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Neuroradiographic findings in 22q11.2 deletion syndrome
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22q11.2 deletion syndrome (22q11.2DS) is a common genetic disorderwith enormous

phenotypic heterogeneity. Despite the established prevalence of developmental and

neuropsychiatric issues in this syndrome, its neuroanatomical correlates are not as

well understood. A retrospective chart review was performed on 111 patients

diagnosed with 22q11.2DS. Of the 111 patients, 24 with genetically confirmed

22q11.2 deletion and brain MRI or MRA were included in this study. The most

common indications for imaging were unexplained developmental delay (6/24),

seizures of unknown etiology (5/24), and unilateral weakness (3/24). More than half

(13/24) of the patients had significant radiographic findings, including persistent

cavum septi pellucidi and/or cavum vergae (8/24), aberrant cortical veins (6/24),

polymicrogyria or cortical dysplasia (4/24), inner ear deformities (3/24), hypoplastic

internal carotid artery (2/24), and hypoplastic cerebellum (1/24). These findings

reveal the types and frequencies of brain malformations in this case series, and

suggest that the prevalence of neuroanatomical abnormalities in 22q11.2DS may be

underestimated. Understanding indications for imaging and frequently encountered

brain malformations will result in early diagnosis and intervention in an effort to

optimize patient outcomes.
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1 | INTRODUCTION

22q11.2 deletion syndrome (22q11.2DS) is a common genetic disorder

with an estimated incidence of 1 in 4,000 live births (Goodship, Cross,

LiLing, & Wren, 1998; Óskarsdóttir, Vujic, & Fasth, 2004; Tezenas Du

Montcel, Mendizabai, Ayme, Levy, & Philip, 1996). It is often referred

to as velocardiofacial syndrome (VCFS), and is associated with the

phenotype the name suggests—palatal dysfunction, conotruncal heart

defects, and characteristic facies. While these are often the most

recognized findings, 22q11.2 deletion is associated with enormous

phenotypic heterogeneity; over 180 features have been described

(Robin & Shprintzen, 2005).

Approximately 93% of 22q11.2 deletions arise de novo

(McDonald-McGinn & Zackai, 2008). The remaining 7% have an

autosomal dominant inheritance pattern. A hemizygous deletion is

sufficient to produce the full syndrome, but the size and extent of

the deletion has not correlated well with clinical expression. The

deletion site is flanked by low-copy repeats whose high homology to

one another makes this region especially susceptible to rearrange-

ment from unequal meiotic crossovers and non-allelic homologous

recombination (Edelmann, Pandita, & Morrow, 1999). Most patients

(85%) have an approximate 3-Mb deletion encompassing 45

functional genes, 8% have a 1.5-Mb deletion, and the remainderLauren A. Bohm and Tom C. Zhou contributed equally to this work.
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have variable deletion sizes (Emanuel, 2008). Since 1992, fluores-

cence in situ hybridization (FISH) studies using TUPLE1 and N25

probes have allowed clinical laboratories to identify patients with the

22q11.2 deletion, which is almost always too small to be identified

by conventional cytogenetic studies. The probe is limited to one

single target sequence within the 22q11.2 deletion region, and

atypical deletions may not include the region specific to the probe.

Other more sensitive techniques include array comparative genomic

hybridization (aCGH) and single nucleotide polymorphism (SNP)

array.

Management of patients with 22q11.2DS requires coordi-

nated multidisciplinary care, and guidelines on management are

available (Bassett et al., 2011; Fung et al., 2015). While many of

the life-threatening features of 22q11.2DS are addressed in

infancy, the potential for developmental delay, learning disabil-

ities, behavioral impairment and psychiatric illness require

continued surveillance and therapy into adulthood. 22q11.2DS

is the second most common genetic cause of developmental delay

and accounts for 2.4% of individuals with developmental

disabilities (Rauch et al., 2006). Motor and speech-language

delays are commonly observed during early childhood; while

specific learning disabilities are often identified in primary school

ages (Swillen & McDonald-McGinn, 2015). The cognitive capabili-

ties of patients with 22q11.2DS are highly variable. The majority

of affected individuals demonstrate borderline intellectual levels,

and 40% demonstrate mild to moderate intellectual disability

(De Semdt et al., 2007).

