Article type : MS - Regular Manuscript

Disparity, diversity, and duplications in the Caryophyllales

Stephen A. Smith¹, Joseph W. Brown¹, Ya Yang², Riva Bruenn³, Chloe P. Drummond³, Samuel F. Brockington⁴, Joseph F. Walker¹, Noah Last², Norman A. Douglas³ and Michael J. Moore³

¹Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48103, USA; ²Department of Plant Biology, University of Minnesota-Twin Cities, 1445 Gortner Avenue, St Paul, MN 55108, USA; ³Department of Biology, Oberlin College, 119 Woodland St, Oberlin, OH 44074-1097, USA; ⁴Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK

Author for correspondence:

Stephen A. Smith

Tel: +1 734 615 5510

Email: eebsmith@umich.edu

Received: 30 May 2017

Accepted: 28 July 2017

Summary₁

• The role whole genome duplication (WGD) plays in plant evolution is actively debated. WGDs have been associated with advantages including superior colonization, various adaptations, and increased effective population size. However, the lack of a comprehensive mapping of WGDs within a major plant clade has led to uncertainty regarding the potential association of WGDs and higher diversification rates.

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> 10.1111/nph.14772

This article is protected by copyright. All rights reserved

- Using seven chloroplast and nuclear ribosomal genes, we constructed a phylogeny of 5036 species of Caryophyllales, representing nearly half of the extant species. We phylogenetically mapped putative WGDs as identified from analyses on transcriptomic and genomic data and analyzed these in conjunction with shifts in climatic occupancy and lineage diversification rate.
- Thirteen putative WGDs and 27 diversification shifts could be mapped onto the
 phylogeny. Of these, four WGDs were concurrent with diversification shifts, with other
 diversification shifts occurring at more recent nodes than WGDs. Five WGDs were
 associated with shifts to colder climatic occupancy.
- While we find that many diversification shifts occur after WGDs it is difficult to consider
 diversification and duplication to be tightly correlated. Our findings suggest that
 duplications may often occur along with shifts in either diversification rate, climatic
 occupancy, or rate of evolution.

Key words: Caryophyllales, climatic occupancy, diversification rates, duplications, phylogenomics.

Introduction

Understanding the causes and correlates of diversification within flowering plants has been a central goal of evolutionary biologists. Genomic and transcriptomic data have reinvigorated hypotheses associating whole genome duplication (WGD) with lineage diversification rate increases (e.g. Levin, 1983, 2002; Barker *et al.*, 2009, 2016; Estep *et al.*, 2014; Soltis *et al.*, 2014; Edger *et al.* 2015; Puttick *et al.* 2015; Tank *et al.*, 2015; Huang *et al.*, 2016; McKain *et al.*, 2016; Laurent *et al.*, 2017). It is not self-evident why WGDs would be associated with increases in lineage diversification. One hypothesis suggests that the additional genetic material provides a basis to generate new adaptations (Edger *et al.*, 2015), although this itself assumes a co-occurrence of adaptation and lineage proliferation (Levin, 1983). The apparent lack of precise co-occurrence of adaptation and lineage proliferation has been explained by the potential of a lag model (Schranz *et al.* 2012; Tank *et al.* 2015) where diversification may follow WGD events. In the absence of overwhelming correlative signal, we are often unable to discern true ancient WGD events from aneuploidy without advanced genomic information such as synteny mapping

(Dohm *et al.*, 2012). Because it is often difficult to distinguish the two, for simplicity we will define WGD broadly to include putative ancient WGD events (paleopolyploidy) and ancient aneuploidy events. WGD events are thought to be a common occurrence and have been associated with an estimated 15% of angiosperm speciation events (Wood *et al.*, 2009). However, whether speciation by WGD is correlated with higher diversification rates remains highly debated (Mayrose *et al.*, 2011; Estep *et al.* 2014; Soltis *et al.*, 2014; Tank *et al.*, 2015; Kellogg *et al.* 2016). Analyses based on recent WGD events have concluded that immediate extinction rates are higher for polyploid plants (Mayrose *et al.*, 2011; Arrigo & Barker, 2012). This may result from small initial population sizes and an increased dependence on selfing. Alternatively, despite the disadvantages of WGD, others have suggested that polyploids may be superior colonizers (Soltis & Soltis, 2000).

Indeed, extreme environments are associated with high levels of WGD, with up to 87% of species restricted to areas that were glaciated during the last ice age consisting of polyploids (Brochmann, 2004). However, in the example from Arctic plants, the high level of WGD has occurred post-glaciation representing a micro-evolutionary period whereas previous studies often focus at much deeper macro-evolutionary time scales (Mayrose *et al.*, 2011; Tank *et al.*, 2015; Soltis *et al.*, 2014). From the perspective of a short timescale, polyploidy has the disadvantages of higher error rates in mitosis (Storchová *et al.*, 2006) and masking of deleterious mutations allowing them to accumulate to higher frequencies in a population (Otto & Whitton, 2000). A suite of advantages however may also arise, including gain of asexuality (Miller *et al.*, 2000) and varying effects of heterosis (Comai, 2005). The net role these advantages and disadvantages play on the macroevolutionary scale is difficult to determine from either the purely short-term or purely long-term time scales previously used.

