CRUSTACEA LIBRARY
SMITHSONIAN INST.
RETURN TO W-119

OF THE SOUTH

 AFRICAN MUSEUM
INSTRUCTIONS TO AUTHORS

1. MATERIAL should be original and not published elsewhere, in whole or in part.
2. LAYOUT should be as follows:
(a) Centred masthead to consist of

Title: informative but concise, without abbreviations and not including the names of new genera or species
Author's(s') name(s)
Address(es) of author(s) (institution where work was carried out)
Number of illustrations (figures, enumerated maps and tables, in this order)
(b) Abstract of not more than 200 words, intelligible to the reader without reference to the text
(c) Table of contents giving hierarchy of headings and subheadings
(d) Introduction
(e) Subject-matter of the paper, divided into sections to correspond with those given in table of contents
(f) Summarv, if paper is lengthy
(g) Acknowledgements
(h) References
(i) Abbreviations, where these are numerous
3. MANUSCRIPT, to be submitted in triplicate, should be typewritten and neat, double spaced with $2,5 \mathrm{~cm}$ margins all round. First lines of paragraphs should be indented. Tables and a list of legends for illustrations should be typed separately, their positions indicated in the text. All pages should be numbered consecutively.

Major headings of the paper are centred capitals; first subheadings are shouldered small capitals; second subheadings are shouldered italics; third subheadings are indented, shouldered italics. Further subdivisions should be avoided, as also enumeration (never roman numerals) of headings and abbreviations.

Footnotes should be avoided unless they are short and essential.
Only generic and specific names should be underlined to indicate italics; all other marking up should be left to editor and publisher.
4. ILLUSTRATIONS should be reducible to a size not exceeding $12 \times 18 \mathrm{~cm}(19 \mathrm{~cm}$ including legend); the reduction or enlargement required should be indicated; originals larger than $35 \times 47 \mathrm{~cm}$ should not be submitted; photographs should be rectangular in shape and final size. A metric scale should appear with all illustrations, otherwise magnification or reduction should be given in the legend; if the latter, then the final reduction or enlargement should be taken into consideration.

All illustrations, whether line drawings or photographs, should be termed figures (plates are not printed; half-tones will appear in their proper place in the text) and numbered in a single series. Items of composite figures should be designated by capital letters; lettering of figures is not set in type and should be in lower-case letters.

The number of the figure should be lightly marked in pencil on the back of each illustration.
5. REFERENCES cited in text and synonymies should all be included in the list at the end of the paper, using the Harvard System (ibid., idem, loc. cit., op. cit. are not acceptable):
(a) Author's name and year of publication given in text, e.g.:
'Smith (1969) describes ...'
'Smith (1969: 36, fig. 16) describes . . .'
'As described (Smith 1969a, $1969 b$;' Jones 1971)'
'As described (Haughton \& Broom 1927)...
'As described (Haughton et al. 1927) . . '
Note: no comma separating name and year
pagination indicated by colon, not p.
names of joint authors connected by ampersand
et al. in text for more than two joint authors, but names of all authors given in list of references.
(b) Full references at the end of the paper, arranged alphabetically by names, chronologically within each name, with suffixes a, b, etc. to the year for more than one paper by the same author in that year, e.g. Smith (1969a, 1969b) and not Smith (1969, 1969a).
For books give title in italics, edition, volume number, place of publication, publisher.
For journal article give title of article, title of journal in italics (abbreviated according to the world list o, scienific periodicals. 4th ed. London: Butterworths, 1963), series in parentheses, volume number, part number (only if independently paged) in parentheses, pagination (first and last pages of article).
Examples (note capitalization and punctuation)
Bullough, W. S. 1960. Practical invertebrate anatomy. 2nd ed. London: Macmillan.
Fischer, P.-H. 1948. Données sur la résistance et de le vitalité des mollusques. J. Conch., Paris 88: 100-140.
Fischer, P.-H., Duyal, M. \& Raffy, A. 1933. Etudes sur les échanges respiratoires des littorines. Archs Zool, exp., gén. 74: 627-634.
Kohn, A. J. 1960a. Ecological notes on Comus (Mollusca: Gastropoda) in the Trincomalee region of Ceylon. Ann. Mag. nat. Hist. (13) 2: 309-320.
Kohn, A. J. 1960b. Spawning behaviour, egg masses and larval development in Conus from the Indian Ocean. Bull. Bingham oceanogr. Coll. 17 (4): 1-51.
Thiele, J. 1910. Mollusca: B. Polyplacophora, Gastropoda marina, Bivalvia. In: Schultze, L. Zoologische und anthropologische Ergebnisse einer Forschungsreise im westlichen und zentralen Süd-Afrika 4: 269-270. Jena: Fischer. Denkschr. med.-naturw. Ges. Jena 16: 269-270.

Names of new taxa, combinations, synonyms, etc., when used for the first time, must be followed by the appropriate Latin (not English) abbreviation, e.g. gen. nov., sp. nov., comb. nov., syn. nov., etc.

An author's name when cited must follow the name of the taxon without intervening punctuation and not be abbreviated; if the year is added, a comma must separate author's name and year. The author's name (and date, if cited) must be placed in parentheses if a species or subspecies is transferred from its original genus. The name of a subsequent user of a scientific name must be separated from the scientific name by a colon.

Synonymy arrangement should be according to chronology of names, i.e. all published scientific names by which the species previously has been designated are listed in chronological order, with all references to that name following in chronological order, e.g.:

Family Nuculanidae
Nuculana (Lembulus) bicuspidata (Gould, 1845)
Figs 14-15A
Nucula (Leda) bicuspidata Gould, 1845: 37.
Ledo plicifera A. Adams, 1856: 50.
Laeda bicuspidata Hanley, 1859: 118, pl. 228 (fig. 73). Sowerby, 1871 : pl. 2 (fig. 8a-b).
Nucula largillierti Philippi, 1861: 87.'
Leda bicuspidata: Nickles, 1950: 163, fig. 301 ; 1955: 110. Barnard, 1964: 234, figs 8-9.
Note punctuation in the above example:
comma separates author's name and year
semicolon separates more than one reference by the same author
full stop separates references by different authors
figures of plates are enclosed in parentheses to distinguish them from text-figures
dash, not comma, separates consecutive numbers
Synonymy arrangement according to chronology of bibliographic references, whereby the year is placed in front of each entry, and the synonym repeated in full for each entry, is not acceptable.

In describing new species, one specimen must be designated as the holotype; other specimens mentioned in the original description are to be designated paratypes; additional material not regarded as paratypes should be listed separately. The complete data (registration number, depository, description of specimen, locality, collector, date) of the holotype and paratypes must be recorded, e.g.:

Holotype
SAM-A 13535 in the South African Muscum, Cape Town. Adult female from mid-tide region, King's Beach Port Elizabeth ($33^{\circ} 51^{\prime} \mathrm{S} 25^{\circ} 39^{\prime}$ E), collected by A. Smith, 15 January 1973.

Note standard form of writing South African Museum registration numbers and date.

