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Abstract

suspected to be non-monophyletic.

Background: The subfamily Stevardiinae is a diverse and widely distributed clade of freshwater fishes from South
and Central America, commonly known as “tetras” (Characidae). The group was named “clade A" when first
proposed as a monophyletic unit of Characidae and later designated as a subfamily. Stevardiinae includes 48
genera and around 310 valid species with many species presenting inseminating reproductive strategy. No global
hypothesis of relationships is available for this group and currently many genera are listed as incertae sedis or are

Results: We present a molecular phylogeny with the largest number of stevardiine species analyzed so far,
including 355 samples representing 153 putative species distributed in 32 genera, to test the group’s monophyly
and internal relationships. The phylogeny was inferred using DNA sequence data from seven gene fragments
(MtDNA: 125, 16S and COI; nuclear: RAGT, RAG2, MYH6 and PTR). The results support the Stevardiinae as a
monophyletic group and a detailed hypothesis of the internal relationships for this subfamily.

Conclusions: A revised classification based on the molecular phylogeny is proposed that includes seven tribes and also
defines monophyletic genera, including a resurrected genus Eretmobrycon, and new definitions for Diapoma, Hemibrycon,
Bryconamericus sensu stricto, and Knodus sensu stricto, placing some small genera as junior synonyms. Inseminating species

are distributed in several clades suggesting that reproductive strategy is evolutionarily labile in this group of fishes.

Keywords: Tetras, Neotropical region, “Clade A”, Stevardiinae, Glandulocaudinae, Insemination, Multi-locus phylogeny

Background

The family Characidae is the largest family of freshwater
fishes in the Neotropics, comprising around 1065 species
in approximately 146 genera [1]. Because of its consider-
able species richness and diversity, the relationships and
limits of the main lineages in the family have been con-
troversial: two-thirds of all species were considered
incertae sedis in the family just a decade ago due to lack
of consistent information on their relationships [2]. Be-
sides species richness, a primary challenge to establish-
ing relationships based on morphological phylogenies
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has been associated with their conservative morphology
though their long period of evolution, since characid
fossils with essentially modern morphologies are known
from Eocene-Oligocene deposits [3]. Taken together, these
factors may explain the high level of morphological homo-
plasy inferred across lineages within the family (e.g. [4, 5]).
In recent years, an increasing understanding of the relation-
ships among major lineages within Characidae is emerging
on the basis of evidence provided by molecules, osteology,
and primary and secondary sexual characters [4, 6-12].

Two large and subordinated clades of interest in our in-
vestigation have been successively recognized as mono-
phyletic in Characidae. The first more inclusive clade
embraces all characid species that lack a supraorbital bone
[4, 6-8, 10, 12] (Figs. 1 and 2). This clade was recently
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Fig. 1 Relationships of Stevardiinae based on morphological studies. Phylogenetic relationships among major groups of characid and stevardiin taxa
according to morphological analyses by (a) Malabarba and Weitzman [6], (b) Mirande [4], and (c) Ferreira et al. [20]. Black branches and names indicate
Stevardiinae taxa. The black circle on the internal branches indicates the synapomorphic loss of the supraorbital bone in (a) and (b), a diagnostic
character for Characidae sensu Oliveira et al. [12] (except for Iguanodectinae in A). Asterisks (*) indicate taxa with inseminating strategy
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Fig. 2 Relationships of Stevardiinae based on previous molecular studies. Phylogenetic relationships among major groups of characid and
stevardiin fishes according to molecular analyses by (a) Calcagnotto et al. [7], (b) Javonillo et al. [10] and (c) Oliveira et al. [12]. Black branches and
names indicate Stevardiinae taxa. The black circle on the internal branches indicates the synapomorphic loss of the supraorbital bone in (a) and
(b), a diagnostic character for Characidae sensu Oliveira et al. [12]. Asterisks (*) indicate taxa with inseminating strategy
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raised to family rank and named Characidae in a more re-
stricted sense by previous authors [12], who also reas-
signed all characid species bearing a supraorbital bone to
new or previously recognized characiform families. The
second, less inclusive clade and the main subject of this
study, was informally named “clade A” and diagnosed
based on two synapomorphies: the dorsal fin with two un-
branched and eight branched rays, and the premaxilla
with four teeth in the inner series [6]. “Clade A”, sensu
Malabarba and Weitzman [6], included the subfamily
Glandulocaudinae Eigenmann, 1914 sensu Weitzman and
Menezes [13] (with 19 genera), the newly described genus
Cyanocharax, and 18 genera of uncertain relationships
previously listed within Cheirodontinae or Tetragonopteri-
nae [14] and classified as incertae sedis genera in Characidae
[2]: Attonitus, Boehlkea, Bryconacidnus, Bryconamericus,
Caiapobrycon, Ceratobranchia, Creagrutus, Hemibrycon,
Hypobrycon, Knodus, Microgenys, Monotocheirodon, Odon-
tostoechus, Othonocheirodus, Piabarchus, Piabina, Rhino-
brycon, and Rhinopetitia (Fig. 1a, Table 1). Prior to this
proposition [6], nothing was known about phylogenetic
relationships among these 18 incertae sedis genera, except
for two studies involving Caiapobrycon, Creagrutus and
Piabina [15, 16] . Conversely, phylogenies were available
at the tribe and genus levels for all taxa previously in-
cluded in the Glandulocaudinae, mostly based on sexually
dimorphic characters of males [13].

The presence of modified scales in the caudal fin of
males has been the main character defining the Glandu-
locaudinae since the group was described [17]. The com-
plex morphologies of these caudal organs were explored
in detail in phylogenetic studies to test the monophyly
and internal relationships of the glandulocaudin tribe
Xenurobryconini [18] and to diagnose and propose in-
ternal relationships within Glandulocaudinae. On this
basis, Glandulocaudinae was divided into seven tribes [13]:
Corynopomini Eigenmann, 1927 (renamed Stevardiini
in 2005 [19] — see below), Diapomini Eigenmann,
1910, Glandulocaudini Eigenmann, 1914, Hysteronotini
Eigenmann, 1914, Landonini Weitzman and Menezes,
1998, Phenacobryconini Weitzman and Menezes, 1998
and Xenurobryconini Myers and Bohlke, 1956 (Table 1).
This classification was further modified in light of new
histological evidence from the caudal organs of males
[19]. As a consequence, the subfamily Glandulocaudi-
nae was restricted to the tribe Glandulocaudini sensu
Weitzman and Menezes [13] and the six remaining tribes
were placed in the resurrected subfamily Stevardiinae [19].
The family group name Corynopomini is a junior syno-
nym, being this tribe consequently also renamed as
Stevardiini (see Additional file 1 for nomenclatural
remarks).

Monophyly of “clade A”, including the Glandulocaudi-
nae and Stevardiinae sensu Weitzman, Menezes, Evers
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and Burns [19] and the 18 incertae sedis genera listed
previously [6], has been supported more recently on the
basis of both morphological [4, 11, 20, 21] (Fig. 1b, c)
and molecular data [7, 10, 12] (Fig. 2). Furthermore,
later studies have added ten genera to “clade A” after the
original definition [6], such that it currently includes 48
genera (Table 1). In a morphological phylogeny of 160
characiform species, including 23 species and 14 genera
of “clade A”, the Stevardiinae sensu Weitzman and col-
laborators [19] was reported to be paraphyletic given
that it also included Glandulocaudinae [4, 8] (Fig. 1b).
Based on this inference, a more comprehensive concept
of the name Stevardiinae was advanced embracing all
members of “clade A”, with Glandulocaudinae being
lowered in rank to a monophyletic tribe (Glandulocaudini)
within Stevardiinae [8] (Table 1, see nomenclatural re-
marks in Additional file 1). The newly defined Stevardii-
nae sensu Mirande [8] was diagnosed on the basis of three
synapomorphies: (i) the previously mentioned possession
of eight branched dorsal-fin rays [6], (ii) the absence of the
epiphyseal branch of the supraorbital canal, and (iii) the
presence of nine dorsal-fin pterygiophores. For clarity,
“clade A” was then named Stevardiinae and, as presently
recognized, is widely distributed in the Neotropics on both
sides of the Andes, from Costa Rica in Central America to
central Argentina.

Several species in Stevardiinae have been shown to be
inseminating [22] (Table 2), a term used to describe the
capacity of males to transfer sperm directly into the fe-
male reproductive tract. Possible selective advantages of
insemination include increase of the probability of fer-
tilization, protection of the gametes from a potentially
harmful environment, the temporal and spatial separ-
ation of mating and oviposition, and sperm competition
[23]. Also, this strategy in characids is correlated with
small-sized species that produce fewer numbers of eggs
(<500 oocytes) [9]. In Stevardiinae, inseminating species
tend to have lower relative fecundity values than other
characids and some species are able to reproduce during
major part of the year (e.g., Mimagoniates and Pseudo-
corynopoma), which may demonstrate the advantages of
the insemination strategy [9].