In addition, patients with 22q11.2DS are at notably higher risk of

behavioral and psychiatric manifestations, including attention deficit

hyperactivity disorder, autism spectrum disorder, bipolar disorder,

depression, anxiety, obsessive compulsive disorder, and schizophrenia

(Kobrynski & Sullivan, 2007). Studies suggest 9–50% of 22q11.2DS

patients develop behavioral or psychiatric problems at some point in

their lifetime (Kobrynski & Sullivan, 2007). The study of 22q11.2DS

thus offers a unique opportunity to understand the neuroanatomical

differences of certain mental health disorders as they relate to

genetics.

Studies of patients with 22q11.2DS have demonstrated a

range of neuroanatomical abnormalities. Qualitative studies have

reported increased prevalence of developmental midline anoma-

lies (e.g., abnormalities of the septi pellucidi, agenesis of the

corpus callosum) (Campbell et al., 2006; Chow et al., 1999;

Kraynack, Hostoffer, & Robin, 1999; Ryan et al., 1997; Van

Amelsvoort et al., 2001), polymicrogyria (Bingham, Lynch,

McDonald-McGinn, & Zackai, 1998; Cramer, Schaefer, &

Krishnamoorthy, 1996; Ghariani et al., 2002; Kawame, Kurosawa,

Akatsuka, Ochiai, & Mizuno, 2000; Robin et al., 2006), increased

white matter hyperintensities (Campbell et al., 2006; Mitnick,

Bello, & Shprintzen, 1994; Van Amelsvoort et al., 2001),

hippocampal malrotation (Andrade, Krings, Chow, Kiehl, & Bassett,

2013), ventricular enlargement (Chow et al., 1999), hypoplastic

cerebellar vermis and cerebellar atrophy (Bish et al., 2006; Lynch

et al., 1995; Mitnick et al., 1994; Van Amelsvoort et al., 2001).

Quantitative studies using brain MRI have further noted a

decrease in total brain volume by 8.5–11% (Eliez, Schmitt, White,

& Reiss, 2000; Kates et al., 2004; Simon et al., 2005) and multiple

regional changes, such as increased size of caudate nucleus and

insula, and decreased amygdala size (DeBoer, Wu, Lee, & Simon,

2007; Eliez, Barnea-Goraly, Schmitt, Liu, & Reiss, 2002;

Jalbrzikowski et al., 2013). Clinically, nearly 50% of 22q11.2DS

patients have microcephaly (Barnea-Goraly, Eliez, Menon,

Bammer, & Reiss, 2005; Campbell et al., 2006). The cellular

mechanisms leading to these changes have yet to be elucidated.

While there has been some progress in identifying brain

malformations in patients with 22q11.DS, it is unclear how frequently

brain abnormalities are present in the 22q11.2DS population.

Furthermore, the implications of those brain malformations in the

22q11.2DS population as a whole remain unclear. This paper reviews

patients with 22q11.2DS and brainMRI/MRA, who presented to clinic

for multidisciplinary care.

2 | MATERIALS AND METHODS

This study is a retrospective chart review from a tertiary children’s

hospital. Institutional Review Board approval and HIPAA waiver were

obtained from Children’s Minnesota. Patients who presented at the

VCFS Clinic from April 14, 2009 to May 1, 2014 were reviewed within

the Children’s Minnesota electronic medical record.

One hundred eleven consecutive patients presenting to the VCFS

Clinic were identified as potential patients for the study. Of those

patients, 26 had a documented brain MRI or MRA. One patient had a

brain MRI performed and stored at an outside institution, and image

results could not be obtained. Another patient had clinical features of

22q11.2DS, but both FISH and aCGH were negative for 22q11.2

deletion. These two patients were excluded from the study. Therefore,

a total of 24 patients with brainMRI orMRA reports available and only

those with confirmed 22q11.2 deletions by FISH using TUPLE1 probe

or by aCGH were included.

