BIOLOGICAL RESULTS OF THE SNELLIUS EXPEDITION

V. THE DROMIACEA, OXYSTOMATA, AND OXYRHYNCHA OF THE SNELLIUS EXPEDITION

ALIDA M. BUITENDIJK

invertebrate 200LOGY crustincea

LEIDEN

E. J. BRILL

1939

BIOLOGICAL RESULTS OF THE SNELLIUS EXPEDITION

V. THE DROMIACEA, OXYSTOMATA, AND OXYRHYNCHA OF THE SNELLIUS EXPEDITION

by

ALIDA M. BUITENDIJK

The present paper deals with the material of the Brachyura of the tribes Dromiacea, Oxystomata, and Oxyrhyncha obtained by the Snellius Expedition and placed at my disposal through the kindness of Prof. Dr. H. Boschma. At the same time it contains some remarks on the material of the Rijksmuseum van Natuurlijke Historie at Leiden.

I want to express my thanks to Prof. Dr. A. Schellenberg for the loan of material belonging to the genus Tiarinia and to the Director and Members of the staff of the Zoological Museum at Amsterdam, who made it possible for me to examine specimens from the Siboga Expedition and the Col-lection-de Man.

The drawings on plates VII-XI were made by Mr. L. P. Pouderoyen.

DROMIACEA de Haan
IROMIIDAF Alcock
Dromidiopsis Borradaile
Dromidiopsis dormia (I..)
Cancer dormia Linnaens, 1763, Amoen. Acad., vol. 6. 1י. 113.
Amboina; pier; May 6, 1030. - 1 .
In I923 Rathbun stated that the specimens attributed by various authors to Dromia dormia (L.), in reality belonged to 1 wo different species: Dromidiopsis dormia (L.) and the tuew species Dromia dehaani Rathbun.

The young Q from the Java Sea mentioned by Thle (igi3) belongs to Dromidiopsis dormia (L.) ; while the Q from Japan is a Dromia dehaani Rathbun. The Collection-de Man (Museum Amsterdam) contains another q
of Dromia dehaani from the easi-coast of the Malay Peninsula obtained from the Raffles Muscum.

According to Borradaile (1900) one of the characters of Dromidiopsis is, that the sternal sulci in the \cap reach to the chelipeds, converge without joining and end in a single ill-marked tubercle. In the young Q from the Java Sea ($\mathrm{d} .4 \mathrm{I} / 2, \mathrm{~d}) .27 \mathrm{~mm}{ }^{1}$)) the sulci are shorter, ending at the level of the first pair of walking legs with a pair of very indistinct tubercles; the distance between the tubercles is 5 mm .

Cryptodromia Stimpson
Cryptodromia canaliculata Stimpson
Cryptodromia canalicutatu Stimpson, I859, Proc. Ac. Nat. Sc. Philadelphia, 1858, p. 240. Kera, near Timor; November 15-16, 1929. - - i 아.
Ohi latoc; shore or reef; April $23-27,1930 .-$ I 9 .

Cryptodromia canaliculata var. sibogae Ihle

Cryptodromia canoliculata var. sibogac lhic, 1913, Brach. Siboga-Exp., Monogr. 30b, p. 42.
Kera, near Timor; November 11-13, November 15-16, 1929. - . 1 specimen with Sacculinid, and 1 ovigerous o, chelipeds missing.
Near Koepang, Timor; reef; December 8, 1929. - I specimen with Sacculinid.
Reo, Karakelong, Talaud Islands; reef; June it-21, 1930. -- it $\hat{8}$.

The "Suprasuturalwulst" never has a distinct tooth, but sometimes (especially in the ovigerous $?$ from Amboina) a tubercle is present.

Cryptodromia coronata Stimpson

Cryptodromia coronata Stimpson, 1859, Proc. Ac. Nat. Sc. Philadelphia, 1858, p. 240. Kera, near Timor; November 22--23, $1929 .-$ I badly damaged 9. Obi latoe; shore or recif April 23-27, 1930.-1 1 .

Cryptodromia hilgendorfi dc Man

Cryptodromia hilgendorfi de Man, 1887, Arch, Naturg., Jahrg. 53, vol. 1. p. 404, pl. 18 fig. 3.
Maratoca; reef; Angust 1.1-18, 1020.-1 9.
Amboina; September 10-17, October 15, 1930 - -- 2 ovigerous if 9 .
In one of the $Q 9$ from Amboina the left half of the frontal margin is curiously deformed: from the median it rises rather more steeply than the right half, the lateral tooth is apparently broken off, but the margin forms a second broad, blunt tubercle, reaching the same height as the right lateral tooth, but on a greater distance from the median.

[^0]
Cryptodromia de Manii Alcock (Pl. VII fig. 1)

Cryptodromia de Manii Alcock, 1900, Journ. As. Soc. Beng., vol. 68, pt. 2, p. 144. Amboina; September II-i7, 1930. -- I 9 .

According to Alcock: "A tooth on the hepatic region, dorsad of the antero-lateral border, and just behind the outer orbital angle, is characteristic."

Until now the species was known from the type specimen only, in too bad a state to be decently figured, as Alcock states.

Cryptodromia tuberculata Stimpson

Cryptodromia tuberculata Stimpson, I859, Proc. Ac. Nat. Sc. Philadelphia, 1858, p. 239.
Kafal, Misool group; shore or reef; October 3, October 5, 1920. - 1 ô.
Near Manoentbai, Aroe Islands; shore; ()etober II-I4, 1929. --. 1 우
Atapoepoe, Timor; reef; November 19, 1922. - I ovigerous f.
Kambang, near Timor; shore or reef; November 26, November 28, 1929. - 1 ô.
Near Hainsisi, Semaoe, near Timor; shore; November 27, 1929. - I 9.
Pelokan, Postiljon Islands; shore or reef; December 20, 1929. - 18.
Aloang, l'aternoster lslands; shore and reef; Feliruary 8, 1930. - I $\hat{8}$ and I ovigerous 9 .
Pasih Ipah, near Soela Mangoli and Taliaboe; shore; March 18-19, 1930. - 6 of of, 3 오 오 (I ovigerons).
Ternate; shore; April I-2, 1930. --- I ô.
Harockoc; shore and reef; May 3-7. 1930. - 299 (I ovigerous).
Merampi, Nenoesa Islands; slore; May $20,1030 .-2$ of $\hat{0}$, if.
Ake Selaka, Kaoc Bay, Halmahera; shore and reef; May 28, 1930. - if if i ㅇ.
Morotai ; June 3 --10, 1930. - 5 오.

Ternate; September 20, 19,30. - ז 9.
Roemall tiga, Amboina; October 17, 1930. -- I 9.
Lecti; October 31, 1930. - $2 \hat{8}$ ô.
The 9 from Atapocpoe has 3 subhepatic teeth, of the suprasutural teeth only 1 (on either side) is distinctly developed; the 6 from Kambang has 3 subhepatic and 2 suprasutural teeth on the left side, and 2 subhepatic and I suprasutural on the right.

Cryptodromia tuberculata var. pileifera Alcock

Cryphedromia tubcralata var. pilcifcra Alcock, 1goo, Joum As. Soc. Beng.. vol. 68, pt. 2, p. ${ }^{141}$.
l'aleleh, Celcbes; shore; August 21, 1929. - 1 ovigerous O.
Kafal, Misool group; shore or ref; October 3, October 5, meg. - i 8 .
Wotap, Tenimber 1slands; shore or reef; October 20-23, 1920.-1 ovigerous of.
Near Koeplang, Timor; November 18-20, 1929. - 1 of.
Near Hainsisi, Semaoe, near Timor; shore; November 27, ig29. - 1 ovigernets of.
Pelokan, Postiljon Istands; Jecember 20, 1920. -- 1 万.
Sambardjaga, l'ostiljon Islands; December 21, 1920. - 1 ovigerous 9
Aloang, Paternoster lslands; shore or reeí; Fehruary 8, 1930. - 1 ovigerous 9.
Pasih Ipah, near Socla Mangoli and Taliaboc; shore; Marcl 19, 19,30.-2 99.

Merampi, Nenoesa Islands; slıore; May 20, 1930. - 1 ô.
Morotai; June 3-10, 1930. - I ©, I 오.
Flores; August 18-19, 1930. - 1 ovigerous $\%$.
Locality unknown. - 「 か.

Cryptodromia tumida Stimpson

Cryptodromia tumida Stimpson, 1850, Proc. Ac. Nat. Sc. Philadelphia, 1858, p. 240.
Kafal, Misool group; shore and reef; October 3, October 5, 1929. - I it 2 ovigerous $\%$ ㅇ.
 (1 ovigerous).
Kera, near Timor; November is- T6, November 22-23, 1920. … 3 if 9 (2 ovigerous), 18.
Koepang, Timor; November 30, December 5, 1020. - i 0,2 여.

Taliaboe, Socla Islands; shore; March 18, 1930. - 2 우 (1 ovigerous).
Pasih Tpah, near Soela Mangoli and Taliaboe; shore; March Ig, 1930. - I 8 .
Beo, Karakelong; Talaud Islands; June 14-2I, 1930-2 98 (1 ovigerous).
Flores; August i8--19, I930. - I young 9 .
The form of the hinder margin of the abdomen is very different in our specimens as well as in those collected by the Siboga Expedition. In some the telson has the same form in the δ as in the O; our O from Kafal has the three spines described and figured by Sakai (1936b) as characteristic for his variety trispinosa, but the three spines are of equal length. In others again there are no spines, but the three corresponding parts are rounded, and then the lateral parts are shorter or longer than the median part; sometimes all three are of equal length.

Lateral parts shorter for instance in the 200 from Station 225, Siboga Expedition (cl. $81 / 2$ and 5 mm) ; lateral parts longer in 30^{7} from the same locality (cl. 8 and 6 mm) ; all three of equal length in 400 (cl. 8,6 , $51 / 2$ and 5 mm) also from Station 225 . None of the specimens belongs to the subspecies bispinosa Sakai.

In the $?$ from Pasih Jpah and the young Q from Flores the sternal grooves are short, ending at the level of the second pair of ambulatory legs.

Cryptodromia trituberculata nov. spec. (Pl. VIT figs. 2, 3)
Obi latoe; shore or reef; April 23-27, 1930. - I δ, holotype, the cheliped and fourth leg of the right side and the second left ambulatory leg are missing.
Carapace broader than long (cl. 4 mm , cb. $4^{1 / 2} \mathrm{~mm}$), covered by a short tomentum, and with a distinct cervical groove.

Front cut into threc teeth, the middle one is on a lower plane and very small, hardly visible from above. The lateral ones are rather blunt and gently sloping down to the indistinct inner supra-orbital teeth. The outer supra-orbital tooth is better developed.

Antero-lateral border with 3 broad teeth, on the right side they are of equal size, on the left the first is smaller than the corresponding one on the other side, the second broad.

On the ventral side we find a large infra-orbital tooth, a subhepatic tooth, visible from above between the outer orbital angle and the first anterolateral tooth, and a smaller suprasutural tooth.

Carpus of cheliped with 3 nodules on its anterior margin; palm with small nodules, fingers gaping in the basal half; their inner edges toothed.

The propodi of the first and second ambulatory legs are short and broad; the dactyli armed on their inner margin with three spines and with some longer hairs near the base of their horny tips. The last leg is longer than the penultimate, both end in a claw-like dactylus; their propodi have spines at the end of both borders, that on the anterior botder being large enough to form a chela with the dactylus.

Hinder margin of the telson with a dcep incision, but I am not sure that it is not damaged ; lateral margins with small spines. Posterior margin of fourth and fifth abdominal segment with 4 tubercles, one on either side of the median, and one at each outer angle.

This species resembles mariac Thle (I9r3) by the shortness of the median frontal tooth, but mariae has no subhepatic or suprasutural tooth, and the second antero-lateral tooth is very small; the lateral frontal tecth are better developed than in our specimen. The perciopods too are different.

1)YNOMENIDAE Ortmann

Dynomene I.atr.

Dynomene hispida Desm.
Dynomone hispida Desmarest, 1825 , Cons. Cl. Crust., p. I33, pl. 18 fig. 2.
Near Koepang, Timor; November 18-20, 1929. - I rather damaged of (the chelipeds and some of the legs are missing).

Dynomene praedator A. M.-Edwards (IP1. VII fig. 4)
Dynomene pracdator A. Milne-Edwards, 5879, Ann. se. nat. (6), Zoologic, vol. 8, pt. 3, p. 8, pl. 44 figs. 20--26.
Amboina; September it-17, 1930. - 2 ô ó.
Pelokan, Postiljon Islands; shore and recf; December 20, 1929.-- 2 ồ
Obi latoe; shore and reef; April 23-27, 1930-3 웅, 2 형.
There are no spines on the antero-lateral margin of the cephalothorax, but 4 small tubercles; probably these are indicated by Milne-Edwards as: "des granulations aplaties et peu visibles existent le long de ces bords."

In his figure 2 I just behind the right orbit one of these tubercles is figured.

LATREILILIDAE Alcock
 Latreillia Roux
 Latreillia pennifera Alcock

Latreillia pennifera Alcock, igoo, Journ. As. Soc. Beng., vol. 68, pt. 2, p. 168.
Station $60^{*}, 60^{\circ} 58^{\prime} .0 \mathrm{~N}, 12 \mathrm{I}^{\circ} 52^{\prime} .5 \mathrm{E}$; trawl, $72-80 \mathrm{~m}$; September $5,1029 .-\mathrm{I} 9$, on the right side the second, third and fifth pereiopod and propodus and dactylus of the fourth are missing.

OXYSTOMATA de Haan
LEUCOSIIDAE Dana
Randallia Stimpson
Randallia granulosa (Alc. and And.)
Letucosilia gramulosa Alcock and Anderson, 1894, Journ. As. Soc. Beng., vol. G3, pt. 2, p. 207.
Station $104^{*}, 5^{\circ} 50^{\prime} .0$ S. 134° o4t.o E.; dredge, depth 100 m ; October 15, 1G20. $1 \hat{6}, \mathrm{cl} .8 \mathrm{~mm}$.

In 1896 Alcock changed the name to pustulifabris, because of the very similar name granulata used by Miers for a species belonging to the genus Ioucosilia as defined by Alcock; in my opinion, however, there is no objection to using the older name.

In our specimen the front is separated from the rest of the carapace by a conspicuous transverse groove, as mentioned in Alcock's description; there is no distinct angle marked by a strong epibranchial spine, between the antero- and postero-lateral margin; the lateral margin of the carapace is rounded at the junction. In this respect our specimen differs from the original description, and agrees with the of (cl. 81/2nm) from Station 305 of the Siboga Expedition (Ihe, igi8).

Iphiculus Adams and White Iphiculus spongiosus Adams and White

Iphicuhus spongiosus Adams and White, 18 fo, Samarang, Crustacea, 1. 57, p1. 13 fig. 5.

Myra Leach
Myra kesslerii (Paulson)
Callidachitus Kesslerii Patalson, 1875 , Crust. Rot. Meer, 1. 8o, pl. if fig. I.
New Caledonia; coll. Frank. - 10 .

The collection of the Leiden Museum contains one dried specimen that belongs to this species, for the side-wall of the hepatic region is not distinctly facetted; a strong mamillary tubercle is present. The lateral margin is armed with a spine, just above the first pair of ambulatory legs. The fingers of the chelipeds are longer than the hand.

Ihle (1918) has already stated that the processes on the posterior border of the carapace are not always broad and blunt, but that in 3 specimens the middle one is more or less spinc-like, and that the lateral ones in one 0 are "ctwas mehr verlängert, aber am Ende noch abgerundet". In our specimen the posterior border is provided with three short spines. In Myra fugax these spines vary in the same way.

Myra fugax (F.)

Leucosia fugar Fabricius, 1790 , Ent. Syst. Suppl., p. 351 .
Near Koepang, Timor; small dredge, $10-15 \mathrm{~m}$; lecember 2, 1929. - I of (M. pentharantha Alcock).

According to Rathbun (igioa) penthacantha differs from fugax "in lacking the fringe of hairs along the inner part of the apposed edges of the external maxillipeds". In our specimen, however, this fringe of hairs is present, as was also the case in the specimens examined by Thle (tgi8) and Chopra (1933a). The "fringe of hairs" observed by Chopra a little on the outside of the apposed edges of the external maxillipeds in the adult specimens, which he failed to find in the young ones, is missing in our specimen too.

```
Arcania Leach
Arcania novemspinosa (Adams and White)
Iphis novmspinosa Adams and White, 8848 , Samarang, Crustacea, p. 50, pl. I3 fig 1.
```


Philyra I.each
Philyra platychira de Haan
Philyra platychira de Haan, 1848 . Fauna japonica, Crust., p. I 32 , pl. 33 fig. 6.
Near Koepang, Timor; dredge, $0-15 \mathrm{~m}$; December \& 1920. - I $\hat{\mathrm{o}}$.

