateral view. - G, mandible: length of segments 1 (a) and $2(\mathrm{~b})=$ measured along lateral sides in ventral view. - H, maxilla II (measurements on Mx I and Mxp I are similar): exopod length (a)= measured along medial side and width $(\mathrm{b})=$ maximal width in ventral view, at about $1 / 4$ length; palp length $(\mathrm{c})=$ measured along lateral side and width $(\mathrm{d})=$ measured at base; endopod length $(\mathrm{e})=$ measured along longitudinal axis, from basal suture to tip, and width $(\mathrm{f})=$ maximal width, at about $1 / 2$ length; endite length $(\mathrm{g})=$ average of lengths of two endites measured along their longitudinal axes and width $(\mathrm{h})=$ average width of their bases. - I, pleopod: lengths of basipod (a) and exopod (b) = measured in straightened position, along lateral sides; length of endopod (c) = measured along medial sides. - J, pereopod III (measurements on Mxp II-III and other pereopods are similar): maximal lengths of ischium (a), merus (b), carpus (c), and dactyl (d) = measured in lateral view. - K-L, dorsal and ventral views of petasma (exemplified by $S$. bisulcata): $L A$ (a) lobules of $L C$ (b, c), $L T$ (d), $L I$ (e), PV (f).

## HISTORY OF THE GENUS SERGIA

The first sergestid species was described by H Milne-Edwards (1830), who established the new genus Sergestes for a single new species, Sergestes atlanticus. Krøyer published descriptions of 15 new species, first as preliminary short diagnoses of 11 species without figures (1855), and later of the first 11 plus 4 more, all 15 in full $(1856,1859)$; three of these were later shown (Hansen 1896) not to belong to Sergestes. Stimpson (1860) briefly described 5 new species and erected a new genus, Sergia, for one of them. Until recently, most sergestid researchers, including Bate and Hansen, considered Sergestes plus Sergia as a single genus Sergestes sensu lato. Bate (1881) published preliminary descriptions of 4 new species of Sergestes, and later (1888) described 31 species of Sergestes sensu lato, 24 of which were new to science, from the "Challenger" collection; the others were considered to be the ones described by Milne-Edwards and Krøyer. However, of all these species only 6 were really mature forms, 25 being larvae.

In addition to these huge contributions to the knowledge of Sergestes, several minor works were published (e.g., Smith 1881, 1882, 1886; Ortmann 1893; Adensamer 1898; Alcock 1901), some with descriptions of a few new species. Regrettably, most of these descriptions were far from satisfactory; the main reliable character for distinguishing the species within the group, the male copulatory organ, the petasma, was often ignored. When researchers described mature males, which happened very rarely, the drawings of the petasma were not satisfactory for comparing the species with certainty. Thus, by the end of the 19th century, within Sergia and Sergestes, 59 species had been established, 7 of which had been referred to other genera (not always with good reason!) by various authors.

It is therefore not surprising that until Hansen's papers $(1896,1903)$ one could find nothing but complete disorder in the systematics of Sergestes sensu lato. It was Hansen's efforts that made it possible to obtain a much clearer impression of the real taxonomic situation within the genera. Having examined all Krøyer's type specimens in ZMUC and several other types, Hansen (1896: 936) pointed out that "of the 59 (or 60 ) hitherto described species only about 20 , or one-third of the total number, have been established on adult animals, such as have almost or entirely arrived at sexual maturity;
and that almost all the other species are true larvae, and even of these a considerable portion are larval stages of species already established on adult specimens".

During the first three decades of this century, Hansen (1919, 1920, 1922, 1925, 1927) continued to accumulate and scrutinise knowledge on sergestid taxonomy. At the same time, several descriptions appeared that each contained the description of 1 (rarely 2 ) new species. Within this period, three important monographs provided great insight on three regional sergestid faunas: Hansen (1919), on Indo-West Pacific sergestids; Hansen (1922), on North Atlantic sergestids; and Illig (1927), on Indian Ocean sergestids.

It is during this period that two Danish expeditions, "Dana I" and "Dana II", took place, first in the North Atlantic (1920-22), and later round the world (1928-1930). The exhaustive material from these expeditions was sorted and studied for several years afterwards, and in 1940, M. Burkenroad published very brief preliminary descriptions of 21 new sergestid species, without any figures. This did not improve the situation, because ever since even expert carcinologists have published descriptions of new species that were already described by Burkenroad. The situation became even more awful when several of Burkenroad's holotypes were lost (in transit) during loans of material from the Copenhagen Museum.

In the last half of the 20th century, descriptions of new species of Sergestes sensu lato became very rare. Instead, detailed papers on the biology of selected species (Omori 1969) and on general sergestid taxonomy (Yaldwyn 1957, Omori 1974) appeared. Records of the regional sergestid fauna were made for the waters around South Africa (Kensley 1971), the North Pacific (Krygier \& Wasmer 1988), and the North Atlantic (Vereshchaka 1994a).

Over the years, the status of Sergestes and Sergia has changed. Since Sergestes Milne-Edwards, 1830 and Sergia Stimpson, 1860 were established, some carcinologists (e.g., Ortmann 1893) have supported the generic status of Sergia. However, later Hansen (1896: 938) pointed out that Sergia "should be cancelled as being of no value at all". Indeed, the characters used by Stimpson (1860) are not of generic value. However, Stimpson's type species of the
genus (Sergia tenuiremis) was the first in a group of species, morphologically different from the others, that made the genus valid. The great authority of Dr. Hansen supported keeping all members of Sergestes sensu lato within one genus for a long time. The concept of the single genus was gradually broken. Burkenroad (1940) and, especially, Yaldwyn (1957) were the first who noticed several characters that distinguished two groups within Sergestes (presence and character of photophores, organ of Pesta) and proposed division of the enormous genus Sergestes sensu lato into 2 subgenera: Sergestes sensu stricto and Sergia.
Another argument for keeping the two groups separate was given by Gurney \& Lebour (1940), who studied the ontogeny of Atlantic sergestids. The most interesting feature in the development of Sergestes sensu lato is the striking difference which exists between the larvae of the different species, while the adults are often separable only with diffi-
culty (see next chapter). These divergences at earlier developmental stages indicated heterogeneity of the group, similar adult stages being the result of convergence due to the planktonic mode of life.
In his monograph on the pelagic shrimps, Omori (1974) once again reviewed the ontogenetic and morphological differences between Yaldwyn's subgenera Sergestes and Sergia and believed them to be of generic significance. Since Omori raised their taxonomic status, most recent authors have supported the separation of the two genera.

During the last years, combined efforts have been made to understand the faunistic composition and morphology of the Dendrobranchiata as a whole. One of the best examples is the book by Pérez-Farfante \& Kensley (1997), who consider the family Sergestidae within the superfamily Sergestoidea and provide keys and diagnoses to the families and genera of penaeoid and sergestoid shrimps and prawns of the world.

## DEVELOPMENT

Our knowledge of sergestid development is very restricted by the enormous practical difficulties of keeping pelagic animals alive under the laboratory conditions. Only few observations have been made on the development of selected sergestid species in the laboratory: Nakazawa (1916), Gurney \& Lebour (1940), Gurney (1942), Omori (1969, 1971), Knight \& Omori (1982), and Mallo (1986). Development as reflected by changes in measurements of the prebuccal somite was studied by Alvarez (1988), and development and/or life cycles based on plankton collections has been reported by Mallo \& Boschi (1982), Omori \& Jo (1989), and Oshiro \& Omori (1996).
The period between spawning and hatching seems to be rather short, about 30 hours in Sergia lucens under natural conditions (Omori 1971). The larva hatches as a nauplius with 3 pairs of limbs: A I, A II, and Md.
The next stage, elaphocaris (protozoea), possesses functional mouthparts and a carapace not fused with the thorax; paired eyes are present at the 1st elaphocaris instar, although probably not functional; at the 2nd instar, the abdomen becomes segmented, and the Md has lost its natatory function. Larvae swim by means of A I, biramous A II, and the exopods of Mxp I-II, usually head upward and forward.

The next stage, the acanthosoma (zoea), has pereopods well developed and pleopods rudimentary or missing. Larvae swim by means of Mxp III and some of $P$, usually ventral side up, abdomen first.

The next stage, the mastigopus (megalopa or post-larval stage), has all the appendages developed, slightly resembling adults. Post-larvae usually swim by means of pleopods.

There are 3 elaphocaris instars; the number of other instars seems to vary depending on the species. Moulting probably occurs each few days (e.g., S. lucens, from 4 to 6 days (Omori 1971)).

The elaphocaris at instars 2-3 may be divided into 3 distinct types called $S$. dohrni, S. ortmanni, and S. hispida types (Gurney 1924). Their carapaces bear the same number of processes, differing in the form and position (Gurney \& Lebour 1940):
S. dohrni type: Supraorbital, lateral and posterior processes with numerous long lateral spines. This type is characteristic for several groups of the genus Sergestes sensu stricto.
S. ortmanni type: Lateral and posterior processes without lateral spines, but with long spines attached to the carapace at the bases of the processes. This type is characteristic for the Sergestes corniculum species group (see Yaldwyn 1957) of the genus Sergestes sensu stricto.
S. hispida type: Lateral and posterior processes without long spines, sometimes with long spinules at the base. This type is characteristic for the genus Sergia.

The $S$. ortmanni type seems to be a derivative of the $S$. dohrni type rather than of the $S$. hispida type, since the postorbital processes have long spines as in the former type (Gurney \& Lebour 1940).

Observed divergence in the morphology of the larvae provides evidence for divergence within

Sergestes sensu lato. Developmental patterns as well as dermal photophores and the absence of the organ of Pesta were some of the main arguments for the last division of this artificial taxon by Omori (1974). Other evidence is related to the hypertrophied (relative to other genera of sergestids) ovaries that in mature females extend to the pleon: This character has never been observed in the genus Sergestes sensu stricto.

## TAXONOMY

## Summary of the sergestid genera

The family Sergestidae consists of 7 genera: Lu cifer Thompson, 1830 in the subfamily Luciferinae Bate, 1888 and Acetes Milne-Edwards, 1830, Peisos Burkenroad, 1845, Petalidium Bate, 1881, Sergestes Milne-Edwards, 1830, Sergia Stimpson, 1860 and Sicyonella Borradaile, 1910 in the subfamily Sergestinae. Within the Dendrobranchiata, the Sergestidae are generally characterised by the (1) laterally compressed body, (2) reduction of chelae, and (3) reduction of 2 posterior pereopods that are natatory if present.

The genus Lucifer comprises very aberrant shrimps with rudimentary chelae present only on P III, without a male clasping organ or any trace of branchs, with specialised male ventral processes on abdominal somite VI and the telson, and with other minor peculiar characters. This genus is usually positioned alone within the subfamily Luciferinae. Among the rest of the genera, Sicyonella is closer to the common sergestid root: (1) all chelae on P I-III well developed; (2) P IV-V, although natatory, 7segmented and long; (3) branchiae voluminous on somite XIII.

Very closely related to each other, the genera Acetes and Peisos include nearshore and estuarine species which are very rare in planktonic collections offshore. Members of these genera have either completely lost the natatory pereopods (Acetes) or these are very strongly reduced to a non-functional state (Peisos). Gills are present; chelae, although rudimentary, are found in P I-III.

Another group includes mainly pelagic genera, occurring offshore: Petalidium, Sergestes, and Sergia. In these genera, natatory P IV-V, although lacking segment 7, are paddle-like, long, and functional. Two other characters, in contrast to the con-
dition in the Acetes-Peisos group, are the more reduced chelae on P II-III and their absence on P I. Branchiae are present on somite XIII (somewhat rudimentary in Petalidium), the clasping organ is well developed, and the petasma is the most complicated in the family (and probably among all shrimps), with several lobes and processes. In Sergestes sensu stricto a specialised luminescent organ in the form of a modified gland (organ of Pesta) appears, while in most species of Sergia, dermal photophores are present.

Affinities and differences between Sergia and all other known sergestid genera are shown in Table 1.

## Synonymy and diagnosis

## Genus Sergia Stimpson, 1860

Sergestes. - Krøyer 1855 (part): 22; 1856 (part): 3; 1859 (part): 219 [not Milne Edwards, 1830]. - Bate 1881: 193; 1888: 387. - Smith 1881: 445; 1882: 97; 1884: 416; 1886: 93. - Wood-Mason in WoodMason \& Alcock 1891a: 190; 1891b: 353. - Faxon 1893: 216; 1895: 163. - Ortmann 1893: 114. Hansen 1896: 947; 1903: 56; 1908: 83; 1919: 5; 1920: 478; 1922: 38; 1925: 23; 1927: 2. Adensamer 1898: 626. - Riggio 1900: 20. - Alcock 1901: 49. - Lo Bianco 1903: 181. - Stebbing 1905: 87; 1910: 318. - Kemp 1910a: 25; 1910b: 640; 1913: 55. - Pesta 1913a: 64; 1913b: 405; 1914: 195; 1915: 120; 1916: 227. - Balss 1914: 17. - Illig 1914: 349; 1927: 283. - Nakazawa 1915: 1; 1932a: 31; 1932b: 32; 1933: 365. - Nakazawa \& Terao 1915: 622. - Terao 1916: 220; 1917: 299. - Sund 1920: 7. - Gurney 1924: 94. - Cecchini 1928: 34. Boone 1930: 121. - Miranda 1933: 5. - Yokoya 1933: 12. - Gordon 1935: 308; 1939: 498. - Okada

Table 1. Affinities and differences between Sergia and all other known sergestid genera. NA $=$ not applicable, $+=$ present, $-=$ absent.

| Genera | Male <br> clasping organ | Chelae on P |  |  | FunctionalP IV-V | No of segments in functional P IV-V | Branchs <br> on somites VII-XIII | Complex petasma | Bifid PV <br> of petasma | Male PV on abdominal somite V and telson | $\begin{aligned} & \text { Organ } \\ & \text { of } \\ & \text { Pesta } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | I | II | III |  |  |  |  |  |  |  |
| Acetes | + | $+$ | + | $+$ | - | NA | + | - | - | - | - |
| Lucifer | - | - | - | $+$ | - | NA | - | - | - | $+$ | - |
| Peisos | + | $+$ | + | $+$ | - | NA | $+$ | - | - | - | - |
| Petalidium | + | - | + | + | + | 6 | $+$ | $+$ | + | - | - |
| Sergestes | + | - | + | $+$ | + | 6 | + | + | - | - | + |
| Sergia | + | - | + | $+$ | + | 6 | + | $+$ | - | - | - |
| Sicyonella | + | $+$ | + | + | + | 7 | + | + | - | - | - |

1935: 699. - Zariquiey y Cenarro 1935: 94. Burkenroad 1937: 323; 1940: 43. - Welsh \& Chace 1938: 367. - Gurney \& Lebour 1940: 21. Legendre 1940: 224, fig. 39. - Gurney 1942: 188. Zariquiey Alvarez 1946: 57; 1956: 407; 1968: 61. Barnard 1946: 384; 1950: 641. - Holthuis 1952b: 87. - Dieuzeide 1955: 20. - Dennell 1955: 400. Springer \& Bullis 1956: 134. - Kurian 1956: 23. Dieuzeide \& Roland 1958: 59. - Holthuis \& Gottlieb 1958: 111. - Richardson \& Yaldwyn 1958: 26. - Huzita 1959: 235. - Kubo 1960: 113; 1965: 595. - Bacescu \& Mayer 1961: 192. - Maurin 1963: 2; 1968: 480. - Allen 1967: 33. - Aizawa 1969: 60. - Okutani 1969: 16. - Omori 1969: 1. Lagardère 1970: 1027; 1972: 661. - Foxton 1970: 974. - Ribeiro 1970: 6. - Vilela 1970: 122. - Sakai \& Nakano 1985: 26.

Sergia Stimpson, 1860: 46 [p. 115 in reprint]. Ortmann 1893: 37. - Caullery 1896: 371. - Kemp 1906: 7. - Pearcy \& Forss 1966: 1137. - Omori 1974: 236. - Walters 1976: 816. - Butler 1980: 49. - Kensley 1981: 64. - Krygier \& Pearcy 1981: 97. - Krygier \& Wasmer 1988: 50. - Vereshchaka 1994a: 73; 1995a: 1650. - Hashizume \& Omori 1995: 72.

Subgenus Sergia Yaldwyn, 1957: 9. - Foxton 1970: 976. - Kensley 1971: 247; 1972: 30; 1977: 18. - Crosnier \& Forest 1973: 307. - Donaldson 1975: 45. - Lagardère 1978: 7. - Vereshchaka 1990b: 138.

Diagnosis: Carapace and abdomen smooth, rostrum as small protrusion of carapace; inner flagellum of A I transformed into male clasping organ; Mxp I with 3 or 4 -segmented endopod; Mxp III 7segmented, propodus and dactylus subdivided into several subsegments; P I 6-segmented, lacking
dactylus, with propodus subdivided (in many species incompletely) into numerous subsegments; distal part of carpus and proximal part of propodus with strong, curved setae on the flexor margin, forming sort of subchela instead of true chela; P IIIII progressively increasing in length, 7 -segmented, with propodus subdivided into several subsegment; P IV-V progressively decreasing in length, flat, 6segmented, lacking dactyli, with all segments setose except anterior margins of carpus and propodus of P IV; ovaries extending into pleon; petasma symmetrical, consisting of 3 parts: pars astrigens, pars media, and pars externa; organ of Pesta absent, dermal photophores usually present.

## Generic morphology

Sergia is characterised by a smooth carapace with a small rostrum having a rounded, acute, or bifid tip. The form of the rostrum in many species varies in shape not only within one species but also within a single sample (Vereshchaka 1994a) and is of much less taxonomic value than was believed earlier (e.g., Kensley 1971). The abdomen is smooth, with or without a postdorsal terminal spine on somite VI. The pleurae are not serrated.

Eyes have the cornea pigmented, brown or black, with the eyestalk usually bearing a distolateral papilla. Antenna I has a 3-jointed peduncle, with a statocyst in the proximal part of the basal segment. The outer flagellum is long and slender; the inner flagellum is sexually dimorphic. Females have the inner flagellum simple and slender; in males the flagellum is transformed into a clasping organ (Fig. 2 B ): segment 3 usually has a finger-like distoventral protrusion usually bearing a terminal tubercle; segments 4 and 5 are elongated and swollen on their


Fig. 2. Illustrations of selected characters in Sergia. - A, total petasma exemplified by Sergia splendens, male, "Dana" St. 1217-4, Cp length 7.3 mm . - B, outer male flagellum (clasping organ) exemplified by Sergia bisulcata, male, "Dana" St. 3683-2, Cp length 23.6 mm . - C, photophore position on Cp exemplified by Sergia prehensilis, male, "Dana" St. 3664-1, Cp length 11.4 mm .
outer margin; one or more serrated bristles, and a few setae are usually present on the dorsal side of segment 4 . Male clasping organs are present in (and figured for) all studied species. The scaphocerite is lanceolate, usually with a distolateral tooth, with anterior and inner margins entirely serrate. Proximal muscles of the scaphocerite are distinctive and vary in shape. Dorsal views of scaphocerite with proximal muscles are given for all studied species.
Mandibles have the pars molaris well developed, wide and powerful, the right one with 2 teeth on the outer margin, the left one with a single tooth at the same position. The mandibular palp is 2 -segmented. Maxilla I has a 1 -segmented palp, an endopod, and an endite, with the palp bearing 1 stronger stout spine near the apex. Maxilla II has a well developed exopod (scaphognathite) bearing a rounded anterior and subtriangular posterior lobes, a 1 -segmented palp with numerous small spines near the end, an endopod, and 2 subequal endites.
Maxilliped I has a long, wide and flat endite, with a 3 - or 4 -segmented endopod, a 1 -segmented
flattened exopod, and an epipod; the basal segment of the endopod has several stout spines on the distomedial margin. Maxilliped II is 7 -segmented and flexed, with each segment thickly covered with setae. Maxilliped III is 7 -segmented, straight, long and slender; each segment is setose along both inner and outer margins; the propodus and dactylus are subdivided into several subsegments, with articulations sometimes more or less incomplete. Hansen (1920), Kensley (1971) and some other authors found no subsegments in S. splendens Sund, 1920 ( $=$ S. crassus Hansen, 1922). After examination of glycerine-preserved appendages of this species, I did find dactyli and propodi subdivided, although this subdivision is sometimes difficult to see.
Pereopod I is 6 -segmented, lacking a dactylus, with the propodus subdivided (in many species incompletely) into numerous subsegments; the distal part of the carpus and proximal part of the propodus bear strong curved setae on the flexor margin, forming sort of a subchela instead of a true chela, which is absent. Pereopods II-III progres-

Table 2. Types and distribution of branchiae in Sergia. $+=$ present, $-=$ absent.
$\left.\begin{array}{l|cccc}\hline \text { Appendages } & \text { Epipods } & \begin{array}{c}\text { Arthro- } \\ \text { branchs }\end{array} & \begin{array}{c}\text { Pleurobranch, Pleurobranch, } \\ \text { anterior lobe }\end{array} \\ \hline \text { Mxp I } & \text { lamellar } & - & - & - \\ \text { Mxp II } & \text { lamellar } & + & \text { lamellar lobe }\end{array}\right]$
sively increase in length and are 7 -segmented, with the propodus subdivided into several subsegments, although articulations sometimes are incomplete and barely visible; the distal part of the dactylus and propodus bear tufts of setae partly hiding the proper chelae. Pereopods IV-V progressively decrease in length; they are flat, 6 -segmented, and lack dactyli, with all segments setose except the anterior margins of the carpus and propodus of pereopod IV.

No proper thelycum is present in females, but sternites between pereopods III and IV as well as coxae of pereopods III are somewhat modified as sperm receptacles. Since these receptacles are very similar within the genus and not very helpful in taxonomy, they are not considered further.

The types and distribution of branchiae are given in Table 2.
Pleopods I are without an endopod in females and have the endopod transformed into a copulatory organ (petasma) in males. The appendix interna on pereopods II is simple, 1 -segmented, and armed with strong setae; as it is of little taxonomic value, this appendix is not considered further. Pleopods IIV have long exopods and short endopods.

The petasma is a symmetrical, very complicated, taxonomically important organ, which is the most reliable character for specific identification. The petasma consists of 3 parts (Fig. 2A): pars astrigens (innermost), pars media, and pars externa (with processus uncifer). The pars media, used in taxonomy, is divided into processes and lobes bearing various hooks and suckers; the form and proportions of these are very important. The complete set of lobes and processes is as follows (in mesio-lateral direction, indicated in figures for each species, see for example Fig. 4): (1) processus uncifer with terminal
hook-like protrusion, (2) processus ventralis, (3) lobus armatus, (4) lobus accessorius, (5) lobus connectens, (6) lobus terminalis, and (7) lobus inermis.

The uropodal exopod overlaps the endopod, and has a distinct suture; both rami are longer than the telson. The outer margin of the exopod is ciliated along the distal part.

The presence of dermal photophores is the unique character distinguishing most species of Sergia. In few species photophores are lost (or have not been yet found); in all others they are present either in the form of lens-less "opaque spots" or well defined, lens-bearing, luminescent organs. The lens-less type is difficult to study in alcohol-preserved specimens. Specimens from the "Dana" expeditions have been preserved in alcohol for 6575 years, and any study of these organs is extremely difficult; in order to avoid any misleading information, the position of "opaque spots" is discussed only for two locations: the scaphocerite and uropods. These appendages are very flat and make it possible to register the photophores reliably; in addition, the photophore position at these locations appears to be an important diagnostic character and is illustrated for each photophore-bearing species. Photophores with lenses are much easier to find; their position on the scaphocerite and uropod is illustrated for each species, and their number on the body and appendages is indicated. However, different authors have reported different number and position of luminescent organs even in Sergia lucens, which occurs in a restricted geographical area: for example, Nakazawa \& Terao (1915) reported 6 photophores on the sternite between the bases of pereopods V and a single pair of organs on the sternite of abdominal somite VI, while Omori (1969) found 4 and 3 organs, respectively. Gordon (1935) found 42 photophores on the ventral surface of the abdomen, but Omori (1969) counted only 33 organs. Therefore, recording body (not scaphocerite or uropodal) photophores in the "Dana" specimens, preserved in alcohol for about 70 years, might not be very certain either.

## Generic taxonomy

Yaldwyn (1957) proposed division of Sergia into 3 species groups according to the presence/absence of photophores and their type. First examination of the extensive "Dana" and "Galathea" collections revealed that this character, although usually help-

Table 3. Basic taxonomic characters of isolated species and species groups of Sergia. as $=$ acute spine, $b s=$ blunt spine, $l=$ length, $\mathrm{NA}=$ not applicable, $\mathrm{t}=$ tubercle, $\mathrm{w}=$ width,$+=$ present,$-=$ absent.

| Characters | Isolated species $S$. tenuiremis $S$. inoa |  | Species groups <br> S. japonica S. gardineri S. phorca S. robusta S. prehensilis S. challengeri S. lucens |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Photophores | - | - | - | + | +1 | + | + | + | + |
| Lens on photophores | NA | NA | NA | - | - | - | + | + | + |
| Photophore arrangement (see text) | NA | NA | NA | 1 | 3 | 2 | 1 a | 2 a | 3 a |
| Hepatic prominence | - | - | - | t | t | t | t/bs | as/bs ${ }^{2}$ | bs |
| Ratio $1 / \mathrm{w}$ in ocular papilla | $>1$ | <1/4 | <1/4 | 1/2-3/4 | 1/4-1/3 | 1/4-1/3 | - | - | - |
| No of segments Mxp I endopod | 3 | 3 | 4 | 3 | 3 | 3 | 3 | 3 | 3 |
| Lamellar branch on somite XII | - | - | + | - | - | - | - | - | - |
| PV enlarged, armed | - | - | - | - | - | - | - | - | + |
| LI and LT both present | $+$ | + | + | - | + | + | + | + | - |
| LT divided | - | - | - | - | -3 | - | - | $+^{4}$ | - |
| LT and LC twisted | - | - | - | - | - | + | - | - | - |
| LC divided | - | - | - | $-5$ | + | - | $-6$ | - | - |
| LA present | + | + | + | + | + | $+$ | $+$ | - | - |

${ }^{1}$ Photophores invisible in S. plumea and barely visible in $S$. wolffi.
${ }^{2}$ Hepatic spine acute in S. challengeri, S. talismani, S. fulgens, S. oksanae n. sp.
${ }^{3}$ LT secondarily divided in $S$. potens.
${ }^{4}$ LT undivided, without proximal lobule in S. umitakae.
${ }^{5} \mathrm{LC}$ divided in $S$. gardineri and $S$. inequalis only.
${ }^{6} \mathrm{LC}$ divided in $S$. prehensilis.
ful, may sometimes be misleading. For example, $S$. plumea, which in other characters is close to the photophore-bearing species (especially in the complicated form of the petasma, which is hardly convergent), does not possess visible photophores. At the same time, S. prehensilis with advanced lensbearing photophores looks closer to $S$. regalis with "opaque spots" (with respect to the number and position of luminescent organs) than to $S$. lucens with lens-bearing photophores.
I tried to find characters of taxonomic value for subdivision of the genus. Most external characters were examined, including not only those usually treated (petasma, photophores), but also the division of mouthparts, subdivision of appendage segments, and proportions of the branchiae and pleopods. Among them, I found the following characters most useful in the taxonomy of Sergia (summarized in Table 3):

1. Photophores. Organs of the "opaque spot" type almost disappear in specimens preserved in alcohol for a long period and should be be considered carefully. As a rule, they can be observed with certainty only on the scaphocerite and Up rami. Only lens-bearing photophores provide a possibility for discussing their position in other body parts; since these organs are pale in alcohol and may be very small, their number and position also should be observed very carefully. There are 3 general types of arrangement of "opaque spot" photophores:

- Small organs, in a single longitudinal medial row on the scaphocerite and a single row very close to the inner margin on the Up exopod (see Fig. 18B, C)
- Large organs, in a single longitudinal medial row on the scaphocerite and 1-2 medial rows on the Up exopod (see Fig. 52B, C)
- Large organs, in a single longitudinal medial row and a single oblique row on the scaphocerite and 1-2 medial rows on the Up exopod (see Fig. 27B, C).
Among the lens-bearing photophores, 3 basic types of arrangement may also be found:
- Very abundant (225-359) organs varying in number and position
- Moderately abundant (within very strict range 193-209) organs with fixed position and number (sometimes revealing slight sexual dimorphism in both features)
- Less abundant (within very strict range 138-162) organs with fixed position and number (sometimes revealing slight sexual dimorphism in both features). The first type is associated with the presence of 2 lateral rows of luminescent organs on Cp; the 2 nd type refers to $4-6$ organs in the lateral Cp row, $2-3$ organs on the scaphocerite, and 4-6 organs on the Up exopod; the 3rd type is associated with $2-3$ organs in the Cp row, 2-3 organs on the scaphocerite, and 1-2 organs on Up. Thus, the following photophore features are used in the taxonomy of Sergia: presence /absence of photophores, structure of organs (with or without lens), abundance, arrangement, and position of organs (one of 3 described for each type).

2. Prominence on the hepatic region. The hepatic region may lack an obvious prominence or have a hepatic tubercle or a blunt or acute hepatic spine.
3. Ocular papilla. This organ varies greatly during development (longer in larvae and reduced in adults) and is described only in adults. The
papilla, although rarely treated in species description by other authors, is of taxonomic value. There are 5 stages in the reduction of this organ: (a) papilla longer than wide; (b) papilla about $1 / 2-3 / 4$ as long as wide; (c) papilla $1 / 4-1 / 3$ as long as wide; (d) papilla $<1 / 4$ as long as wide; (e) papilla absent.
4. Articulation of the Mxp I endopod. This character has never before been considered. The endopod may be either 3-segmented or 4-segmented.
5. Posterior branchial lobe on somite XII. It may be either lamellar or of usual "dendrobranch" type.
6. Structure of the petasma. Although showing extreme diversity within the genus, this organ may be referred to one of several types regarding division, strong reduction, or absence of various lobes and processes. The main problem is related to revealing homologies within these structures. Actually, the characteristic armature of most lobes as well as transitional cases enable us to homologise the lobes with satisfactory precision. The following petasma characters may be used in the taxonomy of Sergia: PV enlargedarmed/not enlarged-unarmed; LI present/absent; LT present/absent and, if present, entire/divided; LT and LC twisted/not twisted; LC entire/divided; LA present/absent.

Other characters of lesser taxonomic importance are used for distinguishing the species from each other. The characters mentioned above allow the division of Sergia into several subgroups that share fixed sets of these characters (see Table 3). I choose a more conservative approach and introduce new species groups.

## KEY TO SPECIES GROUPS AND ISOLATED SPECIES OF SERGIA

Two isolated species and 7 species groups (summarized in Table 3) are included in Sergia.

1. Hepatic tubercle/spine absent. Postdorsal spine on abdominal somite VI rudimentary or absent. Dermal photophores absent. All lobes and processes of petasma (with possible exception of LAc) present, not twisted or divided $\qquad$ 2

- Hepatic tubercle/spine present. Postdorsal spine on abdominal somite VI well defined. Dermal photophores usually present. Some lobes or processes of petasma (in addition
to LAc) either absent or twisted/divided ..... Ocular papilla extremely long, cylindrical, longer than wide. Male clasping organ with 3 very long setae on ventral side. LAc of petasma present, LA with distal part strongly curved, so that tip is directed proximally S. tenuiremis (only species), p. 84
- Ocular papilla short, less than $1 / 4$ as long as wide. Male clasping organ without very long setae on ventral side. LAc of petasma absent, LA with distal part not strongly curved, tip directed medially or distally 3

3. Endopod of Mxp I with 3 segments. Posterior branchial lobe above P III reduced but not lamellar. Serrated bristles on inner surface of male clasping organ absent. LA of petasma reduced S. inoa (only species), p. 88

- Endopod of Mxp I with 4 segments. Posterior branchial lobe above P III lamellar. Serrated bristles on inner surface of male clasping organ present. LA of petasma not reduced.
.......S. japonica species group ( 2 species), p. 90

4. Ocular papilla present (1/4-3/4 as long as wide). Photophores when present without lenses, of "opaque spot" type . 5

- Ocular papilla absent. Photophores of lensbearing type

5. Photophores small, creating continuous row close to medial margin of Up exopod. Ocular papilla long, 1/2-3/4 as long as wide. Hepatic tubercle well developed. LI or LT of petasma rudimentary or absent. ..... S. gardineri species group ( 5 species), p. 98

- Photophores, when present, medium or large, not creating continuous row close to medial margin of Up exopod. Ocular papilla short, $1 / 4-1 / 3$ as long as wide. Hepatic tubercle small. LI and LT of petasma not rudimentary

6. Photophores, if present, forming 2 rows on scaphocerite ( 1 longer from base to tip and 1 shorter oblique) and triangular group in distal part of Up exopod. One or more lobes of petasma divided, LC and LT not twisted, LC not thickened in proximal part $\qquad$ ...... S. phorca species group ( 9 species), p. 116

- Photophores, if present, forming single group on scaphocerite and never triangular group in distal part of Up exopod. All lobes of petasma undivided, LC and LT twisted, LC thickened in proximal part. ...... S. robusta species group (4 species), p. 144

7. Photophores forming 2 rows on lateral side of Cp (above branchial region and along ventral Cp side); 7 or more photophores on scaphocerite, 3 or more photophores on Up exopod. LA of petasma developed .............. S. prehensilis species group (2 species), p. 159

- Photophores forming single row on lateral side of Cp (above branchial region); 6 or fewer photophores on scaphocerite, 3 or
fewer photophores on Up exopod. LA of
petasma reduced or absent.............................. 8

8. Lateral Cp row with 4 or more photophores, scaphocerite with 4 or more photophores. Inner surface of male clasping organ either with 8-12 serrated bristles or without any. PV of petasma without hooks $\qquad$ S. challengeri species group ( 8 species), p. 167

- Lateral Cp row with 3 or fewer photophores, scaphocerite with 3 or fewer photophores. Inner surface of male clasping organ with 4-6 serrated bristles. PV of petasma armed with 1 or more hooks. $\qquad$
......S. lucens species group ( 3 species*), p. 195
*one species under description by Dr. N. Iwasaki, Japan.


## Sergia tenuiremis (isolated species)

Diagnosis: No photophores; no hepatic tubercle; no postdorsal spine on abdominal somite VI; ocular papilla extremely developed, longer than wide; clasping organ with 3 dorsal serrated bristles and 3 extremely long setae on ventral side; endopod of Mxp I with 3 segments; posterior branchial lobe above P III reduced but not rudimentary and lamellar. All lobes and processes in petasma developed and undivided; LA with distal part strongly curved, with tip directed proximally.

Species included: Sergia tenuiremis (Krøyer, 1855).

## Sergia tenuiremis (Krøyer, 1855)

Figs. 3-5
Sergestes tenuiremis Krøyer, 1855: 30, 34 (pp. 9, 13 in reprint); 1856: 39, 62, 67-70 (keys, tables with measurements), pl. 4, fig. 11a, b; 1859: 255, 278, 283-286 (keys, tables), pl. 4, fig. 11a, b. - Bate 1888: 420. - Illig 1914: 349; 1927: 283, figs. 610. - Hansen 1920: 478; 1922: 81, pl. 4, figs. 45, pl. 5, figs. 1-2; 1927: 4. - Sund 1920: 7. Gurney \& Lebour 1940: 21.
Sergestes krøyeri Bate, 1881: 193; 1888: 388, pl. 70, figs. 3-4. - Hansen 1903: 58; 1920: 479. Illig 1914: 354 (part); 1927: 289 (part). Burkenroad 1940: 50. - Dennell 1955: 403. Richardson \& Yaldwyn 1958: 26. - Synonymized with Sergestes tenuiremis by Burkenroad (1940).


Fig. 3. Sergia tenuiremis, male, "Dana" St. 1156-5, Cp length 17.9 mm . - A, lateral view of Cp. - B, scaphocerite. - C, Up.


Sergestes junceus Bate, 1888: 416, pl. 76, fig. 1. Synonymized with Sergestes tenuiremis by Hansen (1903).
Sergestes longicollis Bate, 1888: 421, fig. 1. Synonymized with Sergestes tenuiremis by Hansen (1903).
Sergestes tropicus Sund, 1920: 18, figs. 27-28, 3032. - Synonymized with Sergestes tenuiremis by Hansen (1922).
Sergestes (Sergia) tenuiremis. - Yaldwyn 1957: 9. Donaldson 1975: 45.
Sergestes (Sergia) krøyeri. - Yaldwyn 1957: 9. Crosnier \& Forest 1973: 308. - Lagardère 1978: 7.

Sergia tenuiremis. - Pearcy \& Forss 1966: 1137. Walters 1976: 823. - Butler 1980: 49. - Krygier \& Pearcy 1981: 101, fig. 1. - Vereshchaka 1994a: 76, figs. 1-3, 26.
Sergia krøyeri. - Krygier \& Wasmer 1988: 72.

Material examined: "Dana" stations: 1142-6 (1f $14 \& 1 \mathrm{~m} 19$ ); 1142-9 ( 2 f 12 ); 1152-3 (3m 121/2-14); 1156-5 (1f $20 \& 2 \mathrm{~m} 18-18^{1} / 2$ ); 1156-6 ( 1 m 20 ); 1156-7 (1f $20^{1 / 2} \& 1 \mathrm{~m} \mathrm{14}$ ); 1239-1 ( 1 m 16 ); 1365-9 (1f $21 \& 2 \mathrm{~m} \mathrm{18-19);} \mathrm{3576-1} \mathrm{(1m} \mathrm{20);} \mathrm{3593-1} \mathrm{(1f}$

141/2); 3627-2 (1f 18); 3627-3 (1m 181/2); 3981-1 (1f $10 \& 1 \mathrm{~m} \mathrm{18}$ ); 4180-1 ( $2 \mathrm{f} 10^{1 / 2}-13 \& 1 \mathrm{~m} 15^{1 / 2}$ ).

Holotype of Sergestes tenuiremis (juvenile) (ZMUC CRU 8362).

Type locality: Tropical Atlantic, ca. $4.5^{\circ} \mathrm{N}$, $21^{\circ} \mathrm{W}$, coll. Hr. Fries [information from Danish introduction in Krøyer 1855].

Type material: Holotype of Sergestes tenuiremis (ZMUC, see above).

Diagnosis: Integument firm; cornea well pigmented, considerably wider than eyestalk; ocular papilla 1.3-1.4 times as long as wide in adults; 3 long setae on outer margin of clasping organ almost reaching tip of flagellum; scaphocerite with small distal tooth; LA of petasma curved at about $3 / 4$ length; LI and LC overlapping LT and PV.

Description: Cp with blunt rostrum, 2.9 times as long as high and 0.45 times as long as abdomen (Fig. 3A). Abdomen with somite VI 1.9 times as long as high and 1.3 times as long as telson; telson 3.8 times as long as wide.

Eyestalk with papilla 1.4 times as long as wide; cornea well pigmented, brown, as long as wide, 0.7 times as long and 1.4 times as wide as eyestalk.

A I peduncle 0.6 times as long as Cp , with segments 2 and 30.56 times as long as segment 1 ; segment 3 of outer A I flagellum in male with tubercle reaching about $4 / 5$ of segment 4 ; latter with 3 serrated bristles and several setae on inner surface of clasping organ and 3 very long setae, almost reaching tip of flagellum, on outer surface (Fig. 4C). A II peduncle 0.4 times as long as scaphocerite; latter with small distal tooth (Fig. 3B), 3.8 times as long as wide, 0.8 times as long as A I peduncle.
Md palp 0.37 times as long as Cp , with proximal segment 2.0 times as long as distal. Mx I with palp 2.3 times as long as wide and 0.05 times as long as Cp ; endopod 1.8 times as long as wide and 1.6 times as long as palp; endite 1.7 times as long as


Fig. 4. Sergia tenuiremis, male, "Dana" St. 1156-5, Cp length 17.9 mm . A, oral view of petasma. - B, caudal view of petasma. - C, male outer A I flagellum.
wide and 1.1 times as long as palp. Mx II with exopod 3.4 times as long as wide and 0.27 times as long as Cp ; palp 6.4 times as long as wide and 0.09 times as long as Cp ; endopod 2.0 times as long as wide and 1.0 times as long as palp; endites subequal, 1.7 times as long as wide and 0.4 times as long as palp.

Mxp I with exopod 3.1 times as long as wide and 0.17 times as long as Cp ; endopod 1.2 times as long as exopod; segments 2 and 31.1 and 1.3 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 1.0 , carpus 0.8 , propodus 0.9 , and dactyl 0.5 times as long as ischium. Mxp III 1.4 times as long as Cp , with merus 1.2 , carpus 1.2 , propodus 1.4 , and dactyl 0.7 times as long as ischium; propodus incompletely divided into 4 subsegments, subdivision of dactyl uncertain (Hansen 1922, reported 7 subsegments in dactyl).

P I 1.1 times as long as Cp , with merus 3.2 , carpus 1.7 , and propodus 3.4 times as long as ischium, subdivision of propodus uncertain. P II 1.5 times as
long as Cp , with merus 3.1 , carpus 2.2 , propodus 3.1, and dactyl 0.2 times as long as ischium, subdivision of propodus uncertain. P III 1.9 times as long as Cp , with merus 3.5 , carpus 2.6 , propodus 3.3 , and dactyl 0.2 times as long as ischium, subdivision of propodus uncertain. P IV 1.3 times as long as Cp, with merus 2.1, carpus 1.0 , and propodus 1.0 times as long as ischium. P V 0.7 times as long as Cp , with merus 1.0 , carpus 0.7 , and propodus 0.5 times as long as ischium.

Somite VIII with arthrobranch 0.09 times as long as Cp and 2.3 times as long as epipod. Somite IX with anterior pleurobranch 0.11 times as long as Cp and 3.0 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.17 times as long as Cp and 4.4 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.17 times as long as Cp and 4.6 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.17 times as long as Cp and 1.7 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.13 times as long as Cp and 1.4 times as long as posterior pleurobranch.

PI I with basipod 0.32 times as long as Cp and


Fig. 5. Probable geographical distribution of Sergia tenuiremis (circles, hatching) and S. inoa (triangles, cross hatching). Black symbols indicate "Dana" stations, white symbol "Galathea" stations. Shaded areas without symbols are supported by literature data.
exopod 2.3 times as long as basipod. PIII with basipod 0.29 times as long as Cp , exopod 2.7 and endopod 1.6 times as long as basipod, respectively. Pl III with basipod 0.27 times as long as Cp , exopod 2.6 and endopod 1.5 times as long as basipod, respectively. Pl IV with basipod 0.23 times as long as Cp, exopod 2.7 and endopod 1.5 times as long as basipod, respectively. Pl V with basipod 0.20 times as long as Cp , exopod 2.4 and endopod 1.5 times as long as basipod, respectively.

Up with exopod 4.7 times as long as wide, 9.0 times as long as basipod and 0.6 times as long as Cp ; endopod 3.9 times as long as wide and 0.7 times as long as exopod (Fig. 3C).

Petasma (Fig. 4A-B). PV tapering, with blunt tip, 5.4 times as long as wide. LI 5.9 times as long as wide and 0.7 times as long as PV. LT 2.4 times as long as wide and 0.5 times as long as PV, armed with 2 stronger hooks at basal part of dorsal side and with distal row of smaller hooks along distomedial margin. LC 3.8 times as long as wide and 1.0 times as long as PV, overlapping LT and almost reaching LI, bearing group of larger hooks at slightly thickened proximal part and row of smaller hooks at distal part of dorsal side. LAc as long as wide and 0.2 times as long as PV, armed with few hooks at tip. LA 3.3 times as long as wide and 1.1 times as long as PV, armed with numerous hooks along ventral margin and around tip, strongly
curved at c. $3 / 4$ of length, tip directed proximally.

Remarks: Since they live at bathyal depths, mature adults of this species have been collected very rarely and have been described under several names. Among the rather numerous "Dana" specimens, I observed slight variability which, however, is not sufficient to justify separate species. Hansen (1927) wrote that Sergestes kroyeri and $S$. tenuiremis might be the same species and that the final solution would be possible only after comparison of the petasma of the Atlantic S. tenuiremis and Pacific $S$. krøyeri (the latter species was established by Bate for a specimen from northwest of New Zealand). After examination of the "Dana" specimens from both localites, I agree with Burkenroad (1940) that the two names should be regarded as synonymous. Sergestes tropicus is also a synonym of $S$. tenuiremis, because the petasma in the two species is identical (the petasma of the former species is illustrated by Sund 1920: 19, fig. 33). Late larval stages undergo a remarkable metamorphosis, and were described by Bate (1888) under two different names: S. junceus and S. longicollis.

Geographical distribution (Fig. 5): Tropical and temperate waters of the Atlantic and Pacific Oceans.

Atlantic Ocean: North Atlantic ("Dana"),

Canaries and Azores (Hansen 1920, 1922), Madeira and the Gulf of Guinea (Illig 1927). South Atlantic (one "Dana" station; $24^{\circ} \mathrm{S}, 4^{\circ} \mathrm{W}$, as $S$. tenuiremis and between $25^{\circ} \mathrm{S}$ and $30^{\circ} \mathrm{S}$, as S. krøyeri: Illig 1914).

Pacific Ocean: Southwest Pacific ("Dana"), $29^{\circ} 55^{\prime} \mathrm{S}, 178^{\circ} 14^{\prime} \mathrm{W}$ (as S. kroyeri: Bate 1888); off the Kermadec Islands (Richardson \& Yaldwyn 1958); east of New Zealand (as S. krøyeri: Wilson 1978), northeast of New Zealand (Walters 1976). North Pacific (Krygier \& Wasmer 1988); off Hawaii (Rathbun 1906, Walters 1976); off Oregon (Krygier \& Pearcy 1981).

Illig's (1927) report from the Indian Ocean is based upon specimens that belong to S. phorca. The distribution of S. tenuiremis indicates that there are at least two isolated areas inhabited by this species: the Pacific and the Atlantic. It is remarkable that $S$. tenuiremis and the following species, $S$. inoa, both deep-water species and similar ecologically, are allopatric.

Vertical range: Probably an interzonal species (sensu Vinogradov 1968) migrating daily between the upper bathypelagic and lower mesopelagic zones. "Dana" specimens were taken throughout the depth range $330-2000 \mathrm{~m}$. Most specimens occur at $500-2000 \mathrm{~m}$ at night and at $1500-2000 \mathrm{~m}$ during the day. These data agree with results of Foxton (1970) and Vereshchaka (1994a).

## Sergia inoa (isolated species)

Diagnosis: No photophores; no hepatic tubercle; postdorsal spine on abdominal somite VI rudimentary; ocular papilla reduced in adults, less than $1 / 4$ as long as wide; clasping organ without serrated bristles; endopod of Mxp I with 3 segments; posterior branchial lobe above P III reduced but not rudimentary and lamellar; LAc absent; all other lobes and processes of petasma developed and undivided; LA reduced, with distal part directed medially. Species included: Sergia inoa (Faxon, 1893).

## Sergia inoa (Faxon, 1893), n. comb.

Figs. 5-7, Pl. 2F
Sergestes inous Faxon, 1893: 216; 1895: 208, pl. 51, fig. 2. - Alcock 1901: 50. - Hansen 1919: 8, pl. 1, fig. 1a-c.

Sergestes (Sergia) inous. - Yaldwyn 1957: 9.
Material examined: "Dana" stations: 3548-1 ( $1 \mathrm{~m} 16^{1 / 2}$ ); 3548-2 (1f 22); 3549-4 (1m 24); 3558-2
(2j 91/2); 3677-1 (1f 25); 3714-6 (1m 301/2); 3716-2
( 2 m 29-31 $1 / 2$ ); 3768 [sample number unknown] (1f 40 $1 / 2$ ); 3824-4 (If $23^{1 / 2}$ ); 3828-5 (2f $24^{1 / 2-26^{1} / 2}$ ); 3902-1 ( $2 \mathrm{~m} 18-28$ ); 3920-3 (1m 23 ${ }^{1 / 2}$ ).
"Galathea" stations: 263 (2f 28-32); 466 (1f 19); 494 (1f 23).

Type locality: East Pacific, off Malpelo Island, Colombia, "Albatross" St. 3380, $04^{\circ} 03^{\prime} \mathrm{N}, 81^{\circ}$ $31^{\prime} \mathrm{W}, 899 \mathrm{fms}$.

Type material: Holotype female of Sergestes inous (MCZ 4666, not examined).

Diagnosis: Integument membranous; cornea poorly pigmented, almost equal in width to eyestalk; clasping organ in male somewhat rudimentary; scaphocerite with small distal tooth; PV of petasma with rounded apex, overlapping LI and LT; LC overlapping PV, armed only in distal half; LA curved laterally, armed only in distal half.

Description: Cp with blunt rostrum, 2.0 times as long as high and 0.48 times as long as abdomen (Fig. 6A). Abdomen with somite VI 1.8 times as long as high and 1.1 times as long as telson; telson 3.7 times as long as wide.

Cornea 1.4 times as long as wide, 0.3 times as long and 1.1 times as wide as eyestalk.

A I peduncle 0.5 times as long as $C p$, with segments 2 and 30.42 and 0.47 times as long as segment 1 , respectively; segment 3 of outer A I flagellum in male with tubercle overlapping segment 4 s of flagellum; segment 4 divided into 2 subsegments; clasping organ reduced, bearing several setae on inner and outer surface, without serrated bristles on inner surface (Fig. 7C). A II peduncle 0.4 times as long as scaphocerite; latter with small distal tooth (Fig. 6B), 3.0 times as long as wide, 0.83 times as long as A I peduncle.

Md palp 0.37 times as long as Cp , with proximal segment 2.0 times as long as distal one. Mx I with palp 2.3 times as long as wide and 0.04 times as long as Cp ; endopod 1.4 times as long as wide and 1.9 times as long as palp; endite 1.3 times as long as wide and 1.0 times as long as palp. Mx II with exopod 3.0 times as long as wide and 0.25 times as long as Cp ; palp 3.3 times as long as wide and 0.08


Fig. 6. Sergia inoa, male, "Dana" St. 3716-2, Cp length 29.0 mm . - A, lateral view of $\mathrm{Cp} .-\mathrm{B}$, scaphocerite. - C, Up.

times as long as Cp ; endopod 1.8 times as long as wide and 1.0 times as long as palp; endites subequal, 2.4 times as long as wide and 0.6 times as long as palp.

Mxp I with exopod 2.8 times as long as wide and 0.15 times as long as Cp ; endopod 0.9 times as long as exopod; segments 2 and 31.3 and 1.0 times as long as segment 1 , respectively. Mxp II 0.8 times as long as Cp , with merus 1.0 , carpus 0.8 , propodus 0.9 , and dactyl 0.4 times as long as ischium. Mxp III 1.7 times as long as Cp, with merus 1.2 , carpus 1.5 , propodus 1.4 , and dactyl 0.9 times as long as ischium; propodus and dactyl divided into 4 and 8 subsegments, respectively.

P I 1.0 times as long as Cp , with merus 3.1 , carpus 1.6, and propodus 3.4 times as long as ischium; propodus divided into 10 subsegments. P II 1.4 times as long as $C p$, with merus 3.3 , carpus 2.6 , propodus 3.7 , and dactyl 0.2 times as long as ischium; propodus subdivided into 14 subsegments. P III 1.7 times as long as Cp, with merus 3.0 , carpus 2.4 , propodus 2.8 , and dactyl 0.1 times as long as ischium; propodus divided into 15 subsegments. P IV 1.0 times as long as Cp, with merus 1.4 , carpus
0.9 , and propodus 0.8 times as long as ischium. P V 0.5 times as long as $C p$, with merus 1.1 , carpus 0.7 , and propodus 0.5 times as long as ischium.

Somite VIII with arthrobranch 0.11 times as long as Cp and 2.2 times as long as epipod. Somite IX with anterior pleurobranch 0.13 times as long as Cp and 2.7 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.18 times as long as Cp and 3.6 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.17 times as long as Cp and 3.1 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.21 times as long as Cp and 2.1 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.14 times as long as Cp and 1.7 times as long as posterior pleurobranch.

Pl I with basipod 0.26 times as long as Cp and exopod 2.3 times as long as basipod. Pl II with basipod 0.26 times as long as Cp, exopod 2.5 and endopod 1.5 times as long as basipod, respectively. PI III with basipod 0.23 times as long as $C p$, exopod 2.7 and endopod 1.4 times as long as basipod, respectively. PI IV with basipod 0.22 times as long as Cp, exopod 2.3 and endopod 1.4 times as long as basipod, respectively. Pl V with basipod 0.18 times as long as Cp , exopod 2.3 and endopod 1.5 times as long as basipod, respectively.

Up with exopod 4.6 times as long as wide, 6.8 times as long as basipod and 0.6 times as long as


Cp ; endopod 3.7 times as long as wide and 0.7 times as long as exopod (Fig. 6C).

Petasma (Fig. 7A-B). PV not tapering, 4.4 times as long as wide. LI curved, 4.0 times as long as wide and 0.3 times as long as PV. LT reduced and very short, 0.9 times as long as wide and 0.2 times as long as PV, armed with single stronger apical hook. LC extremely powerful, 2.4 times as long as wide and 0.6 times as long as PV , overreaching LI and LT several times, bearing group of smaller hooks at lateral side of distal half and around apex. LA 2.3 times as long as wide and 0.4 times as long as PV, armed with several hooks along ventral margin of distal half and around tip, slightly curved, tip directed laterally.

Remarks: Colour of freshly caught animal is shown in Pl. 2F.

This gigantic deep-sea species appears extremely rarely in planktonic collections. Since this very remarkable species is easy to identify, no confusion in the synonymy has appeared. Nevertheless, the figure of the petasma of S. inoa provided here can be helpful for identification; to my knowledge, this is the first time the petasma has been figured for the species.

Geographical distribution (Fig. 5): This species occurs in 2 separate areas: the Indian Ocean

Fig. 7. Sergia inoa, male, "Dana" St. 3716-2, Cp length 29.0 mm . - A, caudal view of petasma. - B, oral view of petasma. - C, male outer A I flagellum.
and the extreme western and eastern part of the tropical Pacific.

Indian Ocean: North of Madagascar ("Galathea" station), off Sri Lanka and near Seychelles Islands ("Dana" stations), Arabian Sea (Alcock 1901).

Pacific: West Pacific ("Dana" and "Galathea", Hansen 1919); East Pacific: Malpelo Island (Faxon 1893); K. Stephensen (unpublished notes in ZMUC) records one specimen of this species near the same locality in his pencil remarks on the water colours of "Dana I" sergestids, although the specimen was not found in the "Dana I" collection.

There are at least two isolated areas inhabited by this species: the Indian Ocean - Indo-West Pacific, and the Eastern Pacific. S. inoa and S. tenuiremis, both deep-living and similar ecologically, are allopatric. The rarity of these species does not enable us to judge to what extent their populations are contiguous, and whether their distribution is parapatric instead of allopatric.

Vertical range: Bathypelagic species. "Dana" specimens were taken throughout the depth range $330-2000 \mathrm{~m}$. Most specimens live at $1000-2000 \mathrm{~m}$. Only 2 specimens are present in the samples from a depth of 330 m .

## Sergia japonica species group

Diagnosis: No photophores; no hepatic tubercle; postdorsal spine on VI abdominal somite rudimentary or absent; ocular papilla reduced, less than $1 / 4$ as long as wide; clasping organ with 3 weak bristles; endopod of Mxp I with 4 segments (Fig. 8); posterior branchial lobe above P III rudimentary, lamellar or almost lamellar; LAc absent; all other lobes and processes in petasma developed and undivided.

Species included: Sergia japonica (Bate, 1881) and S. laminata (Burkenroad, 1940).

## Key to species of the Sergia japonica species group

1. Integument membranous. Cornea almost equal to eyestalk in width. A I flagellum in male with tubercle much overlapping segment 4 of flagellum. Scaphocerite with distal tooth inconspicuous. Penultimate segment of Mxp I considerably longer than terminal segment. Propodus in Mxp III divided into 3 subsegments. PV of petasma slender, not leaf-like, with apex bifid; LC longer than LT $\qquad$ Sergia japonica

- Integument firm. Cornea considerably wider than eyestalk. A I flagellum in male with tubercle not overlapping segment 4 of flagellum. Scaphocerite with distal tooth distinct. Penultimate segment of Mxp I endopod as long as terminal segment. Propodus in Mxp III divided into 4 subsegments. PV of petasma leaf-like, with apex not bifid; LC shorter than LT

Sergia laminata

## Sergia japonica (Bate, 1881)

Figs. 8-11, Pl. 4A
Sergestes japonicus Bate, 1881: 194. - 1888: 387, pl. 70, figs. 1-2. - Hansen 1896: 947; 1903: 57; 1919: 6. - Balss 1914: 17. - Illig 1927: 292, figs. 26-29. - Burkenroad 1940: 53. - Dennell 1955: 403. - Richardson \& Yaldwyn 1958: 26.

Sergestes sp. indet. - Smith 1882: 100.
Sergestes mollis Smith, 1884: 419; 1886: 93, pl. 20, figs. 3-5. - Wood-Mason in Wood-Mason \& Alcock 1891b: 353. - Faxon 1895: 164. Hansen 1920: 478; 1922: 75, pl. 4, fig. 3; 1927: 3. - Sund 1920: 20, fig. 34. - Welsh \& Chace 1938: 367, fig. 2. - Zariquiey Alvarez 1946: 57; 1968: 61. - Allen 1967: 33. - Okutani 1969: 16. - Synonymized with Sergestes japonicus by Hansen (1896).
Sergestes profundus Bate, 1888 (part): 428. Hansen 1903: 69 (designation of lectotype). Illig 1927: 301. New synonym.
Sergestes (Sergia) japonicus. - Yaldwyn 1957: 22. - Foxton 1970: 976. - Crosnier \& Forest 1973: 341, figs. 113c, 117. - Sakai \& Nakano 1983: 97.
Sergestes (Sergia) profundus. - Yaldwyn 1957: 9.
Sergia japonicus. - Omori 1974: 236.
Sergestes (Sergia) mollis. - Sakai \& Nakano 1983: 97.

Sergia japonica. - Krygier \& Wasmer 1988: 74. Vereshchaka 1994a: 78, figs. 4-5, 26; 1995a: 1651.

Material examined: "Dana" stations: 1142-6 (1f 15); 1142-7 (3f 6-131/2); 1156-5 (3f $14^{1 / 2}$-17 \& 1 m 16); 1156-6 (1f 17); 1157-5 (6f 8-16 \& 4m 11-14); 1157-6 (20f 5-15 \& 6m 6-17); 1157-7 (2f 15 $1 / 2-16$ ); 1157-10 (1f 14); 1159-1 (12f 7-22 $\frac{1}{2}$ \& 1m 17); 1159-5 (1m 17); 1239-14 (2m 14-15); 1239-15 (1m 12); 1342-1 (2f 7-9); 1342-3 ( $2 \mathrm{~m} \mathrm{15} 1 / 2-17$ ); 1358-5 (1f $10 \& 1 \mathrm{~m} \mathrm{81/2}$ ); 1365-9 (1m 11); 3556-1 (1f $18^{1} / 2$ ); 3627-1 ( $2 \mathrm{f} 22-23^{1 / 2} \& 1 \mathrm{~m} 20$ ); 3630-1 (1f $23^{1 / 2}$ ); 3653-6 (9f $11^{1 / 2}-23^{\frac{1}{2} / 2}$ \& $6 \mathrm{~m} \quad 13^{1 / 2-19} 1 / 2$ ); 3656-1 (2f 24-241/2 \& 3m 17-20 $1 / 2$ ); 3663-1 (3f 15$23 \& 2 \mathrm{~m} \mathrm{19} 1 / 2-21^{112} 2$ ); 3676-7 (2f 13-151/2); 3677-1 (1f $19^{1 / 2} \& 2 \mathrm{~m} 13-16$ ); 3677-3 ( $12 \mathrm{f} 5-13^{1 / 2} \& 9 \mathrm{~m}$ $6^{1 / 2}-8^{1 / 2}$ ); 3678-1 ( $5 \mathrm{f} 10-18 \& 2 \mathrm{~m} \mathrm{15-17}^{1} / 2$ ); 3678-2 ( 6 f 11-19); 3680-1 (7f 12-18 \& 3m 13-151/2); 37161 (2f 13-19 \& 1m 16); 3996-1 (2f 10-11); 3998-8 (1f 13); 4000-6 (2f 17-18 \& 1m 15); 4000-7 (1m 15); 4000-8 ( $3 \mathrm{~m} \mathrm{12} 1 / 2-14$ ).
"Galathea" stations: 436 (1f 11); 443 ( 3 m 7 ); 461 ( $1 \mathrm{~m} 13^{1 ⁄ 2}$ ) ; 464 (1f $18^{1 / 2}$ ); 495 (1f $18 \& 2 \mathrm{~m} 12-13$ ) 654 (1f 25); 663 (1f 21).
Type of Sergestes mollis, western North Atlantic off Nantucket Shoals, Massachusetts, ca. $41^{\circ}$ $11^{\prime} 30^{\prime \prime} \mathrm{N}, 70^{\circ} 47^{\prime} 40^{\prime \prime} \mathrm{W}$ (USNM 7106).

Lectotype of Sergestes profundus, "Challenger" St, 300, southeastern Pacific west of Valparaiso, Chile, $33^{\circ} 42^{\prime} \mathrm{S}, 78^{\circ} 18^{\prime} \mathrm{W}, 1375 \mathrm{fms}$ (BMNH 1888.22).

Type locality: Western Pacific off southerm coast of Japan, "Challenger" St. 232, $35^{\circ} 11^{\prime} \mathrm{N}, 139^{\circ}$ $28^{\prime} \mathrm{E}, 345 \mathrm{fms}$.

Type material: Holotype female of Sergestes japonicus (BMNH 1888.22.1, not examined).

Diagnosis: Integument membranous; cornea poorly pigmented, almost equal in width to eyestalk; segment 3 of outer A I flagellum in male with tubercle significantly overlapping segment 4 of flagellum; scaphocerite with small inconspicuous distal tooth; Mxp I endopod with penultimate segment considerably longer than terminal segment; PV of petasma with bifid apex, overlapping LA and overreaching several times LI and LT; LC overlapping PV; LA curved at about $4 / 5$ length, tip directed midventrally.


Fig. 8. Sergia japonica, male, "Dana" St. 3656-1, Cp length 19.0 mm . Mxp I, oral view.

Description: Cp with blunt rostrum, 2.1 times as long as high and 0.50 times as long as abdomen (Fig. 8A). Abdomen with somite VI 1.7 times as long as high and 1.0 times as long as telson; telson 3.6 times as long as wide.

Cornea 0.8 times as long as wide, 0.3 times as long and 1.1 times as wide as eyestalk.

A I peduncle 0.5 times as long as Cp , with segments 2 and 30.45 and 0.53 times as long as segment 1, respectively; segment 3 of outer A I flagellum in male with tubercle overlapping segment 4 of flagellum by 0.3 of its length; segment 4 of flagellum bearing 3 stouter setae (or weak bristles) and several smaller setae on dorsal surface and single long and several shorter setae on ventral surface (Fig. 10C). A II peduncle 0.4 times as long as scaphocerite, the latter with very small inconspicuous distal tooth (Fig. 9B), 3.0 times as long as wide, 0.83 times as long as A I peduncle.

Md palp 0.38 times as long as Cp , with proximal segment 1.9 times as long as distal one. Mx I with palp 2.3 times as long as wide and 0.04 times as long as Cp ; endopod 1.4 times as long as wide and 1.6 times as long as palp, endite 1.8 times as long as wide and 1.1 times as long as palp. Mx II with
exopod 3.5 times as long as wide and 0.24 times as long as Cp ; palp 3.5 times as long as wide and 0.09 times as long as Cp; endopod 1.6 times as long as wide and 0.9 times as long as palp; endites subequal, 1.3 times as long as wide and 0.4 times as long as palp.

Mxp I with exopod 2.7 times as long as wide and 0.15 times as long as Cp ; endopod 0.8 times as long as exopod, segments 2,3 , and $40.7,0.3$, and 0.2 times as long as segment 1 , respectively. Mxp II 0.8 times as long as Cp , with merus 1.0 , carpus 0.9 , propodus 0.9 , and dactyl 0.3 times as long as ischium. Mxp III 1.5 times as long as Cp, with merus 1.2 , carpus 1.4 , propodus 1.3 , and dactyl 1.0 times as long as ischium; propodus and dactyl divided into 3 and $7-8$ subsegments, respectively.

PI 1.0 times as long as Cp, with merus 3.8 , carpus 1.8, and propodus 3.9 times as long as ischium, subdivision of propodus uncertain. P II 1.5 times as long as Cp , with merus 4.4 , carpus 2.9 , propodus 4.7, and dactyl 0.2 times as long as ischium, subdivision of propodus uncertain. P III 1.7 times as long as Cp , with merus 3.9 , carpus 2.9 , propodus 3.8 , and dactyl 0.2 times as long as ischium, subdivision of propodus uncertain. P IV 1.0 times as long as Cp , with merus 1.4 , carpus 0.9 , and propodus 0.8 times as long as ischium. P V 0.5 times as long as Cp , with merus 1.0 , carpus 0.7 , and propodus 0.5 times as long as ischium.
Somite VIII with arthrobranch 0.06 times as long as Cp and 1.3 times as long as epipod. Somite IX with anterior pleurobranch 0.10 times as long as Cp and 2.0 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.16 times as long as Cp and 3.1 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.16 times as long as Cp and 2.9 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.15 times as long as Cp and 3.0 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.11 times as long as Cp and 2.1 times as long as posterior pleurobranch.

PI I with basipod 0.28 times as long as Cp and exopod 2.0 times as long as basipod. Pl II with basipod 0.24 times as long as Cp ; exopod 2.4 and endopod 1.5 times as long as basipod, respectively. Pl III with basipod 0.23 times as long as Cp ; exopod 2.3 and endopod 1.4 times as long as basipod, respectively. PI IV with basipod 0.21 times as long as Cp; exopod 2.4 and endopod 1.5 times as long as basi-

pod, respectively. Pl V with basipod 0.17 times as long as Cp ; exopod 2.3 and endopod 1.6 times as long as basipod, respectively.
Up with exopod 4.6 times as long as wide, 7.8 times as long as basipod and 0.6 times as long as Cp ; endopod 3.8 times as long as wide and 0.7 times as long as exopod (Fig. 9C).
Petasma (Fig. 10A-B, Pl. 4A). PV not tapering, 2.8 times as long as wide. LI curved, 4.0 times as long as wide and 0.4 times as long as PV. LT reduced, 1.3 times as long as wide, 0.2 times as long as PV, distally armed with few small hooks. LC voluminous, 3.7 times as long as wide and 1.1 times as long as PV, overreaching PV by $1 / 3$, several times as long as LI or LT, bearing group of stronger hooks on lateral margin of proximal part and row of smaller hooks on distoventral margin and near apex; proximal part of LC covered with numerous very small hooks (PI. 4A). LA 5.2 times as long as wide and 0.8 times as long as PV , armed with row of hooks along distomedial margin.

Remarks: This species has also been known under the names Sergestes profundus and S. mollis. The description by Smith (1882) of an indeterminate species, although very incomplete, refers to the

Fig. 9. Sergia japonica, male, "Dana" St. 3656-1, Cp length $19.0 \mathrm{~mm} .-\mathrm{A}$, lateral view of $\mathrm{Cp} .-\mathrm{B}$, scaphocerite. - C, Up.
lamellar posterior lobe of the penultimate pleurobranch and membranous integument, thus leaving no doubt that the specimen belongs to $S$. japonica.

The species Sergestes profundus was erected by Bate (1888) for 2 specimens. One of these, from the South Atlantic, was shown by Hansen (1903) to be a representative of the genus Petalidium. The second specimen, from $33^{\circ} 42^{\prime} \mathrm{S}, 78^{\circ} 18^{\prime} \mathrm{W}$, was made the lectotype by Hansen (1903). Illig (1927) referred a damaged specimen from the Gulf of Guinea to this species, at the same time expressing doubts about keeping $S$. profundus and $S$. japonicus separate. The lectotype of $S$. profundus from the NHM is a mutilated juvenile specimen of $S$. $j a$ ponica.

Although Hansen (1896) synonymized Sergestes japonicus and S. mollis, which was followed by most researchers, a few authors continued to keep the two species separate. Sund (1920) retained $S$. mollis on the basis of the form of rostrum. However, this character varies individually in Sergestidae even within the same sample and is not taxonomically useful (Vereshchaka 1994a). In their detailed studies on S. japonicus and S. mollis, Sakai \& Nakano (1983) found several differences between them: (1) distal part of PV trilobed in $S$. japonicus and bilobed in $S$. mollis; (2) LA distally curved posteriorly in S. japonicus and inward in $S$. mollis; (3) slightly different position of hooks on LT; (4) LI stout in S. japonicus and "more slender" in S. mollis; (5) proximal leaf of coxa of 3rd pereopod in females with truncate tip in S. japonicus and rounded tip in $S$. mollis. Both authors seem to follow a conservative approach to the sergestid taxonomy (which is also clear from their referral of both species to Sergestes, not Sergia). However, one of the PV of $S$. mollis figured by Sakai \& Nakano (1983: fig. 8d) looks trilobed and not different from the PV of S. japonicus, while the PV of S. japonicus (Sakai \& Nakano 1983: fig. 4e) looks bifid; LI and the proximal leaf of female pereopod 3 of $S$. japonicus illustrated by these authors look very similar, if not identical, to those of S. mollis, and individual morphological variations are not clearly


Fig. 10. Sergia japonica, male, "Dana" St. 3656-1, Cp length 19.0 mm . A, oral view of petasma. - B, caudal view of petasma. - C, male outer A I flagellum.
shown for these characters; the direction of the LA curvature (inward or posteriorly) and the position of hooks on the LT depend upon orientation of the petasma and the degree of maturity (and always remain a little bit subjective). Therefore, these characters may at most indicate the presence of different morphs of $S$. japonica, but they are not of species level.

Sergia japonica is similar to S. laminata. It lives deeper than $S$. laminata and seems not to migrate vertically, as does S. laminata. This is reflected in some morphological characters: (1) membranous integument (firm in S. laminata), (2) reduced eyes (as wide as eyestalk and poorly pigmented in $S$. japonica and considerably wider than eyestalk and well pigmented in $S$. laminata); (3) shorter abdomen ( 2.0 times as long as Cp in $S$. japonica and 2.2 times as long as Cp in $S$. laminata), (4) shorter 6th abdominal segment ( 1.7 times as long as high in S. japonica and 2.1 times as long as high in S. laminata), (5) morphology of scaphocerite (with reduced apical spine in S. japonica and with well defined spine in $S$. laminata). Other distinguishing characters seem not to refer so directly to the mode of life of both species: S. japonica also differs in
having (1) the penultimate segment of Mxp I considerably longer than the terminal segment (equal to this in S. laminata), (2) the tubercle of the male A I flagellum greatly overlapping segment 4 of the flagellum (nearly reaching end of it in S. laminata), (3) the form of the PV of the petasma, bifid at the apex and not leaf-like (converse in S. laminata), (4) relative lengths of LC and LT (the former longer in S. japonica and shorter in S. laminata), and in several other minor characters.