The long-term consequence of WGD is a central question in macroevolution and comparative genomics. However, with a suite of advantages and disadvantages, much debate surrounds the importance and patterns of correlation of WGD (Comai, 2005). While polyploidization events can cause instant speciation, there is no reason to assume that these singular speciation events in themselves would influence large-scale diversification rate shifts when considering lineage survivorship. Instead, there may be other factors, such as the increase in genetic material, perhaps increasing genetic diversity or enabling adaptation, that cause long term shifts in rates of diversification. Adaptations need not be associated with shifts in the tempo

of diversification and those adaptations and shifts in diversification may not co-occur on the same branch (i.e. there may be a lag time; Donoghue, 2005; Smith *et al.*, 2011, Schranz *et al.*, 2012; Donoghue & Sanderson, 2015; Tank *et al.*, 2015; Dodsworth *et al.*, 2016). In the broader context of plant evolution, there are several possible outcomes of WGD in relation to the evolution and diversification of clades: no relationship between WGD and speciation rate or habitat shift/adaptation; WGD coincides with an increase of speciation rate, with or without a lag time; WGD promotes dispersal and habitat shifts, which has mixed relationship with speciation rate; and a mixture (some association, some not), similar to the previous hypothesis but without explicitly promoting dispersal or habitat shift or speciation (e.g. adaptation could be more prominent than dispersal and habitat shift). Here, we contribute to this discussion on diversification and WGDs with an in-depth examination of the intersection of diversification and WGDs happening at a range of scales within the hyperdiverse Caryophyllales.

The Caryophyllales comprise c. 12500 species in 39 families (Thulin et al., 2016; APG IV: Chase et al., 2016), representing c. 6% of extant angiosperm species diversity. The estimated crown age of Caryophyllales is c. 67–121 million yr ago (mega-annum, Ma) (Bell et al., 2010; Moore et al., 2010). Species of the Caryophyllales exhibit extreme life-history diversity, ranging from tropical trees to temperate annual herbs, and from desert succulents (e.g. Cactaceae) to a diverse array of carnivorous plants (e.g. the sundews *Drosera* and pitcher plants *Nepenthes*). Such extraordinary diversity makes Caryophyllales a particularly useful system for investigating the relationship between WGD vs diversification and climate occupancy evolution. Our previous analyses using 62 transcriptomes representing 60 species across the Caryophyllales identified 13 well-supported ancient WGD events (Yang et al., 2015). We have since nearly tripled the taxon sampling and assembled a data set comprising high-coverage transcriptomes and genomes from 169 species across the Caryophyllales (Yang et al., 2017), providing even greater power for resolving the number and phylogenetic locations of WGD events. Moreover, the growth in the number of plant taxa on GenBank that are represented by traditional targeted sequences (e.g. rbcL, matK, ITS, etc.) and the growth of publicly available collections data (e.g. GBIF, iDigBio) provide excellent opportunities to apply phylogenetic and climate diversification approaches at fine scales in Caryophyllales.

By examining WGDs and diversification within the Caryophyllales, we present an important example. Not only does the dataset examined have a high density of transcriptomic

sampling, the diversification of the bulk of Caryophyllales occurred during a time frame intermediate to that of most published studies that have probed a link between WGD and macroevolution. This time frame, between 10 and 100 Ma, is important for angiosperms as much of the diversification that has led to the modern flora occurred during this period and most modern angiosperm families appeared by this time. Discussion of speciation rates, climate occupancy shifts, and WGDs would be flawed without accurate mappings of WGD events within this time scale. We compiled a data set with extensive and precise mapping of WGD combined with a species-level phylogeny. The megaphylogeny approach has been used extensively in the past to combine data from many gene regions and across broad taxonomic groups to address evolutionary questions (Smith *et al.*, 2009). Here, we use this approach to help inform analyses from phylogenomic studies, and provide a broad context in which to examine these genomic phenomena. With half of the species sampled, this represents one of the largest and most exhaustive studies of WGDs, diversification rate, and adaptive shifts.

Materials and Methods

Sanger sequencing and assembly

A total of 248 new *matK* sequences were included in this study (Table 1). To generate these sequences, leaf samples were collected in silica in the field or from cultivated material, or were collected from herbarium sheets. DNA was isolated using either the Nucleon Phytopure kit (GE Healthcare Life Sciences, Pittsburgh, PA, USA), using the 0.1 g protocol and following manufacturer's instructions, or using the Doyle & Doyle (1987) protocol, with the addition of 1% PVP-40. An *c*. 950 bp region in the middle of the *matK* gene was amplified and sequenced using custom-designed primers (Table 2). PCRs were performed in 12.5 μl volumes with 0.5 μl of 5 mM primer for both primers, 5–20 ng of DNA template, 0.1 μl of GoTaq (Promega, Madison, WI, USA), 6.25 μl of Failsafe Premix B (Epicentre, Madison, WI, USA), and 4.7 μl of sterile, deionized water. Reactions were run on a Bio-Rad PTC 200 thermocycler (Bio-Rad, Hercules, CA, USA) at Oberlin College. Individual PCRs were cleaned in 16.5 μl reactions containing 10 U of Exonuclease I (Affymetrix, ThermoFisher Scientific, Waltham, MA, USA), 2 U of shrimp alkaline phosphatase (Affymetrix), 8 μl of PCR product, and 8.5 μl of sterile, deionized water. Sanger sequencing of the resulting cleaned PCRs was conducted by Neogenomics (formerly SeqWright; Houston, TX, USA) using an ABI 3730xl automated

sequencer (Applied Biosystems, ThermoFisher Scientific). The resulting forward and reverse sequences for each reaction were trimmed and *de novo* assembled using default parameters of the Geneious assembler in Geneious versions 5–7 (Biomatters, Auckland, New Zealand).

Molecular data for phylogenetic reconstruction

Nucleotide data from the nuclear ribosomal internal transcribed spacers (ITS) and *phyC* gene, and the plastid loci *matK*, *ndhF*, *rbcL*, *trnH-psbA* spacer, and *trnL-trnF* spacer were used to reconstruct the phylogeny. These data were gathered first using PHLAWD (Smith & Donoghue, 2008; Smith *et al.*, 2009) and then curated and combined with newly sequenced *matK* data for 124 additional species. This yielded the following sampling: ITS 2969 species, *matK* 2270 species, *ndhF* 417 species, *phyC* 172 species, *rbcL* 947 species, *trnH-psbA* 240 species, and *trnL-trnF* 1996 species. We used *matK*, *rbcL*, and *ndhF* sequences from *Aextoxicon*, *Apium*, *Berberidopsis*, *Campanula*, *Clethra*, *Coffea*, *Echinops*, *Helwingia*, *Ilex*, *Ipomoea*, *Lamium*, *Lonicera*, *Nyssa*, *Polysoma*, *Primula*, *Santalum*, *Valeriana*, and *Viburnum* to represent outgroups.