Leucosides Rathbun

Leucosides elata (A. M.-Edwards)

Loucosia clata A. Milne-Edwards, 1874, Nouv. Arch. Mus, Paris, vol. Io, p. 4i, pl. 2 fig. 2.
Mamoedjoe, Celebes; reel or shore; August 4-5, 1020. --. I ô.
Morotai; Iune 3-IO, 1930.-I δ.

Leucosides haematosticta (Adams and White)
Leucosid hacmatosticta Adams and White, 1848, Samarang, Crustacea, p. 54, 11. 12 fig. 2.

Leucosides perlata (de Haan)
Loucosia perlata de Haan, i8fı, Fauna japonica, Crust., p. 134.
Maratoea; reef; August if--18, 1920. - i ô.
Wotap, Temimber Islands; shore or reci ; October 20-23, 1920. - 2 오.

Leucosides pubescens (Miers)

Lemcosid fubesems Miers, 1877 , Trans. Jimn. Soc. (2), vol. I, 7ool., p. 238, pl. 38 figs. :22-2.
Near Kocpang, Timor; dredge, $6-15 \mathrm{~m} ;$ Jecember 4, 1020. -- 2δ of.

CALAPI'LDAE de Haan
 Calappa Weber
 Calappa hepatica (I_{\star})

Cancer hefations Limatus, 1767 , Syst. Nat., ed. 12, vol, i, pt. 2, p. 1048 .
Paleleh, Celebes; shore; August 22, Igz9. - I 우.
Omapui, near Sibutu; shore; September 13, 1920. - I 8 .
Los, Misool group; shore and recf; October 3, October 6, 192g. - 2 of .
Kafal, Misool group; shore or recf; October 3, October 5, 1929. … i δ.
 including 2 young of \circ and 1 young $\hat{\delta}$.
Kera, near Timor; November II-I3, November I5-I6, November 22-23, 1929. -

Near Kocpang, Timor; November 18-20, December 2, December 4, 1929. - 4 ô ô, + \& 8 and 1 young specimen.
Sarasa, Postiljon Jolands; shore; December 22, Juzo. - 2 ôô.
Sapoeka besar, Postiljon Islands; shore and reef; December 21-23, 1020. $10 \hat{o}$ 人, 7 우 9 .
Sailoes besar, Paternoster Islands; shore or reel; Lehruaty 0, Io3o. I \hat{b}.
Haroekoe; shore and reef; May 3-7, 1930. - 2 of and 2 specimens with a Sacculinicl.

Kaledocpa, Toekang Besi Islands; August 27, 1930.-2 -2 of, 1 ㅇ.
Batoe Meralı, Amboina; October 15, 1930. - . 1 \&
Locality unknown. - 3 우 ㅇ, I $\widehat{\text {. }}$.
In some specimens from Sapoeka besar the first postero-lateral tooth is rather well developed, and in $\mathrm{I} Q(\mathrm{cb} .50 \mathrm{~mm}$) and $3 \sigma 0$ (cb. 55, 54, and 50 mm) the antero-lateral teeth of the carapace are better developed than in most specimens belonging to this species. Still the tecth on the clypeiform expansions are not strong enough to bring them to the variety spinosissima M.Edw.

Calappa hepatica var. spinosissima H. M.-Edw.
Calappa spinosissima H. Milnc-Edwards, 1837 , Hist. nat. Crust., vol. 2, p. 106.
Wotap, Tenimber Islands; shore and reef; October 20-23, 1929. - 2 ô

In these 5 specimens the teeth on the antero-lateral border of the clypciform expansions are always present; the number of teeth on the posterolateral border of these expansions differs from 2 (8 Kera) to none (O^{π} Kera). Only one tooth is present in both σ^{7} from Wotap and in the second $\underset{\sim}{O}$ from Kera there are 2 teeth on the right side and one on the left.

The serrations of the antero-lateral border of the carapace are spinelike in the f from Wotap and the σ and 1 of the $Q Q$ from Kera; in the other \oslash from Kera they are missing.

Sometimes three of the tubercles on the outer surface of the palm, 2 near the articulation with carpus and one more in the middle, have spinous points (I from Wotap and from Kera) ; in the other from Wotap, however, the third spine is missing, as is also the case in one 9 from Kera and there the remaining two are indistinct on the right palm; in the second from kera there are no distinct spines on the palm.

Calappa lophos (Herbst) (Pl. VIII fig. 5)
Cancer lophos Herbst, 1785, Krabben, vol. I, pt. 2, p. 20I, pl. I3 figs. 77.
Near Koepang, Timor; dredge; December 2, 1)ecember t, 1020. -... 2 young; specimens.

To this species probably belongs another young specimen from Kocpang, dredge, $6-10 \mathrm{~m}$, December + , 1929 . Length and breadth of the carapace are 8 mm , while the teeth are but slightly developed; granulae on the hinder part of the carapace.

The front is not bilobed, but nearly straight.
Matuta F .
Matuta banksii Ieach

Matuta lunaris (Forskial)
Cancer lumaris Forskål, i 775, Yese. Anim., p. or.
Paleleh, Celebes; shore; Ausust 22, 1020. . . 2 ㅇㅇㅇ.

Beo, Karakelong, Talaud Islands; shallow watcr, from fishermen's nets; June 14-2I, 1930. - 11 ô $\widehat{\delta}, 2$ 웅.

Amboina; September 11-17, 1930. -- 1 है.
Matuta planipes F.
Matuta planipes Fabricius, 1798, Ent. Syst. Suppl., p. 36%.
Tarakan; handnet, surface; August 16, 1930. - 2 ô ô.
Batoe Merah, Amboina; October 15, 1930. - I 9.

OXYRHYNCHA latr.
 MAIIDAE Alcock
 INACHINAE Alcock

Anacinetops Miers
Anacinetops stimpsoni Miers (${ }^{\prime}$ l. VlI figs. 5, 6)
Anacinetops stimpsoni Miers, 1879, Am, Mag. Nat. Hist. (5), vol. 4, p. 3.
Kera, near Timor; November 21-23, 1929. - I ovigerous 9.
Our Q differs from Miers' short description by the form of the basal antennal joint. Miers states: "There are two very small tubercles at the distal end of the slender basal antennal joint." Ortmann (1894) figures 2 spine-like teeth, but he remarks: "Festes Stielglied der äusseren Antennen etwa doppelt so lang wie breit, am distalen Ende mit 2 kleinen Höckern, einem an der äusseren, cinem an der inneren Ecke." l_{n} our \cap the outer edge of this joint ends in a rather blunt tooth, visible in dorsal view, the inner edge is not prolonged.

Camposcia Desmarest

Camposcia retusa latr.
Camposia rethesa Latreille, 1820, Kemne Animal, ed. 2, vol. 4, 1. (o.
Kafal, Misool group; shore or reef; October 3, October 5, 1929. - i
Sissic, Minool group; October 0, 1920. -- I pecimen witlı Sacculinid.

Near Koepang, Timor; November 18-20, November 29, December 5, ig20. - 5 \& δ, I q and 2 specimens witl Sacculinid.

Beo, Karakelong, 'Talaud Islands; June t\&-21, 19,30.-I $\hat{0}$.
Oncinopus de Hatan
Oncinopus aranea de Ilaan
Inachus (Oncinopus) aranca de Haan, I830, Fauna japonica, Crust., 1. 100, pl. 29 fig. 2.
Suvadiva atoll, Maldive I lands; lasoon, dredge, 80 m, probably less; May 4, ig29. $4 \delta \delta, 4$ 여, in one of the $\phi \circ$ the rostrum is broken off.

All these young specimens have the propodi of the first and second pairs of ambulatory legs long and slender, as in the figures given by Adams and White (1850) (O. neptumus) and by Borradaile (1903) (O. aranea). In de IIan's types these joints are much shorter and broader.

Achaeus I.each

Achaeus inimicus Rathbun
Achacus inimicus Rathbun, I9mt, Trans, Tinn. Soc. (2), vol. 14, Zool., p. 240, pl. 20 fig. 3.
Station $60^{*}, 68^{\circ} .0 \mathrm{~N}, 121^{\circ} 51^{\prime} .5 \mathrm{E}$; dredge, depth $72-80 \mathrm{~m}$; Septenber 5, ig29. 1 \& with eight eggs.

This specimen with soft carapace and without legs probably belongs to this species; the bottle contains a cheliped.

There is a large supra-orbital spine, directed, as stated by Rathbun, a little outward and forward; the gastric and cardiac spines are present too; of the three branchial spines the large one is probably broken off, the place is indicated by a small heightening of the cephalothorax. On either side two hepatic spines, but the posterior has no bifid tip ; the other three ventral spines are present too, and behind the posterior the lateral margin of the cephalothorax bears a row of small spinules. The cheliped agrees with the description given by Rathbun.

Achaeus japonicus de Haan

Inachus (Achacus) fuponicus de Haan, 1839 , Fauna japonica, Crust., 1. (9), pl. 29 fig. 3.
Off Bongao, Cawitawi, Sulu Thands; dredre, 27 m ; September 27, 1020. - I δ.
Achaeus lorina (Adams and White) de Man
Inachus lorina Adams and White, 1848 , Samarang, Cruståca, p. 3, pl. 2 fig. 2.
Achacus lorina (Ad. and White) de Man, Igo2, Alh. Senck. Naturf. Ges., vol. 25, pt. 3, p. 654.
Sipankot, near Sibutu, Sulu Islands; divinghood, 3-6 m; September io-m, ig29. 1 ㅇ, with the exception of its chelipeds the specimen has lost all its perciopods; the bottle contains 4 walking legs.

Our specimen, a \varnothing, agrees in nearly every respect with de Man's description of A. lorina.

There are three gastric tubercles, one in the median line and two lateral; a much smaller fourth tubercle in the median anterior to the two lateral ones; the two cardiac tubercles are lower than the median gastric one (according to de Man they are more prominent), the posterior third tubercle is much smaller. On the right side there is a very small tubercle near the posterior margin of the carapace, just over the fifth pair of legs; on
the left side this tubercle is obsolete. Two branchial tubercles and two small spines on the swollen hepatic region. The tubercles on the ventral region and the armature of chelipeds and legs agree with the description given by de Man.

I ani not sure that the specimen really belongs to Achaeus lorina, as the figure given by Adams and White shows only one gastric and one cardiac tubercle; moreover no other tubercles on these regions are mentioned in the description. Not having seen the type, I base this determination on de Man's authority, but I think it probable that the Snellius specimen as well as those described by de Xan belong to a species different from A. lorina. Judging from the short description recently (1938) given by Balss of an Achacus spec. from "Gilbert Tuseln, Aranuka" this specimen belongs to the same species as our $?$.

Achaeus anauchen nov. spec. (Pl. VIII figs. 1, 2)
Station $60^{*}, 6^{\circ} 58^{\prime} .0 \mathrm{~N}, 121^{\circ} 51^{\prime} .5$ E; dredge, depth 72 - So m ; September 5 . 1920. I ovigerous $\%$ with soft carapace; the legs are missing, the bottle contains one cheliped

Body short, broad, without neck-like constriction behind the orbit; a ridge on the cephalothorax from one hepatic region to the other; with two tubercles on the gastric part of it; this gives the animal a somewhat humpbacked appearance. Another characteristic feature is the absence of an epistone.

The rostral spines are short; a supra-ocular spine is present; a spine wear the end of the eye-peduncle; the eyes are without pigment.

Basal antemal joint with three spines, the anterior much larger than the others, and visible in dorsal view.

The cardiac region probably bears two spines, but in our \varnothing they are broken off, leaving two tubercles.

The branchial regions are smooth, the swollen hepatic region bears two spines.

The lateral border is armed with small spinules; on the ventral side two spines, one on the pterygostomian and one on the branchial region.

The merus of the outer maxillipeds is narrower than the ischium, and armed with four spines on the inner margin (the anterior largest); two rows of spinules on the ischinm.

Inner margin of paln, carpus, merus and ischium of cheliped armed with spines and long hairs: carpus with two spines on the upper surface; outer margin of merus with three spines, at the base of each spine a long hair is inserted.

The most characteristic feature of this species, that with much hesitation I place in the genus Achaeus, is the absence of an epistome.

Achaeus spec.
Suvadiva atoll, Maldive Islands; lagoon, dredge, 80 m , probably less; May 4, 1929. I badly damaged, ovigerous \circ.

A rather broad, short form with two large median spines, one gastric and one cardiac. No post-ocular neck, orbit without spine, cye-peduncle with tubercle.

OPHTHAIMINAE Balss

Pseudomicippe Heller
Pseudomicippe tenuipes A. M.-Edw. (Pl. VIII figs. 3, 4)
Pscudomicippe tcmuipes A. Milne-Edwards, 1865, Amn. soc. ent. France, p. 139, pl. 5 figs. 2, 2a.

Near Kocpang, Timor; shore or reef; December 3, 1929. - I ovigeroan 운.
The deflexed rostral spines are rather broad and somewhat flattened; their inner edge being obtusely angular. Fye-stalks long and slender. The orbit is broad and the posterior part with two small incisions. A large tubercle above the orbit, and two smaller ones between the orbits. A median row of four tubercles, the anterior largest, on the gastric region; a much smaller tubercle between gastric and cardiac region. Besides these there are on the gastric region three lateral pairs of tuberctes; the two anterior pairs large, the thind very small.

On the cardiac region four tubercles, placed in a quadrangle, two on cither side of the median; two large median intestinal tubercles.

A broad post-ocular spine; the hepatic region swollen, armed with small spines, two dorsal and two ventral; branchial region with tubercles.

Distal tooth of the basal antennal joint directed obliquely forwards. The anterior angle of the buccal frame is produced and a distinct ridge runs from this tubercle to the first pterygostomian spine; second pterygostomian spine just at the base of the chelipeds.

First pair of walking legs long, longer than the chelipeds, which are rather slender; no crista on the carpus, an indistinct one on the upper border of the palm. Fingers, when closed slightly gaping at the base; faintly toothed.

A ridge on the lateral margins of the abdominal segments, and a large tubercle in the middle of each segment. The last segment broadly triangular.

It is possible that Chorinus algatictus Sluiter (I 881) belongs to this species.

Criocarcinus H. M.-Edw.
Criocarcinus superciliosus (L.)
Cancer superciliosus Linnaeus, 1767, Syst. Nat., ed. 12, vol. I, pt. 2, p. 1047.
Wotap, Tenimber Islands; shore or reef; October 20-23, 1929. - I 9.

Near Kocpang, Timor; November 18-20, 1929. - 18 and 1 specimen with Sacculinid.
Sapocka besar, Postiljon Islands; shore or reef; December 21-23, 1929. - i 9.
Cyclocoeloma Miers

Cyclocoeloma tuberculata Miers

Cyclocodoma tulherculata Miers, 1880 , Ann. Mag. Nat. Hist. (5), vol, 5, p. 228 and 230, pl. J3 figs. 1, 2.
Kisar; 1898 , leg. Schädler, coll. Leiden Museum. - I ovigerous 9.
Our specimen agrees in every respect with Miers' description and figures; until now this species was known from the type-specimen, a of only.

The short, broad and somewhat upturned rostral horns are separated by a narrow fissure.

The eyes are enclosed in tubular orbits, formed by a projecting supraocular roof (having the distal part somewhat hollowed, the tips rounded and slightly curved upwards), a broad, blunt post-ocular tooth and a. broad projection of the basal antennal joint; all three in close contact.

No spines on the carapace or legs; a group of stiff, hooked hairs on the rostral horns and a smaller group on the gastric region, immediately behind the orbit.

Two tubercles on the gastric region in the median and at either side of the anterior of these two, two very small tubercles; the median cardiac tubercle larger than the gastric one; one median intestinal tubercle and a tubercle on the posterior margin, immediately behind the intestinal tubercle.

A rounded tubercle on each hepatic region; a very small branchial tubetcle, lateral of the gastric one, and a large branchial tubercle (largest of all) immediately behind the first.

ACANTH()NYCHINAE Alcock

Huenia de Hatan

Huenia proteus de Haan
Maja (Hucnia) protous de Haan, 1839, Gauna japonica. Crust., p. 95, pl. 23 figs. 4-6.
Mamoedjoe, Celebes; shore or reef; August 1-5, 1920. - i $\hat{8}$.
Near Koepang, Timor; shore or reef; December 3, 1920. - i $\hat{\delta}$.
Ternate; pier, divinghood, $\pm 4 \mathrm{~m}$; April I, 1930. - I \hat{B}.