Except for two species of Monotocheirodon that bear
intromittent organs, all remaining species of Stevardiinae
lack copulatory organs [24, 25]. Among these, insemin-
ation strategy has been documented by the presence of
sperm in females through histological examination of
the ovaries for all species of the tribes Diapomini, Glan-
dulocaudini, Hysteronotini, Landonini, Phenacobryco-
nini, Stevardiini and Xenurobryconini, all the species of
Attonitus, Bryconadenos and Monotocheirodon and some
species of Bryconamericus (B. pectinatus), Creagrutus (C.
lepidus and C. melasma) and Knodus (Knodus sp.) [23]
(Table 2). Inseminating species, however, also have been
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Table 1 Current classification of Stevardiinae

Tribe Genera No. of
species
Diapomini Diapoma Cope, 1894 4
Planaltina Bohlke, 1954 3
Acrobrycon Eigenmann and Pearson, 1924 2
Glandulocaudini  Glandulocauda Eigenmann, 1911 2
Lophiobrycon Castro, Ribeiro, Benine 1
and Melo, 2003 [36]
Mimagoniates Regan, 1907 7
Hysteronotini Hysteronotus Eigenmann, 1911 1
Pseudocorynopoma Perugia, 1891 2
Landonini Landonia Eigenmann and Henn, 1914 1
Stevardiini Corynopoma Gill, 1858 1
Gephyrocharax Eigenmann, 1912 13
Pterobrycon Eigenmann, 1913 2
Phenacobryconini Phenacobrycon Eigenmann, 1922 1
Xenurobryconini  Argopleura Eigenmann, 1913 4
Chrysobrycon \Weitzman and Menezes, 1998 3
lotabrycon Roberts, 1973 1
Ptychocharax Weitzman, Fink, 1
Machado-Allison and Royero, 1994
Scopaeocharax \Weitzman and Fink, 1985 2
Tyttocharax Fowler, 1913 6
Xenurobrycon Myers and 5
Miranda Ribeiro, 1945
Incertae Sedis Attonitus Vari and Ortega, 2000 3
Aulixidens Bohlke, 1952 [8] 1
Boehlkea Géry, 1966 2
Bryconacidnus Myers, 1929 3
Bryconadenos \Weitzman, Menezes, 2
Evers and Burns, 2005 [19]
Bryconamericus Eigenmann, 1907 78
Caiapobrycon Malabarba and Vari, 2000 1
Carlastyanax Géry, 1972 [21] 1
Ceratobranchia Eigenmann, 1914 5
Creagrutus Gunther, 1864 71
Cyanocharax Malabarba and 8
Weitzman, 2003
Cyanogaster Mattox, Britz, 1
Toledo-Piza and Marinho, 2013 [66]
Hemibrycon Gunther, 1864 31
Hypobrycon Malabarba and 3
Malabarba, 1994
Knodus Eigenmann, 1911 20
Lepidocharax Ferreira, Menezes and 2
Quagio-Grassiotto, 2011 [20]
Markiana Eigenmann, 1903 [31] 2
Microgenys Eigenmann, 1913 3
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Table 1 Current classification of Stevardiinae (Continued)

Monotocheirodon Eigenmann and 1
Pearson, 1924

Nantis Mirande, Aguilera and 1
Azpelicueta, 2006 [8]

Odontostoechus Gomes, 1947 1
Othonocheirodus Myers, 1927 1
Phallobrycon Menezes, Ferreira and 1
Netto-Ferreira, 2009 [67]

Piabarchus Myers, 1928 2
Piabina Reinhardt, 1867 2
Rhinobrycon Myers, 1944 1
Rhinopetitia Géry, 1964 1
Trochilocharax Zarske, 2010 [68] 1

Tribes and genera currently recognized in Stevardiinae (“clade A”). Composition
of the tribes Diapomini, Glandulocaudini, Hysteronotini, Landonini,
Phenacobryconini, Stevardiini, and Xenurobryconini follows [13, 19, 36]. Genera
originally included in Stevardiinae [6] or subsequently by other authors indicated
by superscripts matching the reference number [8, 19-21, 31, 36, 66-68]; Genera
in bold were included in this study

described in other lineages of Characidae, such as the
tribe Compsurini within the subfamily Cheirodontinae
[26] and in a clade formed by Hollandichthys plus
Rachoviscus [27]. Taking this pattern at face value, in-
semination seems to have at least three independent ori-
gins within Characidae [28].

The presence of insemination correlates with differ-
ences in sperm morphology. While in most externally
fertilizing teleosts the spermatozoa are characterized by
a spherical to ovoid nucleus and short midpiece, in insem-
inating fishes an elongated nucleus is the most frequently
observed [23, 27]. This elongation may be advantageous
for insemination over ovoid nucleus since it facilitates
sperm movement through the female gonopore and
within the female reproductive tract, increasing directional
movement toward female gonopore, and facilitating the
formation of sperm packets to be moved by the male uro-
genital papilla to the female urogenital pore [23].

Three unique morphotypes of sperm have been de-
scribed among species of Stevardiinae (M1, M2, and M3;
Table 2), based on arrangement of centrioles, flagellum,
nucleus, and the midpiece [11] (Table 2). Based on the
phylogenetic evidence available [19], it has been pro-
posed that insemination is likely to have evolved only
once within Stevardiinae and may constitute a synapo-
morphy shared by the most derived species of this sub-
family [11]. However, recent morphological phylogenies
[4, 8, 20, 21] (Fig. 1) still have limited taxonomic repre-
sentation to effectively test this hypothesis which is, like-
wise, not supported by molecular evidence given the
absence of a monophyletic group with all inseminating
stevardiines [10, 12] (Fig. 2). In terms of sperm morph-
ology, it has been proposed that sperm type M1 is
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Table 2 Insemination strategy and sperm morphology
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TribesGenera Inseminating species Non-inseminating species® Sperm  Species analyzed for
morph.  sperm morphology
Diapomini
Acrobrycon A. ipanquianus [22],
Acrobrycon sp. [69]
Diapoma D. speculiferum [69], D. terofali [69] M2 D. speculiferum [70]
Planaltina P. britiskii [22], P. glandipedis [47],
P. myersi [69]
Glandulocaudini
Glandulocauda G. melanogenys [69],
G. melanopleura [23]
Lophiobrycon L. weitzmani [36]
Mimagoniates M. barberi [69], M. inequalis [22], M2 M. barberi [71],
M. lateralis [69], M. microlepis [69], M. microlepis [70]
M. rheocharis [69], M. sylvicola [69]
Hysteronotini
Hysteronotus H. megalostomus [69]
Pseudocorynopoma  P. doriae [69], M2 P. doriae [70]
P. heterandria [69]
Landonini
Landonia L. latidens [69]
Phenacobryconini
Phenacobrycon P. henna [69]
Stevardiini
Corynopoma C. riise [69] M2 C. riisei [72]
Gephyrocharax G. atracaudatus [69], G. chocoensis [69], G. intermedius [69], M2 G. atracaudata [73],
G. melanocheir [22], G. valencia [69], G. venezuelae [69], G. intermedius [73]
Gephyrocharax sp. [34]
Pterobrycon P. landoni [22], P. myrnae [69]
Xenurobryconini
Argopleura A. chocoensis [69],
A. magdalensis [69]
Chrysobrycon C. hesperus [69], C. myersi [69] M2 Chrysobrycon sp. [73]
lotabrycon I. praecox [69]
Ptychocharax P. rhyacophila [69]
Scopaeocharax S. rhinodus [69], M3 S. rhinodus [74]
Scopaeocharax sp. [69]
Tyttocharax T. tambopatensis [22], M3 T. cochui [74],
Tyttocharax sp. [69] T. tambopatensis [74]
Xenurobrycon X macropus [23], M3 X. heterodon [75],
X. polyancistrus [69] X.macropus [75],
X. polyancistrus [75]
Incertae sedis
Attonitus Attonitus bounites [22],
A. ephimeros [76], A. irisae [22]
Boehlkea B. fredcochui M1 B. fredcochui [31]
Bryconadenos B. tanaothoros [76] M2 B. tanaothoros [19]
Bryconacidnus M1 B. ellisi [31]
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Table 2 Insemination strategy and sperm morphology (Continued)
Bryconamericus B. pectinatus [76] B. alpha, M1 B. exodon [31]
B. deuterodonoides,
B. exodon, B. iheringi,
B. pachacuti, Bryconamericus sp.
Caiapobrycon C. tucurui
Ceratobranchia C. binghami M1 C. obtusirostris [31]
Creagrutus C. lepidus [22], C. affinis, C. britskii, M1 C. meridionalis [31]
C. melasma [22] C. changae, C. cochui, C. figueiredoi,
C. holmi, C. menezesi,
C. paralacus,
C. taphomi
Creagrutus sp.
Cyanocharax C. alburnus, M1 C. alburnus [31]
C. alegretensis,
C. dicropotamicus,
C. itaimbe,
C. lepiclastus,
C. macropinna
Hemibrycon H. dariensis, H. metae
Hypobrycon Hypobrycon sp.
Knodus Knodus sp. [69] K beta, K. breviceps, M1 K. meridae [31]
K. meridae,
K. septentrionalis,
K. turiuba, Knodus sp.
Markiana M. nigripinnis
Monotocheirodon M. pearsoni [23],
Monotocheirodon sp. [69, 76]
Odontostoechus M1 O. lethostigmus [31]
Piabarchus P. analis
Piabina P. argentea M1 P. anhembi [31],
P. argentea [31]
Rhinobrycon R. negrensis M1 R. negrensis [31]

Stevardiinae species with known insemination strategy and sperm morphology, based on several studies indicated by superscripts matching the reference
number [19, 22, 23, 31, 34, 36, 47, 69-76]. Taxa not listed in this table indicate lack of information

“Indicates personal communication by John Burns

synapomorphic to Stevardiinae, M2 synapomorphic to
all the inseminating species of the Stevardiinae, and M3
synapomorphic to the Xenurobryconini [11]. Informa-
tion about these traits related to reproduction, however,
are just known for less than 1/3 of all stevardiines spe-
cies, which hamper a better understading of the evolu-
tion of the reproductive strategy in this subfamily.