7. SPECIAL HOUSE RULES

Capital initial letters

(a) The Figures, Maps and Tables of the paper when referred to in the text e.g. '. . . the Figure depicting C. namacolus . . .'; . . . in C. namacolus (Fig. 10) . . .'
(b) The prefixes of prefixed surnames in all languages, when used in the text, if not preceded by initials or full names e.g. Du Toit but A. L. du Toit; Von Huene but F. von Huene
(c) Scientific names, but not their vernacular derivatives e.g. Therocephalia, but therocephalian

Punctuation should be loose, omitting all not strictly necessary
Reference to the author should be expressed in the third person
Roman numerals should be converted to arabic, except when forming part of the title of a book or article, such as 'Revision of the Crustacea. Part VIII. The Amphipoda.'
Specific name must not stand alone, but be preceded by the generic name or its abbreviation to initial capital letter, provided the same generic name is used consecutively.
Name of new genus or species is not to be included in the title: it should be included in the abstract, counter to Recommendation 23 of the Code, to meet the requirements of Biological Abstracts.

ANNALE VAN DIE SUID-AFRIKAANSE MUSEUM

Volume	$\mathbf{7 4}$	Band
December	$\mathbf{1 9 7 7}$	Desember
Part	$\mathbf{2}$	Deel

CRUSTACEA LIERARY SMITHSONLAN INST. RETURN YO W-119

THE SOUTH AFRICAN MUSEUM'S
 MEIRING NAUDE CRUISES PART 5
 CRUSTACEA, DECAPODA, REPTANTIA
 AND NATANTIA

By
BRIAN KENSLEY

Cape Town Kaapstad

The ANNALS OF THE SOUTH AFRICAN MUSEUM

 are issued in parts at irregular intervals as material becomes availableObtainable from the South African Museum, P.O. Box 61, Cape Town

Die ANNALE VAN DIE SUID-AFRIKAANSE MUSEUM word uitgegee in dele op ongereelde tye na beskikbaarheid van stof Verkrygbaar van die Suid-Afrikaanse Museum, Posbus 61, Kaapstad

OUT OF PRINT/UIT DRUK
1, 2(1-3, 5-8), 3(1-2, 4-5, 8, t.-p.i.), 5(1-3, 5, 7-9),
$6(1$, t.-p.i.), $7(1-4), 8,9(1-2,7), 10(1-3)$,
11(1-2, 5, 7, t.-p.i.), 15(4-5), 24(2), 27, 31(1-3), 33

Price of this part/Prys van hierdie deel
R3,00

Trustees of the South African Museum $\underset{1977}{(\mathrm{C}}$ Trustees van die Suid-Afrikaanse Museum

ISBN 0908407270

THE SOUTH AFRICAN MUSEUM'S MEIRING NAUDE CRUISES

PART 5
CRUSTACEA, DECAPODA, REPTANTIA AND NATANTIA

By
Brian Kensley
South African Museum, Cape Town

(With 16 figures)
[MS. accepted 10 May 1977]

Abstract

Sixty-one species of Reptantian and Natantian decapod crustaceans from deep water off Natal are listed. Of the thirteen new records of Natantia dealt with from the area, three are described as new species. These are Benthesicymus expansus, Hymenopenaeus kannemeyeri and Pasiphaea meiringnaudei.

CONTENTS

				PAGE	
Introduction	13
Species List	13
Systematic Discussion	.	.	.	20	
Acknowledgements	.	.	.	43	
References	43

INTRODUCTION

The present paper forms part of a series based on material collected by the South African Museum during two cruises off the Natal coast, on the R/V Meiring Naude (see Fig. 1). For the scope of, and the background to, this programme, as well as for all station data, the reader is referred to Louw (1977).

All the species of Reptantia and Natantia collected are listed systematically, but only new species, new records for South Africa, and a few additional species requiring further comment are dealt with in the systematic text.

The following abbreviations are used throughout this paper: SAM-South African Museum catalogue number; SM-Meiring Naude station numbers; CB-carapace breadth; CL-carapace length; RL-rostral length; TL-total length; ovig.-ovigerous; juv.-juvenile.

SPECIES LIST

Where specimens are not identified to species level, these were either immature or damaged.

* New record for South African waters.

SM Station no.		아	ovig. 우	juv.
58	-	-	1	-
83	1	-	-	-
107	-	-	-	1

Fig. 1. Map showing localities of collecting stations.

	SM Station no.	30	97	ovig. 99	juv.
Family Palinuridae					
Palinurus delagoae Barnard (Berry \& Plante 1973: 374)	22	1	-	-	-
Projasus parkeri (Stebbing) (George \& Grindley 1964: 87)	38	-	-	--	1
ASTACURA					
Family Astacidae					
Nephropsis atlantica Norman.	38	3	2	-	-
(Barnard 1950: 530)	66	3	-	1	

NATANTIA PENAEIDEA

Family Penaeidae
Subfamily Sicyoninae
Sicyonia longicauda Rathbun . . . 86 (Barnard 1950: 635)
Subfamily Aristeinae

Aristaeomorpha foliacea (Risso) (Barnard 1950: 625)	. .	7	1	2		-
		22	2	4	-	
		28	1	-	--	--
		38	3	3	--	-
		44	-	2	-	-
		66	-	1	-	-
		83	1	-	-	-
		92	-	2	-	-
		99	1	--	--	-
		100	3	3		
*Aristeus semidentatus (Bate). (see systematic section, p. 20)	. .	107	12	-	-	-
*Aristeus virilis (Bate) (see systematic section, p. 21)	.	58	2	-	--	-
		91	1	\cdots	---	
		107	--	1	-	-
*Benthesicymus expansus sp. nov. (see systematic section, p. 22)	- ${ }^{\text {b }}$	107	1			
*Benthesicymus investigatoris Alcock (see systematic section, p. 26)	\& Anderson	38	-	1	-	-
		58	-	1	--	--
		66	--	1	-	-
		107	-	2	--	-
Gennadas bouvieri Kemp (Kensley 1971b: 273)	. .	55		1	-	
		56	1	-	-	-
		63	-	4	-	
		88	-	1	-	-
		105	-	1		
		111	-	1	-	-
Gennadas capensis Calman (Kensley 1971b: 277)	. .	99	-	1	--	-
		105	1	1	-	-
Gemnadas clavicarpus De Man (Kensley 1971b: 278)	. .	55	1	1	-	-
		63	-	1	-	--
		88	-	1	-	-
		96	1	1	-	-
		105	--	1	-	-
		111	3	-	-	-
Gennadas gilchristi Calman (Kensley 1971b: 280)	. .	25	-	3	-	-
		33	2	4	-	-
		49	-	2	-	-
		55	3	4	-	-