Menaethius H. M.-Edw.
Menaethius monoceros (Latr.)
Pisa monoceros Latreille, 1825 , Encycl. Méth., vol. 10, D. 139.
Maratoea; reef; August 14--18, 1929. - i 9.
Sipankot, near Sibutu, Sulu Islands; shore; September 10-14, 1929. - 5 우 (4 ovigerous), $3 \hat{8} \hat{\delta}$; in I $\hat{8}$ and 4 오 9 the rostrum is probably broken off.
Wotap, Tenimber Islands; shore and reef; Octoher 20-23, 1929. - I \hat{o} and I ovigerous $\%$.
Kera, near Timor; o-i m; November il-I3, 1929.-- it and 2 young specimens.
Near Koepang, Timor; recf; December 8, 1029. - 1 specimen with Sacculinid.
Tanah I)jampea; divinghood, $2-3 \mathrm{~m}$; February 21-23, 1930. --. I ovigerous 9.
Obi latoc: shore and recf; April 23-27, 1930-299 (1 ovigerous).
Beo, Karakelong, Talaud Islands; shore or reei ; June I4-2I, 1930. - I ovigerous 9.
Ambina; September ro-17, 1930.-2 9 of (r ovigerous).
Endeh, Flores; November 6-8, 1930. - 1 ovigerous 9 , rostrum broken off.
In some specimens ($2 \sigma d$ and $2 Q Q$ from Sipankot, the O from Tanah Djampea, both $Q Q$ from Obi latoe, and the Q from Beo) the rostrum is slightly bifid at the tip.

Xenocarcinus White

Xenocarcinus depressus Miers

Xenocarcinus depressus Miers, 1874, Zoology Erehus and Terror, Crust., I. I.
Ternate; divinghood; April i, June 6, 1930. - $2 \boldsymbol{8} \hat{3},+$ 우오.
All our specimens have the short dactyli, armed with $3-4$ teeth, and a rather long claw, which are, according to Gordon, characteristic for this species.

PISINAE Alcock

Tylocarcinus Miers

Tylocarcinus styx (Herlst)

Cancer sty.x Herbst, 1803 , Krabben, vol. 3, pt. 3, p. 53, pl. 8 fig. 6.
Sissie, Misool group; shore or reef; October (6, 192g. - I of, 1 ovigerous ㅇ. Kera, near Timor; November $11-13,1920$. - 1 ovigerons $\$$.
Near locpang, Timor; shore or reef; December 3, 1020. - I ovigerous 9.
Kocpang, Timor; shore or reef; December 5. 1920. - 1 of.
Pelokan, Postiljon Istands; shore or reef; December 20, 1920. -- I 今.
Obi latoc; shore and reci; $\Lambda_{\text {pril }} 23-27$, 1030. -9 है $\hat{8}, 8$ 우 ㅇ (3 ovigerous).
Beo, Karakelong, Talaud Islands; June 1+-21, $10,30 .-2$ 今 $\hat{\beta}$.
Amboina; October 1t, October 17, 1930. - 13.
The rostral spines of one of the σ^{7} from Beo are longer than is usual in this species, more than half the length of the carapace, but slightly divergent and the tips not bent inwards; they resmble those of a Tiarinu.

The pleopods of this δ agree with those of the ordinary $\sigma \sigma$ of Tylocarcinus styx.

In some young specimens (the from Pelokan and some specimens from Obi latoe) the tubercles on the cephalothorax are but slightly developed, especially in the anterior part.

Naxioides A. M.-Edw.
Naxioides spinigera Borradaile
Naxioides spinigera Borradaile, ryo3, Fauna and Gcogr. Mald. and Laccad. Arch., vol. 2, pt. 2,1 1. 687, pll. 4 fig. 3.
Suvadiva atoll, Maldive Islands; lagoon, dredge, 80 m , probably less; May t, 1929. -. I young specimen.

The specimen is without legs and the bottle contains only one cheliped and one walking leg, both with a small spine at the end of the merus. Our specimen agrees with the description given by Borradaile; and is best characterized by the two spines on the cardiac region, and the upright spine on the supra-ocular eave, which is, however, slightly bent forwards at the tip.
Cl. 5 mm ; total length (incl. rostral spines) fully 8 mm .

HYASTENTNAE Balss

Hoplophrys IIenderson
Hoplophrys ogilbyi McCulloch
Hoplophrys ogilbyi McCulloch, igo8, Rec. Austr. Mus., vol. 7, p. 5 I.
Ternate; pier, divinghood, $\pm 4 \mathrm{~m}$; April $1,1930 .-18, \mathrm{cl} .5, \mathrm{cb} .3 \mathrm{~mm}$.

As stated by McCulloch the specimens attributed to this species differ from oatosii Henderson in: "the spines of the carapace being much larger and stronger. The epibranchial spine is not bifid". Sakai (I932) describes a Hoplophrys oatesii Henderson with a "simple and acute" epibranchial spine; probably it belongs to ogilbyi McCulloch .

Perinea Dana
 Perinea tumida Dana

Perinea tumida Dana, 1852, U. St. Expl. Exp., Crust., p. II4, pl. 4 figs. $1 a-\mathrm{f}$.
Kera, near Timor; November if-13, 1929. - i $\hat{\text { o }}$.
Near Kocpang, Timor; shore or reef; December 3, 1920. - i 9.
In the σ the rostral teeth are short and separated by a rounded notch; in the O they are more prominent, the tips bent inwards, and the space between them angular.

In both specimens the tubercle on either side of the cardiac region is larger than in Dana's figure (as was also the case in the specimens examined by Rathbun (1906) and Calman (I909)).

In the Q the distal spine of the basal antennal joint is more prominent than in the 8 .

Hyastenus White
 Hyastenus aries (Latr.) (textfigs. 1, 2)

Pisa aries Latreille, 1825, Encyci. Méth., vol. Jo, p. 140.
Padang; I $\hat{\text { o }}$ I 우; collection Leiden Museum.
The specimens are characterized by the small epibranchial and the two gastric spines. The first pleopod of the O is slender (textfigs. 1,2).

Hyastenus brockii de Man (textfig. 3)
Hyastenus brockii de Man, 1888, Arch. Naturg., Jahrg. 53, vol. 1, p. 221, pi. 7 fig. I.
Ternate; pier, divinghood, $\pm 4 \mathrm{~m}$; April 1,1930 - I $\widehat{0}$, cl. 16 mm , incl, rostral spines.
Amboina; May 6, September 11-17, 1930. - I ovigcroas 9, cl. $161 / 2 \mathrm{~mm}$ and 1 specimen with Sacculinid.
Rostral horns of the Q about as long as the cephalothorax, slender, divergent and slightly decurved; those of the α are shorter and less widely divergent.

Anterior angle of the supra-ocular cave spine-like produced; posterior angle tuberculiform and widely separated from the post-ocular spine, which is not expanded distally.

Of the 6 tubercles on the gastric region (2 median and 4 lateral) the one immediately behind the orbit is best developed; the cardiac region bears no tubercles; the Q has a small intestinal tubercle, in the σ this region is damaged.

The epibranchial spines are rather small and blunt; there are 3 obscure branchial tubercles (the posterior on a line with the epibranchial spine).

A small hepatic tubercle in the Q, in the σ this tubercle is hardly visible.
Threc pterygostomian spines and the anterior angle of the buccal frame is produced.

A spine at the outer anterior angle of the basal antennal joint; floor of the orbit deeply hollowed.

This description of the cephalothorax agrees in every respect with that given by de Man, and is followed in his description by the remark: "Die Füsse verhalten sich ungefähr wie bei der anderen Art" (ovatus Dana).

Now the first pair of walking-legs in our specimens of H. ovatus Dana

Fig. I. /fyastouns aries (Latr.), first pleopod of a of from Padang, cl. 35 mm , $\times 5 \mathrm{y}$. 4. Fig. 2. Apex of the same, $\times 251 / 2$. Fig. 3. Ilyastemus brockii de Man, apex of the first pleopod of a from Ternate, cl. 16 mm , $\times 75$. Fig. 4. / foustemms bispinosus nov. spec.,
 (de Haan), first pleopod of a $\widehat{\delta}$ from Japan, cl. 35 mm (cotype), $\times 5$ /4. Fig. 6. Part a

have a stout spine at the anterior angle of the meri; in the orockii, however, there is a small spine on the posterior part of the upper border of the merus; in the O the merus is smooth. The wrist of the chelipeds is smooth in ovatus; provided with some tubercles in our specimens belonging to brockii. The ambulatory legs of ozatus are slender, those of brockii much stronger developed.

The dactyli of the walking legs in our specimens ate armed with strong hooked teeth, of the same form as those mentioned by Calman for H. uncifor Calman (1909), whercas ovatus has only small spines. Uncifer however has strong hepatic, cpibranchial and intestinal spines.

Hyastenus bispinosus nov. spec. (Pl. IX figs. 4, 5, textfig. 4)
Lembeh Strait; September 25, 1930. - 2 ô, $1 \not \subset$ and I young specimen. cl . of (holotype) $7^{1 / 2} \mathrm{~mm}, \mathrm{cl}$. \hat{o} (allotype) 6 mm , of $5^{1 / 2} \mathrm{~mm}$, young specimen 3 mm (incl. rostral spines).

Rostral horns short, not yet half the length of the cephalothorax, not widely divergent, space between the tips nearly as long as each horn; slightly deflexed in the largest 0 .

Antero-external angle of supra-ocular eave spine-like; posterior angle slightly tuberculiform. Post-ocular tooth short, broad, not widened near the base.

Gastric region rather swollen; surface of cephalothorax pitted; in the O a distinct epibranchial spine, in the other specimens this spine apparently is broken off, a tubercle is still visible. In the P there is a trace of a branchial tubercle at the level of and near the epibranchial spine. Intestinal region somewhat pointed.

The spine at the antero-external angle of the basal antennal joint is visible in dorsal view. Two pterygostomian tubercles, the anterior is largest. Buccal frame broadened anteriorly, corners tuberculiform.

First pair of ambulatory legs longest of all; dactyli of walking legs toothed; palms of chelipeds slender; fingers without hiatus between them, bluntly toothed.

Carapace and legs covered with short and some longer hairs.
Differs from incrmis Rathbun (IgII) and irami Taurie (1906) in having epibranchial spines; in irami moreover the rostral spines are longer.

[^1]The first pleopod of a σ (cl. 35 mm) from de Haan's type-material is much broader than a pleopod of an aries σ^{7} of the same length.

In the smaller of from de Haan's type-material, already in a of 34 mm carapacelength, the pleopods are of quite another type; still there are differences with our arics σ, there is no question of a flagellum, this part of the pleopod being much broader, and the bundle of hairs seen in aries on the inner side at the base of the flagellum is absent. The pleopods of de Haan's smallest of of are like those figured by Sakai (1934).

Hyastenus elongatus Ortmann

Myastomus diaconthus var. clongatus Ortmam, I8of. Zool. Jahrb., Syst., vol. 7, p. 55. Suvadiva atoll, Maldive Islands; lagoon, dredge, 80 m , probably less; May 4, 1929. -I young specimen, with one rostral horn and the legs broken off; the bottle contains 2 chelipeds and 7 legs.
This specimen probably belongs to this species; $\mathrm{cl} .4 \mathrm{~mm}, \mathrm{cb} .21 / 2 \mathrm{~mm}$. length rostral horn 2 mm .

Hyastenus hilgendorfi de Man (textfigs. 9, IO)

Myastcutes hilgenlorfi de Man, I888, Journ. Lim. Soc., Zool., vol. 22, 1. It, pl. I figs. 3, 4.
各 17 , 912 mm)
 21,2 ô of $18,16^{2 / 2}, 13$ and 7 mm , $\%$ ㅇ $16,13,11$ and 10 mm).
Two of from Amboina (cl. 18 mm) have nearly parallel rostral horns; in the third of these are widely divergent; in the other of the tips of the rostral horns are widely apart as stated by Laturie (1906) and by Chopra and Das (1937).

Rathbun states that auctus Rathbun (1916) differs from hilgendorfi except in the form of the carapace and the very high gastric region, in having no sub-branchial tubercles (missing in our specimens too) and fewer gastric tubercles; but de Man describes and figures three gastric tubercles and these are present in auctus, according to Rathbun's description.

Hyastenus macrospinosus Ward

Hyastonus marospinosus Ward, ro3t, Bull. Kaffl. Mus. Singapore, no. 9, p. 6, pl. I figs. 4, 4a.
Maratoca; August 4 - 18 , 1929 . - I young 9 .
The collection of the Snellius Fxpedition contains a much damaged Q (with only the last right leg; the bottle contains 5 legs, the chelipeds are missing) which probably belongs to this species according to the armature of the first leg.

Length of the carapace, including the rostral spines, fully 5 mm .
The rostral spines are slender, divergent at the tips, a little less than half the length of the carapace.

The anterior angle of the supra-ocular cave is spinc-like, but not "developed into a strong, acclivous spine" (Ward) ; the posterior angle is

Fig. 9. ITyastomes hilgendorfi de Man, first pleopod of a $\hat{\delta}$ from Amboina, el. $18 \mathrm{~mm}, \times 24$. Fig. io. Apex of the same. $\times 75$. Fig. 11. Hyustenus oryer A. M.-Edw., first pleopod of a 0 from Kocpang, cl. It mm, $\times 25 \frac{1}{2}$. Fig. 12. Apex of the same, $\times 75$.
broadened. There is a broad post-ocular process; and between this process and the supra-ocular eave a small opening. Ward says: "The space between it [the supra-ocular eave] and the post-ocular tooth is filled by a small blunt spine, the margins of which are fused with the supra-ocular eave and the post-ocular tooth." No trace of this tooth is seen in our specimen; the presence of such an intercalated spine would compel us to place the species in another genus.

No tubercles on the cardiac region in our specimen; there is no trace of an epibranchial nodule either.
'The outer angle of the basal antemal joint is prolonged into a spine.
'The first pair of ambulatory legs have the merus armed with a series of spines and the carpus with two spines, the anterior longest; the posterior of the left leg being a mere tubercle. The other legs are unarmed; hairy.

Hyastenus minutus nov. spec. (Pl. IX figs. 6, 7)
Ternate; pier, divinghood, $\pm+\mathrm{m} ; ~ \lambda_{\text {pril }} \mathrm{I}$, 1930. $-\mathrm{I} \hat{\mathrm{b}}, \mathrm{cl} .+\mathrm{mm}$, length of rostral horns not yet 1 mm .

Rostral horns short, rather broad, widely divergent.
Antero-cxternal angle of supra-ocular eave spine-like produced, hinder angle tuberculiform. Post-ocular tooth broad, not widened distally.

Hepatic region somewhat swollen; an obscure tubercle on either side of the gastric region, immediately behind the orbit. A small, but distinct epibranchial spine.

Two spines at the antero-external angle of the basal antennal joint, one points forwards and outwards. External angle of the buccal frame produced; the left maxilliped with a tubercle on its exognath; two spines on the pterygostomian region.
latms of chelipeds long and slender; fingers about half the length of the palm; chelipeds and walking legs smooth; a long, stiff hair about the middle of the upper border of the merus of the walking legs; dactyli of these legs with rather strong teeth.

It differs from minimus Rathbun (1924a) by the fewer tubercles on the carapace and the two spines at the antero-external angle of the basal antemal joint; in scrobiculatus Rathbun (1916) both spines are directed obliquely forward.

Hyastenus oryx A. M.-Edw. (textfigs. in, 12)
 pl. If fig. 1.
Maratoea; August $1.1-18,1029-2$ 옹, 3 옹․
Off Bongas; Tawitawi, Sulu Islands; (hedge, 27 m ; September 0, 1920. - I Jotne of with soft carajace.

Near Kocpang, Timor; November 18-20, 1020. - 18 .
Batoe Merah, Amionim; October 5, 1030. . i wigerous of.
Hyastenus ovatus (D:ma)

Suvadiva atoll, Maldive hands; lagoon, dredere, 8o m, pobally less; May t, mzo. -

1 young of with soft carapace and without less; the bottle contains 4 legs and I cheliped; I larger 9 , without rostrum, and of which the second pair and the third left walking leg are missing.

Balss recently (1938) described a new species of Pseudomicippe Heller, Ps. incerta Balss, which probably agrees with these specimens. Balss states: "Zu dieser im tropischen Indopacific verbreiteten Gattung stelle ich die folgende neue Art, welche allerdings durch die starken Rostralhörner und die Bewchrung der Schreitfüsse mit Stacheln von den anderen Arten abweicht."

The tubercle above the orbit, characteristic for all the species of the genus Psculomicippe is absent too.

Our specimens differ from those deseribed by lalss:

1. No small spines ending in more than one spinule on the posterior margin.
2. Of the armature of the walking legs only the large spine on the merus oi the first pair (also figured by Dana) is present. Meri with some knobbed hairs.

The rostral homs are long, slender, divergent, slightly bent downwards. Supra-ocular eave with a large anterior and a smaller posterior spine; separated from the rather strong post-ocular tooth by a large, rounded incision. In the largest specimen the post-ocular spine is broadened and bent upwards at the tip. On the ventral side the orbit is very imperfect. The basal antemal joint is not broadened; a large spine at the outer anterior angle; this spine is for a large part visible from above.