Phylogenetic reconstruction

We conducted phylogenetic analyses with RAxML v7.2.8 (Stamatakis, 2014) using the full analysis command, -f a, which conducts a rapid bootstrap and then a full maximum likelihood search. The combined bootstrap and maximum likelihood search allows for a more thorough maximum likelihood analysis where the initial rapid bootstrap results prime the maximum likelihood analysis. However, we did not use the rapid bootstrap trees from this analysis and instead, we conducted a full bootstrap, generating the bootstrap dataset using phyx (Brown *et al.*, 2017) and then conducting individual maximum likelihood runs on each constructed bootstrap dataset. This allowed us to conduct SH-like approximate likelihood ratio test (SH-aLRT; Guindon *et al.*, 2010) on the resulting bootstrap set. We conducted bootstraps within gene regions and we retained the individual bootstrap alignments to conduct additional analyses (i.e. bootstrapped alignments contained the same number of gene-specific sites as the empirical alignment). On each of the resulting trees of the bootstrap and the maximum likelihood tree, we conducted SH-aLRTs as implemented in RAxML. These analyses calculate support for each edge while also finding the NNI-optimal topology. RAxML completed the likelihood search for

each of these bootstrap replicates, however the SH-aLRT analyses often resulted in an improved maximum likelihood topology. The trees that resulted from the SH-aLRT, ML, and bootstrap samples, were used for further analyses. Because several deep relationships within Caryophyllales are hard to resolve without large amounts of molecular data that are unavailable for most of the taxa included in this analysis (Yang *et al.*, 2015), for all phylogenetic analyses we applied the following topological constraint: (Droseraceae, (*Microtea*, (Stegnospermataceae, Limeaceae, (Lophiocarpaceae, (Barbeuiaceae, Aizoaceae))))) as per previous analysis (Brockington *et al.*, 2009; Yang *et al.*, 2015).

Divergence time estimation

Few tractable options for divergence time estimation exist for datasets of the size presented here. We use the penalized likelihood approach (Sanderson, 2003) as implemented in the program treePL (Smith & O'Meara, 2012), which can handle large-scale phylogenies. The early fossil record of the Caryophyllales is sparse with only a few known records (Friis et al., 2011; Arakaki et al., 2011); fossil pollen has been ascribed to Amaranthaceae (Chenopodipollis) from the Paleocene of Texas (Nichols & Traverse, 1971); a putative fossil infructescence from within the Phytolaccaceae in the Campanian has also been reported (Cevallos-Ferriz et al., 2008), but this phylogenetic position has been disputed (S. Manchester, pers. comm.) and hence we excluded it; Jordan & Macphail (2003) describe a middle to late Eocene inflorescence from the species Caryophylloflora paleogenica, ascribed to Caryophyllaceae; pollen from Argentina within the Nyctaginaceae has been reported from the middle Eocene (Zetter et al., 1999); and fossil pollen and seeds of Aldrovanda (Degreef, 1997). The penalized likelihood method performs better when a calibration is used at the root. For this calibration, and because there is no fossil record for the earliest Caryophyllales, we use a secondary calibration from the comprehensive angiosperm divergence time analyses of Bell et al. (2010). We attached several other secondary calibrations to major clades where fossils are not available (Ocampo & Columbus, 2010; Arakaki et al., 2011; Schuster et al., 2013; Valente et al., 2013; see Supporting Information Table S1 for detail on placement and calibrations). We conducted a priming analysis to determine the best optimization parameter values. We then performed a cross validation analysis using the random cross validation setting to determine the optimal smoothing parameter value.

Climate occupancy analyses

We downloaded 6592700 georeferenced occurrences for the Caryophyllales from GBIF (accessed on 6 January 2015 [Author, please confirm amended text '6 January' is correct]; http://gbif.org). After removing samples present in living collections, and therefore not necessarily representative of native climates, and removing samples whose localities were over water, 6009552 samples remained. We extracted bioclimatic values for each coordinate using the 2.5 arc-minute resolution data from WorldClim (http://worldclim.org). We only included taxa that had at least three samples in these analyses to reduce potential errors and to have the minimum number of samples required to calculate mean and variance. The resulting overlap of the taxa represented in both the geographic and genetic data was 2843 taxa. We conducted principal component analyses (PCA) on these extracted values. With both the bioclimatic values and the first two axes of the PCA, we conducted ancestral state reconstruction analyses.

We also compared ancestral states and Brownian motion rates of evolution between sister clades (comparing duplicated lineages with their sisters) for mean annual precipitation, mean annual temperature, and principal component axis 1. We calculated ancestral states for continuous characters using a single rate model and compared sister lineages. We also calculated and compared estimates of independent Brownian motion rates for sister lineages.

Diversification analyses

To map diversification rate shifts, we conducted MEDUSA (Alfaro *et al.*, 2009; Pennell *et al.*, 2014) analyses on the maximum likelihood tree and the bootstrap trees. MEDUSA is far more computationally tractable than some other diversification estimation methods. Furthermore, we required the ability to feasibly integrate over the phylogenetic uncertainty within the phylogenetic dataset because of both the nature of the larger phylogenetic dataset and the inherent biological uncertainty within the Caryophyllales. MEDUSA fits a birth-death model of diversification (with parameters *r*: net diversification (birth - death), and ε: relative extinction (death / birth)) before using stepwise AIC (Burnham & Anderson, 2002) to identify shifts in rates of diversification. These complementary analyses accommodate topological and branch length uncertainty. We employed a birth-death model for 97 chronograms generated from nonparametric bootstrapping of the original matrix, inferring ML trees in RAxML, and estimating divergence times in treePL using the temporal constraints described above. We

discarded three trees based on poor fossil placement resulting from phylogenetic uncertainty causing fossil placements to conflict.