	SM Station no．	ぶす	98，	ovig． fof	juv．
Sergestes（Sergia）laminatus Burkenroad ． （Kensley 1971a：251）	56	2	－－	－	－
	88	3	4	－	－
	97	4	1	\cdots	－
	105	5	5	－	－
	111	1	2	－	－
	112	1	3	－	－
Sergestes（Sergia）potens Burkenroad （Kensley 1971a：253）	7	－	2	－	－
Sergestes（Sergia）prehensilis Bate ． （Kensley 1971a：253）	5	－	2	－	－
	18	－	2	－	－
	25	13	19	－	－
	33	2	5	－	－
	49	1	－	－	－
	55	1	1	－	－
	56	3	－	－	－
	63	5	1	－	－
	67	1	2	－	－
	88	4	4	－	－－
	96	7	2	－	－
	97	2	2	－	－
	105	3	3	－	－
	111	1	1	－	－
	112	7	3	－	－
Sergestes（Sergia）regalis Gordon （Kenslcy 1971a：256）	25	－	1	－	－
	55	－	1	－	－
	56	1	－	－	－
	88	－	1	－－	－
	96	1	－	－	－－－
	99	－	1	－	－
	112	－	1	－－－	－
Sergestes（Sergia）scintillans Burkenroad． （Kensley 1971a：257）	25	1	－	－	－
	88	1	2	－	－
	96	1	1	－	－
	105	3	－	－	－
	112	2	4	－	－
Sergestes（Sergia）splendens Sund （Kensley 1971a：260） ＊Sergestes（Sergia）talismani Barnard （see systematic section，p．31）	88	2	－	－	－
	96	－	2	－	－
	55	2	2	－	－
	63	－	1	－	－
	88	4	－	－	－
	97	－	1	－－	－
	112	\cdots	3	－	－
NATANTIA CARIDEA					
Family Oplophoridae					
＊Acanthephyra armata Edwards （see systematic section，p．31）	38	4	4	－	－
	58	3	3	－	－
Acanthephyra eximia Smith （Crosnier \＆Forest 1973：34）	3	－	1	－	－
	38	\cdots	8	－	－
	44	－	1	－	－
	58	3	5	－	－
	99	－	1	－	－
	107	1	1	－	－
＊Acanthephyra indica Balss （see systematic section，p．31）	56	1		－	－
	88	－	－	1	－
	96	－	1	－	－
	105	2	－	－	1

	SM Station no.	33	97	ovig. 9	juv
	111	-	-	1	-
	112	-	-	1	-
Acanthephyra quadrispinosa Kemp (Barnard 1950: 668)	5	-	1	1	-
	18	2	2	2	-
	25	1	3	18	-
	33	3	7	7	-
	49	3	5	5	--
	55	5	1	-	9
	56	7	-	5	20
	63	1	7	10	10
	88	3	4	2	14
	96	3	-	1	2
	97	3	1	,	4
	105	4	1	-	8
	111	7	1	-	7
	112	3	-	2	19
Oplophorus gracilirostris Edwards (Chace 1936: 30)	33	1	-	-	-
	63	1	-	-	-
Oplophorus spinicauda Edwards (Kensley 1969: 169)	18	-	1	-	3
	25	-	2	-	-
	56	-	-	1	-
	111	-	2	-	1
	112	-	3	-	1
Oplophorus spinosus (Brullé) . (Crosnier \& Forest 1973: 25)	33	\cdots	2	--	1
	25	-	--	-	1
Systellaspis debilis (Edwards) (Crosnier \& Forest 1973: 87)	5	1	-	4	-
	18	4	2	1	-
	25	13	10	14	--
	33	7	3	3	-
	49	5	4	1	-
	55	3	-	1	-
	56	-	1	,	-
	63	-	1	-	-
	88	-	-	--	1
	105	-	-	-	1
	111	2	-	,	--
	112	1	-	1	5
Family Nematocarcinidae					
Nematocarcinus sp.	7	1	-	-	-
	38	1	-	\cdots	-
	66	-	-	1	
	90	1	-	-	-
	92	-	-	1	-
Family Pasiphaeidae					
*Eupasiphae gilesii Wood-Mason (see systematic section, p. 32)	105	1	-	-	-
*Pasiphaea sivado (Risso) .	63	-	2	-	-
(see systematic section, p. 32)	85	-	1	-	-
*Pasiphaea meiringnaudei sp. nov. (see systematic section, p. 34)	28	-	1	-	-
	38	1	-	-	-
	40	-	2	-	-
	58	4	-	-	-
	91	-	1	-	-
	107	-	-	5	-
Family Hippolytidae					
Hippolysmata tugelae Stebbing	115	-	-	1	-

	SM Station no.	$3{ }^{\circ}$	99	ovig. ¢ㅇ	juv.
Family Pandalidae juv.					
Heterocarpus dorsalis Bate	7	1	-	-	-
(see systematic section, p. 38)	28	-	1	-	-
	38	2	1	-	-
	75	1	-	--	--
	83	3	-	-	-
Heterocarpus laevigatus Bate . (see systematic section, p. 38)	38	-	1	-	-
	66	1	-	-	-
	99	1	1	1	-
Heterocarpus tricarinatus Alcock \& Anderson (see systematic section, p. 38)	22	-	1	1	-
Parapandalus richardi (Coutière)	56	1	-	-	-
	63	1	-	-	-
	88	1	-	-	-
	111	1	-	1	-
Plesionika martia (Edwards) . (Crosnier \& Forest 1973: 212)	7	1	1	-	-
	22	-	-	2	-
	38	2	1	2	-
	58	-	-	1	-
	66	2	1	2	-
	83	-	-	2	-
	100	-	-	1	-
Family Glyphocrangonidae					
Glyphocrangon dentatus Barnard (see systematic section, p. 40)	22	-	-	8	--
	28	1	-	-	-
	38	1	-	-	-
	66	5	1	-	-
	100	1	-	-	-
*Glyphocrangon regalis Bate . (see systematic section, p. 40)	7	1	1	1	-
	28	-	-		-
	38	1	2	4	-
	44	1	-	-	-
	58	-	1	-	-
	74	1	-	-	-
	83	1	3	1	-
	92	-	-	2	-
	99	-	1	-	-
Family Crangonidae					
Pontophilus sculptus (Bell) (Barnard 1950: 810)	86	-	1	-	-

SYSTEMATIC DISCUSSION

(new species, new records, and selected other species)

PENAEIDEA

Family Penaeidae
Aristeus semidentatus (Bate)
Figs 2A, 3A
Hemipenaeus semidentatus Bate, 1888: 305, pl. 49 (fig. 1).
Aristaeus semidentatus: Wood-Mason \& Alcock, 1891: 280. Alcock, 1901: 31. Alcock \& McArdle, 1901 : pl. 49 (fig. 3).
Aristeus semidentatus: De Man, 1911: 29.

Previous records

Laccadive Islands; Cape Comorin; Bay of Bengal; off Banda; Kei Islands; Kermadec Islands.

Material

 $\mathrm{CL}+\mathrm{RL} 31,5 \mathrm{~mm} \times 92,0 \mathrm{~mm}$

Remarks

The genus Aristeus is characterized by the lack of an hepatic spine, an indistinct cervical groove, the third pereiopods possessing an epipodite but no podobranch, the fourth pereiopods lacking an epipodite, the exopodite of the second maxilliped longer and stronger than the exopodite of the third maxilliped.

There is some variation in the rostral dentition of the present material, several specimens showing a small dorsal and ventral tooth close to the apex (Fig. 2A). (Burucovsky \& Romensky 1972, also describe rostral variability in Aristeus varidens.)

Aristeus virilis (Bate)

Figs 2B, 3B
Hemipenaeus virilis Bate, 1888: 303, pl. 44 (fig. 4).
Hemipenaeus tomentosus Bate, 1888: 307, pl. 49 (figs 2-3).
Aristaeus virilis: Wood-Mason \& Alcock, 1891: 279. Alcock, 1901: 30.
Aristeus virilis: De Man, 1911: 27.

Fig. 2. A. Aristeus semidentatus. B. Aristeus virilis.

