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A M E R I C A N  J O U R N A L  O F  B O T A N Y

R E S E A R C H  A R T I C L E

                    Th e volcanic and clastic sediments of the Hiwegi Formation on 
Rusinga Island, Lake Victoria, Kenya have yielded a rich early Miocene 
fl ora and fauna with well over 100 recorded species, dated to ca. 
18–20 Ma ( Drake et al., 1988 ;  Andrews et al., 2009 ;  Peppe et al., 2011 ). 
Th e fl oral assemblage contains fossilized fruits, seeds, twigs, wood, 
bark, and leaves ( Chesters, 1957 ;  Collinson et al., 2009 ;  Maxbauer et al., 
2013 ;  Michel et al., 2014 ), and the faunal assemblage comprises 
numerous fossil mammals (e.g.,  Whitworth, 1958 ;  Pickford, 1981 ; 
 Butler, 1984 ;  Werdelin, 2011 ), reptiles (e.g.,  Clos, 1995 ;  Conrad et al., 
2013 ), birds (e.g.,  Harrison, 1980 ;  Rich and Walker, 1983 ) and inver-
tebrates (e.g.,  Leakey, 1952 ;  Verdcourt, 1963 ;  Th ackray, 1994 ;  Pickford, 
1995 ). Th e fauna also contains several genera of early hominoids 
(e.g.,  Le Gros Clark and Leakey, 1951 ;  Andrews and Simons, 1977 ; 
 Walker and Teaford, 1988 ;  Walker et al., 1993 ;  Harrison, 2002 ; 
 McNulty et al., 2007 ;  Harrison and Andrews, 2009 ;  Pickford et al., 
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 X-rays and virtual taphonomy resolve the fi rst  Cissus  
(Vitaceae) macrofossils from Africa as early-diverging 
members of the genus 1  
  Neil F.   Adams   2,3,10  ,  Margaret E.   Collinson   2,4  ,  Selena Y.   Smith   5  ,  Marion K.   Bamford   6  ,  Félix   Forest   7  ,  Panagiota   Malakasi   7  ,  Federica   Marone   8  , 

and  Dan   Sykes   9,11   

  PREMISE OF THE STUDY:  Fossilized seeds similar to  Cissus  (Vitaceae) have been recognized from the Miocene of Kenya, though some were previously as-

signed to the Menispermaceae. We undertook a comparative survey of extant African  Cissus  seeds to identify the fossils and consider their implications for 

the evolution and biogeography of  Cissus  and for African early Miocene paleoenvironments. 

  METHODS:  Micro-computed tomography (μCT) and synchrotron-based X-ray tomographic microscopy (SRXTM) were used to study seed morphology and 

anatomy. Virtual taphonomy, using SRXTM data sets, produced digital fossils to elucidate seed taphonomy. Phylogenetic relationships within  Cissus  were 

reconstructed using existing and newly produced DNA sequences for African species. Paleobiology and paleoecology were inferred from African nearest 

living relatives. 

  KEY RESULTS:  The fossils were assigned to four new  Cissus  species, related to four modern clades. The fossil plants were interpreted as climbers inhabiting 

a mosaic of riverine woodland and forest to more open habitats. Virtual taphonomy explained how complex mineral infi ll processes concealed key seed 

features, causing the previous taxonomic misidentifi cation. Newly sampled African species, with seeds most similar to the fossils, belong to four clades 

within core  Cissus , two of which are early diverging. 

  CONCLUSIONS:  Virtual taphonomy, combined with X-ray imaging, has enabled recognition of the fi rst fossil  Cissus  and Vitaceae from Africa. Early-divergent 

members of the core  Cissus  clade were present in Africa by at least the early Miocene, with an African origin suggested for the  Cissus sciaphila  clade. The 

fossils provide supporting evidence for mosaic paleoenvironments inhabited by early Miocene hominoids. 

    KEY WORDS       Cissus ; Hiwegi Formation; liana;  Menispermicarpum ; microCT; Miocene; paleoecology; seeds; SRXTM; virtual taphonomy 
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2009 ), including  Ekembo  (previously  Proconsul , see  McNulty et al., 
2015 ), which mark the transition between Paleogene arboreal pri-
mates, thought to inhabit tropical forests ( Andrews, 1992 ;  Janis, 
1993 ), and Neogene bipedal hominids, oft en associated with open 
savanna grassland ( Robinson, 1963 ;  Reed, 1997 ;  Pickford, 2002 ). 
Study of the Hiwegi Formation fl ora is essential to understand the 
paleoenvironments in which these transitional hominoids evolved. 

 Th e fruit and seed fl ora was partly described by  Chesters (1957)  
from surface-picked collections, but these lacked a sedimentologi-
cal and stratigraphic context. Th ese issues of specimen provenance 
prompted in situ excavations at the new site of R117 ( Collinson et al., 
2009 ), where over 360 fruits and seeds were collected, including sev-
eral specimens tentatively identifi ed as cf.  Cissus  sp. 1 nov. (Vita-
ceae). During that study, three other morphotypes with similarity 
to seeds of extant  Cissus  L. species were recognized among the col-
lections originally studied by  Chesters (1957 ,  1958 ). If these four 
fossil records of  Cissus  can be verifi ed, they would constitute the 
fi rst records of the Vitaceae in the fl ora, the earliest reported record 
of Vitaceae from the African continent and could provide evidence for 
arid- or rainforest-adapted taxa in the African Miocene vegetation 
( De Santo et al., 1987 ;  Verdcourt, 1993 ;  Lombardi, 2000 ;  Manchester 
et al., 2012a ). 

 Recent molecular phylogenetic analyses of the genus  Cissus  ( Liu 
et al., 2013 ;  Rodrigues et al., 2014 ) showed that modern species 
could be assigned to several distinct clades. All African species fell 
within the core  Cissus  clade, but within that were distributed in more 
than seven distinct subclades, two of which also included Asian 
species ( Liu et al., 2013 ). However, many African species were miss-
ing from these phylogenies, including those with external seed 
morphology most similar to the putative  Cissus  fossils. If the fossils 
are  Cissus , molecular study of these neglected modern species will 
be essential to place them in their phylogenetic context. 

 Th is paper therefore aims to (1) confi rm or refute the identifi ca-
tion of Hiwegi Formation fossils to  Cissus  and, if confi rmed, identify 
the clades to which the fossil species are likely related by comparing 
external and internal seed morphology of the fossils to extant Afri-
can species; (2) place the nearest living relatives of the fossils into 
the existing phylogenetic framework; and (3) evaluate the fossils’ 
paleoenvironmental and biogeographic signifi cance. 

 MATERIALS AND METHODS 

 Specimens studied —   Th e fossil fruits and seeds from the Hiwegi 
Formation are composed of carbonate minerals, which derive from 
highly alkaline ash erupted from the nephelinite-carbonatite Kisin-
giri volcano during the Miocene ( Bestland et al., 1995 ;  Harris and 
Van Couvering, 1995 ), and which replaced biological structures 
during fossilization ( Collinson et al., 2009 ). Th e specimens were col-
lected from the Hiwegi Formation (for wider stratigraphic context, 
see  Drake et al., 1988 ;  Collinson et al., 2009 ) by surface-picking and 
in situ excavation and are stored in collections at the Natural History 
Museum, London (NHMUK, specimen numbers prefi xed V) and the 
National Museums of Kenya, Nairobi (KNM). Th ree fossil seed mor-
photypes in NHMUK, which  Chesters (1957 ,  1958 ) had placed in 
the Menispermaceae (due to their bisymmetry, horseshoe-shaped 
curvature, and sculptured margins), were noted by M. E. Collinson 
(personal observations) to have strikingly similar exterior seed coat 
morphology to modern African  Cissus  species, as illustrated in Af-
rican fl oras (e.g.,  Dewit and Willems, 1960 ;  Descoings, 1967 ,  1972 ; 

 Verdcourt, 1993 ).  Collinson et al. (2009)  also listed several speci-
mens from the R117 site assigned to ‘cf.  Cissus  sp. 1 nov.’ (Vitaceae) 
based on similarity to modern  Cissus  seeds. All these fossils were 
re-examined during the current study. 

 Fift een modern species of African  Cissus  and three species of Af-
rican  Cyphostemma  (Planch.) Alston, which have comparable seed 
ornamentation to the putative  Cissus  fossils, were sampled from 
loose fruits on herbarium sheets in the Royal Botanic Gardens, Kew 
Herbarium (K) to study seed anatomy. Th e most visibly mature and 
undamaged specimens were selected. Additionally, fruits of  Cissus 
dasyantha  were obtained from the herbarium at the Botanic Garden 
Meise, Belgium (BR). Herbarium sheet information for the species 
sampled is provided in Appendix S1 (see Supplemental Data with 
the online version of this article). 

 Macrophotography and VP-SEM —   Photographs of the specimens 
described by  Chesters (1957 ,  1958 ) were provided by the NHMUK 
Photographic Unit. Th e smaller specimens, assigned to ‘cf.  Cissus  
sp. 1 nov.’ by  Collinson et al. (2009) , were examined uncoated under 
a Leo 1455 vapor pressure scanning electron microscope (VP-SEM) 
at the Imaging and Analysis Centre, NHMUK. Specimens were 
placed loose onto a sheet of black paper in a small tray, moved into 
appropriate orientation and turned over using a fi ne (size 00000) 
artist’s brush. A small amount of Blu-Tack (Bostik, Paris, France) 
was used, when unavoidable, to orient specimens for apical and 
basal views. Images were obtained using the back scatter detector 
(BSD), a chamber pressure of 14–15 Pa, current of 20 kV, spot size 
500, and working distance 38–39 mm. Images were adjusted uni-
formly for contrast and brightness using Adobe (San Jose, California, 
USA) Photoshop CS2 or CS6. 

 Synchrotron-based X-ray tomographic microscopy (SRXTM) —   Th e 
traditional method of boiling and scrubbing modern fruits to study 
their seeds is problematic. Depending on tissue toughness, seed 
features may not be revealed in a repeatable or comparable manner 
across diff erent species or genera. Cutting or histological sectioning 
to study internal anatomy also has limitations: it is destructive, may 
introduce artifacts (tears, gaps), and multiple planes of section 
through the same specimen cannot be acquired. X-ray imaging 
solves these problems because multiple planes of section through a 
single specimen can be easily and nondestructively obtained (e.g., 
 Smith et al., 2009 ). Modern  Cissus  and  Cyphostemma  fruits were 
scanned using SRXTM, as this technique provides the necessary 
quality of resolution to enable distinction of cellular details in the 
fruit wall and seed coat layers for systematic study and for virtual 
taphonomy ( Smith et al., 2009 ;  Collinson et al., 2013 ). Th e SRXTM 
was performed on the TOMCAT beamline at the Swiss Light 
Source, Paul Scherrer Institut, Villigen, Switzerland ( Stampanoni 
et al., 2006 ). Specimens were mounted onto brass pin stubs using 
polyvinyl acetate glue and were scanned during one session of 
beamtime in July 2014. X-rays transmitted by the specimens were 
converted into visible light by a 300 μm-thick Ce-doped LAG scin-
tillator screen. A microscope objective of 1.25 ×  or 2 ×  (depending 
on fruit size) magnifi ed the projection data, which were then digi-
tized by a high-resolution scientifi c CMOS camera (PCO.edge; 
PCO GmbH, Kelheim, Germany), giving a resultant voxel size of 3 
to 5  μ m. Th e energy was set at 17.5 keV, and the exposure time per 
projection was 50 ms. For each scan, 1501 projections (2560  ×  2160 
pixels with PCO.edge camera) were acquired over 180 ° . Recon-
struction algorithms were then used to combine the projections 
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and obtain a three-dimensional volume, reconstruction was per-
formed on a dedicated Linux PC cluster using a highly optimized 
routine based on the Fourier transform method and a gridding pro-
cedure ( Marone et al., 2010 ;  Marone and Stampanoni, 2012 ). Mul-
tiple stacked scans were used if the specimens did not completely fi t 
within the fi eld of view. Th ree-dimensional data sets were visual-
ized, and images and videos were captured, in the program Avizo 
8.1 (FEI Visualization Science Group, Bordeaux, France). Images 
were adjusted uniformly for contrast and brightness using Adobe 
Photoshop CS2 or CS6. Videos of digital SRXTM tomograms in 
transverse section (DTS) through fruits of each of these modern 
species are available from the Dryad Digital Repository ( http://dx.
doi.org/10.5061/dryad.g9r36 ). 