Geographical distribution (Fig. 11): A cosmopolitan species that occurs in tropical and temperate waters of the Atlantic, Indo-West Pacific, and Northeast Pacific waters.

Atlantic Ocean: North Atlantic (type locality of Sergestes mollis, Smith 1884; "Dana"), Caribbean and Mediterranean (Hansen 1927, Zariquiey Alvarez 1968). Central Atlantic (Hansen 1922), off Marocco, Dakar, Congo, and Angola, (Illig 1927). South Atlantic ("Dana"; Hansen 1920, 1922, 1927; Crosnier \& Forest 1973).

Indian Ocean: Eastern part ("Dana" and "Galathea" stations; Illig 1927), off Sri Lanka (Illig 1927).

Pacific: West Pacific ("Dana" and "Galathea" stations), East Pacific ("Dana" station), northeastern Pacific and off southern Japan (type locality of Sergestes japonicus, Bate 1881; Wasmer 1972, Krygier \& Wasmer 1988), off the Philippines (type locality of Sergestes profundus, Bate 1888), Tasman Sea and northeast of New Zealand ("Dana" and "Galathea" stations), Cook Strait (Yaldwyn 1957, Richardson \& Yaldwyn 1958).

This species probably occurs in two isolated areas: the Atlantic Ocean and the Indo-Pacific. That the northeastern Pacific and Indo-West Pacific populations do not appear to meet may be related to the scarcity of deep-sea sampling in the Central Pacific. The sister species S. japonica and S. laminata are sympatric, the former species occurring at a greater depth than the latter.

Vertical range: Bathypelagic species. "Dana" specimens were taken within the depth range 3302000 m . Most specimens live at $800-2000 \mathrm{~m}$. Only 2 specimens are present in samples from a depth of 330 m . These data agree with the results of Foxton (1970), who recorded this species from depths greater than 800 m and with studies of Vereshchaka (1994a), who found S. japonica living mainly at 1000-2500 m.


Fig. 11. Probable geographical distribution of Sergia japonica. Black symbols indicate "Dana" stations, white symbols indicate "Galathea" stations. Shaded areas without symbols are supported by literature data.

## Sergia laminata (Burkenroad, 1940)

Figs. 12-14
Sergestes laminatus Burkenroad, 1940: 52.
Sergestes (Sergia) laminatus. - Yaldwyn 1957: 9. Kensley 1971: 251, fig. 18; 1977: 18. Vereshchaka 1990b: 138.
Sergestes (Sergia) guineensis Crosnier \& Forest, 1973: 343, fig. 118.
Sergestes guineensis. - Vereshchaka 1994a: 79 (synonymized with Sergia laminata).
Sergia laminata. - Omori 1974: 236. - Walters 1976: 824. - Krygier \& Wasmer 1988: 50. Vereshchaka 1994a: 79, figs. 6-7, 26; 1995a: 1651.

Sergia guineensis. - Krygier \& Wasmer 1988: 50.
Material examined: "Dana" stations: 1157-5 ( $2 \mathrm{~m} \mathrm{8-8}{ }^{1 / 2}$ ); 1159-5 ( $2 \mathrm{f} 7^{1 / 2}-9$ ); 1163-2 (4f 7-91/2 \& $3 \mathrm{~m} 7-8$ ); 1172-1 (5f 9-10 \& 1m 9); 3558-1 (2f 1011); 3561-3 (3m 9-11); 3561-4 (1f $10^{1 / 2}$ ); 3920-2 (1m 8); 3921-1 ( 1 m 9 ); 3933-1 (1f $10^{1 / 2} \& 1 \mathrm{~m} 91 / 2$ ); 3933-2 (2f 5-11); 3964-8 (1f 51/2); 3996-1 (1f 8); 3996-2 ( $1 \mathrm{~m} 7^{1 / 2}$ ); 3996-3 (5f 5-7 \& $3 \mathrm{~m} 4^{1 / 2}-7^{1 / 2}$ ); 3996-4 (7f $61 / 2-11 \& 1 \mathrm{~m} 6$ ); 3996-6 (5f 8-8 ${ }^{1 / 2}$ ); 3996-7 ( $6 \mathrm{f} 5-6^{1 / 2} \& 2 \mathrm{~m} 5^{1 / 2}-6^{1 / 2}$ ); 3997-1 ( $5 \mathrm{f} 7-9$ \& 5m 7-9); 3998-1 (1f $10 \& 2 \mathrm{~m}$ 8-10); 3998-2 (6f 6$7^{112} \& 5 \mathrm{~m} 5-6^{1 / 2}$ ); 3998-9 (1f $11 \& 1 \mathrm{~m} 8$ ); 4000-6 (1f
$6^{1 / 2}$ ); 4000-8 (1f 9); 4000-9 (if $5 \& 2 m 41 / 2-9$ ); 4000-10 (2f 8-8 $1 / 2$ \& 1 m 7 ).

Holotype of Sergestes laminatus, "Dana" St. 3933-1 (ZMUC CRU 1605).

Holotype of Sergestes (Sergia) guineensis (MNHN-Na 10150); paratype of same (MNHN-Na 4369).

Type locality: Western Indian Ocean, $11^{\circ} 18^{\prime} \mathrm{S}$, 500ㅇ́․

Type material: Holotype of Sergestes laminatus (ZMUC, see above).

Diagnosis: Integument firm, cornea well pigmented, dark brown, much wider than eyestalk; segment 3 of outer A I flagellum in male with tubercle just reaching segment 4 of flagellum; scaphocerite with conspicuous distal tooth; Mxp I endopod with penultimate segment equal to terminal segment; PV of petasma of leaf-like form, overlapping LI and LC; LT reaching end of PV; LA curved at about $3 / 4$ of its length, tip directed midventrally.

Description: Cp with blunt rostrum, 2.3 times as long as high and 0.45 times as long as abdomen (Fig. 12A). Abdomen with somite VI 2.1 times as long as high and 1.2 times as long as telson; telson 4.0 times as long as wide.


Fig. 12. Sergia laminata, male, "Dana" St. 3933-1, Cp length 9.5 mm . - A, lateral view of Cp. -B , scaphocerite. - C, Up.


Cornea 1.0 times as long as wide, 0.7 times as long and 1.3 times as wide as eyestalk.

A I peduncle 0.6 times as long as $C p$, with segments 2 and 30.50 times as long as segment 1 ; segment 4 of flagellum bearing 3 bristles and several setae on dorsal surface and several setae on ventral surface (Fig. 13C). A II peduncle 0.5 times as long as scaphocerite; latter with distinct distal tooth (Fig. 12B), 3.0 times as long as wide, 0.83 times as long as A I peduncle.

Md palp 0.38 times as long as Cp, with proximal segment 2.2 times as long as distal one. Mx I with palp 1.9 times as long as wide and 0.07 times as long as $C p$; endopod 1.3 times as long as wide and 1.4 times as long as palp; endite 1.7 times as long as wide and 0.9 times as long as palp. Mx II with exopod 2.9 times as long as wide and 0.32 times as long as Cp; palp 3.3 times as long as wide and 0.12 times as long as Cp ; endopod 1.7 times as long as wide and 1.0 times as long as palp; endites subequal, 1.7 times as long as wide and 0.4 times as long as palp.

Mxp I with exopod 2.9 times as long as wide and 0.21 times as long as $C p$; endopod 0.9 times as long as exopod; segments 2,3 , and $40.7,0.4$, and 0.4 times as long as segment 1 , respectively. Mxp II 1.0 times as long as Cp , with merus 1.0 , carpus 0.8 ,
propodus 0.9 , and dactyl 0.4 times as long as ischium. Mxp III 1.4 times as long as Cp, with merus 1.1 , carpus 1.0 , propodus 1.0 , and dactyl 0.9 times as long as ischium; propodus and dactyl divided into 4 and 7 subsegments, respectively.

P I 1.1 times as long as Cp, with merus 2.6 , carpus 1.5 , and propodus 2.8 times as long as ischium; propodus incompletely divided into 7 subsegments. P II 1.6 times as long as Cp, with merus 2.5 , carpus 2.3 , propodus 2.8 , and dactyl 0.2 times as long as ischium; propodus incompletely divided into 9-11 subsegments. P III 1.8 times as long as Cp, with merus 3.3 , carpus 2.5 , propodus 2.9 , and dactyl 0.2 times as long as ischium; propodus incompletely divided into 12 subsegments. P IV 1.3 times as long as Cp , with merus 1.6 , carpus 1.2 , and propodus 0.9 times as long as ischium. P V 0.6 times as long as Cp , with merus 0.9 , carpus 0.6 , and propodus 0.4 times as long as ischium.

Somite VIII with arthrobranch 0.11 times as long as Cp and 2.6 times as long as epipod. Somite IX with anterior pleurobranch 0.19 times as long as Cp and 4.0 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.22 times as long as Cp and 4.1 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.22 times as long as Cp and 4.2 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.22 times as long as Cp and 4.2 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.20 times as long as Cp and 1.3 times as long as posterior pleurobranch.

Pl I with basipod 0.31 times as long as Cp and exopod 2.1 times as long as basipod. PI II with basipod 0.29 times as long as Cp; exopod 2.3 and endopod 1.5 times as long as basipod, respectively. PI III with basipod 0.29 times as long as Cp ; exopod 2.4 and endopod 1.5 times as long as basipod, respectively. PI IV with basipod 0.22 times as long as Cp ; exopod 2.2 and endopod 1.4 times as long as basipod, respectively. Pl V with basipod 0.24 times as long as Cp ; exopod 1.8 and endopod 1.2 times as long as basipod, respectively.


Up with exopod 4.1 times as long as wide, 7.8 times as long as basipod and 0.6 times as long as Cp ; endopod 3.8 times as long as wide and 0.7 times as long as exopod (Fig. 12C).

Petasma (Fig. 13A-B). PV with rounded apex, 1.7 times as long as wide. LI slender, 3.3 times as long as wide and 0.2 times as long as PV. LT greatly overlapping LI and LC, reaching end of PV, 1.7 times as long as wide, 0.8 times as long as PV, armed with numerous hooks along lateral side and around apex. LC short, reaching end of LI, elevated in distal part, 1.2 times as long as wide and 0.5 times as long as PV, bearing few stronger hooks at basal part and near apex on dorsal surface. LA 2.7 times as long as wide and 0.9 times as long as PV, armed with row of hooks on medial side.

Remarks: All the "Dana" specimens correspond to the original description of Burkenroad (1940). They are also very close to the South African specimens described and figured by Kensley (1971), although slight morphological variations in the structure of petasma, due either to the geographical isolation or the manner of drawing, may be found. Since the original description of $S$. laminata (Burkenroad 1940) was very brief and included no figures, this misled several carcinologists. $S$.

Fig. 13. Sergia laminata, male, "Dana" St. 3933-1, Cp length 9.5 mm . - A, oral view of petasma. - B, caudal view of petasma. - C, male outer A I flagellum.
guineensis, described by Crosnier \& Forest (1973) as a new species, appeared to be a junior synonym of S. laminata (Vereshchaka 1994a). Having compared both holotypes (that of $S$. guineensis was kindly sent by Dr. A. Crosnier), I found the only distinction to be the form of the rostrum: more acute in S. guineensis and more blunt in S. lamina$t a$. Since the form of the petasma of both species is identical and the rostrum in Sergia has little taxonomic value, $S$. guineensis should be regarded as a synonym of $S$. laminata.
S. laminata is most closely related to $S$. japoni$c a$; affinities and differences may be found in the remarks to $S$. japonica.
Geographical distribution (Fig. 14): The species occurs in the lower latitudes of all oceans.

Atlantic: North Atlantic south of $20^{\circ} \mathrm{N}$ ("Dana"). Equatorial Atlantic ("Dana"; as Sergestes (Sergia) guineensis Crosnier \& Forest 1973), from Congo to Angola (Crosnier \& Forest 1973). South Atlantic ("Dana"; Kensley 1971).

Indian Ocean: Southwest Indian Ocean ("Dana"; Kensley 1971), Madagascar (Burkenroad 1940), throughout the western Indian Ocean (Vereshchaka 1990a), southeastern Indian Ocean (Wasmer 1992 [1993]).
East Pacific Ocean: Northeast Pacific (Krygier \& Wasmer 1988), off Hawaii (Walters 1976). Southeast Pacific ("Dana"), above Nazca and Sala-y-Gomez Ridges (Vereshchaka 1990b).

There are at least two isolated areas occupied by populations of this species: the Atlantic-Western Indian Oceans and the Pacific Ocean. Since the Indo-West Pacific area has been studied and sampled very well (in particular, during the "Dana" and "Galathea" expeditions), it is hardly probable that both groups are contiguous in this area. S. laminata and its sister species $S$. japonica are sympatric, the former species occurring in shallower water (mainly $300-1000 \mathrm{~m}$ ) than the latter.


Fig. 14. Probable geographical distribution of Sergia laminata. Circles indicate "Dana" stations. Shaded areas without symbols are supported by literature data.

Vertical range: Meso- and bathypelagic species. "Dana" specimens were taken within the depth range $200-2000 \mathrm{~m}$. Most specimens occur at $300-$ 1000 m which is not so deep as was previously supposed (Vereshchaka 1994a).

## Sergia gardineri species group

Diagnosis: Lens-less photophores present: 1 long continuous row close to central axis of scaphocerite; 1 long continuous row close to inner margin of Up exopod; hepatic tubercle prominent; postdorsal spine on VI abdominal somite present; ocular papilla well developed, $1 / 2-4 / 5$ as long as wide; endopod of Mxp I with 3 segments; propodus in Mxp III divided into 3 subsegments; posterior branchial lobe above P $I I I$ well developed, not lamellar; petasma with either LI or LT rudimentary or absent; clasping organ with $0-3$ strong serrated bristles.

Species included: S. bigemmea (Burkenroad, 1940), S. gardineri (Kemp, 1913), S. inequalis (Burkenroad, 1940), S. kensleyi n. sp., S. splendens (Sund, 1920).

## Key to species of the Sergia gardineri species group

1. A I with segment 1 longer than segment 2 ,
male outer A I flagellum with tubercle overlapping segment 4 of flagellum, segment 3 of male A I outer flagellum with $0-1$ serrated bristle on dorsal surface. LI of petasma absent or rudimentary, LT well developed

- A I with segment 1 subequal to segment 2, male outer A I flagellum with tubercle not overlapping segment 4 of flagellum, segment 3 of male A I outer flagellum with 23 serrated bristles on dorsal surface. LI of petasma well developed, LT reduced $\qquad$ 4

2. Rostrum with additional dorsal tooth. Segment 3 of male A I outer flagellum with single, very strong, serrated bristle on dorsal surface. PV of petasma with few hooks. LC divided, LAc present, LA curved strongly $\qquad$ Sergia gardineri

- Rostrum without additional dorsal tooth. Segment 3 of male A I outer flagellum without serrated bristle on dorsal surface. PV of petasma without hooks. LC undivided, LAc absent, LA curved slightly

3. Ocular papilla about $3 / 4$ as long as wide. Male outer A I flagellum with tubercle reaching end of segment 6 of flagellum. PV of petasma with tip sharp, LI absent. $\qquad$
$\qquad$

- Ocular papilla about $1 / 2$ as long as wide. Male outer A I flagellum with tubercle reaching end of segment 5 of flagellum. PV

Table 4. Affinities and differences between species of the Sergia gardineri species group. $a=a c u t e, b=b l u n t, d=$ divided, $r=$ rudimentary, $\mathrm{u}=$ undivided, $\mathrm{w}=$ well developed,$+=$ present,$-=$ absent.

| Characters | S. bigemmea | S. gardineri | S. inequalis | S. kensleyi n. sp. | S. splendens |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rostrum | b | a | a | a | a |
| Additional dorsal tooth on rostrum | - | + | - | - | - |
| A I segment 1 relative to A I segment 2 | = | $<$ | $=$ | $<$ | $<$ |
| Tubercle on male A I outer flagellum | w | w | r | w | w |
| No of segments overlapped by tubercle | 4 | 6 | 4 | 5 | 6 |
| Segment 4 of flagellum | u | u | d | u | u |
| No of serrated bristles in clasping organ | 2 | 1 | 3 | 0 | 0 |
| Distal tooth of scaphocerite overlapping blade | - | + | + | + | + |
| End of PV of petasma | a | b | b | b | a |
| Hooks on PV of petasma | - | + | - | - | - |
| LI of petasma | w | I | w | r | - |
| LT of petasma | r | w | r | w | w |
| LC of petasma | u | d | d | u | u |

of petasma with tip not sharp, LI present.... .Sergia kensleyi n. sp.
4. Rostrum with blunt tip. Penultimate photophore on scaphocerite similar to others, additional (to that in proximomedial corner) photophores along distolateral margin of Up endopod usually present. Tubercle on segment 3 of male A I outer flagellum well developed, segment 4 of flagellum with 2 serrated bristles on dorsal side. Distal tooth of scaphocerite not overlapping blade. PV of petasma with tip sharp and not bifid, LC undivided, LA curved $\qquad$ Sergia bigemmea

- Rostrum with acute tip. Penultimate photophore on scaphocerite more spaced and larger, than others, no additional (to that in proximomedial corner) photophores along distolateral margin of Up endopod. Tubercle on segment 3 of male A I outer flagellum rudimentary, segment 4 of flagellum with 3 serrated bristles in dorsal side. Distal tooth of scaphocerite overlapping blade. PV of petasma with tip not sharp and slightly bifid, LC divided, LA not curved $\qquad$ Sergia inequalis


## Sergia bigemmea (Burkenroad, 1940)

Figs. 15-17
Sergestes bigemmeus Burkenroad, 1940: 49.
Sergestes (Sergia) bigemmeus. - Yaldwyn 1957: 9.
Sergia bigemmea. - Omori 1974: 236. - Walters 1976: 819. - Krygier \& Wasmer 1988: 50.

Material examined: "Dana" stations: 3570-2 ( $1 \mathrm{~m} 8^{1} / 2$ ); 3570-3 (1m 101/2); 3570-5 (1f 10); 35706 (1f $8 \& 1 \mathrm{~m} \mathrm{12}$ ); 3576-4 (1m 121/2); 3576-5 (1f 9 \& $2 \mathrm{~m} \mathrm{9-9} 1 / 2$ ); 3577-1 (1m 12); 3577-6 (1f 131/2); 3577-7 (2f 9-91/2 \& $2 \mathrm{~m} 9^{1 / 2}-12$ ); 3579-1 (1f 12 ); $3580-2$ ( 1 m 14 ); 3582-1 (1f $13^{1 / 2} \& 1 \mathrm{~m} 14$ ); 3585-8 ( $1 \mathrm{~m} 9^{1 / 2}$ ) ; 3586-2 (1m $7^{1 / 2}$ ); 3586-4 ( $2 \mathrm{f} 6 \& 2 \mathrm{~m} 5^{1 / 2}$ 7); 3587-10 (3m 7½-9); 3587-11 (4j 5-6); 3588-1 ( 1 m 10 ); 3588-2 (1m 12); 3591-1 (1f 121/2); 3591-3 (5j 5-7 $1 / 2$ ); 3593-2 ( $2 \mathrm{j} 51 / 2-6^{1 / 2}$ ); 3593-8 (3j 5-51/2); 3602-1 ( $1 \mathrm{~m} 14^{\frac{1}{2} 2}$ ); 3602-6 ( $1 \mathrm{~m} 14^{1 / 2}$ ); 3624-1 ( 1 m $14^{1} / 2$ ) ; 3782-3 (1f $13^{1 / 2}$ ); 3784-6 (1m 14); 3784-7 (1f $91 / 2$ ) ; 3784-8 (1m 12); 3786-8 (1f 13); 3788-2 (1f 12).

Holotype of Sergestes bigemmeus, "Dana" St. 3570-6 (ZMUC CRU 1600).

Type locality: Off Tahiti, $14^{\circ} 01^{\prime} \mathrm{S}, 147^{\circ} 52^{\prime} \mathrm{W}$.
Type material: Holotype of Sergestes bigemmeus (ZMUC,-see-above).

Diagnosis: Integument firm; rostrum blunt, without small additional dorsal tooth; ocular papilla 0.8 times as long as wide; cornea well pigmented, dark brown, considerably wider than eyestalk; A I peduncle with segment 1 equal to segment 2 ; segment 3 of outer A I flagellum in male with well developed tubercle not overlapping segment 4 of flagellum and segment 4 not subdivided, bearing 2 serrated bristles on dorsal surface; scaphocerite with distal tooth not overlapping blade; PV of petasma tapering into acute point, not bearing hooks; LI well developed; LT reduced, not reaching

end of PV; LC undivided; LAc developed; LA slightly curved in medial direction; small photophores in single row medial to inner muscle strips on scaphocerite and on Up exopod; few additional (to that in proximomedial comer) photophores along distolateral margin of Up endopod usually present.

Description: Cp 2.0 times as long as high and 0.38 times as long as abdomen (Fig. 15A). Abdomen with somite VI 1.4 times as long as high and 1.1 times as long as telson; telson 2.9 times as long as wide.

Eyestalk with ocular papilla 0.7 times as long as wide, cornea 0.9 times as long as wide, 0.7 times as long and 1.2 times as wide as eyestalk. A I peduncle 0.7 times as long as $C p$, with segments 2 and 3 1.0 and 0.63 times as long as segment 1 , respectively; segment 3 of outer A I flagellum in male with tubercle almost reaching end of segment 4 of flagellum; latter bearing 2 strong serrated bristles and few setae on dorsal surface and several setae on

Fig. 15. Sergia bigemmea, male, "Dana" St. 35821, Cp length 14.1 mm . - A, lateral view of Cp . B, scaphocerite. - C, Up.
ventral surface (Fig. 16C). A II peduncle 0.4 times as long as scaphocerite; latter with prominent distal tooth not overlapping blade (Fig. 15B), 3.5 times as long as wide, 0.77 times as long as A I peduncle.

Md palp 0.29 times as long as Cp , with proximal segment 2.5 times as long as distal segment. Mx I with palp 2.2 times as long as wide and 0.06 times as long as Cp ; endopod 1.7 times as long as wide and 1.4 times as long as palp; endite 1.4 times as long as wide and 0.8 times as long as palp. Mx II with exopod 2.2 times as long as wide and 0.30 times as long as Cp ; palp 5.0 times as long as wide and 0.16 times as long as Cp ; endopod 1.8 times as long as wide and 0.6 times as long as palp; endites subequal, 1.6 times as long as wide and 0.2 times as long as palp.

Mxp I with exopod 2.9 times as long as wide and 0.16 times as long as Cp ; endopod 1.0 times as long as exopod; segments 2 and 31.1 and 0.8 times as long as segment 1 , respectively; segment 2 incompletely subdivided at 0.7 length. Mxp II 0.8 times as long as Cp , with merus 1.1 , carpus 0.9 , propodus 1.0 , and dactyl 0.5 times as long as ischium. Mxp III 1.2 times as long as Cp , with merus 1.1 , carpus 0.9 , propodus 0.8 , and dactyl 0.7 times as long as ischium; dactyl incompletely divided into 6 subsegments.

P I 0.9 times as long as Cp, with merus 2.4 , carpus 1.5 , and propodus 2.6 times as long as ischium; propodus divided into 10 subsegments. P II 1.3 times as long as Cp , with merus 3.1, carpus 2.6, propodus 3.1, and dactyl 0.1 times as long as ischium; propodus divided into 11 subsegments. P III 1.6 times as long as Cp , with merus 2.4 , carpus 2.0 , propodus 2.3 , and dactyl 0.1 times as long as ischium; propodus incompletely divided into 11 subsegments. P IV 1.1 times as long as Cp, with merus 1.2 , carpus 0.9 , and propodus 0.9 times as long as ischium. P V 0.6 times as long as Cp , with merus 1.1, carpus 0.9 , and propodus 0.7 times as long as ischium.

Somite VIII with arthrobranch 0.11 times as long as Cp and 2.1 times as long as epipod. Somite IX with anterior pleurobranch 0.21 times as long as Cp

and 3.9 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.26 times as long as Cp and 4.8 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.28 times as long as Cp and 4.1 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.29 times as long as Cp and 1.4 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.25 times as long as Cp and 1.2 times as long as posterior pleurobranch.

Pl I with basipod 0.31 times as long as Cp and exopod 2.1 times as long as basipod. Pl II with basipod 0.29 times as long as $\mathrm{Cp} ;$ exopod 2.5 and endopod 1.3 times as long as basipod, respectively. P1 III with basipod 0.29 times as long as Cp ; exopod 2.3 and endopod 1.3 times as long as basipod, respectively. PI IV with basipod 0.29 times as long as Cp; exopod 2.1 and endopod 1.2 times as long as basipod, respectively. Pl V with basipod 0.25 times as long as Cp ; exopod 2.1 and endopod 1.2 times as long as basipod, respectively.

Up with exopod 4.2 times as long as wide, 7.3 times as long as basipod and 0.6 times as long as Cp ; endopod 3.3 times as long as wide and 0.7 times as long as exopod (Fig. 15C).

Petasma (Fig. 16A-B). PV long and narrow,

Fig. 16. Sergia bigemmea, male, "Dana" St. 3582-1, Cp length 14.1 mm . A, oral view of petasma. $-\mathbf{B}$, caudal view of petasma. - C , male outer A I flagellum.
tapering to acute point, 5.0 times as long as wide. LI well developed, 3.3 times as long as wide, 0.6 times as long as PV. LT reduced, 0.4 times as long as wide, 0.2 times as long as PV , covered with numerous hooks. LC slightly overlapping LI, 2.9 times as long as wide, 0.7 times as long as PV , armed with numerous smaller hooks in distal part and few stronger hooks on distolateral side. LAc developed, 1.1 times as long as wide and 0.2 times as long as PV, distally covered by several hooks. LA 4.4 times as long as wide and 1.0 times as long as PV, armed with row of smaller hooks along medial side and few stronger hooks near tip.
Photophores. Scaphocerite: continuous row of 812 small organs medial to inner strip of muscle from $1 / 4$ to 0.9 of blade length. Up exopod: continuous row of $10-14$ small photophores medial to inner strips of muscle from $1 / 4$ to 0.9 exopod length. Up endopod: 1 photophore in proximomedial corner and few additional photophores along distolateral side, from 0.4 to 0.8 endopod length.

Remarks: Due to its rarity, this species has been mentioned by only few authors since the original description.
Sergia bigemmea differs from all species of the species group in (1) blunt rostrum, (2) presence of 2 teeth on dorsal side of segment 4 of male outer A I flagellum, (3) distal tooth on scaphocerite not overreaching blade, and (4) usual presence of additional photophores on Up endopod. Other differences and affinities between S. bigemmea and all other known species of the species group are shown in Table 4.

Geographical distribution (Fig. 17): West and Central tropical Pacific only: between $25^{\circ} \mathrm{N}$ and


Fig. 17. Probable geographical distribution of Sergia bigemmea (circles) and S. kensleyi n. sp. (triangles). Circles and triangles indicate "Dana" stations). Shaded area without symbols is supported by literature data.
$30^{\circ} \mathrm{S}$, off New Guinea and tropical Pacific ("Dana"); Northeast Pacific (Krygier \& Wasmer 1988), off Hawaii (Walters 1976).
S. bigemmea and S. kensleyi are parapatric, the former occurring in tropical waters of the Indian Ocean and Pacific, the latter living in the temperate waters of the Southern Hemisphere of the same oceans. S. bigemmea is sympatric with S. gardineri and $S$. inequalis and allopatric with $S$. splendens.

Vertical range: An interzonal species, migrating daily between the upper bathypelagic and the epi/mesopelagic zones. "Dana" specimens were taken within the depth range $100-1700 \mathrm{~m}$. Most specimens live at $100-300 \mathrm{~m}$ at night and at 1000-1300 m during the day.

## Sergia gardineri (Kemp, 1913)

Figs. 18-20

Sergestes gardineri Kemp, 1913: 55, pl. 7, figs. 25. - Hansen 1919: 9, pl. 1, fig. 2a-c.

Sergestes (Sergia) gardineri. - Yaldwyn 1957: 9.
Sergia gardineri. - Walters 1976: 818. - Krygier \& Wasmer 1988: 50.

Material examined: "Dana" stations: 3549-6 ( $1 \mathrm{~m} 8^{1 / 2}$ ); 3556-1 (1f $6^{1 / 2} \& 3 \mathrm{~m} 7^{1 / 2}-8^{1 / 2}$ ); 3556-2 (3f $4^{1} / 2-6$ ); 3556-4 (1m 5); 3556-5 (3f $3^{1 / 2}-5 \& 2 \mathrm{~m} 5$ $6^{1 / 2}$ ); 3556-6 (3f 5-71/2\& 2m 5-51/2); 3656-8 ( 1 m 7 );

3561-3 (1f $5^{1 / 2} \& 1 \mathrm{~m} \mathrm{7}$ ); 3567-1 (1f 5); 3569-1 (1j $3^{1 / 2}$ ); 3585-9 (1m 5¹/2); 3624-2 (2m 6¹/2); 3624-8 (1f $7 \& 2 \mathrm{~m} \mathrm{8-8} 1 / 2$ ); 3624-9 (1f 7); 3625-4 (1f 6); 36262 (1f $7^{1 / 2}$ ); 3626-3 (1f 7); 3627-3 (1f 7); 3627-4 (2f 7-7 ${ }^{1 / 2}$ ); 3637-2 (1f 6 ); 3653-7 (1f $8^{1 / 2}$ ); 3655-4 (1m 7); 3655-5 (1m 7¹/2); 3656-3 (1f $7^{1 ⁄ 2}$ ); 3663-1 (2f 89); 3663-3 (1f $7^{1 ⁄ 2}$ ) ; 3676-6 (1f $7^{1 ⁄ 2}$ ); 3676-7 (1m 6); 3676-8 (1f 4 \& 1m 61/2); 3676-9 (7f $6^{1 / 2}-8^{1 / 2} \& ~ 10 \mathrm{~m}$ 5-71/2); 3677-1 (1m 51/2); 3677-2 (1f $6 \& 3 \mathrm{~m} \mathrm{5-6);}$ 3678-2 (5f 7-71/2 \& 9m 41/2-7); 3678-3 (1f $6^{1 / 2} \& 1 \mathrm{~m}$ $6^{1} / 2$ ) ; 3680-2 (3f $5^{1 / 2}-6 \& 1 \mathrm{~m} 5^{1 / 2}$ ); 3680-3 (2f $5 \&$ 1m 6); 3682-3 (3f $4^{1} / 2-5 \& 2 \mathrm{~m} 4-5$ ); 3683-2 (2f $6 \&$ 2m 5-6 ${ }^{1 / 2}$ ); 3683-4 (1j 3); 3683-7 (1f 41/2); 3686-3 ( $2 \mathrm{~m} 6-6 \frac{1}{2}$ ); 3687 [sample number unknown] ( 2 f 5 $5^{1 / 2} \& 1 \mathrm{~m} 5^{1 / 2}$ ); 3687-2 (2m 5-7); 3688-2 (4f 41/2-71/2 \& 1 m 5 ); 3688-3 (3f 4-5 \& $1 \mathrm{~m} 41 / 2$ ); 3688-4 (3f $41 / 2-$ $5 \& 3 \mathrm{~m} 4^{1 / 2}-5^{1} / 2$ ); 3689-4 (3f 6-8 ${ }^{\frac{1}{2} / 2}$ \& $3 \mathrm{~m} \mathrm{5-5}{ }^{1 / 2}$ ); 3689-8 (1f $7^{1 / 2}$ ); 3714-2 ( $2 \mathrm{j} 2 \frac{1}{2}$ ); 3714-7 ( $1 \mathrm{~m} 5^{1 / 2}$ ); 3714-8 (1f 81/2 \& 1m 5); 3714-9 (2j 2-3); 3716-1 (1f 7); 3729-1 (1f $6 \frac{1}{2}$ ); 3729-2 (4f 4-51/2 \& 1m 6); 3729-3 (29j 2-21/2); 3730-2 (1f $6^{1 / 2}$ ); 3730-3 ( 2 f $6^{1 / 2}$ 2$7^{1 / 2}$ \& 1 m 6 ); 3731-10 (1f $7^{1 / 2}$ ); 3731-12 (1m 6); 3740-3 (4f $6 \frac{1}{2}-7 \& 5 \mathrm{~m} 6-7$ ); 3745-3 (9f $4^{1} / 2-7 \frac{1}{2}$ ); 3746-2 (4f $4^{1 / 2}-8 \frac{1}{2} \& 1 \mathrm{~m} 8$ ); 3749-2 (2f 5-71/2 ); 3749-3 (1f 5 \& 1j $2^{1 / 2}$ ) ; 3751-1 ( $2 \mathrm{~m} 5^{1 / 2}$ ) ; 3751-2 (1f $6^{1 / 2} \& 3 \mathrm{~m} 6$ ); 3751-3 (2f $5^{1 / 2}-6^{1 / 2} \& 2 \mathrm{~m} 5-6^{1 / 2}$ ); 3751-7 (1f $7 \& 1 \mathrm{~m} 6 \& 1 \mathrm{j} 3$ ); 3752-2 (1f 5); 37523 (1f $6 \& 2 \mathrm{~m} 5$ ); 3768-2 ( $2 \mathrm{~m} 4-7$ ); 3782-2 ( $2 \mathrm{f} 41 / 2-$ $5 \& 1 \mathrm{~m} 4^{112}$ ); 3782-3 ( $2 \mathrm{~m} 3^{112}-4$ ); 3784-1 (6f 4-7 \& 3m 4-7); 3784-2 (1f $5^{1 / 2}$ ); 3784-3 (1f $5^{1 / 2} \& 2 \mathrm{~m} 4$ ); 3784-7 (1m 5); 3788-2 (1f 5); 3789-9 (2m 4-7);

3792-2 (2f 6-61/2); 3793-1 (1f $4 \& 1 \mathrm{~m} 3^{1 / 2}$ ); 3793-2 (2f $3^{1 / 2}-6^{1 / 2}$ ); 3795-3 ( $2 \mathrm{f} 3^{1 / 2-4} 4^{1 / 2}$ ); 3796-1 (1f 6 \& 6m 5-7); 3796-2 (3f 4½-612 ); 3797-3 ( $2 \mathrm{f} 4^{1 / 2} 2-7 \&$ $6 \mathrm{~m} \mathrm{4-6} / 2$ ); 3812-1 (1f $5 \& 1 \mathrm{~m} 5^{1} / 2$ ); 3812-2 (6f 4-5 \& $8 \mathrm{~m} 4^{1 / 2}-6^{1 / 2}$ ); 3812-3 (1f $5 \& 2 \mathrm{~m} 4-4^{1 / 2}$ ); 3813-2 (1f $5^{1 / 2}$ ) ; 3814-2 ( $2 \mathrm{~m} 4^{1 / 2-6}$ ); 3817-1 (1f $6^{1 / 2}$ ); 38191 (1m $4^{112}$ ); 3824-6 (1f 8); 3828-9 (1m 5); 3838-1 (1f 7); 3841-2 (1f $7 \& 1 \mathrm{~m} 4$ ); 3844-7 (3f 4-6); 3864-3-4 (1f 5); 3869-7 (1m 5); 3873-1 (1f $6 \& 1 \mathrm{~m} \mathrm{5);}$ 3873-2 (2f $5^{1 / 2} \& 1 \mathrm{~m} 5^{1} / 2$ ); 3873-3 (7f $5^{1 / 2-7 ~ \& ~} 1 \mathrm{~m}$ 5); 3873-4 ( 2 m 5 ); 3874-1 (2f 6-71/2); 3874-3 (1f 6); 3874-4 (2f 6-61/2); 3876-1 (2f 6-7 \& 1m 6); 3887-3 (1f $4^{1 / 2}$ ); 3889-2 (1f $5^{1 / 2} \& 1 \mathrm{~m} 6^{1 / 2}$ ); 3889-3 (3f $4^{1 / 2-}$ $5^{1 / 2} \& 2 \mathrm{~m} 4^{1 / 2-51 / 2}$ ); 3890-1 (2f 5-8 \& 1m 6); 38902 (2f $3^{1 / 2}-4$ ); 3890-3 (1f $4 \& 1 \mathrm{~m} 4$ ); 3891-1 (9f $3^{1 / 2-}$ 7 \& 6m 4-6); 3891-2 (5f 41/2-51/2 \& 4m 41/2-6); 3891-3 (5f $4^{1 / 2-7} 7^{1 / 2} \& 3 \mathrm{~m} \mathrm{4-6}$ ); 3891-4 (5f 3-51/2); 3892-1 (1f 5); 3892-2 (2f 7-8); 3893-3 (3f 4-4 $1 / 2$ \& 2m 4-6); 3893-8 (1f $4 \& 2 \mathrm{~m} 4-41 / 2$ ); 3894-2 (4f 3$7^{1 / 2} \& 1 \mathrm{~m} 4^{1 / 2}$ ); 3905-1 ( $1 \mathrm{~m} 5^{1 / 2}$ ); 3905-2 (1f $8^{1 / 2}$ ); 3905-3 (1f 7 \& 2m 5¹/2-7); 3905-4 (1f $7 \& 1 \mathrm{~m} 5$ ); 3906-3 ( $1 \mathrm{~m} 5^{1 / 2}$ ); 3906-4 ( $2 \mathrm{f} 5^{1 / 2-7}$ ); 3907-1 ( 2 m 6 ); 3907-2 (3f 6-8 \& 2m 6); 3907-3 (4f 6 ${ }^{1 / 2-8 \& 1 m 6) ; ~}$ 3907-4 (11f 5-8 ${ }^{1 / 2} \& 16 \mathrm{~m} \mathrm{5-7} \frac{1}{2}$ ); 3909-1 ( $1 \mathrm{~m} 7^{1 ⁄ 2}$ ); 3909-2 (1m 7); 3909-4 (1f $4 \& 1 \mathrm{~m} 61 / 2$ ); 3909-5 (1m7); 3910-3 (1f 7); 3912-3 (1f $4 \& 2 \mathrm{~m} 5^{1 / 2-61 / 2}$ ); 3914-3 (1f $3^{1 / 2} \& 1 \mathrm{~m} 61 / 2$ ); 3915-2 (1m $5^{1 / 2}$ ); 39153 (15f 4-61/2 \& 14m 4¹/2-6); 3916-1 (1f 6); 3916-3 (3f 4-6); 3917-1 (1f $7^{1 / 2}$ ); 3917-2 (1f $6^{1 / 2} \& 2 \mathrm{~m}^{1 / 2} 2$ $6^{1 / 2}$ ); 3917-4 (2f 6-6¹/2); 3917-5 (11f $3^{1 / 2}-5^{1 / 2} \& 7 \mathrm{~m}$ $3^{1 / 2-6} 1 / 2 \& 8 j 3$ ); 3917-7 (2f $3^{1 / 2} \& 1 \mathrm{~m} 5$ ); 3917-8 (4f $3-6^{1 / 2} \& 7 \mathrm{~m} 3^{1 / 2}-6^{1 / 2}$ ); 3917-9 ( $6 \mathrm{f} 3^{1 ⁄ 2}$ \& $8 \mathrm{~m} 3^{11 / 2-5} \&$ 7j 3); 3918-2 (7j $2 \frac{1}{2}$ ); 3920-7 (1f 6); 3920-8 (1f $6^{1 / 2}$ \& $1 \mathrm{~m} 6^{1 / 2}$ ); 3929-2 (1f $6^{1 / 2} \& 1 \mathrm{~m} 5^{1 / 2}$ ); 3929-3 (2f $6^{1 / 2-7} \& 3 \mathrm{~m} \mathrm{4} /{ }^{1 / 2-6} / \frac{1}{2}$ ); 3933-2 ( $1 \mathrm{~m} 4^{1 / 2}$ ); 3934-1 (4f $5-7 \& 2 \mathrm{~m} 4^{1 / 2-5} / 2$ ); 3934-2 (4f $4^{1 / 2-6} 6^{1 / 2} \& 6 \mathrm{~m} 5^{1 / 2-}$ $6^{1 / 2}$ ); 3934-3 (2f 5-51/2 \& 12m 4-61/2); 3934-4 (5f 46 \& 8m 41/2-61/2); 3934-5 (1f 4); 3935-1 (8f 4-7 \& $18 \mathrm{~m} 4^{1 / 2-6}$ ); 3935-2 (7f $4^{1 / 2-7} 1 / 2 \& 26 \mathrm{~m} \mathrm{4-61/2}$ ); 3935-3 (4f 6-8 \& 5m 412-51/2); 3937-1 (3f 6-61/2 \& 1 m 6 ); 3937-2 (5f 6-7 \& 7m 51/2-61/2); 3937-3 (3f 4$6 \& 8 \mathrm{~m} \mathrm{5-6} \frac{1}{2} \& 4 \mathrm{j} 3-3^{1 / 2}$ ); 3937-4 (5f $5^{\frac{1}{2}-7^{1} / 2 \& 2 \mathrm{~m}}$ 4-6 ${ }^{1 / 2}$ ); 3938-2 (1f 6); 3939-1 (6f 5-7 \& 7m 4-6); 3939-2 (18f 5-7 \& 20m 5-61/2); 3939-3 (11f $5^{1 / 2-71 / 2}$ \& $\left.9 \mathrm{~m} 4^{1} / 2-6\right) ; 3941-1\left(3 \mathrm{f} 4^{1} / 2-7 \& 1 \mathrm{~m} 6\right) ; 3941-2$ ( 26 f $3^{1 / 2}-7^{1} / 2 \& 16 \mathrm{~m} 3^{1 / 2-6}$ ); 3941-3 (46f 4-8 \& 37m 4-6); 3941-4 (7f 4-6 \& 4m 3½-6); 3943-2 (7f 4-7 \& 5m 4-5 ${ }^{1 / 2}$ ); 3943-3 (8f 4-61/2 \& 11m 4-6 \& $2 \mathrm{j} 3^{1 / 2}$ ); 3943-4 (3f 5-7 \& 5m 4½-51/2); 3946-2 (14f 4-71/2 \& $6 \mathrm{~m} 5^{1 / 2}-6$ ); 3949-1 (1m 6); 3949-2 (1f 4); 3949-3 (1m $4 \& 1 \mathrm{j} 2^{1 / 2}$ ); 3952-1 (1f $5^{1 / 2}$ ); 3952-2 (1f $6^{1 / 2}$ );

3952-3 (2f 7); 3957-2 (1j $3 \frac{1}{2}$ ); 3959-2 (1f $8^{1 / 2}$ ); 3969-4 (2m 5-51/2); 3970-2 (1f $4 \& 1 \mathrm{~m} 4^{1 / 2} \& 1 \mathrm{j}$ $21 / 2$ ); 3971-2 (1f $6^{1 / 2} \& 1 \mathrm{~m} 5^{1 / 2}$ ); 3971-4 (12f 4-61/2 \& $6 \mathrm{~m} \mathrm{4-61/2}$ \& 5j $3^{1 / 2}$ 2).
"Galathea" station: 464 ( $1 \mathrm{~m} 6^{1 / 2}$ ).

Type localities: Western Indian Ocean: S by E of Farquhar, $10^{\circ} 27^{\prime} \mathrm{S}, 51^{\circ} 17^{\prime} \mathrm{E}, 27$ Sep. 1905 (3 different samples: 2 young, badly damaged; 3 males \& 3 females, $15-24 \mathrm{~mm}$; 1 female, 20 mm ); NE of Madagascar, between Providence and Alphonse Islands, $8^{\circ} 16^{\prime} \mathrm{S}, 51^{\circ} 26^{\prime} \mathrm{E}, 6$ Oct. 1905 ( 1 male, 17 mm ); 5 miles off Desroches Atoll ( 1 male, 17 mm ).

Type material: Probably syntype(s), not found at NHM, perhaps lost (not examined).

Diagnosis: Integument firm; rostrum acute, with small additional dorsal tooth; ocular papilla 0.8 times as long as wide; cornea well pigmented, dark brown, considerably wider than eyestalk; A I peduncle with segment 2 shorter than segment 1 ; segment 3 of outer A I flagellum in male with welldeveloped tubercle overlapping end of segment 6 of flagellum; segment 4 not subdivided, bearing very strong serrated bristle on dorsal surface; scaphocerite with strong distal tooth overlapping blade; PV of petasma with blunt point, bearing hooks; LI rudimentary, as inconspicuous heel at base of LT; LT not reduced, not reaching and of PV; LC divided at proximal part into 2 lobules; LAc rudimentary; LA strongly curved in medial direction; small photophores arranged in single row medial to inner muscle strips on scaphocerite and on Up exopod; no additional (to that in proximomedial corner) photophores along distolateral margin of Up endopod.

Description: Cp with rostrum acute at tip and bearing small additional dorsal tooth, 1.6 times as long as high and 0.34 times as long as abdomen (Fig. 18A). Abdomen with somite VI 1.5 times as long as high and 1.2 times as long as telson; telson 4.0 times as long as wide.

Eyestalk with ocular papilla 0.7 times as long as wide; cornea 0.9 times as long as wide, 0.8 times as long and 1.2 times as wide as eyestalk.

A I peduncle 0.8 times as long as Cp , with segments 2 and 30.63 and 0.67 times as long as segment 1 , respectively; segment 4 of flagellum bearing extremely strong serrated bristle and several

setae on dorsal and ventral surfaces (Fig. 19C). A II peduncle 0.4 times as long as scaphocerite; latter with strong distal tooth overreaching blade (Fig. 18B), 3.6 times as long as wide, 0.91 times as long as A I peduncle.

Md palp 0.32 times as long as Cp , with proximal segment 2.2 times as long as distal segment. Mx I with palp 2.0 times as long as wide and 0.07 times as long as Cp ; endopod 1.6 times as long as wide and 1.6 times as long as palp; endite 1.4 times as long as wide and 0.9 times as long as palp. Mx II with exopod 3.0 times as long as wide and 0.34 times as long as Cp; palp 2.7 times as long as wide and 0.12 times as long as Cp ; endopod 1.9 times as long as wide and 1.2 times as long as palp; endites subequal, 1.9 times as long as wide and 0.5 times as long as palp.

Mxp I with exopod 2.5 times as long as wide and 0.18 times as long as Cp ; endopod 1.6 times as long as exopod; segments 2 and 30.7 and 1.0 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 1.1 , carpus 1.0 , propodus 1.1, and dactyl 0.6 times as long as ischium. Mxp III 1.2 times as long as C p, with merus 0.6 , carpus 0.7 , propodus 0.6 , and dactyl 0.5 times as long as

Fig. 18. Sergia gardineri, male, "Dana" St. 3905-3, Cp length 6.6 mm . A, lateral view of Cp. - B, scaphocerite. - C, Up.
ischium; dactyl incompletely divided into 5 subsegments.

P I 1.0 times as long as Cp , with merus 1.9 , carpus 1.1, and propodus 1.7 times as long as ischium; propodus incompletely divided into 7 subsegments. P II 1.4 times as long as Cp, with merus 2.4, carpus 2.1 , propodus 2.4 , and dactyl 0.2 times as long as ischium; propodus incompletely divided into 7 subsegments. P III 1.6 times as long as Cp , with merus 2.3 , carpus 1.8 , propodus 1.9 , and dactyl 0.2 times as long as ischium; propodus incompletely divided into 9 subsegments. P IV 1.0 times as long as Cp, with merus 1.2 , carpus 1.1 , and propodus 1.0 times as long as ischium. P V 0.6 times as long as Cp , with merus 1.1 , carpus 0.7 , and propodus 0.7 times as long as ischium.

Somite VIII with arthrobranch 0.12 times as long as Cp and 2.5 times as long as epipod. Somite IX with anterior pleurobranch 0.19 times as long as Cp and 3.6 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.23 times as long as Cp and 4.8 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.28 times as long as Cp and 5.7 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.31 times as long as Cp and 2.2 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.29 times as long as Cp and 1.2 times as long as posterior pleurobranch.

Pl I with basipod 0.29 times as long as Cp and exopod 1.9 times as long as basipod. Pl II with basipod 0.31 times as long as Cp ; exopod 2.1 and endopod 1.3 times as long as basipod, respectively. Pl III with basipod 0.31 times as long as Cp ; exopod 2.0 and endopod 1.2 times as long as basipod, respectively. Pl IV with basipod 3.3 times as long as Cp; exopod 1.9 and endopod 1.2 times as long as basipod, respectively. Pl V with basipod 0.30 times as long as Cp ; exopod 1.7 and endopod 1.0 times as long as basipod, respectively.
Up with exopod 4.8 times as long as wide, 6.0 times as long as basipod and 0.8 times as long as Cp ; endopod 4.1 times as long as wide and 0.7 times as long as exopod (Fig. 18C).


Petasma (Fig. 19A-B). PV long and narrow, with rounded apex, 5.4 times as long as wide, armed with few hooks near tip. LT slightly curved laterally, 2.3 times as long as wide, 0.7 times as long as PV, armed with several hooks around apex. Longer lobule of LC 5.8 times as long as wide, overlapping LT and not reaching end of PV, 2.2 times and 0.9 times as long as shorter lobule and PV, respectively, distally armed with few hooks; shorter lobule 3.1 times as long as wide, overlapping LA and not reaching end of LT, armed with few hooks. LAc reduced, as long as wide and 0.1 times as long as PV, covered by several hooks. LA 2.8 times as long as wide and 0.4 times as long as PV, strongly curved medially, armed with several smaller hooks along medial side.

Photophores. Scaphocerite: continuous row of 816 small organs medial to inner strip of muscle from $1 / 4$ blade length almost to tip. Up exopod: continuous row of $7-15$ small photophores medial to inner strips of muscle from 0.2 to 0.9 exopod length. Up endopod: 1 photophore in proximomedial comer.

Remarks: All "Dana" specimens correspond to the Kemp's (1913) original description. Slight vari-

Fig. 19. Sergia gardineri, male, "Dana" St. 39053, Cp length 6.6 mm . -A , oral view of petasma. -B , caudal view of petasma. - C , male outer A I flagellum.
ations in the form of the rostrum, in the comparative length of the smaller lobule of LC (0.2-0.8 of total length of the longer lobule) indicate only geographical variability and are not of species level. Kemp (1913) referred this species to the robustus group of species and reported the absence of photophores, which is not true: lens-less dermal photophores are numerous. The remarkable form of the rostrum makes preliminary identification of this species very easy, while the characteristic form of the petasma without a LI and with a divided LC allows rapid confirmation of species identity as $S$. gardineri. Due to this, no incorrect synonymy has appeared since the species was described.
S. gardineri is more similar to S. splendens and S. kensleyi n. sp. than to other species. Affinities and differences between $S$. gardineri and all other known species of the species group are presented in Table 4.

Geographical distribution (Fig. 20): Tropical and temperate areas of the Indian and Pacific Oceans.

Indian Ocean: Off South Africa and Madagascar ("Dana"), western part (Kemp 1913), northern and eastern part ("Dana" and "Galathea"; Hansen 1919).

Pacific Ocean: West Pacific ("Dana" stations). Off Australia and New Zealand; Central and East Pacific ("Dana"); off Hawaii (Walters 1976), western Central Pacific and off Japan (Krygier \& Wasmer 1988).

Sergia gardineri and S. splendens, both living in the upper 500 m layer of the pelagic zone, both with diurnal vertical migrations and similar in other ecological features, are parapatric, with S. gardineri occurring in the Indian and Pacific Oceans, $S$. splendens living only in the Atlantic Ocean. S. gardineri is sympatric with other members of the species group.


Fig. 20. Probable geographical distribution of Sergia gardineri (circles, hatching) and Sergia splendens (triangles, cross hatching). Black symbols indicate "Dana" stations, white symbol a "Galathea" station. Shaded areas without symbols are supported by literature data.

Vertical range: An interzonal species migrating diurnally between the mesopelagic and epipelagic zones. "Dana" specimens were taken within the depth range $20-2000 \mathrm{~m}$. Most specimens live in the $100-300 \mathrm{~m}$ layer at night and $700-1000 \mathrm{~m}$ during the day.

## Sergia inequalis (Burkenroad, 1940)

Figs. 21-23, Pl. 4C
Sergestes inequalis Burkenroad, 1940: 51. Sergestes (Sergia) inequalis. - Yaldwyn 1957: 9.
Sergia inequalis. - Omori 1974: 236. - Walters 1976: 821. - Kensley 1981: 64, fig. 3. - Krygier \& Wasmer 1988: 50.

Material examined: "Dana" stations: 3585-1 (1f 14); 3585-8 (3f 11-13 \& 1m 11); 3586-4 (1f $6 \& 2 \mathrm{~m}$ 5-10); 3587-7 (1m 13½); 3587-11 (1f 7); 3676-1 (1f $9^{1 / 2}$ ); 3676-2 (1f 11); 3676-6 (1m 9¹/2); 3676-9 (1f $11 \& 1 \mathrm{~m} 9^{1 / 2}$ ); 3678-1 (1f 141/2); 3680-2 (1f $8^{1 / 2}$ ); 3681-1 (1m 101/2); 3682-3 (1f $8^{1 / 2} \& 2 \mathrm{~m}^{1 / 2} 2-8$ ); 3683-7 (1f 5 \& $1 \mathrm{j} 4^{1} / 2$ ); 3687-3 (1f $7^{1 / 2}$ ); 3728-4 ( 1 j 5); 3730-2 (2f $6^{1 / 2-81 / 2} \& 1 \mathrm{~m} \mathrm{10}$ ); 3734-3 (1f $6^{1 / 2}$ );
 $13^{1 / 2} \& 1 \mathrm{~m} 9^{1 / 2}$ ); 3745-3 (1m 10); 3749-2 (2f $5 \&$ 3m 7-9); 3749-3 (1f $7 \& 1 \mathrm{~m} 5^{1 / 2}$ ); 3751-2 (1f $15 \&$ 1m 9); 3751-3 (1f $5 \& 1 \mathrm{~m} 6$ ); 3751-6 (4f 81/2-131/2
\& $4 \mathrm{~m} \mathrm{10-12} 1 / 2$ ); 3751-7 (1m 7); 3752-2 (4f 7-15); 3753-3 (1f $7^{1 / 2}$ ) ; 3759-13 ( $2 \mathrm{j} 4-4 \frac{1}{2}$ ); 3759-14 (1j 5); 3766-18 (1f 12); 3767-1 (3m 9½); 3767-2 (1f 6); $3767-3$ ( 1 m 9 ); 3767-4 (1f 11); 3767-5 (1m 12); 3768-1 (3f 10 ${ }^{1} / 2-12 \& 4 \mathrm{~m} 9-12$ ); 3768-2 ( 1 m 12 ); 3768-4 (1f $12 \& 2 \mathrm{~m} 12-12^{1 / 2}$ ); 3768-6 (5f $5^{1 / 2}-10 \&$ $2 \mathrm{~m} 8^{1 / 2}-10^{1 / 2}$ ); 3773-1 (1f $5 \& 3 \mathrm{~m} 5^{1 / 2}$-10); 3773-3 (2f 5-5 ${ }^{1 / 2} \& 2 \mathrm{~m} 4-4^{1 / 2}$ ); 3775-1 (2f 5-10); 3775-2 (2f 5-7 ${ }^{1 / 2}$ ); 3782-3 (2f 5-6 $1 / 2$ ); 3784-1 (1f 11); 3784-2 (1m 61/2); 3784-8 (1f $13 \& 1 \mathrm{~m} \mathrm{13}$ ); 3786-7 (1f 16); 3789-1 (1m 10); 3789-8 (1f $14^{1 ⁄ 2}$ ); 3792-2 (1f $7 \&$ $1 \mathrm{~m} 61 / 2$ ); 3793-1 (2f $5^{1 / 2}$ ); 3795-2 (1m 6); 3795-3 (1f 6); 3796-1 (1f $6^{1 / 2}$ ); 3796-2 (3f $4^{1 / 2-7}$ \& 3m 5-8); 3797-3 (2f 5-7¹⁄2); 3804-3 (1f 12); 3812-2 (5f 6-71/2 \& 3m 6-7); 3812-3 (1f $8^{1 / 2} \& 3 \mathrm{~m} 6^{1 / 2-9}$ ); 3814-1 ( $1 \mathrm{~m} 8 \frac{1}{2}$ ); 3814-5 (1m 10); 3815-6 (If $13 \& 2 \mathrm{~m}$ $11^{1} / 2-13$ ); 3817-1 (1f $91 / 2 \& 1 \mathrm{~m} 9$ ); 3817-2 (1f 6); 3817-6 (4f $6^{1 / 2}-10 \& 1 \mathrm{~m} \mathrm{10}$ ); 3817-7 (1f $9 \& 1 \mathrm{~m} \mathrm{8}$ ); 3828-10 (1f 13); 3840-5 (1f 41/2); 3841-1 (1f 8); 3851-4 (1m 5); 3860-20 (2f 101/2-11 $1 / 2$ ); 3864-1-2 ( $10 \mathrm{f} 7-14 \& 3 \mathrm{~m} 9-10^{1} / 2$ ); 3864-4 (6f 5-10 \& 4m 613); 3869-7 (1m 9); 3873-1 (1f $10^{1 / 2}$ ); 3873-2 (1f 11 \& $2 \mathrm{~m} 8^{1 / 2}$ ); 3873-3 (2f 7-9 \& 1m 9¹/2); 3874-3 (1m 7); 3876-1 (1f $12^{1 / 2}$ ); 3876-3 (1m 10); 3884-1 (1f $\left.6^{1 / 2} \& 1 \mathrm{~m} \mathrm{11}\right) ; 3884-3$ ( $2 \mathrm{f} 6^{1 / 2-7} \& 1 \mathrm{~m} 6 \& 2 \mathrm{j} 4^{1 / 2}$ ); 3885-1 (1f $7 \& 1 \mathrm{~m} 6$ ); 3886-1 (1f 7); 3887-1 (1f 9 \& 2m 5-7 ${ }^{1} / 2$ ); 3888-3 (1f 5); 3890-3 (1f $7^{1 / 2}$ ); 38904 (1m7); 3891-2 (1f 7); 3891-4 (2m 61/2-7); 3893-8 ( $1 \mathrm{~m} \mathrm{7} 1 / 2$ ); 3905-1 ( $1 \mathrm{~m} \mathrm{11} 1 / 2$ ); 3906-4 ( $1 \mathrm{~m} \mathrm{13} 1 / 2$ );


3913-3 (1m 1312 $)$; 3914-3 (1m 11); 3915-2 (1m 91/2); 3915-3 (1m 11); 3916-1 (1m 9); 3916-3 (1f 8); 3917-5 (1f $9^{1 / 2}$ ); 3917-6 (2f 10-11); 3917-8 (2f 6-12 \& $2 \mathrm{~m} 7-9$ ); 3917-9 (7f 5-6 \& $2 \mathrm{~m} 5^{1} / 2-8^{1 / 2}$ ); 3918-3 ( 1 m 13 ); 3920-8 (1f 13); 3933-1 ( $1 \mathrm{~m} \mathrm{8} 8^{1 / 2}$ ); 3934-4 (1m 11); 3934-5 (1f 11); 3935-3 (2f 10-12 $1 / 2 \& 1 \mathrm{~m}$ 11); 3935-4 (2f 7); 3937-2 (1f 11½); 3941-3 (2f 1014).
"Galathea" stations: 408 (1f $14^{1 / 2}$ ); 441 (1f $11^{1 / 2}$ ); 464 (1m 9) ; 474 (1m 13).

Type locality: Western Pacific off New Guinea, $1^{\circ} 20^{\prime} \mathrm{S}, 138^{\circ} 42^{\prime} \mathrm{E}$.

Type material: Holotype of Sergestes inequalis, "Dana" St. 3768 (was in ZMUC, lost, not examined, see Introduction).

Diagnosis: Integument firm; rostrum acute, without small additional dorsal tooth; ocular papilla 0.8 times as long as wide; cornea well pigmented, dark brown, considerably wider than eyestalk; A I peduncle with segment 1 as long as segment 2 ; seg-

Fig. 21. Sergia inequalis, male, "Dana" St. 3906-4, Cp length 13.5 mm . - A, lateral view of Cp. - B, scaphocerite. - C, Up.
ment 3 of outer A I flagellum in male with rudimentary tubercle reaching end of segment 6 of flagellum; segment 4 divided into 2 subsegments, proximal subsegment with 3 serrated bristles on dorsal surface; scaphocerite with strong distal tooth overlapping blade; PV of petasma not tapering into acute point, with slightly concave end, not bearing hooks; LI well developed; LT reduced; LC divided; LAc developed; LA not curved; small photophores in single row medial to inner muscle strips on scaphocerite and on Up exopod; no additional (to that in proximomedial corner) photophores along distolateral margin of Up endopod; penultimate photophore on scaphocerite more distanced from and larger than others.

Description: Cp 2.0 times as long as high and 0.40 times as long as abdomen (Fig. 21A). Abdomen with somite VI 1.4 times as long as high and 1.0 times as long as telson; telson 3.0 times as long as wide.

Eyestalk with ocular papilla 0.7 times as long as wide; comea 1.1 times as long as wide, 0.9 times as long and 1.4 times as wide as eyestalk. A I peduncle 0.7 times as long as $C p$, with segments 2 and 3 1.0 and 1.67 times as long as segment 1 , respectively, segment 3 of outer A I flagellum in male with 2 long setae and curved rudimentary tubercle


Fig. 22. Sergia inequalis, male, "Dana" St. $3906-4$, Cp length 13.5 mm . A, oral view of petasma. - B, caudal view of petasma. - C, male outer A I flagellum.
reaching end of segment 6 of flagellum; segment 4 divided into 2 subsegments, proximal subsegment with 3 strong serrated bristles and few setae on dorsal surface and several setae on ventral surface, distal segment with distodorsal extension (Fig. 22C). A II peduncle 0.5 times as long as scaphocerite; latter with prominent distal tooth overlapping blade (Fig. 21B), 3.2 times as long as wide, 0.77 times as long as A I peduncle.

Md palp 0.28 times as long as Cp , with proximal segment 2.2 times as long as distal one. Mx I with palp 2.8 times as long as wide and 0.06 times as long as Cp ; endopod 1.8 times as long as wide and 1.5 times as long as palp; endite 1.4 times as long as wide and 0.9 times as long as palp. Mx II with exopod 2.8 times as long as wide and 0.30 times as long as Cp ; palp 3.7 times as long as wide and 0.09 times as long as Cp ; endopod 1.7 times as long as wide and 0.9 times as long as palp; endites subequal, 1.5 times as long as wide and 0.4 times as long as palp.

Mxp I with exopod 2.5 times as long as wide and 0.15 times as long as Cp ; endopod 1.2 times as long as exopod, segments 2 and 31.5 and 1.3 times as long as segment 1 , respectively. Mxp II 0.8 times as long as Cp , with merus 1.0 , carpus 1.3 , propodus 1.0 , and dactyl 0.5 times as long as ischium. Mxp III 1.1 times as long as Cp , with merus 0.9 , carpus 0.8 , propodus 0.7 , and dactyl 0.6 times as long as
ischium; dactyl incompletely divided into 5 subsegments.

P I 0.9 times as long as Cp , with merus 2.4 , carpus 1.4, and propodus 2.3 times as long as ischium; propodus incompletely divided into 6 subsegments. P II 1.4 times as long as Cp , with merus 2.6 , carpus 2.2 , propodus 2.4 , and dactyl 0.1 times as long as ischium; merus regularly serrate on ventral margin; propodus incompletely divided into 5-6 subsegments. P III 1.5 times as long as Cp , with merus 2.5 , carpus 2.1 , propodus 2.1 , and dactyl 0.1 times as long as ischium; propodus incompletely divided into 7 subsegments. P IV 1.1 times as long as Cp, with merus 1.1, carpus 0.9 , and propodus 1.1 times as long as ischium. P V 0.6 times as long as Cp, with merus 1.0 , carpus 0.7 , and propodus 0.8 times as long as ischium.

Somite VIII with arthrobranch 0.13 times as long as Cp and 2.4 times as long as epipod. Somite IX with anterior pleurobranch 0.22 times as long as Cp and 4.0 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.25 times as long as Cp and 4.0 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.30 times as long as $C p$ and 4.2 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.34 times as long as Cp and 1.3 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.30 times as long as Cp and 1.2 times as long as posterior pleurobranch.

PI I with basipod 0.28 times as long as Cp and exopod 1.8 times as long as basipod. Pl II with basipod 0.28 times as long as Cp ; exopod 2.2 and endopod 1.3 times as long as basipod, respectively. PI III with basipod 0.28 times as long as Cp; exopod 2.1 and endopod 1.1 times as long as basipod, respectively. PI IV with basipod 0.27 times as long as Cp;


Fig. 23. Probable geographical distribution of Sergia inequalis. Black circles indicate "Dana" stations, white circles "Galathea" stations. Shaded areas without symbols are supported by literature data.
exopod 1.8 and endopod 1.0 times as long as basipod, respectively. Pl V with basipod 0.26 times as long as Cp ; exopod 1.5 and endopod 0.9 times as long as basipod, respectively.

Up with exopod 4.4 times as long as wide, 6.7 times as long as basipod and 0.6 times as long as Cp ; endopod 3.3 times as long as wide and 0.7 times as long as exopod (Fig. 21C).

Petasma (Fig. 22A-B; Pl. 4C). PV short, 2.1 times as long as wide. LI 1.8 times as long as wide, 0.5 times as long as PV. LT as heel at base of LI, 1.0 times as long as wide, 0.3 times as long as PV, armed with few hooks. LC with longer lobule 3.9 times as long as wide and 1.0 times as long as PV, armed with several hooks at middle and in distal part, directed dorsolaterally; shorter lobule 0.9 times as long as wide and 0.5 times as long as PV, overlapping LT, not reaching end of LI, directed distally, unarmed. LAc 1.6 times as long as wide and 0.5 times as long as PV, distally covered by several hooks. LA 1.9 times as long as wide and 0.7 times as long as PV, not curved, armed with row of hooks along dorsal margin and few hooks near tip; tip directed laterally.

Photophores. Scaphocerite: continuous row of 812 small organs medial to inner strip of muscle from 0.3-0.4 to 0.9-1.0 blade length. Up exopod: continuous row of $10-15$ small photophores medial to inner strips of muscle from $1 / 4$ to 0.9 exopod length. Up endopod: 1 photophore in proximomedial corner.

Remarks: Since Burkenroad's original description (1940), this species has been recorded only twice (Walters 1976, Kensley 1981), Kensley providing figures of the petasma. Due to the very specific form of the petasma, $S$. inequalis has been correctly identified, and no younger synonyms have appeared.

Sergia inequalis is apart from all other species of the species group. In addition to features noted in Table 4, it differs in (1) the presence of 3 serrated bristles on the dorsal side of segment 4 of the male outer A I flagellum, (2) the blunt, often slightly bifid end of PV, and (3) having LA not curved.

Geographical distribution (Fig. 23): Tropical areas of Indian Ocean, West and Central Pacific, between $25^{\circ} \mathrm{N}$ and $15^{\circ} \mathrm{S}$.

Indian Ocean: Off Madagascar ("Dana") and South Africa (Kensley 1981), off Seychelles Islands, Sri Lanka ("Dana"), Eastern Indian Ocean ("Dana" and "Galathea"), off Sunda Islands, Java Sea (Burkenroad 1940).

Pacific: West and Central South Pacific ("Dana"), off Hawaii (Walters 1976).

Sergia inequalis and S. kensleyi are parapatric, the former living in the tropical Pacific, the latter in temperate areas of the Southern Hemisphere of the Pacific and Indian Oceans. S. inequalis is sympatric with $S$. gardineri and S. bigemmea and allopatric with S. splendens.


Vertical range: An interzonal species, migrating daily between the meso- and epipelagic zones. "Dana" specimens were taken within the depth range $30-2000 \mathrm{~m}$. Most specimens live at 100-300 m at night and at $1000-1300 \mathrm{~m}$ during the day.

## Sergia kensleyi n. sp.

Figs. 17, 24-25; Pl. 4D

Material examined: "Dana" stations: 3613-6 ( 1 m 10 ); 3621-2 (1m 7); 3622-1 (20f $41 / 2-10 \& 12 \mathrm{~m}$ $4^{1} / 2-6^{1} / 2$ ); 3623-4 (1f $5 \& 4 \mathrm{~m} 5-7$ ); 3623-5 (6f $5^{1 / 2-}$ $61 / 2 \& 6 \mathrm{~m} \mathrm{5-7}$ ); 3624-3 ( $2 \mathrm{~m} \mathrm{4} 4^{1 / 2-51 / 2}$ ); 3626-4 ( 2 m $5^{1 / 2-61 / 2}$ ); 3627-3 (2m 7-8); 3627-7 (1m 71/2); 36384 (1f $5 \& 2 \mathrm{~m} 5^{1 / 2-6}$ ); 3656-1 ( $1 \mathrm{~m} 6^{1 / 2}$ ); 3656-3 ( 1 m 6); 3663-2 ( $2 \mathrm{~m} \mathrm{7}^{1 / 2-8}$ ); 3966-1 ( $1 \mathrm{~m} 7^{1 / 2}$ ); 3966-3 (1f 7); 3969-4 (1f $8 \& 1 \mathrm{~m} 7^{1 / 2}$ ); 3970-1 (2f 7-8 ${ }^{\frac{1}{2} / \& 2 \mathrm{~m}}$ 8); 3970-2 (2f 7-71/2 \& 5m 7-71/2); 3971-4 (2m 7$7^{1 / 2}$ ); 3975-9 (3f $7 \& 2 m 6^{1 / 2-71 / 2}$ ).

Holotype: male ( Cp length 8.3 mm , ZMUC CRU 3605), "Dana" St. 3970-1, $34^{\circ} 09^{\prime}$ S, $27^{\circ} 38^{\prime}$ E, sampled 28 Jan. 1930.

Paratypes: 1 male ( Cp length 8.0 mm ; ZMUC

Type locality: Western Indian Ocean off Mozambique, $34^{\circ} 09^{\prime} \mathrm{S}, 27^{\circ} 38^{\prime} \mathrm{E}$.
CRU 3606) and 1 female ( Cp length 8.5 mm ; ZMUC CRU 3619), same sample as holotype.

Type material: Holotype +2 paratypes (ZMUC, see above).

Diagnosis: Integument firm; rostrum acute, without additional tooth; ocular papilla 0.5 times as long as wide; comea well pigmented, dark brown, considerably wider than eyestalk; A I peduncle with segment 2 shorter than segment 1 , segment 1 of outer A I flagellum in male with well developed tubercle reaching end of segment 5 of flagellum; segment 4 of flagellum not subdivided, lacking serrated bristles on dorsal surface; scaphocerite with distal tooth overlapping blade; PV of petasma not tapering into sharp point, without hooks; LI small; LT not reduced, not reaching end of $L C$; LC undivided; LAc absent; LA slightly curved in medial direction; small photophores in single row medial to inner muscle strips on scaphocerite and on Up exopod, no additional (to that in proximomedial corner) photophores along distolateral margin of Up endopod.

Description: Cp 1.6 times as long as high and

0.36 times as long as abdomen (Fig. 24A). Abdomen with somite VI 1.6 times as long as high and 1.2 times as long as telson; telson 3.2 times as long as wide.