Previous records
Andaman Sea; China Sea; Philippines; Bali Sea; New Hebrides.

```
Material
    SAM-Al5l59 SM 58 2 50` CL 41,2 mm < TL 110,5 mm; 37,0 mm <
        \pm95 mm (telson damaged)
```

 SAM-A15160 SM 91 1 oे \(43,0 \mathrm{~mm} \times 109,0 \mathrm{~mm}\)
 SAM-A15161 SM 107 1 \(甲\) (rostrum damaged)
 Remarks
The present material shows the characteristic thickening of the distal part of the scaphocerite, but the males lack the pubescence of the integument. A twist in the base of the inner antennular flagellum is also present. The two species of Aristeus dealt with here may be distinguished by the differences in the petasmata (Fig. 3) and rostra (Fig. 2), and the pubescent carapace of some specimens of A. virilis.

Benthesicymus expansus sp. nov.
Figs 4-5
Description

Male

Carapace (Fig. 4A) integument soft, membranous. Rostrum an entire crest, apex missing in holotype, ventral border bearing slight ridge carrying setae. No

Fig. 3. A. Aristeus semidentatus petasma.
B. Aristeus virilis petasma.
antennal spine; orbitoantennal groove extended posteroventrally to branchial region; rounded ridge situated above orbitoantennal groove; branchiostegal spine small, supported by short carina, no hepatic spine; cervical groove strong, almost reaching orbitoantennal groove; suprabranchial ridge fairly strong, rounded. Thoracic sternite between fourth pereiopods bearing short narrowly rounded, forwardly directed lobe. Posterior half of third pleon segment, and pleon segments four to six with mediodorsal carina, none bearing posterior spine. Telson carrying four pairs of lateral spines on distal third, apex acute (Fig. 4B).

Antennal scaphocerite (Fig. 5F) blade two and one-third times longer than wide, outer margin reinforced by tapering ridge, ending in small spine some distance from apex of scale; basal segment carrying small dorsal hook-like process.

Antennular peduncle segments setose.
Ocular tubercle present on inner margin of proximal half of eye-stalk.
Mandibular palp two-segmented, basal segment one and a half times longer and considerably broader than distal segment; mandible consisting of strong, straight cutting edge and three small teeth on inner face (Fig. 5A).

First maxilliped (Fig. 5B) exopod narrowing abruptly to segmented distal portion. Second maxilliped (Fig. 5E) with merus very expanded, distally rounded, inner margin setose.

Third maxilliped longer than first pereiopod (Fig. 4A), merus and ischium expanded, fringed with setae on ventral margin; propodus and carpus relatively slender, of equal length, dactylus broadest at midpoint, tapering distally. First pereiopod chela relatively slender, finger and thumb slightly longer than palm; carpus slender; merus and ischium expanded.

Second pereiopod (Fig. 4A) longer than first, very slender, finger and thumb of chela equal in length to palm; carpus and merus of equal length.

Third to fifth pereiopods missing in holotype.
Petasma slender (Fig. 4C), divided distally into median narrow lobe connected to truncate, rounded portion, and outer smoothly convex lobe bearing spinules.

Inner scale of appendix masculina narrow, elongate, apically rounded, bearing short setae; outer scale broad, longer than inner.

Material

Holotype SAM-A15140 SM $107 \quad 1$ of CL $50,5 \mathrm{~mm}$ TL 150 mm

Remarks

The lack of mediodorsal pleonal spines, the ocular tubercle being proximal in position, the lack of an hepatic spine, and the presence of a mediodorsal keel on pleonal segments 3-6, place this specimen close to B. iridescens Bate (see Burkenroad 1936: 45; Roberts \& Pequegnat 1970: 42). The latter authors note the difficulty of sorting out the 'Brasiliensis' group of species of Benthesicymus, due mainly to a lack of information on intraspecific variation. In spite of this

Fig. 4. Benthesicymus expansus sp. nov. A. Holotype, carapace in lateral view. B. Telson.
C. Anterior and posterior views of petasma.
limitation, the present new species is described, albeit from a single specimen. The species has two features which easily separate it from B. iridescens. These are the non-dentate rostrum, and the expanded meri and ischia of the third maxilliped and first pereiopods. (The specific name is derived from this latter feature.) In addition, differences from B. iridescens are seen in the petasma, the appendix masculina, the telson, the lack of an antennal spine, and in the carapace sculpture.

Fig. 5. Benthesicymus expansus sp. nov. A. Mandible. B. First maxilla. C. Second maxilla. D. First maxilliped. E. Second maxilliped. F. Antennal scaphocerite.

Benthesicymus investigatoris Alcock \& Anderson

Fig. 6
Benthesicymus investigatoris Alcock \& Anderson, 1899: 282. Alcock, 1899: pl. 41 (fig. 2); 1901: 44. Burkenroad, 1936: 25.

Previous records
Saya de Malha (mid Indian Ocean); Andaman Sea; Gulf of Manar; Halmahera Sea; Ceram Sea; Hawaii.

Material

$$
5 \not \subset \not \subset \mathrm{CL}+\text { RL } 24,0 \mathrm{~mm} \times \text { TL } 76 \text { to } 31,0 \mathrm{~mm} \times 89,5 \mathrm{~mm}
$$

Fig. 6. Benthesicymus investigatoris. A. Carapace in lateral view. B. Thelycum.

Hymenopenaeus kannemeyeri sp. nov.
Fig. 7

Description

Carapace (Fig. 7A) firm, glabrous. Rostrum about one-third length of carapace directed obliquely upward at angle of about 15°, with eight dorsal teeth (three postorbital) in uninterrupted series, apical tooth very small, ventral margin bearing fringe of setae. Carapace with strong antennal and postantennal spine, each supported by stout carina; hepatic spine lacking keel; branchiostegal spine marginal, supported by keel extending posteriorly to hind margin of carapace; cervical sulcus well developed, with posterior margin of groove at midpoint marked by a short keel, joining the hepatic groove ventrally. Hepatic groove marked posteroventrally by short keel. Branchiocardiac sulcus well developed with supra-branchial portion having a straight, rounded ridge ventrally. First pleon segment dorsally rounded, segment two with posterior half keeled, third to sixth segments fully keeled, segments four to six with short posterior spine. Telson (Fig. 7D) with two fixed spines subterminally, with strong dorsolateral keel extending from spines to proximal margin; outer uropodal ramus just reaching telsonic apex.

Eye reaching slightly beyond midpoint of rostrum, tubercle at midpoint of medial eye-stalk margin (Fig. 7E).

Prosartema of antennule short and rounded, carrying long setae; basal peduncular segment with strong distal spine; stylocerite a strong spine; terminal peduncular segment with lateral setose ridge and thick setose patch dorsally; flagellum circular in cross-section.

Scaphocerite extending well beyond antennular peduncle.
Mandibular palp conspicuous, setose; distal segment slender, tapering, shorter than proximal segment, latter broadly oval.

Third maxilliped extending slightly beyond scaphocerite.
First pereiopod with strong distoventral spine on ischium and basis.
Rudimentary exopods on first to fifth pereiopods and third maxilliped; epipods on second and third maxillipeds and first to fourth pereiopods.

Inner margin of fifth pereiopod basis in male with anteriorly directed triangular lobe above genital aperture.

Thelycum of female (Fig. 7C) relatively simple, sternites of fourth and fifth pereiopods with rounded, convex central areas.

Petasma divided distally into two lobes; inner lobe longer than outer, truncate, with distal hollowed portion produced laterally into triangular point; outer lobe also truncate, with posterior strengthening ridge. Appendix masculina of second pleopod (Fig. 7F) about half length of appendix interna; both bearing marginal spinules; leaf-like expansion present on outer side of base of endopod.