Whole genome duplication identification

To identify WGDs (procedure described below), we generated a tree based on transcriptomic data. For this tree, we used 178 ingroup data sets (175 transcriptomes, three genomes) representing 169 species in 27 families and 40 outgroup genomes (Tables S1 & S2 in Yang *et al.*, 2017). We mapped putative WGD events using multiple strategies: gene tree topology, plotting synonymous distance, and chromosome counts (Yang *et al.*, 2015, 2017). For gene tree topology analyses, we performed two alternative strategies for mapping duplication events from gene trees to the species tree: mapping to the most recent common ancestor (MRCA), or mapping to the species tree only when gene tree and species tree topologies are compatible.

To conduct synonymous distance analyses, we performed the following procedure. For all ingroup Caryophyllales transcriptome data sets, we calculated the distribution of paralog synonymous distance following the same procedure as (Yang et al., 2015). We reduced highly similar peptide sequences with CD-HIT (-c 0.99 -n 5)(Li & Godzik 2006). We also carried out an all-by-all BLASTP within each taxon using an E value cutoff of 10 and -max_target_seq set to 20. Resulting hits with pident < 20% or niden < 50 amino acids were removed. We removed sequences with ten or more hits to avoid overrepresentation of gene families that experienced multiple recent duplications. We used the remaining paralog pairs and their corresponding CDS to calculate Ks values using the pipeline https://github.com/tanghaibao/biopipeline/tree/master/synonymous_calculation (accessed 29 November 2014). The pipeline first carries out pairwise protein alignment using default parameters in ClustalW (Larkin et al., 2007), back-translates the alignment to a codon alignment using PAL2NAL (Suyama et al., 2006), and calculates the synonymous substitution rate (Ks) using yn00 as part of the PAML package (Yang, 2007), with Nei–Gojobori correction for multiple substitutions (Nei & Gojobori, 1986). We obtained chromosome counts from the Chromosome Counts Database (CCDB; http://ccdb.tau.ac.il_accessed 5 October 2015). When multiple counts were reported from different authors or different plants, we erred on the conservative estimate and recorded the lowest number. For species that were not available in the database, we found counts from the

literature (e.g. Jepson eFlora http://ucjeps.berkeley.edu/eflora/ and Flora of North America http://floranorthamerica.org) or by a consensus from species of the same genera.

Results and Discussion

Phylogenetic results

Phylogenetic analyses showed strong support based on bootstrap and SH-aLRT values for the monophyly of most Caryophyllales families (see Fig. S1). We found strong support for the carnivorous clade including Droseraceae, Ancistrocladaceae, Nepenthaceae, Drosophyllaceae, and Dioncophyllaceae. There was also strong support for this clade as sister to a clade including Frankeniaceae, Tamaricaceae, Plumbaginaceae, and Polygonaceae. However, relationships among the families showed more varied support. There was weak support for the placement of other families relative to other early diverging Caryophyllales (see Fig. S1). There was strong support for Caryophyllaceae sister to Amaranthaceae. There was very weak support for Aizoaceae sister to Phytolaccaceae+Nyctaginaceae. As with previously published analyses, there was no support for the monophyly of Phytolaccaceae in the traditional sense (i.e. including Phytolaccaceae s.s., Petiveriaceae, and Agdestis; APG IV) and very weak support for the placement of Sarcobataceae. There was also weak support for the relationships among Limeaceae, Molluginaceae, and the Portulacineae. Many of these relationships have been found to be strongly supported but conflicting in different analyses (Brockington et al., 2009; Soltis et al., 2011; Yang et al., 2015; Smith et al., 2015; Walker et al., 2017). Here, we focused less on the systematic resolution within the Caryophyllales and instead examine the potential relationship of diversification and climate occupancy shifts to WGDs. Therefore, we placed more emphasis on including more taxa over that of more gene regions (i.e. transcriptomes) at the cost of more missing data. Confident resolution of many of the systematic relationships will require genomic and transcriptomic sampling, as well as more thorough taxon sampling (Yang et al., 2017).

Climate occupancy reconstruction results

We performed climate occupancy ancestral reconstruction analyses on the phylogeny of 2843 taxa that included taxa with at least three sampled geographic coordinates (Figs 1–3). We conducted these analyses for visualization and for comparison with diversification and WGD

results (see below). Results for individual bioclimatic variables and principal components can be found in Figs S2–S4. Bioclimatic variable 1 (mean annual temperature, Fig. 1) showed that there are several strong phylogenetic patterns of clades with preferences for colder or warmer regions. For example, Polygonaceae, Caryophyllaceae, and Montiaceae each are dominated by taxa with preferences for cold environments, although each also contains early-diverging taxa with preferences to warm environments. By contrast, taxa inhabiting warm environments predominate in Cactaceae, Amaranthaceae, Aizoaceae, the carnivorous clade (Droseraceae, Drosophyllaceae, Nepenthaceae, Ancistrocladaceae, Dioncophyllaceae), and the phytolaccoid clade (Nyctaginaceae, Phytolaccaceae, Petiveriaceae, Sarcobataceae, and Agdestis). Bioclimatic variable 12 (mean annual precipitation) showed a comparatively consistent pattern of relatively dry to intermediately wet clades throughout the group. Indeed, only a few clades inhabiting wet ecosystems (in this case, the wet tropics) exist in the Caryophyllales, specifically small groups within the carnivorous clade, the phytolaccoids, early-diverging Polygonaceae, and other small groups throughout the Caryophyllales. The principal component loadings are presented in Fig. 2 and Fig. S5. Principal component 1, PCA1, showed significant differentiation throughout the Caryophyllales, as for example, early-diverging Polygonaceae vs the rest of Polygonaceae, early diverging Caryophyllaceae vs the rest of Caryophyllaceae, phytolaccoids vs Aizoaceae, and Portulacineae + relatives vs Cactaceae, to mention a few. These results generally reflect the extensive ecological diversification throughout the group. They also reflect significant diversification in the temperate regions of the world especially within the Caryophyllaceae and Polygonaceae contrasted with extensive diversification in the succulent lineages (especially Aizoaceae and Cactaceae) found in relatively dry and warm environments.