 Micro-computed tomography (μCT) —   Externally visible ventral in-
folds are a characteristic feature of  Cissus  seeds ( Chen and Manches-
ter, 2011 ), but are not evident in the fossils ( Fig. 1 ).  Information on 
internal structure of the fossils (including holotypes) is required to 
test whether these characteristic ventral infolds are (1) genuinely 
absent, which would exclude affi  nity with Vitaceae; (2) present but 
externally obscured by a seed coat layer, which would indicate affi  nity 
with  Cyphostemma  ( Chen and Manchester, 2011 ); or (3) obscured 
as a consequence of taphonomic processes, such as mineral infi lling 
during fossilization, which would support identifi cation to  Cissus . 
For holotypes and rare fossils, this information must be obtained 
nondestructively. Th erefore, three fossil specimens (V33753, V68501, 
V68506) from collections studied by  Chesters (1957 ,  1958 ) and 
stored in NHMUK and two specimens (R117.1981.314, R117.1981.476) 
from the R117 site, identifi ed by  Collinson et al. (2009)  as ‘cf.  Cissus  
sp. 1 nov.’ and housed in KNM were scanned by  μ CT using a Nikon 
Metrology HMX ST 225 at the Imaging and Analysis Centre, 
NHMUK. Specimens were stabilized by inserting them into blocks 
of OASIS Floral Foam (Smithers-Oasis Company, Kent, Ohio, USA) 
within in a plastic tube. Specimens were wrapped for protection in 
cling fi lm: a thin fi lm of PVC (polyvinyl chloride) or LDPE (low 
density polyethylene). A voltage of 200 kV was used with a current 
of 180  μ A, a tungsten refl ection target, a 0.5 or 0.25 mm copper fi lter 
and an exposure time of 708 ms, resulting in a voxel size of 12  μ m. 
Four modern  Cissus  fruits scanned by SRXTM (one  C. dinklagei , 
one  C. populnea , two  C. integrifolia ) were also scanned using  μ CT. 
Th is duplicative scanning aimed to ensure that μCT scans of the 
fossils could be interpreted in the context of directly comparable 
scans of modern seeds (a comparison of imaging methods is pro-
vided in Appendix S2 with the online Supplemental Data). A volt-
age of 125 kV was used with a current of 200 μA, a molybdenum 
refl ection target, no fi lter and an exposure time of 708 ms, resulting 
in a voxel size of 8 to 15 μm.  μ CT data sets were reconstructed using 
CT Pro (Nikon Metrology, Tring, UK) and were visualized in Avizo 
8.1. Images and videos were obtained as for SRXTM data sets. Vid-
eos are available from the Dryad Digital Repository ( http://dx.doi.
org/10.5061/dryad.g9r36 ). 

 Virtual taphonomy —   Th e technique of virtual taphonomy, developed 
by  Smith et al. (2009) , solves the problem of potential variability in 
tissue removal with traditional boiling or scrubbing methods in 
seed preparation. Virtual taphonomy uses X-ray data sets to digitally 
remove specifi c tissue or cell layers from modern fruits or seeds, 
thereby creating digital fossils, the surfaces of which can be directly 
compared with real fossils to determine which layers are preserved. 
Digital seed infi lls can also be produced using this technique, 

mimicking the mineral infi ll of fruits and seeds that can occur during 
fossilization ( Smith et al., 2009 ;  Collinson et al., 2013 ). For modern 
 Cissus populnea  Guill. & M.Brandt, a digital infi ll of the space inside 
the inner seed coat (the endotesta) was produced (a virtual fossil), to 
mimic mineral infi ll during fossilization. Th e ventral infolds were 
then digitally infi lled to mimic processes that might have led to min-
eral obscuring the ventral infolds during fossilization. 

 Molecular phylogeny —   Phylogenetic relationships within  Cissus  
and the placement of species assigned to this genus within Vitaceae 
were assessed using available sequence data from the plastid genome 
( trnL  intron,  trnL-F  spacer,  atpB - rbcL  spacer,  trnC-petN  spacer and 
 rps16  intron), as well as newly produced sequences of  trnL-F  and 
 rps16  for eight African  Cissus  species with seeds most similar to the 
putative  Cissus  fossils, which were not represented in previous mo-
lecular phylogenetic studies (see Appendix 1). Sequence data ob-
tained from public repositories comprise 91  Cissus  species and 92 
species from other genera of Vitaceae (see Appendix 2). 

 Total genomic DNA was extracted using a standard CTAB-
based protocol ( Doyle and Doyle, 1987 ) and purifi ed using a combined 
cesium chloride/ethidium bromide gradient and dialysis proce-
dure. Th e  trnL  intron/ trnL-F  spacer and the  rps16  intron were ampli-
fi ed using the primers designed by  Taberlet et al. (1991)  and  Shaw 
et al. (2005) , respectively. Further details regarding the polymerase 
chain reactions, amplifi cation procedures, PCR product purifi cations, 
and cycle sequencing reactions are provided in online Appendix S3. 

 Matrices (including sequences obtained from public reposito-
iries and those produced for the current study) were aligned using 
MUSCLE ( Edgar, 2004 ) in the program Geneious; alignments are 
available from the TreeBASE depository ( https://treebase.org ; study 
ID 18491). A phylogenetic analysis was performed on a combined 
matrix using the maximum likelihood criterion as implemented in 
the program RAxML v8.1.24 ( Stamatakis, 2014 ) using the rapid 
bootstrap algorithm with 1000 replicates and a search for the best-
scoring tree. Divergence time estimates were obtained using the 
Bayesian inference approach implemented in the package BEAST 
v.1.8.2 ( Drummond and Rambaut, 2007 ). All analyses were run on 
the Cipres Science Gateway portal ( www.phylo.org ). Further details 
of the phylogenetic analyses are provided in Appendix S3. 

 Calibration was performed using three fossils. Th e fi rst is the 
oldest known fossil securely identifi ed to the Vitaceae family ( Indo-
vitis ) from the latest Cretaceous/earliest Paleogene Deccan traps of 
India (ca. 66 Ma, based on radiometric dating and biostratigraphy; 
 Manchester et al., 2013 ) and was used as calibration on the crown 
node of subfamily Vitoideae (calibration A), comprising all genera 
of Vitaceae except the genus  Leea , which is assigned to subfamily 
Leeoideae. A log-normal distribution was used, which allows the 
age to vary (given the uncertainty in fossil age estimation and given 
that a fossil’s age is considered a minimum age for a given group), 
with an offset value of 65 and a standard deviation of 1.0. The 
second calibration point comes from fossil seeds assigned to  Ampe-
locissus parvisemina  Chen & Manchester from the late Paleocene of 
North America at the Beicegel Creek locality of the Sentinel Butte 
Formation, Fort Union Group, North Dakota ( Chen and Manchester, 
2007 ), considered by  Zetter et al. (2011)  to be late Paleocene (61.7–
56.8 Ma) in age based on molluscan and mammalian ( Kihm and 
Hartman, 1991 ;  Hartman and Kihm, 1995 ) biostratigraphy and 
pollen zonation ( Nichols and Ott, 1978 ). It was assigned to the stem 
node of the clade comprising genera  Ampelocissus  Planch.,  Notho-
cissus  (Miq.) Latiff ,  Parthenocissus  Planch.,  Pterisanthes  Blume,  Vitis  
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L., and  Yua  C.L.Li, following  Nie et al. (2012)  and  Liu et al. (2016)  
(calibration B). As for the previous calibration, a log-normal distri-
bution was used, with an off set value of 55.8 and a standard deviation 
of 1.0. Th e third calibration point is the oldest fossil unequivocally 
assigned to genus  Cissus , from the Belén fl ora (North Coastal Peru) 
of the Oligocene, with a maximum age of 30–28.5 Ma based on diatom 
biostratigraphy ( Manchester et al., 2012a ). Th is fossil has features 
shared with species from morphotype 1 and the  Cissus integrifolia  
clade (see below); it was therefore assigned to the stem node of this 
group (calibration C) with a log-normal distribution with an off set 
value of 27.5 and a standard deviation of 1.0. 

 Extant Cissus seed morphological information —   In addition to 
the 16 SRXTM data sets of African  Cissus  seeds most similar to 
the Hiwegi Formation fossils, published seed illustrations and 

descriptions were sourced, where available, for all African  Cissus  
species included in the molecular phylogeny ( Table 1  ; online 
Appendix S4). Together, these data were used to determine the 
modern species with seeds most similar to those of the fossils and to 
place these nearest living relatives into the existing phylogenetic 
framework. 

 Ecological and biogeographic information —   Data on the habit, 
habitat, and biogeographic distributions of extant  Cissus  species 
were gathered for extant species in clades containing similar seed 
morphotypes to the fossils ( Table 2 ).  Georeferenced occurrence 
data from illustrated herbarium sheets were obtained from the 
Global Biodiversity Information Facility ( GBIF, 2013 ), and fl oras 
and other herbarium sheets were also used. Herbarium sheet sources 
are given in online Appendix S5. 

  FIGURE 1  External morphology of fossilized  Cissus  seeds from the Hiwegi Formation, Rusinga Island, Kenya. (A) Lateral, (B) apical, (C) basal, (D) ventral 

views of the  Cissus crenulata  (Chesters) comb. nov. holotype (V33753). (E) Ventral, (F) lateral, (G) apical, (H) basal views of the  Cissus andrewsii  sp. nov. 

holotype. (I) Lateral and (J) basal views of a paratype of  C .  andrewsii  (V68500), and (K) lateral and (L) apical views of another paratype (V68502), dem-

onstrating intraspecifi c variation in seed size, shape, ornamentation and basal/apical width. (M) Lateral, (N) basal and (O) apical views of the  Cissus 

rusingensis  sp. nov. holotype (R117.1981.314). (P, S, V) Lateral, (Q, T, W) basal and (R, U, X) apical views of paratypes of  C. rusingensis  (R117.1981.476, 

R117.1981.604, R117.1981.605 respectively), illustrating intraspecifi c variation in seed shape (subrounded to pyriform), the number of muri and en-

closed lumina, the extent of the perichalazal rib and the length of the basal projection. (Y) Lateral, (Z) apical, (AA) basal, (BB) ventral views of the  Cissus 

psilata  sp. nov. holotype (V68506). Scale bar = 10 mm, in 1 mm increments.   

←

  TABLE 1.  Seed morphotypes of selected single-seeded, modern African  Cissus  species based on internal and external morphology obtained from synchrotron 

X-ray data sets and descriptions and illustrations in fl oras ( Dewit and Willems, 1960 ;  Descoings, 1972 ;  Verdcourt, 1993 ). H = height, W = width. 

Seed morphotype Species Description

1 ( Figs. 6D, 6E, 7A )  C. integrifolia ;  C. populnea • Two-layered, thick fruit wall, with a denser outer layer and more porous inner layer
• Seeds laterally fl attened (height/width [H/W] ratio of 1.5–1.8 in median digital transverse section 

[DTS]), elongate in the dorsiventral dimension
• Obvious break in seed coat near the chalaza
• Outer endotesta consists of thin layer with diff erent X-ray attenuation (possibly high mineral 

content)
• Dense and thin seed coat
• Seed surface with two marginal ridges, one on each lateral face, a ridged and faceted marginal area, 

long ridges radiating from ventral margin across lateral faces

2 ( Figs. 6B, 7B )  C. barbeyana ; C.  dasyantha • Thin to moderately thick fruit wall
• Seeds slightly laterally fl attened (H/W ratio of 1.3–1.5 in median DTS), elongate in the dorsiventral 

dimension
• Indistinct break in seed coat near the chalaza
• Endotesta has uniform X-ray attenuation
• Dense and moderately thick seed coat
• Seed surface with two marginal ridges; a ridged and faceted marginal area, where ridges sometimes 

fuse to form a reticulum; short ridges radiating across part of the lateral faces

3 ( Figs. 6H, 7C )  C .  lebrunii ;  C .  sciaphila ;  C .  tiliifolia • Thin fruit wall
• Seeds not, or slightly, laterally fl attened (H/W ratio of 1.0–1.6 in median DTS), short in the 

dorsiventral dimension
• Indistinct break in seed coat near the chalaza
• Endotesta has uniform X-ray attenuation
• Thin seed coat of variable texture
• Seed surface covered in ridges, forming a complete to incomplete reticulum across the lateral faces

4 ( Figs. 6M, 7D )  C. petiolata • Thick fruit wall
• Seeds laterally fl attened (H/W ratio of 1.5–1.8 in median DTS), short in the dorsiventral dimension
• Thickened chalaza with no break in seed coat
• Endotesta has uniform X-ray attenuation
• Dense and thick seed coat
• Seed surface smooth



 1662   •    A M E R I C A N J O U R N A L O F B OTA NY 

  TABLE 2.  Distribution, habit, and habitat data of modern  Cissus  species. 

Species Distribution Habit Habitat Sources

 C .  adnata  Roxb. Australasia; E, SE, and 
S Asia

Scrambling or climbing shrub, or 
woody liana, up to 10 m

Primary lowland monsoon forests, riparian forest, disturbed 
and semiopen scrub and deciduous forest, shrubland and 
thickets

1– 4

 C .  albiporcata  Masinde & 
L.E.Newton

E Africa Climber Bushland in rocky areas 3, 5

 C .  aphyllantha  Gilg E Africa Shrub, scrambler or woody climber, 
1–4 m tall

 Acacia  scrub or desert thornbush, scrubby woodland, rocky 
outcrops

3, 5

 C .  aralioides  (Welw. ex Baker) 
Planch.