Material

Holotype SAM-A15141 SM 38 ob CL + RL 43,5 mm TL 119,5 mm
Allotype SAM-A15141 SM 38 ㅇ CL + RL $39,8 \mathrm{~mm}$ TL $110,8 \mathrm{~mm}$.

Remarks

The present specimens with the rostral and post-rostral teeth not separated, with a strong branchiostegal spine, and lacking a pterygostomian spine, fall into Burkenroad's (1936) Group II.

This group includes H. robustus, H. modestus, H. lucassi and H. muelleri. H. kannemeyeri differs from all these in the structure of the petasma and thelycum. The latter most closely resembles that of H. fattahi Ramadan, 1938 (as figured by Crosnier \& Forest 1973, fig. 85 g h) but the petasma of H. fattahi differs markedly from the present species.

Fig. 7. Hymenopenaeus kannemeyeri sp. nov. A. Carapace in lateral view. B. Anterior and posterior view of petasma. C. Thelycum. D. Telson. E. Eye. F. Pleopod 2, δ, appendix interna and appendix masculina.

The species is named for S．X．Kannemeyer，of the Department of Marine Biology，South African Museum，in appreciation for his invaluable help in the Meiring Naude cruises．

Genus Funchalia Johnson

As Funchalia villosa and F ．woodwardi have been confused in the past，the petasma and thelycum of each is figured，and all the South African Museum＇s holdings of both species are listed．

Funchalia（Funchalia）villosa（Bouvier）
Fig．8C－D
Funchalia（Funchalia）villosa：Burkenroad，1936：129．Crosnier \＆Forest，1973： 296.
Previous records
Eastern and western North Atlantic；Caribbean；southern central South Atlantic．

Material and South African records
SAM－A15368 SM $18 \quad 1$ qCL $22,8 \mathrm{~mm}$
SAM－A15369 SM $33 \quad 1$ qCL $21,0 \mathrm{~mm}$
SAM－A15370 SM 88 1 $\hat{1} 1$ 早CL $13,0 \mathrm{~mm}, 14,2 \mathrm{~mm}$
SAM－A15371 SM 111 1 § CL 18，4 mm
SAM－A13195 off Natal， $30^{\circ} 30^{\prime} \mathrm{S} 31^{\circ} 45^{\prime} \mathrm{E} 200 \mathrm{~m} 1$ ot
SAM－Al3197 off Natal， $26^{\circ} 30^{\prime} \mathrm{S} 42^{\circ} 40^{\prime} \mathrm{E} 500 \mathrm{~m} 1$ है
SAM－A13198 off Agulhas Bank， $37^{\circ} 10^{\prime} \mathrm{S} 21^{\circ} 50^{\prime} \mathrm{E} 500 \mathrm{~m} 1$ ठ
SAM－A13236 off Natal， $31^{\circ} 44^{\prime} \mathrm{S} 44^{\circ} 35^{\prime} \mathrm{E} 500 \mathrm{~m} 3 \delta^{\circ}{ }^{\circ}$
Funchalia（Funchalia）woodwardi Johnson
Fig．8A－B
Funchalia（Funchalia）woodwardi：Barnard，1950：609，fig．112．Gordon \＆Ingle，1956： 478 Paulinose，1974： 433.

Previous records

Eastern North Atlantic；Mediterranean；south－eastern South Atlantic．

South African records

SAM－A8481 off Table Bay，from stomach of stock fish $9 \widehat{\sigma}^{\circ}$ A
SAM－A10914 off Cape Peninsula，from tunny stomach several $\mathrm{o}^{\hat{\circ}}$ \＆
SAM－A10995 off Cape Peninsula，from tunny stomach 1 o
SAM－A11025 off Dassen Island，from tunny stomach $25 \widehat{\delta 0} 19$ 우
SAM－A11027 off Cape Peninsula，several $\hat{3} \hat{\jmath}$ \＆q P
SAM－A12014 off Dassen Island， 500 m 2 ô 2 q q
SAM－A12482 Vema Seamount，from tunny stomach 60 immature $\hat{0} \delta \& \not \subset$
SAM－A13196 off Cape Peninsula， 250 m 3 9 ¢
SAM－A13237 off Cape Peninsula， 350 m 7 す大 7 아
SAM－A13238 off Cape Peninsula， 500 m 2 ố 3 아

Fig. 8. A. Funchalia woodwardi petasma. B. F. woodwardi thelycum. C. Funchalia villosa petasma. D. F. villosa thelycum.

Family Sergestidae

Sergestes (Sergia) talismani Barnard
Sergestes talismani Barnard, 1947: 384.
Sergestes (Sergia) talismani: Crosnier \& Forest, 1973: 325, figs 111a-c, 112a-b.
Previous records
Cape Verde Islands; Portuguese Guinea; Gabon; Congo.

Material

See species list.

Remarks

This would seem to be the first record of the species from the Indian Ocean.

CARIDEA

Family Oplophoridae
Acanthephyra armata Edwards
Fig. 9B
Acanthephyra armata: Bate, 1888: 744, pl. 125 (fig. 2). De Man, 1920: 61, pl. 6 (fig. 13). Chace, 1936: 27.
Previous records
West Indies; Bali Sea; Straits of Macassar; off Kei Islands; off Banda Island.

Material

万ु CL $16,9 \mathrm{~mm}-29,0 \mathrm{~mm}$ RL $27,0 \mathrm{~mm}-37,5 \mathrm{~mm}$ TL $92,0 \mathrm{~mm}-137 \mathrm{~mm}$
ff $24,5 \mathrm{~mm}-33,0 \mathrm{~mm} \quad 34,7 \mathrm{~mm}-35,2 \mathrm{~mm} \quad 121 \mathrm{~mm}-146 \mathrm{~mm}$

Acanthephyra indica Balss

Fig. 9A
Acanthephyra indica Balss, 1925: 264, fig. 34. Chace, 1936: 26.
Acanthephyra sp. De Man, 1920: 68, pl. 6 (fig. 16).
Previous records
Between Sumatra and Ceylon; Banda Sea; off Ambon.

Material

See species list.

Fig. 9. A. Acanthephyra indica. B. Acanthephyra armata.

Family Pasiphaeidae

Eupasiphae gilesii (Wood-Mason \& Alcock)
Fig. 10B
Parapasiphae (Eupasiphae) gilesii Wood-Mason \& Alcock, 1893: 166. Alcock, 1892: pl. 3 (fig. 8); 1901: 66.
Eupasiphae gilesii: Holthuis, 1955: 36. Tirmizi, 1969: 214, figs 1-4. Foxton, 1970: 958.
Eupasiphae gilesi: Fisher \& Goldie, 1961: 78. Crosnier \& Forest, 1973: 150, fig. 44.

Previous records

Bermuda; Cape Verde Islands; Canary Islands; Madeira; Arabian Sea; Gulf of Oman; Andaman Sea.

Material

SAM-A15151 SM 1051 © $\mathrm{CL}+$ RL $32,4 \mathrm{~mm}$ TL 97 mm

Pasiphaea sivado (Risso)

Fig. 10A
Pasiphae sivado: Wood-Mason \& Alcock, 1893: 161. Alcock, 1892: pl. 3 (fig. 6); 1901: 59. Sivertsen \& Holthuis, 1956: 29. Crosnier \& Forest, 1973: 133.