Pterygostomian region with a strong spine and a second, very small one, immediately behind the first. Buccal frame broadened anteriorly, outer angle very much swollen.

Both specimens have a distinct epibranchial and intestinal spine; the spine behind the orbit (hepatic) described by Dana is best developed in the smaller specimen; in the larger specimen some other spincs are present too. A branchial spine at the same level as the epibranchial (both only on the right side, the left side is damaged). A second, smaller, blunter branchial spine is seen anterior to the first mentioned. A low cardiac spine. Two low median gastric tubercles and two still lower lateral ones, on a line with the hepatic. Between the orbits there are some tubercles on two longitudinal rows, but here the carapace is abruptly broken off.

Hyastenus planasius (Ad. and White) (textfig. 13)
Pisa planasia Adams and White, 1850 , Samarang, Crustacea, 1. 9, ph. 2 figs. +5.
Near Koepang, Timor; dredge; December 2, December 4. 10z0. -.. i §, 2 우 O (ovigerous).

Fig. 13. Ityastonts planasius (Adams and White), first plespod of a \hat{o} from Koopang. cl. $9 \mathrm{~mm}, \times 75$. Fig. 14. Hyastenus plione (Herbst), apex of a first pleopod of a $\hat{0}$ from Endeh, cl. $22 \mathrm{~mm}, \times 25 \frac{1}{2}$. Fig. 15. Hyastonus sebac White, first pleopod of a $\hat{0}$ from near Koepang, cl. $9 \mathrm{~mm}, \times 251 / 2$. Fig. 16. Apex of the same, $\times 75$. Fig. 17. Myastonus subinermis Zelontner, first pleopod of a $\hat{8}$ from Amboina, ci. $14 \mathrm{~mm}, \times 25 \frac{1}{2}$. Fig. 18. Apex of the same, \times 75. Fig. 19. Hyastenus tornatonsis nov. spec., first pleopod of a of from Ternate, cl. $5 \mathrm{~mm}, \times 75$.

Three specimens with the short, parallel, at the tips somewhat incurved rostral spines characteristic for this species.

The antero-external angle of the orbit in the figure of the σ^{7} given by Adams and White is produced spine-like, but our specimens have that angle rounded, not produced at all, like that of the Q figured by these authors. The posterior angle is lobiform and separated by a deep notch from the broad post-ocular tooth, which is provided with a small tubercle at the anterior margin near the base.

There are more tubercles on the cephalothorax than those enumerated by Adams and White. Gastric region with three faint tubercles in the median line; the first and second wide apart and half way this intervening space on each side a very low lateral tubercle. An indistinct tubercle on the summit of the cardiac region and on the hinder slope two tubercles still less developed. A prominent intestinal tubercle in the σ and the ovigerous Q; in the other Q this tubercle is hardly visible.

The branchial region with four small tubercles, as stated by Adams and White, and a broader one in the groove separating branchial and cardiac region.

Antero-external angle of the basal antennal joint spinc-like produced.
Antero-external angle of the buccal frame produced.
Legs smooth, covered with a close tomentum, interspersed with long hairs. The palms of the chelipeds are slender in the Q, swollen in the σ°.

Hyastenus pleione (Herbst) (textfig. I4)
Cancer flione Herbst, 1803 , Krablen, vol. 3, pt. 3, p. 52, pl. 58 fig. 5.
Near hoepang, Timor; November 18-20. 1920. - I δ, without rostral horns, I ovigerous 9.
Endeh, Tores; November ($-8,1030$ - ? ô ô.
There are always two pterygostomian spines and a large epibranchial spine ; the number and distinctness of the other spines on the lateral margin, however, varies.
ofrom Kocpang: on the left side four tubercles on equal distances from each other; the posterior smallest; on the right side 2 groups of two spines (second spine of first group smallest) ; the distance between the groups is the same as the distance between the last group and the epibranchial spine.

O from Koepang: of the six tubercles the anterior is largest and the second and third are very small.

0 from Endeh: three tubercles on either side, the middle one smallest.
Other from Endeh: on both sides a distinct tubercle between first
and second walking leg; three nore tubercles on either side, the first being very indistinct on the right side; on the left side there is still a fifth tubercle, situated more on the dorsal surface.

Hyastenus sebae White (textfigs. 15, 16)
Hyastonus sebac White, 18+7, Proc. Zool. Soc. London, p. 57.
Near Koepang, Timor; dredge, 6-10 m; December 4, r929. -- ј \mathfrak{d}, cl. 9 mm.
The rostral horns are parallel in their proximal half ; then slightly divergent, but broken off.

The anterior angle of the supra-ocular eave is not produced; the tubercles on the cephalothorax are very indistinct (number and place as in H. oryx). No epibranchial or intestinal spines; only small tubercles.

Alcock (1895) states that the palm of the cheliped is broadened and somewhat inflated; the Snellius specimen, however, has a slender palm.

Hyastenus subinermis Zehntner (textfigs. 17, 18)

Hywstonts subincomis Zehntner, 1804, Rev. suisse de Zool., wol. 2, p. i36, pl. \% ligs. 2, 2a
Near Koepang, Timor; shore and reef; December 3. 1929. - 2 ô

Amboina; pier, o-2 m; May $6,1930 .-3$ đ $\hat{0}, \mathrm{f}$ ovigerous ㅇ.
The cephalothorax is not always absolutely smooth. The largest $\sigma(\mathrm{d}$. $1+\mathrm{mm}$) and the O from Amboina are provided with some tubereles on the upper surface of the cephalothorax; there are two small gastric tubercles; the small branchial tuberele described by de Man (1902) is present too; and anterior to this tubercle there are two indistinct tubercles on either branchial region. In the 200 from Timor the tubercles on the cephalothorax are hardly visible. The $Q Q$ from Ternate have the same tubercles developed as the $?$ from Amboina, but the branchial ones are indistinct. In the $4 \sigma^{0} \sigma^{3}$ only the epibranchial, intestinal and pterygostomian tubercles are developed; in one of them a hepatic tubercle is present.

In all our specimens an intestinal tubercle and strong epibranchial spines are present.

Apex of the first pleopod of the of rather broad, as represented in textfigs. 17, 18.

Hyastenus ternatensis nov. spec. (Pl. IX figs. 1-3, textfig. 19)
Ternate; pier, divinghood, $\pm 4 \mathrm{~m}$; April 1 , 1930 . I $\hat{8}$, total length 5 mm .
Of this adult of the rostral horns are apparently broken of f, thereby making it impossible to give their relative length; they are separated from each other by a wide sinus, and the longest one is slightly divergent.

The antero-external angle of the supra-ocular cave is produced, but rather bluntly, more in the form of an upturned tubercle than a spine; posterior angle rounded. Post-ocular tooth slender, widened near the base to form a broad tubercle.

Two distinct epibranchial spines are present; moreover the branchial region is armed with three tubercles, the posterior at the same level as the epibranchial spine. A broadened tubercle in the groove separating cardiac and branchial region.

Cardiac region the highest patt of the cephalothorax and armed in the median line with a low tubercle; a somewhat larger intestinal one.

Gastric region with six tubercles in the form of a cross: a distinct tubercle just behind the orbit, a trace of a much smaller on the same level, but nearer the median line; a still more obscure tubercle in the median line, posterior to the described four, and a somewhat larger, still indistinct one more backwards.

A distinct tubercle behind the post-orbital tooth on the swollen hepatic region.

Basal antemal joint rather broad, with a distinct spine, pointing forward and for a large part visible in dorsal view, at the antero-external angle and somewhat broadened lower down. A small tubercle at the base, just above the swollen antero-external angle of the buccal frame.

Pterygostomian region with two tubercles and a thitd on the branchial region near the base of the chelipeds.
fingers of the chelipeds widely gaping at the base, denticulated at the tips; palms rather broad, a tubercle in the middle of the upper margin ; carpus with some slight tubercles; merus wing-like expanded at the articulation with the wrist, and a tubercle on the anterior margin near the inner expansion.

First pair of walking legs long and slender, longer than the other legs (the second right leg and the second and third leg of the left side are missing).
H. minimus Rathbun (1924a) has an epibranchal tubercle; in trispinosus Rathbun (ig16) an intestinal spine is present; in tuberculosus Rathbun (I9I6) 2 large gastric tubercles are developed, and ternatensis differs from orbis Rathbun (1916) by the ornamentation of the carapax.

Doclea Leach
Doclea microchir Bleeker
Doclea microchir Bleeker, 1856, Acta Soc, scient. Indo-neêrlandiae, vol. 2, p. It.
Padang; collection Jeiden M1scum. - 1 , ci. without spine 20.5, ch. without spines 28 m 1 ml .

Both Miers (1880) and Balss (193I) conclude that microchir is not specifically distinct from macracanthus Bleeker. Bleeker states:
macracanthus: "Bord latéro-antéricur de la carapace armé de trois dents dont l'antericure est obtuse et dont la troisième, située à une égale distance des ycux et de l'épinc médiane du bord postéricur de la carapace, est beaucoup plus longuc que la distance interoculaire et dirigée un peu en arrière."
microchir: "Bord latéro-antéricur de la carapace armé de 3 dents aigues et dont la troisième, située à une égale distance des yeux et de l'épine médiane du bord postérieur de la carapace, est beaucoup plus longue que les antérieures mais ne surpasse pas en longueur la largeur du front entre les yeux et est dirigée en dehors et un peu courbée en dessus."

Now the figure given by Palss agrees in these respects with macracanthus Bleeker, while our Q has the shorter, upeurved spines of microchir.

I cannot agree with Miers and lialss that these differences are only a question of growth (the Q examined by Balss is smaller than our Q) and I therefore think it better to uphold microchir as a species; in future an examination of the ofleopots may solve the question.

When compared with the figure given by Balss, our specimen, which is in a bat state of preservation (the legs are missing too), also shows slight differences in the form of the frontal region.

MAJINAE Balss

Cyclax Jana

Cyclax (Cyclomaja) suborbicularis (Stimpson)

Mithrar suborhicularis Stimpon, 1858, Proc. Ac. Nat. Sc. Philadelphia, 1857, 1. 218. Near Kocplang, Timor; November i8-20, 1g20. - 1 ovigcrous 9. Kocpang, Timor: November so. 1920. - I 9 .

Schizophrys White
 Schizophrys aspera (1.T. M.-Edw.)

Mithrax aspera H. Milne-Edwards, 1834, Hist. nat. Crust., vol. 1, p. 320.
Tidore; shore; September 2.t-29, 1929. - 10.
 ovigerous). In I ovigerons of the rostral spines and the antema of the right side are missing ; they are probably broken off.
Kera, near Timor; November 22-23.3. $1029 .-1$ ô.
Kocpang, Timor; Novemler 30, December 5, 1929. - 3 ㅇㅇ.
Tanah Djampea; divinghood, $2-3 \mathrm{~m}$; Februaty $2 \mathrm{I}-23,1930 .-1$ young specimen.

Obi latoe; shore and recf; April 23-27, 1930-3 B 3.5 오 (3 ovigerons) and 3 young specimens.
Amboina; May 6, September If- 17 , October 15,1930 . $4 \hat{o} \hat{3}$.
Endeh, Flores; November 5-8, 1930-19.

Schizophrys aspera var. spinifrons (A. M.-Edw.)

Miflrar spinifrons A. Mihne-Edwards, 1867, Ann. Soc. Ent. France (4), vol. 7, p. 263.
Wotap, Tenimber Islands: shore and reef; October 20-2, 2, 1920. - 1 ô, 1 ¢.
Kera, near Timor; November it-13. November 15-16, November 22-23, 1929. 5 우․ 1 오․
Koepang, Timor; November 18-20, December 3, December 5, 1929. - 3 ô ô, i ㅇ. Bone Tamboeng, Spermonde Archipclago; shore or reef; March 2, 1930. - is. Lembeh Strait; September 2. 26,1930 - 1 र̂, 2 ovigerous 99.

In the 0 from Wotap we find a small tubercle and no spine at the base of the rostral spines; one of the ovigerous $Q O$ from Lembeh Strait also has tubercles at the base of the rostral spines. There are no differences in the form and armature of the first pleopods of the $\sigma 0$ in the Snellius material of this species and its varicty.

Schizophroida Sakai

Schizophroida manazuruana Sakai
Schizophroida manarutana Sakai, I033, Sc. Rep. Tokyo Bunrika Daigaku, Section B, vol. 1, no. 12, 1. 140.
Station $60^{*}, 66^{\circ} 58^{\prime}$. o N, $121^{\circ} 52^{\prime} .5 \mathrm{E}$; dredge, $70-80 \mathrm{~m}$; September 5 , jg20. I immature \circ, cl .5 mm , clu. fully 3 min, length rostral horns $1 \frac{1}{2} \mathrm{~mm}$.
Carapace with two posterior spines and 5 spines forming a marginal curve, the first hepatic, the last well on the dorsal surface. The last three much shorter than the first.

Supra-ocular eave with an acute spine at the posterior angle; a broad post-ocular spine, and a small spine intercalated between the two.

Basal antennal joint with two spines on the anterior border.
Chelipeds slender, without spines; ambulatory legs hairy. The palm of the left cheliped, the second, third and fourth left leg and the fourth right leg are missing.

It is possible that Chilion's specimens from Coral Bay, Sunday Islands, and from Meyer Islands (Chilton, igia) belong to this species. According to Chilton they differ from Sch. hilcusis Rathbun (1906) by the smoother carapace, "--in the contral part the spines mentioned by her are either absent altogether or indicated only by slight tubercles; the two cardiac spines and the intestinal spine are thus indicated in some specimens, but there seems no indication whatever of the three gastric spines."

MITHRACINAE Balss

Micippa Leach

Micippa cristata（L．）（textfig．20）
Cancer cristatus Linnaeus， 1767 ，Syst．Nat．，ed．12，vol．1，pt．2，p． 1046.
Kera，near Timor；November 15－16，1929．－ 1 ô．
Near Koepang，Timor；December 4，Deccmber 8，1929．－ 26 b $\frac{1}{6} 9$ and 1 young specimen．
Koedingareng Lompo，Spermonde Archipelago；shore；Pebruary 3， $1930 .-$ 3 千 千
Gonto Soea，Spermonde Archipelago；hore；March 1，1930．－ 1 of．
Harockec；shore and reef；May 3－7，1930．－－i $\hat{3}$ ，i 9.

Kaledocpa，Toekang Besi Islands；August 27，t930．－ 2 § 3.
Amboina；September $11-17$ ，1930．－ 18.
Lembeh Strait；Scptember 25，1930．－I 오．
From the 14 d collected by the Snellius Expedition 7，varying in cephalothoraxlength from $435 / 2-34 \mathrm{~mm}$ ，have the palm of the cheliped roughened by tubercles（var．granulipes Zehntner，I89．1）．From the 797 ， varying in length from $58-20 \mathrm{~mm}$ ，the palms appear smooth to the naked eye；when magnified the largest show some very small tubercles，other only lighter and darker points，the latter giving the palm a slightly pitted ap－ pearance，just like those of the smaller of σ^{7} ， $\mathrm{cl} .3 \mathrm{I} / 2-27 / 2 \mathrm{~mm}$ ；the palms of the 2 smallest of of absolutely smooth and shining．Nonc of the 9 ． however，have the rough，tuberculous palms，characteristic of the variety gramulipes Zehntner．I think that our largest $Q Q$ agree with those deseribed by Nobili（ 1899, 1．252）as：＂mentre altre esaminate alla lente presentano traccie di granuli analoghi a quelli dei maschi della var．gramutipes，ma molto minori di numero，limitati alla porzione superiore e quasi cancellati．＂

From three to six spines on the outer margin of each rostral lobe ；some－ times there is a different number on each margin；frequently some of the spines，and not always the proximal ones，are small，mere tubercles；often some of them are more or less close together ；the \odot from Lembeh Strait has the third spine bifid．The rostrum of the young specimen from Koe－ pang（cl． 8 mm ）has three small spines on the left，two on the right margin．

Micippa margaritifera Henderson

Micippa margaritifcra Henderson，1893，Trans．Linn．Suc．（2），vol．5，Zool．，p．3申8， pl． 36 figs．5－－7．
Suvadiva atoll，Maldive Islands；lagoon，dredge， 80 m，probably less；May 4， 1929. $-19, \mathrm{cl} .6 \mathrm{~L} / 2, \mathrm{cb} .5 \mathrm{~mm}$.

The small specimen has lost all its pereiopods, but the bottle contains besides 2 slender chelipeds + walking legs with the foliaceous meropodites, characteristic for this species.

According to Borradaile (1903) this species was dredged at the same locality in 43 fathoms.