The medical records of the 24 patients were reviewed and data

was collected on developmental history, seizures, head circumfer-

ence, and medical comorbidities. In the analysis, medical comorbid-

ities were categorized using the grouping in the practical guidelines

for multidisciplinary management of 22q11.2DS (Bassett et al.,

2011) as a reference. Clinical judgment was utilized to categorize

medical comorbidities that were not specifically addressed in the

guidelines. A patient was defined as having macrocephaly or

microcephaly if the head circumference at any point during

development was greater than or equal to two standard deviations

above (≥97.5 percentile) or below (≤2.5 percentile) the mean,

respectively.

Original imaging scans were available in 19 of the 24 patients, and

a single pediatric neuroradiologist (R.J.P.) independently reviewed all

these images. For the remaining five patients, the results of the imaging

report as dictated by the original reading radiologist were used. All

institutional imaging was obtained using a GE 1.5 Tesla MRI with a
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standard sequencing protocol, which includes sagittal T1, axial and

coronal fast spin echo T2, axial FLAIR and axial diffusion-weighted

images. For patients with multiple brain MRIs/MRAs, the latest

imaging was used to identify brain malformations because pathology is

more likely to be identified in a more developed brain (e.g.,

myelination). However, in these patients, the indication for obtaining

the first imaging was recorded.

3 | RESULTS

This series of 24 patients was comprised of 14 males and 10 females.

The age at which the last brain MRI or MRA was obtained ranged

from 7 days to 8 years 6 months, with the mean age of 2 years 1

month. Of the 24 patients, 21 underwent brain MRI without

contrast, two underwent brain MRA, and one underwent both brain

MRI without contrast and brain MRA. In addition to the 22q11.2

deletion, three patients had additional copy number variants of

unknown significance identified, including gains at 5q35.3 and

9p24.1, and loss at 15q11.2. The frequencies of medical comorbid-

ities in these 24 patients are shown in Table 1. The clinical features

of these patients were very similar to the general 22q11.2DS

population as reported in the literature. However, this patient

sample had more neurological issues.

Indications for brain imaging in the 24 patients are shown in

Figure 1. The most common indications were unexplained develop-

mental delay (6 of 24), seizures of unknown etiology (5 of 24), and

unilateral weakness (3 of 24). Two patients had imaging performed to

evaluate for aberrant vasculature and unspecified congenital anoma-

lies. Other indications occurred in one patient each and included

microcephaly, dysphagia, recurrent clubfoot, vertigo, hypoxemic-

ischemic insult, and headache.

Nearly half of the patients had abnormal head circumferences.

While 12 (50%) of 24 patients were normocephalic, 8 (33%) were

microcephalic, and 2 (8%) were macrocephalic (Table 2). No head

circumference data were available for the remaining 2 (8%) patients.

Interestingly, more than half of the patients with brain imaging had

remarkable findings (Table 3). The most common finding was

persistent cavum septi pellucidi and/or cavum vergae, seen in 8 of

24 (33%) patients. Aberrant cortical veins were seen in 6 (25%)

patients. These veins were considered abnormal due to their size,

number, or organization (Figure 2). Migrational disorders, such as

polymicrogyria and cortical dysplasia, were seen in 4 (17%) patients

(Figure 3a,b). Three (13%) patients had inner ear deformities that

consisted of vestibular dysplasia (Figure 4a,b). Lastly, 2 (8%) patients

had hypoplastic internal carotid arteries (Figure 5a,b), and 1 (4%)

patient had a hypoplastic cerebellum. It is important to note that 11

(46%) of 24 patients had no evidence of brain malformations.