C, E and W Africa Vigorous, succulent liana or 
herbaceous climber, a strong, 
lofty climber, up to 25 m

Coastal and riverine evergreen forest, rainforest, coastal 
bushland,  Acacia  bushland, grassland, thickets

3, 5–9

 C .  barbeyana  De Wild. & 
T.Durand

C and W Africa Herbaceous to woody, low, 
small liana

Rainforest, forest clearings, forest fragments and clusters 3, 6, 7, 9

 C .  cactiformis  Gilg E and S Africa Succulent climber or scrambler,  
 1.2–4.5 m long

Woodland, mixed bushland, usually in stony places, rock 
domes

3, 5

 C .  dasyantha  Gilg & M.Brandt W Africa Liana, up to 6 m Occasionally fl ooded forest, gallery forests 3, 7
 C .  faucicola  Wild & R.B.Drumm. E Africa Herbaceous climber, several 

meters long
Evergreen rainforest, especially edges by waterfalls and in 

grassy clearings
5, 8

 C .  fl oribunda  (Baker) Planch. E Africa Thin, woody liana or climber, 
several meters long

Rainforest, dense moist tropical forest, disturbed forest or 
forest edge

4, 10

 C .  integrifolia  (Baker) Planch. C and E Africa Herbaceous vigorous climber to  
 5 m, reaching tops of trees or 
thicket-forming

Evergreen riverine forest, woodland, bushland and savanna 
grassland, often on rocky scarps

3, 5, 7, 8, 
11

 C .  lebrunii  Dewit C Africa Herbaceous climber Rainforest 3, 7
 C .  oliveri  (Engl.) Gilg ex Engl. C and E Africa Herbaceous to woody climbing 

shrub, up to 6 m long
Riverine and gallery forest, marshy areas, papyrus swamps, 

wet grassland with scattered trees
3, 5, 7

 C .  oreophila  Gilg & M.Brandt C and W Africa Large herbaceous liana Gallery and riverine forest, forest edges, swamp areas 3, 4, 6, 9
 C .  petiolata  Hook.f. C, E and W Africa Large, somewhat succulent liana, 

vigorous climber or scrambler, 
to   at least 10 m

Riverine forest, occasionally fl ooded forest edges, thickets, 
 Acacia  mixed bushland, rocky ground with scattered trees 
and shrubs, woody/shrub savanna

3, 5–9, 11

 C .  phymatocarpa  Masinde & 
L.E.Newton

E Africa Climber Thickets on forest edges and coastal bushland 3, 5

 C .  polita  Desc. E Africa Herbaceous liana, 1.5–3 m Calcareous hills and plateaux; dry, deciduous seasonal 
 forest; savanna grassland with dry forest

4, 10

 C .  polyantha  Gilg & M.Brandt C, E and W Africa Herbaceous to woody climber/  
 liana, up to 15 m

Riverine and gallery rainforest, rocky hollows in grassland 
and thickets

3, 5–7, 9

 C .  populnea  Guill. & Perr. C, E and W Africa Bushy liana, to 4.5 m Wooded savanna, rocky outcrops and scree, bushland, 
lowland forest edges

3, 5–7, 9

 C .  pseudoguerkeana  Verdc. E Africa Spreading herb, at least 60 cm long Woodland, low shrubs on sand, swampy places 3, 5
 C .  quadrangularis  L. Arabia; C, E, N, S, 

and W Africa; SE 
and S Asia

Succulent bushy liana 1–15 m long, 
or succulent climbing shrub

Xerophilic thickets, thorny savanna,  Acacia  woodland, 
grassland, riverine thicket, coastal forest edges

3, 5,  8–10

 C .  quarrei  Dewit C and E Africa Erect herb or herbaceous climber, 
0.6–1 m tall

Riverine vegetation,  Brachystegia  woodland 3, 5, 7, 8

 C .  rhodotricha  (Baker) Desc. E Africa Scrambling and climbing strong 
liana or erect shrub

Rocky outcrops, deciduous seasonal forest, wooded 
 savanna

10

 C .  rondoensis  Verdc. E Africa Herbaceous to semiwoody climber 
 to around 4 m

Moist, (semi) evergreen forest, dense forest thicket 3–5

 C .  rostrata  (Miq.) Korth. 
ex Planch.

SE Asia Climber/liana, up to 10–15 m Fringe and understorey forest; forest river banks, peat 
 swamp/ marshy forest

3, 4, 12

 C .  rotundifolia  Vahl Arabia; C, E and S 
Africa

Succulent, herbaceous to woody, 
vigorous climber/liana, to 5 m

Dry woodland and bush, thorny savanna,  Acacia  scrub, 
bushland, thickets, dry forest and forest edges particularly 
 on rocky outcrops

3, 5, 7, 8

 C .  sagittifera  Desc. E Africa Creeping or climbing, thin liana Woodland edges, limestone cliff s, quartzite outcrops 3, 4, 10
 C .  sciaphila  Gilg E Africa Woody climber/liana, 3–12 m 

long or shrubby
Lowland riverine forest fringes, woodland slopes above 

 river valleys
3, 5, 8

 C .  smithiana  (Baker) Planch. C and W Africa Large liana/climber Rainforest, forest galleries and edges 3, 7, 9
 C .  sylvicola  Masinde & 

L.E.Newton
E Africa Herbaceous, somewhat succulent 

and fl eshy liana, to 12 m
Evergreen forest, also forest on rocky hills, coralline limestone 

and thicket
3, 5

 C .  tiliifolia  Planch. C and E Africa Herbaceous to woody climber, 
up   to 10 m

Forest and thickets in swampy areas, particularly near lake 
shores, swampy grassland

3, 5

 C .  welwitschii  (Baker) Planch. C and E Africa Vigorous, woody climber, 2–9 m 
long, or shrubby

Semievergreen bushland, riverine fringes, thickets and 
termite mounds in  Brachystegia  woodland, rocky outcrops

3, 5, 8

  Sources:  (1)  Lu (1993) ; (2)  Chen et al. (2007) ; (3)  GBIF (2013) ; (4) herbarium sheet data (online Appendix S5); (5)  Verdcourt (1993) ; (6)  Keay (1958) ; (7)  Dewit and Willems (1960) ; (8)  Wild and 
Drummond (1966) ; (9)  Descoings (1972) ; (10)  Descoings (1967) ; (11)  Beentje (1994) ; (12)  Yeo et al. (2012) . 
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 SYSTEMATICS 

 Defi nitions of lateral, ventral, dorsal, apical, and basal views and 
seed height, width, and dorsiventral dimension are given in online 
Appendix S6. 

 Family —   Vitaceae Juss. 1789. 

 Genus —    Cissus  L. 1753. 

 Species —    Cissus crenulata  (Chesters) Adams, Collinson, S.Y.Smith 
& Bamford comb. nov. 

 Basionym —    Menispermicarpum crenulatum   Chesters (1957 , pl. 19, 
fi gs. 19, 20). 

 Emended diagnosis —   Seed bilaterally symmetrical, 19 mm in dor-
siventral dimension, laterally fl attened, suboval to D-shaped in lat-
eral view, narrowly elliptical and 7 mm wide in apical and basal 
views, and elliptical in ventral view. Center of lateral face crossed by 
four pronounced, long ridges radiating from adjacent to the ventral 
infolds; longest ridge almost as long as seed; curved ridge, 2–3 mm 
from dorsal and basal margins of lateral faces, delineates faceted 
marginal area; prominent median ridge (rib perichalaza) extends 
from beneath ventral infolds, around base, over dorsal margin, and 
almost full length of apical margin as far as ventral infolds. Upper 
portion of ventral surface concave, forming acute angle with long 
axis of seed; pair of very deep, narrow ventral infolds present. 

 Holotype —   Seed: V33753 ( Fig. 1A–D ; μCT DTS video available 
from the Dryad Digital Repository, http://dx.doi.org/10.5061/
dryad.g9r36). 

 Excluded specimens —   Seeds: KNMP-RU7787 (8 specimens with 
fi eld number 60*52, formerly P. B. 8, designated as paratypes of 
 Menispermicarpum crenulatum  by  Chesters, 1957 ). 

 Type locality —   Rusinga Island, Lake Victoria, Kenya. 

 Geological horizon and age —   Hiwegi Formation, early Miocene. 

 Repository —   Natural History Museum, London, UK. 

 Description —   Th e seed is bilaterally symmetrical around a promi-
nent median perichalazal rib ( Fig. 1B, C ), laterally fl attened with a 
height/width ratio of 1.7 ( Fig. 1A, B ), suboval to D-shaped in lateral 
view ( Fig. 1A ), 19 mm in the dorsiventral dimension and 11 mm in 
height, narrowly elliptical and 7 mm wide in apical ( Fig. 1B ) and 
basal ( Fig. 1C ) views, and elliptical in ventral view ( Fig. 1D ). Th e 
seed apex is rounded, with no indication of an apical notch or cha-
lazal grooves ( Fig. 1A–C ), and the seed narrows to the ventral mar-
gin ( Fig. 1A–C ). Th e seed ornamentation is most clearly visible on 
one lateral face ( Fig. 1A ). A curved ridge, 2–3 mm from the basal 
and dorsal margins of the lateral faces, delineates a faceted outer 
margin with facets spaced at 2.5 to 4.5 mm ( Fig. 1A ). Th ere are 
short ridges (ca. 2 mm long), roughly perpendicular to the long 
curved ridge, within the outer margin, which defi ne the facets ( Fig. 
1A ). Th ere are at least four ridges crossing the center of the lateral 
face, with one long (10 mm) ridge perpendicular to the ventral sur-
face, and three curved ridges, which radiate away from the ventral 

surface toward the basal margin, abutting the curved ridge ( Fig. 
1A ). Th e reverse lateral face is partly obscured by mineral encrusta-
tion in the holotype (the only specimen), making the ornamenta-
tion less clear. Nevertheless, at least three clearly distinguishable 
ridges cross the center of the face radiating from the ventral surface, 
with one longer and more pronounced than the others. In lateral view, 
the upper portion of the ventral surface is nearly straight for three-
quarters of its length, but the basalmost part is indented, forming 
an angle of ca. 65 °  with the long axis of the seed ( Fig. 1A ). Th e seed 
narrows into a rounded point on the ventral surface, possibly 
equivalent to the beak in typical Vitaceae (see  fi g. 1  of  Chen and 
Manchester, 2011 ). Th e lateral fl attening, near-straight ventral surface 
and suboval, or near elliptical, outline give the seed a very diff erent 
shape from typical Vitaceae genera (e.g.,  Chen and Manchester, 
2011 ). Externally the ventral infolds are only tentatively identifi able 
from a pink mineral infi ll from the apical and ventral views ( Fig. 
1B, D ). However, in μCT digital transverse section (DTS), a pair of 
very deep (4.5 mm) and narrow (0.5 mm) ventral infolds are clearly 
delineated by a very thin gap (black in  Fig. 2C )  between the inferred 
outer surface of the endotesta and the mineral infi ll of the infolds 
(outlined in solid yellow in  Fig. 2D ). 

 Comments —   Seeds of modern  Cissus integrifolia  (Baker) Planch. 
are very similar to the holotype of  C. crenulata , being narrow, later-
ally fl attened and suboval in lateral view with a line of bisymmetry 
passing through a median longitudinal rib perichalaza and having 
a similar seed coat ornamentation. However, the greater number of 
ridges across the lateral faces and diff erent orientation of the ven-
tral surface relative to the long axis of the seed in  Cissus integrifolia  
support the recognition of a separate species.  Chesters (1957)  listed 
P. B. 8 as a paratype of  Menispermicarpum crenulatum . Currently, 
the number KNMP-RU7787 (P. B. 8) includes eight specimens, 
which have here been transferred to  Cissus andrewsii  sp. nov. (see 
below). Th erefore,  Cissus crenulata  is represented only by a single 
specimen. 

 Species —    Cissus andrewsii  Adams, Collinson, S.Y.Smith, & Bamford 
sp. nov. 

 Etymology —   Th e species epithet  andrewsii  is named in honor of 
Dr. Peter Andrews, in recognition of his extensive work on the 
Kenyan Miocene and the invaluable support he provided, which 
enabled one of us (Collinson) to undertake fi eldwork on Rusinga 
and Mfangano Islands in 1980–1981. 

 Diagnosis —   Seeds bilaterally symmetrical, 16–19 mm in dorsiven-
tral dimension, laterally fl attened, suboval in lateral view, narrowly 
elliptical and 5–8 mm wide in apical and basal views, elliptical in 
ventral view. Centers of lateral faces ornamented by 4–5 short ridges 
in radial pattern; curved ridge 1–2.5 mm from margins of lateral 
faces extends around most of seed and delineates faceted to reticu-
late marginal area; prominent median ridge (rib perichalaza) ex-
tends from base of ventral surface, around base, over dorsal surface, 
and almost full length of apical surface. Upper portion of ventral sur-
face forms acute angle with long axis of the seed. Pair of deep, wide 
ventral infolds present. 

 Holotype hic designatus —   Seed: V68501 ( Fig. 1E–H ; μCT DTS 
video available from the Dryad Digital Repository, http://dx.doi.
org/10.5061/dryad.g9r36). 
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 Type locality —   Rusinga Island, Lake Victoria, Kenya. 

 Paratypes —   Seeds: V68500 ( Fig. 1I, J ); V68502 ( Fig. 1K, L ); KNMP-
RU7787 (8 specimens with fi eld number 60*52, formerly P. B. 8, 
previously listed as paratypes of  Menispermicarpum crenulatum  by 
 Chesters, 1957 ; re-examined for this study by Bamford). 

 Geological horizon and age —   Hiwegi Formation, early Miocene. 

 Repository —   Natural History Museum, London, UK (holotype and 
paratype specimens with prefi x V); National Museums of Kenya, 
Nairobi, Kenya (other paratypes). 

 Description —   Seeds are bisymmetrical around a prominent median 
perichalazal rib ( Fig. 1H, J ) and vary from 16 to 19 mm in dorsiventral 
dimension, 11 to 15 mm in height and 5 to 8 mm in width ( Fig. 1E–L ). 
Seeds are laterally fl attened with height/width ratios of 1.9–2.4 and 
are narrow in apical and basal views ( Fig. 1G, H, J, L ). Th e seed apex 
is rounded, with no indication of an apical notch or chalazal grooves 
( Fig. 1E–G ), and narrows to the ventral margin ( Fig. 1F, G ). Th e 
ventral surface is slightly rounded, not straight ( Fig. 1F, K ). Th e 
lateral surfaces have a curved ridge, delimiting a sculptured outer 
margin, which extends from approximately half way along the api-
cal margin, around the dorsal margin, and fully along the basal 
margin ( Fig. 1F ). Th e sculptured marginal band is faceted, facets 
spaced at 2 to 3.5 mm, and ridged with ridges sometimes fusing to 
form a reticulum ( Fig. 1F, I, K ). Th e central areas of the lateral faces 
are ornamented by four to fi ve short (2–3 mm) ridges in a radial 
arrangement ( Fig. 1F ). Where undamaged, the upper portion of the 
ventral surface forms an angle of 52 °  to 55 °  with the long axis of the 
seed ( Fig. 1F, K ). Th e ventral infolds are not visible on the outside 
of the seed ( Fig. 1E, G, L ), but by using μCT, deep (2.5 mm), broad 
(0.6 mm) ventral infolds can be identifi ed in V68501 ( Fig. 2F ) by 
diff erences in X-ray attenuation (gray level) due to variation in 
mineral density and mineral texture in the infold infi lls. A very clear 
gap (black in  Fig. 2E ) demarcates the inferred original position of the 
endotesta outer surface in the areas away from the infolds, where 
endotesta would have been originally thicker based on observations 
in modern seeds. Some additional outer mineral (possibly repre-
senting exotesta or fruit wall remnants) is also present in the holo-
type ( Fig. 2E ). 