Fig. 20. Micipta cristata (L.), first pleopod of a \hat{f} from Kopang, al. (post. m.-orb.) 1! mm, $\times 273 / 4$. Fig. 21. Hicippa philyra (Herbst), firs pleopod of a $\frac{1}{}$ from Amboina, cl. $11 / \frac{1}{2} \mathrm{~mm}, \times 273 / 1$. Fig. 22. Micipp platipes Rüppell, first plenpod of a 6 from Amboina, ci. $11 \frac{1}{2} \mathrm{~mm}$, $\times 273 / 4$. Fig. 23. Micippa thaial (Herbst), apex of first pleopod of a $\frac{0}{}$ from Janan, $\mathrm{d} .28 \mathrm{~mm}, \mathrm{~K} 22^{\frac{1}{2} / 2}$.

Micippa philyra (Herbst) (Pl. X figs. 1, 3, textfig. 2I)
Cancer philyra Herlst, 1803, Kralleen, wh. .3, pt. 3, p. 51, pi. 58 iig. 子.

In his description of Cancer philyra Iterbst says: "Die Augen stehen auf kurzen, runden Stieken, und haben in den Höhen Raum genug sich zu verbergen; ein wesentiches Linterscheidungszeichen vom vorigen;" and

Gerstaecker ($18 \mathbf{5} 6$) who has seen the typematerial states: "bei M. philyra sind sie [the orbits \rceil namlich allseitig geschlossen, so dass die kurzen Augensticle ganz in denselben eingebettet liegen."

Therefore we have to consider as M. philyra (Herbst) the specimens with the following characters:
I. The floor of the orbit is closed; tubular, and the eyestalk is invisible on the rentral side.
2. Basal antennal joint with a group of tubercles on the anterior margin and a groove, outwards of these tubercles.
3. The first movable antennal joint is not much enlarged.
4. The rostrum is strongly deflexed, especially in the O, and provided with 4 rather broad lobes.
5. The palms of the adult are somewhat swollen; in young σ^{*} and in the O slender.
6. First of pleopod as represented in textfig. 21 .

The specimen from Amboina bears 4 tubercles on the lateral margin; in the smaller σ from Kera the third is missing and in the Q the second is missing and the third little developed.

Micippa platipes Rüppell (Pl. X, fig. 2, 4, textfig. 22)
Micippa platipes Rüppell, 1830, Beschr, und Ablb. 24 Arten kurzschw. Krabben, p. 8, pl. I fig. 4.

Batoc ata; shore ; March 6, 1930. - I ovigerous \circ, cl. $14 \frac{1}{2}, \mathrm{ch} .13 \mathrm{~mm}$.
Pasih Ipal, near Socla Mangoli and Taliaboe; shore; March 19, 1930. - I ô, cl. $4^{1 / 2}, \mathrm{cb} .4 \mathrm{~mm}$.

Beo, Karakelong, Talaud Island; shore or reef; June 1_-21, 1930.-- I ô, cl. 10 mm , cb. 8 mm .
Amboina; September $11-17$, 1930, -- 8 ô \hat{o} (one with soft carapace), 5 여 (2 ovigerous) ; ô \& cl. 13, ch. 13 mm ; cl. $13 . \mathrm{cb} .12 \mathrm{~mm}$; cl. $121 / 2, \mathrm{cb} .111 / 2$; cl. 12 , cl. 11 mm ; cl. $11, \mathrm{cb} .101 / 2 \mathrm{~mm}$; cl. $11, \mathrm{cb} .10 \mathrm{~mm}$; cl. $10 \mathrm{~T} / 2, \mathrm{cb} .10 \mathrm{~mm}$; ovigerous 우 ㅇ: cl. II, cb. nearly 10 mm ; cl. 10 , cb. 9 mm ; other of of $\mathrm{cl} .131 / 2, \mathrm{cl}$. I 3 mm ; cl. $9, \mathrm{cl}^{2} .7 \mathrm{~mm} ; \mathrm{cl}^{1 / 2}, \mathrm{ch}^{1 / 2} \mathrm{~mm}$.

Most authors consider this species synonymous with the preceding. A comparison of the first pleopod of the σ of this species with that of the preceding, and of the following particulars with those given under M. philyra proves them to be distinct.

1. The floor of the orbit is often closed; sometimes there is a distinct hiatus between the infra-orbital and post-ocular spines; the latter is always far more hollowed than in philyra; the result being quite another form of orbit, never tubular; in ventral view a large part of the eyestalk is visible.
2. I'he basal antennal joint is absolutely smooth and without distinct groove.
3. The first movable antennal joint is more enlarged than in M. philyra.
4. The rostrum is less abruptly deflexed, especially in the Q; the outer lobes are somewhat narrower, more spine-like.
5. Palm of the chelipeds of the adult of more swollen; slender in the young O and the Q; without dark spots; the fingers widely gaping at the base.
6. First pleopod of the σ as represented in textfig. 22.

About 7 tubercles on the lateral margins; the first broad.
'Two larger specimens in the collection of the Leiden Museum, named var. platipes by Kossmann, also show these characters.

As Micippa philyra (IIerbst) and platipes Rüppell are often confused and cited under various names, I made an attempt to give in a list the synonymy of both species. Without an examination of the material however it is not always certain to which species the author refers; it is therefore probable that the following lists contain some errors.

Micippa philyra

Micippa philyra Leach, 1817, Lool. Misc., vol. 3, p. 10; the short description tells us nothing, but the figure given by Guérin Méneville, $1820-18$ 44, Ic. du Règne An., vol. 2, Crust., pl. 8 bis fig. I represents a specimen belonging to philyra.
Micippa philyra Desmarest, 1825, Cons. gén. Crust., 1. 14\%, pl. 22 fig. 2.
Micipha philyra H. Milne-Edwards, 1834 , Hist. nat. Crust., wol. 1, p. 3.30 .
Micippa philyra Gerstaecker, 1856, Arch. f. Naturg., Jahrg. 22, vol. i, 1. iot.
Micippa phityra A. Milne-Edwards, 1872, Nouv. Arch. Mus., Paris, vol. 8, 1. 239, pl. 11 fig. 2.
Micippa philyra var. mascarcnica Kossmann, 1877, Zool. Erg. Reise Mitt., p. 7. pl. 3 fig. 2.
Micippa superciliosa Haswell, 1880, l'roc. Limn. Soc. N. S. Wales, vol. 4, p. 440, pl. 26 fig. 2 (and Catalogue, not seen).
Micippa fhilyra Richters, 1880, Dec. in Möbius Beitr. Meercs. Maur., p. 143, figs. 6, 7 (according to Miers, not seen).
Micippa philyra var. mascarenica Lenz und Richters, I88I, Abh. Senck. Naturf. Ges, vol. 12, p. 42 r .
Micippa philyra Miers, 1884, Report on the Zool. Coll. made in the Indo-Pacific Ocean during the voyage of H. M. S. "Alert" 188 r - 1882 , p. ig 8.
P'aramicippa asperimamus Miers, 1884, Report on the Zool. Coll. made in the TndoPacific Ocean during the voyage of H. M. S. "Alert" $188 \mathrm{I}-\mathrm{-}$ 1882, p. 525.
Micippa mascarenica Miers, 1885, Ann. Mag. Nat. Hist. (5), vol, 5, p. 7 and Challenger, p. 69 (name only).
Micippa mascarenica Walker, 1890, Journ. Linn. Soc., Zool., vol. 20, p. I09 (name only). Micippa mascarcnica Henderson, 1893 , Trans. Linn. Soc. (2), vol. 5. Zool., p. 348. Micippa philyra Alcock, pro parte, 18y6, Journ. As Soc. Beng., vol. 64, pt. 2, p. 249.
Micipa mascarcnica Calman, 1900, Trans, Linn. Soc. (2), vol. 8, Zool., p. .fo.
Micippa philyra Borradaile, Igo3, Fauna and Geogr. of the Mald and Laccad. Arch., vol. 2, pt. 2, p. 689.

Micippa philyra Rathbun, 1903 , Proc. U. St. Nat. Mus., vol. 26, p. 29, lit. (only Herbst and Alcock) and locality.
Micippa philyra Laurie, 1906, Rep. Pearl Oyster Fish., vol. 5, p. 38. probably belongs herc.
Micippa philyra Rathbun, 1910, Kong. Dansk Vidensk. Sclsk. Skrifter (7), vol. 5, p. 3^{19}, only Alcock as lit. and list of localitics.

Micippa philyra Bouvier, 1915, Bull. Sc. France Belg. (7), vol. 6, p. 255.
Micippa philyra Balss, 1924, Arch. für Naturg, vol. 90, Abt. A, pt. 5, p. 36.
Micippa philyra Gravely, 1927, Bull. Madras Gov. Mus., n. s., vol. 1, p. 15i, only in key.
Micippa philyra Balss, s938, Götcb. Kungl. Vetensk.-och Vitterh. -Samhalles ITandl.
(5), ser. B, vol. 5, pt. 7, p. 24, only localities.

Micippa platipes Rüppell

Micippa platipes Rüppell, 1830, Beschr. und Abb. 24 Arten kurzschw. Krabben, p. 8, pl. I fig. 4.
Paramicipa platipes H. Milne-Edwards, 1834, Hist. nat. Crust., vol. I, p. 333.
Micippa philyra and M. bicarinata Adams and White, I848, Samarang Crust., p. 16, probably belong here, but only a short description.
Micippa hirtipes Dana, 1851, Am. Journ. Sc. and Arts (2), vol. 11, p. 268.
Micippa hirtipes 1)ana, I852, U. St. Expl. Exp., Crust., p. 90, pl. I fig. 4.
Micippa platipes Heller, 186r, Sitz. Ber. Ak. Wiss. Wien, p. 200, pl. i fig. 2.
Micipha spatulifrons A. Milne-Edwards, 1872, Nouv. Arch. Mus., Paris, vol. 8, p. 240, pi. 11 fig. 3.
Micippa philyra var. platipes Kossmann, 8877 , Reise Rot. M., p. 6, pl. 3 fig. 3 .
Micipp spethtifrons Haswell, 1879, Proc. Iinn. Soc. N. S. Wales, vol. 4. p. 145.
Micippa philyra var. latifrons Richters, I880, Dec. in Möbius Beitr. Mecresf. Maur., p. 142. pl. 15 figs. i-5 (according to Miers, not seen).

Micippa philyra Miers, 1885, Ann. Mag. Nat. Hist. (5), vol. 5, p. 6 and Challenger, p. 69.
Paramicippa platipes de Ma11, 1888, Arch. für Naturg., Jahrg. 53, vol. i. 1. 250.
Micippa fhilyra Henderson, 1893, Trans. Linn. Soc. (2), vol. 5, Zool., p. 348, only literature and localitics.
Micippa philyra Ortmann, 1893, Zool. Jahrb., Syst., vol. 7, p. 59, only literature.
Micipha hirtipes Rathbun, 1893 , Proc. U. St. Nat. Mus., vol. 16, p. 99 (extr. from an unpublished rep. of Stimpson).
Micipt philyra Ortmann, 1894 , Denkschr. Jena, p. 43 (remarks that the specimens agree with var. latifroms Richters).
Micippa philyra Alcock, 1896, pro parte, Journ. As. Soc. 13eng., vol. 64, pt. 2, p. 249.
Micippa philyra Lenz, rgos, Abh. Scnck. Naturf. Gesell., vol. 27, p. 345 (these pecimens also agree with lutifrons).
Micippa philyra Nobili, 1906 , Ann. Sc. Nat. (9), Zool., vol. 4, p. 178.
Micippa phityra Rathbun, 1 got, Bull. U. St. Fish Comm., vol. 23, pt. 3, p. 882 (gives as syn, hirtipes Dana).
Micippa hirtipes Stimpson, 1907 , Smith. Mise. Coll., vol. 49, p. 15, (remarks "eyepeduncles exposed").
Micippa philyra Balss, re3r, Denkschr. Ak. Wiss. Wien, Math. Nat. Klasse, vol. roz, p. 20 (as Balss cites Nobili the specimens probably belong to this species).

Micinga phityra Montgomery, rg31, I. Lim. Soc. London, vol. 37, p. 423 (remarks "the spines on the lateral borders are not conspicuonsly kinobled").

Micippa thalia (Herbst) (textfig. 23)

Cancor thatia Herbst, 1803 , Krablien, vol. 3, pt. 3. 1. 50, pl. 58 fig. 3. Japan; coll. Ieiden Museum. - 1 ô.

The first pleopod of this $\mathrm{O}^{7}, \mathrm{cl} .28 \mathrm{~mm}$, is represented in textfig. 23.

MACROCOELOMINAF, Balss
 Tiarinia Dana

Tiarinia angusta Dana (textfig. 24)
Tiarinia (angusta Dana, 1852 , U. St. Expl. Exp.. Crust., 1. 11 3, pl. 3 fig. 7.
Sipankot, near Sibutu, Sulu Jslands; shore: September 10-It, 1020. -- I 9.

Fig. 2f. Tiarinit anguta Dana, apex of first pleopod of a $\hat{\delta}$ irom Sapocka bear, cl. $20^{1 / 2} \mathrm{~mm}, \times 75$ Fig. 25 . Tiarinio comigera (Latr.), apex of first pleopod of a $\hat{8}$ irom Wotap, d. $21 \mathrm{~mm}, \times 75$. Fig. 26. Tiariniou gratilis I ana, apex of first ploopod of δ From Ambona, d. $21 \mathrm{~mm}, \times 75$. Fig. 27. Tiarinia haris A. M.-Edw., first pleopod of of from "Fricdrich Wilhelm-Haicn, Neugnina", $\times+5$.
 ovigerouts 오.
 Wotap, Tenimber Jslands; October 20-23, $1929.5 \hat{8} \hat{8}, 2$ ovigerous 우 오.
Kera, near Timor; November 11-13, Nowember 15-16, Nowember 22-23, rozo. 6 6ㅇ (2 ovigeroas) 2 है

Sapoeka besar, Postiljon [slands; shore and reef; Jeccmber 21-23, 1929. -- 5 ô $\hat{0}$. 1 ovigerous 9 .
Tanah IJjampea; divinghood, 2-3 m; February 21-22, 1930. - 1 ô, i 9.
Gonto Soea, Spermonde Archipelago; shore; March I, 1930. - 1 of.
Sarappo, Spermonde Archipelago; shore; March I, 19,30.- i B, I ovigerous ㅇ.
Obi latoe; shore and reef; April 23-27. 1930.--- 18 of (7 ovigerous), 11 of 1 young specimen.
Kave Bay, Halmahera; shore or reef; May 28, 1930. - 1 ㅇ.
Morotai; June 3-10, ro30. - I ovigerous 早.
Beo, Karakelong, Talaud Islands; $0-10 \mathrm{~m}$; June $4-21,1930 .-20$ of (I oviger(uts). 1 of.
Lembeh Sirait; September 25. 1930.-. 2 우, 2 o $\hat{8}$ ô.
The number of spines on the rostral margins varies from 2-4, and is often different on both sides. Often one or more of then are sery small. I tried to give in a list number and size of these spines of every specimen brought in by the Snellius Expedition.

Tiarinia angusta

Wotap	$4 \hat{6}$	fecth on the outer margins of rostral spines 3
	©	3 , anterior amall
	¢	3
	아	3. near the middle one a small fourth tooth
	\bigcirc	3, the anterior on the right side is a very small tubercle
	아	3. near the second left one, a small fourth tooth
kera	290	
	¢	\& the posterior left one very small
	2 우운	3
	\bigcirc	3, the posterior left one very small
	\%	3 3, on the left, f on the right side
		3. on the left side, posterior small, 2 tubercles on the right side
Sipankot	9	3 , the posterior smallent
Kafal	9	3
	*	3, the posterior smallest
	${ }^{\text {a }}$	2
Sissic	2 웅	$+$
	\%	$+$
Kocpang:	999	f, in one the anterior are very small, in another the posterior
	악	4, on the right side the anterior, on the left the posterior very small
	우	4, on the left side the fourth is only a small tubercle
	7	t. the anterior on both sides small
	$10 \% 9$	
	?	.3, on the left side, f on the right
	아	3. on the left side, f on the right, the 2 and and $4^{\text {th }}$ (the anterior) small
	${ }^{\circ}$	3. the anterior on hoth sides small, the posterior with a small spine at the base
	II $\hat{\circ} \mathrm{o}$	t, in one the posterior on the left side small
	2 3令	3, on the left, on the right side

II $\hat{0} \hat{0}$.
of 3, on the left side the anterior, on the right side the posterior small
young specimen, $\&$? $\quad 2$, on the right side a very small posteriot third tubercle.