Most of the species-level diversity in Stevardiinae is
contained in only four genera (out of 48) that include
200 out of 311 nominal species described for the sub-
family (Table 1). Among these four genera, Creagrutus (71
species) is the only one supported as a monophyletic
group based on apomorphic features associated to jaws
and teeth [16]. The remaining three genera Bryconameri-
cus (78 species), Hemibrycon (31 species) and Knodus (20
species) have been traditionally and arbitrarily diagnosed
using pre-cladistic criteria based on the number of teeth
on the maxilla and on the extension of scales over the
caudal-fin rays [29]. Not surprisingly, recently published

morphological- and molecular-based characid phylogenies
found that Bryconamericus and Knodus are polyphyletic
groups (Fig. 1b [4]; Fig. 2b—c [10, 12]), thus demonstrating
the need of further study to diagnose monophyletic genera
based on consistent phylogenetic evidence.

This study presents phylogenetic relationships for a
large number of taxa of Stevardiinae based on analysis of
a multi-locus data set to address two main goals: (i) test
the monophyly of the Stevardiinae and the included pu-
tative tribes and genera, with emphasis on the species-
rich genera Bryconamericus, Hemibrycon, and Knodus;
and (ii) shed light on the evolution of insemination and
secondary sexual dimorphism among stevardiines, spe-
cifically whether insemination had a single origin among
members of this subfamily.

Results
Sequences from three mitochondrial (ribosomal 12S and
16S rRNA subunits, and cytochrome oxidase I - COI) and
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four nuclear loci (exon regions of myosin, heavy polypep-
tide 6 - MYH6; hypothetical protein LOC564097 — PTR;
recombination activating gene 1 - RAGI; and gene 2 -
RAG?2) were obtained from a total of 355 individuals. The
concatenated alignment contains 4,816 sites, of which
1,920 are variable. Some markers could not be successfully
amplified and sequenced for a number of taxa due to
technical issues or low quality of the genomic DNA.
Mitochondrial and nuclear DNA sequences could be ob-
tained for 85 % and 69 % of the taxa, respectively. Effi-
ciency for nuclear genes was lower, most likely due to
non-conserved priming regions and a higher risk of
cross-contamination in the nested PCR procedure (some
sequences were eliminated after contamination was diag-
nosed by our quality-control protocol). Overall, the data
set is 76 % complete. More detailed information for each
molecular marker can be found in Table 3 and for se-
quences obtained for each specimen in Additional file 2.
The best-fit partitioning scheme selected under the AIC
criterion contained 8 data blocks (Additional file 3).

The maximum likelihood tree obtained with RAXML
is shown in Fig. 3 in a summarized view, rendered by
collapsing major clades to single terminals. The three
large clades previously reported for Characidae (clades
“A”, “B” and “C” [10, 12, 30]) are well-supported by the
data, with “clade A” (representing the monophyletic sub-
family Stevardiinae) resolved as the sister group of “clade
B”. Seven clades with high bootstrap support were ob-
tained within Stevardiinae, some in agreement with pre-
vious classifications but most clades are new. Fig. 3
presents a phylogenetic classification for the subfamily
Stevardiinae and a proposed definition of monophyletic
tribes and genera based on the taxonomic sampling ana-
lyzed in this study. The complete tree is available in
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detail in Figs. 4-10 and in Additional file 4. The molecu-
lar markers used in this study provided good phylogen-
etic resolution with high bootstrap support throughout
the tree, with an average value of 78 % across branches
and with more than half of the values equal to, or higher
than, 90 %. Landonia latidens was excluded from the
analysis since most genes for this taxon could not be
amplified and sequenced, resulting in an unstable phylo-
genetic position for this species. Clades defining genera
and other monophyletic groups within tribes received
higher bootstrap support than branches leading to larger
clades, especially clades containing the particularly
species-rich genera such as Bryconamericus and Knodus.
When comparing the stability among all trees accessed
in this study, the newly circumscribed groups (tribes and
genera) proposed herein are largely obtained by all
methods with high support values (Table 4), except for the
highly species-rich genera (Bryconamericus, Hemibrycon
and Knodus) that received low support. The trees obtained
with Garli, TNT and STAR are not shown, but some re-
sults from these analyses are reported in Table 4. All trees
and data matrix obtained in this study are available at
Dryad repository (doi:10.5061/dryad.7nd42).

The monophyly of genera Bryconamericus, Cyano-
charax, Hemibrycon, and Knodus is strongly rejected by
topology tests based on the molecular data (Table 5).
This is also true for the tribes Diapomini and Xenuro-
bryconini sensu Weitzman and Menezes [13] (Table 1).
Based on the distribution of the species with known re-
productive strategy and sperm morphology (Figs. 4—10),
the hypothesis that inseminating stevardiines are mono-
phyletic is rejected. Only sperm morphology M3 (re-
stricted to Scopaeocharax, Tyttocharax and Xenurobrycon;
Fig. 4) is inferred to have a single origin given that it is

Table 3 Summary information of molecular data analyzed in this study

Mitochondrial Nuclear
165 125 myh6 PTR Rag 1 Rag2
Number of sequences 334 323 247 293 212 218 265
Length (bp) 574 429 522 621 537 1362 771
% present data 94 91 69 82 60 61 74
Number of variable sites 244 164 206 225 161 556 364
Singletons 46 29 4 21 22 100 84
Nucleotide frequency
T 223 22.7 317 23.7 24.8 219 22.7
C 224 253 26 21.7 269 241 259
A 322 308 25 314 274 249 246
G 231 212 174 232 21 29.1 268

Overall mean genetic distance (p-value) 0.037 (£0.004) 0.051 (£0.006) 0.132 (+0.008) 0.011 (£0.002) 0.006 (£0.002) 0.031 (+0.007) 0.024 (+0.004)

DNA sequence information and composition of molecular markers used in this study. Overall mean genetic distance is an indication of the rate of evolution of

each marker
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Fig. 3 Abbreviated tree of Stevardiinae obtained in this study. Abbreviated maximum likelihood tree of Stevardiinae obtained with RAXML summarizing
relationships among Stevardiinae genera and limits of tribes. Branches leading to monophyletic genera as proposed in this study, or to outgroup clades
(clade “B" and “C") are collapsed to a single terminal. Taxa currently assigned to other genera that are included in the proposed genera are indicated in
parentheses. Red sperm symbols highlight clades with inseminating strategy present and blue sperm symbols highlight clades with external fertilization
confirmed: large symbols for all taxa within Xenurobryconini, Glandulocaudini, and Stevardiini and smaller symbols for some species next to
corresponding genera. Bootstrap values are shown for internal branches, with values inside gray circles highlighting nodes for proposed tribes and
green circles showing support for monophyletic genera proposed in this study. Full topology is displayed in Figs. 4-10 and Additional file 4
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Fig. 4 Section of the Stevardiinae phylogeny showing the relationships among clades “B" and “C" and Stevardiinae, and, within Stevardiinae, in
the tribes Eretmobryconini and Xenurobryconini. ML tree obtained with RAXML. Single name labels several terminals when they lead to same
nominal species. Type species of each genus are highlighted in green when sampled in this study. Red sperm symbols highlight taxa with
insemination strategy, while blue sperm symbols highlight taxa known to have external fertilization. Sperm types are indicated by M1 - M3.
Absence of any symbols next to taxon names indicates lack of knowledge about reproductive characters. Bootstrap values indicated with dots
placed on internal branches according to inset caption. Section of the full topology shown on the left (shaded) is expanded on the right. Node 1
subtends Eretmobrycon (resurrected in this study; type species E. bayano) that includes all species of Bryconamericus scleroparius group
(Bryconamericus species from Central America and northernmost South America)
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Fig. 5 Section of the Stevardiinae phylogeny showing the relationships between Argopleura and the tribes Glandulocaudini and Stevardiini. ML
tree obtained with RAXML. Single name labels several terminals when they lead to same nominal species. Type species of each genus are
highlighted in green when sampled in this study. Red sperm symbols highlight taxa with insemination strategy, while blue sperm symbols
highlight taxa known to have external fertilization. Sperm types are indicated by M1 — M3. Absence of any symbols next to taxon names
indicates lack of knowledge about reproductive characters. Bootstrap values indicated with dots placed on internal branches according to inset
caption. Section of the full topology shown on the left (shaded) is expanded on the right. Node 2 subtends Chrysobrycon from southwestern
Amazon (type species C. hesperus was not available for this study)
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(type species H. polyodon)

to Figure 4D

Fig. 6 Section of the Stevardiinae phylogeny showing the relationships in Hemibryconini. ML tree obtained with RAXML. Single name labels
several terminals when they lead to same nominal species. Type species of each genus are highlighted in green when sampled in this study. Red
sperm symbols highlight taxa with insemination strategy, while blue sperm symbols highlight taxa known to have external fertilization. Sperm
types are indicated by M1 — M3. Absence of any symbols next to taxon names indicates lack of knowledge about reproductive characters.
Bootstrap values indicated with dots placed on internal branches according to inset caption. Section of the full topology shown on the left
(shaded) is expanded on the right. Node 3 subtends Hemibrycon from western Amazon, Magdalena and Orinoco basins, and Central America
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present within a monophyletic unit in our tree topology.
Conversely, M2 appears in several clades (i.e., Glandulo-
caudini, Stevardiini, Bryconadenos and Diapoma) and may
have multiple origins (Figs. 5, 8 and 10), and M1 is

observed in species distributed in several distantly related
clades: near the root of the tree (Eretmobryconini: Marki-
ana) and also in Ceratobranchia, Cyanocharax, Knodus
meridae, Piabina and Rhinobrycon (Figs. 4, 8—10).
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( (See figure on previous page.)