 Comments —   In her unpublished thesis,  Chesters (1958)  assigned 
the specimen shown in  Fig. 1E–H  (V68501) to  Menispermicarpum 
crenulatum , here revised to  Cissus crenulata , but there are clear dif-
ferences between  C .  crenulata  and V68501, supporting assignment 
of this specimen, and other similar specimens, to a new species. 
Although there is now only a single specimen of  Cissus crenulata  

(making it impossible to assess intraspecific variation), there are 
11 specimens of  C. andrewsii , all with consistent morphology distinct 
from that of the single specimen of  C .  crenulata . In  Cissus andrewsii  
the central portion of the lateral faces is crossed by short ridges in a 
radial pattern, unlike  C. crenulata , and the lateral faces have a greater 
number of short transverse ridges in the outer margins, some of 
which fuse to form a reticulum. In addition, the curved ridge, delin-
eating the sculptured margin from the central fl at area, extends far-
ther down the ventral surface and the ventral margin is curved not 
straight.  Cissus andrewsii  is therefore more similar to seeds of mod-
ern  Cissus dasyantha  Gilg & M.Brandt than  C. integrifolia , but is 
suffi  ciently diff erent from these extant species to warrant assign-
ment to a new species, and diff ers in several ways from the fossil 
 C. crenulata . 

 Species —    Cissus rusingensis  Adams, Collinson, S.Y.Smith, & Bam-
ford sp. nov. 

 Synonymy —   ‘cf.  Cissus  sp. 1 nov.’ in  Collinson et al. (2009) . 

 Etymology —   Th e epithet  rusingensis  refers to the type locality on 
Rusinga Island from which the specimens were collected during in 
situ excavations. 

 Diagnosis —   Seeds bilaterally symmetrical, 7–8 mm in dorsiventral 
dimension, slightly laterally fl attened, subrounded to pyriform in 
lateral view, broadly elliptical in apical, basal, and ventral views. Lat-
eral faces ornamented by ridges and reticula with 7–11 wide muri 
radiating to margins and enclosing lumina in central area; promi-
nent median ridge (rib perichalaza) extends from ventral margin, 
around base, over dorsal surface, and almost full length of the apex. 
Upper portion of ventral surface forms acute angle with long axis of 
the seed. Pair of deep, very wide ventral infolds present. 

 Holotype hic designatus —   Seed: R117.1981.314 ( Fig. 1M–O ; μCT 
DTS video available from the Dryad Digital Repository,  http://
dx.doi.org/10.5061/dryad.g9r36 ). 

 Type locality —   R117 site (see  Collinson et al., 2009 ), Rusinga Island, 
Lake Victoria, Kenya. 

 Paratypes —   Seeds: KNMP-RU9647 (fi eld number R117.1981.422); 
R117.1981.476 ( Fig. 1P–R ; μCT DTS video available from the 
Dryad Digital Repository, http://dx.doi.org/10.5061/dryad.g9r36); 
R117.1981.604 ( Fig. 1S–U ); R117.1981.605 ( Fig. 1V–X ). 

 Geological horizon and age —   Grit Member, Hiwegi Formation, 
early Miocene. 

  FIGURE 2  Ventral infolds revealed in a seed of modern African  Cissus populnea  Guill. & Perr. (A, B) by synchrotron-based X-ray tomographic microscopy 

(SRXTM) and in fossil seeds from the Hiwegi Formation, Rusinga Island, Kenya (C–J), assigned to  Cissus  herein, by micro-computed tomography ( μ CT). 

(A, B) SRXTM digital transverse section (DTS) through modern  C .  populnea , infi ll of the endotesta in yellow in (B) highlighting the position of the ventral 

infolds. (C, D)  μ CT DTS through the holotype (V33753) of  Cissus crenulata  comb. nov., with (D) showing inferred position of the ventral infolds (solid 

yellow lines) and the margins of the endotesta (dotted yellow lines). (E, F)  μ CT DTS through the holotype (V68501) of  Cissus andrewsii  sp. nov., with 

(F) showing infi ll of the inferred endotesta in yellow, highlighting two parallel, broad ventral infolds. (G, H)  μ CT DTS through the holotype (R117.1981.314) 

of  Cissus rusingensis  sp. nov., with (H) showing infi ll of inferred embryo cavity within endotesta in yellow, highlighting two parallel, very broad ventral 

infolds. (I, J)  μ CT DTS through holotype (V68506) of  Cissus psilata  sp. nov., with (J) showing inferred position of pair of very short, narrow parallel ven-

tral infolds (solid yellow lines). All  μ CT sections obtained from near ventral part of seeds, where ventral infolds were most likely to be evident, if con-

cealed externally, based on their position in modern  Cissus  seeds. Scale bars = 1 mm.   

←
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 Repository —   National Museums of Kenya, Nairobi, Kenya (KNM). 

 Description —   Seeds are bisymmetrical around a prominent median 
perichalazal rib ( Fig. 1N, O, Q, R, T, U, W, X ), and they vary from 
7 to 8 mm in dorsiventral dimension, 5 to 6 mm in height, and 3 to 
4 mm in width ( Fig. 1M–X ). Th e seeds are laterally fl attened with a 
height/width ratio varying between 1.5 and 1.8 and are broadly el-
liptical in apical and basal views ( Fig. 1N, O, Q, R, T, U, W, X ). Th e 
seeds have a rounded apex ( Fig. 1M, P, S, V ) but are variable in their 
lateral shape ( Fig. 1M, P ). Th e perichalazal rib extends around less 
of the specimen in R117.1981.476 ( Fig. 1P ) and R117.1981.604 ( Fig. 
1S ), resulting in a reduced lateral width higher up the seed, a longer 
ventral projection and a more pyriform shape. By contrast, the holo-
type ( Fig. 1M ) and R117.1981.605 ( Fig. 1V ) are both subrounded with 
only small ventral projections. Th e lateral surfaces have a reticulate 
ornamentation with one or two centrally positioned lumina ( Fig. 1M, 
P, S, V ) and 7 to 11 muri or ridges ranging in width from 0.2 to 0.6 mm 
(e.g.,  Fig. 1M ). Some ridges radiate to the edges of the specimen and 
join up with the strong perichalazal rib producing marginal lumina 
( Fig. 1O, X ). Others terminate before reaching the margin without 
forming a reticulum (bottom right in  Fig. 1S ; top left  in  Fig. 1V ), 
resulting in a radiating pattern of marginal ridges and unenclosed 
marginal depressions. Th e upper portion of the ventral surface forms 
an angle of 35 °  to 55 °  with the long axis of the seed ( Fig. 1M, P, S, 
V ). Th e ventral infolds, although not externally visible ( Fig. 1N, Q, 
T, W ), are readily identifi able in the holotype by diff erences in con-
trast and mineral density in μCT scans ( Fig. 2G ). A distinct pale 
area (highlighted yellow in  Fig. 2H ) marks the position of the em-
bryo cavity, while the deep (1.5 mm) and very broad (0.75 mm) 
ventral infolds are infi lled with mineral with lower X-ray attenua-
tion and hence darker gray color ( Fig. 2H ). 

 Comments —    Cissus rusingensis  is distinctive in lacking a distinct 
curved ridge delineating a marginal region and in having muri in 
the central area of the lateral faces forming a reticulum. Th is species 
is very similar to seeds of modern  Cissus lebrunii  Dewit, but  C. rus-
ingensis  has fewer muri and at most two (rather than three) cen-
trally positioned lumina. 

 Species —    Cissus psilata  Adams, Collinson, S.Y.Smith, & Bamford 
sp. nov. 

 Etymology —   Th e epithet  psilata  derives from the ancient Greek ad-
jective psilós, meaning bare or smooth, and refers to the lack of seed 
coat ornamentation on the smooth surface of the lateral faces. 

 Diagnosis —   Seed bilaterally symmetrical, 7.5 mm in dorsiventral 
dimension, subrounded in lateral view, broadly elliptical in apical, 
basal, and ventral views. Seed smooth, lacks external ornamenta-
tion (psilate), except for prominent median ridge (rib perichalaza) 
that extends all around dorsal surface, over apex, and almost full 
length of ventral surface. Base of ventral surface concave, forming 
acute angle with long axis of seed. Pair of very short, narrow ventral 
infolds present. 

 Holotype hic designatus —   Seed: V68506 ( Fig. 1Y -BB; μCT DTS 
video available from the Dryad Digital Repository,  http://dx.doi.
org/10.5061/dryad.g9r36 ). 

 Type locality —   Rusinga Island, Lake Victoria, Kenya. 

 Geological horizon and age —   Hiwegi Formation, early Miocene. 

 Repository —   Natural History Museum, London, UK. 

 Description —   Seed inferred to be originally bilaterally symmetrical 
around a prominent median perichalazal rib, although the single 
specimen is slightly deformed ( Fig. 1Z, AA ), probably due to abnor-
mal development in life or distortion during fossilization. Th e seed 
is subrounded in lateral view ( Fig. 1Y ), 7.5 mm in dorsiventral di-
mension and 6 mm in height, and broadly elliptical in apical and 
basal ( Fig. 1Z, AA ) views, 4.5 mm in width. Th e seed is not laterally 
fl attened and has an infl ated morphology with a height/width ratio 
of 1.3. Th e perichalazal rib is ca. 0.3–0.45 mm thick around the dor-
sal and basal margins ( Fig. 1Y, Z ) but thicker at the seed base (ca. 
0.8 mm), forming a strong point ( Fig. 1Y, AA ), equivalent to the 
beak in typical Vitaceae (see  fi g. 1  of  Chen and Manchester, 2011 ). 
Th e lateral surfaces are smooth ( Fig. 1Y ). Th e upper portion of the 
ventral surface forms an angle of 45 °  with the long axis of the seed 
( Fig. 1Y ). Th e ventral infolds are not visible on the outside of the 
seed ( Fig. 1Z, BB |). μCT scans of the holotype ( Fig. 2I ) show very 
little internal information compared to the other fossils, except for 
two very short (less than 0.5 mm) grooves at the base of the ventral 
surface ( Fig. 2J ), which correspond to the position of the ventral 
infolds characteristic of  Cissus . 

 Comments —   In her unpublished thesis,  Chesters (1958)  suggested 
that V68506 could be assigned to the genus  Menispermicarpum  as a 
new, but never published, species. However, the fossil morphology 
diff ers from endocarps of Menispermaceae. It is almost identical to 
seeds of modern  Cissus petiolata  Hook.f., diff ering in the greater 
extent of the rib perichalaza on the dorsal surface. In modern  Cissus 
petiolata  seeds, the ventral infolds are very shallow and short which, 
in combination with mineralization eff ects, can explain the very 
limited evidence for this diagnostic feature in V68506 ( Fig. 2J ). 

 RESULTS 

 Identifi cation of fossils to genus Cissus —   Th e lack of cellular and 
tissue detail in the fossils ( Fig. 2C–J ), and the complexities of min-
eralization during fossilization, make it diffi  cult to judge if the ex-
ternal morphology of a fossil represents the external morphology of 
a living equivalent. Th e SRXTM videos of modern  Cissus  seeds 
(available from the Dryad Digital Repository,  http://dx.doi.org/
10.5061/dryad.g9r36 ) show that the inner and outer surfaces of the 
endotesta are parallel to one another, and hence, a mineral infi ll of 
the endotesta will have a very similar external morphology to a 
mineral replacement of the endotesta itself. Th erefore, it is justifi -
able to compare the external surface of the Hiwegi Formation fos-
sils with that of modern seeds for purposes of identifi cation. Th ese 
comparisons show that several modern African  Cissus  species have 
seeds with almost identical shape and ornamentation to the Hiwegi 
Formation fossil seeds (see  Phylogenetic context of seed morphot-
ypes ). However, the ventral infolds that characterize modern  Cissus  
seeds are not visible on the fossils. Th e taphonomy of the fossils 
may explain the absence of these key features. 

 A novel approach in virtual taphonomy was used to produce a 
digital infi ll of the endotesta of a modern  Cissus  seed ( Fig. 3A ). Th is 
virtual fossil showed all the key characteristics of  Cissus  seeds (i.e., 
a long, linear chalaza, the perichalaza; a thickened ridge of seed coat 
along the perichalaza, the perichalazal rib; deep, narrow, and linear 
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  FIGURE 3  Virtual taphonomy using digital fossils produced from a syn-

chrotron X-ray data set of a modern fruit of  Cissus populnea  Guill. & Perr. 