Tiarinia cornigera (Latr.) (Pl. XI fig. I, textfig. 25)

l'isa cormigera Latreille, 1825, Encych. Méth., vol. Io, 1. I4.
Manoedjoe; shore or reef; August $+5,1920$ - 1 ovigerous $ㅇ$.
Maratoea; reef; Augtist $14-18$, $1929 .-69 \%(+$ ovigerous) , \& $\$ 0$.
Kafal, Misool group; shore or recf; October 3, October 5, ry20. - I 9.
Wotap, Tenimber Islands; shore and reei; October 20-23, 1920. - 3 ô ô, 3 오 ㅇ, (i ovigerous).
Kera, near Timor; November 11--I3, Novenber 15-16, November 22-23, 1020. 7 ôt, 14 \& 9 (7 ovigerous).
Near Koepang, Timor; November 18 - 20. Jecember 3, 1020. - $5 \hat{\delta} \hat{3}, 2$ ovigerous 오.
Kocpang, Timor; November 30 , ig2e. - I ovigerous 9.
Sapoeka besar, Postiljon Tslands; shore or reef; Decemher 21-2.3, 192\%. - I ovigerous $\%$.
Obi latoe; shore and reef; April $23-27,1930$ - 2 ㅇ i and 1 pecimen with Sacculinid.
Morotai ; June 3-10, 1930. -- $2 \hat{\delta} \hat{\delta}, 2$ uvigerous 옹.
Amboina; September 10-17, Octoher 15,1930 - 8 o 8,7 ¢ 9 (2 ovigerous).
Boo Islands; October 5, 1930. - 1 ㅇ, i 0.
Endeh, Flores; November 5-8, r930. - $2 \hat{8} \hat{8}$.
Tiarinia gracilis Dana (IM. XI, fig. 2, texifig. 26)
Tiarinia gracilis Dana, 1852 , L'. St. Expl. Expl, Crust., p. $11 \mathrm{f}, \mathrm{ml}$. 3 fig. 6.
Mamoedjoe; shore and reeí; Atyust $\ddagger-5.5020$ - I $\hat{\delta}$, 1 우.
Maratoca; reef; Auguct $14-18$, 1020. - $2 \hat{3} \hat{b}, 5$ 오 (. 3 ovigerous).
Sibutu, Sulu Jslands; shore, between stones; September 1s, 1020. -- 18.
Tidore; shore; September 24-20, Iozo. - owigeroui ?

Sissie, Misool group; shore or reef; October 6, ig20. - r ovigeroas 9.
Dobo, Aroe Tslands; shore; October so, ry20. - $2 \hat{\delta} \hat{\delta}$.
Near Manoembai, Aroe lslands; shote; October il-44, 1020.--2 ovigerous of ㅇ, I か。
Kera, near Timor; November 1 I -1.3. November 15-16, November 22-23, 1029. --.

Kambang, near Timor; shore or recf ; November 26, Norember 28 , 1920. - I wrigerous of, without legs.

Batoe Ata; shore; March 6, 1030 - $3 \hat{\delta} \hat{0}, 2$ ovigerous of.
Pasih Ipah, near Soela Mansoli and Taliaboe; shore; March 19, w30, - $5 \hat{8} \hat{\delta}$. 3 ovigerous o 9.
Ternate; shore; April $1-2$, IG,30. -- 1 ovigerous \circ.

Merampi, Nenoesa Islands; shore; May 20, $1930 .-$ I δ, I young 9.
Karaton, Nenoesa Islands; shore; May $20,10,30 .-10$.
Morotai; June 3-10, 1930. - I $\hat{0}$, 1 ovigerous 9.
Flores; August $18-19$, $1030 .--1$ ovigerous 8.
Beo, Talaud Islands; shore or reef; June If-21, 1030. - I specimen with Sacculinid.
 ovigerous).
Ternate; September 29, 1930. - I 우.
Kisar; November 2, 1930. - \quad ㅇ.
Findeh, Flores; November 5-8, 1930. - $2 \hat{\delta} \hat{\delta}$.
Locality unknown. - 1 ovigerous 우.
Balss (193I) agrees with de Man (1902) that comigera Latreille and gracilis Dana are not specifically distinct. De Man states that his material was not large enough to solve this question and Balss upholds gracilis as subspecies.

The material collected by the Snellius Expedition contains 176 specimens ($740 \sigma, 100 Q Q$ and 2 specimens with a Sacculinid) and these specimens belong to two different species. It proved easiest to separate the σ ? first, as the first pleopods are very different: the apex of the pleopod is slender in gracilis, very broad in cornigera. From the 740^{7}, 29 belong to comigera, 45 to gracilis. There are, however, other differences that enable us to separate the $Q Q$ as well.
I. The carapace of cornigera is much more convex than the carapace of gracilis.
2. The tubercles in the median line of the carapace are better developed in cornigera than in gracilis; those on the posterior margin, however, are better developed in gracilis.
3. The legs of the specimens brought to gracilis are smooth or hate indistinct tubercles; cornigera has these tubercles much better developed.

Through the kindness of Prof. Schellenberg 1 was able to exanine $6 \overrightarrow{0}$ and 80 Q named comigera var. gracilis by Balss in 1931 and from these If specimens $3 \sigma 0$ and $2 Q Q$ belong to gracilis, $3 \sigma 0$ and $+Q Q$ to cormigera.

Of the remaining 2 OP from "Neu Guinea" I am not certain, but I think it probable that they belong to Tiarinia tiarata (Adams and White).

It is impossible that the differences cited here are depending on size. I have measured every specimen brought in by the Snellius Expedition and put them down in two lists. A comparison of these lists tells us that to both species belong specimens of various size, and that specimens corresponding in size may belong to different species.

Miyake (1938) distinguishes 1 wo species of Tiarinia: T. cornigera (Latr.) and depressa Stimpson 1). According to his description his depressa is the form with less conves carapace and the stronger tubercles on the posterior nargin and thereby agrees with our gracilis Dana. I am inclined to make

[^2]depressa Miyake a synonym of Tiarinia gracilis Dana; at the same time stating the possibility that depressa Stimpson (1858) is still another species with more spine-like epibranchial tubercles and less tubercles on the carapace.

In the following lists cl . stands for carapace length (including rostrum) in mm ; cb. stands for breadth of carapace (including epibranchial spines) in mm ; br. r. stands for breadth of rostrum at the base in mm ; r. stands for rostrum.

Tiarinia cornigera

Tiarinia gracilis

Mamoedjoe		cl.	cb.	br.r.
	아나아	11	6\%/2	1/2
	¢	17	101/2	2
Maratoea	9	18	12	21/2
	9	$17 / 2$	13	2
	¢	$17 / 2$		nearly 2
	아아아	15\%	105/2	2
	9	r. broken	11	
	¢	151/2	9	2
	6	$145 / 2$	9	2
Sibuta	δ	18	12	3
Tidore	\bigcirc	25	17	3
Kafal	아아아	$151 / 2$	10	2
Sissic	아앙	181/2	12	21/2

[^3]

		cl .	cb.		br.r.
	$\stackrel{3}{8}$	$171 / 2$	12		2
	\%	12	8		I $1 / 2$
	δ	r. broken	51/2		
Ternate	우	18	12		2
Batoe Merah	\bigcirc	$21{ }^{1 / 2}$	15		2
Roemah Tiga	우	21/2	141/2		2
	앆	18	121/2		2
	δ	21/2	$131 / 2$		21/2
	\%	18	12		2
	δ	16	105/2		2
Kisar	q	22	$14{ }^{1 / 2}$		2
Endeh	$\hat{\sigma}$	191/2	121/2		$2 \mathrm{~J} / 2$
	δ	18	12	fully	2
loc. unknown	¢	26	171/2		2

Tiarinia laevis A. M.-Edw. (textfig. 27)
Turinia lapeis A. Milne-Edwards, 1873, Journ. Mus. Godeffroy, vol. 1, pt. 4, p. 78.
Balss (193I) states as his opinion that T. laczis A. M.-Edw. possibly is a young T. cornigera gracilis. After an examination of the first pleopod from a 0 from "Friedrich Wilhelm-Hafen, Ncuguinca" 1) 1 am of the same opinion.

Tiarinia macrospinosa nov. spec. (Pl. X, fig. 5)
Koepang, Timor; November 30, 1929. -- I ovigerous ㅇ, \mathfrak{c}., including rostral spines, $42 \mathrm{~mm}, \mathrm{cb} .26 \mathrm{~mm}$.

Rostral spines parallel, and in the closest contact to near the tips, which are slightly divergent; with stiff, hooked hairs on the entire upper surface of the spines.

The eyes are enclosed in tubular orbits, formed by a prominent supraocular eave, the anterior angle of this eave is produced into a strong spine, stronger than in any other species of the genus, a cupped post-ocular spine and a process of the basal antennal joint, all three in closest contact.

Surface of the carapace with low tubercles and on each tubercle a bunch of the same hooked hairs as on the rostral spines. Shorter stiff hairs all over the carapace.

The epibranchial tubercle is slightly larger than the others, but not at all spine-like; there is a broad, but low intestinal tubercle and the whole posterior margin is swollen, but without tubercles or spines.

Chelipeds and walking legs are rather stout, covered with the same two kinds of hairs as the carapace. The first pair of ambulatory legs is lon-

[^4]gest, about as long as the carapace with half the rostral spines; the chelipeds are of about the same length as the carapace; the merus with three small tubercles on its upper margin; fingers toothed and slightly gaping at the base.

The specimen differs from the other species I have seen by the strong ocular spine and the absence of spines or tubercles on the posterior margin.

PAR'HENOPIDAE Alcock

PARTHENOIPINAF Miers

Parthenope Weber

Parthenope (Parthenope) valida de Haan
Parthonope (Lambrus) ralida de Haan, 1839, Fauna japonica, Crust., p. 90, pl. 2t fig. $\mathrm{I}, \mathrm{pl} .22$ fig. 1.

Kafal, Misool group; shore or reef; October 3, October 5, 1929. - i §, cl. 7 mm .
Near Koepang, Timor; small dredge, $10-15 \mathrm{~m}$; December 2, 1929. - 3 ô ô, cl. $7^{1 / 2}, 7$ and 5 mm .
Near Koepang, Timor; dredge, 6-15 m; December 4, 1929. -- I \mathfrak{b}, cl. 9 mm . Koepang, Timor; shore and reef; December 5,1029 . - 2 人 $\hat{0}$, cl. 9 and $61 / 2 \mathrm{~mm}$. Obi latoe; slore and reef; April $23--27$, 1930.--- 1 ô, 1 우 and 1 specimen with Sacculinid, cl. $71 / 2,6$ and 6 mm .

In the specimens from Kafal, Kocpang (5 Dec .1929), and Obi latoe the upper margin of the orbit is provided with three tubercles. The rostrum in these specimens is broadened near the base and forms a small preorbital tubercle.

Parthenope (Rhinolambrus) pelagicus (Rüppell)

Lambrus polagicus Rüppell, 1830 , Beschr. und Abl. 24 Arten kurzechw. Krabben, 1. 15, pl. \ddagger fig. .

Mamoedjoe. Celebes; shore or reef; August 4-5, 192\%. - 1 young specimen in a bad state of preservation.
Kera, near Timor; o-im; November $11-13$, $1929 .-1$ th.
Kocpang, Timor; (-15 m; December 4, r929. - i $ㅇ$.
Morotai ; June 3-10, 1930-6 of of, 4 오.
Kaledoepa, Toekang Besi Islands; August 27, 1930. - 2 웅.

Parthenope (Aulacolambrus) curvispinus (Miers)

Lambrus cureispinus Miers, 1879, Ann. Mag. Nat. Hist. (5), vol. +, p. 24.
Near Koepang, Timor; small dredge, $10-15 \mathrm{~m}$; December 2, 1929. - 1 ô.
Parthenope (Aulacolambrus) hoplonotus (Adams and White)
Lambrus hoplonotus Adams and White, 1850 , Samarang, Crustacea, 1. 35, pl. 7 fig. 3.

Daldorfia Rathbun
 Daldorfia horrida (L.)

Cancer horridus Linnacus, 1767, Syst. Nat., ed. 12, vol. 1, pt. 2. p. 1047.
Wotap, Tenimber Islands; October 20-23, 1929. - I 9.
Kera, near Timor; November II-I3, November 15-16, Ig20.-2 2 오.
Near Koepang, Timor; November $18-20$, 1929. - i $\hat{8}, \mathrm{I}$ ㅇ.
Koepang, Timor; reef; November 20, 1929. - 3 웅.
Obi fatoe; shore and reef; April 23-27, 1930. - ? ô.
Daldorfia semicircularis (Flipse)
P'arthenope semicircularis Flipse, I930, Brach. Siboga Exp., Mon 39c², p. 40. Kera, near Timor; November 11 - $3,1020 .-2 \hat{\delta}$ か.

Zalasius Rathbun
 Zalasius dromiaeformis (de Haan)

Trichia dromiacformis de Haan, I8.41, Fauna japonica, Crust., p. Io9, pl. 29 fig. 4. Kafal, Misool group; shore or recf; October 3, October 5, 1920. -- i 太, cl. 2.3, cb. 30 nmm .

In de Haan's of type specimen, a dried one, the first abdominal segment and the last right leg are missing. The larger part of the last left leg is missing too, but the basipodite is present and bears a spine-like tubercle. De Haan's Φ is a spirit specimen in a far better condition; the basipodites of the last legs bear a granular tubercle and the first abdominal segment is ptovided with the "two well developed granular lobes protruding backwards" as described and figured by McNeill and Ward (1930). In our specimen the tubercle on the basipodites of the last legs is present; the last abdominal segment is granular, but without tubercles.
U_{p} to the present this apparently rather rare species was known from Japan, Timor and Australia.

EUMEDONINAE Miers

Harrovia Adams and White
Harrovia purpurea Gordon
Harrovia purpurca Gordon, 1934, Rés. sc. Voyage Indes Or. Néerl. de LL. AA. RR. le Prince et la Princesse Léopold de Belgique, vol. 3, fasc. 15. p. 67.
Obi latoe; shore or reef; April 23--27, 1930. - I 오, cl. 5.5 mm , ch. (including the short conical spine) 7.5 mm .

The description given by Gordon of the type specimen, a of agrees in nearly every respect with our Q. The only point of difference is a question of colour-pattern. Gordon remarks: "The antero-lateral and frontal mar-
gins are granular and whitish; the rest of the carapace is of a dark purplish colour broken by four irregular transverse bands of a much paler purple crossing the middle line; the paler colour is repeated round the postero-lateral and posterior margins." Put her figure shows us lighter and darker areas.

In our \odot the antero-lateral and frontal margins are granular and whitish (as described by Gordon). The anterior half of the carapace is dark purple with two transverse bands of the same whitish colour; the posterior half is of a lighter purple with an indistinct band of a darker colour.

LITERATURE

For the older literature I refer to

Alcock, A., 1895 . Matcrials for a Carcinological Fauna of India, I, The Brachyura Oxyrhyncha. Journ. As. Soc. Beng., vol. 64, pt. 2, p. 1.57.

- I896. Matcrials for a Carcinological Fauna of India, 2, The Brachyura Oxystomata. Journ. As. Soc. Beng., vol. (05, pt. 2, p. $13+$.
-- 1000. Materials for a Carcinological Fama of India, 5, The Brachyura Primigenia or Dromiacea. Journ. As, Soc. Beng., vol. 68, pt. 2, p. 123.
Ftıpse, H. T., 1g30. Die Decapoda Brachyura der Siboga-Expedition, 6, Oxyrhyncha: Parthenopidae. Siloga-Expeditie, Monogr. $3 \mathrm{~K}^{2}$.
[hite, T. E. W., 1913. Decapoda Brachyura der Siboga-Fxpedition, i, Dromiacea. Siboga-Expedition, Monogr. 3ob.
-- 1918. Dic Decapoda Brachyura der Siboga-Expeclition, 3, Oxystomata: Calappidac, Leucosidae, Raminidae. Siboga-Expedition, Monogr. 3ob ${ }^{2}$.

Adams. A., and White, A., t850. Zoology of the Voyage of H. M. S. Samarang, Crustacea, p. 1.
Alcock, A., 1895 Description of a new species of Oxyrhynch crab of the genus Parthenope. Journ. As. Soc. lieng, vol. 64, pt. 2, p. 200.
——, 1809. An account of the Deep-Sea Brachyura collected by the R. I. M. S. ship, Tnvestigator.
and Anderson, A. R. S., 1808. Illustrations of the Zoology of the R. I. M. S. ship Investigator, Crustacea, pt. 6, pls. 33-35.
Anvandale, Ni., and McGifchrist, A. C., 1g07. Illustrations of the Zoology of the R. I. M. S. ship Investigator, Crustacea (Malacostraca), pt. 12, pls. 77-70.