widely distributed from Paraguay basin to Central America

Fig. 7 Section of the Stevardiinae phylogeny showing the relationships in Creagrutini. ML tree obtained with RAXML. Single name labels several
terminals when they lead to same nominal species. Type species of each genus are highlighted in green when sampled in this study. Red sperm
symbols highlight taxa with insemination strategy, while blue sperm symbols highlight taxa known to have external fertilization. Sperm types are
indicated by M1 — M3. Absence of any symbols next to taxon names indicates lack of knowledge about reproductive characters. Bootstrap values
indicated with dots placed on internal branches according to inset caption. Section of the full topology shown on the left (shaded) is expanded
on the right. Node 4 subtends Creagrutini, with Carlastyanax (C. aurocaudatus is type species) and Creagrutus (C. mulleri is type species), the latter

Based on the results presented here, we proposed a new
classification of Stevardiinae, (see Additional file 5 — New
Stevardiinae classification), subdividing the subfamily into
seven tribes, redefining some generic circumscriptions,
and leaving only 11 of the 48 genera as incertae sedis, as
discussed below.

Discussion

In agreement with previous molecular [7, 10, 12] and
morphological studies [4, 8, 21], the monophyly of
Stevardiinae or “clade A” [6] was resolved with confi-
dence in our results (Figs. 3—10). The most comprehen-
sive morphological analysis was based on 91 species in
20 genera [21] and a large-scale molecular phylogenetic
analysis of the Characidae included 23 stevardiine spe-
cies in 21 genera and along with a broad taxonomic rep-
resentation of other subfamilies [12]. None of these
previous studies, however, resolved internal relationships
within Stevardiinae due to limited taxonomic sampling.
Here we present analyses of a large and comprehensive
sampling of Stevardiinae, with 32 genera and around
153 species/morphotypes, which identification was based
on morphology and geographic location (see Additional
file 2), and propose a new classification (Fig. 3, Additional
file 5) based on monophyletic units (tribes and genera)
supported by our results. The following sections address
morphological, reproductive and geographic distributional
data in relation to the major clades supported by this
study, as well as limitations imposed by missing data and
ambiguous phylogenetic resolution in subsections of the

phylogeny.

Monophyly of the Stevardiinae

Our results are consistent with the definition of “clade
A” based on the presence of four teeth in the inner row
of the premaxilla [6] (reversed to five teeth in Nantis),
but not with the placement of Bryconamericus scleropar-
ius clade and Markiana (positioned in Astyanax clade)
outside the Stevardiinae [4, 8, 21] (Fig. 1b). This alterna-
tive hypothesis requires the separate origin of this trait
in Markiana and in a clade containing the subfamilies
Aphyocharacinae, Aphyoditeinae, Cheirodontinae, Gym-
nocharacinae, and Stevardiinae plus the Bryconamericus
scleroparius clade, with a reversal to five or more teeth
(in a single series) in a less inclusive clade containing

Aphyocharacinae, Aphyoditeinae, and Cheirodontinae.
The inclusion of the Bryconamericus scleroparius clade
and Markiana in the Stevardiinae herein contradicts this
hypothesis and resolves the presence of four teeth in the
inner series of the premaxilla as a diagnostic character
for the Stevardiinae (reversed to five teeth in Nantis).

A dorsal fin with ii+8 fin rays [6] is another diagnostic
character proposed for “clade A”; although some authors
split this trait into two characters [4, 8, 21]: eight or
fewer branched dorsal-fin rays and nine or fewer dorsal-
fin pterygiophores. According to our results (Figs. 3 and
4), the ii+8 dorsal-fin rays would not be a diagnostic
character for Stevardiinae, but for a less inclusive clade
including all Stevardiinae except Markiana plus Bryco-
namericus scleroparius group (the new tribe Eretmobry-
conini - see below). The inferred order of appearance of
these diagnostic characters along the tree is informative
as to the placement of two fossil species of Paleotetra
from the Eocene-Oligocene (P. entrecorregos and P. aiur-
uoca) to support the hypothesis that these fossils consti-
tute a stem lineage of Stevardiinae [3] or potentially
within the tribe Eretmobryconini, since these fossils have
four teeth in the inner series of the premaxilla but ii+9
dorsal-fin rays. Secondary increases in the number of
dorsal-fin rays are recorded in Pseudocorynopoma doriae
(ii+9), Mimagoniates rheocharis (ii+8-12), Chrysobrycon
myersi (ii+9-10), differing from the other species of these
genera with ii+8 dorsal-fin rays [6].

Seven strongly supported monophyletic groups observed
in the phylogeny (Fig. 3), herein designated tribe-level taxa
are discussed in the following sections. Argopleura is the
only genus that could not be included in any tribe with
confidence but it is closely related to Glandulocaudini and
Stevardiini (as newly defined herein).

Eretmobryconini, new tribe

The East Andean genus Markiana and the West Andean
and Central American species of Bryconamericus (B. bayano,
B. brevirostris, B. dahli, B. emperador, B. gonzalezi, B.
miraensis, B. peruanus, B. scleroparius, and B. terrabensis)
form a strongly supported clade (100 % boostrap) that is the
sister group of the remaining Stevardiinae. They share with
Stevardiinae the apomorphic presence of four teeth in the
inner series of the premaxilla, but have ii+9 dorsal fin rays,
which is considered a plesiomorphic state in Characidae.
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Fig. 8 Section of the Stevardiinae phylogeny showing relationships in Diapomini (in part, continues in Figs. 9 and 10). ML tree obtained with
RAXML. Single name labels several terminals when they lead to same nominal species. Type species of each genus are highlighted in green when
sampled in this study. Red sperm symbols highlight taxa with insemination strategy, while blue sperm symbols highlight taxa known to have
external fertilization. Sperm types are indicated by M1 — M3. Absence of any symbols next to taxon names indicates lack of knowledge about
reproductive characters. Bootstrap values indicated with dots placed on internal branches according to inset caption. Section of the full topology

shown on the left (shaded) is expanded on the right. Node 5 subtends Knodus sensu stricto, widely distributed in Amazon and Orinoco basins (K.
meridae is type species)

Markiana is a monophyletic genus with two geograph-
ically disjunct species distributed in the Rio Orinoco and
the Parand, Paraguay and Mamoré river basins. Its

relationships with other taxa were not clearly resolved and
hence the genus was treated as incertae sedis in Characidae
[2]. Markiana was first proposed as belonging to Stevardiinae
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Fig. 9 Section of the Stevardiinae phylogeny showing the relationships in Diapomini (in part, continues in Figs. 8 and 10). ML tree obtained with
RAXML. Single name labels several terminals when they lead to same nominal species. Type species of each genus are highlighted in green when
sampled in this study. Red sperm symbols highlight taxa with insemination strategy, while blue sperm symbols highlight taxa known to have
external fertilization. Sperm types are indicated by M1 — M3. Absence of any symbols next to taxon names indicates lack of knowledge about
reproductive characters. Bootstrap values indicated with dots placed on internal branches according to inset caption. Section of the full topology
shown on the left (shaded) is expanded on the right. Node 6 subtends Bryconacidnus from western Amazon (type species B. ellisi non available
for this study). Node 7 (continues in Fig. 10) subtends a clade from the southern range of the geographic distribution (Parand, Paraguay, Uruguay,
Sdo Francisco and coastal basins in SE Brazil) that contains Bryconamericus sensu stricto, Piabarchus, Piabina and Diapoma. Node 8 subtends
Bryconamericus sensu stricto restricted to Rio Paranad and Uruguay basins and coastal rivers in southeastern Brazil (B. exodon is type species)