Specimen oriented in oblique ventral/apical view to best display ventral 

infolds. (A) Produced by digitally infi lling space inside endotesta of seed, 

showing externally conspicuous pair of ventral infolds, thereby mimicking 

mineral seed infi ll processes during fossilization. (B) Produced by digitally 

concealing ventral infolds in (A) thereby mimicking taphonomic pro-

cesses that could conceal ventral infolds by mineral infi ll. Scale bar = 1 mm.   

ventral infolds). Digital infi lling of the ventral infolds produced a 
digital fossil comparable to the real Hiwegi Formation fossils ( Fig. 
3B ).  Th is virtual taphonomy suggests a two-stage fossilization pro-
cess with an initial infi lling of the endotesta (and perhaps some 
mineral replacement of organic tissues) followed by a later stage of 
infi lling of the ventral infolds. μCT imaging supports this hypoth-
esis because mineral-infi lled ventral infolds can be recognized ( Fig. 
2C–J ) in digital sections through the fossils (albeit more clearly in 
some specimens than others). 

 Th e only other modern genus including seeds similar to  Cissus  is 
 Cyphostemma , some seeds of which may be laterally fl attened and 
have somewhat similar ornamentation. Unlike  Cissus  ( Fig. 4A )  the 
ventral infolds on extant  Cyphostemma  seeds are externally con-
cealed by extra layers of endotestal sclereids ( Chen and Manchester, 
2011 ;  Fig. 4B ). If the fossils were originally  Cyphostemma  seeds 
with the endotesta infi lled by mineral during initial stages of fos-
silization, then the spaces enclosed by the endotesta over the ven-
tral infolds would have been infi lled at the same time as the main 
area within the endotesta. However, μCT images of the fossils show 
mineral infi lls of the ventral infolds that are distinct from other 
mineral infi ll within the endotesta ( Fig. 2C–H ) indicating infi ll dur-
ing a later stage of fossilization. 

 Th e combined data show that four African fossil seed morphot-
ypes conform to the genus  Cissus  in all characters that can be deter-
mined from the fossils. Th e complex taphonomy and concealment 
of key features diagnostic of the genus explain the original taxo-
nomic misidentifi cation to the Menispermaceae. 

 Phylogenetic relationships within Cissus —   In our maximum likeli-
hood analysis, species of  Cissus  are found in three distinct groups 
( Fig. 5 ;  online Appendix S7): the  Cissus striata  clade (bootstrap sup-
port [BS]/Bayesian posterior probabilities [PP] of 81%/0.94), the 
 Cissus trianae  clade (<50% BS/0.25 PP), and the core  Cissus  clade 
(60% BS/1.0 PP), as previously identifi ed by  Rodrigues et al. (2014) . 
Within the core  Cissus  clade in our analysis, the early-
diverging lineages comprise only African species ( Fig. 5 ). Th e Afri-
can species  Cissus barbeyana ,  C .  sagittifera , and  C .  fl oribunda  form 
a clade (the  Cissus barbeyana  clade; 100% BS/1.0 PP) sister to the 
remainder of the core  Cissus  clade, in which the  Cissus integrifolia  
clade ( C .  integrifolia  +  C .  populnea ; 100% BS /1.0 PP) is sister to two 
main clades that comprise the rest of the species in genus  Cissus . In 
the fi rst of these two main clades (100% BS /1.0 PP), only eight of 
35 species in our analysis are not African; while only seven of the 
49 species in the second clade are African ( Fig. 5 ). Th e topologies 
and support values obtained with the maximum likelihood ( Fig. 5 ) 
and Bayesian analyses (online Appendices S8–S10) do not present 
well-supported topological discrepancies. Th e divergence time 
analyses estimated that the core  Cissus  clade diverged 57.9 Ma 
(highest posterior density (HPD) 55.9–64.0 Ma; 95% HPD intervals 
of age estimates are provided in online Appendix S11), in the late 
Paleocene (online Appendix S8), and started to diversify 41.5 Ma 
(HPD 31.6–51.0 Ma), in the late middle Eocene (online Appendix 
S9). 

 Phylogenetic context of seed morphotypes —   Seeds of four distinct 
 Cissus  species are now recognized from the early Miocene Hiwegi 
Formation. Given that claims of Vitaceae pollen from the Oligocene 
of Cameroon remain unconfi rmed ( Salard-Cheboldaeff , 1978 , 
 1981 ;  Muller, 1981 ), these seeds represent the fi rst confi rmed fossil 
record of Vitaceae and of the genus  Cissus  in Africa. Th e four fossil 
species represent distinct morphotypes, which are also found in 
seeds of extant species ( Table 1 ), as revealed by SRXTM imaging of 
modern fruits and by a literature survey of published seed descrip-
tions. Th e phylogenetic position of these extant species provides a 
phylogenetic context for the early Miocene fossils. 

 Morphotype 1—   Cissus crenulata  ( Fig. 1A–E ) has laterally fl attened, 
suboval seeds with a faceted marginal area, several long radiating lat-
eral ridges and two marginal ridges. Th e extant species  Cissus integri-
folia  ( Figs. 6D, 7A )   and  C .  populnea  ( Figs. 2A, 6E ) share this distinctive 
morphotype ( Table 1 ). Th ese two species are recovered in our phylo-
genetic analyses with strong support (100% BS) as a distinct clade, the 
 Cissus integrifolia  clade, which is one of the two earliest-diverging 
clades in core  Cissus  ( Fig. 5 ). It is, therefore, likely that  Cissus crenu-
lata  was a member of the early-diverging  Cissus integrifolia  clade. 

 Morphotype 2—   Cissus andrewsii  has seeds that are laterally fl attened 
and have a ridged and faceted marginal area where ridges some-
times fuse to form a reticulum, two prominent marginal ridges, and 
short radiating lateral ridges. Th e extant species  Cissus barbeyana  
( Fig. 6B ) and  C .  dasyantha  ( Fig. 7B  and fi g. 13J of  Dewit and Wil-
lems, 1960 ) are most similar to  C .  andrewsii , in that they are slightly 
laterally fl attened (height/width ratio of 1.3–1.5) with a similarly 
ridged and faceted marginal reticulum, two marginal ridges and 
short radiating lateral ridges ( Table 1 ). Although the sampled spec-
imen of  Cissus dasyantha  failed to amplify material for phylogenetic 
analysis,  C .  barbeyana  was found in the basal clade of core  Cissus , 
the  Cissus barbeyana  clade, with  C .  fl oribunda  and  C .  sagittifera  
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( Fig. 5 ). Seeds of  Cissus fl oribunda  ( Fig. 6A ) and  C .  sagittifera  (fi g. 
14 of  Descoings, 1967 ) also possess the morphotype 2 characters, 
(except that  C .  sagittifera  lacks the ridged and faceted marginal 
area), suggesting that morphotype 2 is characteristic of the basal 
 Cissus barbeyana  clade and that  C .  andrewsii  can be placed in this 
clade. Future work determining if  Cissus dasyantha  is in the  C. bar-
beyana  clade would test this hypothesis. 

 Morphotype 3—   Cissus rusingensis  has slightly laterally fl attened 
seeds and ridges forming a complete to incomplete reticulum across 
the lateral faces. Extant species sharing these features ( Table 1 ) include: 
 Cissus lebrunii  (fi g. 13K of  Dewit and Willems, 1960 ),  C .  oreophila  
(pl. 39, fi g. 11 of  Descoings, 1972 ),  C .  sciaphila  ( Fig. 6H ),  C .  smithi-
ana  ( Fig. 6G ), and  C .  tiliifolia  ( Fig. 7C  and  Verdcourt, 1993 ).  Cissus 
sciaphila  and  C .  tiliifolia  are found together in the  C .  sciaphila  clade 
( C .  lebrunii  did not amplify), with fi ve other African species ( C. 
aphyllantha ,  C. polyantha ,  C. quarrei ,  C. rhodotricha ,  C. smithiana ) 
and the Asian/Australasian species,  C. adnata  and  C. rostrata  ( Fig. 5 ). 
Seed descriptions suggest these species share most, if not all, of the 
external morphological features of morphotype 3 (online Appen-
dix S4).  Cissus polyantha  seeds are very variable in surface orna-

mentation from smooth to extensively ridged (pl. 36, fi gs. 11 and 12 
of  Descoings, 1972 ; fi g. 13H of  Dewit and Willems, 1960 ), also seen 
in our sampling of two specimens (online Appendix S1). However, 
one illustration of a ridged specimen (fi g. 13H of  Dewit and Willems, 
1960 ) falls into morphtype 3. Morphotype 3 is characteristic of al-
most all of the species belonging to the  Cissus sciaphila  clade (and 
occurs in at least one collection of  C. polyantha ). Th e fact that  Cis-
sus rusingensis  also shares this morphotype suggests that it was an 
early Miocene member of this clade. In the  C. microdonta - C. auricoma  
clade ( Fig. 5 ),  C .  auricoma  is the only species with morphotype 3 
seeds, suggesting parallel evolution of seed morphology in this case. 
Further sampling of both DNA and seed morphology would be 
needed to evaluate this possible parallelism. 

 Morphotype 4—  Seeds of  Cissus psilata  are subrounded with smooth 
lateral faces almost identical to seeds of extant  C .  petiolata  ( Table 1 ; 
 Figs. 6M, 7D ).  Cissus petiolata  is found in a clade with seven solely 
African species ( Fig. 5 ):  C .  aralioides ,  C. oliveri ,  C. polita ,  C. rondoen-
sis ,  C. rotundifolia ,  C. sylvicola ,  C. welwitschii . Of these,  Cissus aralioi-
des  ( Fig. 6L ),  C. rotundifolia ,  C. sylvicola , and  C. welwitschii  have 
morphotype 4 seeds (online Appendix S4).  Cissus oliveri , with coarsely 

  FIGURE 4  Comparative tissue organization in  Cissus  (A) and  Cyphostemma  (B) showing how the endotesta obscures ventral infolds in  Cyphostemma . (A, 

B) Digital transverse sections, produced by synchrotron-based X-ray tomographic microscopy, through modern fruits. (A)  Cissus populnea  Guill. & Perr. 

(B)  Cyphostemma maranguense  (Gilg) Desc. Scale bars = 1 mm.   

  FIGURE 5  Phylogenetic tree of core  Cissus  clade obtained using maximum likelihood criteria, implemented in RAxML ( Stamatakis, 2014 ), based on 

plastid DNA sequence data of Vitaceae, with particular focus on genus  Cissus . Bootstrap values and posterior probabilities are indicated at nodes. 

Clades and seed morphotypes referred to in the text are indicated; species placed in seed morphotypes based on internal and external morphology 

are shown with solid color highlight, and those tentatively placed in seed morphotypes based on external illustrations and descriptions are distin-

guished by colored outline; distribution ranges indicated after species name (Af, Africa; As, Asia; Au, Australia; N, neotropics); species for which new 

DNA sequences were produced are highlighted with an asterisk; species for which no data on seed morphology could be found are denoted by a 

question mark. Scale bar shows degree of genetic change (nucleotide substitutions per site) as distance on the phylogram.   

←
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pitted seeds and very strong radial and lateral ribs ( Verdcourt, 
1993 ), and  C. rondoensis , with seeds bearing two to three, faint 
transverse ridges ( Verdcourt, 1993 ), lack the smooth seed coat typi-
cal of morphotype 4. Th ese two species occupy contrasting habitats 
to the rest of the clade ( Table 2 ), so contrasting seed morphology 
may refl ect diff erent environmental pressures. 

 Extant species in the  Cissus pseudoguerkeana - C. albiporcata  
clade, for which seed descriptions were available, also share seed 
morphotype 4:  C. faucicola  and  C. quadrangularis  have smooth 
seeds (online Appendix S4), and  C .  cactiformis  also has the smooth 
seed coat ( Verdcourt, 1993 ). Furthermore, the majority of species 
in the  Cissus elongata - C. subtetragona  clade ( Fig. 5 ) share mor-
photype 4 characters (online Appendix S4). Th is evidence sug-
gests that morphotype 4 occurs throughout the broader  Cissus 
petiolata - C. albiporcata  clade ( Fig. 5 ) and that  C .  psilata  belongs in 
this clade. 

 Further morphological and molecular analyses, with expanded 
geographic and taxonomic sampling (including those species that 
failed to amplify for this study), are needed to fully evaluate the sys-
tematic signifi cance of these seed morphotypes. Th is study focused 
on modern African species to place the African Miocene fossils in 
context. On the basis of extant species that have morphologically 
comparable seeds and their phylogenetic position, species from 
four clades of  Cissus  (or from the ends of their stem lineages) were 
present during the early Miocene in East Africa. Th ese species were 
related to the two early-diverging clades of core  Cissus  (the  Cissus 
integrifolia  and  C. barbeyana  clades) and two later-diverging clades 
with mainly African species today, the  C. sciaphila  clade and the  C. 
petiolata-C. albiporcata  clade ( Fig. 6 ). 

 Fossil plant biology and ecology —   Habit and habitat data ( Table 2 ) 
for nearest living relatives of the fossil  Cissus  ( Fig. 6 ) can be used to 
consider the likely paleobiology and paleoecology of the fossil 
plants. In the  Cissus integrifolia  clade, the plants are lianas or herba-
ceous climbers in wide-ranging habitats, from evergreen forest and 
woodland to bushland and savanna grassland. Members of the  Cis-
sus barbeyana  clade are herbaceous to woody lianas and predomi-
nantly occupy rainforest, gallery and riverine forest fringes. Species 
in the  Cissus sciaphila  clade are also herbaceous to woody climbers 
in rainforests or are scrambling shrubs or woody climbers in drier 
deciduous forest and woodland. Th e extant species of the  Cissus 
aralioides - C. albiporcata  clade are herbaceous to woody lianas or 
climbing shrubs, a number of which are succulent ( C. aralioides ,  C. 
cactiformis ,  C. petiolata ,  C. quadrangularis ,  C. rotundifolia ,  C. sylvi-
cola ). Th ey occur in riverine forest and wooded savanna to rocky 
outcrops, xerophilic thickets in  Acacia  mixed bushland and grass-
land ( Table 2 ). Th e two members of the  Cissus petiolata  subclade 
with diff erent seeds (see previous section) also diff er in their habitat 
preferences, being most oft en found in moist rainforests. 