Fig. 10. A. Pasiphae sivado. B. Eupasiphae gilesl.

Previous records

Eastern North Atlantic; Mediterranean; Red Sea; Bay of Bengal; Andaman Sea.

Material

SAM-15153 SM 632 여
SAM-A15152 SM 85 I?
fif CL $10,0 \mathrm{~mm}-14,5 \mathrm{~mm}$
Pasiphaea meiringnaudei sp. nov.
Figs 11-14

Description

Carapace (Fig. II) mid-dorsally carinate for almost its entire length. Rostrum a postfrontal triangular spine directed obliquely upward, only rarely reaching beyond anterior carapace margin. Anterior margin of rostrum straight, almost vertical, apparently more variable in females than in males (Fig. 13). Orbital angle a rounded lobe; branchiostegal spine directed outwards; suprabranchial ridge rounded, not reaching posterior carapace margin.

Second to sixth abdominal segments dorsally keeled, not ending in a posterior spine; sixth segment with curved lateral ridge. Telson shorter than

Fig. 11. Pasiphae meiringnaudei sp. nov. Holotype in lateral view.
uropodal endopod, dorsally grooved, distally forked, with seven spines on inner margin of sinus (Fig. 12I).

Antennular peduncle extending for two-thirds of scaphocerite (Fig. 11); stylocerite (Fig. 12G) broadening distally, twisted, apically acute, dorsolateral flagellum with about eighteen enlarged basal segments in male and female.

Antennal base bearing ventrodistal spine.

Fig. 12. Pasiphae meiringnaudei sp. nov. A. Anterior carapace and rostrum. B. Mandible. C. First maxilla. D. First maxilliped. E. Second maxilliped. F. Second maxilla. G. Antennular base. H. Antennal base. I. Telsonic apex. J. Pleopod 2, 3, appendix interna and appendix masculina. K. Pleopod 1, 3. L. Pleopod 1, is, endopod.

Third maxilliped just reaching to end of scaphocerite.
First pereiopod overreaching scaphocerite by half length of palm plus fingers (Fig. 11); palm longer than fingers; merus with one to four ventral spines; basis with ventral distal triangular spine.

Second pereiopod overreaching scaphocerite by half length of palm plus fingers; palm equal in length to fingers; carpus with broad ventral tooth; merus with fifteen to twenty-one ventral spines; ischium with one spine, basis with four to seven spines (Fig. 14B).

Third pereiopod overreaching anterior carapace margin by about half length of propodus plus dactylus; very slender; dactylus tapering; propodus onethird length of dactylus; carpus very elongate, almost four times length of merus.

Fourth pereiopod reaching to midpoint of carpus of third pereiopod.
Fifth pereiopod longer than fourth pereiopod, reaching to end of carpus of third pereiopod.

Endopod of first pleopod \hat{s} short, with triangular process on inner margin bearing very small denticles (Fig. 12L).

Second pleopod of appendix masculina twice length of appendix interna, latter curved, with seven marginal setae (Fig. 12J).

Uropodal endopod two-thirds length of exopod, latter with small terminal spine on outer margin.

Material

Holotype SAM-A15316 SM 107 ovig. \& CL $57,0 \mathrm{~mm}$ TL 166 mm
SM $38 \quad 1$ 万 \quad CL $39,9 \mathrm{~mm}$ TL 126 mm

SM 1075 ovig.
SM 91 1 ㅇ $\quad 42,0 \mathrm{~mm} \quad 125 \mathrm{~mm}$
$\begin{array}{llll}\text { SM } 28 & 19 & 94,5 \mathrm{~mm} & 108 \mathrm{~mm}\end{array}$
SM 402 O

Flg. 13. Pasiphae meiringnaudei sp. nov. rostral variation. Top row, ovigerous ְㅏ. Bottom row, ôo \hat{d}. Bottom right, rostrum modified by ellobiopsid parasites.

Remarks

J. C. Yaldwyn (National Museum of New Zealand) has kindly supplied most of the following information on the closely related species of Pasiphaea, from an as yet unpublished review of the genus by him and F. A. Chace Jr (Smithsonian Institution). The combination of three characters, viz. the distally forked telson, carinate carapace and abdomen, and basis of the second pereiopod ventrally spined, places the present species in a group with four previously described species. These are P. multidentata Esmark, P. tarda Kröyer, P. rathbunae Stebbing, and P. barnardi Yaldwyn. The rostral shape of P. meiringnaudei differs from these four, but comes closest to P. barnardi. The finger-to-palm ratio of the first and second pereiopods, however, differs from Yaldwyn's species where the fingers of the first pereiopod are subequal to the palm and the fingers of the second pereiopod are distinctly longer than the palm. P. meiringnaudei overlaps with P. tarda (as P. princeps in Kemp 1910, pl. 4 (figs 1-7)) in the spine counts of the first and second pereiopods, but differs markedly in the rostral shape and in the relative lengths of the thoracic appendages.

The species is named for the R/V Meiring Naude.

Fig. 14. Pasiphae meiringnaudei sp. nov. A. First pereiopod, with chela further enlarged. B. Second pereiopod, with chela further enlarged.

Family Pandalidae

Heterocarpus dorsalis Bate
Fig. 15A
Heterocarpus dorsalis: De Man, 1920: 156, 171, pl. 15 (fig. 43). Barnard, 1950: 684, fig. 127a Previous records

Off Durban; off East Africa; East Indies; Japan.

Material

See species list.
733^{7} CL $20 \mathrm{~mm}-41 \mathrm{~mm}$ RL $35 \mathrm{~mm}-48 \mathrm{~mm}$ TL $98 \mathrm{~mm}-179 \mathrm{~mm}$
$2995 \quad 27 \mathrm{~mm}-42 \mathrm{~mm} \quad 35 \mathrm{~mm}-44 \mathrm{~mm} \quad 126 \mathrm{~mm}-171 \mathrm{~mm}$

Remarks

The ovigerous female of total length 171 mm is at least 20 mm longer than the largest ovigerous female recorded by De Man (1920).

Heterocarpus lae vigatus, Bate

Fig. 15B
Heterocarpus laevigatus Bate, 1888: 636, pl. 112 (fig. 3). Stebbing, 1914: 40. De Man, 1920: 154, 159, pl. 13 (fig. 37). Barnard, 1950: 684, fig. 127b. Crosnier \& Forest, 1973: 195, fig. 61c.

Previous records
Cape Verde Islands; Madeira; off East London; Arabian Sea; East Indies; Hawaii.

Material

See species list.

$$
\begin{aligned}
& 253 \text { CL } 65 \mathrm{~mm}-74 \mathrm{~mm} \text { RL } 28 \mathrm{~mm}-38 \mathrm{~mm} \text { TL } 121 \mathrm{~mm}-160 \mathrm{~mm} \\
& 39964 \mathrm{~mm}-105 \mathrm{~mm} \quad 36 \mathrm{~mm}-51 \mathrm{~mm} \quad 121 \mathrm{~mm}-200 \mathrm{~mm}
\end{aligned}
$$

Remarks

The East London record was of an immature specimen measuring approximately 63 mm TL.