A

0.04

[31] based on spermiogenesis, sperm morphology, the
possession of four teeth in the inner series of the pre-
maxilla, and short triangular ectopterygoid. Consistent
with our results, this genus has been found related with

the Central American characid species Bryconamericus
emperador [12], currently assigned to the Bryconamericus
scleroparius group [8, 21] and this clade formed the sister
group to the remaining Stevardiinae. Although Mirande
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Fig. 10 Section of the Stevardiinae phylogeny showing the relationships in Diapomini (in part, continues in Figs. 8 and 9). ML tree obtained with
RAXML. Single name labels several terminals when they lead to same nominal species. Type species of each genus are highlighted in green when
sampled in this study. Red sperm symbols highlight taxa with insemination strategy, while blue sperm symbols highlight taxa known to have
external fertilization. Sperm types are indicated by M1 — M3. Absence of any symbols next to taxon names indicates lack of knowledge about
reproductive characters. Bootstrap values indicated with dots placed on internal branches according to inset caption. Section of the full topology
shown on the left (shaded) is expanded on the right. Node 9 subtends Piabarchus distributed in Rio Sdo Francisco basin and upper Paraguay (P.
analis is type species). Node 10 subtends Piabina from the Rio Sdo Francisco, upper Parand and Paraguay basins (P. argentea is type species).
Node 11 subtends Diapoma from the Parand, Uruguay and coastal systems in southern Brazil (type species D. speculiferum)

Diapomin

and collaborators [4, 8, 21] favored a grouping of Marki-
ana with Astyanax, separately from the Bryconamericus
scleroparius group and from the Stevardiinae, they found
this relationship variable and with low stability in their

analyses, and noted that Markiana and the Bryconameri-
cus scleroparius group “share the absence of an ossified
rhinosphenoid, an overlap of the horizontal arm of the pre-
opercle by the third infraorbital, the possession of only four
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Table 5 Topology tests for currently accepted taxonomic

methods groups
Clades Concatenation Species tree Taxon (hypothesis) AlnL AU SH KH
RAXML Garli TNT  STAR Bryconamericus —2214 0.000001** 0** 0**
(MD (ML) (MP) Cyanocharax -344  0021* 0.031%* 0.031%*
Stevardiinae 100 100 99  yes® Hemibrycon ~5365  0.00002** 0** 0**
Creagrutini 100 99 77 n/o Knodus —5708  0.000001**  0** 0**
Diapomini 83 76 61 yes Stevardiini -341  01” 0.1 0.1™
Diapomini + Lepidocharax 43 97 19 n/o Diapomini —2756 00000002**  0** 0**
Eretmobryconini 100 100 94  yes Xenurobryconini —1589  0.00000003**  0** 0%
Glandulocaudini 100 100 95 yes Inseminating species  —1004.6  0.000001** 0% O
Hemibryconini 100 99 82 yes Results of topology tests for the monophyly of currently accepted taxonomic
. groups (tribes and genera) and for groups based on reproductive strategy
Stevardiini 100 100 98 yes (insemination). Tribe composition tested prior hypotheses as shown in Table 1
Xenurobryconini 100 100 99  yes [13, 19, 36], genera composition as listed by [2] and for insemination strategy
) , , as in Table 2. For each group, difference in maximum likelihood score (A InL)
Bryconacidnus "clade 99 94 81 yes between a tree with this clade enforced with respect to the maximum likelihood
. . - tree (Figs. 3-10) is followed by p-values for three testing procedures
Bryconamericus, new circumscription 60 63 49 nlo AU approximately unbiased test; SH Shimodaira-Hasegawa test; KH
Creagrutus 99 98 78 vyes Kishino-Hasegawa test
" P> 0.05; *P < 0.05; **P < 0.01
Diapoma, new circumscription 99 92 61 n/o
Eretmobrycon, new circumscription 100 100 86 yes . X
_ _ o (Table 5). Among the species of Bryconamericus scleropar-
Hemibrycon, new circumscription 9 52 nfo e ius group, B. bayano is the type species of the genus Eret-
Knodus, new circumscription 35 74 38 0o mobrycon Fink, 1976, which was synonymized with
Piabarchus, new circumscription 81 80 74 yes Bryconamericus [32]. Based on our results and in previous
Piabina, new circumscription 100 100 99 vyes results from morphology and sperm data [8, 21, 31], we

Support for clades representing tribes and genera proposed in this study

(Fig. 3) obtained on the basis of maximum likelihood (RAXML and Garli),
parsimony (TNT), and species-tree (STAR) analyses. Bootstrap values (%) are
shown when the clade was obtained with maximum likelihood and parsimony,
or indicated otherwise when it was not obtained (n/o0). For the STAR analysis
presence (yes) or absence (no) of the clade is indicated

?Some gene trees did not support the monophyly of Stevardiinae

teeth on the inner premaxillary row, and the presence of
two uroneurals” [21]. Under self-weighted parsimony
optimization [8] and in other analyses [21], these charac-
ters support the monophyly of a group formed by these
two taxa. Taken together, all the evidence strongly supports
the recognition of Markiana plus the Bryconamericus
scleroparius group as a monophyletic unit, and contradicts
alternative hypotheses grouping Markiana and Astyanax.
The species of the Bryconamericus scleroparius group
form a clade both in our hypothesis based on molecular
data (node 1, Fig. 4: B. bayano, B. brevirostris, B. dahli, B.
emperador, B. gonzalezi, B. miraensis, B. peruanus, B.
scleroparius, B. terrabensis, and B. sp. from Rio Patia) and
on analysis based on morphological data [4, 8] (B. brevir-
ostris, B. emperador, B. peruanus, B. guaytarae, B. sclero-
parius, and B. simus). These species are not closely related
to Bryconamericus exodon, the type species of the genus,
which is placed in a distant position in the phylogeny
(node 8, Fig. 9), and must be recognized as a group separ-
ate from Bryconamericus. In addition, the monophyly of
Bryconamericus is strongly rejected by our molecular data

propose the revalidation of the genus Eretmobrycon and
the inclusion of all Bryconamericus species present in
node 1 (B. scleroparius group; Fig. 4) within this genus (E.
bayano, E. brevirostris, E. dahli, E. emperador; E. gonzalezi,
E. miraensis, E. peruanus, E. scleroparius, and E. terraben-
sis). Also, Bryconamericus guaytarae and B. simus, not ex-
amined here, were tentatively resolved within the B.
scleoparius group [4] and, because of it, are also tentatively
included in Eretmobrycon. Even though the number of ii
+9 dorsal-fin rays is plesiomorphic, it can be used as a fur-
ther character to distinguish the species of Eretmobrycon
from Bryconamericus.

Xenurobryconini Myers and Bohlke, 1956, new usage
The tribe Xenurobryconini, as currently defined, con-
tains seven genera: Argopleura, Chrysobrycon, lotabrycon,
Ptychocharax, Scopaeochrax, Tyttocharax and Xenurobry-
con (Table 1). This group was first proposed for Xenuro-
brycon and Tyttocharax [33] based on morphological
similarities of their caudal fins. Tyttocharax was later split
in two genera: Tyttocharax and Scopaeocharax [18], and
in this same study Argopleura and Iotabrycon were added
as members of the Xenurobryconini. Ptychocharax and
Chrysobrycon were described later [13, 34] and also added
to the tribe.

The monophyly of this tribe is strongly rejected by our
molecular data (Table 5). Instead, our results (Figs. 3
and 4 and Table 4) resolved a highly supported clade
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(Scopaeocharax (Tyttocharax + Xenurobrycon)) congru-
ent with “Subgroup B xenurobryconins” sensu Weitzman
and Fink [18], diagnosed by 20 morphological synapo-
morphies. Monophyly of this group is further supported
by the apomorphic sperm morphotype M3 shared by
these three genera [11] (Table 2). Iotabrycon and Ptycho-
charax (not examined here) were found as successive
sister groups to (Xenurobrycon (Scopaeocharax + Tytto-
charax)) [18], but further investigation is necessary to
test their membership within Xenurobryconini since
molecular or sperm ultrastructure information are cur-
rently unavailable for these two genera. We provisionally
list them within Xenurobryconini (Additional file 5).

The other two genera, Argopleura and Chrysobrycon,
are more closely related to the tribes Glandulocaudini
and Stevardiini (Fig. 5). In most of our phylogenetic re-
sults, Argopleura is resolved as the sister group of Glan-
dulocaudini, however in the ML tree reconstructed in
RAxML it is placed as sister group of Glandulocaudini
and Stevardiini (70 % bootstrap). Since affinities of Argo-
pleura with Glandulocaudini and Stevardiini are not
clearly resolved and Argopleura could be potentially in-
cluded in Gladulocaudini (pending further investigation),
this genus is temporarily placed as incertae sedis in
Stevardiinae. The new circumscription of the tribe
Xenurobryconini is restricted to the genera Scopaeo-
charax, Tyttocharax, and Xenurobrycon, and possibly
Iotabrycon and Ptychocharax.

Glandulocaudini Eigenmann, 1914 sensu Menezes and
Weitzman, 2009

The monophyly of the tribe Glandulocaudini including
the genera Mimagoniates as sister group of Lophiobrycon
and Glandulocauda is supported by our results (Fig. 5).
The monophyly of Glandulocaudini was hypothesized
[35] based on the presence of modified caudal peduncle
squamation extending onto the caudal fin from the ven-
tral region of the dorsal caudal-fin lobe and by the pres-
ence of modified club cells on the caudal organ, which
probably secretes a pheromone during courtship. All the
species in this group are inseminating. Relationships
within Glandulocaudini, grouping Lophiobrycon as sister
group to Glandulocauda receive high bootstrap support
(Figs. 3 and 5), rejecting previous hypothesis that placed
Lophiobrycon as the sister group of the other two genera
in this clade [35, 36].