Diversification

Significant shifts in diversification were detected in most major clades (Table 4; Fig. 1). The results from diversification analyses on the maximum likelihood tree and bootstrap tree set were generally congruent with each other. However, there were discrepancies (Fig. 1). The bootstrap set recovered many shifts in Polygonaceae, the carnivorous clade, Caryophyllaceae, some shifts within Cactaceae, phytolaccoids, and Amaranthaceae. Disagreements on the existence and placement of shifts are primarily within Portulacineae, Aizoaceae, and Amaranthaceae. Overall, MEDUSA detected 27 increases in diversification rate using the ML tree and 16 increases using

the bootstrap trees. Given the relative lack of support of some of the branches in the phylogeny, we find the MEDUSA results on the set of bootstrapped trees to be the most conservative while the ML results are suggestive but not definitive of diversification shifts.

Duplications, diversification, and climate occupancy

WGD analyses showed thirteen putative WGDs that could be mapped to clades (i.e. involve more than one taxon in the dataset; Table 3; Figs 1–3). Many of these were found in early diverging lineages as opposed to nested deep within families, though there are WGDs identified in *Amaranthus* and *Claytonia*. We also found evidence of nested WGDs within the phytolaccoids and Portulacineae. In addition to these deeper WGDs, there were several more recent WGDs that were present in Ks plots but could not be mapped to a clade (Yang *et al.*, 2017). By sampling more extensively, Yang *et al.* (2017) and Walker *et al.* (2017) found additional WGD events within the Caryophyllales. We will surely find additional WGDs events in other lineages as more effort is placed on denser taxon sampling using genomes and transcriptomes. We did not explore WGDs that could only be mapped to terminal branches as we could not verify these phylogenetically. Further discussion of specific results related to the WGDs themselves can be found in Yang *et al.* (2017) and Walker *et al.* (2017).

To better examine whether WGDs coincide with diversification rate shifts, increases and decreases, or notable changes in climate tolerance, we mapped WGDs onto the large phylogenies and summarized the number of species and climate occupancy information for each clade (Tables 3, 4; Figs 1–3). Some WGD events were associated with synchronous diversification events. For example, within Nyctaginaceae, a WGD event occurs on the same branch (leading to Tribe Nyctagineae; Douglas & Spellenberg, 2010) as an increase in diversification rate in both the ML tree and the bootstrapped dataset (Fig. 1, dup:1 div:n). These events were also associated with a shift in life history and occupancy from an ancestral woody habit in the tropics to the largely herbaceous, arid-adapted temperate Nyctagineae. This was also the case for *Amaranthus* (Fig. 1, dup:5 div:x). Other coincident diversification and WGD events in the Droseraceae and Nepenthaceae were only supported by the ML tree. Although these correlated events may, in fact, be accurate, we will reserve more comments for when these are more confidently resolved. Other than these simultaneous shifts and one diversification shift at the base of the MRCA of Nyctaginaceae+Cactaceae, all other shifts in diversification occured more recently than WGD

events. Several authors have suggested that this lagging pattern may be common at the broader angiosperm scale (Schranz *et al.*, 2015, Tank *et al.*, 2015), though the expected distance of the diversification shift from the WGD event was not specified (this is discussed more below). In the results presented here, some diversification events occur shortly after the WGD event, such as within the Amaranthaceae (dup: 6) and Portulacineae (dup: 4). For others, it is difficult to determine whether the diversification events that occur after the WGD events are significantly close to the WGD to warrant suggestion of an association (e.g. dup: 7, dup: 10, dup: 8). More description of a model that would generate a null expectation would be necessary to determine what is 'close enough' (see discussion below).

Many of the other inferred lineage diversification rate shifts were associated with very recent, rapid radiations within genera such as those documented within *Commicarpus* (Nyctaginaceae), *Dianthus* (Caryophyllaceae), *Cerastium* (Caryophyllaceae), *Arenaria* (Caryophyllaceae), and *Salicornia* (Amaranthaceae), to name a few (Table 4). Although polyploids were reported in these clades, we were unable to pinpoint the phylogenetic location of any WGD with our current taxon sampling (e.g. *Dianthus*; Carolin, 1954; Weiss *et al.*, 2002). Increased sampling of transcriptomes and genomes will shed more light in these areas. While we only find a few WGDs that coincide well with diversification rate shifts, it is important to note that the uncertainty in the phylogenies makes it difficult to map anything but the strongest diversification signals. This discrepancy can be seen in the difference between the number of events supported by the ML analyses and those supported by the bootstrap analyses. It is possible that additional sequence data will improve phylogenetic resolution and confidence, and that consequently additional diversification events will emerge.