Anumi, M., t93i. Crustacés Décapodes provenant de l'Institut Océanographique de Nha-Trang (Aunam.). Bull. Mus. Hist. Nat. (2), vol. ,3, p. 638.
-, 1932. Crustacés recucillis par M. E. Auhert de la Rüic aux Iles Kerguclen, Saimt Paul et de la Nouvelle Amsterdam. Bull. Mus. Hist. Nat. (2), vol. f, p. 174.
*Anbsews, C. W., toco. Monegraph of Christmas Jslands.
Baker, W. H., rgos. Notes on South Australian Decapod Crustacea, pt. 2. Trans. Proc. Rep. Koyal Soc. South Austr., vol. 20, p. Ito.
---, inoo. Notes on South Australian Crustacea, pt. 4. Trans. Proc. Rep, Royal Soc. South Austr., vol. 30, 1. 107.
---- 1907. Notes on the South Australian Decapod Crustacea, pt. 5. Trans. Proc. Rep. Royal Soc. South Austr., vol. 31, p. 173.
Balls, H., ig2I. Diagnosen neuer Decapoden aus den Sammlungen der Deutschen Tiefsee-Expedition und der japanischen Ausbeute Dofleins und Habercrs. Zool. Anz., vol. 52. 1. 175.

Balls, H., 1922a. Ostasiatische Decapoden, 3, Die Dromiacea, Oxystomen und Parthenopiden. Archiv für Naturgeschichte, vol. 88, Abt. A, Heft 3, p. 104.

- - 1922b. Decapoda Brachyura (Oxyrhyncha und Brachyrhyncha) und geographische Übersicht über Crustacea Decapoda. Beitr. z. Kennt. d. Mecresfauna Westafrikas, vol 3. 1. 71.
--, 192 \&a. Ostasiatische Decapoden, 5, Dic Oxyrhynchen und Schlusstei] (Geographische Übersicht der Decapoden Japans). Archiv für Naturgeschichte, vol. 90, Abt. A. Heft 5, p. 20.
---, 192 fb. Decapoden des Roten Mceres, 3, Dic Parthenopiden, Cyclo- und Catometopen. Denkschr. Ak. Wiss. Wien, math. naturw. Klasse, vol. 99, p. 1.
- - Io30. Die Decapoden (Crustacea) in: Zool. Frgebn. der Reisen von Dr. L. Kohl--Larsen mach den subarctischen Inseln bei Neuseeland und nach Sudgeorgien. Senckenbergiana, vol. 12. p. 195.

1931. Decapoden des Roten Meeres, 4, Oxyrliyncha und Schlussbetrachtungen. Denkschr. Ak. Wiss. Wien, math, naturw. Klasse, vol. Ioz, p. I.

* 1934. Sur quelques I Décapodes brachyoures de Madagascar. Faunc Colon. franç, vol. 5, P. 501.
*--, 1935a. Brachyura of the Hamburg Museum Expedition to southwestern Australia igos. Journ. Royal Soc. W. Austr., vol. 21, p. ins.
--, 1935b. Die brachyuren Dekapoden der Reise Michaelsen--Yartmeyer nach Südwesternaustralien $\mathbf{1 0 0 5}$. Eine geographische Übersicht nebst Beschreilung einiger neuer Formen. Kool. Anz., vol. IH, p. 35.
--. 1933. Die Decapoda Brachyura von Dr. Sixten Bocks Pazific-Expedition 1917${ }^{11} 18$. (ö̈tchorgs Kungl. Vetenskaps- och Vitterhets- Samhälles Handlingar (5), B, vol. 5, p. i.
*Ibennetr, E. W., 1930. Notes on the New-Zealand Brachyura and related Crustaceans. Rec. Canterbury (N.Z.) Mus, vol. 3, p. 255.
Befener, I', 1856 . Recherches sur les Crustacés de l'Inde archipelagique. Acta Soc. Scient. Indo-ncêtlandiae, vol. 2, p. 1.
Boone, L., 1930. New Decapod and Isopod Crustacea from Gonave May, Haiti. Zoologica, vol. 12, p. 4 .
--, 193+. Scientific Results of the World Cruise of the Yacht "Alva" r93r. Bull. Vanderbilt Mar. Mus., vol. 5, p. I.
Borramale, L. A., igoo. On some Crustaceans from the Sonth Pacific, fo Crabs, Proc. Zool. Soc. London, p. 568 .
-, roo3. Marinc Crustaceans, ro, The Spider-Crabs (Oxyrhyncha). Fanna and Geogr. Mald. and Lacc. Arch., vol. 2, pt. 2, p. 68 r.
—, 1907. On the Classification of the Decapod Crustaccans. Ann. Mag. Nat. Hist. (7), vol. 19, p. 457.
--, 1916. Crustacea, pt, i. Brit. Antarctic Exp. 1910 (Tcrra Nova Exp.). Nat. Hist. Rep. Zool., vol. 3, p. 75.
Bouvifr, E. L., i8og. Sur une Collection de Crustacés du Japon, offerte au Muscum par M. Boucard. Bull. Mus. Hist. Nat.. vol. 5. 1. 173.
- . igofa. Sur unc nouvelle Collection de Décapodes Crustacés rapportés de Japon par M. Harmand. Bull. Mus. Hist. Nat., vol. 12, p. 480.
- -, 1go6b. Observations sur le Genre Acanthophrys A. M.-Edw. et catalogue des Acanthophrys du Muscum. Bull. Mus. Hist. Nat., vol. 12, p. 485.
-_, rot. Sur la Faune carcinologique de l'ile Maurice. C. R. Acad. Sc., vol. rso, р. 08.
_- 1015. Décapodes marcheurs (Reptantia) et Stomatopodes recucillis à l'ile Maurice par M. Paul Caric. Bull. se. de la France et de la Belgique (7), vol. 6, p. r78.
--, Igi6. Etude sur un Cyrtomaia suhmi du Musée de Marseille. Ann. Mus. Mars., vol. 15, p. 9.

Bouvier, E. L. and Secrat, G., 1905. Eumedon convictor, crabe commensal d'un Oursin. C. R. Ac. Sc., vol. 140, p. $62 g$.
Calman, W. T., igoo. On a collection oi Brachyura from Torresstraits. Trans. Lime Suc. London (2), Zool., vol. 5, p. I.
---, Doog. On Decapod Crustacea from Christmas Jslands, coll. by Dr. Andrews. Proc. Zool. Soc. London, $190{ }^{2}$, p. 703.

- 1913. Note on the Brachyuran Genera Micippoides and Hyastenus. Ann. Mag. Nat. Hist. (8), vol. 11, p. 312.
- , 1927. Report on the Crustacea Decapoda (Brachyura) (Zoological Results of the Cambridge Expedition to the Suez Canal 1024). Trans. Zool. Soc. London, rol. 22, 1). 211.
Chix, P^{2}. S., 1933. Zur Morphologie und Histologie iler Respirationsorgane von Grapsus grapsus L., nebst einer Liste Kirablen der Sammlung Plate von Ceglon and Sudindien. Jena. Z. Naturw., vol. o8, p. 3r.
Chimen, Co, spot. The Crustacea. The Subantarctic Islands of New Zealand, art. 25.
--, וonra. The Crustacea of the kermadec Islands. Trans. Proc. N. Zealand Institute, vol. 43, p. 5-4.
——. 191b. Scientific results of the New Zealand Government Trawling Expedition 1907, Crustacea. Rec. Canterbury Mus., vol. I, p. 285.
- and lifnsetr, E. W., 1920. Contribntions for a revision of the Crustacea of New Zealand. Trans. Proc. New Zealand Institute, vol. 59, p. 73ı.
Chopra, B., 193z. Further Notes on Crustacea Decapoda in the Indian Museum, 2. On some becapod Crustacta fomed in the clonca of Holothurians. Rec. Ind. Mus., wol. 3.3. p. 303.
- 193.3a. Further Notes on Crustacea Decapoda in the Indian Museum, 3. On the Decapod (rustacea collected by the Bengal Pilot Service off the month of the River Hughli, Dromiacea and Oxystomata. Rec. Ind. Mus, vol. 35, p. 25.
- - 193.3 h . Further Notes on Crustacea Decapoda in the Indian Museum. I, On two new species of Oxystomous Crabs from the lay of Bengal. Ree. Ind. Mlus, vol. 35, p. 77.
- - 103+. Further Notes on Crustacea Decapocia in the Indian Muscum, 6, On a new Dromid and a rate Oxystomous Cral from the Sandheads, off the mouth oi the Hooghly River. Rec. Ind. Mus., vol. 36, p. 477.
--.. and 1)ss, K. N., 1937. Fiuther Notes on the Crustacea l)ecapoda in the Indian Muscum, of On three Collections of Crabs from Tavoy and Mergui Archipelago. Ree. Ind. Mus., wh. 30, p. 377.
Dericgin, K. M. and Koblakowa, S., 1935. Zur Dekapodenfauna des Japanischen Meeres. Zoul. Anz., vol. i12, 1). 1.f.
 vol. 21, p. 61 .
——, 1904. Brachyura. Wiss. Ere. 1). Tiefsec Exp, "Valdivia", vol. 6.
Emmonses. C. H., moz. Crustacea from Palmyra and Fanning Istands. Bern. P. Bish. Mus.. Bull. 5
—-, M25. Crustacea, Natine Zoology of topical central Pacific. Bern. P. Bish. Mus., Bull. 27.
*-. 1933. Crastacca, Reef and Shore Fauna of Hawaii. Spec. Publ. Benn. P. Bish. Mus., 110. 22, 1. 191.
Fstumburk, E, P', 1937. A Check List of Phillippine Crustacean Decapods. Phillippine Jourmal of Science vol. 62, p. 46 .
Finpsis. H. I., Ma3. Einige J'arthempidae aus dem Naturhistorichen Museum in Leden. Zool. Meded, vol. 1, p. Bo.
Pubtos, S. W., and (ikant, F. Fe., botia. Some little known Victorian Decapod (rnstacea, with Description of new species. Pooc. Rogal Soc. Vict., vol. in, p. 5.

Funtox, S. W., 1gofl. Census of Victorian Decaped Crustacea, pt. i (Brachyura). Proc. Royal Soc. Vict., vol. 10, p. 16.
*(Gee, N. G., ig25. Tentative List of Chinese Decapod Crustacea. Iningnan Agriculturai Revue, vol. 3, o. 156.
Gordon, I., 1930 . Seven new species of Brachyura from the cuasts of China. Am Mag. Nat. Hist. (io), vol. 6, p. 519.
--...., 193I. Jrachyura from the coasts of China. Journ. Linn. Soc. London, Zoology, vol. 37, p. 525.

- , 1934. Crustacea Brachyura. Rés. sc. du Voyage aux Indes Orientales Nécrlandaises de LL. AA. RR. le Prince et la Princesse Léopold de Belgigue, vol. 3, fasc. 15. Mém. Mus. Royal d’Hist. Nat, de Belgique, hors séric.
Grant, I: E., 1905. Crustacea dredged off Port Jackson in deep water. Proc. Limn. Soc. N. S. Wales, vol. 30, p. 312.
- and McColooch, A. K., inot. On a Collection of (rustacea from the Port Curtis District, Queensland. Proc. Limm Soc. N. S. Wales, wol. 3r, p. 2.
Gravier, C., 1920. Sur une collection de Crustacés recucillis à Madagascar par M. Le Licutenant Decary. Bull. Mus. Hist. Nat., vol. 26. 1. 376. 465.
---. ig22. Sur un nouveau Crabe (Eumedonus petiti nov. spec.) commensal d'un Oursin de Tulear (Madagascar). Bull. Mus. Hist. Nat., vol. 28, p. 48 \&
—_ Ig23. Sur un nouveau Type de Crabe (Stenocaralnas n. g. nhepensus n. sp.) de Madagascar. Bull. Mus. Hist. Nat., vol. 20, p. 24 .
liale, H. M., 1924 . The Flora and Fama of the Nigits Archipelago and the Investigator Gronp, 16, Tine Crustacea. Trans Proc. Royal Soe. S Australia, wol. 48, P. 67.
* ---, 1927a. The Crustacea of South Australia.
- In 2 fl). Crustacea in: The Fanna of Kangeron Istands, Soutio Ausiralia. Trans. Proc. Royal Soc. South Australia, vol. 5I, p. 307.
--, 1929. Notes on the Fauna of Dirk Hartog [sland, Western Australia, Crustacea. Trans. Proc. Royal Soc. South Australia, vol. 53, p. 67.
Hector, James, igoo. Spider-crabs (Note on n. sp.). Trans. N. Zealand lncitute, wol. 32, p. 42.3
*Honeson, T. V., igoz. Crustacea. Rep. coll. nat. Hist. Antarct. regions voyage oi the "Southern Cross".
hime, I. E. W., and hili--Lanneyberg, M. E, 1931. Ueber cinige Tiefsce-Brachyuren der Siboga-Expedition aus der Gruppe der Oxyrlyyncha, Zool. Anz, wol. 93, p. Iq7.
*Kamita, T., 1935 . On the Brachyura of the west Koyear Waters (Yellow Sea). Dohuts Zassh., vol. 47, p. бr.
Kemp, S. W., and Sewfil, R. B. Sexmour, 1912 . Notes on Jecapoda in the Indian Museum, 3. Rec. Ind. Mus., vol. 7, p. 15.
Kidnamark, C. Be, qoo. Dic Spitz- und Spitzmundkrabien (Oxyrhyncha und Oxystomata) des Roten Meeres.
*Kohle, Gi. R., rg24. Prachyura of the Karachi Const. Proc. Lahore Phil. Soc, vol. 3. p. 8.
*Kybo, 1., 1936. A new Decapod Crustacean from lapan, Paramaja kominatocnsis gen. et spec. nov. Bull. lapan Soc. Sc. Fish., vol. f, 11. 36 . .
Lanchester, W: F., 1900a. On a collection of Crustaccans made at Singapore and Malacca, I, Brachyura. Proc. Zool. Soc. London, p. 7 (9).
---, igoob. Crustaceans from the Malaysia. Ann. Mag, Nat. Hist. (7), vol. 6, p. 249.
- , Igot. On the Crustacea collected during the Skeat-Expedition in the Malay Peninsula, together with a note on the genus Actacopsis, pt. T, Brachyura, Stomatopoda and Macrura. Proc. Zool. Soc. London, p. 534.
Laurie, R. D., 1906. Report on the Brachyura clollected by Prof. Herdman at Ceylon in 1902 . Rep. Pearl Oyster Fish. and Mar, Biol., vol. .s. p. 34.

Lackiz, R. I)., 1915. Reports on the Marine Biology of the Sudanese Ked Sea, 21, The Brachyura. Journ. Linn. Soc. London, Zoology, vol. 31, p. 407.
Lenz, H., 1 10 or. Ergebnisse einer Reise nach dem Pazific (Schauinsland). Crustaceen. Zool. Jahrb., Syst., vol. It, 1. 429 .
--. 1005. Ostafrikanische Decapoden und Stomatopoden gesammelt von Herrn Prof. Dr. A. Voeltzkow. Abh. Senck. naturf. Gees, vol. 27, p). 34i.
--., 1910. Crustaceen von Madagascar, Ostafrika und Ceylon. Voeltzkow, Reise in Ostafrika in den falmen 1903 - 1605 , vol. 2, p. 539.

- 1912. Afrikanische Crustaceen aus schwedischen Sammlungen. Arkiv för Zost, vol. 7, no. 29.
McArine, S. F., igoo. Natural History Notes from the Royal Indian Marine Survey Ship "Investigator", ser. 3. 4. Some results of the dredging Season tion 1000 . Ann. Mas. Nat. Hist. (7), vol. 6, p. 47 I.
- - . 1gor. Natural History Notes from the Royal Indian Marine Survey Ship "Investigator", ser. 3, 5. An Account of Trawling Operations during the Survering Season of roo-leor. Amn. Mag. Nat. Hist. (7), vol. 8, p. 517.
McCumoch, A. R., igot. Crustacea new to Anstralia. Rec. Austr. Mus., vol. 6, p. 231.
——1907. The Results of the I Seep-Sca Investigation in the Tasman Sea, Fishes and Crustaceans from eight hundred Fathoms. Rec. Austr. Mus., vol. (3, 1. 345 .
—. 1008, Studies in Australian Crustacea, i and 2. Rec. Austr. Mus.. vol. 7 , 1. $5!$ and, 05.
- 1913. Studies in Australian Crustacea, 3. Rec. Austr. Mus., wol. 0, D. 32 I.
*-_, 1918. Fishes and Crustaceans from King Sound, North-West Australia. Proc. Royal Geogr. Soc. (S. Austr. Branch.), vol. 18, p. 289.
MoNimil, F. A., 1920, Studies in Australian Carcinology, 1. Rec. Austr. Mus., vol. 13, $1,105$.
-_, 1926. The Biology of North-West Islet, Capricorn Group (Qucensland), I, Crustacea. Austr. Zool., vol. 4. p. 2ge.
-, and Waris, M., 1930. Carcinological Notes. Rec. Austr. Mus., vol. 17, 1. 357.
Maccagno, F., 1936. Spedizione del Barone Raimonde Franchetti i Dancalia (1928- '2g), Crostacei di Assab, Decapodi, Stomatopodi, Anfipodi. Amn. Mus. Civ. Stor. Nat. Genova, vol. 59, p. 171.