Stevardiini Gill, 1858, new usage

Monophyly of a clade composed by the tribes Hystero-
notini, Phenacobryconini (not analyzed herein), Stevar-
diini and Xenurobryconini has been proposed [13, 19]
based mostly on the morphology and histology of the
caudal organ. The molecular data resolved a monophy-
letic group including Chrysobrycon (considered part of
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Xenurobryconini [18]) with other taxa previously assigned
to Stevardiini and Hysteronotini (Fig. 5). The Stevardiini
(= Corynopomini sensu Weitzman and Menezes [13];
Table 1) is resolved as a strongly supported monophyletic
group that includes Corynopoma riisei and the four spe-
cies of Gephyrocharax (Pterobrycon was not examined;
Table 5). This clade is the sister group of a clade that in-
cludes Pseudocorynopoma (one of the two genera of the
Hysteronotini), Chrysobrycon myersi, and a characid from
the southwestern Amazon (Madre de Dios, Ucayali and
Yurud basins; see [37]: figure of Gephyrocharax sp.;
MUSM 33860, 38.3 mm SL) tentatively assigned to
Gephyrocharax. Strong support of node 2 (Fig. 5) suggests
that this form could be assigned to Chrysobrycon, with
whom it also shares a distribution in western Amazonia,
while other species assigned to Gephyrocharax are distrib-
uted in the Orinoco, Atrato, and Central American rivers,
but further study may be necessary to fully resolve this
issue.

In conclusion, we recognize an extended tribe Stevar-
diini that includes Chrysobrycon and Pseudocorynopoma,
and possibly Hysteronotus, in addition to the three gen-
era currently recognized in this tribe (Corynopoma,
Gephyrocharax, and Pterobrycon). Further analysis of
Pterobrycon and Hysteronorus is necessary to resolve of
the final composition of this tribe.

Hemibryconini Géry, 1966, new usage

The Hemibryconini was first introduced [38] to refer to
a large group of characids consisting of Boehlkea, Bryco-
nacidnus, Bryconamericus, Ceratobranchia, Coptobrycon,
Hemibrycon, Knodus, Microgenys, Nematobrycon, Pia-
barchus, Rhinobrycon, and Rhinopetitia. We adopt the
name but modify the circumscription to recognize a
well-supported clade that includes solely Acrobrycon,
Boehlkea and Hemibrycon. These genera are character-
ized by the presence of teeth along more than one-half
the length of the dentigerous margin of the maxilla [39, 40],
which may constitute a diagnostic morphological charac-
ter for the tribe. Although we did not examine Boehlkea
in this study, it is provisionally included in Hemibryconini,
based on this morphological evidence.

Previous studies that addressed relationships within
Stevardiinae using sexually dimorphic characters in-
ferred a sister-group relationship between Acrobrycon
and Diapoma plus Planaltina [13]. Other studies based
on osteological and external morphological characters
failed to support this relationship, suggesting instead
that Acrobrycon is most closely related to Mimagoniates,
Pseudocorynopoma, and Diapoma [4, 8]. Similarly, other
morphological studies have suggested a close relation-
ship between either Boehlkea and Hemibrycon [39] or
Bryconamericus and Hemibrycon [32]. The sister-group
relationship between Hemibrycon and Bryconamericus
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lacks morphological or molecular support, which is not
surprising since the monophyly of Bryconamericus has
been strongly rejected by several independent studies
[4, 10, 12]. In contrast to previous studies, we find
strong support for the sister group relationship between
Acrobrycon and Hemibrycon (Fig. 6).

Under the phylogenetic hypothesis presented in Fig. 6
(node 3), Hemibrycon is paraphyletic, including five spe-
cies originally described in Bryconamericus (B. cristiani,
B. caucanus, B. galvisi and B. plutarcoi). These species
are not closely related to Bryconamericus exodon, the
type species of the genus, which is placed in a distant
position in the phylogeny (node 8, Fig. 9), and, therefore,
should be recognized as a group separate from
Bryconamericus. We reassign these five species to Hemi-
brycon (Additional file 5). Hemibrycon is found in both
sides of the Andes, with at least two separations, show-
ing a peripheral distribution pattern within the Amazon
basin [39].

Our results also highlight issues with delimitation of
species in Hemibrycon. For instance, the clade from the
upper Rio Cauca basin includes three nominal species
with negligible genetic differentiation: H. boquiae, H.
brevispini, and H. quindos (Fig. 6). Based on these results
and taking into account the lack of strong morphological
evidence diagnosing these nominal species [41, 42], it is
likely that H. brevispini, and H. quindos are junior syno-
nyms of H. boquiae. The specimen from the upper
Cauca labeled Bryconamericus caucanus is likely mis-
identified and should be included in H. boquiae. Other
specimens assigned to Bryconamericus caucanus form a
differentiated and well-supported clade with H. jabonero.
Further study of this group is warranted.

Creagrutini Miles, 1943, new usage

The affinities between Carlastyanax and Creagrutus
were recently explored [21], and seven morphological
synapomorphies were identified uniting these genera,
with one of these being unique among characids (the
presence of a ligament between the ascending process of
the maxilla and the dorsal margin of the alveolar pre-
maxillary ramus). This clade is well supported in our
analysis (node 4, Fig. 7) that also confirms the re-
validation of Carlastyanax at the rank of genus and as
sister group to Creagrutus [21]. However, according to
our results Piabina is not the sister group of Creagrutus
or Creagrutus plus Carlastyanax, rejecting previous pro-
posals [16, 21]. As in Hemibrycon, Creagrutus has a dis-
tribution to the two sides of the Andes. Nested among
the Amazonian species of Creagrutus, the molecular
data include an enigmatic taxon collected from the Rio
Maranon (Pert), identified at this time as Characidae sp. n.
that differs from Creagrutus in having flattened multicus-
pids teeth on the premaxilla, as opposed to the massive
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teeth typical of Creagrutus. This taxon is closely related to
C. muelleri (Fig. 7), another species from the western
Amazon basins, strongly suggesting that it should be
assigned to Creagrutus.

Diapomini Eigenmann, 1909, new usage

A large clade including the remaining taxa in Stevardii-
nae is supported by the molecular data (bootstrap 83 %)
and herein named Diapomini, differing radically from
the current usage [13] (Table 1). Diapomini herein in-
cludes taxa assigned to Attonitus, Bryconacidnus, Cerato-
branchia, Cyanocharax, Diapoma, Hypobrycon, Knodus,
Nantis, Odontostechus, Piabina, Piabarchus and Rhino-
brycon, in addition to a large number of species of Bryco-
namericus plus Hyphessobrycon guarani. Within this tribe
there are three large clades of which two clades with an
Amazon-Orinoco basin distribution are weakly supported
and one clade with a southern South America distribution
is highly supported (see below). In addition, Lepidocharax
was found [20] as sister group of all former Stevardiinae
[19], except Landonia and Glandulocauda. In our results,
Lepidocharax is instead placed as sister group of Diapo-
mini in all our phylogenetic results (except in STAR tree),
although with low support (Table 4; Figs. 3 and 8). How-
ever, because of the consistency found among trees where
Lepidocharax is sister group of the Diapomini, we tenta-
tively assign Lepidocharax as member of this tribe, but we
highlight the necessity of further investigation.

The species with Amazon-Orinoco distribution are
split into two weakly supported clades (Figs. 8-9), both
of which contain specimens assigned to Knodus inter-
spersed with other taxa. The monophyly of this genus is
strongly rejected by the molecular data (Table 5). The
paraphyly of Knodus with some species of Bryconameri-
cus was already pointed in a morphological study [43].
Consistent with this hypothesis, our results support the
separation of this genus in two clades. In the first Ama-
zonian clade, a number of Bryconamericus species from
the Amazon and Orinoco basins (B. caquetae, B. cinaru-
coenses, B. deuterodonoides, B. alpha and B. orteguasae)
are grouped in a clade with nearly all of the species of
Knodus analyzed here (node 5, Fig. 8), including its type
species K. meridae, and the inseminating Bryconadenos
tanaothoros from the Rio Xingu. Although the node sub-
tending this group (node 5) received low bootstrap sup-
port (35 %), it is supported in all our results (Table 4),
suggesting that Knodus sensu stricto could be circum-
scribed to this clade (Fig. 3). Bryconadenos was hypothe-
sized as closely related to Attonitus [19], but our results
support the inclusion of Bryconadenos in the genus Kno-
dus as defined above. Some species definitions within
this clade, most notably K. smithi from the Rio Purus
should be revised, since it does not group with other
taxa from the Urubamba and Yurud rivers assigned to
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the same species. Knodus sensu stricto is the sister group
of Rhinobrycon negrensis (Fig. 8).

In the second Amazonian clade, a well-supported
group (node 6, Fig. 9) includes the inseminating Bryco-
namericus pectinatus along with Knodus hypopterus,
Knodus sp. from Madre de Dios and Urubamba (Per)
and two unidentified species of Bryconacidnus. This
clade (“Bryconacidnus” clade) does not include the type
species of either Knodus (node 5) or Bryconamericus
(node 8, Fig. 9; see below), and the strong support for
this group suggests that all these species could be
assigned to Bryconacidnus, pending further study that
includes the type species of this genus (B. ellisi).