Heterocarpus tricarinatus Alcock \& Anderson
 Fig. 15C

Heterocarpus tricarinatus: De Man, 1920: 155, 161, pl. 13 (fig. 38), pl. 14 (fig. 38), Calman, 1939: 204. Barnard, 1950: 682, fig. 127c-d.
Previous records
Off East London; Arabian Sea; East Indies.

Material

SAM-A15264 SM $221 \hat{\jmath}$ CL 35 mm RL 30 mm TL 135 mm ovig. $¢ 37 \mathrm{~mm} \quad 32 \mathrm{~mm} \quad 146 \mathrm{~mm}$

Fig. 15. A. Heterocarpus dorsalis. B. Heterocarpus laevigatus. C. Heterocarpus tricarinatus.

Remarks

Using both Barnard's (1950) and De Man's (1920) keys to the genus Heterocarpus, H. tricarinatus is arrived at. The genus is obviously variable with regard to the rostral dentition, proportions of the pereiopodal dactyli, and the lengths of the carapace keels. This led Calman (1939) to doubt the validity of this species, suggesting that it might be synonymous with H. gibbosus Bate. The variability of this latter species is well illustrated by De Man (1920). The present material could well be placed in Bate's species, but until this species complex is resolved, the lower carapace keel reaching back about two-thirds of the carapace length necessitates placing these two specimens in H. tricarinatus.

Family Glyphocrangonidae
Glyphocrangon dentatus Barnard

Glyphocrangon gilesii var. dentata Barnard, 1926: 128.
Glyphocrangon mabihissae Calman, 1939: 217, fig. 8.
Glyphocrangon dentarus Barnard, 1947 (typ. err.): 387.
Glyphocrangon dentatus Barnard, 1950: 722, fig. 134h.
Previous records
Off Mozambique, 540 m ; off Zanzibar, 640-658 m.

Material

бす亍 CL $16,5 \mathrm{~mm}-19,8 \mathrm{~mm}$ RL $17,8 \mathrm{~mm}-22 \mathrm{~mm}$ TL $73 \mathrm{~mm}-85 \mathrm{~mm}$
ovig. ff $19,1 \mathrm{~mm}-23 \mathrm{~mm} \quad 20,8 \mathrm{~mm}-27,5 \mathrm{~mm} \quad 83 \mathrm{~mm}-102 \mathrm{~mm}$

Remarks

Only slight differences are apparent between Calman's specimens from Zanzibar and the present material. These differences are to some extent probably due to individual variation, as well as to variations between populations. The spine on the midpoint of the posterior antennal carina is present in some of the present specimens, absent in others, while the row of small tubercles just lateral to the submedian carina seen in the Zanzibar specimens is represented by one or two almost indistinct tubercles. Although the rostral length always exceeds the carapace length, the ratio is variable.

Glyphocrangon regalis Bate

Fig. 16
Glyphocrangon regalis Bate, 1888: 517, pl. 93 (figs 3-4). De Man, 1920: 220.

Description

Rostrum curved ventrally, with apex upturned, slightly less than two-thirds carapace length, with pair of lateral rostral teeth above eyes, second pair of spines in postorbital position. Antennal spine strong, directed forward, separated
by short. curved carapace margin from longer branchiostegal spine directed anteroventrally. Anterior submedian carinae consisting of seven elongate tubercles. Posterior submedian carinae consisting of four elongate tubercles. Row of small, rounded tubercles median to both anterior and posterior submedian carinae. Small median spine at base of rostrum flanked by two posterolateral spines. Anterior antennal carina forming wing-like flattened structure ending in outward-pointed strong spine. Posterior antennal carina situated some distance above anterior antennal carina, ending anteriorly in outwardly directed spine, not as strong as that of anterior carina; at about midpoint, a slight indication of a notch, never strong enough to be called a spine or tubercle. Anterior intermediate carina not well defined, consisting of three or four large irregularly placed tubercles. Posterior intermediate carina consisting of four or five elongate tubercles. Area between anterior submedian and anterior intermediate carinae with two rows of small tubercles; three rows of tubercles between posterior submedian and posterior intermediate carinae. Area between anterior antennal carina and lateral groove carrying a scattering of small rounded tubercles. Areas between posterior antennal and posterior lateral carinae also carrying irregular

Fig. 16. Glyphocrangon regalis.
scattering of rounded tubercles. Anterior and posterior lateral carina entire, not tuberculate. Sublateral carina only distinct in posterior region, consisting of a foveolate ridge. Region between sublateral carina and margin bearing a foveolate band.

Abdomen (excluding telson) equal in length of carapace plus rostrum. Median carina of abdominal segments strong, only on first segment forming a forwardly directed spine. Pleura of first segment considerably shorter than second, with forwardly directed spine. Pleura of second segment ventrally bispinose, spines of equal strength. Pleura of third segment ventrally bispinose, anterior spine longer than posterior. Pleura of fourth segment ventrally bispinose, spines subequal. Pleura of fifth segment bispinose, spines directed posteroventrally. Sixth abdominal segment ending posteroventrally in strong spine. Telson with median spine at base, elongate triangular, with strong dorsolateral keel, apex acute, flexed slightly dorsally.

Eyes well developed, with large black corneas, small spinose tubercle on inner distal margin of eye-stalk.

Scaphocerite ovate, fringed with setae, lacking any spine on inner margin.
Second pereiopods unequal, left shorter and slightly squatter than right, carpus of right (30-31 segments) considerably longer than left (19 segments), chela markedly smaller.

Third pereiopod dactylus lanceolate, oval in cross section, one-third length of propodus.

Fourth pereiopod dactylus slightly more than one-third length of propodus, dorsally grooved.

Fifth pereiopod dactylus similar to fourth.

Previous records

Banda Island; off Makassar; Kermadec Island; Fiji ; Paternoster Island.

Material

万ิ ${ }^{\text {th }}$ CL $20,5 \mathrm{~mm}-29,9 \mathrm{~mm}$ RL $16,5 \mathrm{~mm}-19,9 \mathrm{~mm}$ TL $82,5 \mathrm{~mm}-108 \mathrm{~mm}$
ovig. ff $\quad 29,3 \mathrm{~mm}-34,9 \mathrm{~mm} \quad 17,8 \mathrm{~mm}-21,0 \mathrm{~mm} \quad 108 \mathrm{~mm}-128 \mathrm{~mm}$

Remarks

The species recorded by Wood-Mason (1891) as G. investigatoris and G. investigatoris var. andamanensis, was stated by De Man (1920) to be possibly synonymous with G. regalis. Wood-Mason's species, however, shows some differences, e.g. in the degree of 'flare' of the spine of the postantennal carina, the possession of midline tubercles on the rostrum which together suggest that this is not the same species. Examination of the 'Challenger' types of G. regalis reveal almost no differences from the present material.

ACKNOWLEDGEMENTS

In addition to the people and institutions thanked in the introductory paper of this series, I should like to thank Mr S. X. Kannemeyer of the South African Museum for the photographs, Dr R. B. Manning of the Smithsonian Institution for the loan of Pasiphaea material, Dr J. Yaldwyn of the National Museum of New Zealand and Dr F. A. Chace Jr of the Smithsonian Institution for information on Pasiphaea, and Prof. J. H. Day of the University of Cape Town and Dr J. Yaldwyn for reading the manuscript and for their many useful criticisms.