Many, I. G. 1e. Igo2. Dic von Herrn Professor Kükenthal im Indischen Archipet gesammetten Dekapoden und Stomatopoden. Abi. Senck. naturf. (ies., vol. 25 , 1. 467.
--. 1907. On a Collection of Crustacea, Hecapoda and Stomatopoda, chiefly from the Inland Sca of Japan; with Descriptions of new species. Trans. Limn. Soc. London (2), Zoology, vol. 9, p. 387.

- -. 1928. Papers irom 1)r. Th. Mortensen's Pacific Expedition IgIt - Tonct. +2, On four species of Crabs of the Families Inachidae and Xanthidae, two of which are new to science. Vidensk Mcdd. Dansk Naturh. Foren., Vol. 85, p. 7.
--, 1920a. Papers from 1)r. Th. Mortensen's Pacific Expedition 19L4- roto, so, On a small collection of Decapoda, one of which, a Crangon, caught loy the \}anish Pacific Expedition at the Jolo Tslands, is new to science. Vidensk. Medd. Dansk Naturh. Foren., vol. 87. p. 105.
- - 1920b. On a collection of Decapod and Stomatopod Crustace from Pulan Berlala, an Islet situated in the Straits of Malacca. Bijdr. Dierk., no. 26.
Miers, E. I., I880. On a collection of Crustacea from the Malaysian Region. Amb. Mag. Nat. Hist. (5), vol. 5, p. 226.
Mivakle, S., rghea. Reports on the Brachyura of the Riukin [slands collected by the Yaćyama Expeditions during the years 1932-1934. Ann. Zool. Jap.. vol. 15. p. +94.
--, 1936b. On three Crabs from off Turi-Shima Danjo Group, Japan. Ann. Zool. Tap., vol. 15. p. 416.

Miyake, S., 1938. Unrecorded Crabs from Formosa collected by Prof. Hiroshi Ohshima in 1932. Trans. Nat. Hist. Soc. Formosa, vol. 28, p. 187.
Monoo, F., I931. Ueber einige Indopazifische Decapoda der Meeresfauna Syriens. Zool. Anz., vol. 92, p. 135.
——, 1933. Sur quelques Crustacés de l'Afrique occidentale. (Liste des Décapodes mauritaniens et de Xanthidés outest-africaines). Bull. Com. Etud. sc. Afr. Occ. lir., vol. 55, p. 456.
Montgomery, S. K., 5935. Report on the Crustacea Brachyura of the Percy Sladen Trust Expedition to the Abrolhos Islands under the leadership oi Prof. W. I. Dakin in 1913, along with other crabs from Western Australia. Journ. Limn. Soc. London, Zoology, vol. 37, p. 405.
Nobult, G., 1809 . Contribuzioni alla cognoscenza della fauna carcinologica della Papuasia, della Molucche e dell' Australia. Amn. Mus. Civ. Stor. Nat. Genova, vol. 40, p. 230.
--, ryor. Decapodi e Stomatopodi Eritrei dal Museo Zoologico dell’ Università de Napoli. Amn. Mus. Napoli (n. s.), vol. i.

- r, ro5. Diagnoses préliminaires de 34 espèces et variétés nouvelles, et de 2 genres nouveaux de Décapodes de la Mer Rouge. Bull. Mus. Hist. Nat., vol. ir, p. 393.
——, 1goba. Crustacés Decapodes et Stomatopodes de la Mission Bonnier et J'érez. Bull. se. de la France et de la Belgique (5), vol. 9, p. I3.
- roobl. Faune Carcinologigue de la Mer Rouge, Décapodes et Stomatopodes. Ann. sc. nat. (9), Zool, vol. 4, p. 1.
--, 1007. Ricerche sui Crostacei della Polinesia, Decapodi, Stomatopodi, Anisopodi e Inopodi. Mem. R. Accad. sc. Torino (2), vol. 57, p. 352.
Ortmany, A., r8of. Crustaceen in Richard Semon Zoologische Forschungereisen in Australien und dem Malayischen Archipel. Denkschr. Med. Naturw. (ies. Jena, vol. 8, p. ı.
Pakisi, G., igry. I Decapodi giapponese del Museo di Milano, i, Oxystomata. Atti Suc. ital. sc. nat, vol. 53, p. 282.
--, 1015 a . I Decapodi siapponese del Museo di Milano, 2, Dromiacea. Atti Suc. ital. sc, nat, wol. 5t, p. 102.
- - iosbl. I Decaporli giapponese del Museo de Milano, 3, Oxymynela. Afti Soe. ital. se. nat., vol. $5+$, j) 281 .
Pasta, O., 1913. Botanische und Zoologische Ergehnisse einer Wissenschaftlichen Forschungreise nach den Samoainseln, dem Neuguinea-Archipel und den Salomonsimseln, Crustacea, i, Decapoda Brachyura aus Samoa. Denkschr. Ak, Wiss. Wien, math. naturw. Kl., vol. 88, p. 36.
Ray, B. S., and others, 1027. Crustacea in: the litoral fauna of the Krusadai Island in the Gulf of Manaar. Bull. Madras Gov. Mus. (n. s.), vol. I.
Ratheun, M. I., 1902 . Crabs from the Maldive Tslands. Bull. Mus. Comp. Zoöl, vol. 39, 1. 123.
- - Io,3. Japancese stalk-cyed Crustacea. J'roc. U. St. Nat. Mus., sol. 26, p. 23.
- 1001 . Some dianges in Crnstaccan Nomenclature. Proc. Biol. Soc. Washington, rol. 17, p, 160.
--, uoo. The Brachyura and Macrura of the Hawaian Istands. Bull. U. St. Fish Conmission, vol. 23, p. 827 .
-.- ; 1007. Reports on the scientific results of the Expedition to the tropical Pacific, in charge of Alexander Agassiz, by the U. St. Fish Commission Steamer "Abatross", from October, 1904 , to March, 1905 , Lieut--Commander I.. M. Garrett, U. S. N., commanding, of, The Bracheara. Mem. Mus. Comp. Zoöl., Harvard Coll., vol. 35, b. 23 .
- - ionoa. The banish Expedition to Siam 1809-1000, 5. The Brachyura. Kong. Danke Vilensk, Selskabs Skrifter (7), rol. 5, p. 30 .

Rathbun, M. I.. Igob, Decapod Crustaccans collected in Dutch-East India and elsewhere by Mr. Thomas Barbour in soof - -1907. Bull. Mus. Comp. Zoöl. Harvard Coll, vol. 52, p. 305.
---, 191. Reports of the Percy Sladen Trust Expedition to the Indian Occan in 1905, under the Leadership of Mr. 1. Stanley (ardiner, The marine Brachyura. Trans. Limı. Soc. London (2). Zoology, vol. 14, p. 191.
—-, 1914. Stalk-eyed Crustacea collected at the Monte Bello Islands. Proc. Zool. Soc. London, p. 653.
----, 19 ro. Scientific Results of the Philippine Cruise of the Fisheries Steamer "Albatross" 1907-1910, New Species of Crabs of the Families Inachidae and Parthenopidae. Proc. U. St. Nat. Mus., vol. 50, p. 527.

- 1918. Report on the Spider Crals oltained by the F. I. S. "Endeavour" on the Coasts of Queensland, New South Wales, Victoria, South Australia and Tasmania. Biol. Res. F. I. S. "Endeavour" 1gor-1914, vol. 5, p. I.
- 1923. An analysis of 1)romia dormia (I..). Proc. Biol. Soc. Washington, vol. 36, p. 05.
--, 192fa. Results of 1)r. E. Mjöberg's Swedish Scientific Expeditions to Australia 1910-1913, 37, Braclyyura. Albuncidac and Porcellanidae. Arkiv för Zoologi, rol. 10, no. 23.
- ro24b. New species and subspecies of Spider Crabs. Proc. U. St. Nat. Mus, vol. 64, D. 1.

1932. Preliminary descriptions of new specien of Japanese Crabs. Proc. Biol. Soce Washington, vol. 45, p. 29.
Saka, T., 1932 . Notes on some rate Materials of Japanese Oxyrhyncha. Sc. Rep. Tokyo Buarika Daigaku, Section B, vol. i, 1. 41 .

- 193.3. A new gemus and some new species of Crabs from Simoda. Sc. Rep. Tokyo Junrika Daigaku, Section B, vol. I, p. 1,77.
- 1934. Brachyura from the coast of Kyushu, Japan. Sc. Rep). Tokyo Bunrika Daigaku, Section B, vol. 1, p. 281.
——. 1935. New or rare species of Brachyura, collected by the "Misago" during the Zoological Survey around the Izu-Peninsula. Sc. Rep. Tokyo Bunrika Daigaku, Section 13, vol. 2, p. 63.
- 1936a, Report on the Brachyura, collected by Mr. F. Hiro at Palao Islands. Sc. Rep. Tokyo Bunrika Daigaku, Section B, vol. 2, p. 155.
-, 193(b). Studies on the Crals of Japan, I, I romiacea. Sc. Rep. Tokyo Bunrika Daigaku, Section 13, vol. 3, suppl. 1, p. 1.
*——, 1936 . Crabs of Japan, 66 Plates in Life colours with descriptions. Tokyo 1935.
Sennlek, A., 1923. Die Decapoden und Stomatopoden der Hanseatischen SüdsecExpedition. Abh. Senckenb. Naturf. Ges., vol. 38, p. 2r.
*Shen, C. J., 1932. The Brachyura Crustacea of North China. Zoologica Sinica (A), vol. $9, \mathrm{p} . \mathrm{I}$.
Siluter, C. Ph., 1881. Bijdrage tot de Kemis der Crustaceën Fauna van Java's Noordkust. Natuurk. Tịdschr. voor Nederl.-Indië, vol. 40, p. 159.
Stebbing, T. R. R., 1900 . Crustaccans from the Falkland Islands. Proc. Zool. Soc. London, p. 517.
——, 100t. South African Crustacea, pt. 2. Marine Investigations South Airica, vol. $2, \mathrm{p} .1$.
, 1908. General Catalogue of South African Crustacea, pt. 4. Amm. South Afr. Mus., vol. 6, p. i.
—— 1910. General Catalogue of South Airican Crustacea, pt. 5. Ann. South Afr. Mus., vol. 6, p. 28 I.
——, igr5. South African Crustacea, pt. 8. Amn. South Afr. Mus., vol. 15. p. 57.
$—$-, 1917a. South African Crustacea, pt. ©. Ann. South Afr. Mus., vol. 17. p. 23.
Temminckia IV

Stebbing, T. R. R., 191弓b. The Malacostraca of Durban Bay. Ann. Durban Mus., vol. i, p. 435 .
--, s917c. The Malacostraca of Natal. Ann, Durban Mus., vol. 2, p. i.
--, igi8. Some Crustacea of Natal. Ann. Durban Mus., vol. 2, p. 47.
-, 1920a. South African Crustacea, pt. 10. Ann. South Afr. Mus, vol. 17, p. 231.
-, 1920b. The Malacostraca of Durban Bay. Ann. Durban Mus., vol. 2, p. 263.

- 1921a. Some Crustacea of Natal. Ann. Durban Mus., vol. 3. p. 12.
--, ig2ib. South African Crustacea, pt. i1. Ann. South Afr. Mus., vol. i8, p. 4.53.
Stephensen, K., 1927. Papers from Dr. Th. Mortensen's Pacific Expedition 19141916, Crustacea from the Auckland and Campbell Islands. Vidensk. Medd. Iansk Naturh. Foren., vol. 83, p. 189.
Stimpson, W., 1858. Prodromus descriptionis evertebratoram, -- . Proc. Ac. Nat. Sc. Philadelphia, 1857, p. 216.
Thomson, G. M., 1902. On a new species of Paramithrax from New Zealand. Ann. Mag. Nat. Hist. (7), vol. 10, p. 361.
*Urita, T, igi8. Satsu-Gu chiho no kanirui mokuroku (A list of crabs of the southernmost parts of Kyushu). Dobuts. Z. Tokyo, vol. 30, p. 16i.
-, 1926. A Check-list of Brachyura found in Kagosima Prefecture, Japan. Tsingtao.
Warn, M., 1933. New Genera and Species of marine Decapoda Brachyura. Austr. Zool., vol. 7, p. 377.
---, 1934. Notes on a collection of Crabs from Christmas Island, Indian Occan. Bull. Rafflcs Mus. no. 9, p. 5.
-, 1936. Crustacea Brachyura from the coasts of Queensland. Mem. Qd. Mus., vol. it, p. 1.
*Wu, H. W., r930. A preliminary artificial key to the Brachyurous Crabs from Amoy. Trans. Sc. Soc. China, vol. 6, p. 43.
Yokoya, Y., i928. Report of the Biological Survey of Mutsu Bay, 1o, Brachyura and Crab-shaped Anomura. Science Rep. of Tôhoku Univ. (4), vol. 3. p. 757.
-. 1933. On the Distribution of Decapod Crustaceans inhabiting the Continental Shelf around Japan, chicfly based upon the matcrials collected by the S.S. Soyô-Maru during the years 1923-1930. Journ. Coll. Agric., vol. 12. p. i. , 1936. Some rare and new species of Decapod Crustaceans found in the vicinity of the Misaki Marine Biological Station. Jap. Journ. Zool., vol. 7, p. 129.
Zenntner, L., i894. Crustacés de l'Archipel Malais. Revue Suisse de Zoologie et Annales du Musće d'Histoire Naturelle de Genève, vol, 2, p. 135.

The papers marked with an * were not available to me.

EXPIANATION OF T'HE PLATES

PLATEVII

Fig. I. Cryptodromia de Manii Alcock, from Amboina, dorsal view, X 10 .
Fig. 2. Cryptodronia trituberculata nov. spec., from Obi latoe, dorsal view, $\times 12$.
Fig. 3. Same specimen, ventral vicw, X I2.
Jig. 4. Dynomene praedator A.M.-Edw., from Amboina, dorsal view, $\times 8$.
Fig. 5. Anacinctops stimpsoni Miers, from Kera, dorsal view, $\times 8$.
Fing. 6. Same specimen, ventral view, $\times 8$.

PLATE VIII

Figg. 1. Achactas anauchen nov. spec., from Station Go*, dorsal view, $\times 2.4$.
Fig. 2. Same specimen, ventral view, $\times 2+$
Fig. 3. Pseudomicippe tenuipes A.M.-Edw., from hoepang, dorsal vew, $\times+$
Fig. 4. Same specinen, ventral view, $\times 6$.
Fig. 5. Calappa lophos (Herbst), from Koepang, dorsal view, $\times 6$.

PLATE IX

Fig. 1. //yastmus ternatonsis nove spec., of from Ternate, dorsal riew, X 10.

Fig. 2. Same specimen, ventral view, X 16.
Fig. 3. Same specimen, carpus and merus of right cheliped, X iб.
 view, $\times 8$.
Fig. 5. Same specimen, ventral vicw, $X 14$.
Fig. 6. Myastonus minutus nov. spec., O^{\prime} from lernate, dorsal view, X r 4 .
Fig. 7. Same specimen, ventral view, $\times 20$.

276 alida m. HUTTENDIJK, TIE DROMIACEA OF TIIE SNFLIAS EXPEDITION

PLATE X

Fig. 1. Micippa philyra (Herbst), of from Amboina, ventral view, $\times 6$.
Fig. 2. Micippa platipes Rüppell, 0 from Amboina, ventral view, $X 6$.
Fig. 3. Micippa philyra (Herbst), cheliped of same $0, \times 8$.
Fig. 4. Micippa platipes Rüppell, cheliped of same $0, \times 8$.
Fig. 5. Tiarinia macrospinosa nov. spec., X from koepang, dorsal view, $\times 2$.

PLATE XI

Fig. I. Tiarinia comigera (I, atr.), of from Wotap, dorsal view, $\times 4$.
Fig. 2. Tiarinia gracilis Dana, O from Amboina, dorsal view, $\times 4$.

[^0]: 1) Throughout the present paper the abbreviation cl . is used for "carapace length", ch. for "carapace brealth".
[^1]: Hyastenus diacanthus (de Haan) (textfigs. 5-8)

 Thoo Islands; October 5. 1030. - 1 ovigerous 9.
 Temminckia IV

[^2]: 1) I am highls indehted to Colond il. van den Poel who kindly translated this part of Miyake's paper and therebs emabed me to make the following comelnsions.
[^3]: ${ }^{1}$) Swollen with Bopyridae.

[^4]: ${ }^{1}$) Kindly lent by the authorities of the Museum in Berlin.