TABLE 1 List of medical comorbidities and their relative frequency as compared to 22q11.2DS population

List of medical comorbidities
Number,
N = 24

Frequency of finding in
sample (%)

Frequency of finding in 22q11.2DS population (%)
(Bassett et al., 2005, 2011; Kobrynski & Sullivan, 2007;
Maggadottir & Sullivan, 2013)

Developmental delay and cognitive
impairment

20 83 75–90

Otolaryngologic 19 79 69–100

Neurological 19 79 8–40

Cardiovascular 16 67 49–83

Musculoskeletal 13 54 15–59

Immune-related 9 38 35–77

Genitourinary 6 25 10–37

Gastrointestinal 6 25 6–36

Psychiatric 5 21 9–50

Premature 4 17 –

Endocrine 4 17 17–60

Hematologic 2 8 6–30

Ophthalmologic 2 8 7–70

FIGURE 1 Indications for brain imaging. The top three
indications for brain imaging are developmental delay,
seizures, and unilateral weakness. [Color figure can be viewed at
wileyonlinelibrary.com]
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4 | DISCUSSION

The study herein describes 24 patients with genetically confirmed

22q11.2 deletion and brain MRI or MRA. The medical comorbidities

suggest that the 24 patients are a representative sample of the

22q11.2DS population. As seen in Table 1, the frequencies of medical

comorbidities in this patient sample fall within the ranges cited in the

literature, with the exception of neurological conditions. The

discrepancy seen amongst neurologic conditions likely stems from

inconsistent classification systems used in the literature. Other authors

may have used different classifications, leading to a lower overall

incidence of neurological findings in their cohorts of patients (Bassett

et al., 2005; Ryan et al., 1997). In order to be comprehensive, this study

did not limit neurologic conditions to structural abnormalities of the

brain, but also included spinal cord pathology, seizures, and neuro-

vascular abnormalities.

The other possibility is that the prevalence of neurological

abnormalities is underestimated since brain MRI, unlike renal

ultrasound and echocardiogram, is not routinely obtained in patients

with 22q11.2DS. In this sample, approximately 23% (26 of 111) of

patients with 22q11.2DS underwent brain MRI or MRA. There is no

previously published data on the percentage of patients, who undergo

brain imaging in this population. In comparison, renal ultrasound and

echocardiogram are recommended in all patients with 22q11.2DS at

the time of diagnosis (Bassett et al., 2011). This study elucidated

radiographic abnormalities, such as aberrant cortical veins and

vestibular dysplasia, that have not been previously identified in this

population.

A number of previous reports of neuroanatomical findings in

patients with 22q11.2DS were confirmed in this study. In this review,

four patients (17%) had evidence of migrational disorders, including

polymicrogyria and cortical dysplasia. Polymicrogyria, a developmental

malformation of neuronal migration resulting in deranged cortical layer

organization and excessive number of small gyri, was a significant

finding in 3 of 24 patients (Figure 3a). Despite the rarity of

polymicrogyria, it remains as one of the more common brain

malformations in patients with 22q11.2DS (Bingham et al., 1998;

Cramer et al., 1996; Ghariani et al., 2002; Kawame et al., 2000; Robin

et al., 2006).

The pathogenesis of polymicrogyria in 22q11.2DS remains

unclear, but a number of reports suggest a vascular mechanism

involving hypoperfusion of the brain (Robin et al., 2006). Haploinsuf-

ficiency of TBX1, a key gene deleted in the 22q11.2 region and

identified to be responsible for many of the cardiovascular phenotypes

in 22q11.2DS, was recently discovered to be involved in brain

angiogenesis in mice (Cioffi et al., 2014). Additionally, a range of

cardiac and Circle ofWillis anomalies have been described (Shprintzen,

2008). Schaer et al. (2009) report a correlation between reduced total

brain volume and gyrification in 22q11.2DS patients with significant

congenital cardiac disease.Of the three patientswith polymicrogyria in

this study, only one had cardiac defects. However, the possible

association of polymicrogyria with other comorbidities is not

adequately addressed here due to a small sample size.

The incidence of polymicrogyria in 22q11.2DS is estimated to

be 1% (McDonald-McGinn & Sullivan, 2011). The incidence of

TABLE 2 Head circumference

Number, N = 24
Frequency of
finding in sample (%)

Normal 12 50

Microcephaly 8 33

Macrocephaly 2 8

Data not available 2 8

TABLE 3 Brain MRI findings and their frequencies

List of brain MRI findingsa
Number,
N = 24

Frequency of
finding in sample
(%)

None 11 46

Persistent cavum septi pellucidi

and/or cavum vergae

8 33

Aberrant cortical veins 6 25

Migrational disorders 4 17

Inner ear deformities 3 13

Hypoplastic internal carotid
artery

2 8

Hypoplastic cerebellum 1 4

aPatients may present with more than one significant brain MRI finding.