REFERENCES

Alcock, A. 1892. Crustacea Part I. Illustrations of the Zoology of the Investigator Plates 1-5. Calcutta: Superintendent of Government Printing.
Alcock, A. 1899. Crustacea Part VII. Illustrations of the Zoology of the Investigator Plates 36-45. Calcutta: Superintendent of Government Printing.
Alcock, A. 1901. A descriptive catalogue of the Indian deep-sea Crustacea Decapoda Macrura and Anomala, in the Indian Museum. Calcutta: Trustees of the Indian Museum.
Alcock, A. \& Anderson, A. R. S. 1899. Natural history notes from H.M. Royal Indian Marine Survey Ship 'Investigator', Commander T. H. Heming, R.N., commanding. Series III, no. 2. An account of the deep-sea Crustacea dredged during the surveying season 1897-98. Ann. Mag. hat. Hist. (7) 3: 278-282.
Alcock, A. \& McArdle, A. F. 1901. Crustacea Part IX. Illustrations of the Zoology of the Investigator Plates 49-55. Calcutta: Superintendent of Government Printing.
Balss, H. 1925. Macrura der Deutschen Tiefsee-Expedition. 2. Natantia, Teil A. Wiss. Ergebn. dt. Tiefsee-Exped. 'Valdivia' 20: 221-315.
Barnard, K. H. 1926. Report on a collection of Crustacea from Portuguese East Africa. Trans. R. Soc. S. Afr. 13: 119-130.
Barnard, K. H. 1947. Descriptions of new species of South African decapod Crustacea, with notes on synonymy and new records. Ann. Mag. nat. Hist. (11) 13: 361-392.
Barnard, K. H. 1950. Descriptive catalogue of South African decapod Crustacea (crabs and shrimps). Ann. S. Afr. Mus. 38: 1-837.
Berry, P. F. \& Plante, R. 1973. Revision of the spiny lobster genus Palinurus in the southwest Indian Ocean. Trans. R. Soc. S. Afr. 40: 373-380.
Bate, C. S. 1888. Report on the Crustacea Macrura dredged by HMS Challenger during the years 1873-1876. Rep. Voy. Challenger, 1873-1876 24: 1-942.
Burkenroad, M. D. 1936. The Aristacinae, Solenocerinae and pelagic Penaeinae of the Bingham Oceanographic Collection. Bull. Bingham oceanogr. Coll. 5 (2): 1-151.
Burucovsky, R. N. \& Romensky, L. L. 1972. On rostrum changeability of Aristeus varidens Holthuis (Decapoda, Penaeidae). Atl. Nauchno-Issted. Inst. Rybn. Khoz. Okeanogr. 42 : 156-16I.
Calman, W. T. 1939. Crustacea: Caridea. Scient. Reps. John Murray Exped. 6: 183-223.
Chace, F. A. 1936. Revision of the bathypelagic prawns of the family Acanthephyridae, with notes on a new family, Gomphonotidae. J. Wash. Acad. Sci. 26: 24-31.
Crosnier, A. \& Forest, J. 1973. Faune Tropicale. XIX. Les Crevettes profondes de l'Atlamique Oriental Tropical. Paris: O.R.S.T.O.M.
Fisher, L. R. \& Goldie, E. H. 1961. New records of two deep-sca decapods. Crustaceana 2 : 78-79.
Foxton, P. 1970. The vertical distribution of pelagic decapods (Crustacea: Natantia) collected on the SOND cruise 1965. 1. The Caridea. J. mar. biol. Assoc. U.K. 50: 939-960.
George, R. W. \& Grindley, J. R. 1964. Projasus--a new generic name for Parker's crayfish, Jasus parkeri Stebbing (Palinuridae: 'Silentes'). J. Proc. R. Soc. West. Aust. 47: 87-90.
Gordon, I. \& Ingle, R. W. 1956. On a pelagic penaeid prawn, Funchalia woodwardi Johnson, new to the British fauna. J. mar. biol. Assoc. U.K. 35: 475-481.
HaLl, D. N. F. 1962. Observations on the taxonomy and biology of some Indo-West Pacific Penaeidae. Col. Off. Fish. Publs 17: 1-230.

Holthuis, L. B. 1955. The recent genera of the Caridean and Stenopodidean shrimps (Class Crustacea, Order Decapoda, Supersection Natantia) with keys for their determination. Zool. Verhandl. 26: 1-157.
Kemp, S. 1910. The Decapoda Natantia of the coasts of Ireland. Scient. Invest. Fish. Brch Ire. 1908 (1): 1-190.
Kensley, B. F. 1969. Decapod Crustacea from the south-west Indian Ocean. Ann. S. Afr. Mus. 52: 149-181.
Kensley, B. F. 1971a. The Family Sergestidae in the waters around southern Africa (Crustacea, Decapoda, Natantia). Ann. S. Afr. Mus. 57: 215-264.
Kensley, B. F. 1971b. The genus Gennadas in the waters around southern Africa. Ann. S. Afr. Mus. 57: 271-294.
Louw, E. M. 1977. The South African Museum's Meiring Naude cruises. Part 1. Station data 1975, 1976. Ann. S. Afr. Mus. 72: 147-159.
Man, J. G. de. 1911. The Decapoda of the Siboga Expedition. Part I. Family Penaeidae. Siboga Exped. monogr. 39A: 1-131.
Man, J. G. De. 1920. The Decapoda of the Siboga Expedition. Part IV. Families Pasiphaeidae, Stylodactylidae, Hoplophoridae, Nematocarcinidae, Thalassocaridae, Pandalidae, Psalidopodidae, Gnathophyllidae, Processidae, Glyphocrangonidae, and Crangonidae. Siboga Exped. monogr. 39A3: 1-318.
Paulinose, V. T. 1974. Decapod Crustacea from the International Indian Ocean Expedition: The species of Funchalia (Penaeidae) and their post-larvae. J. nat. Hist. 8: 433-443.
Ramadan, M. M. 1938. Crustacea, Penaeidae. Scient. Reps John Murray Exped. 5: 35-76.
Roberts, T. W. \& Pequegnat, W. E. 1970. Deep-water decapod shrimps of the Family Penaeidae. In: Pequegnat, W. E. \& Chace, F. A. Texas A \& M University Oceanographical Studies 1. Contributions on the Biology of the Gulf of Mexico. Houston, Texas: Gulf Publishing Co.
Sivertsen, E. \& Holthuis, L. B. 1956. Crustacea Decapoda (the Penaeidae and Stenopodidae excepted). Rep. scient. Results Michael Sars N. Atlant. Deep Sea Exped. 5 (12): 1-54.
Stebbing, T. R. R. 1914. South African Crustacea. Ann. S. Afr. Mus. 15: 1-55.
Tirmizi, N. 1969. Eupasiphae gilesii (Wood-Mason, 1892) from the northern Arabian Sea (Decapoda, Caridea). Crustaceana 16: 213-218.
Wood-Mason, J. \& Alcock, A. 1891. On the results of deep-sea dredging during the season 1890-91. Ann. Mag. nat. Hist. (6) 8: 268-286.
Wood-Mason, J. \& Alcock, A. 1893. On the results of deep-sea dredging during the season 1890-91. Ann. Mag. nat. Hist. (6) 11: 161-171.

BRIAN KENSLEY
 THE SOUTH AFRICAN MUSEUM'S MEIRING NAUDE CRUISES PART 5

CRUSTACEA, DECAPODA, REPTANTIA AND NATANTIA