Cornea well pigmented, dark brown, 1.0 times as long as wide, 0.9 times as long and 1.7 times as wide as eyestalk. A I peduncle 0.7 times as long as Cp , with segments 2 and 30.56 and 0.48 times as long as segment 1 , respectively; segment 3 of outer A I flagellum in male with tubercle just reaching end of segment 5 of flagellum, segment 4 of flagellum bearing few setae on dorsal surface and single longer setae on ventral surface (Fig. 25C). A II peduncle 0.4 times as long as scaphocerite; latter with distal tooth overreaching blade (Fig. 24B), 3.5 times as long as wide, 0.91 times as long as A I peduncle.

Md palp 0.36 times as long as Cp , with proximal segment 2.1 times as long as distal one. Mx I with palp 2.5 times as long as wide and 0.08 times as long as Cp ; endopod 1.4 times as long as wide and 1.1 times as long as palp; endite 1.8 times as long as wide and 0.9 times as long as palp. Mx II with exopod 3.3 times as long as wide and 0.32 times as long as Cp ; palp 3.2 times as long as wide and 0.13 times as long as Cp ; endopod 1.6 times as long as wide and 1.0 times as long as palp; endites subequal, 1.6 times as long as wide and 0.5 times as long as palp.

Fig. 25. Sergia kensleyi n. sp., holotype, male, "Dana" St. 3970-1, Cp length 8.3 mm . - A, oral view of petasma. - B, caudal view of petasma. - C, male outer A I flagellum.

Mxp I with exopod 2.4 times as long as wide and 0.18 times as long as Cp ; endopod 1.3 times as long as exopod, segments 2 and 30.9 and 0.8 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 1.2 , carpus 1.0 , propodus 1.1, and dactyl 0.5 times as long as ischium. Mxp III 1.3 times as long as Cp , with merus 0.7 , carpus 0.7 , propodus 0.6 , and dactyl 0.5 times as long as ischium; dactyl incompletely divided into 3-4 subsegments.

P I 1.0 times as long as Cp , with merus 1.9 , carpus 1.3, and propodus 1.8 times as long as ischium; propodus divided into 6 subsegments. P II 1.2 times as long as Cp , with merus 0.8 , carpus 0.7 , propodus 1.1, and dactyl 0.1 times as long as ischium; propodus divided into 7 subsegments. P III 1.6 times as long as Cp , with merus 2.6 , carpus 2.0 , propodus 2.3 , and dactyl 0.2 times as long as ischium; propodus divided into 7 subsegments. P IV 1.1 times as long as Cp , with merus 1.4 , carpus 1.0 , and propodus 1.1 times as long as ischium. P V 0.6 times as long as C p, with merus 0.9 , carpus 0.7 , and propodus 0.6 times as long as ischium.

Somite VIII with arthrobranch 0.11 times as long as Cp and 1.9 times as long as epipod. Somite IX with anterior pleurobranch 0.17 times as long as Cp and 4.7 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.21 times as long as Cp and 5.2 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.25 times as long as Cp and 5.2 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.28 times as long as Cp and 1.6 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.22 times as long as Cp and 1.7 times as long as posterior pleurobranch.

Pl I with basipod 0.31 times as long as Cp and
exopod 1.7 times as long as basipod. Pl II with basipod 0.31 times as long as $C p$; exopod 1.9 and endopod 1.2 times as long as basipod, respectively. Pl III with basipod 0.31 times as long as Cp ; exopod 1.9 and endopod 1.1 times as long as basipod, respectively. Pl IV with basipod 0.31 times as long as Cp ; exopod 1.8 and endopod 1.1 times as long as basipod, respectively. Pl V with basipod 0.29 times as long as $C p$; exopod 1.5 and endopod 0.9 times as long as basipod, respectively.

Up with exopod 4.4 times as long as wide, 4.2 times as long as basipod and 0.7 times as long as Cp ; endopod 3.4 times as long as wide and 0.7 times as long as exopod (Fig. 24C).

Petasma (Fig. 25A-B; Pl. 4D). PV long and narrow, reaching end of $\mathrm{LT}, 4.7$ times as long as wide. LI 1.0 times as long as wide and 1.1 times as long as PV. LT curved laterally, 2.4 times as long as wide, 0.5 times as long as PV, armed with several hooks near tip. LC long, overlapping LT and PV, 4.1 times as long as wide and 0.9 times as long as PV , bearing row of hooks along lateral margin and near tip. LA 3.2 times as long as wide and 0.9 times as long as PV, armed with few hooks along medial side and few stronger hooks near apex, latter slightly curved medially.

Photophores. Scaphocerite: continuous row of 15-17 organs medial to inner strip of muscle from 1/4 blade length to almost tip. Up exopod: continuous row of 8-11 photophores medial to inner strips of muscle from $1 / 4$ to 0.8 exopod length and 1 additional photophore near inner margin at base. Up endopod: 1 photophore in proximomedial corner.

Remarks: Sergia kensleyi n. sp. is close to S. gardineri and S. splendens and differs from S. bigemmea and S. inequalis in having the tubercle of segment 3 of the male outer A I flagellum reaching the end of segment 6 . Other affinities and differences between S. kensleyi and all other known species of the species group are shown in Table 4.

Etymology: The species is named after Dr. Brian Kensley, NMNH, Smithsonian Institution, in recognition of his important contributions to the present knowledge of sergestids.

Geographical distribution (Fig. 17): Temperate areas of the southwest Indian Ocean and the Southwest Pacific.

Indian Ocean: Off South Africa ("Dana").

Pacific: Off the southeast coast of Australia, north of New Zealand ("Dana").

This species seems to avoid tropical waters and occurs south of $25^{\circ} \mathrm{S}$. It is very likely that the existence of two separate areas (Fig. 17) is rather the result of scanty sampling of the temperate waters of the South Central and East Indian Ocean than of real isolation. In respect to $S$. inequalis and $S$. bigemmea, $S$. kensleyi is parapatric, the first two species occurring in the tropical waters of the Pacific and Indian Oceans, S. kensleyi in the southern temperate areas of the same oceans. S. kensleyi is sympatric with $S$. gardineri and allopatric with $S$. splendens.

Vertical range: An interzonal species, migrating daily between the upper bathypelagic and epipelagic zones and taken within the depth range 30-1700 m . Most specimens live at $70-200 \mathrm{~m}$ at night and at $1000-1500 \mathrm{~m}$ during the day.

## Sergia splendens (Sund, 1920)

Figs. 2A, 20, 26-27; Pls. 2D-E, 4B
Sergestes splendens Sund, 1920: 14, figs. 16-18.
[Not Hansen, 1919, usually treated as nomen nudum.]
Sergestes richardi Hansen, 1920: 482 [new name proposed for Sergestes splendens Sund, 1920, by Hansen considered a junior homonym of Sergestes splendens Hansen, 1919]. - Dennell 1955: 400, figs. 3-4. - Synonymized with Sergestes splendens Sund by Yaldwyn (1957).
Sergestes crassus Hansen, 1922: 98, pl. 5, fig. 4 [ $2{ }^{\text {nd }}$ new name proposed for Sergestes splendens Sund, 1920, by Hansen considered a junior homonym of Sergestes splendens Hansen, 1919]; 1925: 23. - Gurney 1924: 94, fig. 32; 1942: 188, fig. 60. - Cecchini 1928: 43, fig. 4a. - Gurney \& Lebour 1940: 24.
Sergestes (Sergia) splendens. - Yaldwyn 1957: 9. Kensley 1971: 260, fig. 23; 1977: 18. - Crosnier \& Forest 1973: 307.
Sergia splendens. - Omori 1974: 236. - Vereshchaka 1994a: 84, figs. 13-15, 26; 1995a: 1651.

Material examined (depths given for stations with trawls at different depths): "Dana" stations: 939, depth 170 m (6f 7-10 \& 2m
$8-8^{1 / 2}$ ); 941, depth 330 m (1f $9^{1 / 2}$ ); 946, depth 130 m (2f $3^{1 / 2-}-8^{1 / 2} \& 2 \mathrm{~m} 8-8^{1 / 2}$ ); 946, depth $330 \mathrm{~m}\left(2 \mathrm{f} 7^{1 / 2-}\right.$ $9 \& 1 \mathrm{~m} 7^{1 / 2}$ ); 947, depth 330 m (8f 7-101/2 \& 8m $6^{1 / 2-9} 1 / 2$ ); 952, depth 20 m (3f 3-91/2 \& 3m 4-5); 952, depth 100 m (1f $6^{1 / 2} \& 3 \mathrm{~m} 7-8$ ); 952, depth 130 m (2f $5^{1 / 2}-6^{1 / 2} \& 2 \mathrm{~m} 6-7$ ); 1142-6 (1f $6 \& 1 \mathrm{~m} 6^{1 / 2}$ ); 1150-1 (1m 61/2); 1152-1 (1f $11 \& 2 \mathrm{~m} 5^{1 / 2-7) ; ~ 1156-~}$ 5 (1m 61/2); 1157-1 (1m 10); 1157-5 (1m 91/2); 1160-2 (1f 11); 1162-1 (1m 9¹/2); 1163-2 (1f 9 \& 1m 9); 1165-2 (1m 81/2); 1171-2 (1f 9); 1171-7 (1f $11^{1 / 2}$ ); 1174-1 ( $4 \mathrm{~m} 9-10^{1} / 2$ ); 1185-1 (1f 9); 1185-11 (3f 7-9 \& 2m 7-71/2); 1194-5 (1f $8^{1 / 2}$ ); 1198-2 (4f $71 / 2-9^{1 / 2} \& 2 \mathrm{~m} 7-8$ ); 1198-3 ( $10 \mathrm{f} 6^{1 / 2-9}{ }^{1 / 2} \& 1 \mathrm{~m} 9^{1} / 2$ ); 1202-2 ( $1 \mathrm{~m} 6^{1 / 2}$ ); 1214-3 ( $2 \mathrm{~m} \mathrm{6-8}{ }^{1 / 2}$ ); 1214-4 (6f 6$\left.10 \& 8 \mathrm{~m} \mathrm{5} 5^{1 / 2-7} 7^{1 / 2}\right) ; 1215-4\left(2 \mathrm{f} 8^{1 / 2}-9^{1 / 2}\right) ; 1216-1(2 \mathrm{f}$ 7-9); 1217-2 (3m 5-8); 1217-3 (5f 5-9 \& 8m 71/2-8); 1217-4 (15f $5^{1 / 2-9 ~ \& ~} 10 \mathrm{~m} 5^{1 / 2-7} 1 / 2$ ); 1217-5 (6f 4-7 \& $2 \mathrm{~m} 5^{1 / 2-6} 6^{1 / 2}$ ); 1218-1 (2f 7-8); 1218-2 ( $1 \mathrm{~m} 7^{1 / 2}$ ); 1218-3 (1f 7 \& $1 \mathrm{~m} 7^{1 / 2}$ ); 1218-4 ( $2 \mathrm{~m} 4-4^{1 / 2}$ ); 12231 (1f $8^{1 / 2}$ ); 1223-2, depth $100 \mathrm{~m}(13 \mathrm{f} 4-8 \& 13 \mathrm{~m}$ $3^{1 / 2-7}$ ); 1223-2, depth $200 \mathrm{~m}\left(5 \mathrm{f} 4^{1 / 2}-9 \& 4 \mathrm{~m} 4^{1 / 2-8}\right.$ ); 1223-3 (12f 4-9 \& 9m 4 ${ }^{1} / 2-7$ ); 1223-6 (8f 4-6 $1 / 2$ \& $3 \mathrm{~m} \mathrm{4}{ }^{1} / 2-7$ ); 1225-2 (5f $8 \& 1 \mathrm{~m} 8$ ); 1225-3 ( $5 \mathrm{f} 4^{1 / 2-7}$ \& $6 \mathrm{~m} \mathrm{4-8} 1 / 2$ ) ; 1225-4 ( $68 \mathrm{f} 31 / 2-8 \& 50 \mathrm{~m} \mathrm{4-61/2);}$ 1225-5 (1f 9); 1228-1 (1f $9^{1 / 2}$ ); 1230-1 (1f 8 ); 12302 (3f $4^{1 / 2}-6 \& 2 \mathrm{~m} 7-8$ ); 1230-3 (7f $4^{1 / 2}-8^{1 / 2} \& 8 \mathrm{~m} 5-$ 7); 1230-4 (7f $4^{1 / 2}-9^{1 / 2} \& 2 \mathrm{~m} 6^{1 / 2-7}$ ); 1230-5 ( $2 \mathrm{f} 4^{1 / 2}$ 5 \& 1m 5); 1230-7 (6f 5-91/2 \& 11m 5-9); 1231-1 (18f $5^{1 / 2-101 / 2} \& 14 \mathrm{~m} 5^{1 / 2}-9$ ); 1239-11 (3f 7-9 \& 3m 7-8) ; 1241-1 (3f 8-9¹/2 \& 1m 9); 1241-2 (1m 6); 1242-8 (2f $5^{1 / 2}$ ); 1242-11 (1f 7); 1242-13 (1f $5^{1 / 2}$ ); 1242-14 ( $2 \mathrm{f} 4^{1 / 2}-5^{1 / 2}$ ); 1242-15 (1f $5 \& 1 \mathrm{~m} 5$ ); 12434 (7j 21/2); 1245-1 (1f 7); 1245-4 (3f 6¹/2-8 \& 1m $5^{1 / 2}$ ); 1247-1 ( $2 \mathrm{f} 8-9^{1 / 2}$ ); 1250-1 (6f $7^{1 / 2} / 9^{1 / 2}$ \& 2 m 5$5^{1 / 2}$ ); 1250-2 (14f $3^{1 / 2}-8 \& 8 \mathrm{~m} 5-7$ ); 1250-3 (58f $3^{1 / 2} / 2-$ $9^{1 / 2} \& 31 \mathrm{~m} 3^{1 / 2}-8$ ); 1256-1 ( 1 m 6 ); 1256-2 ( $2 \mathrm{f} 3^{1 / 2} 2-4$ \& $2 \mathrm{~m} 4^{1 / 2}$ ); 1256-3 (4f 4-8 ${ }^{1 / 2}$ \& $2 \mathrm{~m} 4-6^{1 / 2}$ ); 1256-4 (3f $4^{1} / 2-9$ \& $4 m 4-7$ ); 1260-2 (1f $4 \frac{1}{2}$ ); 1261-1 (1f 9); 1261-3 (1f $5^{1 / 2}$ \& $2 \mathrm{~m} 4^{1 / 2}-8^{1} / 2$ ); 1261-6 (7f 6-10 $1 / 2$ \& $3 \mathrm{~m} 3^{1 / 2}-9$ ); 1261-8 (7f $6^{1 / 2}-8^{1 / 2} \& 1 \mathrm{~m} 8$ ); 1261-9 (3f 5-9 \& 3m 5-8); 1266-6 (1m 6¹/2); 1267-1 (1f $7 \& 1 \mathrm{~m}$ $7^{1 / 2}$ ); 1268-3 (5j $2^{1 / 2}$ ); 1269-1 (1f 9); 1269-2 (1f $4^{1} / 2$ ); 1269-3 (2f $8 \& 3 \mathrm{~m} \mathrm{4-7}$ ); 1269-5 (3f 5-6); 1269-6 ( $1 \mathrm{~m} 5^{1 / 2}$ ); 1269-7 (2f $7^{1 / 2}-10^{1 / 2} \& 2 \mathrm{~m} 6^{1 / 2}$ ); 1270-7 (1f $8^{1 / 2}$ ); 1274-1 (1f $4 \frac{1}{2}$ ); 1274-4 (1m 4); 1281-6 (1f 8); 1281-9 (1f 61/2 \& 1m 6); 1286-1 (1f $9^{1 / 2}$ ); 1286-2 (2f $8^{1 / 2-9} 1 / 2$ ); 1289-1 ( 1 m 5 ); 1289-3 (1f $8^{1 / 2}$ ); 1292-4 (1f $8^{1 / 2}$ ); 1292-5 (8f 4-81/2 \& 1m 6); 1293-4 ( $2 \mathrm{f} 3^{1 / 2}-8^{1 / 2} \& 2 \mathrm{~m} 4-4^{1 / 2}$ ); 1320-1 (1f 9); 1320-3 ( $2 \mathrm{~m} \mathrm{7} 7^{1 / 2-8}$ ); 1320-4 (1f $8 \& 4 \mathrm{~m}^{1 / 2} / \mathrm{P}^{1} / 2$ ); 1321-1 (8f $2^{1 / 2}-5$ \& $3 m 4-4 \frac{1}{2}$ ); 1321-2 ( $2 \mathrm{f} 7-9^{1 / 2}$ );

1322-1 (1f 6); 1322-9-27(1f 91/2 \& 2m 9); 1322-21 (1f $9^{1 / 2}$ ); 1322-35 (3f $5^{1 / 2-9} 1 / 2$ ); 1323-6 ( $2 \mathrm{~m} 8^{1 / 2-9 \text { ) ; }}$ 1323-7 (1m 5); 1323-8 ( $2 \mathrm{f} 6 \frac{1}{2}-10$ ); 1326-5 (1f 9); 1330-1 (1f 9); 1332-1 (1f $10 \& 3 \mathrm{~m} 9-9^{1 / 2}$ ); 1332-13 (2f 9); 1332-15 (11f 3-10 \& 6m 4-9); 1334-3 (3f 6-
 $9^{1} / 2$ ); 1341-2 (1f $4^{1 / 2}$ \& 1m 5); 1341-4 (34f $4^{1 / 2}$ - 10 \& $14 \mathrm{~m} 4 \not 12-7$ ); 1341-5 (6f 6-8 \& 5m 5-7); 1341-6 ( 2 m $7-8^{1 / 2}$ ); 1342-1 ( $2 \mathrm{f} 5-8^{1 / 2} \& 5 \mathrm{~m}$ 6-9); 1342-6 (1f $7^{1} / 2$ ); 1342-8 ( $65 \mathrm{f} 4-11 \& 41 \mathrm{~m} 4-9^{1} / 2$ ); 1345-1 (1f 8 \& $3 \mathrm{~m} 7-8$ ); 1352-2 (15f 3-4 \& $5 \mathrm{~m} 3^{1 / 2}-5^{1 / 2}$ ); 1353-5 ( $1 \mathrm{~m} 4^{1 / 2}$ ) ; 1355-1 (4f 5-9 \& 5m $5^{1 / 2-61 / 2}$ ); 1356-1 (1f $9^{1} / 2$ ); 1356-2 (1f $6^{1 / 2}$ ); 1356-3 (5f $9^{1 / 2 / 2-10 \& 5 m ~} 5^{1 / 2-}$ 9); 1356-4 (1f $7^{1 / 2}$ \& $11 \mathrm{~m} \mathrm{5-61/2);} \mathrm{1356-5} \mathrm{(3f} 7^{1 / 2-}$ 111/2); 1358-4 (1f 7); 1358-5 (1f 7); 1358-8 (2f 10); 1358-9 (1f $8 \& 1 \mathrm{~m} 9$ ); 1358-10 (8f 5-101/2 \& 6m 5$9^{1} / 2$ ) ; 1360-2 ( 1 m 9 ); 1360-3 (4f 41/2-8 \& 1m 4); 1361-1 (1f 8); 1362-3 (4f $5^{1 / 2}-9 \& 5 \mathrm{~m} 5^{\frac{1}{2}-7^{1} / 2}$ ); 1362-4 (3f $4^{1 / 2}-5 \& 1 \mathrm{~m}^{1} / 2$ ); 1362-5 (1f $8^{1 / 2}$ ); 13633 (2f 5-6 \& 1m 9); 1363 [sample number unknown] ( 1 m 7 ); 1366-1 (1m 91/2); 1366-2 (1f $10 \& 1 \mathrm{~m} 9$ ); 1367-1 (1f 10); 1367-2 (1m 9); 1367-4 (1m 91/2); 1368-1 (1f 10); 1369-4 (1f $10^{1 / 2}$ ); 1370-4 (1f $10^{1 / 2}$ ); 1380-3 (3f 9); 1380-4 (1f $10^{1 / 2}$ ); 3959-1 ( 1 m 8 ); 3981-4 (46f 6-11 \& 39m 6-10); 3996-1 (1f 81/2); 3996-3 ( 1 m 5 ); 3996-8 ( $6 \mathrm{f} 7^{1 ⁄ 2}-9 \& 7 \mathrm{~m} \mathrm{8-9);} \mathrm{3996-}$ 9 (5f 6-9 \& 3m 5-8); 3997-1 (1m 7); 3997-2 (3f 5$5^{1 / 2} \& 2 \mathrm{~m} 4-9 \& 4 j 3-31 / 2$ ); 3997-3 (69f 4-91/2 \& 35m 4-9); 3998-1 ( 1 m 10 ); 3998-4 (3f 4-4 $1 / 2 \& 2 \mathrm{~m} 4^{\frac{1}{2}}$ $5^{1 / 2}$ ) ; 3998-7 (3f 6-111/2); 3998-9 (1f 91/2 \& 1m 9); 3999-2 (9f 5-10¹/2 \& 2m 7½-9); 3999-4 (2f 4-5 \& $2 \mathrm{~m} \mathrm{5-5} 1 / 2$ ); 4000-2 (1f 91/2); 4000-3 (10f 5-9 \& 4m 6-8); 4000-4 (4f $5^{1 / 2}-9$ ); 4000-9 (1f $8 \& 2 \mathrm{~m} 7-9$ ); 4000-10 (1f $7^{1 / 2}$ ).

Type localities: Central North Atlantic: 12 "Michael Sars" stations, about $29^{\circ} \mathrm{N}, 25^{\circ} \mathrm{W}$.

Type material: Syntypes of Sergestes splendens Sund, 111 specimens in original material ( $55 \mathrm{f} \&$ $51 \mathrm{~m} \& 5 \mathrm{j}$ ). According to Dr. Endre Willassen, ZMUB, only 3 (ZMBN 14245, 14247, 14248, not examined) of the 12 samples are currently labeled as types, but the other 9 not so labeled should probably be considered syntypes also.

Diagnosis: Integument firm; rostrum acute, without additional tooth; ocular papilla 0.7 times as long as wide; cornea well pigmented, dark brown, considerably wider than eyestalk; A I peduncle with segment 2 shorter than segment 1 ; segment 3 of


Fig. 26. Sergia splendens, male, "Dana" St. 12174, Cp length 7.3 mm . A, lateral view of Cp. -B , scaphocerite. - C, Up.
outer A I flagellum in male with well developed tubercle reaching end of segment 6 of flagellum and segment 4 not subdivided, without serrated bristles on dorsal surface; scaphocerite with strong distal tooth overlapping blade; PV of petasma tapering into sharp point; LI absent; LT not reduced, almost reaching PV; LC reaching end of PV; LC undivided; LAc absent; LA slightly curved medially, small photophores arranged in single row medial to inner muscle strips on scaphocerite and on Up exopod; no additional (to that in proximomedial corner) photophores along distolateral margin of Up endopod.

Description: Cp 1.7 times as long as high and 0.36 times as long as abdomen (Fig. 26A). Abdomen with somite VI 1.5 times as long as high and 1.2 times as long as telson; telson 3.9 times as long as wide.
Eyestalk with ocular papilla 0.6 times as long as wide; cornea 0.9 times as long as wide, 0.8 times as long and 1.3 times as wide as eyestalk.
A I peduncle 0.8 times as long as Cp , with segments 2 and 30.59 and 0.50 times as long as segment 1 , respectively; segment 3 of outer A I flagellum in male with tubercle just reaching end of segment 6 of flagellum; segment 4 of flagellum with several
setae on dorsal and ventral surfaces (Fig. 27C). A II peduncle 0.4 times as long as scaphocerite; latter with strong distal tooth overreaching blade (Fig. 26B), 3.5 times as long as wide, 0.83 times as long as A I peduncle.

Md palp 0.32 times as long as Cp , with proximal segment 2.2 times as long as distal one. Mx I with palp 2.2 times as long as wide and 0.08 times as long as Cp ; endopod 1.3 times as long as wide and 1.3 times as long as palp; endite 1.6 times as long as wide and 1.0 times as long as palp. Mx II with exopod 2.9 times as long as wide and 0.31 times as long as Cp; palp 3.8 times as long as wide and 0.11 times as long as Cp ; endopod 1.6 times as long as wide and 1.1 times as long as palp; endites subequal, 1.8 times as long as wide and 0.6 times as long as palp.
Mxp I with exopod 2.3 times as long as wide and 0.18 times as long as Cp ; endopod 1.2 times as long as exopod; segments 2 and 30.9 and 1.2 times as long as segment 1 , respectively. Mxp II 0.8 times as long as Cp , with merus 1.2 , carpus 1.0 , propodus 1.1, and dactyl 0.4 times as long as ischium. Mxp III 1.2 times as long as Cp , with merus 0.7 , carpus 0.8 , propodus 0.6 , and dactyl 0.5 times as long as ischium; dactyl divided into 5 subsegments.

PI 1.0 times as long as Cp , with merus 2.2, carpus 1.3, and propodus 2.0 times as long as ischium, propodus divided into 5 subsegments. P II 1.4 times as long as Cp , with merus 2.7 , carpus 2.2 , propodus 2.5 , and dactyl 0.2 times as long as ischium; propodus divided into 7 subsegments. P III 1.7 times as long as Cp , with merus 2.9 , carpus 2.2 , propodus 2.5 , and dactyl 0.3 times as long as ischium; propodus incompletely divided into 7-8 subsegments. P IV 1.1 times as long as Cp , with merus 1.5 , carpus 1.1, and propodus 1.2 times as long as ischium. PV 0.6 times as long as Cp , with merus 1.2 , carpus 0.8 , and propodus 0.8 times as long as ischium.

Somite VIII with arthrobranch 0.13 times as long as Cp and 2.2 times as long as epipod. Somite IX with anterior pleurobranch 0.21 times as long as Cp and 4.0 times as long as posterior pleurobranch.


Fig. 27. Sergia splendens, male, "Dana" St. 12174, Cp length 7.3 mm . - A, oral view of petasma. - B, caudal view of petasma. - C, male outer A I flagellum.

Somite $X$ with anterior pleurobranch 0.23 times as long as Cp and 3.6 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.20 times as long as Cp and 3.9 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.29 times as long as Cp and 1.8 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.24 times as long as Cp and 1.3 times as long as posterior pleurobranch.

Pl I with basipod 0.28 times as long as Cp and exopod 2.0 times as long as basipod. PI II with basipod 0.30 times as long as C , exopod 2.0 and endopod 1.2 times as long as basipod, respectively. PI III with basipod 0.30 times as long as $C p$, exopod 1.9 and endopod 1.2 times as long as basipod, respectively. Pl IV with basipod 0.30 times as long as Cp , exopod 1.8 and endopod 1.1 times as long as basipod, respectively. Pl V with basipod 0.29 times as long as Cp , exopod 1.5 and endopod 1.0 times as long as basipod, respectively.

Up with exopod 4.3 times as long as wide, 6.5 times as long as basipod and 0.7 times as long as Cp ; endopod 3.9 times as long as wide and 0.7 times as long as exopod (Fig. 26C).

Petasma (Figs. 2A, 27A-B, Pl. 4B). PV long and narrow, overlapping LT, 3.5 times as long as wide. LT curved laterally, 2.5 times as long as wide, 0.7 times as long as PV, armed with several hooks near tip. LC long, overlapping LT, 3.0 times as long as wide and 0.8 times as long as PV, bearing stronger
hooks along lateral side. LA 2.9 times as long as wide and 0.7 times as long as PV, armed with several smaller hooks along medial side and few stronger hooks near apex.

Photophores. Scaphocerite: continuous row of 717 small organs medial to inner strip of muscle from $1 / 4$ blade length almost to tip. Up exopod: continuous row of 5-16 small photophores medial to inner strips of muscle from 0.2 to 0.9 of exopod length. Up endopod: 1 photophore in proximomedial corner.

Remarks: Colour variations of freshly caught shrimps are shown in Pl. 2D-E.

Most of the "Dana" specimens agree with Sund's (1920) original description. The species varies greatly in the number of photophores and even in the structure of the petasma. The number of photophores was shown (Vereshchaka 1994a) to vary individually even within populations from the same location. For instance, in the samples of "Dana" St. 1217, 23 mature females [42 females in Vereshchaka 1994a: 86 is an error] and 22 mature males of similar lengths were examined, and from 8 to 15 (average 11) photophores in females and from 5 to 13 (average 10) photophores in males were counted in their outer Up rami. I found numerous "Dana" specimens with the usual form of the LC, very rarely specimens with small basal lobule of LC as in the closely related species $S$. gardineri, and few transitional forms with LC proximally thickened (see fig. 13 in Vereshchaka 1994a) that looked very similar to $S$. splendens Sund (1920), for which Hansen (1922) proposed the [2nd, thus unnecessary] new replacement name Sergestes crassus Hansen, since his own $S$. splendens was from 1919 and thus described first. As indicated in the synonymy, Hansen (1920), in the paper with the promised "formal description" of his own S. splendens, had already proposed S. richardi Hansen,

1920 as a replacement name for the species described by Sund, but seems to have forgotten he had done so, as he does not mention it at all. More recent authors have mostly ignored Hansen's replacement names and followed Barnard (1946), who proposed that S. splendens Hansen, 1920, be renamed Sergestes talismani Barnard, 1946. This useage is also followed here.

Sergia splendens is more similar to $S$. gardineri and $S$. kensleyi n. sp. than to other species of the group. Affinities and differences between S. splendens and all other known species of the species group are shown in Table 4.
Geographical distribution (Fig. 20): Atlantic Ocean only: almost everywhere in the tropical and temperate North Atlantic ("Dana"), from the Caribbean to the Mediterranean (Hansen 1922, Vereshchaka 1994a), South Atlantic as far as $38^{\circ} \mathrm{S}$, near South Africa ("Dana"; Hansen 1925). Never in the Indian Ocean (Kensley 1971), where it is replaced by the closely related S. gardineri.

Sergia splendens and S. gardineri are parapatric. The same type of distribution is characteristic for $S$. splendens and S. kensleyi n . sp., both being also very close ecologically: S. splendens occurs in the Atlantic, $S$. kensleyi is found in the southwestern Indian Ocean and in the southwest Pacific. In respect to all other species of the species group, $S$. splendens is allopatric.

Vertical range: An interzonal species, with diurnal migrations between the meso- and epipelagic zones. "Dana" specimens were taken within the depth range $20-2000 \mathrm{~m}$. Most specimens live at $100-300 \mathrm{~m}$ at night and at $700-1000 \mathrm{~m}$ during the daytime. These data agree with the results of Foxton (1970) and Vereshchaka (1994a), who respectively reported this species from $100-400 \mathrm{~m}$ and $200-500 \mathrm{~m}$ at night and from deeper than 800 and 500 m , respectively, during the day.

## Sergia phorca species group

Diagnosis: Lens-less photophores usually present: 2 rows on scaphocerite ( 1 long continuous row close to central axis and 1 oblique proximal row), at least 1 triangular group in distal part of Up exopod; hepatic tubercle blunt; postdorsal spine on abdominal somite VI long; ocular papilla small, $1 / 4-1 / 3$ as long as wide; A I with segment 1 of peduncle longer
than segment 2 , clasping organ with $6-8$ serrated bristles; endopod of Mxp I with 3 segments; posterior branchial lobe above P III well developed, not lamellar; petasma with 1 or more lobes divided.

Species included: Sergia bisulcata (WoodMason in Wood-Mason \& Alcock, 1891), S. burukovskii n. sp., S. filicta (Burkenroad, 1940), S. grandis (Sund, 1920), S. maxima (Burkenroad, 1940), S. phorca (Faxon, 1893), S. plumea (Illig, 1927), S. potens (Burkenroad, 1940), S. wolffi Vereshchaka, 1994.

## Key to species of the Sergia phorca species group

1. Rostrum acute, uni- or bidentate. Photophores, if visible, forming 2 groups on scaphocerite (longitudinal and oblique) and at least 1 distal group on Up exopod. Propodus of Mxp III usually with 3 subsegments. Basal lobule of LC, if present, not directed proximally

- Rostrum blunt. Photophores, if visible, forming single proximal spot on scaphocerite and single proximal spot on Up exopod. Propodus of Mxp III with 4 subsegments. Basal lobule of LC directed proxmally

2. Photophores fused and forming 2 strips on scaphocerite. Segment 4 of male A I flagellum with 7-9 dorsal serrated bristles. Propodus of P I with 8 subsegments. LI of petasma divided, LC undivided .. Sergia maxima

- Photophores mostly discrete on scaphocerite. Segment 4 of male A I flagellum with 4-6 dorsal serrated bristles. Propodus of P I with number of subsegments not equal to 8 . LI of petasma undivided, LC divided

3. Male A I outer flagellum with segment 3 bearing reduced tubercle and overlapped by few longer setae and with segment 4 bearing 2-3 dorsal serrated bristles; propodi in Mxp III, PI, and P III with 4, 9 , and 12 subsegments, respectively $\qquad$ Sergia filicta

- Male A I outer flagellum with segment 3 bearing well developed tubercle not overlapped by few longer setae and with segment 4 bearing 4-6 dorsal serrated bristles; propodi in Mxp III, PI, and P III with 3, 10-

13, and 9-10/13-14 subsegments, respectively .4
4. Rostrum usually bidentate. LT of petasma divided, LAc present. $\qquad$ Sergia potens

- Rostrum usually unidentate. LT of petasma undivided, LAc absent . 5

5. Photophores not visible on scaphocerite. Propodi of P II and P III with 13 subsegments. LC overlapping other lobes and processes of petasma; basal lobule of LC directed distolaterally; LA strongly curved at $3 / 4$ of length Sergia wolffi

- Longitudinal and oblique groups of photophores visible on scaphocerite. Propodi of P II and P III with 10-12 and 9-10 subsegments, respectively. LC not overlapping other lobes and processes of petasma; basal lobule of LC directed laterally or proximolaterally; LA curved evenly throughout or straight $\qquad$ 6

6. Tubercle on segment 3 of male outer A I flagellum not overlapping segment 4. Scaphocerite less than 4 times as long as wide; propodi of P II and P III with 11 and 9 subsegments, respectively. Posterior branchial lobe on somite XII not hidden under anterior lobe. LC with distal lobule straight and proximal lobule directed laterally; LA not curved $\qquad$ Sergia grandis

- Tubercle on segment 3 of male outer A I flagellum overlapping segment 4 . Scaphocerite more than 4 times as long as wide; propodi of P II and P III with $10 / 12$ and 10 subsegments, respectively. Posterior branchial lobe on somite XII hidden under anterior lobe. LC with distal lobule curved and proximal lobule directed proximolaterally; LA curved $\qquad$

7. Propodus of P II with 10 subsegments. LA reaching 0.7-1.0 of PV.. Sergia phorca, n. comb.

- Propodus of P II with 12 subsegments. LA reaching 0.3-0.5 of PV.. Sergia burukovskiin. sp.

8. Photophores visible on scaphocerite and Up exopod. Tubercle on segment 3 of male outer A I flagellum not overlapping segment 4. Propodi of Mxp III, P II, and P III with $5-6,9$, and 13 subsegments, respectively. LI overlapping and distal lobule of LC not overlapping other lobes and processes of petasma; LA straight, reaching $0.8-1.0$ of PV $\qquad$ Sergia bisulcata

- Photophores not visible on scaphocerite and Up exopod. Tubercle on segment 3 of male outer A I flagellum overlapping segment 4. Propodi of Mxp III, P II, and P III with 7, 12 , and 11 subsegments, respectively. LI not overlapping and distal lobule of LC overlapping other lobes and processes of petasma; LA curved, reaching 0.4-0.6 of PV Sergia plumea, n. comb.

Sergia bisulcata (Wood-Mason in Wood-Mason \& Alcock, 1891)

Figs. 2B, 28-30
Sergestes bisulcatus Wood-Mason in Wood-Mason \& Alcock, 1891a: 190; 1891b: 353. - Ortmann 1893: 114, fig. 2. - Faxon 1895: 210, pl. 52. Hansen 1896: 949; 1919: 11, pl. 1, fig. 3a-d. Alcock 1901: 49. [Non Stebbing 1905.]
Sergia bisulcata. - Ortmann 1893: 37. - Walters 1976: 823. - Krygier \& Wasmer 1988: 50.
Sergestes (Sergia) bisulcatus. - Yaldwyn 1957: 9.
Material examined (? = identification uncertain): "Dana" stations: 3678-4 (1f 19); 3683-1 (2f $\left.14^{1 / 2}-25 \& 1 \mathrm{~m} 14^{1} / 2\right) ; 3683-2\left(3 \mathrm{~m} \mathrm{1} 2^{1 / 2}-26^{1} / 2\right)$; 36837 ( $2 \mathrm{j} 6^{1 / 2}-8^{1 / 2}$ ); 3684-2 (1m 14); 3685-1 (1f 13); 3585-8 (1f 19 \& 1m 22); 3686-8 (2j 9-11); 3687-1 (1j 10); 3689-6 (2f 20-221/2); 3689-7 (7f $91 / 2-14$ ); 3690-2 (1f $14^{1 / 2}$ ); 3713-2 (1f $12^{1 / 2}$ ); 3714-6 (1f $21^{1 / 2}$ ) ; 3716-3 (1f $20 \& 1 \mathrm{~m} 19$ ); 3730-1 (1m $12 \& 1 \mathrm{j}$ $11^{1 / 2}$ ) ; 3731-6 (1f $11 \frac{1}{2}$ ) ; 3731-8 (1m 18); 3731-10 (1m 21); 3737-1 (1f $16 \& 2 \mathrm{~m} \mathrm{14} 1 / 2-18 \frac{1}{2}$ ); 3751-6 (1f 12 ); 3751-7 (1f $25 \& 1 \mathrm{~m} \mathrm{20} 1 / 2$ ); 3752-1 (1f 13); 3753-1 (1m 21); 3766-18 (1f 26); 3767-6 (1m $17^{1 / 2}$ ); 3768-2 (1f 11); 3768-3 (1f $12 \& 1 \mathrm{~m} 11^{1 / 2}$ ); $7 \quad 3782-1$ (1f $28 \& 1 \mathrm{~m}$ 19); 3821-1 (1f 15); ? 3824-4 (1f 14); 3828-5 (1f $15 \& 3 \mathrm{~m} 13^{1 / 2}-16^{1 / 2}$ ); 3828-9 (1m 21); 3869-5 (1f 12); 3869-6 (1f 18); ? 3907-1 (1f 12); ? 3915-2 (1f $10^{1 / 2}$ ); ? 3916-2 (1f 16).

Type localities: Indian Ocean: Bay of Bengal, "Investigator" St. $100,16^{\circ} 55^{\prime} 41^{\prime \prime} \mathrm{N}, 83^{\circ} 21^{\prime} 18^{\prime \prime} \mathrm{E}$, 840 fms and Arabian Sea, Laccadive Sea, off Goa coast, "Investigator" St. $105,15^{\circ} 02^{\prime} \mathrm{N}, 72^{\circ} 34^{\prime} \mathrm{E}$, 740 fms .

Type material: Syntypes (1 female from "Investigator" St. $100+1$ male from St. 105, not examined), were in Indian Museum, Calcutta. Dr. P.

Table 5. Affinities and differences between species of the Sergia phorca species group. $\mathrm{a}=\mathrm{acute}, \mathrm{b}=\mathrm{blunt}, \mathrm{d}=$ divided, $\mathrm{ph}=$ photophore(s), $\mathrm{r}=$ rudimentary, $\mathrm{Sc}=$ scaphocerite, $\mathrm{ss}=$ subsegments, $\mathrm{u}=$ undivided, $\mathrm{w}=$ well developed,$+=$ present,$-=$ absent.

| Characters |  |  | $\underset{i}{\stackrel{y}{E}}$ |  | $\begin{aligned} & \text { B } \\ & \text { 空 } \\ & \text { B } \\ & \text { w } \end{aligned}$ | $\frac{9}{8}$ | $\begin{gathered} \text { y } \\ \frac{1}{3} \\ i \\ i \end{gathered}$ | $\begin{gathered} \text { s. } \\ \text { む } \\ \text { B } \\ \text { in } \end{gathered}$ | $\begin{aligned} & \frac{5}{8} \\ & 3 \\ & 3 \\ & i \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rostrum | b | a | a | a | a | a | b | a | a |
| Additional dorsal tooth on rostrum | - | - | - | - | + | - | - | + | - |
| Tubercle on male A I outer flagellum | w | w | I | w | w | w | w | w | w |
| Tubercle overlapping segment 4 of flagellum | + | + | - | - | + | + | + | + | + |
| No of serrated bristles in clasping organ | 5-6 | 4-5 | 2-3 | 4-5 | 7-9 | 4-5 | 5 | 5-6 | 5-6 |
| Posterior lobe of somite XI hidden | - | + | + | - | - | + | - | - | - |
| LI of petasma | u | u | u | u | d | u | u | u | u |
| LT of petasma | u | u | u | u | u | u | u | d | u |
| LC of petasma | d | d | d | d | u | d | d | d | d |
| LI overlapping other lobes and processes | + | - | - | - | - | - | - | + | - |
| LC overlapping other lobes and processes | - | - | + | - | + | - | + | - | + |
| LAc of petasma | - | - | - | - | - | - | - | + | - |
| LA of petasma curved | - | + | + | - | + | + | + | + | + |
| Basal ph on Sc | + | - | - | - | - | - | - | - | + or - |
| Oblique ph row on Sc | - | + | $+$ | $+$ | + | + | - | + | - |
| Longitudinal ph row on Sc | - | + | + | + | + | + | - | + | - |
| Distal ph on Up exopod | - | + | + | + | + | + | - | + | - |
| Proximal ph on Up exopod | + | + or - | - | + or - | - | + | - | - | - |
| No of ss in Mxp III propodus | 4 | 3 | 4 | 3 | 3 | 3 | 4 | 3 | 3 |
| No of ss in Mxp III dactylus | 5-6 | 7 | 7 | 6-7 | 7 | 9 | 7 | 7 | 7 |
| No of ss in PI propodus | 9-10 | 10 | 9 | 10 | 8 | 13 | 9 | 10-12 | 10 |
| No of ss in P II propodus | 9 | 12 | 10 | 11 | 12 | 10 | 12 | 13 | 13 |
| No of ss in P III propodus | 13 | 10 | 12 | 9 | 12 | 10 | 11 | 14 | 13 |

Mukhopadhyay, ZSI, New Alipore, has kindly informed me (in litt.) that the (damaged) male from St. 105 in the Arabian Sea is now in the National Collections of the Zoological Survey of India, Regn. No. 6070/9. The female is not mentioned and may have been lost.

Diagnosis: Integument firm, rostrum blunt; cornea considerably wider than eyestalk; segment 3 of outer A I flagellum in male with well developed tubercle not reaching segment 4 of flagellum, without terminal setae overlapping tubercle; segment 4 of flagellum bearing 5-6 serrated bristles on dorsal surface; posterior branchial lobe on somite XII not hidden under anterior lobe; LI entire, greatly overlapping other lobes and processes; LT entire; LC divided, with distal lobule slightly curved, not over-
lapping other lobes and processes and with proximal lobule directed proximally; LAc absent; LA not curved, reaching 0.8-1.0 of PV length. 1 large proximal photophore medial to inner muscle strip on scaphocerite and 1 medium-sized proximal organ close to inner margin of Up exopod.

Description: Cp 2.3 times as long as high and 0.43 times as long as abdomen (Fig. 28A). Abdomen with somite VI 1.6 times as long as high and 1.1 times as long as telson; telson 3.2 times as long as wide.

Ocular papilla 0.3 times as long as wide; cornea well pigmented, dark brown, 1.0 times as long as wide, 0.4 times as long and 1.4 times as wide as eyestalk. A I peduncle 0.6 times as long as Cp , with segments 2 and 30.77 and 0.63 times as long as


Fig. 28. Sergia bisulcata, male, "Dana" St. 3683-2, Cp length 23.6 mm . - A, lateral view of Cp. - B, scaphocerite. - C, Up.
segment 1 , respectively; segment 3 of outer A I flagellum in male with tubercle not reduced, not overlapping end of segment 4 of flagellum, without long setae overlapping tubercle; segment 4 bearing 5-6 serrated bristles on dorsal surface (Figs. 2B, 29C). A II peduncle 0.4 times as long as scaphocerite; latter 3.4 times as long as wide (Fig. 28B), 0.83 times as long as A I peduncle.

Md palp 0.31 times as long as Cp , with proximal segment 2.1 times as long as distal one. Mx I with palp 2.7 times as long as wide and 0.06 times as long as Cp ; endopod 1.6 times as long as wide and 1.4 times as long as palp; endite 1.9 times as long as wide and 1.0 times as long as palp. Mx II with exopod 3.1 times as long as wide and 0.30 times as long as Cp ; palp 3.6 times as long as wide and 0.10 times as long as $C p$; endopod 1.9 times as long as wide and 1.1 times as long as palp; endites subequal, 1.9 times as long as wide and 0.5 times as long as palp.

Mxp I with exopod 3.5 times as long as wide and 0.18 times as long as Cp ; endopod 1.0 times as long as exopod, segments 2 and 31.1 times as long as segment 1 . Mxp II 0.8 times as long as Cp , with merus 1.1 , carpus 0.9 , propodus 1.1 , and dactyl 0.5 times as long as ischium. Mxp III 1.4 times as long
as $C p$, with merus 1.0 , carpus 1.1 , propodus 1.0 , and dactyl 0.8 times as long as ischium; propodus and dactyl incompletely divided into 4 and 5-6 subsegments, respectively.

P I 1.0 times as long as Cp , with merus 2.5 , carpus 1.4 , and propodus 2.8 times as long as ischium; propodus incompletely divided into $9-10$ subsegments. P II 1.2 times as long as Cp, with merus 2.5, carpus 1.9 , propodus 2.2 , and dactyl 0.1 times as long as ischium; propodus incompletely divided into 9 subsegments. P III 1.5 times as long as Cp, with merus 2.4 , carpus 2.0 , propodus 2.3 , and dactyl 0.1 times as long as ischium; propodus divided into 13 subsegments. P IV 1.0 times as long as Cp, with merus 1.7 , carpus and propodus 1.0 times as long as ischium. P V 0.7 times as long as Cp, with merus 1.1 , carpus 0.8 and propodus 0.7 times as long as ischium.

Somite VIII with arthrobranch 0.12 times as long as Cp and 2.2 times as long as epipod. Somite IX with anterior pleurobranch 0.19 times as long as Cp and 6.2 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.24 times as long as Cp and 6.7 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.29 times as long as Cp and 6.0 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.27 times as long as Cp and 1.5 times as long as posterior pleurobranch, posterior lobe not hidden under anterior lobe. Somite XIII with anterior pleurobranch 0.25 times as long as Cp and 1.4 times as long as posterior pleurobranch.

Pl I with basipod 0.31 times as long as Cp and exopod 2.2 times as long as basipod. Pl II with basipod 0.28 times as long as Cp ; exopod 2.8 and endopod 1.5 times as long as basipod, respectively. Pl III with basipod 0.26 times as long as $C p$; exopod 2.7 and endopod 1.5 times as long as basipod, respectively. Pl IV with basipod 0.26 times as long as Cp ; exopod 2.4 and endopod 1.3 times as long as basipod, respectively. PI V with basipod 0.23 times as long as Cp ; exopod 2.0 and endopod 1.1 times as long as basipod, respectively.

Up with exopod 4.5 times as long as wide, 6.2 times as long as basipod and 0.6 times as long as Cp ; endopod 3.5 times as long as wide and 0.7 times as long as exopod (Fig. 28C).

Petasma (Fig. 29A-B). PV long and narrow, 4.1 times as long as wide, tip not curved. LI long, 5.7 times as long as wide and 0.7 times as long as PV. LT slender, not reaching end of LC, 2.8 times as

long as wide and 0.4 times as long as PV, armed with several small hooks on distomedial side. LC with distal lobule overlapping LT, 3.1 times as long as wide and 0.7 times as long as PV, armed with several small hooks on distomedial side and near apex, tip directed laterally; proximal lobule 2.0 times as long as wide and 0.2 times as long as PV, armed with few small hooks, tip directed proximally. LA straight, suborthogonal, 4.4 times as long as wide and 1.1 times as long as PV, armed with few proximomedial and several small distal hooks.

Photophores. Scaphocerite: 1 large proximal photophore medial to inner strip of muscle at about of 0.2 blade length. Up exopod: 1 medium-sized proximal photophore close to inner margin at about 0.2 exopod length. Up endopod: 1 photophore in proximomedial corner.

Remarks: Wood-Mason (in Wood-Mason \& Alcock 1891a) indicated the close alliance of $S$. bisulcata to S. robusta (as Sergestes robustus) and S. japonica (as Sergestes mollis). Stebbing (1905) criticised Wood-Mason's original description of the species as being somewhat contradictory and not detailed enough. Indeed, Faxon (1895) synonymized his Sergestes phorcus with S. bisulcatus. Later, Alcock (1901) published a more detailed description of S. bisulcata (as Sergestes bisulcatus) that showed the two species to be distinct. Studies

Fig. 29. Sergia bisulcata, male, "Dana" St. 3683-2, Cp length 23.6 mm . - A, oral view of petasma. - B, caudal view of petasma. - C, male outer A I flagellum.
on the "Dana" specimens have shown little variability in S. bisulcata, which mainly concerns the fine structure of the petasma; the comparative lengths of the lobes and processes vary slightly, but LI always overlaps other lobes and LA nearly reaches the end of PV. In contrast to the other species of the species group, the form of the rostrum remains almost constant, with the tip blunt.

Sergia bisulcata is close to S. plumea and the two differ from all other species of the species group in having (1) rostrum blunt, and (2) basal lobule of LC directed proximally.

Sergia bisulcata differs from all other species of the species group in having (1) P II propodus with 9 subsegments, and (2) 1 proximal photophore on scaphocerite. Other affinities and differences between S. bisulcata and all other known species of the species group are shown in Table 5.

Geographical distribution (Fig. 30): Tropical waters of the Indian and Pacific Oceans.
Indian Ocean: Bay of Bengal, Arabian Sea, Andaman Sea ("Dana"; Alcock 1901), Indo-West Pacific ("Dana"; Hansen 1919).

Pacific: Off Hawaii (Walters 1976).
Stebbing's (1905) record of this species from off South Africa is doubtful, as it does not describe the petasma and is not accompanied by any figure for this species. S. bisulcata occurs in a single area. It is parapatric to S. potens, S. phorca, S. filicta, which live either in the eastern tropical Pacific or South of $10^{\circ}$ S, while S. bisulcata occurs in the Indian Ocean, Central and Western Pacific north of $10^{\circ}$ S. S. bisulcata is sympatric with S. maxima and S. plumea and allopatric to all other species of the species group.

Vertical range: An interzonal species, migrating daily between the meso-/upper bathypelagic and upper mesopelagic zones. "Dana" specimens were taken within the depth range $100-2000 \mathrm{~m}$. Most specimens live at $200-300 \mathrm{~m}$ at night and at 700 1300 m during the day.


Fig. 30. Probable geographical distribution of Sergia bisulcata (small circles, hatching), S. filicta (triangles, cross hatching), and S. wolffi (large circles). Symbols indicate "Dana" stations. Shaded areas without symbols are supported by literature data.

## Sergia burukovskii n. sp.

Figs. 31-33

Sergestes (Sergia) grandis Kensley, 1971 (part): 249, fig. 17. - Crosnier \& Forest 1973 (part): 331, figs. 113-116.

Material examined: "Dana" stations: 3975-1 ( $1 \mathrm{~m} \mathrm{18} 1 / 2$ ); 3979-1 ( 2 m 23-28 \& 11j 5-10); 3980-1 (1f $19 \& 1 \mathrm{~m} 25-26^{1} / 2$ ); 3981-1 (2f 21-25).
Holotype: male ( Cp length 26.6 mm , ZMUC CRU 3607), "Dana" St. 3980-1, 1000 mw, sampled 17.02.1930.

Paratypes: 1 female ( Cp length 19.1 mm , ZMUC CRU 3608), "Dana" St. 3980-1 (same data as holotype) and 1 male (Cp length 28.1 mm , ZMUC CRU 3609), "Dana" St. 3979-1, $1000 \mathrm{mw}, 27^{\circ} 10^{\prime} \mathrm{S}$, $08^{\circ} 59^{\prime}$ E, sampled 15.02.1930.

Type locality: South Atlantic, $23^{\circ} 26^{\prime} \mathrm{S}, 03^{\circ}$ $56^{\prime} \mathrm{E}$.

Type material: Holotype +2 paratypes (ZMUC, see above).

Diagnosis: Integument firm, rostrum acute; cornea considerably wider than eyestalk; segment 3 of outer A I flagellum in male with well developed tubercle overlapping segment 4 of flagellum, with-
out terminal setae overlapping tubercle; segment 4 of flagellum bearing 4-5 serrated bristles on dorsal surface; posterior branchial lobe on somite XII hidden under anterior lobe; LI entire, not overlapping other lobes and processes; LT entire; LC divided, with distal lobule straight, not overlapping other lobes and processes and proximal lobule directed proximolaterally; LAc absent; LA evenly curved medially, reaching 0.3-0.5 PV length. Photophores in 2 rows on scaphocerite medial to inner strip of muscle (5-9 longitudinal organs and 2-6 oblique organs) and in 2 series on Up exopod, 2-7 in triangular figure distal to apical muscle strip and 1-4 proximal ones in continuous row medial to inner muscle strip.

Description: Cp 1.9 times as long as high and 0.43 times as long as abdomen (Fig. 31A). Abdomen with somite VI 1.5 times as long as high and 1.1 times as long as telson, telson 4.2 times as long as wide.

Ocular papilla 0.3 times as long as wide; cornea well pigmented, dark brown, 1.0 times as long as wide, 0.7 times as long and 1.5 times as wide as eyestalk. A I peduncle 0.6 times as long as Cp , with segments 2 and 30.83 and 0.71 times as long as segment 1, respectively; segment 3 of outer A I flagellum in male with tubercle overlapping segment 4 of flagellum; segment 4 bearing 5-6 serrated bristles and several setae on dorsal surface (Fig. 32C).


Fig. 31. Sergia burukovskii n. sp., holotype, male, "Dana" St. 3980-1, Cp length 26.6 mm . - A, lateral view of Cp. - B, scaphocerite. - C, Up.

A II peduncle 0.5 times as long as scaphocerite; latter 3.0 times as long as wide (Fig. 31B), 0.77 times as long as A I peduncle.

Md palp 0.34 times as long as Cp , with proximal segment 2.4 times as long as distal one. Mx I with palp 2.0 times as long as wide and 0.06 times as long as Cp ; endopod 1.7 times as long as wide and 1.5 times as long as palp; endite 1.6 times as long as wide and 1.0 times as long as palp. Mx II with exopod 3.3 times as long as wide and 0.30 times as long as Cp; palp 4.4 times as long as wide and 0.12 times as long as $C p$; endopod 2.0 times as long as wide and 1.0 times as long as palp; endites subequal, 2.1 times as long as wide and 0.5 times as long as palp.

Mxp I with exopod 3.4 times as long as wide and 0.20 times as long as Cp endopod 0.9 times as long as exopod, segments 2 and 31.2 and 1.3 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 1.0 , carpus 0.8 , propodus 0.9 , and dactyl 0.4 times as long as ischium. Mxp III 1.3 times as long as Cp , with merus, carpus and propodus 0.9 , dactyl 0.7 times as long as ischium; propodus and dactyl incompletely divided into 3 and 7 subsegments, respectively.

P I 1.0 times as long as Cp, with merus 2.6 , carpus 1.4, and propodus 2.7 times as long as ischium; propodus incompletely divided into 10 subsegments. P II 1.5 times as long as Cp, with merus 2.7, carpus 2.2 , propodus 2.7 , and dactyl 0.1 times as long as ischium; propodus divided into 12 subsegments. P III 1.8 times as long as Cp , with merus 3.2 , carpus 2.7 , propodus 3.0 , and dactyl 0.2 times as long as ischium; propodus divided into 10 subsegments. P IV 1.1 times as long as Cp, with merus 1.3 , carpus and propodus 1.0 times as long as ischium. P V 0.7 times as long as Cp , with merus 1.0 , carpus 0.9 and propodus 0.7 times as long as ischium.

Somite VIII with arthrobranch 0.12 times as long as Cp and 1.5 times as long as epipod. Somite IX with anterior pleurobranch 0.18 times as long as Cp and 3.3 times as long as posterior pleurobranch. Somite $X$ with anterior pleurobranch 0.22 times as long as Cp and 3.5 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.26 times as long as Cp and 3.3 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.25 times as long as Cp and 1.5 times as long as posterior pleurobranch, posterior lobe hidden under anterior lobe. Somite XIII with anterior pleurobranch 0.21 times as long as Cp and 1.3 times as long as posterior pleurobranch.

Pl I with basipod 0.30 times as long as Cp and exopod 2.2 times as long as basipod. Pl II with basipod 0.29 times as long as Cp; exopod 2.4 and endopod 1.3 times as long as basipod, respectively. PI III with basipod 0.29 times as long as Cp ; exopod 2.3 and endopod 1.2 times as long as basipod, respec-


Fig. 32. Sergia burukovskii n. sp., holotype, male, "Dana" St. 3980-1, Cp length 26.6 mm . A, oral view of petasma. -B , caudal view of petasma. - C, male outer A I flagellum.
tively. Pl IV with basipod 0.29 times as long as Cp ; exopod 2.1 and endopod 1.2 times as long as basipod, respectively. Pl V with basipod 0.24 times as long as Cp ; exopod 2.0 and endopod 1.1 times as long as basipod, respectively.

Up with exopod 4.1 times as long as wide, 6.2 times as long as basipod and 0.6 times as long as Cp ; endopod 3.1 times as long as wide and 0.6 times as long as exopod (Fig. 31C).

Petasma (Fig. 32A-B). PV long and narrow, 4.0 times as long as wide, tip straight. LI well developed, not reaching end of PV, 2.2 times as long as wide and 0.3 times as long as PV. LT slender, overlapping LI and not reaching end of LC, 2.7 times as long as wide and 0.4 times as long as PV, armed with several small hooks on distomedial margin. LC with distal lobule reaching end of PV and greatly overlapping LI and LT, 2.1 times as long as wide and 0.5 times as long as PV, armed with several hooks near apex, slightly curved, tip directed distolaterally; proximal lobule 2.7 times as long as wide
and 0.4 times as long as PV, covered with several large hook-bearing papillae. LA short, 2.1 times as long as wide and 0.5 times as long as PV, armed with numerous smaller hooks along medial side and single very strong apical hook.
Photophores. Scaphocerite: photophores arranged in 2 rows medial to inner strip of muscle, (1) longitudinal row of 12-19 organs from $0.4-0.5$ to $0.9-1.0$ blade length and (2) oblique row of $2-6$ organs from 0.2-0.3 to $0.3-0.4$ blade length. Up exopod: photophores arranged in 2 series, (1) 4-10 photophores in triangular figure distal to apical muscle strip and (2) 4-11 proximal organs in continuous row medial to inner muscle strip from 0.10.2 to 0.4-0.5 exopod length. Up endopod: 1 photophore in proximomedial corner.

Remarks: Sergia burukovskii n. sp. varies in the form of the rostrum (sometimes inconspicuously bidentate), number of photophores and their character (those in the oblique group on the scaphocerite may be almost fused), form of the lobes and processes of the petasma (LI may sometimes have


Fig. 33. Probable geographical distribution of Sergia burukovskii n. sp. (triangles), S. maxima (large circles, coarse hatching), and $S$. phorca (small circles, fine hatching). Symbols indicate "Dana" stations. Shaded areas without symbols are supported by literature data.
inconspicuous basal lobular extension, proximal lobule of LC may be less armed than described, apical hook on LA may be smaller and LA more curved than figured). However, most photophores are always discrete, and LA reaches about $1 / 2 \mathrm{PV}$ length).

Sergia burukovskii is most closely related to $S$. phorca, differing only in the subsegmentation of Mxp III - P II and in the form of LA. Although subsegmentation is not always certain and complete, I consider both species distinct because LA reaches $0.3-0.5 \mathrm{PV}$ in S. burukovskii and 0.7-1.0 in S. phor$c a$. Thus, no overlapping is found in this character among all the "Dana" specimens. Within the species group, Sergia burukovskii possesses the highest number of photophores on the scaphocerite and Up exopod. Other affinities and differences between $S$. burukovskii and all other species of the species group are shown in Table 5.

Etymology: This species is named after Prof. R. N. Burukovski, Kaliningrad University, who has devoted his life to studies on shrimps.

Geographical distribution (Fig. 33): Southeast Atlantic Ocean and Southwest Indian Oceans: Off South Africa ("Dana"; Kensley 1971 and Crosnier \& Forest 1973, both as S. grandis).
This species is nearly parapatric to S. grandis and
is sympatric with $S$. potens; and allopatric to all other species of the species group.

Vertical range: An interzonal species, migrating daily between the upper bathypelagic and mesopelagic zones. "Dana" specimens were taken within the depth range $300-1000 \mathrm{~m}$. All specimens occur at 300 m at night and at 1000 m during the day.

## Sergia filicta (Burkenroad, 1940)

Figs. 30, 34-35
Sergestes filictum Burkenroad, 1940: 52.
Sergestes (Sergia) filictum. - Yaldwyn 1957: 9.
Sergia filicta.-Krygier \& Wasmer 1988:50.
Material examined: "Dana" stations: 1203-1 (29f $10-18^{1 / 2} \& 16 \mathrm{~m} \mathrm{11-16} 1 / 2$ ); 1203-2 ( $1 \mathrm{f} 18^{1 / 2}$ ); 1203-10 (2f 17-18 \& 1m 17); 1203-13 (2f 17-19 \& 2 m 18-19); 1203-14 (15f 10-18 \& 10m 10-17); 1203-16 (11f $10-18 \& 7 \mathrm{~m} \mathrm{12-141/2);} \mathrm{1205-2} \mathrm{(11f}$ $10^{1 / 2}-23 \& 8 \mathrm{~m} \mathrm{9-13} \frac{1}{2}$ ); $1206-7$ ( 10 f 11-161/2 \& 6 m $10-161 / 2$ ); 1208-1 ( 13 f 10-18 \& 15m 8-17); 1208-4 (6f 11-18 \& 7m 12-16); 1208-13 (1m 16); 1209-1 ( $4 \mathrm{f} 12-22^{\frac{1}{2}} \& 3 \mathrm{~m} 11-14 \frac{1}{2}$ ); 3548-1 ( $2 \mathrm{~m} 14-15$ ); 3548-2 (1f 13); 3548-3 (3f 151/2-21 \& 4m 131/2-14); 3549-4 (3f $16-17^{1 / 2}$ \& 1m 14); 3549-6 (6f 12-161/2 \& $2 \mathrm{~m} \mathrm{15-16}$ ); 3550-1 (3f $15^{1 / 2}-18^{1 / 2} \& 1 \mathrm{~m} 14$ );


Fig. 34. Sergia filicta, male, "Dana" St. 1203-13, Cp length 18.9 mm . - A, lateral view of $\mathrm{Cp} .-\mathrm{B}$, scaphocerite. - C, Up.


3550-3 (1f $7^{1 / 2}$ ); 3550-6 (2f 16-171/2 \& 1m 14); 3550-8 (5f 8-9 ${ }^{1 / 2}$ \& $2 \mathrm{~m} 10^{1 / 2}-18^{1 / 2}$ ); 3556-1 (1f $13^{1 / 2}$ ); 3556-2 (1f 12).

Holotype of Sergestes filictum (ZMUC CRU 1603, "Dana" St. 3549-4).

Type locality: Gulf of Panama, $7^{\circ} 16^{\prime} \mathrm{N}, 78^{\circ}$ $30^{\prime} \mathrm{W}$.

Type material: Holotype (ZMUC, see above).

Diagnosis: Integument firm, rostrum acute; cornea considerably wider than eyestalk; segment 3 of outer A I flagellum in male with rudimentary tubercle not reaching segment 4 of flagellum, with few terminal setae overlapping tubercle; segment 4 of flagellum bearing 2-3 serrated bristles on dorsal surface; posterior branchial lobe on somite XII hidden under anterior lobe; LI undivided, not overlapping other lobes and processes; LT entire; LC divided, with distal lobule slightly curved and much overlapping other lobes and processes and with proximal lobule directed proximolaterally; LAc absent; LA not curved, reaching 0.7-0.9 PV length. Photophores in 2 rows on scaphocerite medial to inner strip of muscle (6-10 organs in longitudinal row and 2-4 organs in oblique row) and in single series on Up exopod, 2-5 in triangular figure distal to apical muscle strip.

Description: Cp 2.1 times as long as high and 0.50 times as long as abdomen (Fig. 34A). Abdomen with somite VI 1.7 times as long as high and 1.2 times as long as telson; telson 3.2 times as long as wide.

Ocular papilla 0.3 times as long as wide; cornea well pigmented, dark brown, 0.9 times as long as wide, 0.9 times as long and 1.6 times as wide as eyestalk. A I peduncle 0.5 times as long as $C p$, with segments 2 and 30.67 and 0.56 times as long as segment 1 , respectively; segment 3 of outer A I flagellum in male with tubercle reduced, not reaching end of segment 4 of flagellum, with 3 long setae overlapping tubercle; segment 4 bearing 2-3 serrated bristles on dorsal surface (Fig. 35C). A II peduncle 0.5 times as long as scaphocerite; latter 3.0 times as long as wide (Fig. 34B), 0.83 times as long as A I peduncle.

Md palp 0.28 times as long as Cp , with proximal segment 2.1 times as long as distal one. Mx I with palp 2.4 times as long as wide and 0.05 times as long as Cp ; endopod 1.8 times as long as wide and 1.6 times as long as palp; endite 1.6 times as long as wide and 1.0 times as long as palp. Mx II with exopod 2.8 times as long as wide and 0.33 times as long as Cp ; palp 3.1 times as long as wide and 0.09 times as long as Cp ; endopod 1.9 times as long as wide and 0.9 times as long as palp; endites subequal, 1.5 times as long as wide and 0.4 times as long as palp.

Mxp I with exopod 3.3 times as long as wide and 0.16 times as long as Cp ; endopod 1.0 times as long as exopod, segments 2 and 31.5 and 1.2 times as long as segment 1 , respectively. Mxp II 0.7 times as long as Cp , with merus 1.1 , carpus 0.9 , propodus 1.0 , and dactyl 0.4 times as long as ischium. Mxp III 1.3 times as long as Cp , with merus, carpus, and propodus 0.9 , dactyl 0.8 times as long as ischium; propodus and dactyl incompletely divided into 4 and 7 subsegments, respectively.

PI 0.9 times as long as Cp, with merus 2.1, carpus 1.2 , and propodus 2.4 times as long as ischium; propodus divided into 9 subsegments. P II 1.4 times


Fig. 35. Sergia filicta, male, "Dana" St. 1203-13, Cp length 18.9 mm . A, caudal view of petasma. - B, oral view of petasma. - C, male outer A I flagellum.
as long as $C p$, with merus 2.4 , carpus 2.1 , propodus 2.7, and dactyl 0.1 times as long as ischium; propodus divided into 10 subsegments. P III 1.7 times as long as Cp , with merus 2.5 , carpus 2.1 , propodus 2.5 , and dactyl 0.1 times as long as ischium; propodus divided into 12 subsegments. P IV 1.2 times as long as Cp , with merus 1.4 , carpus 1.0 , and propodus 1.1 times as long as ischium. P V 0.7 times as long as Cp , with merus 1.1 , carpus 0.8 and propodus 0.6 times as long as ischium.

Somite VIII with arthrobranch 0.17 times as long as Cp and 4.6 times as long as epipod. Somite IX with anterior pleurobranch 0.28 times as long as Cp and 6.3 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.29 times as long as Cp and 6.7 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.34 times as long as Cp and 7.4 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.36 times as long as Cp and 1.4
times as long as posterior pleurobranch, posterior lobe hidden under anterior lobe. Somite XIII with anterior pleurobranch 0.32 times as long as Cp and 1.1 times as long as posterior pleurobranch. All pleurobranchs very voluminous.

Pl I with basipod 0.30 times as long as Cp and exopod 2.2 times as long as basipod. Pl II with basipod 0.26 times as long as Cp; exopod 3.0 and endopod 1.5 times as long as basipod, respectively. Pl III with basipod 0.26 times as long as Cp ; exopod 2.3 and endopod 1.4 times as long as basipod, respectively. PI IV with basipod 0.26 times as long as Cp ; exopod 2.1 and endopod 1.3 times as long as basipod, respectively. Pl V with basipod 0.22 times as long as Cp ; exopod 2.0 and endopod 1.2 times as long as basipod, respectively.

Up with exopod 4.1 times as long as wide, 6.3 times as long as basipod and 0.6 times as long as Cp ; endopod 3.4 times as long as wide and 0.7 times as long as exopod (Fig. 34C).

Petasma (Fig. 35A-B). PV long and narrow, 4.4 times as long as wide, tip slightly curved, directed laterally. LI small, not reaching end of PV, 2.3 times as long as wide and 0.2 times as long as PV. LT slender, overlapping LI and not reaching end of LC, 2.1 times as long as wide and 0.3 times as long as PV, armed with few small apical hooks. LC with distal lobule 4.2 times as long as wide and 0.7 times as long as PV, armed with several small hooks on distomedial side and near apex, tip directed distolaterally; proximal lobule 1.7 times as long as wide and 0.2 times as long as PV, armed with several small hooks in distal half. LA voluminous, 3.1 times as long as wide and 0.8 times as long as PV, armed with numerous smaller hooks along medial side.

Photophores. Scaphocerite: photophores arranged in 2 rows medial to inner strip of muscle, (1) longitudinal row of 6-10 organs from 0.4-0.5 to 0.8-0.9 blade length and (2) oblique row of $2-4$ (often fused) organs from 0.2 to 0.3 blade length; 1-2 additional organs sometimes present near base, between inner and outer muscle strips. Up exopod: single group of 2-5 photophores in triangular figure distal to apical muscle strip. Up endopod: 1 photophore in proximomedial comer.

Remarks: Since Burkenroad's original description (1940), no morphological paper has included this species. As do all species of the species group, $S$. filicta varies in the form of the rostrum, minor pro-
portions of the appendages, the position of the photophores, and in the fine structure of the petasma. A few additional photophores may be found at the base of the scaphocerite in some "Dana" specimens of this species. The relative length of LI and LT as well as the form of LA may also vary, but the relative length of LA remains always about $3 / 4$ of the PV length, with the distal lobe of LC far overlapping all other lobes and processes.

Sergia filicta is close to S. phorca, S. grandis, S. potens, S. maxima, S. wolffi, and S. burukovskii. It differs from $S$. bisulcata and S. plumea in having (1) male outer A I flagellum with segment 3 bearing a reduced tubercle overlapped by a few longer setae and (2) segment 4 armed with 2-3 dorsal serrated bristles. Affinities and differences between $S$. filicta and all other species of the species group are shown in Table 5.

Geographical distribution (Fig. 30): Eastern Pacific Ocean only: Gulf of Panama ("Dana"; Burkenroad 1940), off Galapagos Islands ("Dana"), off California (Krygier \& Wasmer 1988).