Equally interesting to the few WGD events associated directly with diversification are the WGD events associated with general shifts in climate tolerance. WGDs in the Polygonaceae, Caryophyllaceae, Montiaceae, and the Tribe Nyctagineae appear to be associated with movement into colder environments (Figs 1, 2, S2, S3). Species arising after the WGD within the Amaranthaceae occupy wetter environments than the sister clade. The WGDs within the carnivorous plants were also associated with shifts in environment as Nepenthaceae are found in very wet environments and the Droseraceae are found in somewhat drier environments, at least comparatively. However, in these cases, perhaps the development of the wide array of

morphologies associated with carnivory, apart from *Drosophyllum*, is more obviously associated with the WGD (Walker *et al.*, 2017).

While these qualitative assessments suggest potential correlations of shift in the climate occupied and WGDs, more specific and direct comparisons are necessary to quantify the extent of the shifts. For many of the clades experiencing WGD, a direct comparison with a sister clade is difficult because the sister may consist of a single species, another clade with WGD, or another complication. For example, there are WGDs at the base of both Polygonaceae and Plumbaginaceae as well as Nepenthaceae and Droseraceae. However, we made direct comparison of five duplicated lineages (see Fig. 3) in both values (i.e. ancestral states between sister clades) and variances (rate of Brownian motion) of climatic variables. In each case, the duplicated lineage occupied a colder mean annual temperature. This was also the case with the nested WGDs of Portulacineae and the Tribe Nyctagineae.

Of course, we do not suggest that all WGDs are associated with a shift to a colder climate. While such a pattern may exist in some clade (e.g. Caryophyllaceae), we emphasize the we observed a shift in the climate occupied rather than the direction of the shift. This too, may only be the case with the examples shown here. Mean annual precipitation did not exhibit a clear pattern with some clades occupying a higher precipitation and some occupying lower precipitation. Perhaps the best summary of climatic occupancy is the principal components of all the climatic variables. Here, while the shift in units is less easily interpreted, duplicated clades occupied different climatic spaces than sister lineages. This supports the hypothesis that WGD events are associated with adaptations. Here, many of these adaptations are associated with shifts in climatic occupancy. This necessitates further examination within the Caryophyllales as more data is gathered. This also suggests further examination with other angiosperm clades in order to investigate how general these results are.

The rates of climate occupancy evolution show more complicated patterns. While some clades, such as the Portulacineae, showed significant increase in a rate of climate occupancy evolution as compared to the sister clade (e.g. MAT), no clear pattern emerged across all comparisons. There were other shifts in rate such as with MAT and MAP in the Nyctaginaceae and Montiaceae, but these were not as strong as the pattern of climate occupancy itself discussed above.

We suggest caution with any over interpretation of the results presented here. With each of the patterns presented, it is important to consider them in the context of uncertainty, both inherent in the biological processes that generate the phylogeny and in the analyses associated with large scale datasets. Large phylogenies and datasets allow for broad examinations, but uncertainty makes precise mapping of weaker signals difficult. Furthermore, large datasets often have poor overlap due to lack of data availability, and many of these clades require genomic datasets for accurate resolution (e.g. Arakaki et al., 2011; Yang et al., 2015; Walker et al., 2017). The comparisons of sister clades for climatic occupancy analyses and diversification analyses assume accurate identification of relationships that may differ between datasets. Additionally, large geographic datasets often contain extensive uncertainty and data cleanliness challenges due to the enormous size of the datasets. Furthermore, the biological reality of nested WGDs complicate analyses and interpretations. Focused studies with increased taxon sampling will contribute greatly to our understanding of the patterns presented (as suggested by Edwards et al., 2015). Increasing taxon sampling may help, but additional sequence data and specimen data for phylogenetic analyses, WGD mapping analyses, and climate occupancy characterization will improve our precision in these investigations. And so, the results presented here, we hope, will contribute to a growing discussion but will surely not be the last word.

What emerges from these analyses of WGD, diversification, and climate occupancy? It would appear as though, perhaps not unexpectedly, the patterns are complex and mixed. Some WGD are associated directly with diversification events, some WGD are associated with shifts in climate tolerance, some WGD are coincident with shifts in rates of climate occupancy evolution, and still other WGD are associated with known adaptations (carnivory, habit shifts associated with montane habitats, etc.). Some diversification shifts follow WGD events. However, it is unclear whether these events are linked or correlated and, if so, if they are correlated more with diversification than an additional adaptation or other evolutionary pattern or process. As data increase in these groups and as confidence increases in the phylogenetic relationships as well as the placement of both diversification and WGD events, we will be able to better address these questions. However, at least for the Caryophyllales, it does not appear as though diversification is tightly linked with WGD. Instead, for the clades that can be tested, we find shifts in climate occupancy correspond well to WGD.

Suggestions for moving forward

WGDs are almost certainly one of the dominant processes that contribute to major evolutionary events within plant lineages. This may be in the form of increased diversification, development of novel traits, adaptation to new environments, and many other events (e.g. Schubert & Vu, 2016; Clavijo et al., 2017). However, for several reasons, these events (i.e. WGD and other evolutionary events) may not occur simultaneously. In fact, there may be little to no expectation for the events to occur simultaneously (e.g. Donoghue, 2005; Schranz et al., 2012; Donoghue & Sanderson, 2015; Tank et al., 2015; Dodsworth et al., 2016). In any case, more precise expectations and null models need to be developed to allow for reasonable tests of the correlations among these events. For example, there may be shifts in diversification that follow a WGD, but is it close enough, or frequent enough to infer that the two events are related? Is correlation possible or identifiable if, as is expected, intervening lineages have gone extinct? These questions would benefit from simulation studies where the true correlation pattern is known. Furthermore, more precise connections should be made to the biology of speciation and genome WGDs to better determine why, specifically, WGDs would be expected to correspond with any diversification pattern instead of adaptations, which may or may not correspond with increases or decreases in speciation. While still challenging, investigating the fate of and patterns of selection within individual genes (e.g. subfunctionalization and neofunctionalization) may shed light into the genomic basis of post-WGD and possibly allow for more concrete expectations for diversification. With the availability of genomes and transcriptomes, this is now beginning to become a possibility (e.g. Brockington et al., 2015; Walker et al., 2017). Only when these suggestions are linked to more specific biological hypotheses will we be able to better understand the ultimate impact of WGD in plant evolution.