 Th ese modern ecologies suggest that a diversity of climbers (ei-
ther herbaceous or woody or both) were present in the early Mio-
cene on Rusinga Island. Th ese climbers may have occupied gallery 
or riverine forest ( Cissus andrewsii  related to the  C .  barbeyana  
clade) and evergreen forest, through woodland to savanna ( C. rus-
ingensis  related to the  C. sciaphila  clade and  C. crenulata  related to 
the  C. integrifolia  clade). Th e plant producing the  Cissus psilata  
seeds may have been somewhat succulent and hence able to occupy 
arid habitats as well as riverine forest or savanna, based on the habi-
tats of a number of related extant species in the  C. aralioides - C. al-
biporcata  clade. 

 DISCUSSION 

 Homology of the ventral surface in Vitaceae seeds —   Th e current 
convention for descriptive terminology of Vitaceae seeds ( Chen 
and Manchester, 2011 ) and fossil  Cissus  seeds ( Manchester et al., 
2012b ) has been followed here (online Appendix S6) to allow for 
ease of comparison with their work. However, an alternative inter-
pretation is possible, particularly for the strongly fl attened seeds 
(e.g.,  Figs. 1A–L ,  2A–D ,  3 ,  6A–F ), whereby the ventral surface in-
corporates both ventral and apical (sensu online Appendix S6) and 
the ventral grooves are short occupying less than half of the dimension 
of that surface. Th is alternative seed orientation is followed in all the 
fl oras to which we refer in this paper (i.e., the modern seed illustra-
tions in  Fig. 6  are all rotated 90 °  clockwise). Th ese two alternative 
homologies would best be investigated by a developmental study. 

  Cissus  origins, phylogeny, and Miocene diversity in Africa —   Rela-
tionships among genera in the Vitaceae are mostly comparable be-
tween our study and the most recent previous studies of  Cissus  ( Liu 
et al., 2013 ,  2016 ;  Rodrigues et al., 2014 ), with limited support for 
the backbone of the trees (but see  Wen et al., 2013  and  Zhang et al., 
2015 ).  Cissus  species are found in three distinct clades in all analy-
ses, identifi ed by  Rodrigues et al. (2014)  as the  Cissus striata  clade 
(clade III of  Liu et al., 2013 ), the  C .  trianae  clade (clade V of  Liu et al., 
2013 ) and the core  Cissus  clade, which contains most of the species. 
As in  Liu et al. (2013) , the earliest-diverging clades comprise mainly 
African species, although this is more evident in our study in which 
the fi rst branches are exclusively African species. Th is topology 
provides support for an African origin for the genus, as  Liu et al. 
(2013)  also concluded. 

 Th e new African fossils are entirely consistent with an African 
origin for  Cissus . The notable similarities in seed morphology 
between extant  Cissus  species and Hiwegi Formation fossils across 
multiple seed morphotypes suggest the presence of four clades or 
members of their stem lineages, indicating diversity of  Cissus , by 
the early Miocene in Africa. Based on the divergence times (online 
Appendix S9), it appears that all four clades originated much earlier 
than the ca. 18 Ma age of the Miocene fossils: 41.5 Ma (HPD 31.5–
51.0 Ma) for the split of the  Cissus barbeyana  clade from the rest of 
core  Cissus ; 36.0 Ma (HPD 27.6–44.7 Ma) for the divergence of the 
 C .  integrifolia  clade; 24.6 Ma (HPD 18.1–32.1 Ma) for the diver-
gence of the  C .  sciaphila  clade; and 22.8 Ma (HPD ca. 16.6–30.0 
Ma) for the divergence of the  C .  aralioides - C. albiporcata  clade. 
Th e time-calibrated phylogeny (online Appendix S9) therefore sug-
gests that several ghost lineages of  Cissus  await discovery in the 
fossil record. Th e new African Miocene seeds, and those from the 
Oligocene of Peru (see  Comparison with other fossil Cissus  below), 
provide fossil evidence consistent with the suggested phylogenetic 
history of  Cissus . 

 Comparison with other fossil Cissus —   The fossil record of the 
grape family (Vitaceae) extends back to the latest Cretaceous or 
earliest Paleogene in central India ( Manchester et al., 2013 ) and to 
the Paleogene in North America and Europe (e.g.,  Manchester, 
1994 ;  Fairon-Demaret and Smith, 2002 ;  Chen and Manchester, 
2007 ;  Collinson et al., 2012 ). However, for  Cissus , the oldest, and 
only other, currently recognized examples are from the late early 
Oligocene Belén fl ora of northern Peru ( Manchester et al., 2012b ). 
Th is fl ora contains two  Cissus  species:  Cissus willardii  Berry and 
 Cissus lombardii  Manchester, Chen, & Lott.  Cissus willardii  is small 
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  FIGURE 6  Major clades recognized in  Fig. 5  with representative modern (A, B, D–E, G, H, J–M, O–W) and 

fossil (C, F, I, N) seed morphologies. Modern images all rotated 90 °  clockwise from the original source. 

Seed morphotype 1 (A–C) characterizes the  Cissus barbeyana  clade; morphotype 2 (D–F) the  C. integri-

folia  clade; morphotype 3 (G–I) the  C. sciaphila  clade and morphotype 4 (L–N) the  C. petiolata  clade. 

Smooth seeds, somewhat similar to morphotype 4, also characterize the wider clade (in which the  C. 

petiolata  clade is basal) indicated by the dotted gray line. Sources of modern images are as follows: (A) 

 C. fl oribunda  (fi g. 15.13:  Descoings, 1967 ); (B)  C. barbeyana  (fi g. 13E:  Dewit and Willems, 1960 ); (D)  C. in-

tegrifolia  (fi g. 13F:  Dewit and Willems, 1960 ); (E)  C. populnea  (pl. 34, fi g. 11:  Descoings, 1972 ); (G)  C. smi-

thiana  (pl. 52, fi g. H:  Dewit and Willems, 1960 ); (H)  C. sciaphila  (fi g. 6.1c:  Verdcourt, 1993 ); (J)  C. bosseri  

(fi g. 10.8:  Descoings, 1967 ); (K)  C. leucophlea  (fi g. 14.13:  Descoings, 1967 ); (L)  C. aralioides  (fi g. 13C:  Dewit 

and Willems, 1960 ); (M)  C. petiolata  (fi g. 13A:  Dewit and Willems, 1960 ); (O)  C. elongata  (fi g. 171.10:  Chen 

et al., 2007 ); (P)  C .  subtetragona  (fi g. 171.2:  Chen et al., 2007 ); (Q)  C. cactiformis  (fi g. 9.8:  Verdcourt, 1993 ); 

(R)  C. quadrangularis  (pl. 29, fi g. 10:  Descoings, 1972 ); (S)  C .  cornifolia  (pl. 47, fi g. 12 in  Descoings, 1972 ); 

(T)  C. pileata  (fi g. 13.9:  Descoings, 1967 ); (U)  C. repens  ( fi g. 2B :  Jackes, 1988 ); (V)  C .  hastata  ( fi g. 5C :  Jackes, 

1988 ); (W)  C. diff usifl ora  (pl. 44, fi g. 11:  Descoings, 1972 ). Seeds are not to scale and are all shown in lat-

eral view, except (O) and (P), which are shown in apical view.   

and globose with smooth lateral faces and large ventral infolds ( fig. 
2A–Q  of  Manchester et al., 2012b ), unlike any of the fossils de-
scribed above from Rusinga Island. 

 Conversely,  Cissus lombardii  shares some characteristics with 
African Miocene  C. crenulata  and modern  C. integrifolia  (seed mor-

photype 1), being bilaterally symmetrical, 
laterally fl attened, elliptical in lateral view 
with a pronounced median perichalazal 
rib and a faintly faceted marginal area 
defi ned by a marginal ridge on each lat-
eral face ( fi g. 3A–N  of  Manchester et al., 
2012b ). Th us,  Cissus lombardii  might be 
related to the  C. integrifolia  clade, ex-
tending its fossil record to the early Oli-
gocene (30–28.5 Ma). However,  Cissus 
lombardii  is smaller in all dimensions 
than  C. crenulata  and  C. integrifolia  and 
lacks the distinct ornamenting ridges 
that cross the lateral faces in seeds of 
these species. Th e specimens of  Cissus 
lombardii  from the Belén fl ora are inter-
nal casts, which could result in a more 
subdued surface ornamentation than if 
the fossils were seeds themselves. How-
ever, as has been shown in extant  Cissus  
seeds in this study using SRXTM 
(SRXTM videos of modern  Cissus  seeds 
are available from the Dryad Digital 
Repository,  http://dx.doi.org/10.5061/
dryad.g9r36 ), the inner surface of the 
endotesta closely parallels the outer sur-
face, which would result in a similar 
pattern of ornamentation whether a fos-
sil is an internal cast or a replacement of 
the endotesta itself. Th ere is no indica-
tion of even faint ridges across the lat-
eral faces in  Cissus lombardii  ( fi g. 3A 
and B  of  Manchester et al., 2012b ), sug-
gesting that the ornamentation of the 
original seed was signifi cantly diff erent 
from morphotype 1. Th e portion of the 
ventral surface containing the ventral 
infolds is “more or less planar (not 
markedly concave)” in  Cissus lombardii  
( Manchester et al., 2012b , p. 936), rather 
than weakly to strongly concave as in 
 C. integrifolia  and  C. crenulata . Th erefore, 
 Cissus lombardii , is clearly distinct from 
the African Miocene species. 

 Biogeographic implications —   Th e posi-
tion of previously unsampled modern 
African species near the base of the 
phylogeny ( Fig. 5 ) reinforces the African 
origin for the core  Cissus  clade, suggested 
by  Liu et al. (2013) . Th e new African 
Miocene fossil  Cissus crenulata  has seed 
morphotype 1 as do both extant species 
of the  C .  integrifolia  clade, confi rming 
the presence of early-divergent mem-

bers of the core  Cissus  clade in Africa by at least the Miocene. 
 Th e two modern species outside Africa in the  Cissus sciaphila  

clade ( C. rostrata  and  C. adnata ) are advanced within the clade. Six of 
the seven modern African species in this clade are characterized by 
seeds of morphotype 3, and the seventh includes specimens with this 
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seed morphotype. Th e new African Miocene fossil  Cissus rusingensis  
also has seeds of morphotype 3. Th ese data suggest that this clade 
originated in Africa. Dispersal during or after the Neogene to 
Australasia resulted in the modern pantropical intercontinental dis-
junct distribution. Th e calibrated phylogeny presented here (online 
Appendix S9) suggests that the divergence of Australasian species 
occurred near the end of the Pliocene at 2.7 Ma (HPD 0.8–5.5 Ma) 
diff ering from, although within the error of, the late Miocene esti-
mate of 7.8 Ma (HPD 3.0–15.1 Ma) made by  Liu et al. (2013) . 

  Liu et al. (2013)  argued that transoceanic long-distance disper-
sal, rather than terrestrial mammalian dispersal, was the most likely 
explanation for pantropical intercontinental disjunctions in  Cissus  
because  Cissus  fruits are fl eshy and, although in some instances dis-
persed by mammals, are predominantly bird-dispersed, enabling 
long-distance transport by bird migration. Multiple large islands 
across the Indian Ocean may have facilitated an out-of-Africa 
migration by acting as migratory “stepping stones”, as invoked for 
dispersal of other vitaceous genera (e.g.,  Cayratia ;  Lu et al., 2013 ). 

 Th e distributions of modern species in all four clades containing 
nearest living relatives to the fossils extend across Africa from East 
to West ( Table 2 ). Th e fossil seeds suggest that the clades contain-
ing these living relatives may have had their origins in East Africa 
with subsequent spread to the rest of the continent. However, addi-
tional African fossil records of  Cissus  are needed to document dis-
persal patterns. 

 Paleoenvironmental implications —   Previous paleoenvironmental 
reconstructions from the Hiwegi Formation have inferred a habitat 
mosaic inhabited by early hominoids, such as  Ekembo  (see  McNulty 
et al., 2015 ). Evidence for mosaic habitats comes from gastropod 
( Verdcourt, 1963 ;  Pickford, 1995 ) and mammal faunas (e.g.,  Andrews 
and Van Couvering, 1975 ), paleosols ( Retallack et al., 1995 ) and 
paleobotany ( Collinson et al., 2009 ;  Maxbauer et al., 2013 ;  Michel 
et al., 2014 ).  Collinson et al. (2009)  concluded that the overall 
paleoenvironmental signal, considering the evidence from plants, 
mammals, gastropods and paleosols, was one of “mixed habitats 

  FIGURE 7  Digital transverse sections, produced by synchrotron-based X-ray tomographic microscopy, through fruits of modern African  Cissus , using 

representative specimens to illustrate typical features of each seed morphotype listed in  Table 1 . (A) Morphotype 1,  Cissus integrifolia  Guill. & Perr. (B) 

Morphotype 2,  Cissus dasyantha  Gilg & M.Brandt. (C) Morphotype 3,  Cissus tiliifolia  Planch. (D) Morphotype 4,  Cissus petiolata  Hook.f. Transverse sec-

tions were obtained from near ventral part of fruits to best show features of ventral infolds and characteristics of seed coat layers. Scale bars = 1 mm.   