The distribution of S. filicta is limited to a single small area, most of which is sympatric with that of S. phorca. S. filicta is parapatric with $S$. potens, $S$. maxima, and S. bisulcata, which live in the temperate or tropical Central and West Pacific. S. filicta is allopatric to $S$. grandis, S. wolffi, and S. burukovskii.

Vertical range: An interzonal species, migrating daily between the meso-/upper bathypelagic and upper mesopelagic zones. "Dana" specimens were taken within the depth range $100-1300 \mathrm{~m}$. Most specimens live at 200-300 m at night and 700-1300 m during the day.

## Sergia grandis (Sund, 1920)

Figs. 36-38, Pl. 3D-E

Sergestes grandis Sund, 1920: 16, figs. 22-26. Hansen 1922: 92, pl. 5, fig. 3. - Holthuis 1952b: 87. - Dennell 1955: 403, fig. 5.

Sergestes (Sergia) grandis. - Yaldwyn 1957: 9. Kensley 1971 (part): 249, fig. 17; 1972: 30, fig. 13. - Crosnier \& Forest 1973 (part): 331, figs. 113-116.
Sergia grandis. - Omori 1974: 236. - Vereshchaka 1994a: 82, figs. 10-12, 26; 1995a: 1651.

Material examined: "Dana" stations (depths given for stations with trawls at different depths): 941 , depth 330 m ( $2 \mathrm{f} 12-17^{1 / 2} \& 1 \mathrm{~m}$ $14 \frac{1}{2}$ ); 947, depth 330 m (1f 12); 1142-10 (1m 23); 1163-2 (1f 21); 1165-2 (1m 18); 1177-1 (1m 181/2); 1178-1 (1f $20^{1 / 2}$ ); 1183-6 (1f $24 \frac{1}{2}$ ); 1185-1 (3f $12^{1} / 2-15$ ); 1185-11 (1f 19 ); 1188-2 (2f $14^{1 / 2}-22 \&$ $1 \mathrm{~m} \mathrm{18)}$; 1202-2 (4f $8-9^{1 / 2}$ ); 1214-3 (3f $9^{1 / 2}-11$ ); 1215-5 ( $2 \mathrm{f} 17^{1} / 2-23$ ); 1216-1 ( $2 \mathrm{f} 18^{1} / 2-22^{1 / 2}$ \& 1 m 20); 1217-4 ( $2 \mathrm{f} 10^{\frac{1}{2}-20 \text { ) ; 1217-5 (3f } 13^{1 / 2}-22^{\frac{1}{2} / 2} \& ~}$ 1 m 19 ); 1218-1 (2f 9-12); 1223-1 (2f 14-19 $1 / 2 \& 3 \mathrm{~m}$ $13^{1 / 2}-18^{1 / 2}$ ); 1223-2 (4f 8-10 \& 3m 9 ${ }^{1 / 2-10}$ ); 1223-6 ( $10 \mathrm{f} 6^{1 / 2-9}$ ); 1225-2 (3f $9^{1} / 2-14 \& 2 \mathrm{~m} 10^{1 / 2-13}$ ); 1225-3 ( $25 \mathrm{f} 6^{1 / 2}-9$ ); 1225-4 (5j 3-4 ${ }^{1 / 2}$ ); 1228-1 (2f 928); 1230-2 (2f $\left.9^{1 / 2}-11\right) ; 1230-3\left(4 \mathrm{f} 7^{1 / 2}-22 \& 4 \mathrm{~m}\right.$ $10-20$ ); 1230-4 (4f $8^{1 / 2}-12^{1 / 2}$ \& 3j $6^{1 / 2-7^{1} / 2}$ ); 1230-5 (3j 7-8); 1231-1 (20f $8^{1 / 2}-20^{1 / 2} \& 7 \mathrm{~m} 8^{1 / 2-12^{1 / 2}}$ ); 1239-1 (3f 9-13 \& 3m 91/2-12); 1239-3 (1f $19^{1 / 2} \&$ 1m 20); 1239-15 (1f 22); 1240-1 (1f 14); 1241-8 (2f $7^{1} / 2-13$ ) ; 1242-1 (1f 10); 1242-6 (2f 9-13 \& 2m 1821); 1242-8 (1f 17); 1242-11 (1f 10); 1242-13 (1f 11); 1242-14 (1f 10 ); 1243-2 (1f 13); 1243-3 (4f 8 $10^{1 / 2}$ ); 1245-3 ( $5 \mathrm{j} 7^{1 / 2}-9^{1 / 2}$ ); 1247-1 ( 1 m 23 ); 1250-1 (1f $16 \& 1 \mathrm{~m} \mathrm{15} \frac{1}{2}$ ); 1261-3 (1f 8); 1261-6 (1f $20^{2} / 2$ ); 1266-1 (2f 7-11 \& 1m 20¹/2); 1266-6 (1f $17 \& 1 \mathrm{~m}$ 20); 1268-1 (1f $20^{1} / 2$ ); 1269-7 (1f 24); 1270-6 (1f $\left.21^{1} / 2\right) ; 1276-1$ (1f $21^{1} / 2$ ); 1278-1 ( 1 m 17 ); 1279-1 ( 2 f 211/2-24); 1281-6 (1m 21); 1281-8 (1m 18); 1287-2 (1f $8 \frac{1}{2}$ ); 1288-1 (1m 16); 1289-3 (1f 22); 1294-3 (1f $19^{1 / 2}$ ); 1322-3 (1f $11^{1 / 2}$ ); 1322-8 (1f $8^{1 / 2}$ ); 132232 (lm 19); 1323-7 (1f 121/2); 1326-5 (1m 19¹/2); 1327-1 (2f 14-21); 1328-6 (1f $21 \frac{1}{2}$ ); 1334-1 ( 2 m $15^{1} / 2-21$ ); 1335-2 (1j 8); 1336-2 (1f $20^{1} / 2$ ); 1337-5 ( $4 \mathrm{f} 11-19^{1} / 2 \& 1 \mathrm{~m} 22^{1} / 2$ ); 1339-1 ( $1 \mathrm{f} 15^{1 / 2} \& 1 \mathrm{~m} 19$ ); 1341-2 ( 1 m 16 ); 1342-1 (1f 20); 1342-6 (2f $12^{\frac{1}{2}-}$ $14^{1} / 2 \& 3 \mathrm{~m} 11^{1} / 2-15$ ); $1353-5$ ( $2 \mathrm{f} 17^{1} / 2-20 \& 3 \mathrm{~m} 16-$ 21); 1356-1 (1f $13^{1 / 2} \& 1 \mathrm{~m} \mathrm{11} 1 / 2$ ); 1356-2 (1f 17); 1358-1 (1m 151/2); 1358-8 (1f $201 / 2$ ); 1361-1 ( 2 m 14 $1 / 2-19$ ); 1363-1 (1f 22 $1 / 2 \& 1 \mathrm{~m} 25$ ); 1365-1 (1f 19); 1366-1 (1f $19 \& 1 \mathrm{~m} \mathrm{17} 1 / 2$ ); 1368-1 ( $1 \mathrm{~m} \mathrm{21} 1 / 2$ ); 1369-2 (1m 19¹/2); 1370-2 (1f 191/2); 1371-1 (1m 18); 3997-2 (1f $101 / 2$ ); 3998-1 (1m 28); 3998-2 (1m 22); 3999-1 (2f 29-30); 4000-2 (1f 16); 4000-6 (1f 24).

Type localities: North Atlantic: 4 "Michael Sars" stations: off West Africa, St. 34, $28^{\circ} 42^{\prime} \mathrm{N}$, $14^{\circ} 16^{\prime} \mathrm{W}, 400 \mathrm{mw}(\mathrm{ZBMN} 14836$ ) and St. 49 , $29^{\circ} 2^{\prime} \mathrm{N}, 25^{\circ} 3^{\prime} \mathrm{W}, 3000 \mathrm{mw}(\mathrm{ZBMN} 14837)$; and central North Atlantic, St. 51 and 52 , ca. $31^{\circ} 20^{\prime} \mathrm{N}$, $31^{\circ} 36^{\prime} \mathrm{W}$ (ZBMN 14838-14840; 4000, 100 and 1200 mw , resp.).


Type material: Syntypes of Sergestes grandis (5f \& 1m) (ZMBN 14836-14840, not examined).

Diagnosis: Integument firm, rostrum acute; cornea considerably wider than eyestalk; segment 3 of outer A I flagellum in male with well developed tubercle not overlapping segment 4 of flagellum, without terminal setae overlapping tubercle; segment 4 of flagellum bearing $4-5$ serrated bristles on dorsal surface; posterior branchial lobe on somite XII not hidden under anterior lobe; LI undivided, not overlapping other lobes and processes; LT undivided;, LC divided, with distal lobule straight and not overlapping other lobes and processes and proximal lobule directed laterally; LAc absent, LA straight, reaching 0.2-0.5 of PV length. Photophores in 2 series on scaphocerite medial to inner strip of muscle (5-9 organs in longitudinal row and 2-6 organs in oblique row) and in a single series on Up exopod; 2-5 in triangular figure distal to apical muscle strip.

Description: Cp 2.1 times as long as high and 0.42 times as long as abdomen (Fig. 36A). Abdomen with somite VI 1.5 times as long as high

Fig. 36. Sergia grandis, male, "Dana" St. 1230-3, Cp length 20.2 mm . - A, lateral view of $\mathrm{Cp} .-\mathrm{B}$, scaphocerite. C, Up.
and 1.2 times as long as telson; telson 2.8 times as long as wide.

Ocular papilla 0.3 times as long as wide; cornea well pigmented, dark brown, 1.1 times as long as wide, 0.7 times as long and 1.4 times as wide as eyestalk. A I peduncle 0.6 times as long as Cp , with segments 2 and 30.71 times as long as segment 1 , segment 3 of outer A I flagellum in male with tubercle developed, not overlapping segment 4 of flagellum, without long setae overlapping tubercle; segment 4 bearing $4-5$ serrated bristles on dorsal surface (Fig. 37 C ). A II peduncle 0.5 times as long as scaphocerite; latter 3.5 times as long as wide (Fig. $36 \mathrm{~B}), 0.91$ times as long as A I peduncle.

Md palp 0.36 times as long as Cp , with proximal segment 2.3 times as long as distal one. Mx I with palp 1.9 times as long as wide and 0.06 times as long as Cp ; endopod 2.0 times as long as wide and 1.7 times as long as palp, endite 1.5 times as long as wide and 1.0 times as long as palp. Mx II with exopod 3.1 times as long as wide and 0.30 times as long as Cp ; palp 4.0 times as long as wide and 0.12 times as long as Cp ; endopod 2.1 times as long as wide and 0.9 times as long as palp; endites subequal, 1.5 times as long as wide and 0.4 times as long as palp.
Mxp I with exopod 3.9 times as long as wide and 0.20 times as long as Cp ; endopod 0.9 times as long as exopod, segments 2 and 31.5 times as long as segment 1. Mxp II 0.9 times as long as Cp, with merus 1.0 , carpus 0.9 , propodus 1.0 , and dactyl 0.4 times as long as ischium. Mxp III 1.5 times as long as Cp , with merus 0.9 , carpus 0.8 , propodus 0.8 , and dactyl 0.7 times as long as ischium; propodus and dactyl incompletely divided into 3 and 6-7 subsegments, respectively.
P I 1.1 times as long as Cp , with merus 2.5 , carpus 1.3, and propodus 2.5 times as long as ischium; propodus incompletely divided into 10 subsegments. P II 1.6 times as long as Cp , with merus 2.8 , carpus 2.4 , propodus 2.9 , and dactyl 0.2 times as long as ischium; propodus divided into 11 subseg-

ments. P III 1.9 times as long as Cp , with merus 3.1, carpus 2.7 , propodus 2.8 , and dactyl 0.2 times as long as ischium; propodus divided into 9 subsegments. P IV 1.2 times as long as Cp , with merus 1.6 , carpus 1.1, and propodus 1.2 times as long as ischium. P V 0.7 times as long as Cp , with merus 1.2 , carpus 0.9 and propodus 0.7 times as long as ischium.

Somite VIII with arthrobranch 0.13 times as long as Cp and 1.5 times as long as epipod. Somite IX with anterior pleurobranch 0.20 times as long as Cp and 2.7 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.25 times as long as Cp and 3.3 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.27 times as long as Cp and 3.0 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.27 times as long as Cp and 1.3 times as long as posterior pleurobranch, posterior lobe not hidden under anterior lobe. Somite XIII with anterior pleurobranch 0.24 times as long as Cp and 1.3 times as long as posterior pleurobranch.

Pl I with basipod 0.33 times as long as Cp and exopod 2.3 times as long as basipod. Pl II with basipod 0.29 times as long as Cp; exopod 2.6 and endopod 1.5 times as long as basipod, respectively. Pl III with basipod 0.29 times as long as Cp ; exopod 2.7 and endopod 1.7 times as long as basipod,

Fig. 37. Sergia grandis, male, "Dana" St. 1230-3, Cp length 20.2 mm . - A, oral view of petasma. B, caudal view of petasma. - C, male outer A I flagellum.
respectively. PI IV with basipod 0.29 times as long as Cp ; exopod 2.2 and endopod 1.2 times as long as basipod, respectively. Pl V with basipod 0.26 times as long as Cp ; exopod 2.0 and endopod 1.2 times as long as basipod, respectively.

Up with exopod 4.6 times as long as wide, 5.7 times as long as basipod and 0.7 times as long as Cp ; endopod 3.3 times as long as wide and 0.7 times as long as exopod (Fig. 36C).

Petasma (Fig. 37A-B). PV long and narrow, 4.3 times as long as wide, tip not curved. LI very thick, almost reaching end of $\mathrm{PV}, 1.4$ times as long as wide and 0.3 times as long as PV. LT slender, almost reaching end of LI and not reaching end of LC, 1.5 times as long as wide and 0.2 times as long as PV, armed with few small apical hooks. LC with distal lobule overlapping LI and LT and reaching end of PV, 2.8 times as long as wide and 0.4 times as long as PV, armed with several small hooks near apex, not curved, tip directed distolaterally; proximal lobule 1.6 times as long as wide and 0.2 times as long as PV, armed with several strong hooks in distal half LA very short, in average 1.9 times as long as wide and 0.2 times as long as PV, armed with few smaller hooks on medial side.

Photophores. Scaphocerite: photophores arranged in 2 rows medial to inner strip of muscle, (1) longitudinal row of 6-10 organs from 0.3-0.4 to 0.80.9 blade length and (2) oblique row of $2-4$ (often fused) organs from 0.2 to 0.3 blade length. Up exopod: single group of $2-5$ photophores in triangular figure distal to apical muscle strip. Up endopod: 1 photophore in proximomedial corner.

Remarks: Variations of colour in life are shown in Pl. 3D-E.


Fig. 38. Probable geographical distribution of Sergia grandis (small circles, coarse hatching), S. plumea (large circles, fine hatching) and $S$. potens (triangles, cross hatching). Black symbols indicate "Dana" stations, white symbols "Galathea" stations. Shaded areas without symbols are supported by literature data.

This species was noted by many authors to be very close to its Pacific vicariant, $S$. phorca. Although the distinctness of the two species was beyond any doubt for most authors, it was very difficult to express how they could be distinguished, more so as both show great morphological variability. As shown by Crosnier \& Forest (1973), the position of the photophores varies geographically. Individual variation even within the same locality was shown (Vereshchaka 1994a) to concern not only the photophore position but also other characters believed to be distinguishing: the form of the scaphocerite, P IV, Up, PV, the hook of the PU (Sund 1920); the form of the LC (Hansen 1922); and the form of the rostrum, LT, PU, and eyes (Crosnier \& Forest 1973). In my previous paper, the figure of the petasma of S. grandis was accidentally replaced by the figure of the petasma of $S$. potens (Vereshchaka 1994a, fig. 10E); the visibility of the posterior branchial lobe on somite XII (character 2, op. cit., p. 83) also needs correction: the posterior branchial lobe is not covered by the anterior lobe in S. grandis and at least half covered by it (not always completely covered) in $S$. phorca; the form of the distal photophore group on Up exopod (character 3, op. cit., p. 83) has proved on more extensive "Dana II' material not to be universal.

Sergia grandis is closer to S. phorca, S. potens, S. filicta, S. maxima, S. wolffi, and S. burukovskii n. sp. than to S. bisulcata and S. plumea. Affinities and differences between $S$. grandis and all other known species of the species group are shown in Table 5. Geographical distribution (Fig. 38): Atlantic Ocean only: Caribbean Sea, West and Central Atlantic, near Cape Verde Islands (Hansen 1922, Vereshchaka 1994a), Central Atlantic ("Dana"; Crosnier \& Forest 1973).

Records of this species from around South Africa (Hansen 1925, Kensley 1971, Crosnier \& Forest 1973) seem to refer to a very similar species, $S$. burukovskii n . sp. Sergia grandis is parapatric to $S$. potens and S. burukovskii, which occur mainly in the southern temperate Atlantic ( $S$. potens also in the Pacific). S. grandis is sympatric with $S$. wolffi and allopatric to all other members of the species group.

Vertical range: An interzonal species, migrating daily between the meso-/upper bathypelagic and the upper mesopelagic zones. The "Dana" specimens were taken within the depth range $30-2300 \mathrm{~m}$. Most specimens live at $200-500 \mathrm{~m}$ at night and at $800-1500 \mathrm{~m}$ during the day.


Fig. 39. Sergia maxima, male, "Dana" St. 3688-4, Cp length 35.4 mm . - A, lateral view of Cp. - B, scaphocerite. C, Up. - D, ontogenetic transformation of distal photophores on Up exopod, "Dana" St. 3869-5, 3828-1, 3625-1,3909-4.

## Sergia maxima (Burkenroad, 1940)

Figs. 33, 39-40
Sergestes maximus Burkenroad, 1940: 47.
Sergestes (Sergia) maximus. - Yaldwyn 1957: 9. Sergia maxima. - Walters 1976: 823. - Krygier \&

Wasmer 1988: 50. - Vereshchaka 1995a: 1651.

Material examined: "Dana" stations: 3623-1 (1f 22); 3625-1 (1m 16¹/2); 3683-1 (1f 32); 3688-4 (1m $35^{1 / 2}$ ); 3712-1 ( 1 m 16 ); 3714-6 (1m 21 $1 / 2$ ); 3716-3 ( $1 \mathrm{~m} \mathrm{28} 1 / 2$ ); 3828-1 (1f 12); 3869-5 (1j 11); 3902-1 (1f $13^{1} / 2$ ); 3909-3 ( $2 \mathrm{~m} 37-41$; the latter male is the largest known sergestid specimen!); 3909-4 (1m $31^{1 / 2}$ ).

Type locality: Western Indian Ocean, $11^{\circ} 18^{\prime} \mathrm{S}$, $50^{\circ} 03^{\prime} \mathrm{E}$.

Type material: Holotype ("Dana" St. 3933-1, ZMUC, lost, see Introduction).

Diagnosis: Integument firm; rostrum usually acute, bidentate; cornea considerably wider than eyestalk; segment 3 of outer A I flagellum in male with well developed tubercle overlapping segment 4 of flagellum, without terminal setae overlapping tubercle; segment 4 of flagellum bearing 7-9 serrated bristles on dorsal surface; posterior branchial lobe on somite XII not hidden under anterior lobe;

LI divided, not overlapping other lobes and processes; LT entire; LC entire, overlapping other lobes and processes; LAc absent; LA evenly curved medially, reaching 0.4-0.6 of PV. Photophores in 2 rows on scaphocerite medial to inner strip of muscle, single large spot distal to apical muscle band on Up exopod.

Description: Cp 2.0 times as long as high and 0.45 times as long as abdomen (Fig. 39A). Abdomen with somite VI 1.7 times as long as high and 1.0 times as long as telson; telson 3.3 times as long as wide.

Ocular papilla inconspicuous, 0.3 times as long as wide; cornea well pigmented, dark brown, 0.9 times as long as wide, 0.8 times as long and 1.5 times as wide as eyestalk. A I peduncle 0.6 times as long as Cp , with segments 2 and 30.77 and 0.71 times as long as segment 1 , respectively, segment 1 of outer A I flagellum in male with tubercle overlapping segment 5 of flagellum, segment 4 bearing 7-9 serrated bristles and few stout setae on dorsal surface (Fig. 40C). A II peduncle 0.5 times as long as scaphocerite; latter 3.4 times as long as wide (Fig. 39B), 0.83 times as long as A I peduncle.

Md palp 0.33 times as long as Cp , with proximal segment 2.4 times as long as distal. Mx I with palp 2.1 times as long as wide and 0.06 times as long as Cp ; endopod 2.0 times as long as wide and 1.6 times as long as palp; endite 1.9 times as long as


Fig. 40. Sergia maxima, male, "Dana" St. 36884, Cp length 35.4 mm . - A, caudal view of petasma. - B, oral view of petasma. - C, male outer A I flagellum.
wide and 0.9 times as long as palp. Mx II with exopod 3.2 times as long as wide and 0.29 times as long as Cp ; palp 3.7 times as long as wide and 0.11 times as long as Cp ; endopod 2.2 times as long as wide and 1.0 times as long as palp; endites subequal, 1.8 times as long as wide and 0.4 times as long as palp.

Mxp I with exopod 3.8 times as long as wide and 0.17 times as long as Cp ; endopod 1.0 times as long as exopod, segments 2 and 31.3 and 1.2 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 0.9 , carpus 0.7 , propodus 0.9 , and dactyl 0.4 times as long as ischium. Mxp III 1.6 times as long as Cp, with merus 0.8 , carpus 0.9 , propodus and dactyl 0.8 times as long as ischium; propodus and dactyl divided into 3 and 7 subsegments, respectively.

P I 1.1 times as long as Cp, with merus 2.8 , carpus 1.6, and propodus 3.1 times as long as ischium; propodus divided into 8 subsegments. P II 1.6 times as long as Cp , with merus 3.1 , carpus 2.6 , propodus 3.1, and dactyl 0.1 times as long as ischium; propodus divided into 12 subsegments. P III 1.9 times as long as Cp , with merus 3.4 , carpus 3.1 , propodus 3.2 , and dactyl 0.1 times as long as ischium; propo-
dus divided into 12 subsegments. P IV 1.2 times as long as Cp , with merus 1.6 , carpus 1.2 , and propodus 1.3 times as long as ischium. P V 0.6 times as long as Cp , with merus 1.7 , carpus 1.5 and propodus 1.2 times as long as ischium.

Somite VIII with arthrobranch 0.14 times as long as Cp and 2.6 times as long as epipod. Somite IX with anterior pleurobranch 0.22 times as long as Cp and 4.2 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.26 times as long as Cp and 4.1 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.28 times as long as Cp and 3.0 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.31 times as long as Cp and 1.4 times as long as posterior pleurobranch, posterior lobe not hidden under anterior lobe. Somite XIII with anterior pleurobranch 0.25 times as long as Cp and 1.2 times as long as posterior pleurobranch.

Pl I with basipod 0.30 times as long as Cp and exopod 2.2 times as long as basipod. Pl II with basipod 0.28 times as long as $C p$; exopod 2.6 and endopod 1.3 times as long as basipod, respectively. PI III with basipod 0.28 times as long as Cp ; exopod 2.1 and endopod 1.2 times as long as basipod, respec-
tively. Pl IV with basipod 0.27 times as long as Cp; exopod 1.9 and endopod 1.1 times as long as basipod, respectively. Pl V with basipod 0.24 times as long as Cp ; exopod 2.0 and endopod 1.1 times as long as basipod, respectively.

Up with exopod 4.4 times as long as wide, 5.8 times as long as basipod and 0.6 times as long as Cp ; endopod 3.2 times as long as wide and 0.6 times as long as exopod (Fig. 39C).

Petasma (Fig. 40A-B). PV slender, 4.9 times as long as wide, tip not curved. LI well developed, with medial lobule overlapping LT, 1.9 times as long as wide and 0.3 times as long as PV; lateral lobule small, as long as wide, 0.1 times as long as PV. LT not reaching end of LI and LC, 2.4 times as long as wide and 0.4 times as long as PV, armed with several small hooks in distal part. LC 3.1 times as long as wide and 0.9 times as long as PV, bearing numerous papillae with hooks on proximolateral side and several hooks near apex, curved, tip directed laterally. LA short, 2.1 times as long as wide and 0.5 times as long as PV, armed with several hooks near apex.

Photophores. Scaphocerite: photophores arranged in 2 rows medial to inner band of muscle, (1) longitudinal row distally split into $2-7$ discrete organs from 0.3-0.4 to 0.9-1.0 blade length and (2) oblique row from 0.2 to $0.3-0.4$ blade length. Up exopod: 1 large organ distal to apical muscle strip. Upendopod: 1 photophore in proximomedial corner.

Remarks: All "Dana" specimens agree with Burkenroad's (1940) original description. They vary in the form of the rostrum, which may be unidentate and even blunt ( 2 examined specimens). Insignificant variations were found in the petasma: the lateral lobule of LI may be more or less prominent, LC may sometimes have a rudimentary proximal lobule, especially in young specimens. The unique continuous band of the photophores is derived from the rows of discrete photophores, usual for the species group. In the longitudinal band on the scaphocerite, there may be one to a few discrete organs not fused yet. The origin of the large distal spot on the Up exopod is also accounted for by the fusion of previously discrete photophores; this is seen in the series of transitional cases found in the youngest specimens (Fig. 39D). Thus, the unique characters of this species (undivided LC and band photophores) undoubtedly derive from those that are common for the species group.

Sergia maxima is closest to S. phorca, S. grandis, S. potens, S. filicta, S. wolffi, and S. burukovskii n. sp. It differs from these and all other species of the group in (1) clasping organ with 7-9 serrated bristles, (2) P I propodus with 8 subsegments, (3) LI divided, (4) LC entire, (5) scaphocerite with bands of photophores. Other affinities and differences between $S$. maxima and all other species of the species group are shown in Table 5.

Geographical distribution (Fig. 33): Tropical areas of the Indian and Pacific Oceans.
Indo-West Pacific: Central and northern part, off Sri Lanka, off Sumatra ("Dana").

Pacific: Western and central parts, off the Philippines, north of New Zealand ("Dana"), off Hawaii (Walters 1976).

Sergia maxima is parapatric to S. phorca and S. filicta, which live in the eastern tropical Pacific, while S. maxima occurs in the central and western tropical Pacific. S. maxima is allopatric to S. grandis, S. wolffi, and S. burukovskii and sympatric with all other species of the species group.

Vertical range: An interzonal species, migrating daily between the upper bathypelagic and mesopelagic zones. "Dana" specimens were taken within the depth range $300-2000 \mathrm{~m}$. Most specimens live at $300-700 \mathrm{~m}$ at night and $1000-2000 \mathrm{~m}$ during the day.

## Sergia phorca (Faxon, 1893), n. comb.

Figs. 33, 41-42; Pl. 3C
Sergestes phorcus Faxon, 1893: 217. - Illig 1914: 354 (part); 1927: 289 (part), figs. 18-25. Hansen 1919: 5 (part); 1922: 97. - Sund 1920: 16. - Boone 1930. 121. - Burkenroad 1937: 323, figs. 6-7.
Sergestes bisulcatus. - Faxon 1895: 210, pl. 52, fig. 1a-h [not Wood-Mason in Wood-Mason \& Alcock, 1891a].
Sergestes (Sergia) phorcus. - Yaldwyn 1957: 9.
Material examined: "Dana" stations: 1203-1 (1f
$21 \& 1 \mathrm{~m} \mathrm{23} 1 \frac{1}{2}$ ); 1203-2 (2f 22-241/2); 1203-10 (3f
$17^{1} / 2-25 \& 3 \mathrm{~m} \mathrm{19} 1 / 2-22^{1} / 2$ ); 1203-17 (1f $20 \& 3 \mathrm{~m} 21-$
22); 1205-2 (1f $19 \& 2 \mathrm{~m} \mathrm{19-19} / 2$ ); 1205-3 (4f 13-
$20^{1 / 2} \& 2 \mathrm{~m} \mathrm{20-23}^{1} / 2$ ); 1206-2 (1f 23); 1206-7 (1f
$18^{1 / 2} \& 1 \mathrm{~m} \mathrm{19} 1 / 2$ ); 1206-8 ( 1 m 25 ); 1208-4 ( $2 \mathrm{~m} \mathrm{20-}$
25); 1208-13 (1f $20^{1} / 2$ ); 1209-1 (1f $10 \& 1 \mathrm{~m} 29$ );


Fig. 41. Sergia phorca, male, "Dana" St. 3550-1, Cp length 30.6 mm . - A, lateral view of Cp. - B, scaphocerite. - C, Up.

3548-2 (2f 16-21 \& 1m 14); 3549-4 (2f $22^{1 / 2} \& 1 \mathrm{~m}$ $15 \& 1 \mathrm{j} 11$ ); 3549-5 ( 1 m 17 ); 3549-6 ( $1 \mathrm{f} 18^{1 / 2}$ \& 1 m 21); 3550-1 ( $2 \mathrm{f} 16^{1 / 2}-24 \& 2 \mathrm{~m} \mathrm{27-30} 1 / 2$ ); 3550-8 (1f $21^{1 / 2} \& 1 \mathrm{~m} 21$ ); 3556-1 (1f $29 \& 1 \mathrm{~m} 29^{1 / 2}$ ); 3556-4 ( $2 \mathrm{f} 26^{1 / 2-281 / 2}$ \& $2 \mathrm{~m} 25-26$ ); 3558-1 ( $1 \mathrm{jj} 11^{1} / 2$ ); 35585 (3f $171_{2}-23^{1} / 2$ ); 3558-6 (1f $14 \& 1 \mathrm{~m} \mathrm{12);} \mathrm{3561-4}$ ( 1 m 27 ); 3561-6 (3m 24-27).
"Galathea" station: 726 ( $1 \mathrm{~m} 20^{1} / 2$ ).
Type localities: Eastern Pacific Ocean: Gulf of Panama; Galapagos; and Gulf of California (see Faxon 1893 for details).

Type material: Six syntypes of Sergestes phorcus, all collected by "Albatross": Gulf of Panama (MCZ 4667, 1 male, St. 3382, 1793 fms; MCZ 4668, 2 females, St. 3388, 1168 fms ); Galapagos (MCZ 4669, 1 female, St. 3401, 395 fms ), none examined. - Gulf of Panama (Depository?, 1 female, St. 3386, 242 fms ). - Gulf of California (Depository?, 1 female, St. 3437, 628 fms ) (none examined).

Diagnosis: Integument firm, rostrum acute; cornea considerably wider than eyestalk; segment 3 of outer A I flagellum in male with well developed tubercle overlapping segment 4 of flagellum, without terminal setae overlapping tubercle; segment 4 of flagellum bearing 4-5 serrated bristles on dorsal
surface; posterior branchial lobe on somite XII hidden under anterior lobe; LI undivided, not overlapping other lobes and processes; LT undivided; LC divided, with distal lobule not curved and not overlapping other lobes and processes and proximal lobule directed proximolaterally; LAc absent; LA evenly curved in medial direction, reaching 0.7-1.0 PV length. Photophores in 2 rows on scaphocerite medial to inner strip of muscle (5-9 organs in longitudinal row and 2-6 organs in oblique row) and in 2 series on Up exopod; 2-7 in triangular figure distal to apical muscle strip and 1-4 proximal ones in continuous row medial to inner muscle strip.

Description: Cp 2.0 times as long as high and 0.50 times as long as abdomen (Fig. 41A). Abdomen with somite VI 1.7 times as long as high and 1.1 times as long as telson; telson 3.3 times as long as wide.

Ocular papilla 0.3 times as long as wide; cornea well pigmented, dark brown, 1.1 times as long as wide, 0.6 times as long and 1.4 times as wide as eyestalk. A I peduncle 0.5 times as long as Cp , with segments 2 and 30.71 and 0.63 times as long as segment 1 , respectively, segment 3 of outer A I flagellum in male with tubercle overlapping segment 4 of flagellum, segment 4 bearing $4-5$ serrated bristles and several setae on dorsal surface (Fig. 42C). A II peduncle 0.6 times as long as scaphocerite; latter 3.0 times as long as wide (Fig. 41B), 0.77 times as long as A I peduncle.

Md palp 0.28 times as long as $\mathrm{C} p$, with proximal segment 2.2 times as long as distal one. Mx I with palp 1.9 times as long as wide and 0.05 times as long as Cp ; endopod 2.1 times as long as wide and 1.8 times as long as palp; endite 1.5 times as long as wide and 0.9 times as long as palp. Mx II with exopod 3.0 times as long as wide and 0.32 times as long as Cp; palp 3.0 times as long as wide and 0.09 times as long as Cp ; endopod 2.2 times as long as wide and 1.1 times as long as palp; endites subequal, 1.4 times as long as wide and 0.5 times as long as palp.

Mxp I with exopod 3.6 times as long as wide and 0.16 times as long as Cp ; endopod 1.1 times as long as exopod; segments 2 and 31.3 and 1.1 times as long as segment 1 , respectively. Mxp II 0.7 times as long as Cp , with merus 1.2 , carpus 0.9 , propodus 1.0 , and dactyl 0.5 times as long as ischium. Mxp III 1.2 times as long as Cp , with merus 0.9 , carpus 1.0 , propodus 0.9 , and dactyl 0.8 times as long as

ischium; propodus and dactyl divided into 3 and 9 subsegments, respectively.
P I 0.9 times as long as Cp , with merus 3.2 , carpus 1.9 , and propodus 3.6 times as long as ischium, propodus divided into 13 subsegments. P II 1.3 times as long as Cp , with merus 2.3 , carpus 2.1 , propodus 2.6, and dactyl 0.1 times as long as ischium; propodus divided into 10 subsegments. P III 1.6 times as long as Cp , with merus 2.4 , carpus 2.3 , propodus 2.7 , and dactyl 0.1 times as long as ischium; propodus divided into 10 subsegments. P IV 1.1 times as long as Cp , with merus 1.2 , carpus 0.9 , and propodus 1.0 times as long as ischium. P V 0.6 times as long as Cp , with merus 1.2 , carpus 0.9 and propodus 0.7 times as long as ischium.

Somite VIII with arthrobranch 0.20 times as long as Cp and 4.4 times as long as epipod. Somite IX with anterior pleurobranch 0.25 times as long as Cp and 7.1 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.29 times as long as Cp and 5.9 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.31 times as long as Cp and 5.3 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.36 times as long as Cp and 1.3 times as long as posterior pleurobranch, posterior lobe hidden under anterior lobe. Somite XIII with anterior pleurobranch 0.32 times as long as Cp and 1.1 times as long as posterior pleurobranch.

Fig. 42. Sergia phorca, male, "Dana" St. 3550-1, Cp length 30.6 mm. - A, oral view of petasma. $B$, caudal view of petasma. - C, male outer A I flagellum.

Pl I with basipod 0.28 times as long as Cp and exopod 2.3 times as long as basipod. Pl II with basipod 0.26 times as long as $C p$; exopod 2.5 and endopod 1.3 times as long as basipod, respectively. PI III with basipod 0.26 times as long as Cp; exopod 2.3 and endopod 1.3 times as long as basipod, respectively. Pl IV with basipod 0.24 times as long as Cp ; exopod 2.4 and endopod 1.2 times as long as basipod, respectively. Pl V with basipod 0.27 times as long as $C p$; exopod 2.1 and endopod 1.1 times as long as basipod, respectively.
Up with exopod 4.3 times as long as wide, 7.0 times as long as basipod and 0.5 times as long as Cp ; endopod 3.7 times as long as wide and 0.6 times as long as exopod (Fig. 41C).
Petasma (Fig. 42A-B). PV long and narrow, 4.9 times as long as wide, tip not curved. LI well developed, not reaching end of $\mathrm{PV}, 2.3$ times as long as wide and 0.3 times as long as PV. LT slender, reaching end of LI and LC, 2.2 times as long as wide and 0.4 times as long as PV, armed with few small hooks on distomedial margin. LC with distal lobule 3.0 times as long as wide and 0.4 times as long as PV, armed with several small hooks on distomedial side, not curved, tip directed distolaterally; proximal lobule 2.4 times as long as wide and 0.3 times as long as PV, armed with several medium-sized hooks in distal half. LA voluminous, 3.9 times as long as wide and 0.6 times as long as PV, armed with numerous smaller hooks along medial side and several stronger hooks near apex.
Photophores. Scaphocerite: photophores arranged in 2 rows medial to inner strip of muscle: (1) longitudinal row of 5-9 organs from 0.3-0.4 to $0.8-0.9$ blade length and (2) oblique row of 2-6 (often partially fused) organs from 0.1 to 0.3 blade length. Up
exopod: photophores arranged in 2 series: (1) $2-7$ photophores in triangular figure distal to apical muscle strip, and (2) 1-4 proximal organs in continuous row medial to inner muscle strip from 0.1-0.2 to $0.4-0.5$ exopod length. Up endopod: 1 photophore in proximomedial comer.

Remarks: Colour in life is shown in Pl. 3C.
Sergia phorca varies in proportions of the lobes of the petasma and in the number of photophores. The length of LA varies individually, but always remains in the range $0.6-1.0 \mathrm{PV}$ length. The proximal set of photophores on the Up exopod may consist of only 1-3 organs or (very rarely) be absent. The proximal set of photophores on the Up exopod may be reduced to 3 organs in triangular figure or even (rarely) to 2 organs; in the latter case the 2 photophores are arranged obliquely.

Sergestes phorcus was first described by Faxon (1893) and later (1895) treated by the same author as a synonym of Sergestes bisulcatus Wood-Mason in Wood-Mason \& Alcock, 1891. After the publication of a more detailed description of the latter species (Alcock 1901), both species appeared beyond any doubt to be distinct, so the former must retain the original specific name phorcus. The synonymy of S. phorcus and S. bisulcatus was accepted by Hansen (1896). However, later Hansen (1919) introduced the special study of the pars media of the petasma and, after examination of both species, re-established S. phorcus. After examination of the Monaco collections, Hansen (1922) found the species identified by him in 1919 as $S$. phorcus to be different from that described by Sund (1920) as S. grandis. Hansen also illustrated the petasma of $S$. grandis and compared this with the petasma of S. phorcus drawn by Dr. Waldo Schmitt (unpublished, drawing is kept in the Library for Crustacea, ZMUC) and synonymized S. bisulcatus Stebbing, 1905 and S. grandis Sund. The first figure of the petasma of $S$. phorcus was provided by Burkenroad (1937).

Sergia phorca is rarely present in the pelagic collections. This as well as its comparatively narrow range of distribution may explain why it has been mentioned by only few authors, mainly in the first half of the 1900s.

Sergia phorca differs from all other species of the species group in having (1) Mxp III dactylus with 9 subsegments and (2) P I propodus with 13 subsegments. Other differences and affinities
between $S$. phorca and all other known species of the species group are shown in Table 5.

Geographical distribution (Fig. 33): Eastern Pacific only: Gulf of Panama, off Galapagos Islands ("Dana"; Faxon 1893; Burkenroad 1937), Equatorial East Pacific ("Dana"), Lower California, Gulf of California (Burkenroad 1937).

The distribution of $S$. phorca is very limited. The species is sympatric with S. filicta and parapatric to S. potens, S. maxima, and S. bisulcata, with $S$. potens occurring in the temperate or tropical Central and West Pacific and S. bisulcata in the eastern part of this ocean. S. phorca is allopatric to $S$. grandis, $S$. wolffi, and $S$. burukovskii n. sp.
Vertical range: An interzonal species, migrating daily between the meso-/upper bathypelagic and the upper mesopelagic zones. "Dana" specimens were taken within the depth range $200-1300 \mathrm{~m}$. Most specimens occur at $200-400 \mathrm{~m}$ at night and at 800-1300 m during the day.

## Sergia plumea (Illig, 1927), n. comb.

Figs. 38, 43-44
Sergestes plumeus Illig, 1927: 295, figs. 30-32.
Sergestes (Sergia) plumeus. - Yaldwyn 1957: 9.
Material examined: "Dana" stations: 3902-1 (1f $16^{1 / 2}$ ); 3903-1 (1f $13^{1 / 2}$ ); 3904-3 (1f $13^{1 / 2} \& 1 \mathrm{~m} \mathrm{18}$ ); 3909-1 (1f 6 \& 1m 13); 3909-2 (2m 17-19); 39093 (1m 16); 3909-4 (2f $11 \& 2 \mathrm{~m} 12-13$ ); 3912-1 (1m $11^{1} / 2$ ) ; 3913-1 (1f $10 \& 4 m 11-18^{1} / 2$ ); 3914-2 (2f $10-$ $11 / 2$ ).
"Galathea" stations: 298 (1m 17); 299 (1m 14); 351 ( $2 \mathrm{~m} 11^{1} / 2-12^{1 / 2}$ ).

Type locality: Indian Ocean off Ras Hafun, "Valdivia" St. $268,9^{\circ} 6^{\prime} \mathrm{N}, 53^{\circ} 41^{\prime} \mathrm{E}$, caught at 1500 m.

Type material: Holotype (Berlin: ZMB 20889, 1 female, not examined).

Diagnosis: Rostrum blunt, cornea considerably wider than eyestalk; segment 3 of outer A I flagellum in male with well developed tubercle overlapping segment 4 of flagellum, without terminal setae overlapping tubercle; 4 segment of flagellum bearing 5 serrated bristles on dorsal surface; posterior


Fig. 43. Sergia plumea, male, "Dana" St. 3909-2, Cp length 17.1 mm . - A, lateral view of Cp. - B, scaphocerite. - C, Up.

branchial lobe on somite XII not hidden under anterior lobe; LI undivided, not overlapping other lobes and processes; LT entire; LC divided, with distal lobule strongly curved laterally at $1 / 2$ length and overlapping other lobes and processes; proximal lobule directed proximally; LAc absent; LA evenly curved medially, reaching 0.4-0.6 PV length, no photophores found.

Description: Integument usually semi-membranous; Cp 2.1 times as long as high and 0.48 times as long as abdomen (Fig. 43A). Abdomen with somite VI 1.6 times as long as high and 1.1 times as long as telson; telson 3.5 times as long as wide.

Ocular papilla 0.3 times as long as wide; cornea usually poorly pigmented, light brown, 1.0 times as long as wide, 0.7 times as long and 1.6 times as wide as eyestalk. A I peduncle 0.6 times as long as Cp , with segments 2 and 30.67 and 0.63 times as long as segment 1 , respectively; segment 3 of male outer A I flagellum in male with tubercle overlapping segment 4 of flagellum; segment 4 bearing 5 serrated bristles and several setae on dorsal surface (Fig. 44C). A II peduncle 0.4 times as long as scaphocerite; latter 3.2 times as long as wide (Fig. $43 B$ ), 0.83 times as long as A I peduncle.

Md palp 0.32 times as long as Cp , with proximal segment 2.3 times as long as distal one. Mx I with palp 2.3 times as long as wide and 0.06 times as long as Cp ; endopod 1.7 times as long as wide and 1.7 times as long as palp; endite 1.5 times as long as wide and 1.0 times as long as palp. Mx II with exopod 3.0 times as long as wide and 0.37 times as long as Cp; palp 3.8 times as long as wide and 0.12 times as long as Cp ; endopod 2.0 times as long as wide and 0.9 times as long as palp; endites subequal, 1.6 times as long as wide and 0.4 times as long as palp.

Mxp I with exopod 2.7 times as long as wide and 0.16 times as long as Cp ; endopod 1.3 times as long as exopod, segments 2 and 31.4 and 1.3 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 1.1 , carpus 1.0 , propodus 1.1, and dactyl 0.5 times as long as ischium. Mxp III 1.5 times as long as Cp , with merus 1.1 , carpus 1.2 , propodus and dactyl 1.1 times as long as ischium; propodus and dactyl divided into 4 and 7 subsegments, respectively.

P I 1.0 times as long as Cp , with merus 2.6 , carpus 1.5 , and propodus 2.8 times as long as ischium; propodus divided into 9 subsegments. P II 1.5 times as long as C , with merus 3.4 , carpus 2.2 , propodus 2.8 , and dactyl 0.1 times as long as ischium; propodus incompletely divided into 12 subsegments. P III 1.7 times as long as C , with merus 2.6 , carpus 2.3 , propodus 2.8 , and dacty 0.2 times as long as ischium; propodus divided into 11 subsegments. P IV 1.2 times as long as Cp , with merus 1.3 , carpus 0.8 , and propodus 0.9 times as long as ischium. PV 0.6 times as long as Cp , with merus 1.0 , carpus and propodus 0.6 times as long as ischium.

Somite VIII with arthrobranch 0.19 times as long as Cp and 4.4 times as long as epipod. Somite IX with anterior pleurobranch 0.26 times as long as Cp and 6.8 times as long as posterior pleurobranch. Somite $X$ with anterior pleurobranch 0.29 times as long as Cp and 5.9 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.31 times as long as Cp and 7.3 times as long as

posterior pleurobranch. Somite XII with anterior pleurobranch 0.31 times as long as Cp and 1.9 times as long as posterior pleurobranch, posterior lobe not hidden under anterior lobe. Somite XIII with anterior pleurobranch 0.31 times as long as Cp and 1.0 times as long as posterior pleurobranch.

Pl I with basipod 0.32 times as long as Cp and exopod 2.4 times as long as basipod. PI II with basipod 0.31 times as long as Cp ; exopod 2.7 and endopod 1.5 times as long as basipod, respectively. Pl III with basipod 0.28 times as long as Cp ; exopod 3.0 and endopod 1.7 times as long as basipod, respectively. Pl IV with basipod 0.28 times as long as Cp ; exopod 2.6 and endopod 1.3 times as long as basipod, respectively. Pl V with basipod 0.25 times as long as Cp ; exopod 2.2 and endopod 1.3 times as long as basipod, respectively.

Up with exopod 4.4 times as long as wide, 6.9 times as long as basipod and 0.6 times as long as Cp ; endopod 3.6 times as long as wide and 0.7 times as long as exopod (Fig. 43C).

Petasma (Fig. 44A-B). PV long and narrow, 4.5 times as long as wide, tip slightly curved and directed laterally. LI well developed, not reaching end of

Fig. 44. Sergia plumea, male, "Dana" St. 39092, Cp length 17.1 mm . - A, caudal view of petasma. - B, oral view of petasma. - C, male outer A I flagellum.

PV, 3.0 times as long as wide and 0.4 times as long as PV. LT slender, reaching end of LI, not reaching end of LC, 3.3 times as long as wide and 0.4 times as long as PV, armed with few small hooks on distomedial margin. LC with distal lobule 3.4 times as long as wide and 0.7 times as long as PV, armed with few small apical hooks, tip directed laterally; proximal lobule 1.3 times as long as wide and 0.3 times as long as PV, armed with row of small hooks along entire dorsolateral margin and single medi-um-sized apical hook. LA short, 2.1 times as long as wide and 0.5 times as long as PV, armed with few hooks near apex.

Photophores. No photophores were found in the "Dana" specimens.

Remarks: Since the original description by Illig (1927), S. plumea has not been recorded and has no junior synonyms. Even in the "Dana" collection, this extremely rare species is represented by only about 20 specimens. Although varying in minor features of the petasma, they correspond to the Illig's description and undoubtedly belong to the same species. Most specimens have a semi-membranous integument and a poorly pigmented cornea, while a few have the integument firm and the cornea well pigmented. Due to the dominance of the former group, it is difficult to believe that these variations are associated with moulting. They thus remain a puzzle.

Sergia plumea is close to S. bisulcata (see differences and affinities in remarks to $S$. bisulcata). It differs from all other species of the species group in having (1) P III propodus with 11 subsegments and (2) the distal lobule of LC strongly curved at about

$1 / 2$ length. Other affinities and differences between $S$. plumea and all other known species of the species group are shown in Table 5.

Geographical distribution (Fig. 38): North Indian Ocean only: Throughout northern part, in Arabian Sea (type locality, Illig 1927), off Sri Lanka ("Dana"), Bay of Bengal, north of Sumatra ("Dana" and "Galathea").

Thus, the distribution of S. plumea is very limited. It is sympatric with S. maxima and S. bisulcata and allopatric to all other species of the species group.

Vertical range: An interzonal species, migrating daily between the meso-/upper bathypelagic and upper mesopelagic zones. "Dana" specimens were taken within the depth range $200-1500 \mathrm{~m}$. All specimens occur at 200-300 m at night and $800-1500 \mathrm{~m}$ during the day.

## Sergia potens (Burkenroad, 1940)

Figs. 38, 45-46
Sergestes bisulcatus. - Stebbing 1905: 87, pl. 24 A;

Fig. 45. Sergia potens, male, "Dana" St. 3975-6, Cp length 25.9 mm . - A, lateral view of Cp ; be scaphocerite. - C, Up.

1910: 381. [Not Wood-Mason in Wood-Mason \& Alcock 1891a.]
Sergestes potens Burkenroad, 1940: 48. Richardson \& Yaldwyn 1958: 26.
Sergestes phorcus. - Barnard 1950: 641, fig. 120. [Not Faxon 1893.]
Sergestes (Sergia) potens. - Yaldwyn 1957: 15, figs. 11-18. - Kensley 1971: 253, fig. 19; 1977: 18. Vereshchaka 1990b: 138.
Sergia potens. - Vereshchaka 1995a: 1651.
Material examined: "Dana" stations: 3640-6 (1f $21^{1 / 2}$ ); 3975-1 ( $2 \mathrm{f} 16^{1 / 2}-19^{1 / 2} \& 4 \mathrm{j} 7^{1 / 2}-8^{1 / 2}$ ); 3975-6 (1m 26); 3978-1 (4f 9-23 \& 5m 91/2-211/2); 3978-7 (1f $11 \& 2 \mathrm{~m} 12-14$ ); 3978-8 (1f $9^{1 / 2} \& 1 \mathrm{~m} 21^{1} / 2 \&$ 16j $61 / 2-8$ ).
"Galathea" stations: 607 (1f 26¹/2); 634 (1m 30).

Type locality: South Atlantic, $35^{\circ} 42^{\prime} \mathrm{S}$, $18^{\circ} 37^{\prime} \mathrm{E}$.

Type material: Holotype of Sergestes potens ("Dana" St. 3975-7, was in ZMUC, now lost; see Introduction).

Diagnosis: Integument firm; rostrum acute, usually bidentate; cornea considerably wider than eyestalk; segment 3 of outer A I flagellum in male with well developed tubercle overlapping segment 4 of flagellum, without terminal setae overlapping tubercle, segment 4 of flagellum bearing 5-6 serrated bristles on dorsal surface; posterior branchial lobe on somite XII not hidden under anterior lobe, Li;undivided, not overlapping other lobes and processes; LT divided; LC divided, with distal lobule straight, overlapping other lobes and processes and with proximal lobule directed laterally; LAc present; LA evenly curved medially, reaching 0.91.1 of PV length. Photophores in 2 rows on scaphocerite medial to inner strip of muscle (8-12 organs in longitudinal row and 2-6 organs in oblique row) and 2-7 in triangular figure distal to apical muscle strip on Up exopod.

exopod 3.2 times as long as wide and 0.33 times as long as Cp ; palp 2.9 times as long as wide and 0.11 times as long as Cp ; endopod 1.9 times as long as wide and 1.0 times as long as palp; endites subequal, 1.6 times as long as wide and 0.5 times as long as palp.

Mxp I with exopod 3.2 times as long as wide and 0.20 times as long as Cp ; endopod 1.0 times as long as exopod, segments 2 and 31.0 times as long as segment 1 . Mxp II 0.8 times as long as Cp , with merus 1.0 , carpus 0.8 , propodus 0.9 , and dactyl 0.5 times as long as ischium. Mxp III 1.3 times as long as Cp , with merus and propodus 0.9 , and dactyl 0.8 times as long as ischium; propodus and dactyl divided into 3 and 7 subsegments, respectively.

P I 1.0 times as long as Cp, with merus 2.9 , carpus 1.7 , and propodus 3.3 times as long as ischium; propodus incompletely divided into 10 subsegments. P II 1.4 times as long as Cp, with merus 2.8 , carpus 2.2 , propodus 3.0 , and dactyl 0.2 times as long as ischium; propodus divided into 12 subsegments. P III 1.7 times as long as Cp, with merus 2.9 , carpus 2.4 , propodus 2.7 , and dactyl 0.2 times as long as ischium; propodus incompletely divided into $13-14$ subsegments. P IV 1.1 times as long as Cp , with merus 1.5 , carpus 1.0 , and propodus 1.2 times as long as ischium. P V 0.6 times as long as

Cp , with merus 1.2 , carpus 1.0 and propodus 0.8 times as long as ischium.

Somite VIII with arthrobranch 0.13 times as long as Cp and 2.0 times as long as epipod. Somite IX with anterior pleurobranch 0.23 times as long as Cp and 4.7 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.26 times as long as Cp and 3.4 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.29 times as long as Cp and 4.4 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.32 times as long as Cp and 1.2 times as long as posterior pleurobranch, posterior lobe not hidden under anterior lobe. Somite XIII with anterior pleurobranch 0.29 times as long as Cp and 1.2 times as long as posterior pleurobranch.

Pl I with basipod 0.30 times as long as Cp and exopod 2.3 times as long as basipod. Pl II with basipod 0.30 times as long as Cp; exopod 2.5 and endopod 1.3 times as long as basipod, respectively. Pl III with basipod 0.30 times as long as Cp; exopod 2.4 and endopod 1.3 times as long as basipod, respectively. Pl IV with basipod 0.29 times as long as Cp ; exopod 2.0 and endopod 1.1 times as long as basipod, respectively. Pl V with basipod 0.26 times as long as Cp ; exopod 1.7 and endopod 1.0 times as long as basipod, respectively.

Up with exopod 4.7 times as long as wide, 5.5 times as long as basipod and 0.7 times as long as Cp ; endopod 3.3 times as long as wide and 0.7 times as long as exopod (Fig. 45C).

Petasma (Fig. 46A-B). PV short, 2.7 times as long as wide, tip straight. LI well-developed, directed medially, not reaching ends of LT and LC, 2.9 times as long as wide and 0.4 times as long as PV. LT with distal lobule overlapping PV, 1.6 times as long as wide and 0.3 times as long as PV, armed with several small hooks on distomedial margin; proximal lobule 1.2 times as long as wide and 0.2 times as long as PV, armed with several small distal hooks. LC divided into 2 lobules: distal and proximal; distal lobule overlapping other lobes and processes, 2.1 times as long as wide and 0.6 times as long as PV, armed with several small hooks on distomedial side and few larger proximal hooks, straight, tip directed distally; proximal lobule 3.4 times as long as wide and 0.4 times as long as PV, covered with several medium-sized hooks, directed laterally. LAc small, 1.5 times as long as wide and 0.1 times as long as PV, covered with small hooks. LA strong, 3.8 times as long as wide and 1.0 times
as long as PV, armed with numerous hooks along medial side and near apex.

Photophores. Scaphocerite: photophores arranged in 2 rows medial to inner strip of muscle, (1) longitudinal row of $8-12$ organs (sometimes fused) from 0.3-0.4 to 0.9-1.0 blade length and (2) oblique row of 2-6 organs (often fused) from 0.2 to 0.3 blade length. Up exopod: 2-7 photophores in triangular figure distal to apical muscle strip. Up endopod: 1 photophore in proximomedial corner.

Remarks: All "Dana" specimens agree with Burkenroad's (1940) description and are similar, almost identical to the description by Stebbing (1905, 1910, both as Sergestes bisulcatus). "Dana" specimens vary morphologically in the form of the rostrum (which may sometimes be more elongate and even unidentate), the position of the photophores (organs in the oblique row on the scaphocerite range from completely separate to almost entirely fused; 1-3 additional proximal photophores may rarely be present on the Up exopod, near the inner margin), minor proportions of the branchiae and appendages, and in the fine structure of the petasma (proportions of the proximal lobules of LT and LC, the latter always overlapping other lobes and processes; the configuration of LA, which is always completely straight and nearly reaching the end of PV).

Affinities and differences between Sergestes potens and all other known species of the species group are shown in Table 5.

Geographical distribution (Fig. 38): Atlantic, Indian, and Pacific Oceans.

Southeast Atlantic - Southwest Indian Ocean: Off South Africa ("Dana"; Stebbing 1905, Calman 1925, Barnard 1950, Kensley 1971). Southeast Indian Ocean (Wasmer 1992 [1993]).

Pacific: Off New Zealand ("Dana" and "Galathea"), Cook Strait, in the stomachs of grouper and ling, east of New Zealand (Wilson 1978); over Nazca and Sala-y-Gomez Ridges (Vereshchaka 1990b).

The presence of comparatively large numbers of S. potens in two areas is more likely a result of the scanty sampling of the southern Indian Ocean and the rarity of the species than of its actual absence here. S. potens is parapatric to S. grandis, S. bisulcata, S. phorca, and S. filicta, which live north of $10-15^{\circ} \mathrm{S}$ in the Atlantic, Indian and Pacific Oceans,


Fig. 47. Sergia wolff, holotype, male, "Dana" St. 1217-1, Cp length 20.0 mm . - A, lateral view of $\mathrm{Cp} .-\mathrm{B}$, scaphocerite. C, Up.
while S. potens occurs south of $10-15^{\circ} \mathrm{S}$ in the same oceans. S. potens is sympatric with S. maxima and $S$. burukovskii and allopatric to $S$. wolffi and $S$. plumea.

Vertical range: An interzonal species, migrating daily between the upper bathypelagic and upper mesopelagic zones. "Dana" specimens were taken within the depth range of $200-1300 \mathrm{~m}$. Most specimens live at $200-300 \mathrm{~m}$ at night and $1000-2000 \mathrm{~m}$ during the day.

## Sergia wolffi Vereshchaka, 1994

Figs. 30, 47-48
Sergia wolffi Vereshchaka, 1994a: 88, figs. 7, 1921, 26.

Material examined: "Dana" stations: 1156-5 (1f 19); 1156-8 ( $1 \mathrm{~m} 14^{1 / 2}$ ); $1185-11$ (1f 20); 1196-1 (1f 21); 1214-4 (1f $21 \& 1 \mathrm{~m} \mathrm{14);} \mathrm{1215-1} \mathrm{(1m} \mathrm{19);}$ 1217-1 (1f $21 \& 1 \mathrm{~m} 20$ ); 1223-1 ( $2 \mathrm{~m} 12-13^{1 / 2}$ ); 1225-2 (1m 121/2); 1228-1 (1f 15); 1230-2 (1m $13^{1 / 2}$ ); 1239-15 (1f 191/2); 1241-6 (1f 21); 1242-11
(1f 20); 1242-14 (1f 12); 1243-1 (1m 15); 1243-2 (1m 12); 1257-1 (2f 13-21); 1261-1 (1f 19); 1286-1 (if $17^{1 / 2} \& 1 \mathrm{~m} \mathrm{19)}$; $1320-1$ (1f 13); 1332-1 (1f $16 \&$ 1m 18); 1332-7 (1f 15); 1356-1 (1m 19); 1358-6 (1f 19); 1363-1 (1f 191/2).

Holotype (male, ZMUC CRU 1612 "Dana" St. 1217-1) + 1 paratype (female, ZMUC CRU 1613, "Dana" St. 1217-1).

Type locality: Caribbean Sea, $18^{\circ} 50^{\prime} \mathrm{N}, 79^{\circ}$ $07^{\prime} \mathrm{W}$.

Type material: Holotype +1 paratype (ZMUC, see above, examined).

Diagnosis: Integument firm, rostrum usually acute; cornea considerably wider than eyestalk; segment 3 of outer A I flagellum in male with well developed tubercle overlapping segment 4 of flagellum, without terminal setae overlapping tubercle; segment 4 of flagellum bearing 5-6 serrated bristles on dorsal surface; posterior branchial lobe on somite XII not hidden under anterior lobe; LI undivided, not overlapping other lobes and processes; LT entire; LC divided, with distal lobule curved and overlapping other lobes and processes and proximal lobule directed distolaterally; LAc absent; LA strongly curved medially at $3 / 4$ length, reaching 0.7-0.9 PV. 1 photophore in proximomedial corner of Up endopod.

Description: Cp 2.2 times as long as high and 0.42 times as long as abdomen (Fig. 47A). Abdomen with somite VI 1.6 times as long as high and 1.2 times as long as telson; telson 2.7 times as long as wide.

Ocular papilla 0.3 times as long as wide, cornea well-pigmented, dark brown, 1.0 times as long as wide, 0.6 times as long and 1.5 times as wide as eyestalk. A I peduncle 0.6 times as long as Cp , with segments 2 and 30.77 and 0.67 times as long as segment 1 , respectively, segment 3 of outer A I flagellum in male with tubercle overlapping segment 4 of flagellum; segment 4 bearing 5-6 serrated bristles and several setae on dorsal surface (Fig. 48C). A II peduncle 0.4 times as long as scaphocerite; latter 3.5 times as long as wide (Fig. 47B), 0.83 times as long as A I peduncle.

Md palp 0.38 times as long as Cp , with proximal segment 2.1 times as long as distal one. Mx I with palp 2.4 times as long as wide and 0.06 times as long as Cp ; endopod 1.9 times as long as wide and


Fig. 48. Sergia wolffi, holotype, male, "Dana" St. 1217-1, Cp length 20.0 mm . - A, oral view of petasma. $-B$, caudal view of petasma. - $C$, male outer A I flagellum.
1.6 times as long as palp; endite 1.8 times as long as wide and 1.1 times as long as palp. Mx II with exopod 3.3 times as long as wide and 0.32 times as long as Cp; palp 3.8 times as long as wide and 0.12 times as long as Cp ; endopod 2.3 times as long as wide and 1.0 times as long as palp; endites subequal, 1.9 times as long as wide and 0.4 times as long as palp.

Mxp I with exopod 4.0 times as long as wide and 0.21 times as long as Cp ; endopod 0.9 times as long as exopod, segments 2 and 31.1 and 1.0 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 1.0 , carpus 0.9 , propodus 1.0, and dactyl 0.4 times as long as ischium. Mxp III 1.6 times as long as Cp , with merus 1.0 , carpus 1.4 , propodus 1.1 , and dactyl 1.0 times as long as ischium; propodus and dactyl divided into 3 and 7 subsegments, respectively.
P I 1.0 times as long as Cp, with merus 2.9 , carpus 1.6, and propodus 2.4 times as long as ischium; propodus divided into 10 subsegments. P II 1.6 times as long as Cp , with merus 2.8 , carpus 2.4 , propodus 3.0, and dactyl 0.1 times as long as ischium; propodus divided into 13 subsegments. P III 1.9 times as long as Cp , with merus 3.0 , carpus 2.6 , propodus 3.1, and dactyl 0.1 times as long as ischium; propodus divided into 13 subsegments. P IV
1.2 times as long as $C p$, with merus 1.4 , carpus 0.9 , and propodus 1.0 times as long as ischium. PV 0.7 times as long as Cp , with merus 1.0 , carpus 0.8 and propodus 0.6 times as long as ischium.

Somite VIII with arthrobranch 0.13 times as long as Cp and 2.4 times as long as epipod. Somite IX with anterior pleurobranch 0.20 times as long as Cp and 4.7 times as long as posterior pleurobranch. Somite $X$ with anterior pleurobranch 0.26 times as long as Cp and 3.7 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.29 times as long as Cp and 3.4 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.29 times as long as Cp and 1.3 times as long as posterior pleurobranch, posterior lobe not hidden under anterior lobe. Somite XIII with anterior pleurobranch 0.24 times as long as Cp and 1.3 times as long as posterior pleurobranch.

Pl I with basipod 0.29 times as long as Cp and exopod 2.7 times as long as basipod. $\mathrm{Pl} \Pi$ with basipod 0.28 times as long as Cp ; exopod 2.9 and endopod 1.6 times as long as basipod, respectively. PI III with basipod 0.28 times as long as Cp ; exopod 2.8 and endopod 1.5 times as long as basipod, respectively. Pl IV with basipod 0.27 times as long as Cp; exopod 2.5 and endopod 1.3 times as long as basipod, respectively. PIV with basipod 0.23 times as
long as Cp ; exopod 2.3 and endopod 1.3 times as long as basipod, respectively.

Up with exopod 4.3 times as long as wide, 6.3 times as long as basipod and 0.6 times as long as Cp ; endopod 3.4 times as long as wide and 0.7 times as long as exopod (Fig. 47C).

Petasma (Fig. 48A-B). PV long and slender, 4.1 times as long as wide, tip not curved. LI well developed, overlapping $\mathrm{PV}, 2.6$ times as long as wide and 0.4 times as long as PV. LT slender, reaching end of LI, 2.0 times as long as wide and 0.3 times as long as PV, armed with few small hooks on distomedial margin and near apex. LC with distal lobule slightly overlapping other lobes and processes, 2.4 times as long as wide and 0.5 times as long as PV, bearing few papillae with hooks at base and several hooks near apex, slightly curved, tip directed distolaterally; proximal lobule 1.9 times as long as wide and 0.2 times as long as PV, armed with several hooks on medial side. LA voluminous, reaching 0.7 to $0.9 \mathrm{PV}, 2.1$ times as long as wide and 0.7 times as long as PV, armed with few smaller hooks near apex and 4-6 stronger hooks in middle.

Photophores. 1 on Up endopod, in proximomedial comer.

Remarks: This species was described a few years ago (Vereshchaka 1994a) and has not been recorded since. Having got more experience in the examination of vanishing photophores on the alcoholpreserved shrimps, I finally found the single, very inconspicuous organ mentioned above to be visible in some specimens. In addition, a single photophore was recorded on the basal part of the scaphocerite in some specimens (Vereshchaka 1994a). Thus, in the photophore position, this species seems to be similar to $S$. bisulcata in having a reduced number of these organs. According to the methods of measurements adopted in this paper, the ratio somite VI length/telson length is 1.2 (not "almost 1.5 " as reported in the original description when segments were measured along their lateral sides). After repeated examination of the "Dana" material, I found the number of strong medial hooks on LA ranging from 3 to 5 ( 4 hooks in the original description). In spite of variability of the petasma, $S$. wolf$f i$ always possesses an LA reaching about $3 / 4 \mathrm{PV}$, strongly curved at the tip, and bearing a few strong hooks at the middle.

Sergia wolffi differs from all other species of the species group in having (1) basal lobule of LC
directed distolaterally, and (2) LA strongly curved an about $3 / 4$ length. Other affinities and differences between $S$. wolffi and all other species of the species group are shown in Table 5.

Geographical distribution (Fig. 30): North Atlantic only: Caribbean Sea, West and Central North Atlantic ("Dana"; Vereshchaka 1994a).
Sergia wolffi occurs in a single area. It is sympatric with S. grandis and allopatric to all other species of the species group.

Vertical range: An interzonal species, migrating daily between the meso-/upper bathypelagic and upper mesopelagic zones. "Dana" specimens were taken within the depth range $100-2000 \mathrm{~m}$. Most specimens occur at $200-300 \mathrm{~m}$ at night and at 700 1300 m during the day.

## Sergia robusta species group

Diagnosis: Lens-less photophores present: 1 long continuous row close to central axis of scaphocerite (sometimes reduced to 1 basal photophore), 2 rows close to central axis in proximal and distal parts of Up exopod (sometimes reduced to 1 proximal photophore); hepatic tubercle blunt; postdorsal spine on VI abdominal somite present; ocular papilla small, $1 / 4-1 / 3$ as long as wide; A I with segment 1 longer than segment 2 ; clasping organ with $0-7$ serrated bristles; endopod of Mxp I with 3 segments; scaphocerite with distal tooth not overlapping blade; propodus in Mxp III divided into 3 subsegments; posterior branchial lobe above P III well developed, not lamellar; petasma with all lobes entire, PV of petasma tapering into point; LC and LT twisted, former with thickened proximal part armed with numerous hooks.

Species included: Sergia extenuata (Burkenroad, 1940), S. regalis (Gordon, 1939), S. robusta (Smith, 1882), S. vityazi n. sp.

## Key to species of the Sergia robusta species group

1. Segment 3 of male outer A I flagellum with tubercle rudimentary and 2 long setae overlapping tubercle and segment 4 with more than 5 serrated bristles on dorsal side. P III

Table 6. Affinities and differences between species of the Sergia robusta species group. $\mathrm{L}=$ length, $\mathrm{ph}=$ photophore $(\mathrm{s}), \mathrm{r}=$ rudimentary, $\mathrm{Sc}=$ scaphocerite, $\mathrm{ss}=$ subsegments, $\mathrm{w}=$ well developed,$+=$ present,$-=$ absent.

| Characters | S. extenuata | S. regalis | S. robusta | S. vityazi n . sp. |
| :---: | :---: | :---: | :---: | :---: |
| Additional dorsal tooth on rostrum | + | + | - | + |
| Tubercle on male A I outer flagellum | w | w | r | W |
| No of segments overlapped by tubercle | 4 | 5 | 4 | 4 |
| No of terminal setae overreaching tubercle | 1 | 1 | 2 | 0 |
| No of serrated bristles in clasping organ | 0 | 3-4 | 6-7 | 3-4 |
| Protrusion on segment 5 of male A I flagellum | - | - | - | + |
| L of PV relative to L of LA | $=$ | $<$ | > | > |
| L of LC relative to L of LT | $>$ or $=$ | $>$ | = | > |
| No of apical teeth on LC | 1 | 3-6 | 1 | 1 |
| LAc of petasma | - | + | - | + |
| LA of petasma curved | strongly at 3/4 | strongly at $1 / 4$ | evenly | evenly |
| Ph row throughout Sc | - | + | + | + |
| Distal ph on Up expopd | - | + | + | - |
| No of ss in Mxp III dactylus | 7 | 6 | 5-6 | 7 |
| No of ss in P I propodus | 12 | 10 | 11 | 10 |
| No of ss in P II propodus | 13 | 12 | 13 | 12 |
| No of ss in P III propodus | 10 | 10 | 13 | 10 |

with propodus divided into 13 subsegments.
LC of petasma not overlapping LT $\qquad$ Sergia robusta

- Segment 3 of male outer A I flagellum with tubercle well-developed and 0-1 long seta overlapping tubercle and segment 4 with fewer than 5 serrated bristles on dorsal side. P III with propodus divided into 10 subsegments. LC of petasma overlapping LT $\qquad$ 2

2. Distal row of photophores on Up exopod usually present; Mxp III with dactyl divided into 6 subsegments; segment 3 of male outer A I flagellum with tubercle overlapping segment 4. LA of petasma overlapping PV; LC with few strong apical hooks; LA strongly curved at $1 / 4$ length ...... Sergia regalis

- Distal row of photophores on Up exopod absent; Mxp III with dactyl divided into 7 subsegments; segment 3 of male outer A I flagellum with tubercle not overlapping segment 4. LA of petasma not overlapping PV; LC with single very strong apical hook; LA, if strongly curved, not at $1 / 4$ length $\qquad$ .3

3. Scaphocerite with 1 basal photophore. Segment 3 of male outer A I flagellum with single terminal seta overlapping tubercle, segment 4 without serrated bristles on dorsal side and segment 5 without distodorsal protrusion. Scaphocerite less than 3.0 times as long as wide; propodi of P I and P II
divided into 12 subsegments and 13 subsegments, respectively. PV of petasma not overlapping LA; LAc absent; LA strongly curved at $3 / 4$ length. $\qquad$ Sergia extenuata

- Scaphocerite with longitudinal row of photophores. Segment 3 of male outer A I flagellum without terminal setae overlapping tubercle, segment 4 with 3-4 serrated bristles on dorsal side and segment 5 with distodorsal protrusion. Scaphocerite 3.0 or more times as long as wide; propodus of P I divided into 10 and 12 subsegments, respectively. PV of petasma overlapping LA; LAc present; LA curved evenly ... Sergia vityazi n . sp.