FIGURE 2 Axial T2 FSE brain MRI demonstrating numerous small
caliber cortical veins (arrows) at the vertex. [Color figure can be
viewed at wileyonlinelibrary.com]

BOHM ET AL. | 2161

http://wileyonlinelibrary.com


polymicrogyria in the general population is unknown due to clinical

and radiographic heterogeneity. The clinical presentation depends

on extent and severity of cortical involvement, and may vary from

mild developmental delay to quadriplegia and intractable epilepsy.

Likewise, radiographic imaging is variable due to the type of

imaging modality, stage of maturity/myelination, and type of

polymicrogyria (Barkovich, 2010). Hence, subtle polymicrogyria

may be missed. Based on the positive finding in at least 3 of the

111 studied patients with 22q11.2DS, the incidence is estimated to

be at least 2.7%.

Cortical dysplasia, another neuronal migration abnormality, has

been reported in 22q11.2DS previously (Bird & Scambler, 2000).

Sprecher et al. (2005) demonstrated that the homozygous mutation of

synaptosome associated protein 29 (SNAP29), located outside the

1.5-Mb region but within the 3-Mb region of the 22q11.2 deletion, is

linked to cortical dysplasia in a rare autosomal recessive condition.

Severe cortical dysplasia was seen in one patient in this review;

however, aCGH demonstrated only a 1.4-Mb deletion.

This study demonstrates neurovascular findings previously

unidentified in patients with 22q11.2DS. In six patients, abnormal

cortical veins were seen. Two of these six patients also hadmigrational

disorders with abnormally enlarged cortical veins superficial to the

dysplastic cortex (Figure 3a). Similar findings have been reported in

patients with polymicrogyria and are useful adjuncts in making a

radiographic diagnosis of polymicrogyria (Hayashi, Tsutsumi, &

Barkovich, 2002). In the remaining four patients, the cortical veins,

in contrast, were smaller in caliber, abnormal in number, or

disorganized in appearance (Figure 2). The exact cause for this is

unclear, but it is speculated this may be due to an arrest in the

development and coalescence of microveins. Interestingly, three of

these four patients also had prominent extra-axial spaces or enlarged

ventricles. It has yet to be determined whether venous abnormalities

cause insufficient drainage, in turn causing prominent extra-axial

spaces or enlarged ventricles.

Additionally, arterial abnormalities were observed in some

patients. Two patients had unilateral hypoplastic internal carotid

FIGURE 3 Coronal T1 Flair brain MRI demonstrating perisylvian
polymicrogyria on the right (arrows) with a prominent
cortical vein (arrowhead) overlying the malformation (a). Sagittal
T1 brain MRI showing extensive cortical dysplasia (arrows)
involving frontal and temporal lobes (b). [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 4 T2 FSE brain MRI showing lateral semicircular canal
dysplasia (arrows) in axial (a) and coronal (b) planes in one patient.
[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Coronal T2 FSE brain MRI illustrating hypoplastic left
internal carotid artery (arrows) involving the terminus in one patient
(a) and the caverous segment in another patient (b). [Color figure
can be viewed at wileyonlinelibrary.com]
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arteries (ICA) at the carotid terminus or cavernous segment (Figure 5a,

b, respectively), and one of these patients also had polymicrogyria on

the ipsilateral side. It is not clear whether hypoperfusion of the brain

leads to polymicrogyria in these cases, but this association has been

suggested, as discussed earlier. Hypoplasia of the ICA can present as

cerebral ischemia or hemorrhage, and patients with this anomaly have

associated variations of the Circle of Willis, increased incidence of

intracranial aneurysms and extensive networks of collateral vessels to

compensate for the diminished carotid flow (Osborn, Mojtahedi, Hay,

& Dewitt, 1986).

Other findings included persistent cavum septi pellucidi and/or

cavum vergae, inner ear anomalies, and a hypoplastic cerebellum. In

this study, cavum septi pellucidi and/or cavum vergae were defined as

persistent if they were present on imaging after 6 months of age.