Relationships of Bryconamericus pachacuti from the
upper Amazon in Peru remain somewhat uncertain but
our results place it as the sister group to Attonitus
(Fig. 9) with low bootstrap support (38 %), and separated
from B. exodon by five nodes. Generic assignment of B.
pachacuti cannot be resolved with confidence, but it is
tentatively retained in “Bryconamericus” pending further
study. Ceratobranchia and Attonitus are resolved as
monophyletic with confidence and placed with low sup-
port as closely related to the “Brycomnacidnus” clade
(Fig. 9).

The remaining members of the Diapomini form a
strongly supported clade (bs =99 %: node 7, Fig. 9) that
occupies the southern portion of the range of the Ster-
vardiinae and includes the species of Bryconamericus an-
alyzed in our study and not discussed so far, including
the type species of the genus, B. exodon, and the species
of the remaining genera listed for the Diapomini.

The type species of Bryconamericus is grouped with
node 8 (Fig. 9). Although this node receives relatively
low bootstrap support (60 %), it is present in all results
obtained in this study (Table 4). The sister group to Bry-
conamericus exodon is a clade (bs =90 %, Fig. 9) formed
by several species of Bryconamericus (B. iheringii, B.
ikaa, B. lethostigma, B. microcephalus, B. patriciae, B.
rubropictus, and B. uporas), and other taxa assigned to
three small genera Hypobrycon, Nantis, and Odontostoe-
chus. While describing the genus Hypobrycon, it has
been hypothesized that some of the species described in
Bryconamericus (e.g., B. iheringii) would be possibly
more closely related to this new genus than to B. exo-
don, and that the definition of Hypobrycon could be ex-
panded to include these species [44]. Our finding
corroborates the grouping of Hypobrycon with Brycona-
mericus iheringii and some other congeners but the rec-
ognition of Hypobrycon or of the monotypic genera
Nantis and Odontostoechus as valid genera would de-
mand the recognition of several small genera in node 8.
Odontostoechus has been described originally in Cheiro-
dontinae based on the presence of a single series of teeth
in the premaxilla, but this seems to be an autapomorphy
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of the type species, O. lethostigmus. Similarly, the diag-
nostic characters of Nantis seem to constitute autapo-
morphies of the type species. Given that Bryconamericus
has priority over all other nominal genera in this clade,
our results provide the basis for defining a monophyletic
genus Bryconamericus sensu stricto that includes all the
species subtended by node 8 (Fig. 9). Further study of
this group is warranted given the morphological diver-
sity of the studied species. Other species of Bryconamer-
icus not subtended by node 8 and not discussed in this
study, would be retained in “Bryconamericus” until fur-
ther study may justify shifting then to other genera
(Additional file 5).

Piabarchus analis plus Bryconamericus stramineus
(node 9, Fig. 10) and Bryconamericus thomasi plus Pia-
bina (node 10, Fig. 10) form two well-supported groups.
These results suggest that the two species assigned to
Bryconamericus should be reassigned to Piabarchus and
Piabina, respectively (Fig. 10), since they are only dis-
tantly related to the type species Bryconamericus exodon.
A specimen from the Amazon basin in Peru assigned to
Piabarchus analis [ROM 55742, 300 m E of Panguana
camp, isolated pool of a Llulapichis river tributary, Peru,
Huanuco, Ucayali River drainage, collected by Erling on
23 July 1988] was misidentified and corresponds to
Gephyrocharax (Lopéz-Fernandéz, Taphorn, and Vanegas-
Rios, pers. comm.). Therefore the distribution of Piabarchus
is restricted to the Paraguay-Parand and Sdo Francisco
basins.

Among the remaining genera included in this tribe
(node 11, Fig. 10), there is a very well supported clade
embracing Cyanocharax, Diapoma and “Hyphessobry-
con” guarani. This clade is also supported by the apo-
morphic number of i+6 pelvic-fin rays, a count also
shared with the species of Planaltina not analyzed
herein, and differing from the other genera in Stevardii-
nae that have i+7 rays [6, 45-47]. The genus Diapoma
(with all inseminating species) has been hypothesized as
closely related to other inseminating species of Stevardii-
nae that also bear a caudal organ [13, 20, 35]. All these
studies, however, did not include a comprehensive sam-
pling of other species without caudal organs to test this
relationship. It is of note that the caudal organs of the
Diapomini [13] differ from those of taxa in other tribes
in being present and identical in both males and females,
while it is sexually dimorphic (only males) in other in-
seminating tribes (except in Acrobrycon [13]), suggesting
the non-homology of the caudal organ of the Diapomini
relative to other tribes. Our results place Diapoma as a
clade inserted in Cyanocharax, making this genus as de-
fined [6] paraphyletic. Similarities between Cyanocharax
and Diapoma, such as tooth arrangement, general body
shape, color pattern and number of pelvic-fin rays have
been previously discussed [45], in a comparison of the
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morphology of Diapoma speculiferum and Diapoma ter-
ofali with Cyanocharax alburnus (therein named Astya-
nax hasemani). Based on the strong molecular support
for this clade (node 11, Fig. 10), species of Cyanocharax
and Hyphessobrycon guarani should be reassigned to the
genus Diapoma (Additional file 5) in order to define
monophyletic genera and to be consistent with a phylo-
genetic classification. Diapoma as herein defined includes
five highly supported internal clades (bootstrap 99 %,
95 %, 85 %, 93 % and 99 %). Further study of this group is
warranted given the morphological diversity of the in-
cluded species and the presence of four well-defined in-
ternal lineages.

Monotypic tribes (not analyzed herein)

Two monotypic tribes in Stevardiinae were not analyzed
here: Landonini Weitzman and Menezes, 1998 and Phe-
nacobryconini Weitzman and Menezes, 1998. Landonia
latidens was sampled in our study, but excluded from
our analyses because of few genes amplified that pro-
duced instability in the phylogeny; Phenobrycon henni
was not available. As already pointed in the literature
[48], the large amount of monotypic genera being pro-
posed in Characidae to accommodate autapomorphies is
somehow arbitrary and, in many instances, lacking
phylogenetic inference. In the case of Landonini and
Phenacobryconini, monotypic tribes were proposed to
accommodate the large amount of autapomorphies pre-
sented by these monotypic genera; however these propo-
sitions do not reflect phylogenetic relationships. Since
the relationships for these two monotypic genera are un-
known in Stevardiinae, we placed them as incertae sedis
(Additional file 5) to emphasize the necessity of further
investigation of their relationships.

Insemination

External fertilization is the most common reproductive
strategy across the Ostariophysi, including Characi-
formes. Insemination as a reproductive strategy is found
only in some representatives of the Characidae, includ-
ing several members of the Stevardiinae (Table 2). His-
torically, the study of insemination was prompted by the
presence of modified glandular organs in the caudal or
anal fins of some species and documented histologically
by the presence of sperm in the ovaries of stevardiine
species that bear this caudal organ. Insemination, how-
ever, has also been documented for a few species lacking
modified caudal or anal fins (e.g., Bryconamericus pecti-
natus, Creagrutus lepidus and C. melasma), but informa-
tion on insemination, or the lack of it, is absent for most
of the remaining members of this subfamily, being avail-
able only for 92 of the 311 species of Stevardiinae
(Table 2), and only for 46 species analyzed here (30 %).
Apparently due to the fact that external fertilization is
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ancestral and widespread in Characidae, characid species
whose reproductive strategy is unknown have been
treated informally in the literature as externally fertil-
ized, but absence of evidence should not be used as evi-
dence for absence. A topology test constraining all
known inseminating taxa into one clade, however, rejects
a single origin for insemination (Table 5). All members
of Xenurobryconini, Glandulocaudini, Stevardiini and
scattered species in Hemibryconini, Creagrutini and Dia-
pomini are inseminating. This phylogenetic distribution
suggests multiple origins and/or multiple losses of the
inseminating reproductive strategy in Stevardiinae. That
is in agreement with the general phylogenies of the
Characidae [4, 7, 10, 12, 21]. Further analyses should
produce more conclusive results once the reproductive
strategy of most species of stevardiines is known.

In term of sperm morphology, M3 spermatozoid from
the xenurobryconins is the only sperm morphology recov-
ered as monophyletic, while M1 and M2 are found scat-
tered along the tree. Since M1 appears close to the root in
Markiana and in several other terminal nodes, it could
constitute a diagnostic character for the Stevardiinae. For
M2, the sporadic position for the few taxa that present this
sperm type along the tree may indicate that this trait has
multiple origins in Stevardiinae. However, the proposition
of these sperm morphotypes was based on grouping mul-
tiple characters (e.g., centriole and midpiece position and
slightly to moderately elongated shape) into a single sperm
morphotype [11]. A reductionist analysis that creates artifi-
cial sperm types could lump independent characteristics,
with distinguished evolutionary histories, into a single
sperm group (e.g. M1, M2), not necessarily recovering
phylogenetic relationships among taxa that share them.

Unfortunately, it is important to highlight that the lack
of information about sperm morphology and reproduct-
ive strategy in several taxa precludes the use of probabil-
istic approaches for ancestral state reconstruction to test
the hypotheses presented here.