## Sergia extenuata (Burkenroad, 1940)

Figs. 49-51
Sergestes robustus. - Illig 1927 (part): 301, figs. 44b-c, 46 [not Smith, 1882].
Sergestes extenuatus Burkenroad, 1940: 46.
Sergestes (Sergia) extenuatus. - Yaldwyn 1957: 9.

- Crosnier \& Forest 1973: 338, figs. 112-114.

Sergia extenuata. - Vereshchaka 1994a: 87, figs. 8, 18, 26.

Material examined: "Dana" stations: $1157-10$ (1f $15 \& 1 \mathrm{~m} 12^{1 / 2}$ ); 1159-5 (2f $14^{1 / 2}$ - $15^{1 / 2} \& ~ \& ~ 5 \mathrm{~m} 12^{1 / 2-}$ 151/2); 1160-2 (1f $19 \& 2 m$ 11-18); 1162-1 (2f 15-


201/2 \& 1m 141/2); 1165-2 (2m 15-16); 1168-2 (1m 17); 1171-2 (1f 17); 3996-3 (1f 12); 3996-5 (2f $10^{1 / 2-11} 1 / 2$ ); 3996-7 (2f 10-12); 3997-2 (1f 10 ); 3998-2 (2f 9 \& 1m 11); 3998-7 (1f 11); 3999-1 (1f 19 \& 1m 13); 4000-2 (15f 6-14 \& 9m 6-12); 40006 (20f $\left.7 \frac{1}{2}-13 \& 4 \mathrm{~m} 9-10\right) ; 4000-7(1 \mathrm{~m} \mathrm{11} 1 / 2) ; 4000-$ 9 (2f 6-11 \& 1m 16); 4000-10 (2f 121/2-15 \& 2m 1011).

Remarks: The holotype of Sergestes extenuatus (ZMUC CRU 1602) was referred to "Dana" St. $3999-2$ in the original description (Burkenroad 1940); however, in the collection, the label of the type indicates "Dana" St. 4000-6, while in the journal of the ZMUC crustacean collections the type was registered as taken from "Dana" St. 1602. The latter number is not true by any means, whereas the 2 former numbers are for similar geographical locations.

Type locality: Equatorial Atlantic, either $3^{\circ} 45^{\prime} \mathrm{S}$, $10^{\circ} 00^{\prime} \mathrm{W}$ or $0^{\circ} 31^{\prime} \mathrm{S}, 11^{\circ} 02^{\prime} \mathrm{W}$.

Type material: Holotype of Sergestes extenuatus (ZMUC, see above, examined).

Diagnosis: Integument firm; rostrum long and acute, sometimes bidentate; cornea well pigmented,

Fig. 49. Sergia extenuata, male, "Dana" St. 1159-5, Cp length 15.3 mm . - A, lateral view of Cp. - B, scaphocerite. - C, Up.
dark brown, considerably wider than eyestalk; A I peduncle with segment 3 of outer A I flagellum in male with well developed tubercle reaching end of segment 4 of flagellum and single long terminal seta overlapping tubercle; segment 4 of flagellum without serrated bristles on dorsal surface, segment 5 without distodorsal protrusion; PV of petasma not overlapping LA; LC overlapping LT and LI, bearing single very strong apical tooth; LAc absent; LA curved medially at $3 / 4$ length; 1 proximal photophore lateral to inner muscle strip on scaphocerite and 1 proximal organ near medial margin on Up endopod.

Description: Cp 2.0 times as long as high and 0.45 times as long as abdomen (Fig. 49A). Abdomen with somite VI 1.5 times as long as high and 1.1 times as long as telson; telson 3.0 times as long as wide.

Ocular papilla inconspicuous, 0.3 times as long as wide; cornea 1.1 times as long as wide, 0.8 times as long and 1.5 times as wide as eyestalk. A I peduncle 0.6 times as long as $C$, with segment 1 very hairy on dorsal side and segments 2 and 30.71 and 0.63 times as long as segment 1 , respectively; segment 3 of outer A I flagellum in male with tubercle reaching end of segment 4 of flagellum, with single very strong seta overlapping tubercle; segment 4 of flagellum lacking serrated bristles and bearing several setae on dorsal surface (Fig. 50C). A II peduncle 0.5 times as long as scaphocerite; latter 2.6 times as long as wide (Fig. 49B), 0.77 times as long as A I peduncle.

Md palp 0.31 times as long as Cp, with proximal segment 2.7 times as long as distal one. Mx I with palp 2.2 times as long as wide and 0.06 times as long as Cp ; endopod 1.7 times as long as wide and 1.7 times as long as palp; endite 1.6 times as long as wide and 1.0 times as long as palp. Mx II with exopod 3.2 times as long as wide and 0.32 times as long as Cp ; palp 3.0 times as long as wide and 0.11 times as long as Cp ; endopod 1.8 times as long as wide and 1.0 times as long as palp; endites sub-


Fig. 50. Sergia extenuata, male, "Dana" St. 1159-5, Cp length 15.3 mm . - A, caudal view of petasma. - B, oral view of petasma. - C, male outer A I flagellum.
equal, 2.4 times as long as wide and 0.5 times as long as palp.

Mxp I with exopod 3.1 times as long as wide and 0.21 times as long as Cp , endopod 0.9 times as long as exopod, juncton between segments 1 and 2 incomplete; segments 2 and 31.0 and 0.9 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 1.1 , carpus 1.0 , propodus 1.2, and dactyl 0.5 times as long as ischium. Mxp III 1.4 times as long as Cp , with merus 1.1 , carpus and propodus 1.0 , and dactyl 0.9 times as long as ischium; dactyl incompletely divided into 6-7 subsegments.

P I 1.1 times as long as Cp , with merus 2.6 , carpus 1.7 , and propodus 2.9 times as long as ischium; propodus incompletely divided into 12 subsegments. P II 1.6 times as long as Cp, with merus 3.0 ,
carpus 2.7, propodus 2.1, and dactyl 0.2 times as long as ischium; propodus divided into 13 subsegments. P III 1.9 times as long as Cp , with merus 3.1, carpus 2.8 , propodus 3.0 , and dactyl 0.2 times as long as ischium; propodus divided into 10 subsegments. P IV 1.4 times as long as Cp , with merus 1.4 , carpus and propodus 1.0 times as long as ischium. P V 0.7 times as long as Cp , with merus 1.1 , carpus 0.8 , and propodus 0.6 times as long as ischium.

Somite VIII with arthrobranch 0.14 times as long as Cp and 3.4 times as long as epipod. Somite IX with anterior pleurobranch 0.23 times as long as Cp and 5.3 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.27 times as long as Cp and 5.6 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.31 times as long as Cp and 5.9 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.33 times as long as Cp and 1.5 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.25 times as long as Cp and 1.1 times as long as posterior pleurobranch.

Pl I with basipod 0.36 times as long as Cp and exopod 2.2 times as long as basipod. Pl II with basipod 0.31 times as long as C ; exopod 2.8 and endopod 1.6 times as long as basipod, respectively. Pl III with basipod 0.30 times as long as Cp ; exopod 2.5 and endopod 1.4 times as long as basipod, respectively. Pl IV with basipod 0.29 times as long as Cp; exopod 2.4 and endopod 1.5 times as long as basipod, respectively. Pl V with basipod 0.24 times as long as Cp ; exopod 2.2 and endopod 1.3 times as long as basipod, respectively.

Up with exopod 4.0 times as long as wide, 5.7 times as long as basipod and 0.7 times as long as Cp ;-endopod 3.3 times as long as wide and 0.7 times as long as exopod (Fig. 49C).

Petasma (Fig. 50A-B). PV slender, with distolateral margin slightly concave, 5.1 times as long as wide. LI small, nearly reaching tip of PV, 3.0 times as long as wide and 0.2 times as long as PV . LT directed laterally, overlapping PV and LA, not reaching end of LC, 2.7 times as long as wide and 0.7 times as long as PV , armed with several hooks near apex. LC overlapping all other lobes and processes, 2.7 times as long as wide and 0.8 times as long as PV, bearing numerous papillae with hooks on proximolateral side. LA slightly overlapping PV, 3.9 times as long as wide and 1.1 times as


Fig. 51. Probable geographical distribution of Sergia robusta (large circles, hatching), Sergia extenuata (triangles, cross hatching), and Sergia vityazi n. sp. (small circles). Symbols indicate "Dana" stations. Shaded areas without symbols are supported by literature data.
long as PV , armed with row of papillae with hooks along proximomedial margin and 1-2 very strong apical hooks.

Photophores. Scaphocerite: 1 proximal organ, lateral to base of inner strip of muscle. Up exopod: 1 proximal organ near medial margin at about 0.2 exopod length. Up endopod: 1 photophore near proximomedial corner.

Remarks: This species varies in the form of the rostrum (usually unidentate, but sometimes bidentate) and armature of LA. The latter character was proposed by Burkenroad (1940) to be distinguishing for this species; however, this varies individually to a great extent and seems not to be of value. The basal photophore on the scaphocerite varies in form and size and may appear as a short thin line throughout about $1 / 8$ scaphocerite length. Vereshchaka (1994a) reported that photophores were absent on the Up exopod; having got more experience in observing such vanishing organs in the alcohol-preserved specimens, I did find the single basal photophore recorded by Burkenroad (1940), who observed it in much fresher material. $S$. extenuata was first mentioned under the name Sergestes robustus (Illig 1927), and part of the description and specimens figured by Illig were referred to this species by Crosnier \& Forest (1973:

338, see their synonymy). Since the detailed description and figures by Crosnier \& Forest (1973), this species has been correctly identified and no younger synonyms have appeared.

Sergia extenuata differs from all other species of the species group by (1) the absence of dorsal serrated bristles on segment 4 of the male outer A I flagellum, (2) a relatively wider scaphocerite (less than 3 times as long as wide), (3) LA of the petasma just reaching the end of PV , (4) LA of the petasma almost straight and curved only at $3 / 4$ length, and (5) 1 proximal photophore on the scaphocerite. Other differences and affinities between S. extenua$t a$ and all other known species of the species group are shown in Table 6.

Geographical distribution (Fig. 51): Tropical Atlantic only: North Central Atlantic from off Cape Verde Isles to about $20^{\circ} \mathrm{N}$ ("Dana" stations; Vereshchaka 1994a), Ivory Coast (Burkenroad 1940), southern Central Atlantic between $0^{\circ}$ and $15^{\circ}$ S ("Dana"; Crosnier \& Forest 1973).

Sergia extenuata is parapatric to $S$. robusta, the former occurring in the tropical Atlantic waters south of $20-30^{\circ} \mathrm{N}$, the latter living mainly in the temperate Atlantic waters north of $20-30^{\circ} \mathrm{N} . S$. extenuata is sympatric with $S$. regalis and allopatric to $S$. vityazi n . sp.

Vertical range: An interzonal species, migrating daily between the upper bathypelagic and upper mesopelagic zones. "Dana" specimens were taken within the depth range $200-2000 \mathrm{~m}$. Most specimens occur at 200-300 m at night and at 1000-1700 $m$ during the day. These data agree with those of Vereshchaka (1994a), who recorded this species from $200-500 \mathrm{~m}$ at night.

## Sergia regalis (Gordon, 1939)

Figs. 52A-D, 53A-C, 54; P1. 2A
Sergestes regalis Gordon, 1939: 498, figs. 1-4.
Sergestes creber Burkenroad, 1940: 44. Synonymized with Sergestes regalis by Vereshchaka (1994a).
Sergestes (Sergia) creber. - Yaldwyn 1957: 9. Kensley 1971: 247, fig. 16.
Sergestes (Sergia) regalis Yaldwyn 1957: 9. Kensley 1971: 256, fig. 21; 1977: 18.
Sergia creber. - Krygier \& Wasmer 1988: 50.
Sergia regalis. - Vereshchaka 1994a: 86, figs. 8, 1618, 26; 1995a: 1651.

Material examined: "Dana" stations: 1171-2 (1f 14); 1174-1 (1m 12); 1174-2 (1f $11^{1 / 2}$ ); 1177-1 (4f $13^{1} / 2-16^{1 / 2}$ ); 1178-1 (1f 15); 1183-1 ( $2 \mathrm{~m} 17^{1} / 2-20$ ); 1183-6 (6f 101/2-17 \& 2m 13-15); 1183-9 (13f 9$22^{1} / 2 \& 21 \mathrm{~m} 9^{1} / 2-19^{1} / 2$ ); 1184-1 ( 6 f 13-18 \& 3m 131/2-16); 1185-11 (1f 18); 1188-2 (2f 12-13 \& 1m 11½); 1196-1 (2f 131/2); 1198-1 (2f $11 \& 4 m 11-$ $\left.12^{1} / 2\right)$; 1198-2 ( $2 \mathrm{~m} 12-12^{1 / 2}$ ); 1214-3 (1m 18); 12153 (2f $13^{\frac{1}{2}-14}$ ); 1216-6 (1f 11); 1217-4 (1m 15); 1223-2 (3f $14-17 \frac{1}{2}$ \& 2 m 13-13 $1 / 2$ ); 1225-2 (1f $11^{1 / 2}$ ) ; 1266-2 (1f 14); 1269-4 (1f $13^{1 / 2}$ ); 1270-7 (1m 15); 1281-3 (1m 13); 1281-9 (1m 13); 1283-1 (1f $\left.21 \frac{1}{2} \& \operatorname{lm} 16\right) ; 1283-7\left(2 f 17-19 \frac{1}{2}\right) ; 1284-1(4 f 11-$ $21^{1 / 2} \& 1 \mathrm{~m} \mathrm{16} 1 / 2$ ); 1285-1 (1f $13 \& 1 \mathrm{~m} 17$ ); 1287-1 (1f $14 / 2$ ) ; 1287-2 (1f 17); 1288-4 ( 1 m 10 ); 1293-3 (2f 11-13 ${ }^{1 / 2}$ ); 3556-1 (4f $13^{1 / 2}$-21 \& 5m 14-181/2); 3556-4 (1f $18^{1 / 2}$ ); 3558-5 (1m 191/2); 3561-3 (1f $17^{1 / 2}$ \& 1m 13); 3585-1 (4f 151/2-18 \& 2m 15-151/2); 3585-8 (1m 141/2); 3587-7 (1f $13^{1 / 2}$ ); 3630-2 (1m 16); 3656-3 (1f 15 ); 3676-1 (9f 11-191/2 \& 13m 1118); 3676-6 (3f 9-16 \& 2m 16); 3676-7 (1f 11 $1 / 2$ ); 3676-9 (1m 9 \& 1j 5); 3677-1 (2f 14-141/2 \& 1m $17^{1} / 2$ ); 3677-2 (1m 13); 3677-3 (1f 14); 3678-4 (1f $15 \& 1 \mathrm{~m} 12$ ); 3678-5 (2f 12-13 \& 2m 12-13); 36786 (2f 12-19 ${ }^{1} / 2 \& 3 \mathrm{~m} 12-19$ ); 3680-1 (1f 15); 3680-2 (1f 8); 3680-3 (2f $11^{1 / 2}-13^{1 / 2} \& 2 \mathrm{~m} 71 / 2-12$ ); 3680-4
(3m 11-131/2); 3680-6 (2m 14); 3680-7 (2f $8^{1 / 2-}$ $11^{1 / 2}$ ); 3681-1 (4f $16-18^{1 / 2} \& 3 \mathrm{~m} \mathrm{15}{ }^{1 / 2-18}$ ); 3682-1 (1f $13 \& 1 \mathrm{~m} \mathrm{17} 1 / 2$ ); 3682-2 (1f $8 \& 1 \mathrm{~m} 9$ ); 3683-1 ( $2 \mathrm{f} 9^{1 / 2} 2-14^{1 / 2} \& 1 \mathrm{~m} \mathrm{17}$ ); 3683-2 ( $1 \mathrm{~m} 10^{1 / 2}$ ); 3683-6 (4f $10^{1 / 2}-20 \& 3 \mathrm{~m} \mathrm{10-14)}$; 3683-7 (3m 61/2-10); 3684-6 (4f 11¹⁄2-16 \& 1m 17¹⁄2); 3684-8 (3f 9-13); 3685-1 (1m 9); 3685-2 (3f 8-10 \& 4m 7-11); 36856 (1f 12 \& 1m 17); 3685-7 (1f $8^{1 / 2}$ ); 3685-8 (1f $8^{1 / 2}$ \& $2 \mathrm{~m} 9-9 \frac{1}{2}$ ); 3685-9 ( $10 \mathrm{f} 8-20^{1 / 2} \& 8 \mathrm{~m} 8^{1 / 2-13}$ ); 3686-2 (1f $8 \& 2 \mathrm{~m} 9-10$ ); 3686-6 (1f $9 \& 1 \mathrm{~m} \mathrm{10);}$ 3686-8 (9f 81/2-16 \& 1m 71⁄2); 3687-1 (5f 9-16); 3687-2 (2f 10-11 $1 / 2 \& 3 \mathrm{~m} 71 / 2-11$ ); 3688-1 (1f $9^{1 / 2} \&$ $1 \mathrm{~m} 13^{1 / 2}$ ); 3688-3 ( 1 m 10 ); 3688-4 (1f $10^{1 / 2} \& 2 \mathrm{~m}$ 8); 3688-5 (1f $8 \& 1 \mathrm{~m}^{1 / 2}$ ); 3689-1 (1f $10 \& 3 \mathrm{~m} 10-$ 14); 3689-3 ( $2 \mathrm{f} 10-13^{1 / 2} \& 1 \mathrm{~m} 10^{1 / 2}$ ); 3689-4 (1f 11); 3690-2 (1f $12 \& 3 \mathrm{~m} 10-17$ ); 3690-3 (4f 8-9 \& 1 m 8 ); 3712-1 (1f 11); 3713-1 (3f $8^{1 / 2}$-14 \& $2 \mathrm{~m} 8^{1 / 2}$ 10); 3713-2 (2f 13-20 \& 2m 12); 3713-3 (3j 61/2); 3714-2 (5f 8-11 $1 / 2$ ); 3714-3 (3f 91/2-16); 3714-6 (1m $13^{1 / 2}$ ); 3714-8 ( $2 \mathrm{f} 13^{1 / 2}-15$ ); 3714-9 (1f 18); 3714-10 (2f 12-15); 3715-1 (1m 151/2); 3716-1 (2f 10-12); 3716-2 (4f 10-12 \& $2 \mathrm{~m} 10^{1 / 2}-12^{1} / 2$ ); 3716-3 (4f $11-$ $20 \& 7 \mathrm{~m} \mathrm{11} 1 / 2-18 \& 1 \mathrm{j} 7 / 2$ ) ; 3729-1 (1f 13); 3730-1 ( $4 \mathrm{~m} \quad 10-12^{1} / 2$ ); 3730-2 ( $2 \mathrm{j} 51 / 2-7$ ); 3731-13 ( 1 m 12 ${ }^{1} / 2$ ); 3733-1 (1f $19 \& 2 \mathrm{~m} \mathrm{13-16);} \mathrm{3734-1} \mathrm{(3f} 17-$ $21 \& 4 \mathrm{~m} \mathrm{10} 1 / 2-18) ; 3734-2\left(2 \mathrm{~m} 8^{1} / 2-16^{1 / 2}\right) ; 3735-1$ (1f $16 \& 2 \mathrm{~m} 14^{1 / 2}-15$ ); 3736-1 (2f $14^{1 / 2}-16^{1 / 2}$ ); 37363 (7f 12-17 \& 5m 12-15); 3736-5 (2f 14-15); 37366 (1m 13); 3737-1 (7f 12-14 \& 1m 121/2); 3737-2 ( $8 \mathrm{f} 11^{1} / 2-13^{1 / 2}$ \& $20 \mathrm{~m} 12-14$ ); 3738-1 (5f 12-18 \& $6 \mathrm{~m} \mathrm{10} 1 / 2-19) ; 3738-2\left(2 \mathrm{f} 91 / 2-10^{1} / 2\right) ; 3739-1$ (1f $16 \&$ 1m 17); 3739-8 (2m 16-1712); 3739-9 (1m 17); 3740-1 (1f 16); 3744-1 (3m 13-171/2); 3744-2 (1f 13); 3745-1 (4f $12^{1} / 2-20$ ); 3746-1 ( $2 \mathrm{f} 17^{1} / 2$ ); 3746-2 (3f 7-11 $1 / 2$ ); 3749-1 ( $2 \mathrm{f} 12-13 \frac{1}{2}$ \& 1 m 9 ); 3750-1 ( $2 \mathrm{f} 8^{1 / 2}-15$ ); 3751-2 (3f $7^{1 / 2}-11 \& 4 \mathrm{~m} 10-12^{1} / 2$ ); 3751-6 (2f 13-18); 3751-7 (3f 10-13 \& 2m 91/2-15); 3752-2 (1m 111/2); 3753-1 (2m 15-17); 3753-2 (2f $6^{1 / 2}-13 \& 1 \mathrm{~m} 8^{1 / 2}$ ); 3755-1 ( $2 \mathrm{f} 15^{1 / 2-17^{1} / 2} \& 2 \mathrm{~m} 14$ 15); 3755-2 ( 1 m 10 ); 3766-13 (3f 10-151/2); 376618 (9f $15-18^{1 / 2} \& 2 \mathrm{~m} \mathrm{10} 1 / 2-16^{1 / 2}$ ); 3767-5 (4f $12^{\frac{1}{2} 2-}$ $21 \& 1 \mathrm{~m} \mathrm{11} 1 / 2$ ); 3767-6 (8f 91/2-21); 3768-1 (1m 15); 3768-3 (5f 8-181/2 \& 2m 15-17); 3768-4 (4f 14$19 \& 5 \mathrm{~m} \mathrm{14-19}) ; 3768-5(1 \mathrm{~m} 17.5) ; 3768-6$ (2f 28); 3782-1 (1f 15); 3784-6 (1m 13); 3784-7 (2m 11); 3786-6 (1f $10^{1 / 2} \& 2 \mathrm{~m} 11-11^{1} / 2$ ); 3786-7 (1f 8 ); 3786-8 (2f 7-8); 3788-1 (3f 7-171/2); 3789-1 (1m 11); 3789-2 (2f 8-14); 3789-6 (1m 13); 3789-8 (1f 13); 3791-1 (2f 15-18); 3791-2 (2f 9-16 \& 1m 16); 3792-1 (3m 12-131/2); 3795-1 (1f 12½); 3795-2 (2f $6^{1 / 2-7}$ ); 3800-1 (2f 12-15); 3800-2 (8f 61/2-15);


Fig. 52. Sergia regalis, male, "Dana" St. 3766-18, Cp length 16.5 mm . - A, lateral view of Cp. - B, scaphocerite. - C, Up. - D, variability of rostrum shape, "Dana" St. 3869

3804-2 (10f 8-141/2 \& 8m 12 $2^{1 / 2-13} 3^{1 / 2}$ ); 3804-3 (1f 12 \& $18 \mathrm{j} 6-8^{1 / 2}$ ) ; 3809-2 (14j 6-71/2); 3812-1 (1f $9 \&$ $1 \mathrm{~m} 9 \& 32 \mathrm{j} 6-8$ ) ; 3812-3 (2f 9 \& 13j 7-8); 3814-1 ( $7 \mathrm{f} 71 / 2-12^{1} / 2$ ); 3817-1 ( $8 \mathrm{f} 8-15 \& 5 \mathrm{~m} 8^{1 / 2}-14$ ); 38172 (19f 7-14 \& 8m 7-12 $1 / 2$ ); 3817-3 (6f $7^{1 / 2}-13 \& 3 m$ $7^{1} / 2-11$ ); 3821-1 ( $2 \mathrm{f} 13^{1 / 2}-14^{1} / 2$ \& $1 \mathrm{~m} 12^{1} / 2$ ); 3821-3 (6f 8-13 $1 / 2$ ); 3824-6 (2f $7^{1} / 2-14$ ); 3828-5 (4f 13-15 \& 4m 12-12 ${ }^{1 / 2}$ ); 3828-6 (1f 13); 3828-7 (8f 8-16 \& 6m 11-14); 3828-8 (1f 16); 3828-9 (2f 13); 3828-10 ( 10 f 13-1712 \& $7 \mathrm{~m} \mathrm{11} 1 / 2-13$ ); 3828-12 (3f 13-15 \& 1m 13); 3828-13 ( 1 m 8 ); 3828-14 (7f 12 $1 / 2-14$ ); 3828-15 (5f 81/2-16); 3830-5 (5f 12 $1 / 2-14^{1 / 2}$ \& 1 m $11^{1} / 2$ ) ; 3844-5 (1f $15^{1 / 2} \& 2 \mathrm{~m}_{10} 0^{1 / 2}-12^{1} / 2$ ); 3844-6 (5f 7-12 \& 2m 13-14); 3847-1 (1m 11); 3851-1 (1f 8); 3860-18 ( $1 \mathrm{~m} \mathrm{9} 9^{1 / 2}$ ); 3860-20 ( $2 \mathrm{~m} 7^{1 / 2}$-10); 3869-5 ( $15 \mathrm{f} 7-9 \frac{1}{2} \& \& \mathrm{~m} 8^{1} / 2-11$ ) ; 3869-6 (5f 6-91/2 \& 3m 81/2-9); 3869-7 (3f 8-9 \& 4m 81/2-91/2); 3869-8 (1f 8$9 \& 1 \mathrm{~m} 6^{1 / 2}$ ); 3873-1 (6f $7^{1 / 2}-11^{1} / 2 \& 1 \mathrm{~m} 8$ ); 3874-1 (1f $9^{1 / 2} \& 2 \mathrm{~m} 6^{1 / 2-11}$ ); 3874-2 (2f 10); 3874-3 (1f 10); 3876-1 (2f $8 \& 1 \mathrm{~m} 8$ ); 3892-1 (1f $7^{1 / 2}$ ); 3894-1 (1f $7^{1 / 2}$ ); 3902-1 (1f $9^{1 / 2} \& 2 \mathrm{~m} 14^{1 / 2}-15^{1 / 2}$ ); 3903-1 (4f $11^{1 / 2}-18 \& 2 \mathrm{~m} 12-13^{1} / 2$ ); 3903-2 (1f $12^{1} / 2 \& 2 \mathrm{~m}$ 10-12); 3905-1 ( $2 \mathrm{f} 12^{1} / 2-16 \& 2 \mathrm{~m} 9^{1} / 2-17^{1} / 2$ ); 39052 (3f 9-17 \& 4m 9-111/2); 3906-2 (1f $9 \& 2 m 10-$ 14); 3906-3 (10f 8-11 \& 4m 8-111/2); 3907-1 (5f 9$21 \& 5 \mathrm{~m} 8-17$ ); 3907-2 ( $12 \mathrm{f} 7 \frac{1}{2}-18 \& 7 \mathrm{~m} 8-13^{1 / 2}$ ); 3907-3 (4f 8-11 \& 2m 7-81/2); 3908-1 (2f 11 $1 / 2-14$ ); 3909-1 (3f $10^{1 / 2} \& 1 \mathrm{~m} \mathrm{16} 1 / 2$ ); 3909-2 (1f $11 \& 1 \mathrm{~m}$ $9^{1} / 2$ ) ; 3909-4 (2f 9-12); 3909-5 (3m 9-10 ${ }^{1} / 2$ ); 3912-2
(1f 14); 3912-3 (1f $14 \& 1 \mathrm{~m} \mathrm{13}$ ); 3913-1 (9f $11^{1 / 2-}$ $14^{1} / 2$ \& $5 \mathrm{~m} \mathrm{11} 1 / 2-14$ ); 3913-2 (1f 10); 3915-1 (3f 81/2-15); 3915-2 (10f 61/2-91/2 \& 4m 7-111/2); 3915-3 (8f 7-12 \& 1m 91/2); 3916-1 (1f 13); 3916-3 (1f $7 \&$ 1m 6); 3917-1 (1f $16 \& 1 \mathrm{~m} \mathrm{17);} \mathrm{3917-5} \mathrm{(3f} 7 \frac{1}{2}-11$ \& 1m 15); 3917-6 (3m 8-131/2); 3917-7 (1m 91/2 \& 1j 7); 3917-8 (2f 6-8); 3918-1 (1f $14^{1 / 2}$ ); 3918-2 (2f $15-16^{1} / 2$ ); 3919-2 (1f 16); 3921-2 (1m 13); 3922-2 (2f 10-20 \& 1m 17); 3924-1 (4f 11-14 \& 1m 101/2); 3925-1 (3f 9-13 \& 2m 12½); 3933-2 (2f 11-13 \& 3m 7-13); 3933-3 (1f 16); 3946-1 (1m 10); 3949-1 (2f 11-12); 3951-1 (5m 13-19); 3964-6 (1f $13 \& 1 \mathrm{~m}$ 10); 3964-10 (4f 7-8¹/2); 3969-2 (3f $10^{1 / 2-11^{1} / 2} \& 1 \mathrm{~m}$ 11); 3978-8 (1f 14 \& 1m 10); 3999-1 (1m 17½).
"Galathea" stations: 263 (2f 14-17 \& 2m 12-131/2); 406 (1f $16 \& 1 \mathrm{~m} 13^{\frac{1}{2}}$ ); 407 ( $1 \mathrm{~m} 12^{\frac{1}{2} 2}$ ); 443 ( 1 m 16); 444 ( $1 \mathrm{~m} 13^{1 / 2}$ ); 448 ( $3 \mathrm{f} 12-18^{1 / 2}$ \& 2 m 14$15^{1} / 2$ ); 453 (1f 10 ); 464 (1f $11 \& 2 \mathrm{~m} 10-12^{1} / 2$ ); 466 (1m 10); 474 (1f $13^{1 ⁄ 2} 2 \& 1 \mathrm{j} 8$ ); 491 ( $1 \mathrm{~m} 17^{1 / 2}$ ); 494 ( $2 \mathrm{f} 11-12^{1} / 2 \& 1 \mathrm{~m} 16^{1} / 2$ ) ; 495 ( $1 \mathrm{~m} 9^{1 / 2}$ ); 517 (1f 17 ). Holotype of Sergestes creber, "Dana" St. 3766-18 (male, ZMUC CRU 1601).

Type locality: South Atlantic, $32^{\circ} 45^{\prime} \mathrm{S}, 8^{\circ} 47^{\prime} \mathrm{W}$.

Type material: Holotype (BMNH 1939.3.8.21) + 1 paratype (BMNH 1939.3.8.22) of Sergestes regalis, "Discovery" St. 81 (not examined).


Fig. 53. Sergia regalis, male, "Dana" St. 376618, Cp length 16.5 mm . - A, caudal view of petasma. - $B$, oral view of petasma. - $C$, male outer A I flagellum.


Diagnosis: Integument firm; rostrum long and acute, uni- or bidentate; comea well pigmented, dark brown, considerably wider than eyestalk; A I peduncle with segment 3 of outer A I flagellum in male with well developed tubercle reaching end of segment 5 of flagellum and single long terminal setae overlapping tubercle; segment 4 of flagellum bearing 3-4 serrated bristles on dorsal surface, segment 5 without distodorsal protrusion; PV of petasma overlapped by LA; LC overlapping LT and LI, bearing apical teeth; LAc present; LA curved medially at $1 / 4$ length, photophores arranged in single wavy row medial to inner muscle strips on scaphocerite and in 1 proximal lateral row (near medial margin) and 1 distal medial row on Up endopod.

Description: Cp 2.1 times as long as high and 0.42 times as long as abdomen (Fig. 52A); rostrum varying in shape (Fig. 52D), long and acute at tip, sometimes bidentate. Abdomen with somite VI 1.6 times as long as high and 1.1 times as long as telson; telson 3.2 times as long as wide.

Ocular papilla 0.3 times as long as wide, cornea
1.1 times as long as wide, 0.6 times as long and 1.7 times as wide as eyestalk. A I peduncle 0.7 times as long as Cp , with segments 2 and 30.59 times as long as segment 1 , segment 3 of outer A I flagellum in male with tubercle, reaching end of segment 5 of flagellum and with single very strong seta overlapping tubercle; segment 4 of flagellum bearing 3-4 serrated bristles and several setae on dorsal surface (Fig. 53C). A II peduncle 0.5 times as long as scaphocerite; latter 3.3 times as long as wide (Fig. 52 B ), 0.83 times as long as A I peduncle.

Md palp 0.34 times as long as Cp , with proximal segment 2.3 times as long as distal one. Mx I with palp 2.0 times as long as wide and 0.06 times as long as Cp ; endopod 1.5 times as long as wide and 1.4 times as long as palp; endite 1.6 times as long as wide and 0.9 times as long as palp. Mx II with exopod 3.2 times as long as wide and 0.31 times as long as Cp ; palp 3.8 times as long as wide and 0.13 times as long as Cp ; endopod 2.0 times as long as wide and 1.0 times as long as palp; endites subequal, 1.6 times as long as wide and 0.5 times as long as palp.
Mxp I with exopod 3.4 times as long as wide and 0.21 times as long as Cp ; endopod 0.8 times as long as exopod; segments 2 and 31.0 and 0.5 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 1.0 , carpus 0.8 , propodus 1.0 , and dactyl 0.5 times as long as ischium. Mxp III 1.4 times as long as Cp , with merus 0.8 , carpus 0.8 , propodus 0.8 , and dactyl 0.9 times as long as ischium; dactyl divided into and 6 subsegments.

P I 1.1 times as long as $C p$, with merus 3.0 , carpus 1.6 , and propodus 3.0 times as long as ischium; propodus divided into 10 subsegments. P II 1.4 times as long as Cp , with merus 3.1 , carpus 2.6 , propodus 3.0 , and dactyl 0.1 times as long as ischi-
um; propodus divided into 12 subsegments. P III 1.9 times as long as Cp , with merus 3.0 , carpus 2.4 , propodus 2.8 , and dactyl 0.2 times as long as ischium; propodus divided into 10 subsegments. P IV 1.1 times as long as Cp , with merus 1.4 , carpus and propodus 1.1 times as long as ischium. P V 0.6 times as long as $C p$, with merus 1.2 , carpus 0.9 , and propodus 0.7 times as long as ischium.

Somite VIII with arthrobranch 0.13 times as long as Cp and 1.9 times as long as epipod. Somite IX with anterior pleurobranch 0.22 times as long as Cp and 4.6 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.23 times as long as Cp and 4.2 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.26 times as long as Cp and 3.3 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.29 times as long as Cp and 1.4 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.26 times as long as Cp and 1.2 times as long as posterior pleurobranch.

Pl I with basipod 0.29 times as long as Cp and exopod 2.2 times as long as basipod. PI II with basipod 0.29 times as long as $C p$; exopod 2.6 and endopod 1.5 times as long as basipod, respectively. PI III with basipod 0.29 times as long as Cp ; exopod 2.6 and endopod 1.4 times as long as basipod, respectively. Pl IV with basipod 0.28 times as long as Cp ; exopod 2.4 and endopod 1.3 times as long as basipod, respectively. Pl V with basipod 0.25 times as long as Cp; exopod 2.1 and endopod 1.1 times as long as basipod, respectively.

Up with exopod 4.4 times as long as wide, 4.9 times as long as basipod and 0.7 times as long as Cp ; endopod 3.5 times as long as wide and 0.7 times as long as exopod (Fig. 52C).
Petasma (Fig. 53A-B). PV long and narrow, with distolateral margin slightly concave, 3.3 times as long as wide. LI slender, slightly overlapping PV, 2.4 times as long as wide and 0.3 times as long as PV. LT slightly curved laterally, short, reaching end of LI, not reaching end of LC, 1.6 times as long as wide and 0.4 times as long as PV , armed with row of small hooks along ventral and distolateral margins. LC overlapping all other lobes, 2.2 times as long as wide and 0.7 times as long as PV, bearing numerous papillae with hooks on proximolateral margin and few hooks near apex. LAc 1.6 times as long as wide and 0.2 times as long as PV , covered with numerous small hooks. LA ranging in propor-
tions, in average 4.2 times as long as wide and 1.1 times as long as PV, armed with several strong hooks.

Photophores. Scaphocerite: continuous wavy row of 7-16 photophores medial to inner strip of muscle from 0.3 to 0.9 blade length. Up exopod: 614 photophores arranged in two series, (1) proximal photophores in continuous row medial to inner strip of muscle from 0.3 to 0.6 exopod length and (2) distal photophores in continuous row distal to terminal muscle strip from 0.7 to 0.8 exopod length. Up endopod: 1 photophore in proximomedial comer.

Remarks: Colour in life is shown in Pl. 2A.
This species is very variable in the form of the rostrum, proportions of the petasma, and a few minor characters. It was described and figured in detail by Gordon (1939). In his brief description of $S$. creber, Burkenroad (1940) may have not been aware of Gordon's recent description; at least the close similarity of the two species is obvious. Kensley (1971) recorded the presence of both species in South African waters and found the following distinctions between $S$. regalis and $S$. creber: (1) the form of the rostrum (elongate-lanceolate in $S$. creber and bidentate in S. regalis; (2) spination of the male outer A I flagellum; (3) the number of photophores on Up exopod (higher in $S$. creber); (4) the form of LI (more slender in S. creber); (5) the number of hooks on LA (fewer in $S$. creber). The form of the rostrum varies remarkably in the species, as is shown in Fig. 52D (specimens from the same "Dana" St. 3869). The spination of the male outer A I flagellum, although much more conservative, in Burkenroad's holotype looks more similar to that in S. regalis as figured by Gordon (1939) than to that in $S$. creber figured by Kensley (1971). The number of photophores on the Up exopod in the "Dana" specimens ranges from 6 to 14 in S. creber instead of from 6 to 9 in S. regalis, thus demonstrating significant overlapping and little taxonomic value of the character. The form of LI and the number of hooks of LA vary greatly and overlap even within the same sample. Thus, S. creber should be considered a junior synonym of $S$. regalis, as proposed by Vereshchaka (1994a). It is possible, however, to record 2 forms of this species, form regalis and form crebra, often appearing together in the same population (sample) and differing in the following main characters:

Form regalis: rostrum short, bidentate, LA wide


Fig. 54. Probable geographical distribution of Sergia regalis (circles, hatching). Black symbols indicate "Dana" stations, white symbols "Galathea" stations.
and short (but always slightly overlapping PV), with 6-15 strong hooks;

Form crebra: rostrum longer, unidentate, LA thin and long (considerably overlapping LI and LC), with 3-5 very strong hooks.
Sergia regalis is closely related to $S$. extenuata and $S$. vityazi n . sp. $S$. regalis is distinguished from all other species of the species group by (1) the tubercle on segment 3 of the male outer A I flagellum reaching end of segment 5 (not 4 ) of flagellum, (2) LA of the petasma overlapping PV, (3) few strong (not one very strong) hooks near the apex of LC, (4) LA strongly curved at $1 / 4$ length. Other differences and affinities between $S$. regalis and all other known species of the species group are shown in Table 6.

Geographical distribution (Fig. 54): A circumtropical species, occurring in the tropical zones of all oceans.

Atlantic: Caribbean and Northwest Atlantic ("Dana", Vereshchaka 1994a), Southeast Atlantic, around South Africa ("Dana", Gordon 1939, Kensley 1971).

Indian Ocean: Throughout the Indian Ocean, Indo-West Pacific ("Dana" and "Galathea" stations).

Pacific: Western tropical part ("Dana" and "Galathea", off Australia and New Zealand, Central and Eastern tropical Pacific ("Dana").

Sergia regalis is parapatric to $S$. robusta, the former appearing south of $25-30^{\circ} \mathrm{N}$ in the Atlantic, the latter living mainly north of $20-30^{\circ} \mathrm{N}$ in the same region. S. regalis is sympatric with S. extenuata and S. vityazi n. sp.

Vertical range: An interzonal species, migrating daily between the upper bathypelagic and upper mesopelagic zones. "Dana" specimens were taken within the depth range $100-2000 \mathrm{~m}$. Most specimens occur at $200-400 \mathrm{~m}$ at night and at $1000-1700$ m during the day. These data agree with those of Vereshchaka (1994a).

## Sergia robusta (Smith, 1882)

Figs. 51, 55-56; Pl. 3A-B
Sergestes sp. - Smith 1881: 445.
Sergestes robustus Smith, 1882: 97 (refers to 3 specimens listed in 1881), pl. 16, figs. 5-8; 1884: 416, pl. 8, figs. 3-6; 1886: 89. - Faxon 1895: 163. - Adensamer 1898: 626. - Riggio 1900: 20; 1905: 151, pl. 2, fig. 8-12. - Hansen 1903: 70; 1908: 83; 1920: 479; 1922: 106, pl. 1, figs. 4-5, pl. 6, figs. 2-3, pl. 7, fig. 1; 1927: 4. - Lo Bianco 1903: 181. - Kemp 1910a: 25, pl. 3, figs. 1-12. Pesta 1913a: 64, figs. 1-5; 1913b: 405, fig. 2; 1914: 195; figs. $5-8,15$, 21 , fig. $1 ; 1915$ : 120 ; 1916: 227; 1918: 53, fig. 14. - Illig 1914: 353,


Fig. 55. Sergia robusta, male, "Dana" St. 1371-1, Cp length 18.6 mm . - A, lateral view of Cp. - B, scaphocerite. - C, Up.
fig. 5; 1927: 301, fig. 44 (part). - Sund 1920: 11, figs. 11-15. - Cecchini 1928: 34, fig. 5a. - Boone 1930: 124, pl. 41. - Miranda 1933: 5. - Gordon 1939: 508. - Gurney \& Lebour 1940: 27, figs. 20-24. - Legendre 1940: 224, fig. 39. - Zariquiey Alvarez 1946: 57; 1956: 407; 1968: 61, fig. 18a. - Holthuis 1952b: 87. - Dieuzeide 1955: 20. Dennell 1955: 401, fig. 5. - Kurian 1956: 23, figs. 39-49. - Springer \& Bullis 1956: 134. Dieuzeide \& Roland 1958: 59. - Holthuis \& Gottlieb 1958: 111. - Bacescu \& Mayer 1961: 192, fig. 5b-c. - Maurin 1963: 2; 1968: 480. Allen 1967: 33. - Lagardère 1970: 1027; 1972: 661. - Foxton 1970: 974, fig. 8. - Ribeiro 1970: 6. - Vilela 1970: 122.

Sergestes dissimilis Bate, 1888: 437. Synonymized with Sergestes robustus by Hansen (1922).

Sergia robusta. - Ortmann 1893: 37. - Caullery 1896: 371. - Kemp 1906: 7. - Vereshchaka 1994a: 81, figs. 8-9, 26.
Sergestes mediterraneus Hansen, 1896: 954. Synonymized with Sergestes robustus by Hansen (1922).

Sergestes Robustus [sic]. - Zariquiey y Cenarro 1935: 94.

Sergestes (Sergia) robustus. - Yaldwyn 1957: 9. Crosnier \& Forest 1973: 327, figs. 111-112. Sergia robustus. - Omori 1974: 236.

Material examined: "Dana" stations: 1142-7 (1f $10 \& 1 \mathrm{~m} \mathrm{12}$ ); 1152-1 ( $1 \mathrm{~m} \mathrm{12} 1 / 2$ ); 1157-1 (1f 13); 1157-10 (1f $10 \& 1 \mathrm{~m} \mathrm{13);} \mathrm{1159-5} \mathrm{(1m} \mathrm{10);} \mathrm{1342-1}$ (2f 18-19 \& 1 m 8 ); 1342-3 ( $1 \mathrm{~m} \mathrm{16}{ }^{1 / 2}$ ); 1353-5 ( 1 m 8); 1366-1 (1f $6^{1 / 2}$ ); 1367-1 ( $1 \mathrm{~m} 15^{1 / 2}$ \& 1 j 7 ); 13691 (4f 7-13 \& 1m8) 1369-2 (1m 8); 1370-1 (3f 61/2$7^{1 / 2} \& 1 \mathrm{~m} 9^{1} / 2$ ) ; 1371-1 ( $1 \mathrm{~m} \mathrm{181/2}$ ); 1371-3 (1j 8); 1374-1 (4j 7-9 \& 2m 10-101/2); 1377-1 (8f 8-15 \& 6m 7-10); 1377-8 (If $10^{1 / 2}$ ); 1379-2 (3j 7-81/2); 1379-3 (9j 7-81/2); 1380-1 (1f 10).
"Galathea" station: 99 (1f 19).
"Type" [ = syntype] of Sergestes robustus, western North Atlantic off Martha's Vineyard, Massachusetts, $37^{\circ} 17^{\prime} \mathrm{N}, 73^{\circ} 21^{\prime} \mathrm{W}$ (USNM 7316).

Type localities: North Atlantic, off Martha's Vineyard, Massachusetts, U. S. Fish Commission Stations 893 and $952,37^{\circ} 17^{\prime} \mathrm{N}, 73^{\circ} 21^{\prime} \mathrm{W}$ (USNM syntype) ; and $34^{\circ} 28^{\prime} 50^{\prime \prime} \mathrm{N}, 75^{\circ} 22^{\prime} 50^{\prime \prime} \mathrm{W}$ (MCZ syntype).

Type material: 4 male syntypes of Sergestes robustus, all labeled "type": 1 at NMNH (USNM 7316, examined); 1 at MCZ (MCZ 3274, "Blake" St. 328, 2987 m, coll. 1890, not examined); 2 from off Martha's Vineyard presently unaccounted for.

Diagnosis: Integument firm; rostrum long and acute, unidentate; cornea well pigmented, dark brown, considerably wider than eyestalk; A I peduncle with segment 3 of outer A I flagellum in male with rudimentary tubercle reaching end of segment 4 of flagellum and with 2 long terminal setae overlapping tubercle; segment 4 of flagellum bearing 6-7 serrated bristles on dorsal surface, segment 5 without distodorsal protrusion; PV of petasma overlapping LA; LC reaching end of LT and bearing very strong apical tooth; LAc absent; LA evenly curved medially; photophores arranged in single waved row medial to inner muscle strips on scaphocerite and in 1 proximal lateral row and 1 distal medial row on Up endopod.

Description: Cp 2.0 times as long as high and 0.4 times as long as abdomen (Fig. 55A). Abdomen with somite VI 1.5 times as long as high and 1.2 times as long as telson; telson 3.1 times as long as wide.

Ocular papilla about 0.3 as long as wide; cornea well pigmented, dark brown, 1.1 times as long as wide, 0.8 times as long and 1.8 times as wide as eyestalk. A I peduncle 0.7 times as long as Cp , with segments 2 and 30.83 and 0.71 times as long as segment 1 , respectively; segment 3 of outer A I flagellum in male with tubercle rudimentary, just reaching end of segment 4 of flagellum and 2 very strong setae as long as segment 3 ; segment 4 of flagellum bearing 6-7 serrated bristles arranged in 2 rows and several setae on dorsal surface (Fig. 56C). A II peduncle 0.5 times as long as scaphocerite; latter 3.0 times as long as wide (Fig. 55B), 0.77 times as long as A I peduncle.

Md palp 0.33 times as long as Cp, with proximal segment 2.5 times as long as distal one. Mx I with palp 2.4 times as long as wide and 0.07 times as long as Cp ; endopod 1.3 times as long as wide and 1.2 times as long as palp; endite 1.8 times as long as wide and 0.9 times as long as palp. Mx II with exopod 3.0 times as long as wide and 0.31 times as long as Cp ; palp 3.5 times as long as wide and 0.12 times as long as $C p$; endopod 2.0 times as long as wide and 1.0 times as long as palp; endites subequal, 1.6 times as long as wide and 0.5 times as long as palp.

Mxp I with exopod 3.1 times as long as wide and 0.20 times as long as Cp ; endopod 0.9 times as long as exopod, segments 2 and 30.9 and 0.7 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 1.0 , carpus and propodus 0.9 , and dactyl 0.5 times as long as ischium. Mxp III 1.5 times as long as Cp , with merus and carpus 1.0 , propodus and dactyl 0.9 times as long as ischium; dactyl divided into 5-7 subsegments, respectively.

P I 1.1 times as long as Cp, with merus 2.4 , carpus 1.5 , and propodus 2.3 times as long as ischium; propodus divided into 11 subsegments. P II 1.6 times as long as $C p$, with merus 3.4 , carpus 2.6 , propodus 3.2 , and dactyl 0.2 times as long as ischium; propodus divided into 13 subsegments. P III 1.9 times as long as $C$ p, with merus 3.1 , carpus 2.6 , propodus 3.0 , and dactyl 0.2 times as long as ischium; propodus divided into 13 subsegments. P IV 1.3 times as long as Cp , with merus 1.5 , carpus 1.0 and propodus 1.0 times as long as ischium. P V 0.7 times as long as Cp , with merus 1.1 , carpus 0.9 , and propodus 0.8 times as long as ischium.

Somite VIII with arthrobranch 0.13 times as long as Cp and 2.2 times as long as epipod. Somite IX
with anterior pleurobranch 0.22 times as long as Cp and 4.4 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.27 times as long as Cp and 4.6 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.31 times as long as Cp and 3.7 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.32 times as long as Cp and 1.2 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.29 times as long as Cp and 1.2 times as long as posterior pleurobranch.

Pl I with basipod 0.34 times as long as Cp and exopod 2.2 times as long as basipod. Pl II with basipod 0.32 times as long as Cp ; exopod 2.7 and endopod 1.4 times as long as basipod, respectively. PI III with basipod 0.32 times as long as Cp; exopod 2.2 and endopod 1.3 times as long as basipod, respectively. Pl IV with basipod 0.32 times as long as Cp ; exopod 2.1 and endopod 1.2 times as long as basipod, respectively. Pl V with basipod 0.28 times as long as Cp ; exopod 1.8 and endopod 1.2 times as long as basipod, respectively.

Up with exopod 4.2 times as long as wide, 5.8 times as long as basipod and 0.7 times as long as Cp ; endopod 3.3 times as long as wide and 0.7 times as long as exopod (Fig. 55C).

Petasma (Fig. 56A-B). PV long and narrow, overlapping LI, 3.7 times as long as wide. LI small, 2.1 times as long as wide and 0.2 times as long as PV. LT slightly curved laterally, overlapping PV and reaching end of $\mathrm{LC}, 2.0$ times as long as wide and 0.6 times as long as PV , armed with row of stronger hooks on lateral margin near base and with smaller hooks in distomedial part. LC 2.7 times as long as wide and 0.5 times as long as PV , bearing several papillae with hooks on proximolateral margin. LA ranging in proportion, in average 3.3 times as long as wide and 0.8 times as long as PV, armed with row of numerous hooks along medial side and few very strong hooks near apex.

Photophores. Scaphocerite: continuous wavy row of 6-15 photophores medial to inner strip of muscle from $1 / 4$ blade length nearly to tip. Up exopod: 3-11 photophores arranged in two series, (1) proximal photophores in continuous row medial to inner strip of muscle from 0.2 to 0.5 exopod length and (2) distal photophores in continuous row distal to terminal muscle strip from 0.7 to 0.9 exopod length, latter row sometimes absent. Up endopod: 1 photophore in proximomedial corner.


Fig. 56. Sergia robusta, male, "Dana" St. 1371-1, Cp length 18.6 mm . - A, oral view of petasma. - B, caudal view of petasma. - C, male outer A I flagellum.


Remarks: Variations of colour in life are shown in PI. 3A-B.

Sergia robusta seems to be one of the most variable species in the form of the rostrum, the fine structure of the petasma, and the number of photophores, which are sometimes absent in the distal part. However, the number of photophores on the scaphocerite (6-15) and on the Up exopod (3-11), as well as the form and proportions of all lobes and processes of the petasma make referral of all studied specimens to this species reliable. S. robusta undergoes significant morphological variations during development and has been described under different names. Bate (1888) described the mastigopus stage of this species under the name Sergestes dissimilis, Hansen (1896) described a juvenile as Sergestes mediterraneus and a young immature specimen as Sergestes inermis (Hansen 1903).

Later, Hansen (1922) showed all these names to be junior synonyms of $S$. robusta.

Sergia robusta differs from all other species of the species group in having (1) the rostrum elongate and always unidentate, (2) a rudimentary tubercle on segment 3 of the male outer A I flagellum, (3) 2 long terminal setae overreaching the tubercle on segment 3 of the male outer A I flagellum, (4) 6-7 (not 0-4) dorsal serrated bristles on segment 4 of the male outer A I flagellum, (5) LC of the petasma not overlapping LT, (6) 11 subsegments in the propodus of P I, and (7) 13 subsegments in propodus of P III. Other differences and affinities between $S$. robusta and all other known species of the species group are shown in Table 6.

Geographical distribution (Fig. 51): North Atlantic and Mediterranean only: A common species (Hansen 1922) which seems to prefer temperate waters and has been recorded mainly from the stations north of $30^{\circ} \mathrm{N}$ ("Dana"; Vereshchaka 1994a). Mediterranean (Sund 1920, Zariquiey Alvarez 1968, Kurian 1956).

The records of this species by Holthuis (1952a), without any description and figure, and by Illig (1914), from the South Atlantic, are doubtful and not included in Fig. 51. Holthuis' and Illig's locations are separated from the main area, and no other indications (including extensive "Dana" and "Galathea" material) show that this species, preferring temperate waters, occurs also in the Central or South Atlantic. Illig's report (1927) of this species from the Indian Ocean seems very doubtful (Hansen 1927). Pesta (1918) mentions it from


Hawaii without further details; this seems to be a mistake as this species may be reliably distinguished from several Pacific species only after observation of the petasma, a procedure rarely performed early in this century. The record by Vereshchaka (1990b) from the area of the Nazca and Sala-y-Gomez Ridges is an error, as this species now appears to be one of those briefly described by Burkenroad (1940), being juveniles of S. maxima and S. potens.

Sergia robusta thus occupies a single area only. It is parapatric to $S$. extenuata, the former occurring north of $20-30^{\circ} \mathrm{N}$, the latter south of $20^{\circ} \mathrm{N}$. S. robusta is sympatric with $S$ regalis and allopatric to $S$. vityazi.

Vertical range: An interzonal species, migrating daily between the upper bathypelagic and upper mesopelagic zones. The "Dana" specimens were taken within the depth range $200-2300 \mathrm{~m}$. Most specimens live at $200-300 \mathrm{~m}$ at night and at $1000-$ 2300 m during the day. These data correspond to the results of Foxton (1970) and Vereshchaka (1994a), who reported this species from 200-600 m and $200-500 \mathrm{~m}$, respectively, at night, and from below 700 m and from $1000-2000 \mathrm{~m}$, respectively, during the day.

Fig. 57. Sergia vityazi n. sp., holotype, male, "Dana" St. 3601-1, Cp length 16.0 mm . - A, lateral view of Cp. - B, scaphocerite. - C, Up.

## Sergia vityazin. sp.

Figs. 51, 57-58
Material examined: "Dana" stations: 3570-2 (2f $15^{1 / 2-18}$ ); 3576-4 (1f $20^{1} / 2$ ); 3579-1 (1f $10^{1 / 2}$ \& 1m 14); 3591-1 (1f $10^{1 / 2} \& 1 \mathrm{~m} \mathrm{15} 1 / 2$ ); 3593-1 ( 1 m $12^{1 / 2}$ ); 3601-1 ( $2 \mathrm{~m} \mathrm{16-17} 1 / 2$ ); 3602-1 ( $1 \mathrm{f} 15^{1 / 2} \& 1 \mathrm{~m}$ $15^{1 / 2}$ ); 3620-1 (3f $15^{1 / 2-161 / 2}$ ); 3620-3 (1f 13 ${ }^{1 / 2}$ ); 3626-1 (1f 15); 3626-2 (1f 15); 3626-7 (1f 16); 3768-1 (1f $20 \& 1 \mathrm{~m} 15$ ).
Holotype: male ( Cp length 16.0 mm , ZMUC CRU 3610), "Dana" St. 3601-1, sampled 20 Nov. 1928. Paratypes: 1 male ( Cp length 15.6 mm, ZMUC CRU 3611), "Dana" St. 3601-1 (data as for holotype) and 1 female ( Cp length 15.8 mm , ZMUC CRU 3612), "Dana" St. 3570-2, $14^{\circ} 01^{\prime} \mathrm{S}$, $147^{\circ} 51^{\prime} \mathrm{W}$, sampled 07 Oct. 1928.

Type locality: Southwestern Pacific, $18^{\circ} 21^{\prime} \mathrm{S}$, $178^{\circ} 21^{\prime}$ E.

Type material: Holotype +2 paratypes (ZMUC, see above).

Diagnosis: Integument firm; rostrum long and acute, bi- or unidentate; cornea well pigmented, dark brown, considerably wider than eyestalk; A I peduncle with segment 3 of outer A I flagellum in male with well developed tubercle reaching end of segment 4 of flagellum, without terminal setae overlapping tubercle; segment 4 of flagellum bearing 3-4 serrated bristles on dorsal surface, segment 5 with distodorsal protrusion; PV of petasma overlapping LA; LC overlapping LT and LI, bearing very strong apical tooth; LAc present; LA evenly curved medially, photophores arranged in single row medial to inner muscle strips on scaphocerite and in single proximal group near medial margin on Up endopod.

Description: Cp 1.9 times as long as high and 0.37 times as long as abdomen (Fig. 57A). Abdomen with somite VI 1.5 times as long as high and 1.2 times as long as telson; telson 3.6 times as long as wide.


Fig. 58. Sergia vityazi n. sp., holotype, male, "Dana" St. 36011, Cp length 16.0 mm . A, oral view of petasma. -B , caudal view of petasma. - C , male outer A I flagellum.

Ocular papilla 0.3 times as long as wide; cornea 1.1 times as long as wide, 0.6 times as long and 1.4 times as wide as eyestalk. A I peduncle 0.7 times as long as Cp , with segments 2 and 30.63 and 0.56 times as long as segment 1 , respectively, segment 3 of outer A I flagellum in male with tubercle reaching end of segment 5 of flagellum and without setae overlapping tubercle; segment 4 of flagellum bearing 5-6 serrated bristles and several setae on dorsal surface (Fig. 58C); segment 5 with distolateral protrusion. A II peduncle 0.5 times as long as scaphocerite; latter 3.4 times as long as wide (Fig. 57B), 0.56 times as long as A I peduncle.

Md palp 0.36 times as long as Cp , with proximal segment 2.2 times as long as distal one. Mx I with palp 2.1 times as long as wide and 0.07 times as long as Cp ; endopod 1.4 times as long as wide and 1.2 times as long as palp; endite 1.6 times as long
as wide and 0.9 times as long as palp. Mx II with exopod 3.7 times as long as wide and 0.33 times as long as Cp; palp 3.8 times as long as wide and 0.13 times as long as Cp ; endopod 1.9 times as long as wide and 1.0 times as long as palp; endites subequal, 1.6 times as long as wide and 0.5 times as long as palp.

Mxp I with exopod 3.3 times as long as wide and 0.20 times as long as Cp ; endopod 1.0 times as long as exopod; segments 2 and 31.1 and 0.7 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 1.1 , carpus and propodus 0.9 , and dactyl 0.5 times as long as ischium. Mxp III 1.5 times as long as Cp , with merus 1.0 , carpus 0.9 , propodus 0.8 , and dactyl 0.9 times as long as ischium; dactyl divided into 7 subsegments.

P I 1.1 times as long as Cp, with merus 2.6 , car pus 1.6, and propodus 2.8 times as long as ischium; propodus divided into 10 subsegments. P II 1.6 times as long as $C p$, with merus 2.9 , carpus 2.3 , propodus 3.1, and dactyl 0.2 times as long as ischium; propodus divided into 12 subsegments. P III 2.0 times as long as Cp , with merus 3.3 , carpus 2.7 , propodus 3.3 , and dactyl 0.2 times as long as ischium; propodus incompletely divided into 10 subsegments. P IV 1.1 times as long as Cp, with merus 1.6 , carpus and propodus 1.1 times as long as ischium. PV 0.6 times as long as Cp, with merus 1.1 , carpus 0.8 , and propodus 0.6 times as long as ischium.

Somite VIII with arthrobranch 0.14 times as long as Cp and 2.3 times as long as epipod. Somite IX with anterior pleurobranch 0.20 times as long as Cp and 5.3 times as long as posterior pleurobranch. Somite $X$ with anterior pleurobranch 0.26 times as long as Cp and 6.7 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.29 times as long as Cp and 6.7 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.29 times as long as Cp and 1.3 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.24 times as long as Cp and 1.2 times as long as posterior pleurobranch.

Pl I with basipod 0.34 times as long as Cp and exopod 2.0 times as long as basipod. PI II with basipod 0.32 times as long as $C p$; exopod 2.3 and endopod 1.3 times as long as basipod, respectively. PI III with basipod 0.32 times as long as Cp ; exopod 2.2 and endopod 1.3 times as long as basipod, respectively. Pl IV with basipod 0.30 times as long as Cp ; exopod 2.2 and endopod 1.3 times as long as
basipod, respectively. Pl V with basipod 0.28 times as long as Cp ; exopod 2.0 and endopod 1.2 times as long as basipod, respectively.

Up with exopod 4.6 times as long as wide, 5.2 times as long as basipod and 0.6 times as long as Cp ; endopod 3.6 times as long as wide and 0.7 times as long as exopod (Fig. 57C).
Petasma (Fig. 58A-B). PV long and narrow, with distolateral margin slightly concave, 4.8 times as long as wide. LI slender, not reaching end of PV, 2.2 times as long as wide and 0.3 times as long as PV. LT short, overlapping LI, not reaching end of LC, 1.4 times as long as wide and 0.3 times as long as PV, armed with several small hooks on lateral side near base and near apex. LC overlapping all other lobes and processes, 2.0 times as long as wide and 0.5 times as long as PV, bearing numerous papillae with hooks on proximolateral margin. LAc 1.4 times as long as wide and 0.2 times as long as PV, covered with numerous small hooks. LA not reaching end of $\mathrm{PV}, 2.6$ times as long as wide and 0.6 times as long as PV, armed with smaller hooks along proximomedial margin and few stronger hooks in distal part.

Photophores. Scaphocerite: continuous row of 10-15 photophores medial to inner strip of muscle from 0.4 to 0.9 blade length. Up exopod: 2-5 proximal photophores near inner margin, from 0.1 to 0.5 exopod length. Up endopod: 1 photophore in proximomedial corner.

Remarks: Sergia vityazi n. sp. varies morphologically in the form of rostrum (which may sometimes be unidentate) and in minor proportions of the petasma. LA varies in form and length but always remains much shorter than PV.

This species most closely resembles $S$. regalis and $S$ robusta and differs from all other species of the species group in (1) the absence of terminal setae overlapping the tubercle on segment 3 of the male outer A I flagellum and in (2) the presence of distodorsal extension on segment 3 of the male outer A I flagellum. Other differences and affinities between $S$. vityazi and all other known species of the species group are shown in Table 6 .

Etymology: Sergia vityazi is named after the famous Russian R/V "Vityaz", which has been exploring the oceans (especially the area where the species occurs) during several decades of the 20th century.

Geographical distribution (Fig. 51): Pacific Ocean only: Southwest part, off New Guinea, off Tahiti, mainly between $10^{\circ} \mathrm{S}$ and $30^{\circ} \mathrm{S}$ ("Dana"). Sergia vityazi is sympatric with S. regalis and allopatric to $S$. robusta and S. extenuata.

Vertical range: An interzonal species, migrating daily between the upper bathypelagic and upper mesopelagic zones. "Dana" specimens were taken within the depth range $100-1700 \mathrm{~m}$. Most specimens occur at $200-300 \mathrm{~m}$ at night and $1000-1300 \mathrm{~m}$ during the day.

## Sergia prehensilis species group

Diagnosis: Lens-bearing photophores (total of 225-359 organs on body) varying in position and number present: 7-14 on scaphocerite, 3-12 on Up exopod, 5 -6 in upper and 12-18 in lower lateral Cp rows; hepatic tubercle prominent; postdorsal spine on abdominal Somite VI present; ocular papilla absent; A I peduncle with segment 2 shorter than segment 1 , clasping organ with 2-5 serrated bristles; endopod of Mxp I with 3 segments; posterior branchial lobe above P III reduced but not lamellar; petasma with LA developed and LT reduced.
Species included: Sergia prehensilis (Bate, 1881), S. scintillans (Burkenroad, 1940).

Key to species of the Sergia prehensilis species group

1. Lower Cp row with $15-23$ photophores, scaphocerite with $10-15$ photophores, Up exoped with 8-14 photophores. Male outer A I flagellum with segment 3 bearing tubercle not overlapping segment 4 and segment 4 armed with 3-5 dorsal serrated bristles. PV of petasma developed; LI less voluminous than LC $\qquad$ Sergia prehensilis

- Lower Cp row with 8-14 photophores, scaphocerite with 7 photophores, Up exopod with 3 photophores. Male outer A I flagellum with segment 3 bearing tubercle overlapping segment 4 and segment 4 armed with 0-2 dorsal serrated bristles. PV absent; LI more voluminous than LC.

Sergia scintillans



Sergia prehensilis (Bate, 1881)
Figs. 2C, 59-61
Sergestes prehensilis Bate, 1881:193; 1888: 385, pl. 71. - Hansen 1896: 949; 1903: 56; 1919: 5. Balss 1914: 17. - Yokoya 1933: 12. - Gordon 1935: 314. - Gurney \& Lebour 1940:32. Aizawa 1969: 60. - Okutani 1969: 30. - Omori 1969: 10. - Sakai \& Nakano 1985: 26, figs. 6-9.
Sergia prehensilis. - Ortmann 1893: 38. - Krygier \& Wasmer 1988: 50. - Vereshchaka 1995a: 1650.
Sergestes gloriosus Stebbing, 1905: 84, pl. 22-23; 1910: 318. - Hansen 1925: 24. - Gordon 1935: 310. - Barnard 1950: 642, fig. $120 \mathrm{~h}-\mathrm{j}$. Synonymized with Sergestes prehensilis by Gordon (1935).
Sergestes fujiyamaensis Nakazawa, 1932b: 32. Kubo 1965: 595. - Synonymized with Sergestes

Fig. 59. Sergia prehensilis, male, "Dana" St. 3664-1, Cp length 11.4 mm . - A, lateral view of Cp. - B, scaphocerite. - C, Up. - D, shape of medial photophores on abdominal somites from I (above) to V (below), showing different degrees of fusion.
prehensilis by Sakai \& Nakano (1985: 26).
Sergestes (Sergia) prehensilis. - Yaldwyn 1957: 9.
-Kensley 1971: 253, fig. 20; 1977: 18.
Material examined: "Dana" stations: 3637-1 ( $2 \mathrm{~m} 9-9^{1 / 2}$ ); 3637-2 (1m 101/2); 3638-1 (1f $8^{1 / 2} \& 5 \mathrm{~m}$ $7^{1 / 2}-8^{1 / 2}$ ); 3653-1 (3f $7^{1 / 2}-12^{1 / 2} \& 8 \mathrm{~m} 8-14$ ); 3653-2 (2f 9); 3653-6 ( $1 \mathrm{~m} 81 / 2$ ); 3653-7 ( $2 \mathrm{~m} 7-11$ ); 3653-8 (4f $7^{1} / 2-10 \& 6 \mathrm{~m} 6-8^{1} / 2$ ); 3654-2 (7f 6-14 \& 7m 61/214); 3654-3 ( $10 \mathrm{f} 7-14^{1 / 2}$ \& $4 \mathrm{~m} 7-9^{1 / 2} \& 5 \mathrm{j} 4-5^{\frac{1}{2}}$ ); 3655-1 (2f 8-11 \& 4m 101/2-15); 3655-2 (4f 51/2-10 \& $4 \mathrm{~m} 6-8$ ); 3655-5 (2f 5-5 ${ }^{1 / 2} \& 3 \mathrm{~m} 5^{1 / 2} / 7^{1} / 2$ ); 36562 (2f 6-8); 3656-3 (1f $5 \& 2 \mathrm{~m} 6^{1 / 2}-7$ ); 3656-4 ( 15 f $7-10 \& 15 \mathrm{~m} 6-14^{\frac{1}{2}}$ \& $4 \mathrm{j} 4^{1 / 2}-5$ ); 3656-8 (12f $7^{1 / 2}$ $10^{1 / 2} \& 9 \mathrm{~m} 7-10 \& 8 \mathrm{j} 5-6 \frac{1}{2}$ ); 3657-1 (1f $12^{1} / 2$ ); 3663-1 (1m 8); 3663-3 (3f 5-61/2 \& 3m 5-9); 36634 (9f $8^{1 / 2-11^{1} / 2} \& 5 \mathrm{~m}^{1} / 2-10^{1 / 2} \& 1 \mathrm{j} 5$ ); 3663-6 (4f $10^{1} / 2-12^{1} / 2 \& 9 \mathrm{~m}^{1 / 2-14^{1} / 2}$ ); 3664-1 ( $11 \mathrm{f} 6^{1 / 2}-14^{1 / 2}$ \& 7 m 12-14 $1 / 2$ ); 3664-3 ( $2 \mathrm{f} 13-14 \frac{1}{2}$ \& $6 \mathrm{~m} 7-14^{1} / 2$ ); 3665-2 (7f 9-12 \& 1m $14 \& 27 \mathrm{j} 5^{1 / 2}-6^{1 / 2}$ ); 3677-2 (4f $5 \frac{1}{2}-10 \& 2 \mathrm{~m} 6-8$ ); 3722-2 ( $3 \mathrm{f} 8-17^{1 / 2}$ \& $3 \mathrm{~m} 7-$ $16^{1 / 2}$ ) ; 3728-1 (2f 8-10 \& $1 \mathrm{~m} \mathrm{10} 1 / 2$ ); 3929-1 ( $5 \mathrm{f} 6-8$ ); 3929-2 (5f 51/2-6); 3929-3 (1m 5); 3931-1 (2f 8-10); 3931-2 (3j 6-61/2); 3933-3 (1m 13); 3934-1 (14f 5$7^{1 / 2} \& 1 \mathrm{~m} 7^{1 / 2}$ ); 3934-2 (7f 5-7 \& $1 \mathrm{~m} 6^{1 / 2}$ ); 3934-3 (9f 5-7 \& 1m 6); 3949-1 ( $1 \mathrm{~m} \mathrm{13} 1 \frac{1}{2}$ ); 3949-2 (1m 13); 3952-2 (1f $11 \frac{1}{2}$ ); 3957-2 (2f $8 \frac{1}{2}-9$ ); 3959-1 ( $1 \mathrm{~m} 7^{1 / 2}$ ); 3962-1 (3f 12-13 \& 2m 11-12 \& 1j 5); 3962-2 (1m 11); 3964-1 (3m 1212-13); 3964-2 ( 6 f 9-11 \& 3m 11-11¹/2); 3964-7 (1f 9); 3964-10 (3f 6$9 \& 6 \mathrm{~m} \mathrm{10-14} 1 / 2$ ); 3966-1 (3f $10-11^{1} / 2 \& 3 \mathrm{~m} 9-13$ ); 3966-2 (9f $7^{1 / 2}$-12 \& $2 \mathrm{~m} 8^{1} / 2-10^{1} / 2$ ); 3966-3 (3f $10-$ $10^{1 / 2}$ \& $1 \mathrm{~m} 9^{1 / 2}$ ); 3969-1 ( $2 \mathrm{f} 10^{1 / 2}-11^{1} / 2 \& 1 \mathrm{~m} 12^{1} / 2$ ); 3969-2 (1f $12 \& 1 \mathrm{~m} \mathrm{14}$ ); 3969-3 (12f 9-14 \& 5m 811); 3969-4 (4f $5^{1} / 2-6 \& 2 \mathrm{~m} 6-8$ ); 3971-2 (4f 7-10 ${ }^{1 / 2}$ \& 1m 9) ; 3971-3 (4f $5^{1 / 2-11 ~ \& ~} 3 \mathrm{~m} 9^{1 / 2}-10$ ); 3978-1 ( $2 \mathrm{f} 6^{1 / 2} \& 1 \mathrm{~m} 8$ ); 3978-2 ( $2 \mathrm{f} 9-91 / 2 \& 3 \mathrm{~m} 9-10$ ).
"Galathea" station: 203 (1f 10).
Holotype of Sergestes prehensilis (BMNH 1888.22).