 S E P T E M B E R    2016 ,  V O LU M E   103   •   A DAM S  E T  A L .  — F I R S T F O S S I L  S E E D S O F  C I S S U S   ( V I TAC E A E )  F R O M A F R I C A   •   1673 

dominated by woodlands, with waterside environments and small 
patches of forest big enough to support forest faunas” (p. 161). Th is 
conclusion is very similar to that derived from the possible fossil 
 Cissus  paleoecologies based on nearest living relatives (see  Fossil 
plant paleobiology and paleoecology ). 

 Th e vegetation in which  Cissus andrewsii ,  C. crenulata , and 
 C. psilata  lived cannot be inferred from associated fossils, as the spec-
imens were surface-picked. However, the context of the  Cissus rusin-
gensis  fossils is well understood as they derive from in situ excavations 
of plant litter assemblages at the R117 site ( Collinson et al., 2009 ). 
Th ese litter assemblages were interpreted to have accumulated under 
a continuous canopy in deciduous, broad-leaved woodland border-
ing a river, based on the fossil fruits and seeds and their taphonomy 
( Collinson et al., 2009 ).  Cissus rusingensis  is therefore known to have 
inhabited a closed riverine woodland, consistent with interpretations 
made for this species from inferred near living relatives. 

 Recent studies have revealed temporal paleoenvironmental changes 
through the Hiwegi Formation ( Michel et al., 2013 ,  2014 ;  Garrett 
et al., 2015 ) and have suggested that interpretations of mosaic pa-
leoenvironments may be based on time-averaged faunal and fl oral 
assemblages that confl ate separate, more homogeneous habitats. 
Th ese studies suggest that more open, drier woodland habitats low 
in the Hiwegi Formation (e.g., Grit Member) gave way to dense, 
closed canopy forest further up (e.g., Fossil Bed and Kibanga Mem-
bers), with early hominoid fossils recovered from both paleoenvi-
ronments ( Garrett et al., 2015 ). Since the stratigraphic context of 
 Cissus andrewsii ,  C. crenulata , and  C. psilata  are unknown and they 
are not associated with  C. rusingensis,  the four new species of  Cissus  
described may or may not have existed contemporaneously. De-
spite this uncertainty, it is known from in situ excavations in the 
Fruit and Nut Bed ( Collinson et al., 2009 ) and stratigraphically as-
sociated leaf assemblages ( Maxbauer et al., 2013 ) that a riverine 
mosaic habitat of woodland and forest existed during the deposi-
tion of the Grit Member of the lower Hiwegi Formation. Th e paleo-
ecology of the new fossil species of  Cissus , inferred from living 
relatives and supported (for  Cissus rusingensis ) by associated fos-
sils, provides new evidence for mosaic landscapes on Rusinga Is-
land during the early Miocene, ranging from gallery or riverine 
forest to woodland, bushland, and savanna. 
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   APPENDIX 1       Voucher information and GenBank accession numbers of  Cissus  species, for which new sequences were produced for the present 
phylogenetic analysis.  

   Taxon  ;  trnL-F ;  rps16 ;  trnC-petN ;  atpB-rbcL ; voucher information; Kew DNA 
Bank accession number. 

   Cissus barbeyana   De Wild. & T.Durand  ;   KX131178  ;   -  ;   -  ;   -; Lisowski, 
S. 16406 (K); 31957.   Cissus bosseri   Desc.  ;   KX131174  ;   -  ;   -  ;   KX131172; 
Phillipson, P.B. & Rabesihanaka, S. 3140 (K); 31965 .  Cissus petiolata   
Hook.f.  ;   KX131175  ;   -  ;   -  ;-   ; Luke, P.A. & WRQ 9365 (K); 31952 .  Cissus 

polyantha   Gilg & M.Brandt  ;   KX131176  ;   -  ;   -  ;   -; Deighton, F.C. 5208 (K); 
31955 .  Cissus populnea   Guill. & Perr.  ;   KX131179  ;   -  ;   -  ;   -; Daramola, B.O. 
221 (K); 31968 .  Cissus rondoensis   Verdc.  ;   -  ;   -  ;   -  ;   KX131170; Bidgood, S., 
Abdallah, R. & Vollesen, K. 1553 (K); 31961 .  Cissus smithiana   (Baker) 
Planch.  ;   KX131177  ;   -  ;   -  ;   -; Louis, J. 559 (K); 31959 .  Cissus tiliifolia   Planch.  ;   
KX131173  ;   -  ;   -  ;   KX131171; Eilu, G. 240 (K); 31964. 

   APPENDIX 2      Species included in the phylogenetic analysis of family Vitaceae for which sequences were obtained from GenBank, with a 
particular focus on genus  Cissus .  

  Taxon ; trnLF; rps16; trnC-petN; atpB-rbcL. 

   Cissus adnata   Roxb.  ;   JX476858  ;   JX476547  ;   JX476673  ;   JX476429 .  Cissus 
albiporcata   Masinde & L.E. Newton  ;   JF437304  ;   JX476548  ;   JF437201  ;   
JX476430 .  Cissus amazonica   Lindel  ;   JX476859  ;   JX476549  ;   JX476674  ;   
JX476431 .  Cissus anisophylla   Lombardi   ;   AB235010  ;   JX476550  ;   JX476675  ;   
JX476432 .  Cissus annamica   Gagnep.  ;   -  ;   -  ;   JX476676  ;   - .  Cissus antarctica   
Vent.   ;   JX476860  ;   JX476551  ;   JX476677  ;   JX476433 .  Cissus apendiculata   
Lombardi  ;   JX313413  ;   -  ;   -  ;   - .  Cissus aphyllantha   Gilg  ;   JX476862  ;   JX476553  ;   
JX476679  ;   JX476435 .  Cissus araguainensis   Lombardi  ;   JX313415  ;   -  ;   -  ;   - . 
 Cissus aralioides   (Welw. ex Baker) Planch.  ;   JF437305  ;   -  ;   JF437202  ;   - .  Cissus 
assamica   (M.A. Lawson) Craib  ;   JF437307  ;   JX476559  ;   JF437204  ;   JX476441 . 
 Cissus auricoma   Desc.  ;   JX476866  ;   JX476560  ;   JX476682  ;   JX476442 .  Cissus 
bahiensis   Lombardi  ;   JX313416  ;   -  ;   -  ;   - .  Cissus biformifolia   Standl.  ;   -  ;   
JX476562  ;   JX476684  ;   JX476444 .  Cissus blanchetiana   Planch.  ;   JX313417  ;   -  ;   
-  ;   - .  Cissus cactiformis   Gilg.  ;   JX476868  ;   JX476563  ;   JX476685  ;   JX476445 . 
 Cissus campestris   (Baker) Planch.  ;   JX313418  ;   -  ;   -  ;   - .  Cissus cardiophylla   
Standley  ;   EF179080  ;   -  ;   -  ;   - .  Cissus cornifolia   (Baker) Planch.  ;   JF437308  ;   
JX476567  ;   JF437205  ;   JX476449 .  Cissus decidua   Lombardi  ;   JX313419  ;   -  ;   -  ;   - . 
 Cissus descoingsii   Lombardi  ;   JX313420  ;   -  ;   -  ;   - .  Cissus diff usa   (Miq.) Amshoff   ;   
JX476871  ;   JX476569  ;   JX476689  ;   JX476451 .  Cissus diff usifl ora   (Baker) 
Planch.  ;   JX476872  ;   JX476570  ;   -  ;   JX476452 .  Cissus discolor   Blume  ;   JF437309  ;   
-  ;   JF437206  ;   - .  Cissus duarteana   Cambess.  ;   JX313421  ;   -  ;   -  ;   - .  Cissus elongata   
Roxb.  ;   -  ;   JX476573  ;   JX476691  ;   JX476455 .  Cissus erosa   Rich.  ;   HM585942  ;   
HM585802  ;   JX476693  ;   HM585526 .  Cissus faucicola   Wild & R.B.Drumm.  ;   
JX476874  ;   JX476576  ;   JX476694  ;   JX476458 .  Cissus fl oribunda   (Baker) 
Planch.  ;   JX476875  ;   JX476577  ;   JX476695  ;   JX476459 .  Cissus gongylodes   
(Burch. ex Baker) Planch.  ;   JX476877  ;   JX476579  ;   JX476697  ;   JX476461 .  Cissus 
granulosa   Ruiz & Pav.  ;   JX476880  ;   JX476582  ;   JX476700  ;   JX476464 .  Cissus 
hastata   Miq.  ;   AB235012  ;   -  ;   JX476701  ;   JX476465 .  Cissus hypoglauca   Durras  ;   
JX476881  ;   JX476583  ;   JX476702  ;   JX476466 .  Cissus incisa   (Nutt.) Des Moul. 
Ex S.Watson  ;   HM585944  ;   HM585804  ;   -  ;   HM585528 .  Cissus integrifolia   
(Baker) Planch.  ;   JX476882  ;   JX476584  ;   JX476703  ;   JX476467 .  Cissus javana   
DC.   ;   JX476883  ;   JX476585  ;   JX476704  ;   JX476468 .  Cissus lanea   Desc.  ;   
JX476884  ;   JX476586  ;   JX476705  ;   JX476469 .  Cissus leucophleus   (Scott-Elliot) 
Suess.  ;   JX476885  ;   JX476587  ;   JX476706  ;   JX476470 .  Cissus madecassa   Desc.  ;   
JX476886  ;   JX476588  ;   JX476707  ;   JX476471 .  Cissus microcarpa   Vahl.  ;   
JX476888  ;   JX476590  ;   JX476709  ;   JX476473 .  Cissus microdonta   Vahl.  ;   
JX476889  ;   JX476591  ;   JX476710  ;   JX476474 .  Cissus neei   Croat  ;   JX313424  ;   -  ;   -  ;   
- .  Cissus nodosa   Blume  ;   HM585945  ;   JX476592  ;   JX476711  ;   JX476475 .  Cissus 
obliqua   Ruiz & Pav.  ;   JX476890  ;   JX476593  ;   JX476712  ;   JX476476 .  Cissus 
oblonga   (Benth.) Planch.  ;   EF179083  ;   -  ;   -  ;   - .  Cissus oliveri   Gilg. ex Engl.  ;   
JX476892  ;   JX476595  ;   JX476714  ;   JX476478 .  Cissus paraensis   Lombardi  ;   
JX313427  ;   -  ;   -  ;   - .  Cissus paullinifolia   Vell.  ;   JX313426  ;   -  ;   -  ;   - .  Cissus penninervis   
(F.Muell.) Planch.  ;   AF300300  ;   -  ;   -  ;   - .  Cissus pentaclada   Jackes  ;   EF179084  ;   -  ;   -  ;   
- .  Cissus phymatocarpa   Masinde & L.E. Newton  ;   JF437311  ;   JX476596  ;   
JF437209  ;   JX476479 .  Cissus pileata   Desc.  ;   JX476893  ;   JX476597  ;   JX476715  ;   
JX476480 .  Cissus polita   Desc.  ;   JX476894  ;   JX476598  ;   JX476716  ;   JX476481 . 