Conclusions

The molecular phylogeny presented in this study pro-
vides a significant advance in our knowledge of the rela-
tionships among of characid fishes in the subfamily
Stevardiinae. On the basis of well-supported monophyletic
groups, we defined seven tribes (Figs. 3—10, Additional file
5) and propose new circumscriptions for historically prob-
lematic (polyphyletic) genera such as Bryconamericus and
Knodus, splitting part of the species of Bryconamericus
into different and not closely related genera (e.g., Eretmo-
brycon and Hemibrycon). Some key taxa not included in
our study or with poor resolution in our phylogeny remain
with uncertain classification, and point to necessary future
studies. Reproductive traits among stevardiine species
that include inseminating strategy and variable sperm
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morphology are interpreted under the new phylogenetic
hypotheses to show that some are evolutionary labile char-
acters while others are phylogenetically informative re-
quiring additional documentation and further analyses to
understand their origins and phylogenetic distributions.

Methods

Taxonomic sampling

A total of 330 specimens were obtained from species
assigned to the subfamily Stevardiinae. These represent
153 species or morphotypes (49 % of 311 valid species in
Stevardiinae), and 32 (67 %) of the 48 recognized genera,
plus one species (Hyphessobrycon guarani) not currently
included in Stevardiinae [6, 49]. These samples origi-
nated in all major Neotropical river basins. In addition,
25 samples from 17 characiform species were used as
outgroup. All specimens used for this molecular work
have tissue samples preserved in ethanol associated with
voucher specimens in museum fish collections and were
identified to species (or genus) based on diagnostic mor-
phological traits. In cases that fieldwork was required,
specimens collection was authorized by the Ministério do
Meio Ambiente - MMA, Instituto Chico Mendes de
Conservacdo da Biodiversidade - ICMBio, licence #
12038/2, in accordance with protocols in their ethical and
methodological aspects for the use of fish. Specimens were
euthanized with Eugenol after capture, and all efforts were
made to minimize suffering. In addition, for two species
sequences were obtained from GenBank (Pseudocoryno-
poma heterandria and Piabarchus sp. [12]). A complete
list of tissues with their associated voucher identification,
collection locality (basin) and contributing institutions
(abbreviations as in [50]) is presented in Additional file 2.

Molecular methods
Genomic DNA was extracted from muscle and fin tis-
sues preserved in 96 % ethanol. For each specimen,
DNA was extracted from approximate 20 to 30 mg of
the tissue using the DNeasy tissue extraction kit (Qia-
gen) or Promega Wizard® SV 96 Genomic DNA Purifica-
tion System. We collected DNA sequences from seven
molecular markers (four nuclear: MYH6, PTR, RAGI and
RAG2; and three mitochondrial genes: 16S, 12S and COI).
PCR reactions to amplify mtDNA fragments used the
Promega GoTaq” qPCR Master Mix in 30 pl reactions
with the following concentrations: 10 to 50 ng genomic
DNA, 0.16 mM of each primer, 0.9 mM of each dNTP,
1x PCR Buffer, 4 mM MgCl, and 0.026 U Taq DNA
polymerase. For the amplification of the nuclear loci, a
nested-PCR approach was required using the Takara® LA
PCR Kit. PCR reactions consisted of 10 to 50 ng gen-
omic DNA, 2.5 ul of ANTP mix (1 mM each), 3.0 pl 10x
buffer, 0.5 pl of each primer (10 pM), 1.2 pl of bovine
serum albumin (BSA), 0.2 ul of Takara Taq (5 U/pul), and
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dH,O to a final volume of 30 pl. A list of the primers
used as well as optimized PCR conditions for the seven
markers are presented in the Additional file 6. PCR
products were submitted for purification and sequencing
in both directions to the High Throughput Sequencing
facility, University of Washington, Seattle — Washington,
USA. The forward and reverse chromatograms were as-
sembled and visualized using the program Codon Code
Aligner v3.7.1. (Codon Code Corporation). [UPAC ambigu-
ity codes were applied when heterozygotes or uncertainty
of the nucleotide identity was detected. All sequences pro-
duced for this study have been deposited [GenBank:
KF209375 - KF209697 (125), KF209698 - KF210029 (16S),
KF210030 - KF210276 (COI), KF210277 - KF210567
(MYH6), KF210568 - KF210779 (PTR), KF210780 -
KF210995 (RAGI), KF210996 - KF211258 (RAG2)] — see
Additional file 2 for details.

Phylogenetic analysis
The 16S and 12S sequences were aligned in SATé v1.4
[51] using 50 iterations under default settings. Exon
markers and COI were aligned individually using Muscle
v3.6 [52] software under the default parameters. All
exons and COI alignments were unproblematic because
these are conserved markers that exhibit very little or no
length variation among species, but were, nevertheless,
visually inspected using Mesquite v2.7 [53] to verify that
all sequences follow the correct reading frame and con-
tain no stop codons. Because nested PCR is highly prone
to cross contamination, a quality control step that in-
volved gene tree estimation via NJ was included in our
workflow to detect potential cases of sequencing errors
due to contamination. Given the degree of redundancy
designed in our taxonomy sampling, errors due to either
sequencing or misidentification can be detected when
sequences from putative conspecific specimens are not
placed together in the tree. Sequences that were found
misplaced in the resulting gene trees were re-checked
and re-sequenced or removed from the alignments in
cases of poor quality. Once individual gene alignments
were finalized, these were used for gene tree estimation
(for species tree analysis, see below), and concatenated
in a single matrix of all genes for phylogenetic analysis.
Phylogenetic reconstructions were performed using the
concatenated dataset as well as species-tree approach that
reconcile discordant gene genealogies. Concatenated ana-
lyses were conducted under Maximum Likelihood (ML)
and Maximum Parsimony (MP) criteria. For ML analyses,
the concatenated data matrix was partitioned into data
blocks to account for heterogeneity among sites and to se-
lect the most appropriate partitioning scheme and models.
PartitionFinder v1.1.1 [54] was implemented with data
blocks defined a priori according to commonly used
structural and functional criteria, separating the sequence
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data into 16 different blocks as follows: the mitochondrial
12S and 16S genes (one block) and each codon position of
each protein-coding gene (COL MYH6, PTR, RAGI,
RAG2) for the other 15 blocks (3 codon positions x 5
genes). PartitionFinder tests combinations of the 16 initial
subsets into a smaller number of data blocks to select the
optimal partitioning scheme based on AIC scores and de-
termine the best-fit model for each partition. Sequences of
Serrasalmus, the most external characiform in our dataset,
were used to root the phylogenetic analyses [12].

The ML analyses were run in RAxML v7.2.8 [55] and
Garli v2.0 [56]. The evolutionary model used for all data
blocks in RAxML was GTRGAMMA, while the Garli set-
tings were adjusted according to the best-fit models se-
lected with PartitionFinder. RAxML searches were
conducted in the CIPRES portal v3.1 [57] using ten parallel
runs and starting with a randomly generated tree. Branch
support was assessed using the rapid bootstrap algorithm
with 1000 replicates. Garli searches used automatic termin-
ation (enthreshfortopoterm command), with eight parallel
runs, eight search replicates and 1000 bootstrap replicates.

For comparison purposes, the concatenated dataset
was analyzed under equally weighted parsimony in TNT
v1.1 [58]. The TNT analysis used a driven-search strategy
combining several tree-search algorithms (e.g., ratchet,
drift, sectorial searches and tree fusion). To maximize
tree-space exploration, the final searches implemented
the tree-bisection—reconnection (TBR) algorithm with
1000 independent replicates. Assessment of branch sup-
port was based on bootstrap search strategies using TBR
and 1000 replicates.

Species tree analyses were conducted in the program
STAR, as implemented in the STRAW web server [59-61].
Input gene trees for STAR were estimated in RAxML,
using the same settings as explained above, and re-rooted
with Serrasalmus. The genes COI, 12S, and 16S were
concatenated and analyzed as a single mitochondrial
locus; the four nuclear gene alignments were run separ-
ately, to obtain a total five gene trees for the STAR ana-
lysis. Preliminary analyses on three genes (MYH6, RAGI,
and PTR) resulted in the non-monophyly of Stevardiinae.
The ingroup monophyly was thus enforced and new gene
trees were estimated in RAxML. Species that had se-
quences from multiple individuals were annotated using
the Species Allele Table Creator in STRAW. Additional
species tree analysis was performed using *BEAST 1.8.0
[62, 63] with one billion MCMC iterations, however this
analysis did not reach convergence and for this reason are
not reported here.

Finally, topology tests were conducted to assess whether
the monophyly of traditionally recognized tribes and gen-
era of Stevardiinae (that were not obtained in our result-
ing trees) can be rejected by the new data. We used
RAxML to obtain maximum likelihood phylogenies
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consistent with the alternative hypotheses. The uncon-
strained ML tree, commonly leading to non-monophyly of
the group of interest, was compared to the ML topology
consistent with enforcing the monophyly of each of the
tribes and genera challenged by our results. For each of
these analyses, the best tree of 10 independent searches
was selected. To evaluate the differences in likelihood
scores between constrained and unconstrained tree top-
ologies, the site likelihood scores were extracted using
RAxML and various topological tests were performed in
Consel, including the AU (approximately unbiased), SH
(Shimodaira and Hasegawa), and KH (Kishino and Hase-
gawa) tests [64].
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