Type locality: Western Pacific off Japan, $34^{\circ}$ $58^{\prime} \mathrm{N}, 139^{\circ} 29^{\prime} \mathrm{E}$.

Type material: Holotype of Sergestes prehensilis (NHM, see above, examined).

Diagnosis: Integument firm; rostrum acute, usually without small additional dorsal tooth; cornea well pigmented, black, considerably wider than eyestalk; outer A I flagellum in male with segment 3 bearing well developed tubercle reaching end of segment 4 of flagellum and segment 4 bearing 3-5 serrated bristles on dorsal surface; scaphocerite with strong distal tooth overlapping blade; PV and LI of petasma developed; LC overlapping other lobes and processes, divided into 2 lobules; LAc rudimentary;, LA strongly curved medially, reaching $1 / 2 \mathrm{PV}$; photophores arranged in upper (4-8) and lower (15-23) rows on Cp, row (10-15) on scaphocerite, proximal row (4-8) and distal row (3-5) on Up exopod, 2 basal photophores on Up endopod.

Description: Cp 1.9 times as long as high and 0.38 times as long as abdomen (Fig. 59A). Abdomen with somite VI 1.6 times as long as high and 1.3 times as long as telson; telson 3.3 times as long as wide.

Cornea 1.2 times as long as wide, 0.8 times as long and 1.6 times as wide as eyestalk. A I peduncle 0.6 times as long as Cp , with segments 2 and 3 0.45 and 0.33 times as long as segment 1 , respectively; outer A I flagellum in male with segment 3 bearing tubercle reaching end of segment 4 of flagellum and with segment 4 bearing 3-5 serrated bristles and few setae on dorsal surface and several setae on ventral surface (Fig. 60C). A II peduncle 0.4 times as long as scaphocerite; latter with strong distal tooth overreaching blade (Fig. 59B), 3.6 times as long as wide, 1.0 times as long as A I peduncle.

Md palp 0.36 times as long as Cp , with proximal segment 2.2 times as long as distal one. Mx I with palp 1.7 times as long as wide and 0.06 times as long as Cp ; endopod 1.7 times as long as wide and 1.8 times as long as palp; endite 1.4 times as long as wide and 0.9 times as long as palp. Mx II with exopod 3.1 times as long as wide and 0.31 times as long as Cp ; palp 3.8 times as long as wide and 0.11 times as long as Cp ; endopod 1.8 times as long as wide and 1.1 times as long as palp; endites subequal, 2.0 times as long as wide and 0.5 times as long as palp.

Mxp I with exopod 2.8 times as long as wide and 0.22 times as long as Cp ; endopod 1.2 times as long as exopod; segments 2 and 31.2 and 1.9 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 1.0 , carpus and propodus 0.9 , and dactyl 0.5 times as long as ischium. Mxp III 1.4 times as long as Cp, with merus 0.8 , carpus and propodus 0.7 , and dactyl 0.6 times as long as ischium; propodus and dactyl divided into 3 and 5 subsegments, respectively.

P I 1.0 times as long as Cp , with merus 2.3 , carpus 1.3, and propodus 2.4 times as long as ischium; propodus divided into 6 subsegments. P II 1.5 times as long as Cp , with merus 2.6 , carpus 2.2 , propodus 2.5 , and dactyl 0.1 times as long as ischium; propodus divided into 8 subsegments. P III 1.7 times as long as C , with merus 2.9 , carpus 2.4 , propodus 2.7 , and dactyl 0.1 times as long as ischium; propodus divided into 12 subsegments. P IV 1.0 times as long as Cp , with merus 1.5 , carpus 1.0 , and propodus 1.1 times as long as ischium. P V 0.6 times as long as Cp , with merus 1.3 , carpus 1.0 , and propodus 0.8 times as long as ischium.

Somite VIII with arthrobranch 0.10 times as long as Cp and 2.3 times as long as epipod. Somite IX with anterior pleurobranch 0.18 times as long as Cp and 2.7 times as long as posterior pleurobranch. Somite $X$ with anterior pleurobranch 0.23 times as long as Cp and 3.5 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.28 times as long as Cp and 3.6 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.26 times as long as Cp and 1.8 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.22 times as long as Cp and 1.3 times as long as posterior pleurobranch.
P1I with basipod 0.29 times as long as Cp and exopod 2.2 times as long as basipod. PI II-III with basipod 0.29 times as long as Cp ; exopod 2.3 and endopod 1.4 times as long as basipod, respectively. Pl IV with basipod 0.29 times as long as Cp ;, exopod 2.2 and endopod 1.3 times as long as basipod, respectively. PI V with basipod 0.26 times as long as Cp ; exopod 1.8 and endopod 1.1 times as long as basipod, respectively.

Up with exopod 5.1 times as long as wide, 5.5 times as long as basipod and 0.7 times as long as Cp ; endopod 3.6 times as long as wide and 0.7 times as long as exopod (Fig. 59C).

Petasma (Fig. 60A-B). PV short, tapering into


Fig. 60. Sergia prehensilis, male, "Dana" St. 3664-1, Cp length 11.4 mm . A, oral view of petasma. - B, caudal view of petasma. - C, male outer A I flagellum.
point, 4.0 times as long as wide. LI voluminous, overlapping PV, 2.0 times as long as wide and 0.4 times as long as PV. LT reduced, nor reaching end of LI and PV, 1.1 times as long as wide, 0.3 times as long as PV, armed with several hooks in distal part. LC divided at proximal part into 2 lobules: distal and proximal; distal lobule overlapping other lobes and processes, 2.6 times as long as wide and 0.8 times as long as PV, armed with numerous hooks in $1 / 4$ distal part; proximal lobule directed laterally, 2.6 times as long as wide and 0.9 times as long as PV, armed with row of hooks along medial margin. LAc 1.1 as long as wide and 0.3 times as long as PV, armed with few distal hooks. LA 2.7 times as long as wide and 0.7 times as long as PV, armed with row of hooks along medial margin and with few apical hooks.

Photophores. Cp (Figs. 2C, 59A): 4-8 and 15-23 organs in upper and lower rows, respectively. Scaphocerite: 10-15 organs medial to inner strip of muscle from 0.2 to 0.9 blade length. Up exopod: 1 proximal near base, basal row of 4-8 organs medial to inner strips of muscle from $0.2-0.3$ to $0.5-0.6$
exopod length, and row of 3-5 organs distal to apical muscle strip, from 0.7 to 0.8-0.9 exopod length. Up endopod: 2 organs near base.

Other body photophores, all ventral, found on the following somites ( $\mathrm{al}=$ anterolateral, $\mathrm{l}=$ lateral, m $=$ medial): II (1m), III (41), labrum (1m+21), IV $(2 m+21)$, V $(2 m+21)$, VI (21), VII ( 2 m ) VIII ( $1 \mathrm{~m}+21$ ), IX (1m), X (3m), XI (3m), XII (3m (male), 1 m (female)), XIII ( $3 \mathrm{~m}+2 \mathrm{al}$ ), XIV ( $2 \mathrm{~m}+4 \mathrm{pm}+2 \mathrm{al})$, XV $(8 \mathrm{~m}+6 \mathrm{l})$; XVI $(10 \mathrm{~m}+61)$, XVII $(8 m+61)$, XVIII $(6 m+61)$, XIX $(6 m+61)$, XX $(5 m+121)$. Total (with those in Cp rows): 167-193.

Other photophores found on the following appendages ( $\mathrm{d}=$ distal, $\mathrm{m}=$ medial, $\mathrm{p}=$ proximal, Roman numerals indicate segments): eyestalk (lp+1d) A I (peduncle III - 1d), A II (peduncle I 1p), Md (proper - 1d, palp I - 1d), Mx II (Exp $2 \mathrm{p}+1 \mathrm{~d}$, End II -1d), Mxp I (II - 1m, III - 1d), Mxp II (II - 1d, III - 1d, IV - 1p, V - 1d, VI - 1d), Mxp III (II - 1d, IV - 1d, V - 1d, VI - 1d, VII - 1d), P I (II 1d, III- 1p, IV - 2p+1d, V - 2d), P II (II - 1d, III 1p+1d, IV - 1d, V - 1d), P III (II - 1d, III - 1p+1d, IV - $10 \mathrm{~m}, \mathrm{~V}-1 \mathrm{~d}$ ), P IV (III - 1p+1d, IV - 1d, V 1 d ), P V (II - 0 (male) / 1 (female), III - 1p+1d, IV 1d), PII - PIV (I - 1p). Total (with those on scaphocerite and Up): 158-166.

Thus, the total number of observed photophores in all specimens examined ranges from 325 to 359 organs.

Remarks: Due to the incomplete original description of Sergestes prehensilis, Stebbing (1905) described this species under a different name, $S$. gloriosus, and several authors referred the shrimp to Stebbing's name. Several years later, Nakazawa \& Terao (1915) described a new species from off Japan and named this $S$. prehensilis (name preoccupied by Bate, see details in remarks to S. lucens). After examination of the holotype of S. prehensilis, Gordon (1935) published on the arrangement of the photophores and on the morphology of the petasma and found S. prehensilis to be identical to S. gloriosus and different from S. prehensilis Nakazawa \& Terao, the latter species being identical with $S$. lucens Hansen, 1922. Since Gordon's publication, no synonyms have appeared. Before Gordon (1935), this species was described under one more name, S. fujiyamaensis (Nakazawa 1932a). This description is in Japanese, but Sakai \& Nakano (1985) gave sufficient arguments for the identity of the two species.


Fig. 61. Probable geographical distribution of Sergia prehensilis. Black symbols indicate "Dana" stations, white symbol a "Galathea" station. Shaded areaa without symbols are supported by literature data.
"Dana" specimens of $S$. prehensilis differ from $S$. scintillans in the number and position of photophores on Cp , the form of the rostrum (rarely bidentate), Cp and abdomen proportions, the form of PV (sometimes more thin than illustrated), development of LT, form and armature of LA. Despite this, all variation observed may be regarded as of infraspecific level.

This species possesses lens-bearing photophores. Among all the lens-bearing species, S. prehensilis seems to be closest to the ancestor with lens-less photophores without fixed position on the integument. In contrast to the other species with lensbearing photophores, the number of photophores in S. prehensilis varies and their position is not fixed. In addition, the lenses are often poorly developed, and the organs look rather like "opaque spots". Photophores in S. prehensilis are the most numerous of any species with lens-bearing photophores, almost as abundant as those in the species with "opaque spots"; however, this species has a tendency (common within the lens-bearing species) to reduce the number of photophores. This happens when the closely spaced organs fuse, and may be exemplified by the photophores on the sternites of abdominal somites XV-XIX (Fig. 59D).

Sergia prehensilis is close to S. scintillans in the following most important characters: (1) more numerous lens-bearing photophores than in other species with such, and they sometimes vary in position, (2) prominent hepatic tubercle (not spine), (3) presence of posterodorsal spine on abdominal
somite VI, (4) absence of ocular papilla, (5) LT of petasma reduced and undivided, and (6) LA developed. Sergia prehensilis differs from S. scintillans in having (1) more photophores on Cp (15-23 instead of 8-14 in lower row), (2) 10-15 (instead of 7) photophores on scaphocerite, (3) 1 (instead of 0 ) basal photophore on Up exopod, (4) 4-8 (instead of 2) photophores on medial and (5) 3-5 (instead of 1) distal photophores of Up exopod, (6) somite VI shorter, 1.6 (instead of 1.9 ) times as long as high, (7) scaphocerite wider, 3.3 (instead of 3.9) times as long as wide, (8) male outer A I flagellum with segment 3 bearing shorter tubercle not overlapping segment 4 and ( 9 ) segment 4 bearing more numerous serrated bristles (3-5 instead of 0-2), (10) presence of PV of petasma, (11) not very voluminous LI, (12) smaller LT, (13) divided LC, and in other minor characters concerning variations in the photophore position and proportions of lobes and processes of the petasma.

Geographical distribution (Fig. 61): Atlantic, Indian, and Pacific Oceans.

Atlantic: Southeastern part only, south of $25^{\circ} \mathrm{S}$ ("Dana"), off South Africa ("Dana"; Hansen 1925; Kensley 1971).

Indian Ocean: Western Equatorial part, off Comores and Madagascar ("Dana"), off South Africa ("Dana" and "Galathea"; Stebbing 1905; Barnard 1950, as S. gloriosus; Kensley 1971).

Pacific: Southwestern part, off New Zealand and Australia ("Dana" stations), off Japan (Bate 1888,

Nakazawa 1932, Aizawa 1969, Okutani 1969, and others).
S. prehensilis occurs in at least two isolated areas; it was sampled within a rather vast pelagic area, but the richest samples were taken near the shore, over the continental slope or over seamounts. Thus, this species has a transitional mode of life between pelagic and benthopelagic (Vereshchaka 1995a). The hatched area (Fig. 61) in the Western Pacific indicates the possible existence of independent populations near the islands or over seamounts between the two regions where this species was recorded: from off Japan and the Philippines to New Zealand and Australia. Inside this area, it may extend also into the pelagic zone. S. prehensilis and its sister species, S. scintillans, are sympatric.

Vertical range: An interzonal, partially benthopelagic, species, migrating daily between the upper bathypelagic (the upper continental slope contact zone, Vereshchaka 1995a, b) and epi-/upper mesopelagic zones. "Dana" specimens were taken within the depth range $30-1700 \mathrm{~m}$. Most specimens occur at $100-300 \mathrm{~m}$ at night and $1000-1300 \mathrm{~m}$ during the day. This species is less numerous in the day samples, which may indicate a higher concentration of shrimps within a narrow near-bottom layer, which is usually not sampled.

## Sergia scintillans (Burkenroad, 1940)

Figs. 62-64
Sergestes scintillans Burkenroad, 1940: 43.
Sergestes (Sergia) scintillans. - Yaldwyn 1957: 9. Kensley 1971: 257, fig. 22; 1977: 18. Vereshchaka 1990b: 138.
Sergia scintillans. - Walters 1976:817.- Krygier \& Wasmer 1988: 50. - Vereshchaka 1995a: 1651.

Material examined: "Dana" stations: 3602-2 ( $1 \mathrm{~m} 5^{1 / 2}$ ); 3604-2 (1f $6^{1 / 2}$ ); 3604-3 ( $5 \mathrm{f} 4^{1 / 2} 2^{-7} / 2 \& 4 \mathrm{~m}$ 5-6 $1 / 2$ ); 3613-9 (1f 9 \& $2 \mathrm{~m} 61 / 2-7$ ); 3620-1 ( 1 m 6 ); 3621-1 (1f $6^{1 / 2}$ ); 3622-1 (8f 5-8 \& 11m 6-7/1/2); 3623-3 (if $7 \frac{1}{2}$ ); 3624-6 (1m 6); 3624-9 (1f $5^{1 / 2}$ ); 3653-7 (If 7); 3655-2 (If $5^{1 / 2}$ ); 3655-5 (7f $4^{1 / 2-8} 8^{1 / 2}$ \& $6 \mathrm{~m} 4-7$ ); 3656-3 ( lm 6 ); 3656-4 ( $1 \mathrm{~m} 41 / 2$ ); 36633 ( 1 m 5 ); 3663-4 (14f 4-8 \& 11m 4 $4^{1 / 2}-6^{1 / 2}$ ); 3663-6 ( $1 \mathrm{f} 6^{1 / 2} \& 1 \mathrm{~m} 7^{1 / 2}$ ); 3663-7 ( $6 \mathrm{f} 4^{1 / 2}-5^{1 / 2} \& 8 \mathrm{~m} 5-6$ ); 3664-1 (1f 8 \& 1m 6); 3921-6 (1m 71/2); 3929-1 (2f $5^{1 / 2-} 8^{1 / 2}$ ); 3929-2 (4f 5-71/2 \& 4m 41/2-61/2); 3929-3
(2f 6-7 \& 2m 6-7); 3933-3 ( 2 f 6/12-8); 3934-1 (5f 5$8 \& 3 \mathrm{~m} 6-6^{1 / 2}$ ); 3934-2( $6 \mathrm{f}^{1 / 2 / 2-61 / 2}$ \& 2 m 6-6 $6^{1 / 2}$ ); 3934-3 (4f 5-6); 3934-4 (2f 5-5¹/2); 3937-1 (6f 6-71/2 \& $3 \mathrm{~m} 5^{1 / 2-6}$ ); 3937-2 (2f $5^{1 / 2}-6^{1} / 2 \& 4 \mathrm{~m} 5-6$ ); 39373 (3f 5-6 \& $2 \mathrm{~m} 5-6^{1 / 2}$ ); 3937-4 ( $2 \mathrm{f} 7^{1 / 2}-8$ ); 3939-1 (3f $6^{1 / 2}-8$ ); 3939-3 (3f $6^{1 / 2} / 7^{1 / 2} \&$ \& $^{(\mathrm{m} ~ 61 / 2-7) ; ~ 3939-4 ~}$ (1f 8); 3941-3 (2f $7^{1 / 2}$ ); 3941-4 (1f $4^{1 / 2}$ ); 3943-2 (1f $71 / 2 \& 1 \mathrm{~m} 6^{1 / 2}$ ); 3943-4 (1m 7); 3946-2 (1f 8); 39493 (1m 6); 3951-2 ( $2 \mathrm{~m} 6-6^{1 / 2}$ ); 3951-3 (1f $6 \& 1 \mathrm{~m} 7$ ); 3952-2 (1f 8); 3953-1 (1m 7); 3953-2 (1m 6); 3956$1\left(26 f 4^{1 / 2-8} \& 9 \mathrm{~m} 4^{1 / 2}-7^{1 / 2}\right) ; 3956-2\left(1 \mathrm{~m} 5^{1} / 2\right) ; 3956-$ 3 (2f 41/2-8); 3957-1 (3f $4^{1 / 2}-5 \& 2 m 4 \frac{1}{2} / 2-7$ ); 3957-2 (3f $4^{1 / 2}-8 \& 3 \mathrm{~m} 4 \frac{1}{2}-5^{1 / 2}$ ); 3958-1 ( $4 \mathrm{f} 4^{1 / 2} / 2-7 / 2 \& 1 \mathrm{~m}$ 41/2); 3959-1 (1m 7); 3959-2 (1f 9); 3962-2 (1m 51/2); 3966-1 ( 2 m 6-61/2); 3969-4 (1f $6^{1 / 2}$ ); 3969-5 (3f $4^{1 / 2-5} \& 2 \mathrm{~m} \mathrm{4-5}$ ); 3970-2 (1f 7); 3971-2 (1f 5); 3971-3 (1f $6^{1 / 2} \& 1 \mathrm{~m} 6^{1 / 2}$ ); 3975-9 (1f 7 \& 1m 7); 3975-10 (1m $6^{1 / 2}$ ); 3981-5 (1f $5^{1 / 2}$ ).

Type locality: Southwestern Pacific, $25^{\circ} 54^{\prime} \mathrm{S}$, $172^{\circ} 37^{\prime}$ E.

Type material: Holotype ("Dana" St. 3622-1, ZMUC, lost, see Introduction).

Diagnosis: Integument firm; rostrum acute, without small additional dorsal tooth; cornea well pigmented, black, considerably wider than eyestalk; outer A I flagellum in male with segment 3 bearing well developed tubercle overlapping segment 4 of flagellum and segment 4 bearing $0-2$ serrated bristles on dorsal surface; scaphocerite with strong distal tooth overlapping blade; PV of petasma absent;, LI extremely voluminous; LC undivided;, LAc rudimentary; LA curved medially, reaching end of LT; photophores arranged in upper (5-7) and lower (8-14) rows on $\mathrm{Cp}, 7$ on scaphocerite, 2 medial and 1 distal one on Up exoped, 2 basal on Up endopod.

Description: Cp 2.0 times as long as high and 0.32 times as long as abdomen (Fig. 62A). Abdomen with somite VI 1.9 times as long as high and 1.5 times as long as telson; telson 4.5 times as long as wide.

Cornea 1.2 times as long as wide, 0.8 times as long and 1.3 times as wide as eyestalk. A I peduncle 0.8 times as long as Cp , with 2 nd and segment 30.50 and 0.53 times as long as segment 1 , respectively; outer A I flagellum in male with segment 3 bearing tubercle, which extends slightly beyond end of segment 4 of flagellum; segment 4 bearing

$0-2$ serrated bristles and few setae on dorsal surface and few setae on ventral surface (Fig. 63C). A II peduncle 0.4 times as long as scaphocerite; latter with strong distal tooth overreaching blade (Fig. 62B), 3.9 times as long as wide, 0.91 times as long as A I peduncle.

Md palp 0.36 times as long as Cp , with proximal segment 2.0 times as long as distal one. Mx I with palp 2.0 times as long as wide and 0.07 times as long as Cp ; endopod 1.7 times as long as wide and 1.5 times as long as palp; endite 1.6 times as long as wide and 0.9 times as long as palp. Mx II with exopod 3.3 times as long as wide and 0.33 times as long as Cp; palp 3.7 times as long as wide and 0.14 times as long as Cp ; endopod 1.4 times as long as wide and 0.7 times as long as palp; endites subequal, 1.3 times as long as wide and 0.2 times as long as palp.

Mxp I with exopod 3.0 times as long as wide and 0.17 times as long as Cp ; endopod 1.5 times as long as exopod, segments 2 and 31.0 and 1.3 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 1.0 , carpus and propodus 0.9 , and dactyl 0.5 times as long as ischium. Mxp III 1.4 times as long as Cp , with merus 0.8 , carpus 0.8 , propodus 0.7 , and dactyl 0.6 times as long as ischium; subdivision of propodus and dactyl uncertain.

Fig. 62. Sergia scintillans, holotype, male, "Dana" St. 3622-1, Cp length 7.0 mm . - A, lateral view of Cp. B, scaphocerite. - C, Up.

PI 1.0 times as long as Cp , with merus 3.1, carpus 1.8 , and propodus 3.1 times as long as ischium; subdivision of propodus uncertain. P II 1.5 times as long as Cp , with merus 2.4 , carpus 2.1 , propodus 2.4 , and dactyl 0.1 times as long as ischium;, subdivision of propodus uncertain. P III 1.7 times as long as C p, with merus 2.9 , carpus 2.5 , propodus 2.7, and dactyl 0.2 times as long as ischium; subdivision of propodus uncertain. P IV 1.2 times as long as Cp , with merus 1.6 , carpus 1.0 , and propodus 1.1 times as long as ischium. P V 0.6 times as long as Cp , with merus 1.4 , carpus 0.9 , and propodus 0.8 times as long as ischium.

Somite VIII with arthrobranch 0.11 times as long as Cp and 2.3 times as long as epipod. Somite IX with anterior pleurobranch 0.17 times as long as Cp and 3.4 times as long as posterior pleurobranch. Somite $X$ with anterior pleurobranch 0.24 times as long as Cp and 4.2 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.25 times as long as Cp and 3.6 times as long as


Fig. 63. Sergia scintillans, holotype, male, "Dana" St. 3622-1, Cp length 7.0 mm . - A, oral view of petasma. - B, caudal view of petasma. - C, male outer A I flagellum.
posterior pleurobranch. Somite XII with anterior pleurobranch 0.26 times as long as Cp and 2.1 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.21 times as long as Cp and 1.7 times as long as posterior pleurobranch.

Pl I with basipod 0.33 times as long as Cp and exopod 2.0 times as long as basipod. PI II with basipod 0.33 times as long as $C p$; exopod 2.3 and endopod 1.3 times as long as basipod, respectively. Pl III with basipod 0.34 times as long as Cp ; exopod 2.1 and endopod 1.1 times as long as basipod, respectively. PI IV with basipod 0.33 times as long as Cp ; exopod 1.9 and endopod 1.1 times as long as basipod, respectively. Pl V with basipod 0.30 times as long as Cp ; exopod 1.9 and endopod 1.0 times as long as basipod, respectively.

Up with exopod 5.3 times as long as wide, 6.5 times as long as basipod and 0.8 times as long as Cp ; endopod 4.3 times as long as wide and 0.8 times as long as exopod (Fig. 62C).

Petasma (Fig. 63A-B). LI 1.5 times as long as wide. LT reduced, as papilla at base of LC , not reaching end of LI and LC, 1.5 times as long as wide, 0.3 times as long as LI, armed with few terminal hooks. LC reaching end of LI, 2.0 times as long as wide and 0.9 times as long as LI, armed with numerous hooks along distal margin. LAc 1.4 times as long as wide and 0.2 times as long as PV, armed with few distal hooks. LA 1.8 times as long as wide and 0.7 times as long as LI, armed with row of smaller hooks along medial margin and several stronger hooks on distolateral side.

Photophores. Cp: 5-7 and 8-14 organs in upper and lower rows, respectively. Scaphocerite: 7 organs medial to inner strip of muscle from 0.2 to 0.9 blade length. Up exopod: 2 proximal to suture and medial to inner strips of muscle at 0.4-0.5 exopod length, and 1 organ distal to apical muscle strip, at 0.7 exopod length. Up endopod: 2 organs near base.

Other body photophores, all ventral, found on the following somites ( $\mathrm{al}=$ anterolateral, $1=$ lateral, m $=$ medial): II (1m), III (41), labrum (1m+21), IV $(2 m+21), V(2 m+21)$, VI (2l), VII $(2 m+21)$, VIII (1m+21), IX (3m), X (3m), XI (3m), XII (3m), XIII $(3 m+21)$, XIV ( 8 m (male)/6m (female) +21 ), XV $(6 m+21)$, XVI $(6 m+21)$, XVII $(6 m+21)$, XVIII $(4 m+21)$, XIX $(4 m+21)$, XX $(5 m+2 \mathrm{al})$. Total (with those in Cp rows): 117-135.

Other photophores found on the following
appendages $(\mathrm{d}=$ distal, $\mathrm{m}=$ medial, $\mathrm{p}=$ proximal, Roman numerals indicate segments): eyestalk (lp+1d), A I (peduncle III - 1d), A II (peduncle V 1p), Md (proper - 1d, palp I - 1d), Mx II (Exp - 2p), Mxp I (II - 1d, III - 1d), Mxp II (III - 1d, IV - 1p, V $-1 p+1 d, V I-1 d), \operatorname{Mxp}$ III (III - 1m+1d, IV - 1d, V $-1 d, V I-1 d$ ), P I (IV - 1p+1d, V - 1d), P II (III 1p+1d, IV - 1d, V - 1d), P III (III - 1p+1d, IV - 1d, V-1d), P IV (III - 1p+1d, IV - 1d, V - 1d), P V (III - 1d), Pl I - Pl V (I - 1p). Total (with those on scaphocerite and Up): 108.

Thus, the total number of observed photophores in all observed specimens ranges from 225 to 243 organs.

Remarks: The extraordinary form of the petasma (PV absent and LI enormous) as well as the very characteristic number of photophores on the scaphocerite and Up exopod make this common species easily identifiable, and no junior synonyms appeared since Burkenroad's (1940) description. The "Dana" specimens agree with the original description, varying in the form of the rostrum, petasma, and number of photophores in Cp rows. Sergia scintillans links S. prehensilis and the other lens-bearing species: the number of photophores remains greatly high and variable on Cp ; yet, $S$. scintillans has many fewer photophores (1.3-1.6 times) than $S$. prehensilis, and their position becomes less variable on Cp and fixed on Up exopod. Kensley (1971) found in S. scintillans a PV in the form of a small protrusion near base of LA; my examination of the "Dana" specimens revealed the existence of proper (although not always conspicuous) hooks on these protrusions; this fact as well as the position of the rudimentary organ suggests that the structure is rather the LAc.

Sergia scintillans is close to $S$. prehensilis (see affinities and differences in remarks to $S$. prehensilis).

Geographical distribution (Fig. 64): Atlantic, Indian, and Pacific Oceans.

Atlantic: Southeastern part, south of $15^{\circ} \mathrm{S}$ ("Dana"), off South Africa ("Dana"; Kensley 1971).

Indian Ocean: Western Equatorial part, off Comores and Madagascar ("Dana"), off South Africa ("Dana"; Kensley 1971).

Central and Southwestern Pacific Ocean: off Australia ("Dana"), off Hawaii (Walters 1976), over


Fig. 64. Probable geographical distribution of Sergia scintillans. Small circles and hatching indicate "Dana" stations. Shaded areas without symbols are supported by literature data.

Nazca and Sala-y-Gomez Ridges (Vereshchaka 1990b).

Sergia scintillans occurs in at least two isolated areas; a few samples were taken within a rather vast pelagic area, while the richest samples were taken near the shore, over the continental slope, or over the. Thus, this species is benthopelagic (Vereshchaka 1995a) rather than pelagic. The hatched area in the Central Pacific indicates that there may be independent populations near islands or over seamounts within the triangle Hawaii - Nazka and Sala-y-Gomez Ridges - Australia, where it may also extend into the pelagic zone. S. scintillans and its sister species, $S$. prehensilis, are sympatric.

Vertical range: Probably a benthopelagic species, migrating daily between the upper continental slope-contact zone (Vereshchaka 1995a) and the epipelagic zone. "Dana" specimens were taken within the depth range $20-1700 \mathrm{~m}$. Most specimen occur at $30-200 \mathrm{~m}$ at night and at $700-1000 \mathrm{~m}$ during the day. This species is much less numerous during the day samples, which may indicate aggregations within a narrow near-bottom layer, which is usually not sampled.

## Sergia challengeri species group

Diagnosis: Lens-bearing photophores (total of 193-209 organs) present: 4-6 on scaphocerite, 2-3 on Up exopod, 4-6 in single lateral Cp row; hepatic spine prominent; postdorsal spine on VI abdominal somite present; clasping organ, if not rudimentary, with 8-12 serrated bristles; ocular papilla absent; endopod of Mxp I with 3 segments; posterior branchial lobe above P III reduced but not lamellar; petasma with LT usually bilobed and LA rudimentary.

Species included: Sergia challengeri (Hansen, 1903), S. fulgens (Hansen, 1919), S. hansjacobi Vereshchaka, 1994, S. jeppeseni n. sp., S. oksanae n. sp., S. stellata (Burkenroad, 1940), S. talismani (Barnard, 1946), S. umitakae Hashizume \& Omori, 1995.

## Key to species of the Sergia challengeri species group

1. Scaphocerite with 5-6 photophores, Up exopod with 3 photophores ( 2 medial and 1 distal). Tubercle of segment 3 in male outer A I flagellum rudimentary and overlapped by single terminal seta. PV of petasma not curved conspicuously at tip in lateral direc-
tion; LI very voluminous, semicircular or circular $\qquad$2

- Scaphocerite with 4 photophores, Up exopod with 2 photophores ( 1 medial and 1 distal). Tubercle of segment 3 in male outer A I flagellum, if present, not rudimentary and not overlapped by terminal setae. PV of petasma curved conspicuously at tip in lateral direction; LI not very voluminous, not semicircular or circular

2. Rostrum usually unidentate. Scaphocerite with 5 photophores, Up endopod with 1 basal photophore. Male outer A I flagellum with segment 3 bearing tubercle not reaching end of segment 4 of flagellum and with segment 4 bearing 12-13 serrated bristles on dorsal side. LI of petasma semicircular, LA not overlapping LAc $\qquad$ Sergia hansjacobi

- Rostrum bidentate. Scaphocerite with 6 photophores, Up endopod with 2 basal photophores. Male outer A I flagellum with segment 3 bearing tubercle reaching end of segment 4 of flagellum and with segment 4 bearing 8 serrated bristles on dorsal side. LI of petasma circular, LA overlapping LAc...
.Sergia jeppeseni n. sp.

3. Male A I either with peduncle bearing distoventral process and 1-2 very strong, stout setae on terminal segment, with clasping organ rudimentary; tubercle on segment 3 of male outer A I flagellum not overlapping segment 4 of flagellum. LI of petasma not strongly curved at about $1 / 2$ length, tip not directed laterally, LT bilobed $\qquad$ . 4

- Male A I with peduncle not bearing distoventral process or strong, stout setae on terminal segment, with well developed clasping organ; tubercle on segment 3 of male outer A I flagellum overlapping segment 4 of flagellum. LI of petasma strongly curved at about $1 / 2$ length, tip directed laterally, LT not bilobed $\qquad$ Sergia umitakae

4. Hepatic spine acute. Male A I with 3rd peduncular segment bearing $0-1$ very strong, distoventral stout setae; male outer A I flagellum with segment 3 , if bearing tubercle, not reaching end of segment 4 of flagellum and with segment 4 , if armed, with 11-12 serrated bristles. LI of petasma well developed, LC overlapping other lobes and processes, LA overlapping LAc $\qquad$

- Hepatic spine blunt. Male A I with 3rd peduncular segment bearing 2 very strong, distoventral stout setae; male outer A I flagellum with segment 3 bearing tubercle reaching end of segment 4 of flagellum and with segment 4 armed with 8-9 serrated bristles. LI of petasma rudimentary, as small tubercle; LC not overlapping other lobes and processes, LA not overlapping LAc $\qquad$ Sergia stellata, n. comb.

5. Male A I with peduncle bearing very strong, distoventral stout seta on terminal segment and with clasping organ well developed; male outer A I flagellum with segment 3 bearing well-developed tubercle and segment 4 armed with serrated bristles setae on dorsal side

- Male A I with peduncle lacking very strong, distoventral stout seta on terminal segment and with clasping organ rudimentary; male outer A I flagellum with segment 3 lacking tubercle and segment 4 not armed with serrated bristles on dorsal side

6. Lateral Cp row with 4 photophores. Process on terminal segment of male A I subtriangular, not bidentate. Distal tooth on scaphocerite not overlapping blade.

Sergia challengeri, n. comb.

- Lateral Cp row with 5 photophores. Process on terminal segment of male A I peduncle elongated, bidentate. Distal tooth on scaphocerite overlapping blade ....... Sergia fulgens

7. Lateral Cp row with 6 photophores. Terminal segment of male A I peduncle without distoventral process. LI of petasma with tip directed ventrolaterally, LT not greatly overlapping PV considerably........... Sergia talismani

- Lateral Cp row with 5 photophores. Terminal segment of male A I peduncle with very long and narrow distoventral process. LI of petasma with tip directed distolaterally, LT considerably overlapping PV Sergia oksanae n. sp.

Like the two former species, all known species of this group are much more abundant above the continental shelves and slopes or seamounts than over the deep sea, indicating a benthopelagic mode of life (Vereshchaka 1995a); the species are scarce in the day samples, suggesting that they aggregate in a

Table 7. Affinities and differences between species of the Sergia challengeri species group. $\mathrm{a}=\mathrm{acute}, \mathrm{b}=\mathrm{blunt}, \mathrm{d}=$ divided, $\mathrm{ph}=$ photophore(s), $\mathrm{r}=$ rudimentary, $\mathrm{Sc}=$ scaphocerite, $\mathrm{ss}=$ subsegments, $\mathrm{u}=$ undivided, $\mathrm{w}=$ well developed,$+=$ present, $-=$ absent.

| Characters | $\begin{aligned} & 5 \\ & 0 \\ & \text { e } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & i \end{aligned}$ |  | $\begin{aligned} & \text { O} \\ & \text { S } \\ & \text { O } \\ & \text { S } \\ & \text { i } \end{aligned}$ |  | $\begin{gathered} \dot{0} \\ \dot{0} \\ \dot{4} \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{3}{3} \\ 0 \\ \dot{0} \\ \dot{n} \end{gathered}$ |  | $\begin{aligned} & \text { B } \\ & \text { S } \\ & \text { 会 } \\ & \text { i } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Additional tooth on rostrum | - | - | - | $\pm$ | - | - | - | 1-2 |
| Hepatic spine | a | a | b | b | a | b | a | b |
| Length of distoventral process on male A I flagellum | short | d, long | - | - | long | short | - | - |
| Clasping organ | w | w | w | W | r | w | $r$ | w |
| Tubercle overlapping segment 4 of flagellum | - | - | - | + | - | + | - | + |
| No of stout setae on segment 3 of A I flagellum | 1 | 1 | 0 | 0 | 0 | 2 | 0 | 0 |
| No of serrated bristles in clasping organ | 11-12 | 11-12 | 12-13 | 8 | 0 | 8-9 | 0 | 8 |
| Distal tooth of Sc overreaching blade | - | + | - | - | + | - | + | - |
| PV of petasma curved | + | + | - | - | $+$ | + | + | + |
| LI strongly curved | - | - | + | + | - | r | - | + |
| LT of petasma | d | d | d | d | d | d | d | u |
| LT much overlapping PV | - | - | + | + | + | + | - | - |
| LC overlapping other lobes and processes | + | + | - | - | + | - | + | - |
| LA overlapping LAc | + | + | - | + | + | - | + | + |
| No of ph in lateral Cp row | 4 | 5 | 5-6 | 6 | 5 | 4 | 6 | 4-5 |
| No of ph on Sc | 4 | 4 | 5 | 6 | 4 | 4 | 4 | 4 |
| No of medial ph on Up exopod | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 |
| No of distal ph on Up exopod | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| No of ph on Up endopod | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 |

very narrow near-bottom layer, which is usually not sampled. The hatched areas in the distribution maps indicate that the specimens may occur offshore throughout the region shown.

## Sergia challengeri (Hansen, 1903), n. comb.

Figs. 65-67, Pl. 5A
Sergestes challengeri Hansen, 1903: 61, pl. XII, fig.
2a-n. - Kemp 1910b: 640, pl. 53, figs. 2-5; 1913, pl. 7, fig. 1; 1919: 13, pl. 1, fig. 4a-k. - Illig 1927: 197, figs. 34-40.
Sergestes (Sergia) challengeri. - Yaldwyn 1957: 9.

Material examined: "Dana" stations: 3567-1 ( $1 \mathrm{~m} 8^{1 / 2}$ ); 3585-2 (1f $6^{1 / 2}$ ); 3585-3 (1m 7); 3677-2 ( $1 \mathrm{~m} \mathrm{5} 5^{1 / 2}$ ); 3680-1 (2f 8-9); 3680-4 (12f 41/2-8 \& 9m 4-7); 3680-6 (2f 8-9); 3684-2 (1f $7^{1 / 2}$ ); 3684-8 (18f $41 / 2-8 \& 17 \mathrm{~m} 5^{1} / 2-7 \frac{1}{2}$ ) ; 3689-7 (1f 8); 3731-14 (1f $5^{1 / 2}$ ); 3736-3 (1f $6^{1 / 2} \& 1 \mathrm{~m} 8^{1 / 2}$ ); 3736-5 (1f $6^{1 / 2}$ ); 3737-2 (1f $5 \& 1 \mathrm{~m} \mathrm{4}$ ¹⁄2); 3744-4 (15f 4-6 \& 5m $4^{1 / 2-}$ 6); 3751-2 (3f 5-6); 3752-1 (1m 8¹/2); 3752-3 (2f 4$6^{1 / 2}$ ); 3753-3 (5f 6-7¹/2); 3764-2 (3f 5-6 \& 3m 612-
7); 3768-3 ( $1 \mathrm{~m} \mathrm{8} 8^{1 / 2}$ ); 3768-6 (10f 6-9 \& 4m $5^{1 / 2-7}$ ); 3768-14 (1m 6); 3773-2 (5f 5-6 \& 1m 5¹/2); 3773-3 ( $7 \mathrm{f} 4^{1 / 2}-6^{1 / 2} \& 3 \mathrm{~m} 5^{1 / 2}$ ); 3788-2 (1f $6^{1 / 2} \& 2 \mathrm{~m} 6$ ); 3789-2 (1m 6); 3792-2 (4f $5 \& 5 \mathrm{~m} 3^{1 ⁄ 2}-7$ ); 3793-1 (1m 6); 3793-2 (1m 5); 3793-3 (2m 5-5 ${ }^{1 / 2}$ ); 3793-4 (1m 61/2); 3796-1 (1m 6); 3804-2 (1f $5 \& 1 \mathrm{~m} 61 / 2$ ); 3804-3 (9f $5^{1 / 2-7}$ ); 3805b (2f $6^{1 / 2} \& 3 m 5^{1 / 2-6} 1 / 2$ ); 3812-3 (4f 4-8 \& 1m $5^{1 / 2}$ ); 3840-5 (1m 6); 3874-2 (1m 7); 3874-4 (1f $7^{1 / 2}$ ).
"Galathea" stations: 441 (1f $12^{1} / 2$ ); 448 (1f 8 ); 456 (2f7-8); 464 (1f7).

Holotype of Sergestes challengeri (BMNH 1903.6.6.14).

Type locality: Western Pacific off Matuku, Fiji Islands, $19^{\circ} 9^{\prime} 35^{\prime \prime} \mathrm{S}, 179^{\circ} 41^{\prime} 50^{\prime \prime} \mathrm{E}$.

Type material: Holotype of Sergestes challengeri (NHM, see above, examined).

Diagnosis: Integument firm; rostrum acute and unidentate; cornea well pigmented, black, considerably wider than eyestalk; terminal segment of male A I peduncle bearing single strong stout seta and


Fig. 65. Sergia challengeri, male, "Dana" St. 3684-8, Cp length 6.5 mm . - A, lateral view of Cp. - B, scaphocerite. - C, Up.
triangular unidentate process near distoventral end; A I flagellum in male with segment 3 bearing well developed tubercle not reaching end of segment 4 of flagellum and segment 4 bearing 11-12 serrated bristles on dorsal surface; scaphocerite with distal tooth reaching end of blade; PV of petasma curved laterally at tip; LI well developed, not strongly curved, with tip directed distolaterally; LT bilobed, not overlapping PV considerably; LC overlapping other lobes and processes; LA overlapping LAc; photophores arranged in lateral row of 4 on Cp , row of 4 on scaphocerite, 1 medial photophore and 1 distal photophore on Up exopod, 1 basal photophore on Up endopod.

Description: Cp 1.9 times as long as high and 0.34 times as long as abdomen; hepatic spine acute (Fig. 65A). Abdomen with somite VI 1.7 times as long as high and 1.4 times as long as telson; telson 3.8 times as long as wide.

Cornea well pigmented, black, 1.4 times as long as wide, 1.1 times as long and 1.5 times as wide as eyestalk. A I peduncle 0.8 times as long as Cp , with segments 2 and 30.50 and 0.56 times as long as
segment 1, respectively; terminal segment of A I peduncle with single very strong stout seta and prominent triangular process on distoventral side (Fig. 66C); outer A I flagellum in male with segment 3 bearing tubercle not reaching end of segment 4 of flagellum and with segment 4 subdivided and bearing 11-12 serrated bristles on dorsal surface and several setae on ventral surface (Fig. 66D). A II peduncle 0.4 times as long as scaphocerite; latter with strong distal tooth reaching end of blade (Fig. 65B), 3.5 times as long as wide, 0.83 times as long as A I peduncle.

Md palp 0.36 times as long as Cp , with proximal segment 2.1 times as long as distal one. Mx I with palp 2.0 times as long as wide and 0.08 times as long as Cp ; endopod 1.6 times as long as wide and 1.2 times as long as palp; endite 1.4 times as long as wide and 0.7 times as long as palp. Mx II with exopod 3.2 times as long as wide and 0.31 times as long as Cp ; palp 3.6 times as long as wide and 0.13 times as long as Cp ; endopod 1.4 times as long as wide and 0.7 times as long as palp; endites subequal, 1.7 times as long as wide and 0.3 times as long as palp.

Mxp I with exopod 2.4 times as long as wide and 0.16 times as long as Cp ; endopod 1.7 times as long as exopod; segments 2 and 31.1 and 1.9 times as long as segment 1 , respectively. Mxp II 0.8 times as long as Cp , with merus 1.0 , carpus and propodus 0.9 , and dactyl 0.4 times as long as ischium. Mxp III 1.4 times as long as Cp , with merus 0.8 , carpus, propodus and dactyl 0.7 times as long as ischium; subdivision of propodus and dactyl uncertain.

P I 1.0 times as long as C p, with merus 2.8 , carpus 1.5 , and propodus 2.8 times as long as ischium, subdivision of propodus uncertain. P II 1.5 times as long as Cp , with merus 2.8 , carpus 2.3 , propodus 2.8 , and dactyl 0.2 times as long as ischium; subdivision of propodus uncertain. P III 1.8 times as long as Cp , with merus 2.9 , carpus 2.3 , propodus 2.6 , and dactyl 0.2 times as long as ischium; subdivision of propodus uncertain. P IV 1.1 times as long as Cp , with merus 1.5 , carpus 0.9 , and propodus 1.0 times as long as ischium. P V 0.6 times as long as Cp , with merus 1.1 , carpus 0.8 , and propodus 0.6 times as long as ischium.

Somite VIII with arthrobranch 0.10 times as long as Cp and 2.3 times as long as epipod. Somite IX with anterior pleurobranch 0.17 times as long as Cp and 4.0 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.24 times as


Fig. 66. Sergia challengeri, male, "Dana" St. 3684-8, Cp length 6.5 mm . - A, caudal view of petasma. - B, oral view of petasma. - C, terminal segment of male A I. - D, male outer A I fla gellum.
long as Cp and 4.9 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.26 times as long as Cp and 5.3 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.26 times as long as Cp and 2.5 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.20 times as long as Cp and 1.5 times as long as posterior pleurobranch.

Pl I with basipod 0.31 times as long as $C p$ and exopod 2.0 times as long as basipod. P1 II with basipod 0.31 times as long as Cp ; exopod 2.2 and endopod 1.4 times as long as basipod, respectively. P1 III with basipod 0.31 times as long as $C p$; exopod 2.1 and endopod 1.3 times as long as basipod, respectively. Pl IV with basipod 0.30 times as long as Cp ; exopod 1.9 and endopod 1.2 times as long as basipod, respectively. Pl V with basipod 0.26 times as long as Cp ; exopod 1.7 and endopod 1.0 times as long as basipod, respectively.

Up with exopod 5.0 times as long as wide, 6.0 times as long as basipod and 0.8 times as long as

Cp ; endopod 4.1 times as long as wide and 0.7 times as long as exopod (Fig. 65C).

Petasma (Fig. 66A-B, Pl. 5A). PV tapering into sharp point, reaching end of LT, 4.5 times as long as wide, tip curved and directed laterally. LI overlapping LT, 1.7 times as long as wide and 0.6 times as long as PV, directed distolaterally. LT thick, bilobed at end, 1.6 times as long as wide, 0.6 times as long as PV, armed with 2 rows of hooks, along dorsal margin and on distolateral side, and with few apical hooks on each of terminal lobules. LC 2.3 times as long as wide and 0.9 times as long as PV, armed with few apical hooks. LAc small, 1.5 as long as wide and 0.2 times as long as PV, armed with single apical hook. LA straight and slender, 3.5 times as long as wide and 0.5 times as long as PV, armed with single apical hook.

Photophores. Cp: 4 in lateral row. Scaphocerite: 4 organs medial to inner strip of muscle from 0.20.3 to 0.8-0.9 blade length. Up exopod: 1 organ at middle near tip of inner muscle strip, at 0.4-0.5 exopod length, and 1 distal organ near end of apical muscle strip, at 0.7-0.8 exopod length. Up endopod: 1 organ near base.

Other body photophores, all ventral, found on the following somites ( $\mathrm{al}=$ anterolateral, $\mathrm{l}=$ lateral, m $=$ medial, $\mathrm{pm}=$ posteromedial): II (1m), III (41), labrum $(1 m+21)$, IV $(2 m+21)$, V ( $2 m+21$ ), VI ( 21 ), VII ( $2 \mathrm{~m}+2 \mathrm{l}$ ) VIII ( $1 \mathrm{~m}+21$ ), IX ( 3 m ), X ( 3 m ), XI ( 3 m ), XII ( 3 m ), XIII ( $3 \mathrm{~m}+2 \mathrm{al}$ ), XIV ( $4 \mathrm{pm}+2 \mathrm{al}$ ), XV ( $6 m+21$ ); XVI $(6 m+21)$, XVII ( $4 m+21$ ), XVIII $(4 m+21)$, XIX $(4 m+21), X X(5 m+2 a l)$. Total (with those in Cp rows): 97.

Other photophores found on the following appendages ( $\mathrm{d}=$ distal, $\mathrm{p}=$ proximal, Roman numerals indicate segments): eyestalk (lp+1d) A I (peduncle $\Pi I$ - 1d), A $I$ (peduncle I - 1p), Md (proper-1d, palp I-1d), Mx II (Exp-1p), Mxp I (II - 1d, III - 1d), Mxp II (II - 1d, III - 1d, IV - 1p, V - 1d, VI - 1d), Mxp III (II - 1d, III - 1d, IV - 1d, V-1d, VI - 1d), PI (IV - 1p+1d, V - 1d), P II (III $1 p+1 d, I V-1 d, V-1 d), P$ III (III - 1p+1d, IV - 1d, V - 1d), P IV (III - 1p+1d, IV - 1d), P V (II - 0 (male)/1 (female), III - 1d, IV - 1d), Pl I - Pl V (I 1 p ). Total (with those on scaphocerite and Up): 96 in male or 98 in female.

Thus, the total number of observed photophores in all examined specimens ranges from 193 in males to 195 in females.


Fig. 67. Probable geographical distribution of Sergia challengeri (circles, hatching), $S$. jeppeseni n. sp. (diamond), and $S$. umitakae (triangles, cross hatching). Black symbols indicate "Dana" stations, white circles "Galathea" stations and white triangles "Vityaz" stations. Shaded areas without symbols are supported by literature data.

Remarks: The "Dana" specimens vary in minor proportions of the appendages, development of the branchs, relative size of the cornea, number of serrated bristles in the clasping organ (11-12), fine shape of the distoventral process of A I male peduncle (which may be more or less prominent), curvature of LI, and degree of depression in the apical part of LT. The photophore pattern agrees with Hansen's original descriptions(1903), although number of organs exceeds that reported by him, finding a total of 117 photophores in male, while "Dana" specimens have 193 organs. This difference is probably accounted for by the extreme difficulty in observing these organs in specimens preserved in alcohol for a long period: Hansen (1903) described "Challenger" specimen that had already been kept for several decades.

This species is closest to $S$. fulgens, $S$ talismani, S. oksanae n. sp., and S. stellata in the shape of petasma. In most of these species, a distoventral process or setae on the terminal segment of male $A$ I flagellum is present. These organs are lost in $S$. talismani and, partially, in S. oksanae. This loss is merely secondary and related to the reduction of clasping function of male A I; the petasma of these species is almost identical to that of $S$. challengeri and $S$. fulgens, which gives a final argument for their very close relationship. Other affinities and differences between $S$. challengeri and all other known species of the species group are shown in Table 7.

Geographical distribution (Fig. 67): Indian and Pacific Oceans.

Indo-West Pacific: ("Dana" and "Galathea"; Hansen 1919), Bay of Bengal and off Sri Lanka (Illig 1927).

Central Equatorial Pacific: ("Dana" and "Galathea"), off Fiji Islands (Hansen 1919).

The occurrence of $S$. challengeri is like that of the whole group (see remarks to the species group). S. challengeri and S. umitakae are parapatric, the former occurring in the Eastern Indian Ocean and in the Western and Central Pacific, the latter in the Western and Central Indian Ocean. S. challengeri is sympatric with S. fulgens, S. talismani, S. stellata and $S$. oksanae n. sp. and allopatric to $S$. hansjaco$b i$ and $S$. jeppeseni n . sp.

Vertical range: A benthopelagic species, migrating daily between the lateral continental-slope contact zone (Vereshchaka 1995a) and the epi-/ mesopelagic zone. "Dana" specimens were taken within the depth range $50-1700 \mathrm{~m}$. Most specimens occur at 100-300 m at night and at about 700 m during the day.

## Sergia fulgens (Hansen, 1919)

Figs. 68-70, Pl. 5B
Sergestes fulgens Hansen, 1919: 17, pl. 1, fig. 6a-g. Sergestes (Sergia) fulgens. - Yaldwyn 1957: 9.


Fig. 68. Sergia fulgens, male, "Dana" St. 3733-1, Cp length 8.2 mm. - A, lateral view of Cp. - B, scaphocerite. - C, Up.

Sergia fulgens. - Walters 1976: 816. - Krygier \& Wasmer 1988: 50.

Material examined ( $?=$ identification is uncertain): "Dana" stations: 3733-1 (16f 81/2-13 \& 9m 710); 3733-2 (11f 5-10 $1 / 2 \& 6 \mathrm{~m} \mathrm{5} / 2-9$ ); 3773-1 (10f 5-7 $1 / 2$ \& 2 m 5-6 $1 / 2$ ); ? 3800-2 (43f 4-61/2 \& 20m 4$5^{1 / 2}$ ); 3809-2 (27f 5-91/2 \& 18m 41/2-7); 3809-3 (2f 5$7 \& 3 \mathrm{~m} 5-7$ ); 3809-4 (4f 5-8 \& 2m 51/2); 3860-20 ( $1 \mathrm{~m} 6^{1 / 2}$ ); 3873-1 (4f $6^{1 / 2}-7^{1 / 2}$ ); 3873-2 (1f $7^{1 / 2} \& 2 \mathrm{~m}$ $6^{1 / 2}$ ); 3874-1 (1f $7^{1 / 2} \& 3 m 61 / 2-7$ ); 3876-1 (3f 7-71/2 \& 5m 7-71/2); 3880-3 (1f $5^{1 / 2} \& 1 \mathrm{~m} 6$ ); 3881-3 (32f $4^{1} / 2-9$ \& $11 \mathrm{~m} 4^{1 / 2}-7$ \& 56j $\left.3^{1} / 2-4\right) ; 3882-1\left(4 \mathrm{f}-4^{1 / 2}-7\right.$ \& $2 \mathrm{~m} 5^{1 / 2}-6$ ); 3882-4 (2f 4-71/2 \& 3m 5-51/2); 38936 (1f 7); 3897-3 (1m 6); 3902-2 (4f 7-8); 3903-1 (2f $8^{1} / 2-9$ ); 3904-5 (1m 6); 3913-4 (1m 71/2); 3913-5 (1f 9); 3915-3 (4f $5^{1 / 2-61 / 2} \& 7 \mathrm{~m} 5^{1 / 2-7}$ ); 3922-1 (2f 78).
"Galathea" stations: 436 ( $1 \mathrm{~m} \mathrm{10} 1 / 2 \& 1 \mathrm{j} 5^{1 / 2}$ ); 443 ( $1 \mathrm{~m} 10 \& 1 \mathrm{j} 4^{1 / 2}$ ).

Type locality: Indonesia, north coast of Sumbawa, "Siboga" Exped. St. $312,8^{\circ} 19^{\prime}$ S, $117^{\circ} 41^{\prime}$ E, 274 m.

Type material: Syntypes: " 22 specimens, 16 of
which are adult males"(Hansen 1919: 17). Jars with Sergestes fulgens are in MNHN, but type specimens are not indicated (pers. comm. Drs. Ho and A. Crosnier; types not examined).

Diagnosis: Integument firm; rostrum usually acute and unidentate; cornea well pigmented, black, considerably wider than eyestalk; terminal segment of male A I peduncle bearing single strong stout seta and long bifid process near distoventral end; A I flagellum in male with segment 3 bearing well developed tubercle not reaching end of segment 4 of flagellum and segment 4 bearing 11-12 serrated bristles on dorsal surface; scaphocerite with strong distal tooth overlapping blade; PV of petasma laterally curved at tip; LI well developed, not strongly curved, with tip directed distolaterally; LT bilobed, not greatly overlapping PV; LC overlapping other lobes and processes; LA overlapping LAc; photophores arranged in lateral row of 5 on Cp , row of 4 on scaphocerite, 1 medial and 1 distal organ on Up exopod, 1 basal organ on Up endopod.
Description: Cp 1.8 times as long as high and 0.32 times as long as abdomen, hepatic spine acute (Fig. 68A). Abdomen with somite VI 1.7 times as long as high and 1.5 times as long as telson; telson 3.9 times as long as wide.

Cornea well pigmented, black, 1.2 times as long as wide, 0.9 times as long and 1.6 times as wide as eyestalk. A I peduncle 0.7 times as long as Cp , with segments 2 and 30.56 and 0.53 times as long as segment 1 , respectively; terminal segment of A I peduncle with single very strong curved stout seta and long prominent bifid process in distoventral side (Fig. 69C); outer A I flagellum in male with segment 3 bearing tubercle curved and not reaching end of segment 4 of flagellum and with segment 4 subdivided and bearing 11-12 serrated bristles on dorsal surface and several setae on ventral surface (Fig. 69D). A II peduncle 0.4 times as long as scaphocerite; latter with strong distal tooth overlapping blade (Fig. 68B), 3.3 times as long as wide, 0.83 times as long as A I peduncle.

Md palp 0.34 times as long as Cp , with proximal segment 2.2 times as long as distal one. Mx I with palp 1.7 times as long as wide and 0.06 times as long as Cp; endopod 1.5 times as long as wide and 1.5 times as long as palp; endite 1.7 times as long as wide and 1.1 times as long as palp. Mx II with exopod 3.2 times as long as wide and 0.34 times as long as Cp ; palp 3.5 times as long as wide and 0.11


Fig. 69. Sergia fulgens, male, "Dana" St. 3733-1, Cp length 8.2 mm. - A, oral view of petasma. - B, caudal view of petasma. C, terminal segment of male A I. - D, male outer A I flagellum.
times as long as Cp ; endopod 1.4 times as long as wide and 0.8 times as long as palp; endites subequal, 1.4 times as long as wide and 0.4 times as long as palp.

Mxp I with exopod 2.6 times as long as wide and 0.18 times as long as Cp ; endopod 1.5 times as long as exopod, segments 2 and 31.1 and 1.9 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 0.8 , carpus and propodus 0.9 , and dactyl 0.4 times as long as ischium. Mxp III 1.3 times as long as Cp , with merus, carpus and propodus 0.8 , and dactyl 0.7 times as long as ischium; subdivision of propodus and dactyl uncertain.

P I 1.0 times as long as Cp, with merus 2.9 , carpus 1.7, and propodus 2.7 times as long as ischium; subdivision of propodus uncertain. P II 1.5 times as long as Cp , with merus 2.9 , carpus 2.3 , propodus 2.7 , and dactyl 0.1 times as long as ischium; subdivision of propodus uncertain. P III 2.0 times as long as Cp , with merus 3.5 , carpus 2.7 , propodus 3.1 ,
and dactyl 0.2 times as long as ischium; subdivision of propodus uncertain. P IV 1.3 times as long as Cp, with merus 1.6 , carpus 1.0 , and propodus 1.1 times as long as ischium. P V 0.7 times as long as Cp , with merus 1.2 , carpus 0.9 , and propodus 0.8 times as long as ischium.

Somite VIII with arthrobranch 0.14 times as long as Cp and 2.9 times as long as epipod. Somite IX with anterior pleurobranch 0.21 times as long as Cp and 4.4 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.25 times as long as $C p$ and 5.1 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.27 times as long as Cp and 6.4 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.29 times as long as Cp and 2.4 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.23 times as long as Cp and 1.3 times as long as posterior pleurobranch.

Pl I with basipod 0.31 times as long as Cp and exopod 2.2 times as long as basipod. Pl II with basipod 0.30 times as long as Cp; exopod 2.2 and endopod 1.4 times as long as basipod, respectively. Pl III with basipod 0.31 times as long as Cp ; exopod 2.1 and endopod 1.3 times as long as basipod, respectively. Pl IV with basipod 0.31 times as long as Cp; exopod 1.9 and endopod 1.2 times as long as basipod, respectively. Pl V with basipod 0.27 times as long as Cp ; exopod 1.7 and endopod 1.0 times as long as basipod, respectively.

Up with exopod 5.0 times as long as wide, 5.5 times as long as basipod and 0.8 times as long as Cp ; endopod 3.8 times as long as wide and 0.7 times as long as exopod (Fig. 68C).

Petasma (Fig. 69A-B, Pl. 5B). PV tapering into sharp point, almost reaching end of LT, 3.6 times as long as wide. LI slightly overlapping LT, 2.1 times as long as wide and 0.8 times as long as PV. LT thick, bilobed at end, 1.2 times as long as wide, 0.6 times as long as PV, armed with 2 rows of hooks, along dorsal margin and on distolateral side, and with few apical hooks on each of terminal lobules. LC 2.8 times as long as wide and 1.1 times as long as PV, armed with few apical hooks. LAc rudimentary, as tubercle armed with single hook at base of LA. LA slender, 3.7 times as long as wide and 0.5 times as long as PV, armed with row of hooks on mesiodorsal side.

Photophores. Cp: 5 in lateral row. Scaphocerite: 4 organs medial to inner strip of muscle from 0.2 to


Fig. 70. Probable geographical distribution of Sergia fulgens. Black symbols indicate "Dana" stations, white symbols "Galathea" stations. Shaded areas without symbols are supported by literature data.
0.8-0.9 blade length. Up exopod: 1 organ at middle near tip of inner muscle strip, at 0.4-0.5 exopod length, and 1 distal organ near end of apical muscle strip, at 0.7-0.8 exopod length. Up endopod: 1 organ near base.

Other body photophores, all ventral, found on the following somites ( $\mathrm{al}=$ anterolateral, $\mathrm{l}=$ lateral, m $=$ medial, $\mathrm{pl}=$ posterolateral): $\mathrm{II}(1 \mathrm{~m})$, $\mathrm{III}(41)$, labrum $(1 m+21)$, IV $(2 m+21)$, V $(2 m+21)$, VI (2l), VII ( $2 \mathrm{~m}+2 \mathrm{l}$ ) VIII ( $1 \mathrm{~m}+2 \mathrm{l}$ ), IX ( 3 m ), X ( 3 m ), XI (3m), XII (3m), XIII (3m+2al), XIV (4al+2pl), XV ( $6 m+21$ ); XVI $(6 m+21)$, XVII $(6 m+21)$, XVIII $(4 m+21)$, XIX $(4 m+21), \mathrm{XX}(6 \mathrm{~m}+2 \mathrm{al})$. Total (with those in Cp rows): 102.

Other photophores found on the following appendages ( $d=$ distal, $p=$ proximal, Roman numerals indicate segments): eyestalk (lp+1d) A I (peduncle III-1d), A II (peduncle I-1p), Md (proper -1d, palpI-1d), Mx $I$ (Exp-1p), Mxp I (II -1p, III - 1d), $\operatorname{Mxp}$ II (II - 1d, III - 1d, IV - 1p, V - 1d, VI - 1d), Mxp III (III - 1d, IV - 1d, V - 1d, VI - 1d), P I (III - 1p, IV $-1 \mathrm{p}+1 \mathrm{~d}, \mathrm{~V}-1 \mathrm{~d}$ ), P II (III $-1 \mathrm{p}+1 \mathrm{~d}$, IV - 1d), P III (III - 1p+1d, IV - 1d, V - 1d), P IV (III $1 \mathrm{p}+1 \mathrm{~d}, \mathrm{IV}-1 \mathrm{~d}$ ), P V (III - 1 (male)/2 (female), IV - 1d), Pl I - Pl V (I - 1p). Total (with those on scaphocerite and Up): 94 in male or 96 in female.

Thus, the total number of observed photophores in all examined specimens ranges from 196 in males to 198 in females.

Remarks: "Dana" specimens of $S$. fulgens agree with Hansen's original description (1919), varying
only slightly in the form of the rostrum (which is sometimes blunt) and the distoventral process on male A I peduncle (which always remains bifid, but varies in the relative length of the distal lobules), in proportions and armature of LT (that is always bilobed) and LA. The number of photophores remains constant in adults, although in younger specimens there may be 4 instead of 5 organs in the lateral Cp row. $S$. fulgens is very similar to $S$. challengeri in the photophore adornment and exceeds the latter in total number by only 3 organs ( $1.5 \%$ ) due to a greater number in the lateral Cp row and few minor differences in the arrangement of photophores on thoracic sternites and appendages.

Sergia fulgens is related to $S$. challengeri, S. talismani, S. oksanae n. sp. and S. stellata (see affinities and differences in remarks to $S$. challengeri). It differs from all other species of the species group in having an-elongated bidentate distoventral process on the terminal segment of the male A I peduncle. Other differences and affinities between $S$. fulgens and all other species of the species group are shown in Table 7.

Geographical distribution (Fig. 70): Indian and Pacific Oceans.

Indian Ocean: Western part, off Sri Lanka ("Dana"), off Indonesian islands ("Dana"; Hansen 1919).

Pacific: Off the Philippines and New Guinea ("Dana" and "Galathea"), off Hawaii (Walters 1976).


Fig. 71. Sergia hansjacobi, holotype, male, "Dana" St. 1198-2, Cp length 8.5 mm . - A, lateral view of $\mathrm{Cp} .-\mathrm{B}$, scaphocerite. C, Up.

The occurrence of $S$. fulgens is like that of the whole group (see remarks to the species group). $S$. fulgens and S. jeppeseni are parapatric, the former occurring east of $50^{\circ} \mathrm{E}$ in the Indian and Pacific Oceans, the latter living west of $50^{\circ} \mathrm{E}$ in the Indian Ocean. S. fulgens is sympatric with S. challengeri, S. talismani, S. stellata, S. umitakae and S. oksanae, and allopatric to $S$. hansjacobi and $S$. challengeri.

Vertical range: A benthopelagic species, migrating daily between the lateral continental-slope contact zone (Vereshchaka 1995a) and the epi-/ mesopelagic zone. "Dana" specimens were taken within the depth range $20-500 \mathrm{~m}$. Most specimens occur at $100-300 \mathrm{~m}$ at night and at about 700 m during the day.

## Sergia hansjacobi Vereshchaka, 1994

Figs. 71-73, Pl. 2C
Sergia hansjacobi Vereshchaka, 1994a: 91, fig. 23.
Material examined: "Dana" stations: 1174-1 ( $4 \mathrm{~m} 8^{1 / 2}$-10); 1189-1 (1f $9 \& 1 \mathrm{~m} 9$ ); 1192-5 (1m 9);

1196-1 (4f 8-10); 1198-1 (5f $4^{1 / 2-91 / 2}$ \& 8m 61/2$9^{1 / 2}$ ); 1198-2 (13f $4^{1 / 2}$-10 \& 6m 6¹/2-10); 1198-3 (21f $5-9 \& 16 \mathrm{~m} \mathrm{5-8}$ ); $1223-2$ ( 1 m 8 ); 1223-6 ( $1 \mathrm{f} 7^{1 / 2}$ \& $1 \mathrm{~m} 8^{1 / 2}$ ); 1230-5 (1f $5^{1 / 2}$ ); 1250-1 ( $5 \mathrm{~m} 9-10$ ); 12502 (7f 41/2-81/2); 1250-3 (1m 8); 1253-1 (4f 5-91/2 \& $11 \mathrm{~m} 6^{1 / 2}-9^{1 / 2}$ ); 1256-1 (4f 7-10 \& 5m $6^{1 / 2}-9^{1 / 2}$ ); 1256-2 ( $4 \mathrm{f} 6^{1 / 2-9} \& 1 \mathrm{~m} 7^{1 / 2}$ ); 1256-3 ( $2 \mathrm{~m} 7-8$ ); 1256-4 ( 1 m 8 ); 1257-1 (1f 91/2); 1260-2 ( $2 \mathrm{f} 5-6^{1 / 2}$ ); 1260-3 (5f 5-6 \& 1m $6^{1 / 2}$ ); 1261-3 (1f 6); 1261-4 (8f $3-4^{1 / 2} \& 4 \mathrm{~m} 4^{1 / 2}-8$ ); 1266-1 (1f $8 \& 3 \mathrm{~m} 7^{1 / 2}-9^{1 / 2}$ ); 1266-2 ( $1 \mathrm{~m} 8^{1 / 2}$ ); 1268-1 (2f 9-10); 1269-5 (1f 8); 1270-1 ( $2 \mathrm{f} 6-10^{1 / 2} \& 2 \mathrm{~m} 9$ ); 1270-7 (2f 7-71/2); 1272-1 (2f 8); 1273-1 (1f 7 \& 1m 61/2); 1273-11 (1m7); 1274-1 (3f 8-9 \& 5m 7-8¹/2); 1276-1 (10f 6$11 \& 6 \mathrm{~m} 7-8^{1 / 2}$ ); 1278-1 ( $15 \mathrm{f} 7-10$ \& $10 \mathrm{~m} 7-9^{1 / 2}$ ); $1278-2\left(4 \mathrm{f} 7-9^{1 / 2}\right.$ \& $2 \mathrm{~m} 8^{1 / 2-9}$ \& $9 \mathrm{j} 3-4^{1 / 2}$ ); 1278-3 (1f $3^{1 / 2} \& 1 \mathrm{~m} 6^{1 / 2}$ ); 1278-4 ( $3 \mathrm{~m} 4^{1 / 2}-8$ ); 1279-1 (2f 9$9^{1 / 2} \& 1 \mathrm{~m} 7$ ); 1280-2 ( $1 \mathrm{~m} 8^{1 / 2}$ ); 1281-1 (1f 7); 12812 ( $1 \mathrm{~m} 7^{1 / 2}$ ) ; 1281-4 (5f $5^{1 / 2}$-10 \& 5m 6-9); 1281-6 (1f 10); 1281-9 (3f 4-10 \& $1 \mathrm{~m} 8^{1 / 2}$ ); 1286-2 (1f 6); 1287-1 (1f $9^{1 / 2}$ ); 1287-2 ( 1 f 8 \& 1m $8^{1 / 2}$ ); 1288-4 (1f 8); 1289-1 ( $2 \mathrm{~m} 8^{1 / 2}$-10); 1289-2 ( $6 \mathrm{~m} 5-8^{1 / 2}$ ); 1289-3 (if $7^{1 / 2} \& 10 \mathrm{~m} 4^{1 / 2}-8^{1 / 2}$ ); 1289-7 ( $2 \mathrm{f} 7^{1 / 2}-9$ \& $4 \mathrm{~m} 5^{1 / 2-}$ $9^{1 / 2}$ ); 1289-8 (3m 5-91/2); 1289-9 (3f 4-5 \& 1 m 5 ); 1291-1 (2m 9); 1292-3 (1m 9); 1292-5 (1f $6 \& 1 \mathrm{~m}$ 5); 1293-1 (3m 7-91/2); 1293-2 (1f 5); 1293-3 (6f 56 \& $2 \mathrm{~m} 5^{1} / 2-6$ ); 1293-4 (4f 4-5 \& 2m 5-8); 1294-1 ( $1 \mathrm{~m} 9^{1 / 2}$ ); 1294-3 (7f 5-9 \& 4m 6-7 ${ }^{1 / 2}$ ); 1294-4 (2f $2^{1 / 2}-8^{1 / 2}$ ) ; 1296-1 (1m $8^{1 / 2}$ ); 1314-1 (1f $9^{1 / 2}$ ); 1314-2 (2f 7-81/2); 1314-3 (1f $6 \& 4 m 5^{1 / 2-8}$ ); 1314-4 (2f 8$9^{1 / 2}$ ).