 Cissus producta   Afzel.  ;   JF437312  ;   JX476600  ;   JX476718  ;   JX476483 .  Cissus 
pseudoguerkeana   Verdc.  ;   JX476896  ;   JX476601  ;   JX476719  ;   JX476484 . 
 Cissus pseudoverticillata   Verdc.  ;   JX476897  ;   JX476602  ;   JX476720  ;   JX476485 . 
 Cissus pulcherrima   Vell.  ;   JX313429  ;   -  ;   -  ;   - .  Cissus quadrangularis   L.  ;   
JF437313  ;   JX476603  ;   JF437211  ;   JX476486 .  Cissus quarrei   Dewit  ;   JX476899  ;   
JX476605  ;   JX476722  ;   JX476488 .  Cissus reniformis   Domin.  ;   EF179086  ;   -  ;   -  ;   - . 
 Cissus repanda   Vahl  ;   JX476900  ;   JX476607  ;   JX476724  ;   JX476490 .  Cissus 
repens   Lam.  ;   HM585946  ;   -  ;   -  ;   HM585530 .  Cissus rhodotricha   (Baker) Desc.  ;   
JX476902  ;   JX476609  ;   JX476727  ;   JX476492 .  Cissus rhombifolia   Vahl  ;   
JX476905  ;   JX476612  ;   JX476729  ;   JX476495 .  Cissus rostrata   Korth.ex Planch.  ;   
AB235016  ;   -  ;   JX476731  ;   JX476497 .  Cissus rotundifolia   (Forssk.) Vahl  ;   
JF437315  ;   JX476614  ;   JF437213  ;   JX476498 .  Cissus rubiginosa   Welw. ex Bak. 
Planch.   ;   JX476907  ;   JX476616  ;   JX476732  ;   JX476500 .  Cissus sagittifera   
Desc.  ;   JX476908  ;   JX476617  ;   JX476733  ;   JX476501 .  Cissus sciaphila   Gilg  ;   
JF437316  ;   JX476619  ;   JF437214  ;   JX476503 .  Cissus serroniana   (Glaz.) 
Lombardi  ;   JX313430  ;   -  ;   -  ;   - .  Cissus simsiana   Roem. & Schult.  ;   JX476910  ;   
JX476620  ;   JX476734  ;   JX476504 .  Cissus spinosa   Cambess.  ;   JX313435  ;   -  ;   -  ;   - . 
 Cissus sterculiifolia   (F.Muell. Ex Benth.) Planch.  ;   EF179088  ;   -  ;   -  ;   - .  Cissus 
stipulata   Vell.  ;   JX313436  ;   -  ;   -  ;   - .  Cissus striata   Ruiz & Pav.  ;   AB235017  ;   -  ;   
JX476747  ;   - .  Cissus subtetragona   Planch.  ;   JX476923  ;   JX476635  ;   JF437216  ;   
JX476519 .  Cissus sulcicaulis   (Baker) Planch.  ;   JX313438  ;   -  ;   -  ;   - .  Cissus 
surinamensis   Desc.  ;   JX313439  ;   -  ;   -  ;   - .  Cissus sylvicola   Masinde & L.E.Newton  ;   
JX476924  ;   JX476636  ;   JX476751  ;   JX476520 .  Cissus tiliacea   Kunth  ;   JX313440  ;   
-  ;   -  ;   - .  Cissus tinctoria   Mart.  ;   JX313414  ;   -  ;   -  ;   - .  Cissus trianae   Planch.  ;   
JX313441  ;   -  ;   -  ;   - .  Cissus trifoliata   (L.) L.  ;   JX476926  ;   JX476639  ;   JX476755  ;   
JX476524 .  Cissus trothae   Gilg & M. Brandt  ;   JF437318  ;   JX476640  ;   JF437217  ;   
JX476525 .  Cissus tuberosa   Moc. & Sesse ex DC.  ;   JX476927  ;   JX476641  ;   
JX476756  ;   JX476526 .  Cissus tweediana   (Baker) Planch.  ;   EF179089  ;   -  ;   -  ;   - . 
 Cissus ulmifolia   (Baker) Planch.  ;   JX476928  ;   JX476642  ;   JX476757  ;   JX476527 . 
 Cissus verticillata   (L.) Nicolson & C.E. Jarvis  ;   JX476929  ;   JX476643  ;   JX476758  ;   
JX476528 .  Cissus vinosa   Jackes  ;   EF179090  ;   -  ;   -  ;   - .  Cissus welwitschii   (Baker) 
Planch.  ;   JX476934  ;   JX476651  ;   -  ;   JX476537 .  Cissus wenshanensis   C.L. Li  ;   
HM585949  ;   -  ;   -  ;   HM585533 .  Ampelocissus acapulcensis   (Kunth) Planch.  ;   
JF437281  ;   JX476543  ;   JF437172  ;   - .  Ampelocissus africana   (Lour.) Merr.   ;   
JQ182553  ;   JQ182603  ;   -  ;   JQ182448 .  Ampelocissus ascendifl ora   Latiff    ;   -  ;   
JQ182583  ;   -  ;   JQ182430 .  Ampelocissus costaricensis   Lundell  ;   -  ;   -  ;   -  ;   
AB234911 .  Ampelocissus elephantina   Planch.  ;   HM585932  ;   HM585792  ;   -  ;   
HM585516 .  Ampelocissus erdwendbergiana   Planch.  ;   JF437282  ;   JX476544  ;   
JF437173  ;   - .  Ampelocissus fi lipes   Planch.  ;   AB234982  ;   -  ;   -  ;   - .  Ampelocissus 
gracilis   Planch.  ;   AB234983  ;   -  ;   -  ;   - .  Ampelocissus javalensis   (Seem.) W.D. 
Stevens & A. Pool   ;   AB234984  ;   -  ;   -  ;   - .  Ampelocissus obtusata   (Welw. ex 
Baker) Planch.   ;   JQ182556  ;   JQ182612  ;   -  ;   JQ182457 .  Ampeloc  issus thyrsifl ora   
(Blume) Planch.   ;   JQ182546  ;   JQ182593  ;   -  ;   JQ182438 .  Ampelopsis bodinieri   
(H. Lév. & Vaniot) Rehder  ;   JF437284  ;   JX476545  ;   JF437175  ;   JX476427 . 
 Ampelopsis cantoniensis   Planch.   ;   HM585933  ;   HM585793  ;   JX476667  ;   
HM585517 .  Ampelopsis chaff anjonii   (H.Lev.)Rehder  ;   JF437286  ;   -  ;   -  ;   - . 
 Ampelopsis cordata   Michx.  ;   AB234997  ;   -  ;   JF437178  ;   - .  Ampelopsis 
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delavayana   Planch  ;   HM223253  ;   -  ;   -  ;   - .  Ampelopsis rubifolia   (Wall.) Planch.  ;   
JF437293  ;   JX476546  ;   JF437186  ;   JX476428 .  Cayratia acris   F. Muell.  ;   
EF179070  ;   -  ;   -  ;   - .  Cayratia clematidea   (F.Muell.) Domin.  ;   EF179072  ;   -  ;   -  ;   - . 
 Cayratia cordifolia   C.Y. Wu ex C.L. Li  ;   HM585934  ;   HM585794  ;   JX476668  ;   
HM585518 .  Cayratia debilis   (Baker)Suess.  ;   JF437296  ;   -  ;   -  ;   - .  Cayratia 
eurynema   B.L.Burtt  ;   EF179073  ;   -  ;   -  ;   - .  Cayratia gracilis   (Guill. & Perr.)Suess.  ;   
JF437297  ;   -  ;   -  ;   - .  Cayratia imerinensis   (Baker) Desc.  ;   HM585936  ;   HM585796  ;   
JX476669  ;   HM585520 .  Cayratia japonica   (Thunb.) Gagnep.   ;   HM585937  ;   -  ;   
-  ;   HM585521 .  Cayratia maritima   Jackes  ;   EF179074  ;   -  ;   -  ;   - .  Cayratia 
mollissima   Gagnep.  ;   HM585938  ;   HM585798  ;   JX476671  ;   HM585522 . 
 Cayratia pedata   Gagnep.  ;   AB235005  ;   -  ;   -  ;   - .  Cayratia saponaria   (Seem. Ex 
Benth.) Domin.  ;   EF179075  ;   -  ;   -  ;   - .  Cayratia trifolia   (L.) Domin   ;   HM585940  ;   -  ;   
JX476672  ;   HM585524 .  Cayratia triternata   (Baker) Desc.  ;   HM585941  ;   -  ;   -  ;   - . 
 Clematicissus angustissima   (F.Muell.) Planch.  ;   EF179091  ;   -  ;   -  ;   - . 
 Clematicissus opaca   (F. Muell) Jackes & Rossetto  ;   JX476935  ;   JX476652  ;   
JX476767  ;   JX476538 .  Cyphostemma adenocaule   (A.Rich.)Wild & 
R.B.Drumm.  ;   JX476936  ;   JX476653  ;   JX476768  ;   JX476539 .  Cyphostemma 
bainesii   (Hook.f.) Desc.  ;   AB235025  ;   -  ;   -  ;   - .  Cyphostemma duparquetii   
(Planch.) Desc.  ;   JF437324  ;   -  ;   JF437222  ;   - .  Cyphostemma horombense   Desc.  ;   
HM585950  ;   -  ;   -  ;   - .  Cyphostemma jiguu   Verdc.  ;   JX476937  ;   JX476655  ;   
JX476769  ;   JX476540 .  Cyphostemma kilimandscharicum   (Gilg) Wild & 
R.B.Drumm.  ;   JF437327  ;   -  ;   -  ;   - .  Cyphostemma mappia   (Lam.) Galet  ;   
AB235026  ;   -  ;   -  ;   - .  Cyphostemma maranguense   (Gilg) Desc.  ;   JF437329  ;   -  ;   
JF437227  ;   - .  Cyphostemma montagnacii   Desc.  ;   AB235027  ;   -  ;   JF437228  ;   - . 
 Cyphostemma simulans   (C.A. Sm.) Wild & R.B. Drumm  ;   HM585952  ;   -  ;   -  ;   
HM585536 .  Leea aculeata   Blume  ;   AB235087  ;   -  ;   -  ;   - .  Leea guineensis   G. 
Don.  ;   -  ;   JX476657  ;   JF437235  ;   JX476541 .  Leea indica   (Burm.f.) Merr.  ;   
HM585953  ;   -  ;   JX476771  ;   HM585537 .  Leea macrophylla   Roxb. ex Hornem. & 
Roxb.  ;   JF437335  ;   JX476659  ;   JF437237  ;   - .  Leea spinea   Desc.  ;   HM585955  ;   -  ;   -  ;   
- .  Nothocissus spicifera   (Griff .) Latiff   ;   JF437336  ;   JX476660  ;   JF437239  ;   - . 
 Parthenocissus chinensis   C.L. Li  ;   HM223263  ;   HM223320  ;   JF437240  ;   
HM223373 .  Parthenocissus henryana   (Hemsl.) Graebn. ex Diels & Gilg  ;   
HM223272  ;   HM223329  ;   JF437244  ;   HM223383 .  Parthenocissus heptaphylla   
(Buckl.) Britton ex Small  ;   HM223256  ;   -  ;   -  ;   - .  Parthenocissus himalayana   
Planch.  ;   AB235034  ;   -  ;   -  ;   - .  Parthenocissus laetevirens   Rehder  ;   HM223267  ;   -  ;   

-  ;   - .  Parthenocissus quinquefolia   (L.) Planch.  ;   HM223275  ;   HM223332  ;   
JF437246  ;   HM223386 .  Parthenocissus suberosa   Hand.-Mazz.  ;   HM223273  ;   
HM223330  ;   JF437247  ;   HM223384 .  Parthenocissus tricuspidata   (Sieb. & 
Zucc.) Planch.  ;   HM223274  ;   HM223331  ;   JF437248  ;   HM223385 . 
 Parthenocissus vitacea   (Knerr.) Hitchc.  ;   HM223295  ;   -  ;   -  ;   - .  Pterisanthes 
eriopoda   Planch.  ;   -  ;   JX476661  ;   -  ;   - .  Pterisanthes heterantha   M. Laws  ;   
AB235045  ;   AB234965  ;   -  ;   AB234930 .  Pterisanthes stonei   Latiff   ;   AB235046  ;   
JX476662  ;   -  ;   - .  Rhoicissus digitata   Gilg & Brandt.  ;   AB235047  ;   -  ;   -  ;   - . 
 Rhoicissus rhomboidea   Planch.  ;   AB235049  ;   -  ;   -  ;   - .  Rhoicissus tomentosa   
(Lam.) Wild & R.B. Drumm  ;   JF437342  ;   JX476663  ;   JF437251  ;   - .  Rhoicissus 
tridentata   (L.f.) Wild & R.B. Drumm,  ;   JF437341  ;   JX476664  ;   JF437250  ;   - . 
 Tetrastigma glabratum   Planch.  ;   HM585995  ;   -  ;   -  ;   - .  Tetrastigma 
hemsleyanum   Diels & Gilg  ;   HM586000  ;   HM585860  ;   -  ;   HM585584 . 
 Tetrastigma lanyuense   C.E. Chang  ;   HM586009  ;   HM585869  ;   JF437257  ;   
HM585593 .  Tetrastigma laxum   Merr.  ;   HM586017  ;   -  ;   -  ;   - .  Tetrastigma 
lenticellatum   Planch.  ;   HM586019  ;   -  ;   -  ;   - .  Tetrastigma loheri   Gagnep.  ;   
HM586021  ;   -  ;   -  ;   - .  Tetrastigma obtectum   (Wall.) Planch  ;   HM586029  ;   
HM585888  ;   -  ;   HM585614 .  Tetrastigma pachyphyllum   (Hemsl.) Chun  ;   
HM586032  ;   HM585891  ;   JF437259  ;   HM585616 .  Tetrastigma petraeum   
Jackes  ;   EF179094  ;   -  ;   -  ;   - .  Tetrastigma pyriforme   Gagnep.  ;   HM586039  ;   -  ;   -  ;   - . 
 Tetrastigma sichouense   C.L.Li  ;   HM586047  ;   -  ;   -  ;   - .  Tetrastigma triphyllum   
(Gagnep.) W.T. Wang  ;   HM586061  ;   HM585919  ;   -  ;   HM585646 .  Tetrastigma 
voinierianum   Pierre ex Gagnep.  ;   HM586067  ;   -  ;   -  ;   - .  Vitis aestivalis   Michx.   ;   
HM586070  ;   HM585928  ;   -  ;   HM585655 .  Vitis betulifolia   Diels & Gilg  ;   
JF437352  ;   JX476665  ;   JF437269  ;   - .  Vitis fl exuosa   Thunb.  ;   HM586071  ;   
HM585929  ;   -  ;   HM585656 .  Vitis heyneana   Roem. & Schult  ;   JF437354  ;   
JX476666  ;   JF437273  ;   - .  Vitis labrusca   L.  ;   JX507364  ;   JX507361  ;   JX507362  ;   
JX507360 .  Vitis mengziensis   C.L. Li  ;   HM223276  ;   HM223333  ;   JF437270  ;   
HM223387 .  Vitis popenoei   J.L. Fennell  ;   HM586072  ;   HM585930  ;   JF437276  ;   
HM585657 .  Vitis riparia   Michx  ;   JF437357  ;   -  ;   JF437277  ;   - .  Vitis rotundifolia   
Michx.  ;   HM586073  ;   HM585931  ;   -  ;   HM585658 .  Vitis thunbergii   Siebold & 
Zucc.  ;   AB235082  ;   -  ;   -  ;   - .  Vitis vinifera   L.  ;   -  ;   -  ;   -  ;   - .  Vitis vulpina   L.  ;   JQ182566  ;   
JQ182622  ;   -  ;   JQ182467 .  Yua austro-orientalis   (F.P. Metcalf ) C.L. Li  ;   
AB235085  ;   -  ;   -  ;   - .  Yua thomsoni   (M.A. Lawson) C.L. Li  ;   HM223277  ;   HM223335  ;   
-  ;   HM223389. 
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