Persistent cavum septi pellucidi and/or cavum vergae, the most

common brain MRI findings in these patients, have been previously

reported in individuals with 22q11.2DS (Campbell et al., 2006; Chow

et al., 1999; Schmitt et al., 2014; Van Amelsvoort et al., 2001).

Hypoplastic cerebellum, as seen in one patient, has also been

demonstrated (Bish et al., 2006; Lynch et al., 1995; Mitnick et al.,

1994; Van Amelsvoort et al., 2001). Inner ear anomalies, such as

vestibular dysplasia (Figure 4a,b), were seen in three patients in this

case series. The significance of these inner ear anomalies is unclear.

None of these patients had sensorineural hearing loss. However, TBX1

has also been implicated in inner ear malformations in mice (Vitelli

et al., 2003).

The most common indications for brain imaging in these patients

together represented a majority (59%) of the patients with 22q11.2DS

and included unexplained developmental delay, seizures of unknown

etiology, and unilateral weakness. All the patients who underwent

imaging to evaluate for anatomical causes of developmental delays in

this study did so prior to their diagnosis of 22q11.2DS. In fact, the

detection of certain neuroanatomical abnormalities prompted further

genetic evaluation in some cases. For example, it is recommended that

FISH analysis for 22q11.2 be performed in all patients with perisylvian

polymicrogyria (Guerrini & Carrozzo, 2001). Conversely, patients with

a known diagnosis of 22q11.2DS and expected developmental delays

did not receive any brain imaging. Neuroimaging may be considered

when the degree of developmental delay exceeds normative

expectations for 22q11.2DS patients.

While seizures in 22q11.2DS are usually attributed to hypocalce-

mia or fever, seizures without a clear explanation may also be an

indication for neuroimaging. Undiagnosed brain abnormalities such as

cortical dysplasia can lower the seizure threshold in at risk patients.

ObtainingMRI would allow prognostication regarding the likelihood of

future seizures. Focal neurological findings manifested as unilateral

weakness (e.g., hemiparesis or unilateral facial palsy) may indicate a

localized brain lesion andwarrant further imaging asmedical or surgical

intervention may be needed to address underlying brain anomalies.

Limitations to this study include its retrospective nature and risk of

selection bias of the patient series. Patients with indications for brain

MRI (e.g., seizures, developmental delay, microcephaly, and unilateral

weakness) are more likely to have preexisting and previously

undetected neurological pathology. For example, patients with

polymicrogyria had a greater degree of developmental delay than is

typical for 22q11.2DS (Robin et al., 2006). However, the studied

patients as a group have developmental delay similar to that of the

general 22q11.2DS population. Another limitation of this study is the

potential for confounding bias in a few of the patients. Three patients

had copy number variants of unknown significance in addition to

22q11.2 deletion. The association between these genetic mutations

and the brain imaging findings is unknown.

By identifying patients with 22q11.2DS with neuroanatomical

abnormalities, early diagnosis and intervention may provide the best

opportunity to improve their clinical course. Patients with brain

malformations may require additional early childhood special educa-

tion, psychiatric evaluation and management, higher clinical suspicion

for seizures, or neurosurgical interventions. Also, the cluster of

radiographic findings in a patient without a prior diagnosis of

22q11.2DS, including cavum septi pellucidi and/or cavum vergae,

polymicrogyria or cortical dysplasia, inner ear anomalies, aberrant

cortical veins, hypoplastic internal carotid artery, and hypoplastic

cerebellum, should raise suspicion for 22q11.2DS and suggest referral

for a genetics evaluation.

5 | CONCLUSION

22q11.2 DS is a common genetic disorder with enormous phenotypic

heterogeneity. While there has been significant progress in identifying

brain malformations in patients with 22q11.DS, the implications of

those brain malformations is unclear. This study reveals the types and

frequencies of brain malformations, and suggests that the prevalence

of neurological anomalies may be underestimated in this population. A

better understanding of indications for imaging and frequently

encountered brain malformations will result in early diagnosis and

intervention in an effort to optimize patient outcomes.
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