Holotype (ZMUC CRU 3613, "Dana" St. 11982, 800 mw ).

Type locality: Caribbean Sea, $17^{\circ} 43^{\prime} \mathrm{N}$, $64^{\circ} 56^{\prime} \mathrm{W}$.

Type material: Holotype of Sergia hansjacobi (ZMUC, see above, examined).

Diagnosis: Integument firm; rostrum acute and unidentate; cornea well pigmented, black, considerably wider than eyestalk; terminal segment of male A I peduncle without strong stout seta or process near distoventral end; A I flagellum in male with segment 3 bearing rudimentary tubercle overlapped by strong terminal seta, not reaching end of segment 4 of flagellum and with segment 4 bearing 1213 serrated bristles on dorsal surface; scaphocerite 3.5 times as long as wide, with distal tooth reaching end of blade; PV of petasma not curved at tip; LI
voluminous, strongly curved in semicircle, with tip directed laterally; LT divided, considerably overlapping PV; LC not overlapping other lobes and processes; LA rudimentary, not overlapping LAc; photophores arranged in lateral row of 5-6 on Cp, row of 5 on scaphocerite, 2 medial and 1 distal organ on Up exopod, 1 basal organ on Up endopod.

Description: Cp 1.9 times as long as high and 0.36 times as long as abdomen; hepatic spine blunt (Fig. 71A). Abdomen with somite VI 1.6 times as long as high and 1.3 times as long as telson; telson 4.2 times as long as wide.

Cornea 1.0 times as long as wide, 0.7 times as long and 1.3 times as wide as eyestalk. A I peduncle 0.8 times as long as Cp , with segments 2 and 3 0.48 and 0.45 times as long as segment 1 , respectively; terminal segment of A I peduncle without strong stout seta or prominent process on distoventral side; outer A I flagellum in male with segment 3 bearing rudimentary tubercle overlapped by single long stout seta, not reaching end of segment 4 of flagellum and with segment 4 not subdivided and bearing 12-13 serrated bristles on dorsal surface and numerous setae on ventral surface (Fig. 72C). A II peduncle 0.4 times as long as scaphocerite; latter with strong distal tooth reaching end of blade (Fig. 71B), 3.6 times as long as wide, 0.91 times as long as A I peduncle.

Md palp 0.37 times as long as Cp , with proximal segment 1.9 times as long as distal one. Mx I with palp 1.7 times as long as wide and 0.05 times as long as Cp ; endopod 1.7 times as long as wide and 1.7 times as long as palp; endite 1.7 times as long as wide and 1.3 times as long as palp. Mx II with exopod 3.1 times as long as wide and 0.29 times as long as Cp; palp 4.0 times as long as wide and 0.13 times as long as Cp ; endopod 2.0 times as long as wide and 0.9 times as long as palp; endites subequal, 2.0 times as long as wide and 0.4 times as long as palp.

Mxp I with exopod 3.2 times as long as wide and 0.18 times as long as Cp ; endopod 1.3 times as long as exopod; segments 2 and 31.2 and 1.5 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 1.0 , carpus 0.8 , propodus 0.9 , and dactyl 0.4 times as long as ischium. Mxp III 1.5 times as long as Cp , with merus, carpus, propodus 0.9 , and dactyl 0.8 times as long as ischium; propodus divided into 3 subsegments, subdivision of dactyl uncertain.


Fig. 72. Sergia hansjacobi, holotype, male, "Dana" St. 1198-2, Cp length 8.5 mm . A , oral view of petasma. -B , caudal view of petasma. - C, male outer A I flagellum.

P I 1.1 times as long as $C$ p, with merus 3.3 , carpus 1.9 , and propodus 3.2 times as long as ischium; propodus divided into 7 subsegments. P II 1.6 times as long as Cp , with merus 3.1 , carpus 2.6 , propodus 3.0, and dactyl 0.1 times as long as ischium; propodus divided into 9 subsegments. P III 1.9 times as long as Cp , with merus 3.4 , carpus 2.8 , propodus 3.0, and dactyl 0.2 times as long as ischium; propodus divided into 12 subsegments. P IV 1.2 times as long as Cp , with merus 1.6 , carpus 1.0 , and propodus 1.1 times as long as ischium. P V 0.7 times as long as Cp , with merus 1.2 , carpus 0.8 , and propodus 0.7 times as long as ischium.
Somite VIII with arthrobranch 0.11 times as long as Cp and 2.4 times as long as epipod. Somite IX with anterior pleurobranch 0.19 times as long as Cp and 4.5 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.22 times as long as Cp and 5.4 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.26 times as long as Cp and 6.3 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.26 times as long as Cp and 2.4 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.21 times as long as Cp and 1.3 times as long as posterior pleurobranch.

Pl I with basipod 0.33 times as long as Cp and exopod 2.2 times as long as basipod. Pl II with basipod 0.31 times as long as $C p$; exopod 2.5 and endopod 1.5 times as long as basipod, respectively. PI III with basipod 0.31 times as long as Cp ; exopod 2.4 and endopod 1.4 times as long as basipod, respectively. Pl IV with basipod 0.29 times as long as Cp ; exopod 2.3 and endopod 1.3 times as long as basipod, respectively. PI V with basipod 0.26 times as long as Cp; exopod 2.1 and endopod 1.1 times as long as basipod, respectively.

Up with exopod 4.8 times as long as wide, 6.2 times as long as basipod and 0.8 times as long as Cp ; endopod 3.8 times as long as wide and 0.7 times as long as exopod (Fig. 71C).

Petasma (Fig. $72 \mathrm{~A}-\mathrm{B}$ ). PV tapering into sharp point, 5.0 times as long as wide, tip almost straight. LI voluminous, reaching end of LT, 3.7 times as long as wide and 0.6 times as long as PV, if straightened. LT with distal lobule narrow, 2.2 times as long as wide and 0.5 times as long as PV, bearing small tubercle in middle of lateral side and several hooks on distomedial side; proximal lobule robust, 0.8 times as long as wide, 0.3 times as long as PV, covered with several hooks. LC slender, reaching end of proximal lobule of LT and not reaching ends of PV and LI, 1.7 times as long as wide and 0.3 times as long as PV, armed with few stronger apical hooks. LAc small, as papilla near base of PV, 0.7 as long as wide and 0.1 times as long as PV, armed with few hooks. LA rudimentary, as tubercle near base of PV, 1.3 times as long as wide and 0.1 times as long as PV, armed with single small apical hook.
Photophores. Cp: 5-6 in lateral row. Scaphocerite: 5 organs medial to inner strip of muscle from $0.2-0.3$ to $0.7-0.8$ blade length. Up exopod: 2 organs at middle near tip of inner muscle strip, at 0.4-0.6 exopod length, and 1 distal organ near end of apical muscle strip, at 0.7-0.8 exopod length. Up endopod: 1 organ near base.

Other body photophores, all ventral, found on the following somites ( $\mathrm{al}=$ anterolateral, $\mathrm{l}=$ lateral, m $=$ medial, $\mathrm{pm}=$ posteromedial): II (1m), III (41), labrum $(1 m+21)$, IV $(2 m+21)$, V ( $2 m+21$ ), VI ( 21 ), VII ( $2 \mathrm{~m}+2 \mathrm{l}$ ) VIII (1m+2l), IX (3m), X (3m), XI ( 3 m ), XII ( 3 m ), XIII ( $3 \mathrm{~m}+2 \mathrm{al}$ ), XIV ( $2 \mathrm{pm}+4 \mathrm{al}$ ), XV $(6 m+21) ;$ XVI $(6 m+2 l)$, XVII $(6 m+21)$, XVIII $(4 m+21)$, XIX $(4 m+21), X X(5 m+2 \mathrm{al})$. Total (with those in Cp rows): 101-103 organs.

Other photophores found on the following appendages $(\mathrm{d}=$ distal, $\mathrm{p}=$ proximal, Roman
numerals indicate segments): eyestalk (lp+1d) A I (peduncle III - 1d), A II (peduncle I - 1p), Md (proper - 1d, palp I - 1d), Mx II (Exp - 1p), Mxp I (II - 1d, III - 1d), Mxp II (II - 1d, III - 1d, IV - 1p, V - 1d, VI - 1d), $\operatorname{Mxp}$ III (II - 1d, III - 1d, IV - 1d, V - 1d, VI - 1d), P I (IV - 1p+1d, V - 1d), P II (III 1p+1d, IV - 1d, V - 1d), P III (III - 1p+1d, IV - 1d, V - 1d), P IV (III - 1p+1d, IV - 1d), P V (III $1 \mathrm{p}+1 \mathrm{~d}$, IV - 1d), Pl I - Pl V (I - 1p). Total (with those on scaphocerite and Up): 102 organs.

Thus, the total number of observed photophores in all examined specimens ranges from 203 to 205.

Remarks: Colour in life is shown in Pl. 2C.
In the original description (Vereshchaka 1994a: 92), I wrote about the male A I outer flagellum: "joint III with tubercle widening distally and never reaching end of joint IV." Disagreement with the description above, where I report on the rudimentary tubercle, is accounted for by the different terminology: in my previous paper, the finger-like protrusion on segment 3 (not the tubercle on this protrusion) was called a tubercle. After re-examination of the "Dana" material, I found the number of photophores in the lateral Cp row to range from 5 to 6 (the posterior one is usually small and often hardly visible), usually being 6 . Re-examination also revealed the number of dorsal serrated bristles to vary from 12 to 13 . The "Dana" specimens also vary slightly in the position of the photophores on the body and appendages (although their number remains constant), the degree of curvature of LI of the petasma (which is usually close to semicirclar), and in the armature and relative length of LAc and LA (the former is never overlapped by the latter). In the total photophore number, $S$. hansjacobi exceeds all the species group members mentioned above, from $0.5 \%$ ( $S$.talismani) to $5.2 \%$ ( $S$. challengeri), in average.

Sergia hansjacobi is closest to S. jeppeseni in having (1) 3 photophores on Up exopod, (2) hepatic spine blunt, (3) male A I with peduncle lacking distoventral process or very strong seta and (4) clasping organ well developed, (5) flagellum with segment 3 bearing rudimentary tubercle, (6) distal tooth on scaphocerite not overlapping blade, (7) PV of petasma not curved laterally, (8) LI voluminous, evenly curved, (9) LT bilobed, (10) LT overlapping PV, and (11) LC not overlapping other lobes and processes. S. hansjacobi differs from all other species of the species group in having (1) 5 pho-


Fig. 73. Probable geographical distribution of Sergia hansjacobi (triangles), $S$. stellata (circles, cross hatching) and S. oksanae n. sp. (diamonds). Black symbols indicate "Dana" stations, white symbols "Galathea" stations.
tophores on the scaphocerite and (2) LI voluminous and evenly curved in semicircle. Other differences and affinities between $S$. hansjacobi and all other species of the species group are shown in Table 7.

Geographical distribution (Fig. 73): North Atlantic Ocean only: Insular and coastal waters of the Caribbean Sea, in the vicinity of the north coast of South America ("Dana"; Vereshchaka 1994a). The species does not occur in the Indian Ocean, as was supposed before (Vereshchaka 1994a). Further examination of the "Dana II" collections has proved that the species mentioned and figured by Illig (1927) as S. challengeri is identical to S. jeppeseni n. sp, not to $S$. hansjacobi. The occurrence of $S$. hansjacobi is like that of the whole group (see remarks to the species group). It is sympatric with S. talismani and allopatric to S. challengeri, S. fulgens, S. stellata, S. umitakae, S. oksanae n. sp. and S. jeppeseni.

Vertical range: A benthopelagic species, migrating daily between the lateral continental-slope contact zone (Vereshchaka 1995a) and the lateral mesopelagic zone. "Dana" specimens were taken within the depth range $30-1700 \mathrm{~m}$. Most specimens occur at 300-400 m at night; only 2 specimens were sampled during the day, at about 1700 m , which makes estimation of the depth occupied during the day uncertain.

## Sergia jeppeseni n. sp.

Figs. 67, 74-75; Pl. 5F
Sergestes challengeri. - Illig 1927 (part): 197, figs. 36, 39.

Material examined: "Dana" station: 3943-1 (1m 10.3).

Holotype: male ( Cp length 10.3 mm , ZMUC CRU 3614), "Dana" St. 3943-1, sampled 25 Dec. 1929, 500 mw .

Type locality: Western Indian Ocean off Mombasa, $5^{\circ} 30^{\prime} \mathrm{S}, 40^{\circ} 40^{\prime} \mathrm{E}$.

Type material: Holotype (ZMUC, see above).
Diagnosis: Integument firm; rostrum acute and bidentate; cornea well pigmented, black, considexably wider than eyestalk; terminal segment of male A I peduncle without strong stout seta or process near distoventral end; A I flagellum in male with segment 3 bearing rudimentary tubercle overlapped by strong terminal seta, reaching end of segment 4 of flagellum and with segment 4 bearing 8 serrated bristles on dorsal surface; scaphocerite with distal tooth reaching end of blade; PV of petasma not curved at tip; LI voluminous, curved in complete circle, with tip directed proximally; LT divided, considerably overlapping PV;, LC not overlapping other lobes and processes; LA small, overlapping LAc; photophores arranged in lateral row of 6 on


Fig. 74. Sergia jeppeseni n. sp., holotype, male, "Dana" St. 3943-1, Cp length 10.3 mm . - A, lateral view of Cp. - B, scaphocerite. - C, Up.

Cp , row of 6 on scaphocerite, 2 medial and 1 distal organ on Up exopod, 2 basal organs on Up endopod.

Description: Cp 2.0 times as long as high and 0.46 times as long as abdomen; hepatic spine acute (Fig. 74A). Abdomen with somite VI 1.8 times as long as high and 1.3 times as long as telson; telson 3.6 times as long as wide.

Eyestalk with cornea well pigmented, black, 1.0 times as long as wide, 0.9 times as long and 1.3 times-as wide as eyestalk. A I peduncle 0.6 times as long as Cp, with segments 2 and 30.45 and 0.48 times as long as segment 1 , respectively;, terminal segment of A I peduncle without strong stout seta or prominent process on distoventral side; outer A I flagellum in male with segment 3 bearing rudimentary tubercle overlapped by single long setae, reaching end of segment 4 of flagellum and with segment 4 not subdivided and bearing 8 serrated bristles on dorsal surface and several seta on ventral surface (Fig. 75C). A II peduncle 0.4 times as long as scaphocerite; latter with strong distal tooth reaching end of blade (Fig. 74B), 3.3 times as long as wide, 0.83 times as long as A I peduncle.

Md palp 0.32 times as long as $C p$, with proximal segment 2.0 times as long as distal one. Mx I with palp 1.9 times as long as wide and 0.06 times as long as Cp ; endopod 1.6 times as long as wide and 1.5 times as long as palp; endite 1.6 times as long as wide and 0.9 times as long as palp. Mx II with exopod 3.1 times as long as wide and 0.30 times as long as Cp ; palp 3.6 times as long as wide and 0.11 times as long as Cp ; endopod 1.9 times as long as wide and 0.9 times as long as palp; endites subequal, 1.8 times as long as wide and 0.4 times as long as palp.

Mxp I with exopod 3.2 times as long as wide and 0.17 times as long as Cp ; endopod 1.3 times as long as exopod; segments 2 and 31.1 and 1.5 times as long as segment 1 , respectively. Mxp II 0.8 times as long as Cp , with merus 1.1 , carpus 1.0 , propodus 0.9 , and dactyl 0.5 times as long as ischium. Mxp III 1.4 times as long as Cp , with merus 0.8 , carpus and propodus 0.9 , dactyl 0.8 times as long as ischium; propodus and dactyl divided into 3 and 5 subsegments, respectively.

P I 1.0 times as long as Cp, with merus 2.6 , carpus 1.4, and propodus 2.6 times as long as ischium; subdivision of propodus uncertain. P II 1.5 times as long as $C p$, with merus 3.5 , carpus 2.6 , propodus 3.4 , and dactyl 0.2 times as long as ischium; propodus divided into 9 subsegments. P III 1.8 times as long as Cp , with merus 3.5 , carpus 2.6 , propodus 3.1 , and dactyl 0.2 times as long as ischium; subdivision of propodus uncertain. P IV 1.1 times as long as $C$ p, with merus 1.6 , carpus and propodus 1.0 times as long as ischium. P V 0.6 times as long as Cp , with merus 1.2 , carpus and propodus 0.8 times as long as ischium.

Somite VIII with arthrobranch 0.14 times as long as Cp and 3.7 times as long as epipod. Somite IX with anterior pleurobranch 0.18 times as long as Cp and 4.8 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.19 times as long as Cp and 5.2 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.33 times as long as Cp and 6.0 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.26 times as long as Cp and 2.4 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.23 times as long as Cp and 1.5 times as long as posterior pleurobranch.

Pl I with basipod 0.31 times as long as Cp and exopod 2.2 times as long as basipod. Pl II with basi-


Fig. 75. Sergia jeppeseni n. sp., holotype, male, "Dana" St. 3943-1, Cp length 10.3 mm . - A, oral view of petasma. - B, caudal view of petasma. - C , male outer A I flagellum.
pod 0.29 times as long as Cp ; exopod 2.5 and endopod 1.5 times as long as basipod, respectively. PI III with basipod 0.28 times as long as Cp ; exopod 2.4 and endopod 1.4 times as long as basipod, respectively. Pl IV with basipod 0.27 times as long as Cp ; exopod 2.2 and endopod 1.3 times as long as basipod, respectively. Pl V with basipod 0.25 times as long as Cp ; exopod 1.7 and endopod 1.1 times as long as basipod, respectively.

Up with exopod 4.8 times as long as wide, 4.8 times as long as basipod and 0.6 times as long as Cp ; endopod 3.7 times as long as wide and 0.7 times as long as exopod (Fig. 74C).

Petasma (Fig. 75A-B; Pl. 5F). PV tapering into sharp point, 3.7 times as long as wide, tip nearly straight. LI reaching end of LT, 3.1 times as long as wide and 0.8 times as long as PV, if straightened. LT with distal lobule slender, 1.5 times as long as wide and 0.5 times as long as PV, bearing small tubercle with in middle of lateral side and few apical hooks; proximal lobule robust, 0.7 times as long as wide, 0.2 times as long as PV, armed with few very strong apical hooks. LC slender, overlapping proximal lobule of LT and PV and not reaching end
of distal lobule of LT, 2.8 times as long as wide and 0.5 times as long as PV, armed with few apical hooks. LAc small, 0.8 as long as wide and 0.1 times as long as PV, armed with single strong apical hook. LA short, 1.7 times as long as wide and 0.3 times as long as PV, armed with single very strong apical hook.

Photophores. Cp: 6 in lateral row. Scaphocerite: 6 organs medial to inner strip of muscle from 0.20.3 to 0.8-0.9 blade length. Up exopod: 2 organs at middle near tip of inner muscle strip, at 0.4-0.6 exopod length, and 1 distal organ near end of apical muscle strip, at $3 / 4$ exopod length. Up endopod: 2 organs near base.

Other body photophores, all ventral, found on the following somites ( $\mathrm{al}=$ anterolateral, $\mathrm{l}=$ lateral, m $=$ medial, $\mathrm{pm}=$ posteromedial): II (1m), III (41), labrum $(1 \mathrm{~m}+2 \mathrm{l})$, IV $(2 \mathrm{~m}+2 \mathrm{l})$, V ( $2 \mathrm{~m}+2 \mathrm{l}$ ), VI (2l), VII $(2 m+21)$ VIII $(3 m+21)$, IX ( $3 m$ ), X ( $3 m$ ), XI ( 3 m ), XII ( 3 m ), XIII ( $3 \mathrm{~m}+2 \mathrm{al}$ ), XIV ( $4 \mathrm{pm}+2 \mathrm{al}$ ), XV $(6 m+21)$; XVI $(6 m+21)$, XVII $(4 m+21)$, XVIII $(4 m+21)$, XIX $(4 m+21)$, XX $(5 m+2 a l)$. Total (with those in Cp rows): 103 organs.

Other photophores found on the following appendages $(\mathrm{d}=$ distal, $\mathrm{p}=$ proximal, Roman numerals indicate segments): eyestalk ( $\mathrm{lp}+1 \mathrm{~d}$ ) A I (peduncle III - 1d), A II (peduncle I - 1p), Md (proper - 1d, palp I - 1d), Mx H (Exp - 1p), Mxp I (II - 1d, III - 1d), Mxp II (II - 1d, III - Id, IV - 1p, V - 1d, VI - 1d), Mxp III (III - 1d, IV - 1d, V - 1d, VI - 1d), P I (IV - 1p+2d, V - 1d), P II (III - 1p+1d, IV - 1d, V - 1d), P III (III - 1p+1d, IV - 1d, V - 1d), P IV (III - 1p+1d, IV - 1d), P V (III - 1p+1d, IV 1d), Pl I - PIV (I - 1p). Total (with those on scaphocerite and Up): 106 organs.

Thus, the total number of observed photophores in the holotype is 209 (male).

Remarks: It is usually not recommendable to establish a new species on the single known specimen, even if the distinguishing characters are as clear and certain as in this species. However, Illig (1927) described and figured (figs. 36, 39) some specimens referred to $S$. challengeri that undoubtedly belong to the present new species, due at least to the very characteristic form of the petasma with a circular LI. Illig's specimens were taken very close to the single "Dana" locality of S. jeppeseni. Thus, the presence of very similar specimens within the restricted area gives additional support for establishing a new species. In the total photophore


Fig. 76. Sergia oksanae n. sp., holotype, male, "Dana" St. 3736-3, Cp length 6.8 mm . A, lateral view of Cp. - B, scaphocerite. - C, Up.
number, $S$. jeppeseni exceeds all the members of the species group, from $2.5 \%$ (S. hansjacobi) to $5.6 \%$ ( $S$. challengeri), in average.

Sergia jeppeseni is closest to S. hansjacobi (see affinities and differences between these species in remarks to $S$. hansjacobi). It differs from all other species of the species group in having (1) 6 photophores on the scaphocerite, (2) 2 photophores on the Up endopod, and (3) LI voluminous, curved in a complete circle. Other differences and affinities between $S$ jeppeseni and all other known species of the species group are shown in Table 7.

Etymology: This species is named after Mr. Poul Jeppesen, who for many years has been taking care of the ZMUC crustacean collection.

Geographical distribution (Fig. 67): Indian Ocean only: Western part only, off Mombasa ("Dana"), "northeast from Dar-es-Salam" (Illig 1927).

The occurrence of $S$. jeppeseni is like that of the whole group (see remarks to the species group). It
is parapatric to S. umitakae and S. fulgens, which occur east of $45-50^{\circ} \mathrm{E}$ in the Indian Ocean, while $S$. jeppeseni lives west of $45^{\circ} \mathrm{E}$, sympatric with S. talismani, and allopatric to $S$. challengeri, S. stellata, S. hansjacobi, and S. oksanae.

Vertical range: Probably a benthopelagic species, migrating daily between the lateral conti-nental-slope contact zone (Vereshchaka 1995a) and the epipelagic zone. The "Dana" specimen was taken at night at a depth of about 200 m .

## Sergia oksanae n. sp.

Figs. 73, 76-77; Pl. 5E
Sergestes sp. - Hansen 1919: 16, pl. 1, fig. 5a.
Material examined: "Dana" stations: 3736-3 (2f $7 \& 3 \mathrm{~m} 6^{1 / 2-7}$ ); 3793-1 (69f $3^{1 / 2-61 / 2}$ ); 3793-2 (29f $3^{1 / 2}-7 \& 19 \mathrm{~m} 3^{1 / 2}-6^{1 / 2}$ ); 3793-3 (30f 4-61/2 \& 18m 46); 3793-4 (36f $3^{1 / 2}-6^{1 / 2} \& 8 \mathrm{~m} 4^{1 / 2}-6$ ); 3797-1 (1f 5 \& $1 \mathrm{~m} 6^{1 / 2}$ ); 3830-6 ( $1 \mathrm{~m} 6^{1 / 2}$ ).

Holotype: male ( Cp length 6.8 mm , ZMUC CRU 3615), "Dana" St. 3736-3, sampled 28 Jun. 1929.

Paratype: 1 female ( Cp length 7.0 mm , ZMUC CRU 3616), same sample as holotype.

Type locality: Mindanao Sea, $9^{\circ} 17^{\prime} \mathrm{N}, 123^{\circ}$ 58'E.

Type material: Holotype + 1 paratype (ZMUC, see above).

Diagnosis: Integument firm; rostrum acute and unidentate; cornea well pigmented, black, wider than eyestalk; terminal segment of male A I peduncle without strong stout seta, with single very long and narrow process near distoventral end; clasping organ rudimentary; A I flagellum in male with segment 3 lacking tubercle and segment 4 lacking serrated bristles; scaphocerite with strong distal tooth overlapping blade; PV of petasma curved laterally at tip, LI well developed, not strongly curved, with tip directed distolaterally; LT bilobed, considerably overlapping PV; LC overlapping other lobes and processes; LA overlapping LAc; photophores arranged in lateral row of 5 on Cp , of 4 on scaphocerite, 1 medial and 1 distal organ on Up exopod, 1 basal organ on Up endopod.

Description: Cp 2.0 times as long as high and 0.34 times as long as abdomen; hepatic spine acute


Fig. 77. Sergia oksanae n. sp., holotype, male, "Dana" St. 3736-3, Cp length 6.8 mm . - A, caudal view of petasma. - B, oral view of petasma. - C, terminal segment of male A I. - D, male outer A I flagellum.
(Fig. 76A). Abdomen with somite VI 1.9 times as long as high and 1.5 times as long as telson; telson 3.5 times as long as wide.

Cornea 1.1 times as long as wide, 0.7 times as long and 1.2 times as wide as eyestalk. A I peduncle 0.7 times as long as Cp , with segments 2 and 3 0.43 and 0.50 times as long as segment 1 , respectively; terminal segment of A I peduncle without strong stout seta, bearing very long and narrow process on distoventral side (Fig. 77C); clasping organ rudimentary; outer A I flagellum in male with segment 3 bearing very short fingerlike protrusion and no tubercle and with segment 4 of flagellum not thickened, lacking dorsal serrated bristles, covered with few setae (Fig. 77D). A II peduncle 0.4 times as long as scaphocerite; latter with strong distal tooth overlapping blade (Fig. 76B), 3.8 times as long as wide, 0.91 times as long as A I peduncle.

Md palp 0.34 times as long as Cp , with proximal segment 1.9 times as long as distal one. Mx I with
palp 2.0 times as long as wide and 0.07 times as long as Cp ; endopod 1.4 times as long as wide and 1.3 times as long as palp; endite 1.5 times as long as wide and 0.9 times as long as palp. Mx II with exopod 3.1 times as long as wide and 0.34 times as long as Cp; palp 3.5 times as long as wide and 0.12 times as long as Cp ; endopod 1.5 times as long as wide and 0.9 times as long as palp; endites subequal, 1.8 times as long as wide and 0.5 times as long as palp.

Mxp I with exopod 2.9 times as long as wide and 0.18 times as long as Cp ; endopod 1.5 times as long as exopod; segments 2 and 31.1 and 1.8 times as long as segment 1 , respectively. Mxp II 0.9 times as long as Cp , with merus 1.1 , carpus and propodus 0.9 , and dactyl 0.4 times as long as ischium. Mxp III 1.3 times as long as $C p$, with merus, carpus and propodus 0.8 , and dactyl 0.6 times as long as ischium; subsegmentation of propodus and dactyl uncertain.

P I 1.0 times as long as Cp , with merus 2.6 , carpus 1.6, and propodus 2.5 times as long as ischium; propodus divided into 7 subsegments. P II 1.5 times as long as Cp , with merus 3.5 , carpus 2.7 , propodus 3.2 , and dactyl 0.2 times as long as ischium; propodus incompletely divided into 8 subsegments. P III 1.8 times as long as Cp , with merus 3.5 , carpus 2.7, propodus 3.4 , and dactyl 0.2 times as long as ischium; propodus incompletely divided into 12 subsegments. P IV 1.1 times as long as Cp, with merus 1.5 , carpus 0.9 , and propodus 1.1 times as long as ischium. P V 0.6 times as long as Cp , with merus 1.3 , carpus 0.9 , and propodus 0.7 times as long as ischium.

Somite VIII with arthrobranch 0.11 times as long as Cp and 2.6 times as long as epipod. Somite IX with anterior pleurobranch 0.18 times as long as Cp and 3.6 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.24 times as long as Cp and 3.9 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.24 times as long as Cp and 3.3 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.27 times as long as Cp and 2.8 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.23 times as long as Cp and 3.4 times as long as posterior pleurobranch.

Pl I with basipod 0.29 times as long as Cp and exopod 2.0 times as long as basipod. P1 II with basipod 0.29 times as long as Cp ; exopod 2.2 and endo-
pod 1.4 times as long as basipod, respectively. Pl III with basipod 0.28 times as long as Cp ; exopod 2.1 and endopod 1.4 times as long as basipod, respectively. Pl IV with basipod 0.28 times as long as Cp ; exopod 2.1 and endopod 1.2 times as long as basipod, respectively. Pl V with basipod 0.24 times as long as Cp; exopod 1.9 and endopod 1.1 times as long as basipod, respectively.

Up with exopod 4.8 times as long as wide, 5.0 times as long as basipod and 0.7 times as long as Cp ; endopod 3.8 times as long as wide and 0.7 times as long as exopod (Fig. 76C).

Petasma (Fig. 77A-B, Pl. 5E). PV slender, tapering into sharp point, 6.2 times as long as wide. LI overlapping LT, 3.6 times as long as wide and 0.7 times as long as PV. LT thick, bilobed at end, 1.0 times as long as wide, 0.6 times as long as PV, armed with 2 rows of hooks, along dorsal margin and on distolateral side, and with few apical hooks on each of terminal lobules. LC 2.3 times as long as wide and 0.9 times as long as PV, armed with several subapical hooks and single stronger apical hook. LAc developed, slender, 2.0 times as long as wide and 0.2 times as long as PV, armed with single apical hook. LA slender, 2.4 times as long as wide and 0.5 times as long as PV, armed with single apical hook.

Photophores. Cp: 5 in lateral row. Scaphocerite: 4 organs medial to inner strip of muscle from 0.20.3 to 0.8-0.9 blade length. Up exopod: 1 organ at middle near tip of inner muscle strip, at 0.4-0.5 exopod length, and 1 distal organ near end of apical muscle strip, at 0.7-0.8 exopod length. Up endopod: 1 organ near base.

Other body photophores, all ventral, found on the following somites ( $\mathrm{a}=$ anterolateral, $\mathrm{l}=$ lateral, $\mathrm{m}=$ medial): II (1m), III (41), labrum (1m+2l), IV $(2 m+21), V(2 m+21), V I(21), V I I(2 m+21) V I I$ (1m+2l), IX (3m), X (3m), XI (3m), XII (3m), XIII $(3 m+2 \mathrm{al})$, XIV $(4 \mathrm{pm}+2 \mathrm{al})$, XV $(6 \mathrm{~m}+2 \mathrm{l})$; XVI $(6 m+21)$, XVII $(6 m+21)$, XVIII $(4 m+21)$, XIX $(4 m+2 \mathrm{l}), \mathrm{XX}(5 \mathrm{~m}+2 \mathrm{al})$. Total (with those in Cp rows): 101 .

Other photophores found on the following appendages (d-distal, m - medial, p-proximal, Roman numerals indicate segments): eyestalk ( $\mathrm{lp}+1 \mathrm{~d}$ ) A I (peduncle III - 1d), A II (peduncle I 1p), Md (proper - 1d, palp I - 1d), Mx II (Exp - 1p), $\operatorname{Mxp}$ I (II - 1d, III - 1d), Mxp II (II - 1d, III - 1d, IV $-1 p, V-1 d, V I-1 d), \operatorname{Mxp}$ III (II - 1d, III - 1d, IV 1d, V - 1d, VI - 1d), P I (IV - 1p+1d, V - 1d), P II
(III - 1p+1d, IV - 1d, V - 1d), P III (III - 1p+1d, IV - 1d, V - 1d, VI - 1d), P IV (III - 1p+1d, IV - 1d), P V (III - 1p+1d, IV - 1d), Pl I - Pl V (I - 1p). Total (with those on scaphocerite and Up): 100.

Thus, the total number of observed photophores in all examined specimens is 201.

Remarks: Hansen (1919: 16) briefly described and figured a specimen of Sergestes which was considered to be close to $S$. challengeri in all peculiarities except for a reduced clasping organ and the presence of a very long distoventral process on the terminal segment of the male A I peduncle. Hansen referred this species to Sergestes sp., which is definitely identical to S. oksanae. All "Dana" specimens vary slightly in the length of the distoventral process on male A I peduncle (which is always present), proportions of the appendages, the branchial lobes, and in the form of rostrum and lobes and processes of the petasma, for instance, in the form of the PV (LT always overlaps PV). Adults of $S$. oksanae seem not to vary in the number and position of photophores, which are not depentent upon sex and are very close to the photophore patterns of S. challengeri, S. fulgens, and S. talismani. In the abundance of the luminescent organs. S. oksanae is in an intermediate position between the 2 former and the latter species: Sergia oksanae exceeds $S$. challengeri by $3.6 \%$ and S. fulgens by $2.0 \%$ in the total photophore number, while $S$. talismani exceeds $S$. oksanae by $1.0 \%$ in the same character. Sergia oksanae n. sp. is closely related to $S$. challengeri, S. fulgens, S. talismani, and S. stellata (see affinities and differences in remarks to $S$. challengeri). It differs from all other species of the species group in having a very long and narrow distoventral process on the terminal segment of male A I peduncle. Other differences and affinities between $S$. oksanae and all other known species of the species group are shown in Table 7.

Etymology: This species is named after my wife Oksana, who has supported me during my studies on sergestids.

Geographical distribution (Fig. 73): Indo-West Pacific only: Off Sumatra, Borneo, and Philippines ("Dana"), at location $06^{\circ} 11^{\prime} \mathrm{N}, 120^{\circ} 37^{\prime} \mathrm{E}$ (Hansen 1919).

The occurrence of $S$. oksanae is like that of the whole group (see remarks to the species group). $S$.
oksanae and S. stellata are parapatric, the former occurring east of Sumatra, the latter living west of this island. S. oksanae is sympatric with S. challengeri, S. fulgens, and S. talismani and parapatric to $S$. hansjacobi, S. umitakae, and S. jeppeseni n . sp.

Vertical range: A benthopelagic species, migrating daily between the lateral continental-slope contact zone and the epipelagic zone. "Dana" specimens were taken within the depth range $20-1200 \mathrm{~m}$. Most specimens occur at $30-80 \mathrm{~m}$ at night and at about 500 m during the day.

## Sergia stellata (Burkenroad, 1940), n. comb.

Figs. 73, 78-79; P1. 5D
Sergestes stellatus Burkenroad, 1940: 43.
Sergestes (Sergia) stellatus. - Yaldwyn 1957: 9.
Material examined: "Dana" stations: 3830-6 (7f $4^{1 / 2}-8 \& 5 \mathrm{~m} 4^{1 / 2-7}$ ); 3838-1 (1f $6^{1 / 2} \& 2 \mathrm{~m} 6-6 \frac{1}{2}$ ); 3849-1 ( $1 \mathrm{~m} 5^{1 / 2}$ ); 3860-20 ( $2 \mathrm{f} 6^{1 / 2-7} \& 6 \mathrm{~m} 5^{1 / 2}-7$ ); 3873-1 (4f 51/2-6¹2 $) ; 3873-2\left(2 f 6^{1 / 2}\right) ; 3873-3(1 \mathrm{~m}$ 6); 3874-1 (1f $5 \& 4 \mathrm{~m} 5^{1 / 2}-6^{1 / 2}$ ); 3874-2 ( $2 \mathrm{~m} 4^{1 / 2}$ $5^{1 / 2}$ ); 3874-3 (2f 6); 3874-4 (1f $7 \& 1 \mathrm{~m} 5^{1 / 2}$ ); 38761 (2f $6^{1 / 2} \& 6 \mathrm{~m} 6-6^{1 / 2}$ ); 3876-3 (2f 5-6 ${ }^{1 / 2}$ ); 3880-1 ( $1 \mathrm{~m} 6^{1 / 2}$ ) ; 3882-1 ( $2 \mathrm{f} 41 / 2-5 / 2 \& 4 \mathrm{~m} 4-7$ ); 3884-1 ( 2 f $4^{1 / 2-7} 7^{1 / 2}$ ); 3884-3 ( $1 \mathrm{~m} 5^{1 / 2}$ ); 3891-1 (13f 4-8 \& 9m 5$61 / 2$ ); 3891-2 (10f 5-6 \& 6m 5-5 12 ); 3891-3 (11f 4$7^{1 / 2} \& 6 \mathrm{~m} \mathrm{4} 1 / 2-6^{1 / 2}$ ); 3891-4 (9f $4^{1 / 2-71 / 2} \& 4 \mathrm{~m} 5$ ); 3892-1 (8f $4^{1 / 2-61 / 2} \& 12 \mathrm{~m} 4^{1 / 2}-7$ ); 3892-2 (11f $4^{1 / 2}$ $8^{1 / 2} \& 7 \mathrm{~m} 5-6^{1 / 2}$ ); 3892-3 (1f $8 \& 2 \mathrm{~m}$ 6-61/2); 38933 (5f 5-61/2 \& 3m 5-51/2); 3893-7 (3f $7^{1 / 2}-9$ ); 3893-8 (38f 4-9 \& 7m 4 ${ }^{1 / 2-51 / 2}$ ); 3893-9 (3f $4^{1 / 2-8}$ ); 3894-1 ( $5 \mathrm{f} 6^{1 / 2-7}{ }^{1} / 2 \& 2 \mathrm{~m} 4^{1} / 2-6^{1 / 2}$ ); 3894-2 (9f $4^{1 / 2-6} 1 / 2 \& 2 \mathrm{~m}$ $4^{1 / 2-5} 1 / 2$ ); 3894-3 (3f 7-81/2); 3897-1 (1f 7); 3897-2 (1f $7 \& 1 \mathrm{~m} \mathrm{5} / 2$ ) ; 3897-3 (1f $8 \& 2 \mathrm{~m} 6-7$ ); 3897-4 (1f $7^{1 / 2} \& 1 \mathrm{~m} 5^{1 / 2}$ ); 3899-2 ( $2 \mathrm{f} 4^{1 / 2-5} \& 2 \mathrm{~m} 4^{1 / 2}-5^{1 / 2}$ ); 3902-2 (2f $6 \& 5 \mathrm{~m} 6^{1 / 2}-7$ ); 3902-3 ( $2 \mathrm{f} 5-6^{1 / 2}$ ); 39033 ( $6 \mathrm{f} 3^{1 / 2}-6^{1 / 2} \& 4 \mathrm{~m} 5^{1 / 2}-6^{1 / 2}$ ); 3904-1 ( $2 \mathrm{~m} 6^{1 / 2}-7$ ); 3904-2 (1m 6¹/2); 3904-4 (3m 4¹/2-61/2); 3904-5 (2f 5-6 ${ }^{1 / 2}$ \& 1m 7); 3905-2 ( $2 \mathrm{f} 6^{1 / 2}$ ); 3905-3 (5f 6-81/2 \& 2m 6-7); 3905-4 (4f 41/2-71/2 \& 6m 4 $4^{1 / 2-6}$ ); 3906-2 (1f $71 / 2$ ); 3906-4 (1f 8 ); 3907-1 (1f $7^{1 / 2}$ ); 3907-2 (1f 7 \& 1m 6½); 3907-3 (1f $7^{1 / 2} \& 4 \mathrm{~m}^{1 / 212-71 / 2}$ ); 39074 (1f 61/2 \& 3m 6-7); 3908-1 (1f $8 \& 4 m 6-7$ ); 39082 (12f 6-8 \& 10m 6-8); 3908-3 (18f 61/2-8 ${ }^{1 / 2} \& 14 \mathrm{~m}$ 6-7¹/2); 3909-2 ( 2 m 6 ¹/2-7); 3910-1 (11f 7-9 \& 1 m 8); 3910-2 (41f 4-9 ${ }^{1 / 2} \& 12 \mathrm{~m} 6-7^{1 / 2}$ ); 3912-3 ( $2 \mathrm{f} 6^{1 / 2-}$ $8^{1 / 2} \& 3 \mathrm{~m} 6^{1 / 2-7}{ }^{1 / 2}$ ); 3913-2 (1m 6); 3913-3 (4f 7-9
\& $4 \mathrm{~m} 6-7$ ); 3913-4 (2f 61/2-71/2 \& $1 \mathrm{~m} 6^{1 / 2}$ ); 3914-3 (11f $\left.6^{1 / 2}-8 \& 10 \mathrm{~m} 6^{1 / 2-7} 1 / 2\right) ; 3914-5\left(2 \mathrm{~m} 7^{1 / 2}\right) ; 3915-$ $2\left(2 f 6-6^{1 / 2} \& 1 \mathrm{~m} 7^{1 / 2}\right.$ ) ; 3915-3 (15f $4^{1 / 2-8} \& 2 \mathrm{~m} 6^{1 / 2}-$ 7).
"Galathea" stations: 298 ( 1 m 8 ); 316 ( $1 \mathrm{~m} 7^{1 ⁄ 2}$ ). Holotype (ZMUC CRU 1607, "Dana" St. 3908$1,1000 \mathrm{mw})$.

Type locality: Indian Ocean off Sri Lanka, $4^{\circ} 28^{\prime} \mathrm{N}, 82^{\circ} 13^{\prime} \mathrm{E}$.

Type material: Holotype (ZMUC, see above, examined).

Diagnosis: Integument firm; rostrum acute and unidentate; cornea well pigmented, black, wider than eyestalk; terminal segment of male A I peduncle bearing 2 strong stout setae and triangular blunt process near distoventral end; A I flagellum in male with segment 3 bearing well developed tubercle reaching end of segment 4 of flagellum and segment 4 bearing $8-9$ serrated bristles on dorsal surface; scaphocerite with strong distal tooth reaching end of blade; PV of petasma laterally curved at tip; LI rudimentary; LT bilobed, overlapping other lobes and processes; LC small, not overlapping PV; LA not overlapping LAc; photophores arranged in lateral row of 4 on $C p$, row of 4 on scaphocerite, 1 medial and 1 distal organ on Up exopod, 1 basal organ on Up endopod.

Description: Cp 1.8 times as long as high and 0.31 times as long as abdomen; hepatic spine blunt (Fig. 78A). Abdomen with somite VI 1.7 times as long as high and 1.5 times as long as telson; telson 3.7 times as long as wide.

Cornea 1.1 times as long as wide, 1.0 times as long and 1.4 times as wide as eyestalk. A I peduncle 0.7 times as long as Cp, with segments 2 and 3 0.48 and 0.59 times as long as segment 1 , respectively; terminal segment of A I peduncle with 2 very strong stout seta and triangular blunt process in distoventral side (Fig. 79C); outer A I flagellum in male with segment 3 bearing tubercle overlapping segment 4 of flagellum and with segment 4 subdivided and bearing 8-9 serrated bristles on dorsal surface and several setae on ventral surface (Fig. 79D). A II peduncle 0.4 times as long as scaphocerite; latter with distal tooth reaching end of blade (Fig. 78B), 3.5 times as long as wide, 1.0 times as long as A I peduncle.


Fig. 78. Sergia stellata, holotype, male, "Dana" St. 3908-1, Cp length 6.8 mm . - A, lateral view of Cp. - B, scaphocerite. - C, Up.

Md palp 0.33 times as long as Cp , with proximal segment 1.7 times as long as distal one. Mx I with palp 3.3 times as long as wide and 0.06 times as long as Cp ; endopod 1.7 times as long as wide and 1.7 times as long as palp; endite 2.4 times as long as wide and 1.2 times as long as palp. Mx II with exopod 3.1 times as long as wide and 0.32 times as long as Cp; palp 3.8 times as long as wide and 0.12 times as long as Cp ; endopod 1.6 times as long as wide and 0.9 times as long as palp; endites subequal, 1.1 times as long as wide and 0.3 times as long as palp.

Mxp I with exopod 2.6 times as long as wide and 0.17 times as long as Cp ; endopod 1.4 times as long as exopod; segments 2 and 31.0 and 1.7 times as long as segment 1 , respectively. Mxp II 0.8 times as long as Cp , with merus 1.0 , carpus 0.9 , propodus 1.0, and dactyl 0.5 times as long as ischium. Mxp III 1.3 times as long as Cp, with merus, carpus and propodus 0.8 , dactyl 0.7 times as long as ischium; subdivision of propodus and dactyl uncertain.

P I 1.0 times as long as Cp, with merus 2.1, carpus 1.4, and propodus 2.1 times as long as ischium; subdivision of propodus uncertain. P II 1.4 times as long as Cp , with merus 3.0 , carpus 2.6 , propodus
3.0, and dactyl 0.2 times as long as ischium; subdivision of propodus uncertain. P III 1.7 times as long as Cp , with merus 3.1 , carpus 2.5 , propodus 2.7, and dactyl 0.2 times as long as ischium; subdivision of propodus uncertain. P IV 1.1 times as long as Cp, with merus 1.5 , carpus and propodus 1.0 times as long as ischium. P V 0.6 times as long as Cp , with merus 1.2 , carpus 0.9 , and propodus 0.8 times as long as ischium.

Somite VIII with arthrobranch 0.15 times as long as Cp and 5.8 times as long as epipod. Somite IX with anterior pleurobranch 0.19 times as long as Cp and 5.0 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.19 times as long as Cp and 3.3 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.29 times as long as Cp and 5.5 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.31 times as long as Cp and 3.0 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.26 times as long as Cp and 1.3 times as long as posterior pleurobranch.

Pl I with basipod 0.32 times as long as Cp and exopod 1.9 times as long as basipod. PI II with basipod 0.32 times as long as Cp; exopod 2.1 and endopod 1.2 times as long as basipod, respectively. Pl III with basipod 0.33 times as long as Cp ; exopod 1.8 and endopod 1.2 times as long as basipod, respectively. PI IV with basipod 0.32 times as long as Cp ; exopod 1.7 and endopod 1.0 times as long as basipod, respectively. Pl V with basipod 0.31 times as long as Cp; exopod 1.5 and endopod 0.9 times as long as basipod, respectively.

Up with exopod 4.7 times as long as wide, 5.0 times as long as basipod and 0.8 times as long as Cp ; endopod 3.6 times as long as wide and 0.7 times as long as exopod (Fig. 78B).

Petasma (Fig. 79A-B, Pl. 5D). PV tapering into sharp point, 4.2 times as long as wide. LI as small tubercle, 1.2 times as long as wide and 0.1 times as long as PV. LT very thick and voluminous, bilobed at end, 0.7 times as long as wide, 0.4 times as long as PV, with distolateral lobule bearing few smaller hooks and distomedial lobule bearing single extremely strong apical hook. LC 1.7 times as long as wide and 0.4 times as long as PV, armed with several apical hooks. LAc small, as tubercle at base of PV, 1.5 as long as wide and 0.1 times as long as PV, armed with single small apical hook. LA rudimentary, 1.3 times as long as wide and 0.1 times as

long as PV , armed with single small apical hook.
Photophores. Cp: 4 in lateral row. Scaphocerite: 4 organs medial to inner strip of muscle from 0.2 to 0.7-0.8 blade length. Up exopod: 1 organ near tip of inner muscle strip, at 0.5 exopod length, and 1 disteal organ near end of apical muscle strip, at 0.7-0.8 exopod length. Up endopod: 1organ near base.

Other body photophores, all ventral, found on the following somites ( $\mathrm{al}=$ anterolateral, $\mathrm{am}=$ anteromedial, $\mathrm{l}=$ lateral, $\mathrm{m}=$ medial, $\mathrm{pm}=$ posteromedial): II (lm), III (41), labrum (1m+2l), IV ( $2 \mathrm{~m}+2 \mathrm{l}$ ), V ( $2 \mathrm{~m}+2 \mathrm{l}$ ), VI (21), VII ( $2 \mathrm{~m}+2 \mathrm{l}$ ) VIII (1m), IX (3m), X (3m), XI (3m), XII (3m), XIII ( $3 \mathrm{~m}+2 \mathrm{am}$ (female)/0am (male)+2al), XIV (4pm+2al), XV $(6 m+21)$; XVI $(6 m+21)$, XVII $(6 m+21)$, XVIII $(6 m+21)$, XIX $(6 m+21)$, XX $(6 m+2 a l)$. Total (with those in Cp rows): 102 (in male) or 104 (female).

Other photophores found on the following appendages ( $\mathrm{d}=$ distal, $\mathrm{p}=$ proximal, Roman numerals indicate segments): eyestalk ( $\mathrm{lp}+1 \mathrm{~d}$ ) A I (peduncle III - ld), A II (peduncle I - lp), Md (proper - ld, palp I - Id), Mx II (Exp - 1p), Map I (II - ld, III - ld), Map II (II - Id, III - Id, V - Id, VI

Fig. 79. Sergia stellata, holotype, male, "Dana" St. 39081 , Cp length 6.8 mm . A, caudal view of petasma. - B, oral view of petasma. - C, terminal segment of male AI. - D, male outer A I flagellum.

- id), Map III (II - Id, III - Id, IV - Id, V - id, VI ld), P I (III - lp, IV - 1p+1d), P II (III - 1p+1d, IV - ld), P III (III - 1p+1d, IV - ld), P IV (III - 1p+1d, IV - ld), P V (III - 2d, IV - ld), Pl I - Pl V (I - pp). Total (with those on scaphocerite and Up): 92 organs.

Thus, the total number of observed photophores in all examined specimens ranges from 194 in males to 196 in females.

Remarks: Since this species was described (Burkenroad 1940), there have not been new reports by any author except Yaldwyn (1957), who just fixed the position of this species within the subgenus Sergestes. The very characteristic form of the petasma and the presence of two very strong setae make the males of $S$. stellata easily identifiable. The "Dana" specimens agree well with the brief original description, varying in minor body proportions, armature of segment 4 of the male outer A I flagellum (usually 9 , but sometimes 8 dorsal serrated bristles), the form of PV of the petasma, and the relative length of LAc and LA (LA never overlaps LAc ). The photophore patterns are very close to those of S. challengeri, S. fulgens, S. talismani, and S. oksanae n. sp. Among these species, the total photophore number in $S$. stellata exceeds that in $S$. challenger by $0.5 \%$, while the total number of luminescent organs in S. fulgens, S. oksanae, and S. talisman exceeds that in S. stellata by $1.0 \%, 3.1 \%$, and $4.1 \%$, respectively.

Sergia stellata is closely related to S. challengeri, S. fulgens, S. talismani, and S. oksanae, (see affinities and differences in remarks to $S$. challenger). It differs from all other species of the species group in having (1) 2 very strong distoventral stout setae on the terminal segment of the male A I peduncle and (2) rudimentary LI. Other differences and affinities between S. stellata and all other known species of the species group are shown in Table 7.

Geographical distribution (Fig. 73): Indian Ocean only: northeastern part, off Sri Lanka and Sumatra ("Dana"; Burkenroad 1940), Bay of Bengal ("Galathea").

The occurrence of $S$. stellata is like that of the whole group (see remarks to the species group). $S$. stellata is nearly parapatric to $S$. umitakae and $S$. oksanae n. sp., which occur mainly west of Sri Lanka or east of Sumatra, while S. stellata generally lives between these areas. It is sympatric with $S$. challengeri, S. fulgens, and S. talismani and allopatric with $S$. hansjacobi and S. jeppeseni n . sp.

Vertical range: A benthopelagic species, migrating daily between the lateral continental-slope contact zone (Vereshchaka 1995a) and the epipelagic zone. "Dana" specimens were taken within the depth range $20-1200 \mathrm{~m}$. Most specimens occur at $100-200 \mathrm{~m}$ at night and $500-1200 \mathrm{~m}$ during the day.

## Sergia talismani (Barnard, 1946)

Figs. 80-82; Pls. 2B, 5C
Sergestes splendens Hansen, 1919: 18 [with remarks but without formal description, usually treated as nomen nudum]; 1920: 480 [formal description, usually considered preoccupied by Sergestes splendens Sund, 1920]; 1922: 121, pl. 7, fig. 2; 1927: 5. - Gordon 1935: fig. 2a. Holthuis 1952b: 88.
Sergestes talismani Barnard, 1946: 384 [new name for Sergestes splendens Hansen, not Sund, 1920].
Sergestes (Sergia) talismani. - Yaldwyn 1957: 9. Crosnier \& Forest 1973: 325, figs. 111, 112. Kensley 1977: 31.
Sergia talismani. - Omori 1974: 236. - Krygier \& Wasmer 1988: 50. - Vereshchaka 1994a: 90; 1995a: 1651.

Material examined (? = identification uncertain): "Dana" stations: 1173-2 (1m 91/2); 1184-3 (1m 12); 1192-5 (3f 5-91/2); 1225-5 (1f 10); 1284-1 (1f $12 \& 1 \mathrm{~m} 12$ ); 1285-1 ( $1 \mathrm{~m} 5^{1 / 2}$ ); 1286-2 (1f $5^{1 / 2}$ \& 1 m 8 ); 1287-1 ( $2 \mathrm{f} 5^{1 / 2}$-6); 1288-2 ( $2 \mathrm{f} 5^{1 / 2}$ ); 35454 (1f 8); 3604-1 (1m 13); 3764-1 (4f 5-6 \& 1m 5); 3766-10 (1f 5); 3766-14 (1m 5); 3767-1 (14m 6-10 \& $25 \mathrm{f} 4-61 / 2$ ); 3767-2 ( $17 \mathrm{f} 4^{1 / 2}-7$ \& $14 \mathrm{~m} 5^{1 / 2}-9^{1 / 2}$ ); 3767-3 (9f $4^{1 / 2}-7 \& 2 \mathrm{~m} 6^{1 / 2}-7^{1 / 2}$ ); 3767-4 (7f 5-8 \&

8m 5-101/2); 3767-7 (5j $4^{\frac{1}{2}-7^{1} / 2}$ \& $1 \mathrm{~m} \mathrm{11);} \mathrm{3768-2}$ (2f $5^{1 / 2}$ ); 3768-3 (1f $8 \& 3 \mathrm{~m} 7^{1 / 2-8} 8^{1 / 2}$ ); 3775-2 (1f 5 \& $2 \mathrm{~m} 7 / 1 / 2-10$ ); $3778-1\left(17 \mathrm{f} 3^{1 / 2}-7 \& 8 \mathrm{~m}^{1 / 2}-6^{1 / 2}\right)$; ? 3805b ( $3 \mathrm{~m} 7-8^{1 / 2}$ ); ? 3812-2 (3f 5-7 \& 3m 7-71/2); ? 3876-1 (1f $10 \& 1 \mathrm{~m} \mathrm{10} 1 / 2$ ); 3937-1 ( 1 m 9 ); 3941-1 ( $1 \mathrm{~m} 7^{1 / 2}$ ) ; 3949-1 (4f 5-11 $1 / 2 \& 1 \mathrm{~m} 10$ ); 3949-2 ( 2 m 6-7); 3953-1 ( $1 \mathrm{f} 8^{1 / 2}$ \& $1 \mathrm{~m} 8^{1 / 2}$ ) ; ? 3956-1 (4f 5-61/2); ? 3969-5 ( $2 \mathrm{f} 5^{1 / 2}$ ); ? 3975-9 ( $1 \mathrm{~m} \mathrm{9)}$ ) ? 3975-10 ( 1 f $61 / 2 \& 2 \mathrm{~m} 6$ ); 3994-1 (149f 5-8 \& 92m 5-8 ${ }^{1 / 2}$ ); 3994$2\left(2 \mathrm{~m} 6^{1 / 2}-7^{1 / 2}\right) ; 3994-3$ (1f $6^{1 / 2}$ ); 3996-3 (2f $6 \& 4 \mathrm{~m}$ $61 / 2-7$ ); 3996-5 (1f $6^{1 / 2} \& 2 \mathrm{~m} 5^{1 / 2}-6$ ); 3996-9 ( 18 f $5^{1 / 2}-10^{1 / 2}$ \& $9 \mathrm{~m} \mathrm{5-8}$ ); 3996-10 ( $13 \mathrm{f} 5-7^{1 / 2}$ \& 10 m 5-7).

Five syntypes of Sergestes splendens Hansen: "Talisman" Exp., 1883, station 113 (1f $13^{1 / 2}$ \& 4m 13-15) (MNHN Na 351).
"Atlantide" Exp. West Africa 1945-46, stations: 62 ( $8 \mathrm{f} 4-9 \& 3 \mathrm{~m} 8-8 \frac{1}{2}$ ); 82 (3f 10-101/2); 120 (1f 10 \& 3 m 11-12); see station list in Bruun (1950) (ZMUC).

Type locality: Eastern North Atlantic, Cape Verde Islands, $16^{\circ} 52^{\prime} \mathrm{N}, 27^{\circ} 30^{\prime}-27^{\circ} 31^{\prime} \mathrm{W}, 550-760$ m [495-618 m on original label], 30 Jul. 1883.
Type material: About 40 [ca. 50 according to Hansen 1919: 480] male and female syntypes of Sergestes splendens Hansen [= syntypes of replacement name Sergestes talismani Barnard], "Talisman" station 113 (MNHN Na 351, some examined). Additional information: Jar labeled "Sergestes splendens Hansen, males and females, types for the description and figures" contains about 40 specimens in poor condition.

Diagnosis: Integument firm; rostrum acute and unidentate; cornea well pigmented, black, considerably wider than eyestalk; terminal segment of male A I peduncle without strong stout seta or process near distoventral end; clasping organ rudimentary; A I flagellum in male with segment 3 lacking tubercle and segment 4 lacking serrated bristles; scaphocerite with strong distal tooth overlapping blade; PV of petasma laterally curved at tip, LI well developed, not strongly curved, with tip directed ventrolaterally; LT bilobed, not greatly overlapping PV; LC overlapping other lobes and processes; LA overlapping LAc; photophores arranged in lateral row of 6 on Cp , row of 4 on scaphocerite, 1 medial organ and 1 distal organ on Up exopod, 1 basal organ on Up endopod.

as wide and 0.9 times as long as palp. Mx II with exopod 5.6 times as long as wide and 0.29 times as long as Cp ; palp 4.4 times as long as wide and 0.12 times as long as $C p$; endopod 1.3 times as long as wide and 0.7 times as long as palp; endites subequal, 1.3 times as long as wide and 0.4 times as long as palp.

Mxp I with exopod 3.1 times as long as wide and 0.18 times as long as Cp ; endopod 1.4 times as long as exopod; segments 2 and 31.1 and 2.4 times as long as segment 1 , respectively. Mxp II 0.7 times as long as Cp , with merus 1.1 , carpus and propodus 1.0 , and dactyl 0.5 times as long as ischium. Mxp III 1.4 times as long as Cp, with merus, carpus and propodus 0.8 , and dactyl 0.7 times as long as ischium; propodus and dactyl divided into 3 and 7 subsegments, respectively.

P I 1.0 times as long as Cp, with merus 3.0 , carpus 1.7, and propodus 2.9 times as long as ischium; propodus divided into 9 subsegments. P II 1.5 times as long as Cp , with merus 3.5 , carpus 2.8 , propodus 3.1, and dactyl 0.2 times as long as ischium; propodus divided into 9 subsegments. P III 1.7 times as long as Cp , with merus 3.6 , carpus 2.9 , propodus 3.2, and dactyl 0.2 times as long as ischium; propodus divided into 9 subsegments. P IV 1.1 times as long as Cp , with merus 1.6 , carpus 1.0 , and propodus 1.2 times as long as ischium. P V 0.6 times as long as C , with merus 1.3 , carpus 1.1 , and propodus 0.8 times as long as ischium.

Somite VIII with arthrobranch 0.12 times as long as Cp and 2.8 times as long as epipod. Somite IX with anterior pleurobranch 0.17 times as long as Cp and 4.1 times as long as posterior pleurobranch.


Fig. 81. Sergia talismani, male, "Dana" St. 1284-1, Cp length 12.0 mm . - A, caudal view of petasma. - B, oral view of petasma. - C, male outer A I flagellum.

Somite X with anterior pleurobranch 0.23 times as long as Cp and 5.4 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.27 times as long as Cp and 6.5 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.28 times as long as Cp and 6.3 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.31 times as long as Cp and 1.2 times as long as posterior pleurobranch.

Pl I with basipod 0.28 times as long as Cp and exopod 2.3 times as long as basipod. PI II with basipod 0.27 times as long as Cp ; exopod 2.3 and endopod 1.4 times as long as basipod, respectively. Pl III with basipod 0.27 times as long as Cp ; exopod 2.3 and endopod 1.5 times as long as basipod, respectively. Pl IV with basipod 0.27 times as long as Cp ; exopod 2.1 and endopod 1.2 times as long as basipod, respectively. Pl V with basipod 0.27 times as long as $C p$; exopod 1.7 and endopod 1.0 times as long as basipod, respectively.

Up with exopod 4.7 times as long as wide, 5.4 times as long as basipod and 0.7 times as long as Cp ; endopod 3.8 times as long as wide and 0.7 times as long as exopod (Fig. 80C).

Petasma (Fig. 81A-B, Pl. 5C). PV tapering into sharp point, reaching end of LT, 3.7 times as long as wide. LI reaching end of LT, 1.8 times as long as
wide and 0.4 times as long as PV. LT thick, bilobed at end, 1.2 times as long as wide, 0.5 times as long as PV, armed with 2 rows of hooks, along dorsal margin and on distolateral side, and with few apical hooks on each of terminal lobules. LC 1.8 times as long as wide and 0.5 times as long as PV, armed with few apical hooks. LAc well developed, slender, 2.4 times as long as wide and 0.3 times as long as PV, armed with row of smaller hooks along proximolateral margin and single stronger apical hook. LA slender, 5.0 times as long as wide and 0.6 times as long as PV, armed with row of smaller hooks along proximoventral margin and single stronger apical hook.

Photophores. Cp: 6 in lateral row. Scaphocerite: 4 organs medial to inner strip of muscle from 0.2 to 0.8-0.9 blade length. Up exopod: 1 organ at middle near tip of inner muscle strip, at 0.4-0.5 exopod length, and 1 distal organ near end of apical muscle strip, at 0.7 exopod length. Up endopod: 1 organ near base.

Other body photophores, all ventral, found on the following somites $(\mathrm{al}=$ anterolateral, $\mathrm{l}=$ lateral, m $=$ medial, $):$ II ( 1 m ), III (41), labrum ( $1 \mathrm{~m}+21$ ), IV ( $2 \mathrm{~m}+2 \mathrm{l}$ ), V ( $2 \mathrm{~m}+2 \mathrm{l}$ ), VI (2l), VII ( $2 \mathrm{~m}+2 \mathrm{l}$ ) VIII (1m+2l), IX (3m), X (3m), XI (3m), XII (3m), XIII ( $3 \mathrm{~m}+2 \mathrm{al}$ (male)/4l (female)), XIV ( $4 \mathrm{~m}+2 \mathrm{al}$ (male)/4l (female)), XV ( $6 \mathrm{~m}+2 \mathrm{l}$ ); XVI $(6 \mathrm{~m}+2 \mathrm{l})$, XVII $(6 m+21)$, XVIII $(4 m+21)$, XIX $(4 m+21)$, XX ( $5 \mathrm{~m}+2 \mathrm{al}$ ). Total (with those in Cp rows): 103 (in male) or 107 (in female).

Other photophores found on the following appendages $(\mathrm{d}=$ distal, $\mathrm{m}=$ medial, $\mathrm{p}=$ proximal, Roman numerals indicate segments): eyestalk ( $\mathrm{p}+1 \mathrm{~d}$ ) A I (peduncle III - 1d), A II (peduncle I 1p), Md (proper - 1d, palp I - 1d), Mx II (Exp - 1p), Mxp I (II - 1d, III - 1d), Mxp II (II - 1d, III - 1d, IV $-1 p, V-1 d$, VI - 1d), Mxp III (III - 1d, IV - 1d, V $-1 d$, VI - 1d), P I (II - 1d, IV - 1p+1d, V - 1d, VI 1m), P II (III - 1p+1d, IV - 1d), P III (III - 1p+1d, IV - 1d, V - 1d), PIV (III -1p+1d, IV - 1d), PV (III $-1 p+1 d$, IV - 1d), Pl I - Pl V (I - 1p). Total (with those on scaphocerite and Up): 98.

Thus, the total number of observed photophores in all examined specimens ranges from 201 in males to 205 in females.

Remarks: The colour in life is shown in Pl. 2B. This species was first mentioned as Sergestes splendens n. sp. by Hansen (1919), but first described in detail in June 1920 by the same author. Just before


Fig. 82. Probable geographical distribution of Sergia talismani. Black symbols indicate "Dana" stations, white symbols "Talisman" and "Atlantide" stations. Shaded areas without symbols are supported by literature data.

Hansen's publication in June 1920, Sund (March 1920) published the description of another species of the genus Sergestes and named the new species S. splendens. In order to avoid the confusion thus created, Barnard (1946) proposed the new name $S$. talismani for Hansen's species. All the specimens examined agree well with the remarks and description by Hansen $(1919,1920,1922)$ and show inconspicuous variability in the body proportions, degree of reduction of the clasping organ, fine structure of the petasma, and curvature of LI. The main peculiarity of $S$. talismani, placing it together with $S$. jeppeseni n . sp. and apart from all other known Sergia species, is related to the nearly complete reduction of the male clasping organ: the protrusion on segment 3 of the outer A I flagellum is very short and lacks any trace of a tubercle, while segment 4 has lost all sexual attributes (dorsal depression, serrated bristles) and looks rather like the usual segment. The photophore position is very similar to that in S. challengeri and S. fulgens and varies only in the minor patterns among which the presence of 6 (not 5) organs in the lateral Cp row is most remarkable. The number of photophores depends upon sex and exceeds that (although very insignificantly) in S. challengeri and $S$. fulgens, the former by $4.6 \%$, the latter by $3.0 \%$, in average.

Sergia talismani is closely related to S. challen-
geri, S. fulgens, S. oksanae n. sp., and S. stellata (see affinities and differences in remarks to $S$. challengeri). It differs from all other species of the species group in having the end of LI curved and directed ventrolaterally. Other differences and affinities between $S$. talismani and all other species of the species group are shown in Table 7.
Geographical distribution (Fig. 82): Atlantic, Indian, and Pacific Oceans.
Atlantic: Caribbean Sea and near the northeast shore of South America ("Dana"; Vereshchaka 1994a), Cape Verde Islands (Hansen 1922), Gulf of Guinea ("Atlantide"), western part of South Atlantic ("Talisman"), off Guinea Bissau (Holthuis 1952b), Gabon, Congo, Cabinda, Northern Angola (Gordon 1935, Holthuis 1952b, Crosnier \& Forest 1973).

Indian Ocean: Along the southern and western coasts of Africa ("Dana"; Kensley 1977), off Madagascar and Comores ("Dana"), Indo-West Pacific ("Dana").

Pacific: Off Tahiti ("Dana"), off Japan and Hawaii (Krygier \& Wasmer 1988).

Thus, further examination of the "Dana II" collections has shown that this species is very widely distributed in the tropical zones of all oceans, as was shown earlier: in the Atlantic and Pacific Oceans (Vereshchaka 1994a), in the Indian Ocean

(Vereshchaka 1994b). It occurs in at least two isolated areas; its absence in the Central Indian Ocean is very likely, as "Dana", "Galathea", and several Russian expeditions, working intensively in this area, took no specimens.
The occurrence of S. talismani is like that of the whole group (see remarks to the species group). It is nearly parapatric to S. umitakae and S. stellata, which are found in the Central Indian Ocean, while S. talismani lives in the western and eastern parts of this ocean. S. talismani is sympatric with $S$. challengeri, S. fulgens, S. hansjacobi, S. oksanae n.sp., and S. jeppeseni n . sp.

Vertical range: A benthopelagic species, migrating daily between the lateral continental-slope contact zone (Vereshchaka 1995a) and the epipelagic zone. "Dana" specimens were taken within the depth range $20-1200 \mathrm{~m}$. Most specimens occur at $30-200 \mathrm{~m}$ at night and at about 700 m during the day. Vereshchaka (1994a), after examination of the lesser part of the S. talismani material from the "Dana I" collection only, reported on the greater depth of this species when taken at night, i.e., 200500 m .

Fig. 83. Sergia umitakae, male, "Vityaz" St. 2578, Cp length 10.6 mm. - A, lateral view of $\mathrm{Cp} .-\mathrm{B}$, scaphocerite. - C, Up.

## Sergia umitakae Hashizume \& Omori, 1995

Figs. 67, 83-84
Sergia umitakae Hashizume \& Omori, 1995: 72, figs. 1-4.
Sergia sp. nov. N1. - Vereshchaka 1990a: 41.
Sergia sp. 1. - Vereshchaka 1991: 5; 1994b: 63.
Sergia sp. n. 1. - Vereshchaka 1995a: 1651.
Material examined: "Galathea" St. 298 (1f 91/2 \& $2 \mathrm{~m} 10^{1 / 2}-11$ ).

Russian R/V "Vityaz", Cruise 17, St.: 2575 (13f $\left.7-11 \& 16 \mathrm{~m} 6^{1 / 2}-11^{1 / 2}\right), 2578\left(23 f 5^{1 / 2}-9 \& 21 \mathrm{~m} 5-\right.$ $11 / 2), 2604\left(2 f 9-10 \& 2 m 7^{1 / 2}-9\right), 2605(7 f 7-12 \&$ $6 \mathrm{~m} \mathrm{8-10} 1 / 2$ ) 2787 ( $3 \mathrm{f} 10-10^{1 / 2}$ ), 2823 ( $11 \mathrm{f} 5^{1} / 2-9$ \& $13 \mathrm{~m} 6-9^{1 / 2}$ ), 2826 ( $27 \mathrm{f} 7^{1 / 2}$-12 $1 / 2$ \& $21 \mathrm{~m} 7-13$ ), 2827 (21f 8-10 \& 13m 9-11 $1 / 2$ ).
Type locality: Indian Ocean, south off Sri Lanka, ca. $06^{\circ} 31.9^{\prime} \mathrm{N}, 081^{\circ} 56.5^{\prime} \mathrm{E}$ (coordinates courtesy of Dr. Hashizume).

Type material: Holotype male (NSMT-Cr 11495), allotype female (NSMT-Cr 11496), and 10 paratypes (NSMT, not examined).

Diagnosis: Integument firm; rostrum acute, unior bidentate; cornea well pigmented, black, considerably wider than eyestalk; terminal segment of male A I peduncle without stout seta or process near distoventral end; A I flagellum in male with
segment 3 bearing well developed tubercle overlapping segment 4 of flagellum and segment 4 bearing 8 serrated bristles on dorsal surface; scaphocerite with strong distal tooth reaching end of blade; PV of petasma curved laterally at tip; LI well developed, strongly curved, tip directed laterally; LT not bilobed, not overlapping PV; LC not overlapping other lobes and processes; LA overlapping LAc; photophores arranged in lateral row of 4-5 on Cp, rowof 4 on scaphocerite, 1 medial and 1 distal organ on Up exopod, 1 basal organ on Up endopod.

Description: Cp 2.1 times as long as high and 0.37 times as long as abdomen; hepatic spine blunt (Fig. 83A). Abdomen with somite VI 1.6 times as long as high and 1.3 times as long as telson; telson 3.7 times as long as wide.

Cornea 1.2 times as long as wide, 0.9 times as long and 1.5 times as wide as eyestalk. A I peduncle 0.7 times as long as Cp , with segments 2 and 3 0.53 and 0.59 times as long as segment 1 , respectively; terminal segment of A I peduncle without strong stout seta or prominent process on distoventral side; outer A I flagellum in male with segment 3 bearing well developed tubercle overlapping segment 4 of flagellum and with segment 4 subdivided and bearing 8 serrated bristles on dorsal surface and several setae on ventral surface (Fig. 84C). A II peduncle 0.5 times as long as scaphocerite; latter with strong distal tooth reaching end of blade (Fig. 83B), 3.2 times as long as wide, 0.83 times as long as A I peduncle.

Md palp 0.34 times as long as Cp , with proximal segment 1.8 times as long as distal one. Mx I with palp 1.7 times as long as wide and 0.06 times as long as Cp ; endopod 1.6 times as long as wide and 1.6 times as long as palp; endite 1.3 times as long as wide and 0.8 times as long as palp. Mx II with exopod 3.2 times as long as wide and 0.32 times as long as Cp; palp 4.1 times as long as wide and 0.12 times as long as Cp ; endopod 1.8 times as long as wide and 0.9 times as long as palp; endites subequal, 1.8 times as long as wide and 0.4 times as long as palp.

Mxp I with exopod 2.5 times as long as wide and 0.16 times as long as $C p$; endopod 1.7 times as long as exopod; segments 2 and 31.3 and 1.1 times as long as segment 1 , respectively. Mxp II 0.8 times as long as Cp , with merus 1.1 , carpus 1.2 , propodus 1.1, and dactyl 0.6 times as long as ischium. Mxp III 1.3 times as long as Cp, with merus 0.7 , carpus
0.8 , propodus 0.7 , and dactyl 0.6 times as long as ischium; subdivision of propodus and dactyl uncertain.

P I 1.0 times as long as Cp, with merus 2.2 , carpus 1.5 , and propodus 2.5 times as long as ischium; subdivision of propodus uncertain. P II 1.5 times as long as Cp , with merus 3.0 , carpus 2.5 , propodus 3.2 , and dactyl 0.2 times as long as ischium; subdivision of propodus uncertain. P III 1.8 times as long as Cp , with merus 3.0 , carpus 2.1 , propodus 2.9 , and dactyl 0.2 times as long as ischium; subdivision of propodus uncertain. P IV 1.0 times as long as Cp, with merus 1.4 , carpus 1.0 , and propodus 1.2 times as long as ischium. P V 0.7 times as long as Cp , with merus 1.2 , carpus 1.0 , and propodus 0.8 times as long as ischium.

Somite VIII with arthrobranch 0.12 times as long as Cp and 3.2 times as long as epipod. Somite IX with anterior pleurobranch 0.18 times as long as Cp and 4.3 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.22 times as long as Cp and 4.7 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.27 times as long as Cp and 5.6 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.38 times as long as Cp and 3.3 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.21 times as long as Cp and 1.6 times as long as posterior pleurobranch.

Pl I with basipod 0.31 times as long as Cp and exopod 2.1 times as long as basipod. PI II with basipod 0.29 times as long as Cp ; exopod 2.3 and endopod 1.4 times as long as basipod, respectively. PI III with basipod 0.29 times as long as $C p$; exopod 2.2 and endopod 1.4 times as long as basipod, respectively. Pl IV with basipod 0.29 times as long as Cp ; exopod 2.0 and endopod 1.2 times as long as basipod, respectively. Pl V with basipod 0.26 times as long as Cp ; exopod 1.7 and endopod 1.0 times as long as basipod, respectively.

Up with exopod 4.9 times as long as wide, 5.9 times as long as basipod and 0.7 times as long as Cp ; endopod 3.6 times as long as wide and 0.7 times as long as exopod (Fig. 83C).

Petasma (Fig. 84A-B). PV tapering into sharp point, overreaching LT, 4.7 times as long as wide, tip curved and directed laterally. LI overlapping LT, 3.3 times as long as wide and 0.3 times as long as PV if straightened. LT entire at end, not reaching end of PV, 2.2 times as long as wide, 0.4 times as


Fig. 84. Sergia umitakae, male, "Vityaz" St. 2578, Cp length 10.6 mm . A , oral view of petasma. - B, caudal view of petasma. - C, male outer A I flagellum.
long as PV, armed with several distal hooks. LC overlapping LT and reaching end of PV and LI, 2.1 times as long as wide and 0.4 times as long as PV, armed with few apical hooks and 1 subapical hook. LAc small, 1.2 as long as wide and 0.1 times as long as PV, armed with few smaller subapical hooks and 1 strong apical hook. LA straight and slender, 1.7 times as long as wide and 0.3 times as long as PV, armed with few smaller subapical hooks and 1 strong apical hook.

Photophores. Cp: 4-5 in lateral row. Scaphocerite: 4 organs medial to inner strip of muscle from 0.2-0.3 to 0.8-0.9 blade length. Up exopod: 1 organ at middle near tip of inner muscle strip, at 0.4-0.5 exopod length and 1 distal organ near end of apical muscle strip, at 0.7-0.8 exopod length. Up endopod: 1 organ near base.

Other body photophores, all ventral, found on the following somites ( $\mathrm{al}=$ anterolateral, $1=$ lateral, m $=$ medial, $\mathrm{pm}=$ posteromedial $):$ II (1m), III (41), labrum $(1 m+21)$, IV $(2 m+21), V(2 m+21)$, VI (21),

VII ( $2 \mathrm{~m}+2 \mathrm{l}$ ) VIII ( $1 \mathrm{~m}+2 \mathrm{l}$ ), IX ( 3 m ), X ( 3 m ), XI (3m), XII (3m), XIII (3m+2al), XIV ( $4 \mathrm{pm}+2 \mathrm{al}$ ), XV $(4 m+2 l) ;$ XVI $(6 m+2 l)$, XVII $(6 m+2 l)$, XVIII $(4 m+2 l)$, XIX $(4 m+2 l), X X(5 m+2 a l)$. Total (with those in Cp rows): 97-99 organs.

Other photophores found on the following appendages $(\mathrm{d}=$ distal, $\mathrm{p}=$ proximal, Roman numerals indicate segments): eyestalk (lp+1d) A I (peduncle III - 1d), A II (peduncle I - 1p), Md (proper - 1d, palp I - 1d), Mx II (Exp - 1p), Mxp I (II - 1d, III - 1d), Mxp II (II - 1d, III - 1d, IV - 1p, V - 1d, VI - 1d), Mxp III (II - 1d, III - 1d, IV - 1d, V - 1d, VI - 1d), PI (III - 1p, IV - 1p+1d, V - 1d), P II (III - 1p+1d, IV - 1d), P III (III - 1p+1d, IV 1d, V - 1d), P IV (III - 1p+1d, IV - 1d), P V (III $1 \mathrm{p}+1 \mathrm{~d}, \mathrm{IV}-1 \mathrm{~d}$ ), Pl I - Pl V (I - 1p). Total (with those on scaphocerite and Up ): 98 organs.

The total number of observed photophores in all examined specimens ranges from 195 to 197 organs.

Remarks: This species was first found in 1988 during the Russian 17th cruise of the R/V "Vityaz" and has been referred to in several of my papers in Russian (e.g., Vereshchaka 1990a, 1991 and English (Vereshchaka 1994b, 1995a) as a new or unidentified species of Sergia (see synonymy). Having plans of preparing a general revision of the genus, I decided to include the original description in this revision instead of publishing a brief description of one more new species of this extensive genus. In 1993, K. Hashizume and M. Omori found the same species in the material of the Japanese 55th cruise of the T/S "Umitaka-Maru". They sent me sketches of the petasma and several other organs, asking whether this species belonged to one of the "Dana" species described by Burkenroad. I replied that this was not the case but that it was identical to mine, sampled in 1988. I proposed a joint publication, but Hashizume and Omori preferred to publish the description in a Japanese journal without delay (Hashizume \& Omori 1995).

Hashizume \& Omori (1995) report a bidentate rostrum (usually unidentate in my specimens) and 4 photophores in the lateral Cp row (I counted in adults mainly 5 organs, although the medial one is smaller and harder to see). Furthermore, minor proportions of the branchial lobes, appendages, and lobes and processes of the petasma differ (although LT never overlaps PV, LA is always stronger and overlaps LAc).

In the position and total number of photophores, S. umitakae is very close to all other species of the species group. It has a greater total number of luminescent organs than $S$. challengeri $(1.0 \%$ more in average) and S. stellata ( $0.5 \%$ more in average); all other species have more photophores than $S$. umitakae, from $0.5 \%$ more (S. fulgens) to $6.6 \%$ more (S. jeppeseni), in average.

Sergia umitakae differs from all other species of the species group in (1) undivided LT of petasma, (2) LI strongly curved at about $1 / 2$ length, and (3) segment 3 of male outer A I flagellum with tubercle long, overlapping segment 4 of flagellum. Other differences and affinities between $S$. umitakae and all other known species of the species group are shown in Table 7.

Geographical distribution (Fig. 67): Indian Ocean only: Northwestern part, off Sokotra, Madagascar, over Saya-da-Malya Bank ("Vityaz";

Vereshchaka 1995a); "south off Sri Lanka" (Hashizume \& Omori 1995).

The occurrence of S. umitakae is like that of the whole group (see remarks to the species group). It is nearly parapatric to $S$. challengeri, $S$. talismani, S. stellata and S. jeppeseni n. sp., which occur mainly west of $45^{\circ} \mathrm{E}$ or east of Sri Lanka, while $S$. umitakae lives between these areas. It is sympatric with S. fulgens and allopatric to $S$. hansjacobi and S. oksanae n. sp.

Vertical range: A benthopelagic species, migrating daily between the lateral continental-slope contact zone (Vereshchaka 1995a) and lateral mesopelagiac zone. "Vityaz" specimens were taken within the depth range $100-700 \mathrm{~m}$. Most specimens occur at $300-400 \mathrm{~m}$ at night and at $400-700 \mathrm{~m}$ during the day.

## Sergia lucens species group

Diagnosis: Lens-bearing photophores (total of 138-162 organs) present: $2-3$ in single lateral Cp row, 2-3 on scaphocerite, 1-2 on Up exopod; hepatic spine blunt; postdorsal spine on VI abdominal somite present; ocular papilla absent; clasping organ with 4-6 serrated bristles; endopod of Mxp I with 3 segments; posterior branchial lobe above $P$ III reduced but not lamellar. Petasma with PV extremely elongated, bearing hooks; LI and LA absent or rudimentary.

Species included: Sergia crosnieri n. sp., S. lucens (Hansen, 1922).

Remarks: Dr. N. Iwasaki, Japan, kindly sent me sketches of the petasma and clasping organ of specimens that he is going to describe as a new species. The sketches indicate that this new species belongs to the Sergia lucens species group.

## Key to species of the Sergia lucens species group

1. Rostrum usually bidentate. Scaphocerite, Up exopod and Up endopod with 3, 3, and 2 photophores, respectively. Male outer A I flagellum with segment 3 bearing tubercle overlapping segment 4 and segment 4 bearing 5-6 serrated bristles on dorsal surface. PV of petasma with numerous hooks; LT

$\qquad$


Fig. 85. Sergia crosnieri n. sp., holotype, male, "Dana" St. 3809-4, Cp length 5.7 mm . - A, lateral view of Cp. - B, scapho cerite. - C, Up.
directed distolaterally; LC developed $\qquad$ Sergia lucens

- Rostrum usually unidentate. Scaphocerite, Up exopod and Up endopod with 2,2 , and 1 photophores, respectively. Male outer A I flagellum with segment 3 bearing tubercle not overlapping segment 4 and segment 4 bearing 3-4 serrated bristles on dorsal surface. PV of petasma with single apical hook; LT directed distally; LC rudimentary Sergia crosnieri n. sp.


## Sergia crosnieri n. sp.

Figs. 85-87

Material examined: "Dana" stations: 3684-8 (1f 5); 3687-3 (34f $3^{1 / 2-61 / 2} \& 20 \mathrm{~m} 4-6$ ); 3688-4 (1f $6^{1 / 2}$ ); 3689-3 (1f $4 \& 2 \mathrm{~m} 4-5^{1 / 2}$ ); 3733-2 (13j 3-41/2); 3809-2 (23f 4-6 \& 25m 4-6); 3809-3 (23f 4-7 \& $14 \mathrm{~m} \mathrm{4} \mathrm{T}_{2}-6$ ); 3809-4 (29f 4-7 \& 10m 4-61/2); 3814-2 (1m 5); 3891-3 (1f 6); 3891-4 (4m $4^{1 / 2}$-6); 3893-3 (4f 4-6¹/2 \& 1m 5); 3893-8 (4f 5-71/2); 3893-9 (8f 5-

61/2 \& 6m 5-6); 3894-2 (1f $7^{1 / 2}$ ); 3894-3 (1f 6); 3897-4 (1f $6 \& 1 \mathrm{~m} \mathrm{5} \frac{1}{2}$ ); 3899-2 (1m 5).

Holotype: male (Cp length 5.7 mm, ZMUC CRU 3617), "Dana" St. 3809-4, 50 mw , sampled 04 Sept. 1929.

Paratype: female (Cp length 6.8 mm , ZMUC CRU 3618), same sample as holotype.

Type locality: Off Indonesian islands, $6^{\circ} 22^{\prime}$ S, $105^{\circ} 12^{\prime}$ E.

Type material: Holotype +1 paratype (ZMUC, see above).

Diagnosis: Integument firm; rostrum acute, unidentate; cornea well pigmented, black, considerably wider than eyestalk; outer A I flagellum in male with segment 3 bearing well developed tubercle reaching end of segment 4 of flagellum and with segment 4 bearing 4 serrated bristles on dorsal surface; scaphocerite with distal tooth reaching end of blade; PV extremely developed, overlapping other lobes and processes, armed with single apical hook; LT directed distally; LC rudimentary; 2 photophores in lateral Cp rows, 2 organs on scaphocerite, 1 organ on Up exopod, and 1 organ on Up endopod.

Description: Cp 2.0 times as long as high and 0.38 times as long as abdomen (Fig. 85A). Abdomen with somite VI 1.7 times as long as high and 1.4 times as long as telson; telson 3.3 times as long as wide.

Cornea 1.0 times as long as wide, 0.5 times as long and 1.3 times as wide as eyestalk. A I peduncle 0.7 times as long as Cp , with segments 2 and 3 0.43 and 0.45 times as long as segment 1 , respectively; segment 3 of outer A I flagellum in male with tubercle reaching end of segment 4 of flagellum, segment 4 of flagellum bearing 4 serrated bristles and few setae on dorsal surface and several setae on ventral surface (Fig. 86C). A II peduncle 0.5 times as long as scaphocerite; latter with distal tooth reaching end of blade (Fig. 85B), 3.3 times as long as wide, 0.83 times as long as A I peduncle.

Md palp 0.31 times as long as $C p$, with proximal segment 1.9 times as long as distal. Mx I with palp 2.3 times as long as wide and 0.04 times as long as Cp ; endopod 1.4 times as long as wide and 1.7 times as long as palp; endite 1.8 times as long as wide and 1.1 times as long as palp. Mx II with exo-


Fig. 86. Sergia crosnieri n. sp., holotype, male, "Dana" St. 3809-4, Cp length 5.7 mm . - A, oral view of petasma. - B, caudal view of petasma. -C , male outer A I flagellum.
pod 3.0 times as long as wide and 0.27 times as long as Cp; palp 3.0 times as long as wide and 0.05 times as long as Cp ; endopod 1.2 times as long as wide and 1.1 times as long as palp; endites subequal, 1.5 times as long as wide and 0.4 times as long as palp.

Mxp I with exopod 2.8 times as long as wide and 0.13 times as long as Cp ; endopod 1.3 times as long as exopod; segments 2 and 31.2 and 1.3 times as long as segment 1 , respectively. Mxp II 0.7 times as long as Cp , with merus 1.0 , carpus 0.9 , propodus 0.8 , and dactyl 0.4 times as long as ischium. Mxp III 1.1 times as long as Cp, with merus 0.6 , carpus and propodus 0.7 , and dactyl 0.5 times as long as ischium; subsegmentation of propodus and dactyl uncertain.

P I 1.0 times as long as Cp , with merus 2.0 , carpus 1.1, and propodus 2.0 times as long as ischium; subdivision of propodus uncertain. P II 1.4 times as long as C p, with merus 2.9 , carpus 2.3 , propodus 2.7 , and dactyl 0.1 times as long as ischium; subdivision of propodus uncertain. P III 1.7 times as long as C , with merus 2.9 , carpus 2.3 , propodus 2.6 ,
and dactyl 0.1 times as long as ischium; subdivision of propodus uncertain. P IV 1.1 times as long as Cp , with merus 1.5 , carpus 0.9 , and propodus 1.0 times as long as ischium. P V 0.6 times as long as Cp , with merus 1.0 , carpus 0.7 , and propodus 0.6 times as long as ischium.

Somite VIII with arthrobranch 0.05 times as long as Cp and 4.0 times as long as epipod. Somite IX with anterior pleurobranch 0.13 times as long as Cp and 5.6 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.17 times as long as Cp and 4.8 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.18 times as long as Cp and 4.0 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.19 times as long as Cp and 3.2 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.14 times as long as Cp and 1.2 times as long as posterior pleurobranch.

Pl I with basipod 0.32 times as long as Cp and exopod 2.0 times as long as basipod. Pl II-III with basipod 0.29 times as long as Cp ; exopod 2.0 and endopod 1.2 times as long as basipod, respectively. PI IV with basipod 0.27 times as long as Cp ; exopod 1.9 and endopod 1.3 times as long as basipod, respectively. PI V with basipod 0.24 times as long as Cp ; exopod 1.7 and endopod 1.1 times as long as basipod, respectively.

Up with exopod 4.4 times as long as wide, 5.5 times as long as basipod and 0.6 times as long as Cp ; endopod 3.9 times as long as wide and 0.7 times as long as exopod (Fig. 85C).

Petasma (Fig. 86A-B). PV very long, 5.4 times as long as wide. LT well developed, 1.7 times as long as wide and 0.4 times as long as PV, covered with numerous hooks on medial surface. LC as small tubercle-and several small hooks proximal to base of LT.

Photophores. Cp: 2 in lateral rows. Scaphocerite: 2 organs at level of inner muscle strip at 0.4-0.5 and at $0.7-0.8$ blade length. Up exopod: 1 organ at tip of inner muscle strips, at 0.5 exopod length. Up endopod: 1 organ near base.

Other body photophores, all ventral, found on the following somites $(\mathrm{al}=$ anterolateral, $\mathrm{am}=$ anteromedial, $\mathrm{l}=$ lateral, $\mathrm{m}=$ medial): II (1m), III ( $1 \mathrm{~m}+4 \mathrm{I}$ ), labrum $(1 \mathrm{~m}+2 \mathrm{l})$, IV $(2 \mathrm{~m}+2 \mathrm{l})$, V $(2 \mathrm{~m}+21)$, VI (21), VII $(2 m+21)$ VIII ( $1 \mathrm{~m}+2 \mathrm{l}$ ), IX ( 3 m (female)/1m (male)), X (1m), XI (1m), XII $(1 a m+3 m+21)$, XIII ( $1 \mathrm{am}+3 \mathrm{~m}+2 \mathrm{al})$, XIV $(4 \mathrm{~m}+21)$,


Fig. 87. Probable geographical distribution of Sergia crosnieri n. sp. (circles) and S. lucens (triangles, fine hatching). Black symbols indicate "Dana" stations, white triangles Th. Mortensen Exp. and "Tenyo Maru" stations.

XV $(3 \mathrm{~m}+2 \mathrm{l})$; XVI $(5 \mathrm{~m}+2 \mathrm{l})$, XVII $(3 \mathrm{~m}+2 \mathrm{l})$, XVIII $(3 m+21)$, XIX $(3 m+21)$, XX ( 4 m ). Total (with those in Cp rows): 84 (female) or 82 (male).

Other photophores found on the following appendages $(\mathrm{d}=$ distal, $\mathrm{p}=$ proximal, Roman numerals indicate segments): eyestalk ( $1 \mathrm{p}+1 \mathrm{~d}$ ) A I (peduncle III - 1d), A II (peduncle I - 1p), Md (proper - 1d, palp I-1d), Mxp II (II - 1d, III - 1d, V $-1 d, V I-1 d), \operatorname{Mxp}$ III (II - 1d, III - 1d, IV - 1d, V 1d, VI - 1d), P II (III - 1p), P III (III - 1p+1d), Pl I - Pl V (1p). Total (with those on scaphocerite and Up): 56.

Thus, the total number of observed photophores in all examined specimens ranges from 138 in males to 140 in females.

Remarks: All the "Dana" specimens show very low variability in the characters studied; even the fine structure of the petasma and the number and position of the photophores remain almost the same. This species represents the last stage of regression in the structure of the petasma and the number of photophores. Whereas S. lucens possesses numerous hooks on the PV, a very rudimentary LA, and well developed LC, S. crosnieri n . sp. lacks all hooks (except a single terminal one) on PV, all traces of the LA, and has only a rudimentary LC. The number of photophores in $S$. crosnieri is also $15 \%$ less than that in S. lucens.

Sergia crosnieri is closely related to $S$. lucens. Both share all common characters of the species group, among which the most important are: (1)
lens-bearing photophores as in the Sergia prehensilis and $S$. challengeri species groups, but much less abundant (2-3 on the scaphocerite, 1-2 on the Up exopod, 2-3 in single lateral Cp row), (2) clasping organ with few serrated bristles (4-5 instead of 0 or $8-12$ in the $S$. challengeri species group), (3) very simplified petasma with LI and LA absent, (4) PV extremely elongated, bearing hooks.

Sergia crosnieri differs from S. lucens in the following characters: (1) rostrum unidentate (not bidentate), (2) male outer A I flagellum with tubercle not overlapping segment 4 of flagellum and (3) segment 4 bearing 4 (not 5) serrated bristles on dorsal side, (4) branchs smaller, (5) 2 (not 3) photophores in lateral Cp row, (6) 2 (not 3) photophores on the scaphocerite, (7) 1 (not 2 ) photophores on Up exopod, (8) almost disarmed (except for single apical hook) PV, (9) LT directed distaly (not distolaterally), (10) LC rudimentary, (11) absence of any trace of LA, and other minor features concerning number and position of the photophores on the body, proportions of body appendages and of lobes and processes of the petasma.

Etymology: This species is named after Dr. Alain Crosnier, who has devoted his life to studies of Decapoda and has made important contributions to our knowledge of the dendrobranchiate shrimps.

Geographical distribution (Fig. 87): Indo-West Pacific only: Off Java and Sumatra, off Borneo, off the Philippines ("Dana").


Sergia crosnieri occurs in but a single area. This species seems to be biologically similar to $S$. lucens, being probably also a typical benthopelagic species, occurring mainly over the continental slopes, although a few specimens may be spread in the lateral layers above the deep sea. It is probable that within the hatched area there are numerous populations of this species over the shelf. S. crosnieri and S. lucens are nearly parapatric.

Vertical range: A benthopelagic species, migrating daily between the upper continental-slope contact zone (Vereshchaka 1995a) and the epipelagic zone. Specimens were taken within the depth range $20-700 \mathrm{~m}$. Most occur at $20-30 \mathrm{~m}$ at night and at about 700 m during the day. This species is very scarce during the day samples, suggesting that the shrimp forms aggregations in a very narrow nearbottom layer, which is usually not sampled.

## Sergia lucens (Hansen, 1922)

Figs. 87-89, Pl. 4E
Sergestes phosphoreus Kishinouye, [19??] [reference from Omori 1969: original paper not found by him, date unknown, cited by Nakazawa 1915
(see below)]; 1928: 125, fig. 1. - Nakazawa 1932a: 31; 1933: 365.
Sergestes phosphoreus ? - Nakazawa 1915: 1, figs. 1-5.
Sergestes prehensilis Bate or Sergestes kishinouyei Nakazawa \& Terao, 1915: 622, figs. 1-16.
Sergestes prehensilis. - Terao 1916: 220; 1917: 299. - Yokoya 1933: 12. [Not Bate, 1881.]

Sergestes lucens Hansen, 1922: 38, 121. - Gordon 1935: 310, figs. 1, 3, 5. - Huzita; 1959: 235. Kubo 1960: 113, pl. 56, fig. 6; 1965: 595, fig. 893. - Omori 1969: 1, figs. 3-22.

Sergestes kishinouyei. - Okada 1935: 699.
Sergestes (Sergia) lucens. - Yaldwyn 1957: 9.
Sergia lucens. -- Krygier \& Wasmer 1988: 50.
Material examined: "Dana" stations: 3689-2 (1m 5); 3733-2 (1f $6 \& 1 \mathrm{~m} 7$ ); 3767-2 (1m 6).

Dr. Th. Mortensen's Pacific Exp. 1914-15: plankton sample from Suruga Bay, collected 01.04.1914 ( $16 \mathrm{f} 9-12$ \& 5m 9-101/2).
"Tenyo-Maru" Exp.: sample of 02.11.1952 at $35^{\circ} 03^{\prime} \mathrm{N}, 138^{\circ} 36^{\prime} \mathrm{E}(1 \mathrm{~m} 7$ ).

Type locality: Suruga Bay, Japan.
Type material: The holotype of Sergestes phosphoreus could not be found in Japanese museums.

Diagnosis: Integument firm; rostrum acute, usually bidentate; cornea well pigmented, black, considerably wider than eyestalk; outer A I flagellum in mate with segment 3 bearing well developed tubercle overlapping segment 4 of flagellum and with segment 4 bearing 5-6 serrated bristles on dorsal surface; scaphocerite with distal tooth reaching end of blade; PV extremely developed, overlapping other lobes and processes, armed with numerous hooks; LT directed distolaterally; LC overlapping $\mathrm{LT} ; 3$ photophores in lateral Cp rows, 3 organs on scaphocerite, 2 organs on Up exopod, and 1 organ on Up endopod.

Description: Cp 2.0 times as long as high and 0.36 times as long as abdomen (Fig. 88A), hepatic spine present. Abdomen with somite VI 1.6 times as


Fig. 89. Sergia lucens, male, Th. Mortensen Exp. St. in Suruga Bay, 01 Jun 1914, Cp length 9.7 mm . - A, oral view of petasma. - B, caudal view of petasma. - C, male outer A I flagellum.
long as high and 1.4 times as long as telson; telson 3.3 times as long as wide.

Cornea 0.8 times as long as wide, 0.8 times as long and 1.3 times as wide as eyestalk. A I peduncle 0.7 times as long as $C p$, with segments 2 and 3 0.45 and 0.43 times as long as segment 1 , respectively; segment 3 of outer A I flagellum in male with tubercle overlapping segment 4 of flagellum; flagellar segment 4 bearing 5-6 serrated bristles and few setae on dorsal surface and several setae on ventral surface (Fig. 89C), A II peduncle 0.4 times as long as scaphocerite; latter with distal tooth reaching end of blade (Fig. 88B), 3.3 times as long as wide, 0.83 times as long as A I peduncle.

Md palp 0.33 times as long as Cp , with proximal segment 1.8 times as long as distal one. Mx I with palp 2.7 times as long as wide and 0.06 times as long as Cp ; endopod 1.8 times as long as wide and 1.8 times as long as palp; endite 1.8 times as long as wide and 0.9 times as long as palp. Mx II with exopod 3.0 times as long as wide and 0.30 times as long as Cp ; palp 3.8 times as long as wide and 0.11 times as long as Cp ; endopod 1.6 times as long as wide and 0.9 times as long as palp; endites subequal, 1.7 times as long as wide and 0.4 times as long as palp.

Mxp I with exopod 2.2 times as long as wide and
0.15 times as long as Cp ; endopod 1.8 times as long as exopod; segments 2 and 30.8 and 0.9 times as long as segment 1 , respectively. Mxp II 0.7 times as long as Cp , with merus 1.1 , carpus and propodus 1.0, and dactyl 0.5 times as long as ischium. Mxp III 1.4 times as long as Cp , with merus 0.8 , carpus 0.9 ; propodus and dactyl 0.8 times as long as ischium, propodus and dactyl divided into 3 and 5 subsegments, respectively.

P I 1.1 times as long as Cp, with merus 2.7, carpus 1.5 , and propodus 2.6 times as long as ischium; propodus divided into 7 subsegments. P II 1.5 times as long as C , with merus 3.2 , carpus 2.5 , propodus 3.1 , and dactyl 0.2 times as long as ischium; propodus divided into 8 subsegments. P III 1.8 times as long as C , with merus 2.7 , carpus 2.4 , propodus 2.7, and dactyl 0.2 times as long as ischium; propodus divided into 9 subsegments. P IV 1.1 times as long as Cp , with merus 1.5 , carpus and propodus 0.9 times as long as ischium. P V 0.6 times as long as Cp , with merus 1.0 , carpus 0.7 , and propodus 0.5 times as long as ischium.

Somite VIII with arthrobranch 0.14 times as long as Cp and 2.7 times as long as epipod. Somite IX with anterior pleurobranch 0.23 times as long as Cp and 4.6 times as long as posterior pleurobranch. Somite X with anterior pleurobranch 0.25 times as long as Cp and 5.0 times as long as posterior pleurobranch. Somite XI with anterior pleurobranch 0.29 times as long as Cp and 5.7 times as long as posterior pleurobranch. Somite XII with anterior pleurobranch 0.29 times as long as Cp and 2.9 times as long as posterior pleurobranch. Somite XIII with anterior pleurobranch 0.25 times as long as Cp and 1.7 times as long as posterior pleurobranch.

Pl I with basipod 0.32 times as long as Cp and exopod 2.2 times as long as basipod. Pl II with basipod 0.29 times as long as Cp ; exopod 2.6 and endopod 1.5 times as long as basipod, respectively. PI III with basipod 0.29 times as long as Cp ; exopod 2.3 and endopod 1.4 times as long as basipod, respectively. Pl IV with basipod 0.29 times as long as Cp ; exopod 2.0 and endopod 1.3 times as long as basipod, respectively. Pl V with basipod 0.26 times as long as Cp ; exopod 1.9 and endopod 1.1 times as long as basipod, respectively.

Up with exopod 4.5 times as long as wide, 6.1 times as long as basipod and 0.7 times as long as Cp ; endopod 3.9 times as long as wide and 0.7 times as long as exopod (Fig. 88C).

Petasma (Fig. 89A-B, Pl. 4E). PV very long, 5.4 times as long as wide, armed with row of smaller hooks along distal half of medial side and 1 stronger apical tooth. LT overlapping LC, 2.4 times as long as wide and 0.3 times as long as PV , armed with several hooks in distomedial part. LC directed laterally, 1.3 times as long as wide and 0.2 times as long as PV, armed with single apical hook. Small tubercle armed with 1 hook proximal to base of LC is remnant of LA.

Photophores. Cp: 3 in lateral rows. Scaphocerite: 3 organs at level of inner muscle strip from 0.5 to 0.8-0.9 blade length. Up exopod: 2 organs at level of inner muscle strips, at 0.5 and at $0.7-0.8$ exopod length. Up endopod: 1 organ near base.

Other body photophores, all ventral, found on the following somites ( $\mathrm{al}=$ anterolateral, $1=$ lateral, m $=$ medial): II ( 1 m ), III $(1 \mathrm{~m}+4 \mathrm{l})$, labrum $(1 \mathrm{~m}+2 \mathrm{l})$, IV $(2 m+21), V(2 m+21)$, VI (41), VII $(2 m+2 l)$ VIII $(1 m+21)$, IX ( $3 m$ ), X $(1 m+21)$, XI $(3 m+21)$, XII $(3 \mathrm{~m}+2 \mathrm{l})$, XIII $(3 \mathrm{~m}+2 \mathrm{al})$, XIV $(3 \mathrm{pm}(\mathrm{male}) / 4 \mathrm{pm}$ (female) +2 al ), XV ( $3 \mathrm{~m}+2 \mathrm{l}$ ); XVI ( $5 \mathrm{~m}+2 \mathrm{l}$ ), XVII ( $3 \mathrm{~m}+2 \mathrm{l}$ ), XVIII ( $3 \mathrm{~m}-21$ ), XIX $(3 m+2 \mathrm{l})$, XX ( 4 m ). Total (with those in Cp rows): 92 (female) or 91 (male).

Other photophores found on the following appendages $(\mathrm{d}=$ distal, $\mathrm{p}=$ proximal, Roman numerals indicate segments): eyestalk ( $1 \mathrm{p}+1 \mathrm{~d}$ ) A I (peduncle III - 1d), A II (peduncle I - 1p), Md (proper - 1d, palp I-1d), Mxp II (II - 1d, III - 1d, V - 1d, VI - 1d), Mxp III (II - 1d, III - 1d, IV - 1d, V 1d), P I (II - 1d, III - 1p), P II (III - 1p, V - 1d), P III (III - 1p+1d, IV - 1d), P IV (III - 1d (female)/0 (male)), P V (III - 1d (female)/0 (male)), Pl I - Pl V (1p). Total (with those on scaphocerite and Up): 70 (female) or 66 (male).

Thus, the total number of observed photophores in examined specimens ranges from 157 in males to 162 in females.

Remarks: This is a very abundant commercial species in Japanese waters (Suruga Bay); it was first mentioned as Sergestes phosphoreus Kishinouye by Nakazawa (1915) and slightly later by Nakazawa \& Terao (1915) tentatively referred to Sergestes prehensilis Bate, 1881. At the same time they also proposed the name $S$. kishinouyei for the Suruga Bay species if it should be distinct from $S$. prehensilis. Since then S. prehensilis was used by several Japanese authors for the species, until Hansen (1919) compared Bate's type specimen of

Sergestes prehensilis and the figures of Nakazawa \& Terao (1915) and came to the conclusion that Japanese species was different from S. prehensilis Bate. In a later paper, Hansen (1922) named the Japanese species Sergestes lucens, referring to the description and figures of Nakazawa \& Terao (1915). However, until the paper by Gordon (1935) with detailed comparisons of $S$. prehensilis and $S$. lucens, the latter species, "Sakura-ebi" in Japanese, was known under three different names: S. phosphoreus, S. prehensilis, and S. kishinouyei. After 1935, only the name $S$. lucens was used for this species.
Although Omori (1969) in his very detailed studies on S. lucens did not mention the division of Mxp III dactyl and Mxp III-P III propodi, subsegmentation in this species is much more certain than in most of the other species of the genus. Since the description of $S$. lucens, attention of many authors was paid to the most remarkable character of this species, the photophores, and several reports were published on their position and number. Terao (1917) found 161 photophores amd Omori (1969) $161 \pm 2$ luminous organs. Although specimens available to me are different in minor aspects of the photophore position from those described by Nakazawa (1915), Gordon (1935), and Omori (1969), they agree well in the total number of luminescent organs (157-162). It should be pointed out that number and position of photophores vary in reports of different authors. For example, Nakazawa \& Terao (1915) reported 6 photophores on the sternite between the bases of $\mathrm{P} V$ and a single pair of organs on the sternite of abdominal somite VI, while Omori (1969) found 4 and 3 organs, respectively. Gordon (1935) found 42 photophores on the ventral surface of the abdomen, but Omori (1969) counted only 33 organs. It is uncertain whether this is due to morphological variation within the species (which is difficult to believe, taking into account the very restricted area of sampling of specimens in question), or due to the difficulty in searching for photophores.

Sergia lucens is close to S. crosnieri n. sp. (see affinities and differences in remarks to $S$. crosnieri).

Geographical distribution (Fig. 87): Western Pacific only: This species was believed to be an endemic of Japan, west of Sunosaki, the mouth of River Sakawa, Sagami and Suruga Bays, sometimes in Tokyo Bay (Dr. Th. Mortensen Exp.; "Ten-
yo Maru"; Yokoya 1933, Omori 1969). New "Dana" records expand this area very much, to off Borneo, off the Philippines, and off New Guinea. Omori et al. (1988) have reported some specimens morphologically similar to S. lucens off Tung-kang, southwestern Taiwan. The specific identity of the material is not yet certain, and they are not included on the map.

Remarks: The biology of this commercial species has been well studied (e.g., Omori 1969). It is a typical benthopelagic species, extremely abundant over the shelf, especially in Suruga Bay, although a few specimens may be spread offshore. Since very distant "Dana" records of this species may hardly be accounted for by the water transport from the

Japanese bays, one should rather expect to find other independent populations in the bays within the hatched area, including offshore Indonesian Islands. S. lucens and S. crosnieri have a nearly parapatric distribution.

Vertical range: A benthopelagic species, migrating daily between the shelf/lateral continental-slope contact zone (Vereshchaka 1995a) and the epipelagic zone. Specimens were taken within the depth range $200-800 \mathrm{~m}$. A few occurred at about 200 m at night, and 1 specimen was found in a day sample from a depth of about 800 m . In his detailed paper, Omori (1969) provides similar depth ranges: fishing grounds are found along the 200 m isobath.

## CONCLUDING REMARKS

The objective of this monograph is to show the present knowledge of the genus Sergia. The recent description of $S$. umitakae and of a third species of the $S$. lucens species group as well as descriptions of the new species above demonstrate how incomplete our data even on species composition of this group are. New discoveries concerning benthopelagic species with limited distribution belonging to the $S$. prehensilis, $S$. challengeri, and $S$. lucens species groups may be expected first of all. At the same time, it is difficult to exclude new findings in the deep sea, as this oceanic zone is the most poorly explored zone in all aspects.

In this monograph remarks on the vertical distribution of species are very restricted. Such extensive material as collected in the "Dana II" Expedition requires special efforts and separate publications
concerning vertical distribution of species. Although non-closing gears used during the "Dana" expeditions allow only semi-quantitative estimations of the abundance of animals, the analyses of the vertical ranges based on the "Dana I" data (Vereshchaka 1994a) demonstrate that results of general interest may be obtained in this field.

Sergestidae is one of the most poorly understood groups of Decapoda. A revision of the sister genus Sergestes is strongly necessary, as it comprises the second most abundant genus as regards number of species. After this revision and review of several minor groups belonging to the genera Lucifer, Acetes, Petalidium, Peisos, and Sicyonella, the phylogeny of the whole family Sergestidae may be analysed.

## ACKNOWLEDGEMENTS

These studies were made possible through the grants from the Carlsberg Foundation ( 4 months), the Johannes Schmidt Foundation (same 4 months as above), the Museum National d'Histoire Naturelle (1 month), the Smithsonian Institution (1 month), the Volkswagen Foundation (Grant No 1/173 638) and the Russian Foundation for Basic Research (Grant No 96-04-48333). Publication was supported by the Danish Natural Science Research

Council and the Carlsberg Foundation. Information on types and aid in contacting curators were provided by Dr. Charles Oliver Coleman, ZMB, Berlin; Drs. Alain Crosnier and Nguyen Ngoc-Ho, MNHN; Mr. Harish Gaonkar, Copenhagen; Dr. Kazuyoshi Hashizume, Tokyo University of Fisheries; Ms. Miranda Lowe, NHM; Dr. P. Mukhopadhyay, ZSI; Dr. Van Wallach, MCZ, Harvard; and Dr. Endre Willassen, ZMUB, Bergen.

Dr. N. Iwasaki, Japan, sent me unpublished information on a new species of the Sergia lucens group. The late Dr. Austin B. Williams, Curator Emeritus, kindly hosted my visit to the NMNH, Smithsonian Institution and both he and Dr. Brian Kensley, Curator of Crustacea, NMNH, helped to make my stay there a profitable one. I am personally grateful to the late Dr. Erik Bertelsen and to Dr. Jørgen Nielsen, ZMUC, who proposed the idea for these studies; to Drs. Niel L. Bruce, Alain Crosnier, and Gary C. B. Poore, Museum of Victoria, Australia, for reviewing various parts of the manuscript and for suggestions that greatly improved the final quality of the paper; and to Dr. Mary E. Petersen,

ZMUC, co-editor of this monograph, for very helpful discussions, aid with literature and locating types, and with scientific and linguistic revision of the manuscript. My very special thanks to Dr. Torben Wolff, for providing invitations for my studies on the "Dana" and "Galathea" collections and for his unfailing support of this work and helpfulness throughout several years, both during my visits to ZMUC and during subsequent discussions of the manuscript.

Revisions of a difficult group like this will always contain some mistakes and misinterpretations, and I shall be grateful to receive any corrections.

## REFERENCES

Adensamer, T., 1898: Decapoden gesammelt auf S. M. Schiff "Pola" in den Jahren 1890-1894. Berichte der Commission für Erforschung des ostlichen Mittelmeeres. XXII. Zoologische Ergebnisse. XI. - Denkschr. Akad. Wiss., Wien 65: 597-628.
Aizawa, Y., 1969: Vertical distribution and migration of mesoand bathypelagic shrimps in the neighbouring Sea of Japan. Bull. Plankt. Soc. Japan 16: 60-63.
Alcock, A., 1901: A descriptive catalogue of the Indian deepsea Crustacea Decapoda Macrura and Anomala, in the Indian Museum. Being a revised account of the deep-sea species collected by the Royal Indian Marine Survey Ship Investigator. Trustees of the Indian Museum, Calcutta, pp. 1$286+$ i-iv, pls. 1-3.
Allen, J. A., 1967: Crustacea: Euphausiacea and Decapoda with an illustrated key to the British species. The Fauna of the Clyde Sea Area, ed. H. T. Powell. Scottish Marine Biological Association, Millport, pp. 1-116.
Alvarez, M. P. J., 1988: Study of the development of Lucifer faxoni Borradaille, 1915 (Crustacea, Decapoda, Sergestidae) through the measurement of the prebuccal somite. - Revta bras. Zool. 5: 371-380.
Bacescu, M. \& R. Mayer, 1961: Malacostracés (Mysidacea, Euphausiacea, Decapoda, Stomatopoda) du plancton diume de la Méditerranée. Etude basée sur le matériel du Lamont Geological Observatory. - Washington Rapp. Commn int. Mer médit. 16: 183-202.
Balss, H., 1914: Ostasiatische Decapoden. II. Die Natantia und Reptantia. - Abh. bayer. Akad. Wiss. Math-phys. 2 (10): 1101.

Barnard, K. H., 1946: Description of new species of South African decapod Crustacea, with notes on synonymy and new records. - Ann. Mag. nat. Hist., Ser. 11, 13: 362-391.

- 1950: Descriptive catalogue of South African decapod Crustacea. - Ann. S. Afr. Mus. 37: 1-837.
Bate, C. S., 1881: On the Penaeidea. - Ann. Mag. nat. Hist., Ser. 5, 8: 169-196.
- 1888: Report on the Crustacea Macrura collected by H. M. S. "Challenger" during the years 1873-1876. - Challenger Rep.,

Part 52, Zool. 24: 1-942.
Boone, L., 1930: Crustacea: Anomura, Macrura, Schizopoda, Isopoda, Amphipoda, Mysidacea, Cirripedia, and Copepoda. Scientific results of the cruises of the yachts "Eagle" and "Ara", 1921-1928, William K. Vanderbilt, commanding. Bull. Vanderbilt mar. Mus. 3: 1-221.
Bruun, A. F., 1950: General report. List of stations. - Atlantide Rep. 1: 10-47.

- 1958: General introduction to the reports and list of deep-sea stations. - Galathea Rep. 1: 7-48.
Burkenroad, M. D., 1937: The Templeton Crocker Expedition. XII. Sergestidae (Crustacea Decapoda) from the Lower Californian region, with descriptions of two new species and some remarks on the organs of Pesta in Sergestes. Zoologica, N. Y. 22: 315-330.
- 1940: Preliminary descriptions of twenty-one new species of pelagic Penaeidae (Crustacea Decapoda) from the Danish oceanographic expeditions. - Ann. Mag. nat. Hist., Ser. 11, 6: 34-54.
Butler, T. H., 1980: Shrimps of the Pacific coast of Canada. Can. Bull. Fish. aquat. Sci, 202: 1-280.
Calman, W. T., 1925: On macrurous decapod Crustacea collected in South African waters by the S. S. "Pickle". - S. Afr. Fish. mar. biol. Surv. Rep. 4 (3): 1-26, pls. 1-4.
Caullery, M., 1896: Crustacés Schizopodes et Décapodes. - In: H. Koehler: Résultats scientifiques de la campagne du "Caudan" dans le Golfe de Gascogne. Août-Septembre 1895. Ann. Univ. Lyon 26: 365-419.
Cecchini, C., 1928: Crostacei. Parte V. Sergestidi. - Racc. Plancton. R. nave "Liguria" 3: 31-60.
Crosnier, A. \& J. Forest, 1973: Les crevettes profondes de l'Atlantique oriental tropical. - Faune Tropicale 19: 1-409.
Dennel, R., 1955: Observations on the luminescence of bathypelagic Crustacea Decapoda of the Bermuda area. - J. Linn. Soc. 42: 393-406.
Dieuzeide, R., 1955: Introduction: dragages et chalutage. Notes faunistiques sur la zone mésoabyssale. - Bull. Stat. Castiglione, nouv. sér. 7: 7-86.
Dieuzeide, R. \& J. Roland, 1958: Prospections des fonds cha-
lutable des côtes algériennes. Recherches de nouvelles zones (années 1956-1957). - Bull. Stat. Castiglione, nouv. sér. 9: 969.

Donaldson, H. A., 1975: Vertical distribution and feeding of sergestid shrimps (Decapoda: Natantia) collected near Bermuda. - Mar. Biol. 31: 37-50.
Faxon, W., 1893: Reports on the dredging operations off the West Coast of Central America to the Galapagos, to the West Coast of Mexico, and in the Gulf of California, in charge of Alexander Agassiz, carried on by the U. S. Fish Commission steamer "Albatross," during 1891, Lieut. Commander Z. L. Tanner, U. S. N., commanding. VI. Preliminary descriptions of new species of Crustacea. - Bull. Mus. comp. Zool. Harv. 24: 149-220.

- 1895: Reports on an exploration off the West Coasts of Mexico, Central and South America, and off the Galapagos Islands, in charge of Alexander Agassiz, by the U. S. Fish Commission steamer "Albatross," during 1891, Lieut.Commander Z. L. Tanner, U. S. N., commanding. XV. The stalk-eyed Crustacea. - Mem. Mus. comp. Zool. Harv. 18: 1292, colour pls. A-K, pls. 1-56, 1 map.
Foxton, P., 1970: The vertical distribution of pelagic decapods (Crustacea: Natantia) collected on the SOND cruise 1965. II. The Penaeidea and general discussion. - J. mar. biol. Ass. U. K. 50: 961-1000.
- 1972: Further evidence of the taxonomic importance of the organs of Pesta in the genus Sergestes (Natantia, Penaeidea). - Crustaceana 22: 181-189.

Gordon, I., 1935: On new or imperfectly known species of Crustacea Macrura. - Zool. J. Linn. Soc. 39: 307-351.

- 1939: A new species of Sergestes (Crustacea, Decapoda) from the South Atlantic. - Ann. Mag. nat. Hist. 4: 498-509.
Gurney, R., 1924: Crustacea. Part IX. Decapod larvae. - Br. Antarct. Terra Nova Exped. 1910, Nat. Hist. Rep., Zool. 8 : 37-202.
- 1942: Larvae of Decapod Crustacea. - Ray Society, London, pp. i-viii + 1-306.
- \& M. V. Lebour, 1940: Larvae of decapod Crustacea. Part VI. The genus Sergestes. - "Discovery" Rep. 20: 1-68.
Hansen, H. J., 1896: On the development and the species of crustaceans of the genus Sergestes. - Proc. zool. Soc. Lond., 1896: 936-970.
- 1903: On the crustaceans of the genera Petalidium and Sergestes from the "Challenger", with an account of luminous organs in Sergestes challengeri n. sp. - Proc. zool. Soc. Lond. 1 [for 1903]: 52-79, pls. 11-12.
- 1908: Crustacea Malacostraca. I. - Dan. Ingolf-Exped. 3 (2): 1-120.
- 1919: The Sergestidae of the Siboga Expedition. - Siboga Exped. 38: 1-65.
- 1920: Les Sergestides des Expéditions du "Travailleur" et du "Talisman". - Bull. Mus. Hist. nat., Paris 26: 477-483.
- 1922: Crustacés décapodes (Sergestides) provenant des campagnes des yachts Hirondelle et Princesse-Alice (18851915). - Résult. Camp. scient. Prince Albert I 64: 1-232, pls. 1-11.
- 1925: Note on specimens of the genus Sergestes. - Fish. mar. biol. Survey, Rep. No 4 for the year 1925: 22-26.
- 1927: Famille de "Sergestidæ". Pp. 1-7 in Sergestides and Schizopodes. Extrait des Expéditions Scientifiques du Travailleur et du Talisman, 1880-1881-1882-1883, Masson
\& $\mathrm{Ci}^{\mathrm{i}}$, pp. 1-27, 1 pl . [Reprint pagination, original not seen.] Hashizume, K. \& M. Omori, 1995: A new species of sergestid shrimp, Sergia umitakae (Decapoda, Sergestidae) from the Indian Ocean off Sri Lanka. - Bull. natn. Sci. Mus., Tokyo, Ser. A 21: 71-77.
Holthuis, L. B., 1952a: The Crustacea Decapoda Macrura of Chile. - Rep. Univ. Lund Chile Exped. 5: 1-110.
- 1952b: Crustacés décapodes macrures. - Résult. scient. Expéd. océanogr. Belge Eaux Côt. Afr. 3: 1-88.
- \& E. Gottlieb, 1958: An annotated list of the decapod Crustacea of the Mediterranean coast of Israë, with an appendix listing the Decapoda of the Eastern Mediterranean. - Bull. Sea Fish. Res. Stn Israel 18: 1-126.

Huzita, S., 1959: EEcological investigations of Sergestes lucens Hansen in Suruga Bay.] - Bull. educat. Fac. Shizuoka Univ. 10: 235-244 [in Japanese].
Illig, G., 1914: Die Dekapoden der deutschen SüdpolarExpedition. II. Die Sergestiden. - Dt. Südpol.-Exped. 15 (Zool. 7): 347-376.

- 1927: Die Sergestiden der Deutschen Tiefsee-Expedition. Wiss. Ergebn. dt. Tiefsee-Exped. "Valdivia" 1898-1899 23 (7): 277-354.

Jespersen, P. \& A. V. Tåning, 1934: Introduction to the Reports from the Carlsberg Foundation's Oceanographical Expedition Round the World 1928-30 and List of Stations. -Dana-Rep. 1: 7-130.
Judkins, D. C., 1978 : Pelagic shrimps of the Sergestes edwardsii species group (Crustacea: Decapoda: Sergestidae). Smithson. Contr. Zool. No. 256: 1-34.
Kemp, S., 1906: Macrura from west coasts of Ireland. - Dep. Agric. tech. Instruction Ireland, Fish. Brch, scient. Invest., 1905, No. 5: 7.

- 1910a: The Decapoda Natantia of the coasts of Ireland. Dep. Agric. tech. Instruction Ireland, Fish. Brch, scient. Invest., 1908, no. 1: 1-190.
- 1910b: Notes on the photophores of decapod Crustacea. Proc. zool. Soc. Lond., 1910: 639-651, pls. 52-54.
- 1913: Pelagic Crustacea Decapoda of the Pearcy Sladen Expedition in H. M. S. "Sealark" - Trans. Linn. Soc. Lond. 16: 53-68.
Kensley, B. F., 1971: The family Sergestidae in the waters around Southern Africa (Crustacea, Decapoda, Natantia). Ann. S. Afr. Mus. 57: 215-264.
- 1972: Shrimps and Prawns of Southern Africa. - Trustees of the South African Museum, Cape Town, pp. 1-65.
- 1977: The South African Museum's Meiring Naude Cruises. Part 5. Crustacea, Decapoda, Reptantia and Natantia. - Ann. S. Afr. Mus. 74: 13-44.
- 1981: The South African Museum's Meiring Naude Cruises. Part 12. Crustacea Decapoda of the 1977, 1978, 1979 Cruises. - Ann. S. Afr. Mus. 83: 49-78.
Kishinouye, K., 1928: Notes on the Sergestidae. - Proc. imp. Acad. Japan 4: 125-127.
Knight, M. \& M. Omori, 1982: The larval development of Sergestes similis Hansen (Crustacea, Decapoda, Sergestidae) reared in the laboratory. - Fish. Bull. Fish Wildl. Serv., U. S. 80: 217-243.
Krøyer, H., 1855: Bidrag til Kundskab om Kræbsdyrslægten Sergestes Edw. [Contribution to knowledge of the crustacean genus Sergestes Edw.] - Overs. K. danske Vidensk. Selsk. Forh., 1855: 22-34 (pp. 1-13 in reprint) [in Danish with Latin
diagnoses].
- 1856: Forsög til en monographisk Fremstilling af Kræbsdyrslægten Sergestes. Med Bemærkninger om Dekapodernes Höreredskaber [Attempts at a monographic presentation of the crustacean genus Sergestes. With comments on the hearing apparatuses of decapods]. - Separately paginated version of paper published 1859 in K. danske Vidensk. Selsk. Skr., Ser. 5, 4; pp. 1-88, pls. 1-5 [in Danish].
- 1859: Forsøg til en monographisk Fremstilling af Kræbsdyrslægten Sergestes. Med Bemærkninger om Dekapodemes Höreredskaber. - K. danske Vidensk. Selsk. Skr., Ser. 5, 4: 219-304, pls. 1-5 [identical to 1856 separate except for pagination and date].
Krygier, E. E. \& W. G. Pearcy, 1981: Vertical distribution and biology of pelagic decapod crustaceans off Oregon. - J. crust. Biol. 1: 96-104.
- \& R. A. Wasmer, 1988: Zoogeography of pelagic shrimps (Natantia: Penaeidea and Caridea) in the North Pacific Ocean (with synopses and keys to the species of the subarctic and transitional zones). - Bull. ocean res. Inst. Univ. Tokyo 26: 43-98.
Kubo, I., 1960: ["Sakura-ebi", Sergestes lucens Hansen.] - P. 113 in Yo. K. Okada, S. Uchida \& T. Uchida (eds.): Encyclopaedia Zoologica Illustrated in Colours 4, Hokutyukan, Tokyo [in Japanese].
- 1965: ["Sakura-ebi", Sergestes lucens Hansen.] - P. 595 in Yo. K. Okada \& T. Uchida (eds.): New Illustrated Encyclopaedia of the Fauna of Japan 2, Hokutyu-kan, Tokyo [in Japanese].
Kurian, C. V., 1956: Larvae of decapod Crustacea from the Adriatic Sea. - Acta adriat. 6 (3): 1-108.
Lagardère, J. P., 1970: Les crevettes du Golfe de Gascogne (région sud). - Tethys 1: 1023-1048.
- 1972: Recherches sur l'alimentation des crevettes de la pente continental marocaine. - Tethys 3: 655-675.
- 1978: Crustaces pelagiques. - Fich. Ident. Zooplancton 155/156/157: 1-15.
Legendre, R., 1940: La faune pélagique de l'Atlantique au large du Golfe de Gascogne, recueillie dans des estomacs de germons. Troisieme partie: Invertébrés (Céphalopodes exclus). Parasites du germon. - Ann. Inst. océanogr. Monaco 20: 127310.

Lo Bianco, S., 1903: Le pesche abissali eseguite da F. A. Krupp col yacht "Puritan" nelle adiacenze di Capri ed in altre localita del Mediterraneo. - Mitt. zool. Stn Neapel 16: 109-279.
Mallo, J. C., 1986: Larval development of the shrimp Peisos petrunkevitchi Burkenroad, 1945, under laboratory conditions (Crustacea, Decapoda, Sergestidae). - Biol. Pesquera 0 (15): 3-16.

- \& E. E. Boschi, 1982: The life cycle of Peisos petrunkevitchi of Mar del Plata, Argentina (Crustacea, Decapoda, Sergestidae). - Physis, Sección A los Oceanos y Organismos 41: 85-98.
Marshall, N. B. \& N. R. Merrett, 1977: The existence of a benthopelagic fauna in the deep sea. - Pp. 483-497 in M. V. Angel (ed.): A Voyage of Discovery. George Deacon 70th Anniversary Volume, Pergamon Press, Oxford.
Maurin, C., 1963: Les crevettes capturées par la "Thalassa" au large des côtes du Rio de Oro et de Mauritanie. Ecologie et pêche. - Cons. Explor. Mer. Comité des Mollusques et Crustacés, Commun. N 48, 5 pp.
- 1968: Les Crustacés capturées par la "Thalassa" au large des côtes nord-ouest africaines. - Revue roum. Biol., Zool. 13: 479-493.
Milne-Edwards, H., 1830: Descriptions des genres Glaucothoë, Sicyonia, Sergestes et Acéte de l'ordre des Crustacés Décapodes. - Annls Sci. nat. (Zool.) 19: 333-352.
Miranda, R. A., 1933: Ensayo de un catalogo de los crustaceos decapodos marinos de España y Marruecos español. - Notas Resúm. Inst. esp. Oceanogr., Ser. 2, 67: 1-72.
Nakazawa, K., 1915: [Studies on "Sakura-ebi", Sergestes phosphoreus ?, in Suruga Bay.] - Rep. imp. Fish. Inst., Tokyo 11 (2): 1-21 [in Japanese].
- 1916: [On the development of "Sakura-ebi".] - Zool. Mag., Tokyo 28: 485-494 [in Japanese].
- 1932a: [On the metamorphosis of "Sakura-ebi", Sergestes phosphoreus.] - Zool. Mag., Tokyo 44: 21-23 [in Japanese].
- 1932b: On three species of Sergestes found in Suruga Bay. Zool. Mag., Tokyo 44: 31-32.
- 1933: ["Sakura-ebi", Sergestes phosphoreus Kishinouye. Pp. 365-366 in S. Tanaka (ed.): Illustrated Encyclopedia of the Aquatic Fauna and Flora. (Suisan Doshokubutsu Zusetsu.)] Taichi-shoin, Tokyo [in Japanese].
- \& A. Terao, 1915: [Studies on "Sakura-ebi".] - Zool. Mag., Tokyo 27: 602-630 [in Japanese].
Okada, Yo. K., 1935: ["Sakura-ebi", Sergestes kishinouyei Nakazawa and Terao.] - P. 699 in N. Yatsu \& Y. Okada (eds.): Iwanami's Encyclopaedia of Zoology, Iwamani-shoten, Tokyo [in Japanese].
Okutani, T., 1969: Synopsis of bathyal and abyssal megaloinvertebrates from Sagami Bay and the South of Boso Peninsula trawled by the R/V "Soyo-Maru". - Bull. Tokai reg. Fish. Res. Lab. 57: 1-61.
Omori, M., 1969: The biology of a sergestid shrimp Sergestes lucens Hansen. - Bull. ocean res. Inst. Univ. Tokyo 4: 1-83, 1 colour pl.
- 1971: Preliminary rearing experiments on the larvae of Sergestes lucens (Penaeidea, Natantia, Decapoda). - Mar. Biol. 9: 228-234.
-- 1974: The biology of pelagic shrimps in the ocean. - Adv. mar. Biol. 12: 233-324.
- Y. Ukishima \& F. Muranaka, 1988: New record of occurrence of Sergia lncens [lucens] (Hansen) (Crustacea, Sergestidae) off Tung-kang, Taiwan, with special reference to phylogeny and distribution of the species. - J. oceanogr. Soc. Japan 44: 261-267 [in Japanese, English summary].
- \& S. G. Jo, 1989: Plankton sampling system with a new submersible vortex pump and its use to estimate small-scale vertical distribution of eggs and larvae of Sergia lucens. - Bull. plankton Soc. Japan 36: 19-26.
Ortmann, A., 1893: Decapoden und Schizopoden. - Ergebn. Atlant. Ozean Planktonexped. Humboldt-Stift. 2: 1-120.
Oshiro, L. M. Y. \& M. Omori, 1996: Larval development of Acetes americanus (Decapoda: Sergestidae) at Paranagua and Laranjeiras Bays, Brazil. - J. crust. Biol. 16: 709-729.
Pearcy, W. G. \& C. A. Forss, 1966: Depth distribution of oceanic shrimps (Decapoda: Natantia) off Oregon. - J. Fish. Res. Bd Canada 23: 1135-1143.
Pérez-Farfante, I. \& B. Kinsley, 1997: Penaeoid and sergestoid shrimps and prawns of the world. Keys and diagnoses for the families and genera. - Mém. Mus. natn. Hist. nat., Paris 175: 1-233.

Pesta, O., 1913a: Zur Kenntnis einiger Tiefsee-Decapoden der Adria. - Zool. Anz. 42: 60-72.

- 1913b: Liste einiger Decapodengenera und Species aus der Adria. - Zool. Anz. 42: 403-408.
- 1914: Die auf den Terminfahrten S. M. Schiff "Najade" erbeuteten Decapoden Sergestes, Lucifer und Pasiphaea. Sber. Akad. Wiss. Wien 123: 189-219, 1 colour pl.
- 1915: Die Penaeidea des Wiener naturhistorischen Hofmuseums. - Arch. Naturgesch., ser. A, pt. 1, 81: 99-122.
- 1916: Sind die Decapoden der Adria "gut" bekannt? - Annln naturh. Hofmus. Wien 30: 226-229.
- 1918: Die Decapodenfauna der Adria. Versuch einer Monographie. - Franz Deuticke, Leipzig und Wien, 500 pp.
Rathbun, M. J., 1906: The Brachyura and Macrura of the Hawaiian Islands. - Fish. Commn Bull. 23: 827-930.
Ribeiro, A., 1970: Contribucão para o estudo dos "Camarões" de interesse economico da plataforma continental de Angola. - Notas Explor. Mer, Zooplankton Sheet 12: 1-7.

Richardson, L. R. \& J. C. Yaldwyn, 1958: A guide to the natant decapod Crustacea (shrimps and prawns) of New Zealand. Tuatara 7: 17-41.
Riggio, G., 1900: Contributo alla carcinologia del Mediterraneo (Sunto). - Monitore zool. ital. 11: 19-20.

- 1905: Contributo alla carcinologia del Mediterraneo. I. Nota sopra alquanti crostacei del mare di Messina. - Naturalista sicil. 17: 97-103, 151-160, 169-178, pls. 1-3. [Also issued as separate with pp. 1-56, pls. 1-3.]
Sakai, K. \& T. Nakano, 1983: Studies on the genus Sergestes (Crustacea, Decapoda). I. Sergestes (Sergia) japonicus Bate, 1881 and Sergestes (Sergia) mollis Smith, 1884. - Res. Crust. 12: 97-110.
- 1985: Studies on the genus Sergestes (Crustacea, Decapoda). II. Sergestes seminudus Hansen, 1919 and Sergestes prehensilis Bate, 1881. - Bull. Shikoku Women's Univ. 4: 17-35.
Schmidt, J., 1929: Introduction to the oceanographical reports including list of the stations and hydrographical observations. - Oceanogrl Rep. "Dana" Exped. 1920-22 1: 1-87, pls. 1-6.
Smith, S. I., 1881: Preliminary notice of the Crustacea dredged, in 64 and 325 fathoms, off the south coast of New England, by the United States Fish Commission in 1880. - Proc. U. S. natn. Mus. 3: 413-452.
- 1882: Report on the Crustacea. Part I. Decapoda. - Bull. Mus. comp. Zool. Harv. 10 (1): 1-108.
- 1884: Report on the decapod Crustacea of the Albatross dredgings off the east coast of the United States in 1883. Rep. Commnr Fish Fish. 1882: 345-426.
- 1886: Report on the decapod Crustacea of the Albatross dredgings off the east coast of the United States during the summer and autumn of 1884. - Rep. Commnr Fish Fish. 1885: 1-101, 20 pls..
Springer, S. \& H. R. Bullis, 1956: Collections by the Oregon in the Gulf of Mexico. - Spec. scient. Rep. U. S. Fish Wildl. Serv. 196: 134.
Stebbing, T. R. R., 1905: South African Crustacea. Part III. Mar. Invest. S. Afr. 4: 21-123, pls. 17-26.
- 1910: General catalogue of South African Crustacea. - Ann. S. Afr. Mus. 6: 281-593, pls. 15-22 [Crustacea pls. 41-48].

Stimpson, W., 1860: Prodromus Descriptionis Animalium Evertebratorum, quae in Expeditione ad Oceanum Pacificum Septentrionalem, a Republica Federata missa, Cadwaladaro

Ringgold et Johanne Rodgers Ducibus, observavit et descripsit. - Proc. Acad. nat. Sci. Philad. 12: 22-47 [pp. 91-116 in reprint].
Sund, O., 1920: Peneides and Stenopides from the "Michael Sars" North Atlantic Deep-Sea Expedition 1910. - Rep. scient. Results Michael Sars N. Atlant. deep Sea Exped. 3 (7): 1-36, pls. 1-2.
Tåning, Å. V., 1944: List of supplementary pelagic stations in the Pacific Ocean and the Atlantic. - Dana Rep. No. 26: 1-13.
Terao, A., 1916: [On the luminous organs of "Sakura-ebi", Sergestes prehensilis Bate.] - Zool. Mag., Tokyo 28: 220-227 [in Japanese].

- 1917: Notes on the photophores of Sergestes prehensilis Bate. - Annotnes zool. jap. 9: 299-316.
Vereshchaka, A. L., 1990a: [Macroplankton (mysids, euphausiids, and decapods) in the contact zones of pelagic and benthic communities.] - Unpublished Ph.D. Thesis, Oceanology Institute, Moscow, 190 pp . [in Russian].
- 1990b: [Pelagic decapods over seamounts of Nasca and Sala-i-Gomez Ridges.] - Trudy Inst. Okeanol. 124: 129-155 [in Russian].
- 1991: [Ecological groups of macroplankton in the near-bottom layer of continental shelves and seamounts.] - VINITA, N 2597 - B 91: 1-11 [in Russian].
- 1994a: North Atlantic and Caribbean species of Sergia (Crustacea, Decapoda, Sergestidae) and their horizontal and vertical distribution. - Steenstrupia 20: 73-95.
- 1994b: Pelagic and benthopelagic planktonic decapods, mysids, and euphausiids: list of species. - Arthropoda Selecta 3: 57-66.
- 1995a: Macroplankton in the near-bottom layer of continental slopes and seamounts. - Deep-Sea Res. 42: 1639-1668.
- 1995b: [Distribution of benthopelagic shrimps above continental slopes and seamounts of the western Indian Ocean.] Okeanologija 35: 574-578 [in Russian].
Vilela, H., 1970: Apercu général sur les crustacés et mollusques. Symposium sur les ressources vivantes du plateau continental atlantique africain du détroit de Gibraltar au Cap Vert. - Rapp. Cons. Explor. Mer 159: 119-125.
Vinogradov, M. E., 1968: [Vertical Distribution of the Oceanic Zooplankton.] - Nauka, Moscow, 273 pp. [in Russian].
Walters, J. F., 1976: Ecology of Hawaiian sergestid shrimps (Penaeidea: Sergestidae). - Fishery Bull., U. S. Dept. Commerce 74: 799-836.
Wasmer, R. A., 1972: Zoogeography of pelagic shrimps (Natantia: Penacidea) in the North Pacific Ocean. - unpublished Ph. D. Thesis, Oregon State Univ, Corvallis, 232 pp.
- 1992 [1993]: Pelagic shrimps (Crustacea: Decapoda) from six USNS "Eltanin" cruises in the southeastern Indian Ocean, Tasman Sea, and southwestern Pacific Ocean to the Ross Sea. - Antarct. Res. Ser. (Am. geophys. U.) 58: 49-91.
Welsh, J. H. \& F. A. Chace, 1938: Eyes of deep-sea crustaceans. II. Sergestidae. - Biol. Bull. mar. biol. Lab., Woods Hole 74: 364-375.
Wilson, J. B., 1978: Mesopelagic faunal transition across the Subtropical Convergence east of New Zealand. - J. mar. freshwater Res. 12: 295-312.
Wood-Mason, J. \& A. Alcock, 1891a: Natural History notes from H.M. Indian Marine Survey Steamer "Investigator", Commander R. F. Hoskyn, R.N., commanding. No. 21. Note on the results of the last season's deep-sea dredging. - Ann.

Mag. nat. Hist., Ser. 6, 7: 186-202.

- 1891b: Natural History notes from H.M. Indian Marine Survey Steamer "Investigator", Commander R. F. Hoskyn, R.N., commanding. Series II., No. 1. On the results of deepsea dredging during the season 1890-91. - Ann. Mag. nat. Hist., Ser. 6, 8: 353-362.
Yaldwyn, J. C., 1957: Deep-water Crustacea of the genus Sergestes (Decapoda, Natantia) from Cook Strait, New Zealand. - Zoology Publs Vict. Univ. Wellington 22: 1-27.
Yokoya, Y., 1933: On the distribution of decapod crustaceans inhabiting the continental shelf around Japan, chiefly based upon the materials collected by S. S. Sôyô-Maru, during the year [sic] 1923-1930. - J. Coll. Agric. imp. Univ. Tokyo 12 (1): 1-226.

Zariquiey Alvarez, R., 1946: Crustaceos decapodos mediterraneos. - Inst. esp. Est. medit. Barcelona, Publ. sobre Biol. medit. 2: 1-181, pls. 1-26.

- 1956: Crustaces decapodes de la region de Cadaqués (España). Etudes carcinologiques méditerranéennes. I. - Vie Milieu 6: 397-409.
- 1968: Crustáceos decápodos Ibéricos - Invest. Pesq. 32: 1510.

Zariquiey y Cenarro, R., 1935: Adiciones al Ensayo de un Catálogo de los Crustáceos Decapodos Marinos de España y Marruecos Español de D. Alvaro de Miranda y Rivera, publicado en 20 de Septiembre de 1933. - Butll. Inst. catal. Hist. nat. 35: 92-98 (pp. 1-7 in separate).

Note added in proof:
While this paper was in press, the following publication by Froglia \& Gramitto (2000) describing a new species of Sergia, Sergia manningorum, appeared. The species is a member of the Sergia robusta group.

Froglia, C. \& M. E. Gramitto, 2000: A new pelagic shrimp of the genus Sergia (Decapoda, Sergestidae) from the Atlantic Ocean. - J. Crust. Biol. 20, Special Number 2: 71-77.