Acknowledgements

We thank Caroline Parins-Fukuchi for discussion of the project and comments on the manuscript. We thank Gregory Stull, Oscar Vargas, Ning Wang, Sonia Ahluwalia, Jordan Shore, Lijun Zhao, Alex Taylorm, and Drew Larson for helpful comments on the manuscript. The authors thank Hilda Flores, Helga Ochoterena, Tom Wendt and the staff at the Plant Resources Center at the University of Texas at Austin, the Lyon Arboretum, David Anderson, John Brittnacher, Anna Brunner, Joseph Charboneau, Arianna Goodman, Heather-Rose Kates, Patricia

Herrnández Ledesma, Lucas Majure, Nidia Mendoza, Michael Powell, Rick Ree, Carl Rothfels, Flora Samis, Jeffrey Sanders, Elizabeth Saunders, Rich Spellenberg, Greg Stull, Mats Thulin, Erin Tripp, and Sophia Weinmann for help with obtaining material. We thank the Cambridge University Botanic Gardens for growing material for this study. This work was supported by NSF DEB awards 1352907 and 1354048.

Author contributions

S.A.S., J.F.W., Y.Y., M.J.M., and S.F.B. designed research. C.P.D, R.B., N.L., and N.A.D. collected data. S.A.S., J.W.B., and Y.Y. analyzed the data. S.A.S. led the writing. All authors read and contributed to the manuscript.

References

- Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. *Proceedings of the National Academy of Sciences, USA* 106: 13410–13414.
- **Angiosperm Phylogeny Group**. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1-20.
- Arakaki M, Christin PA, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards EJ. 2011. Contemporaneous and recent radiations of the world's major succulent plant lineages. *Proceedings of the National Academy of Sciences, USA* 108: 8379–8384.
- **Arrigo N, Barker MS. 2012.** Rarely successful polyploids and their legacy in plants genomes. Current Opinion in Plant Biology **15:** 140–146.
- **Barker MS, Vogel H, Schranz ME. 2009.** Paleopolyploidy in the Brassicales: analyses of the *Cleome* transcriptome elucidate the history of genome duplications in *Arabidopsis* and other Brassicales. *Genome Biology and Evolution* **1**: 391–399.
- **Barker MS, Husband BC, Pires JC. 2016.** Spreading Winge and flying high: the evolutionary importance of polyploidy after a century of study. *Am. J. Bot.* **103**: 1139-1145.

- **Bell CD, Soltis PS. 2010.** The age and diversification of the angiosperms re-revisited. *American Journal of Botany* **97:** 1296–1303.
- Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R. 2004.

 Polyploidy in arctic plants. *Biological Journal of the Linnean Society* 82: 521–536.
- **DE**, **Soltis PS**. **2009**. Phylogeny of the Caryophyllales *sensu lato*: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. *International Journal of Plant Sciences* **170**: 627–643.
- Brockington SF, Yang Y, Gandia Herrero F, Covshoff S, Hibberd JM, Sage RF, Wong GK, Moore MJ, Smith SA. 2015. Lineage specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. *New Phytologist* 207: 1170–1180.
- **Brown JW, Walker JF, Smith SA. 2017.** phyx: phylogenetic tools for Unix. *Bioinformatics* **33**:1886-1888.
- Burnham KP, Anderson DR. 2003. Model selection and multimodel inference: a practical information-theoretic approach. New York, NY, USA: Springer.
- Carolin RC. 1954. Stomatal size, density and morphology in the genus *Dianthus. Kew Bulletin* 9: 251-258.
- Cevallos-Ferriz SRS, Estrada-Ruiz E, Perez-Hernandez BR. 2008. Phytolaccaceae infructescence from Cerro del Pueblo formation, upper Cretaceous (late Campanian), Coahuila, Mexico. *American Journal of Botany* 95: 77–83.
- Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Botanical Journal Linnean Society* 181: 1-20.
- Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H et al. 2017. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. *Genome Research* 27:885-896.

- **Comai L. 2005.** The advantages and disadvantages of being polyploid. *Nature Review Genetics* **6:** 836–846.
- **Degreef JD. 1997.** Fossil Aldrovanda. Carnivorous Plant Newsletter **26:** 93–97.
- **Dodsworth S, Chase M, Leitch A. 2016.** Is post-polyploidization diploidization the key to the evolutionary success of angiosperms. *Botanical Journal of the Linnean Society* **180:** 1095–8339.
- Dohm JC, Lange C, Holtgräwe D, Sörensen TR, Borchardt D, Schulz B, Lehrach H, Weisshaar B, Himmelbauer H. 2012. Palaeohexaploid ancestry for Caryophyllales inferred from extensive gene based physical and genetic mapping of the sugar beet genome (Beta vulgaris). *The Plant Journal* 70: 528–540.
- **Donoghue MJ. 2005.** Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. *Paleobiology* **31:**77-93.
- **Donoghue MJ, Sanderson MJ. 2015.** Confluence, synnovation, and depauperons in plant diversification. *New Phyt.* **207**:260-274.
- **Douglas N, Spellenberg R. 2010.** A new tribal classification of Nyctaginaceae. *Taxon* **59:** 905–910.
- **Doyle JJ, Doyle JL. 1987.** A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* **19**: 11-15.
- Edger PP, Heidel-Fischer HM, Bekaert M, Rota J, Glöckner G, Platts AE, Heckel DG, Der JP, Wafula EK, Tang M et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. *Proceedings of the National Academy of Sciences, USA* 112: 8362–8366.
- **Edwards EJ, de Vos JM, Donoghue MJ. 2015.** Doubtful pathways to cold tolerance in plants. *Nature* **521**: E5–E6.
- Estep MC, McKain MR, Vela Diaz D, Zhong J, Hodge JG, Hodkinson TR, Layton DJ, Malcomber ST, Pasquet R, Kellogg EA. 2014. Allopolyploidy, diversification, and the Miocene grassland expansion. *Proceedings of the National Academy of Sciences, USA* 111: 15149–15154.
- **Friis EM, Crane P, Pedersen KR. 2011.** *Early flowers and angiosperm evolution.* Cambridge, UK: Cambridge University Press.

- Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Systematic Biology* **59:** 307–321.
- **Huang, CH, Zhang C, Liu M, Hu Y, Gao T, Qi J, Hong Ma. 2016.** Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics. *Mol Biol Evol.* **33:** 2820-2835.
- **Jordan GJ, Macphail MK. 2003.** A middle-late Eocene inflorescence of Caryophyllaceae from Tasmania, Australia. *American Journal of Botany* **90:** 761–768.
- **Kellogg EA. 2016.** Has the connection between polyploidy and diversification actually been tested? *Current opinion in plant biology* 30: 25–32.
- **Laurent S, Salamin N, Robinson-Rechavi M. 2017.** No evidence for the radiation time lag model after whole genome duplications in Teleostei. *PLoS ONE* 12: e0176384.
- **Levin DA. 1983.** Polyploidy and novelty in flowering plants. *American Naturalist* **122:** 1–25.
- **Levin DA. 2002.** The role of chromosomal change in plant evolution. New York, NY, USA: Oxford University Press.
- **Li, Weizhong, and Adam Godzik. 2006.** Cd-Hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics Applications Note* 22: 1658–59.
- McKain MR, Tang H, McNeal JR, Ayyampalayam S, Davis JI, dePamphilis CW, Givnish TJ, Pires JC, Stevenson DW, Leebens-Mack JH. 2016. A phylogenomic assessment of ancient polyploidy and genome evolution across the Poales. *Genome Biol. Evol.* 8: 1150-1164.
- Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP. 2011. Recently formed polyploid plants diversify at lower rates. *Science* 333: 1257.
- **Miller JS, Venable DL. 2000.** Polyploidy and the evolution of gender dimorphism in plants. *Science* **289:** 2335–2338.
- **Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE. 2010.** Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. *Proceedings of the National Academy of Sciences, USA* **107:** 4623–4628.
- **Nei M, Gojobori T. 1986.** Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. *Molecular Biology and Evolution* **3:** 418–426.

- **Nichols DJ, Traverse A. 1971.** Palynology, petrology, and depositional environments of some early Tertiary lignites in Texas. *Geoscience and Man* **3:** 37–48.
- Ocampo G, Columbus T. 2010. Molecular phylogenetics of suborder Cactineae (Caryophyllales), including insights into photosynthetic diversification and historical biogeography. *Am. J. Bot.* 97: 1827-1847.
- Otto SP, Whitton J. 2000. Polyploid incidence and evolution. *Annual Review of Genetics* 34: 401–437.
- Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, Fitzjohn RG, Alfaro ME, Harmon LJ. 2014. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. *Bioinformatics* 30: 2216–2218.
- **Puttick MN, Clark J., Donoghue P. 2015.** Size is not everything: rates of genome size evolution, not C-value, correlate with speciation in angiosperms. *Proc. Roy. Soc. B.* **282**: 20152289.
- **Sanderson MJ.** 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. *Bioinformatics* 19: 301–302.
- **Schranz E, Mohammadin S, Edger PP. 2012.** Ancient whole genome duplications, novelty and diversification: the WGD radiation lag-time model. *Current opinion in plant biology* 15: 147–153.
- **Schubert I, Vu GTH. 2016.** Genome stability and evolution: attempting a holistic view. *Trends in Plant Sciences* 21: 749-757.
- **Schuster TM, Setaro SD, Kron KA. 2013.** Age estimates for the buckwheat family Polygonaceae based on sequence data calibrated by fossils and with a focus on the amphi-pacific *Muehlenbeckia*. *PLoS ONE* **8**: e61261.
- **Smith SA, Beaulieu JM, Donoghue MJ.** 2009. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. *BMC Evolutionary Biology* **9:** 37.
- Smith SA, Beaulieu JM, Stamatakis A, Donoghue MJ. Understanding angiosperm diversification using small and large phylogenetic trees. *American Journal of Botany* **98:** 404–414.
- **Smith SA, Donoghue MJ.** 2008. Rates of molecular evolution are linked to life history in flowering plants. *Science* 322: 86–89.

- Smith SA, Moore MJ, Brown JW, Yang Y. 2015. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants.

 BMC Evolutionary Biology 15: 150.
- **Smith SA, O'Meara BC. 2012.** treePL: divergence time estimation using penalized likelihood for large phylogenies. *Bioinformatics* **28:** 2689–2690.
- **Soltis PS, Soltis DS. 2000.** The role of genetic and genomic attributes in the success of polyploids. *Proceedings of the National Academy of Sciences, USA* **97:** 7051–7057.
- Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS *et al.* 2011. Angiosperm phylogeny: 17 genes, 640 taxa. *American Journal of Botany* 98: 704–730.
- Soltis PS, Liu X, Marchant DB, Visger CJ, Soltis DE. 2014. Polyploidy and novelty: Gottlieb's legacy. *Philosophical Transactions of the Royal Society of London B: Biological Sciences* 369: 20130351.
- **Stamatakis A.** 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30: 1312–1313.
- Storchová Z, Breneman A, Cande J, Dunn J, Burbank K, O'toole E, Pellman D. 2006. Genome-wide genetic analysis of polyploidy in yeast. *Nature* 443: 541.
- **Suyama M, Torrents D, Bork P. 2006.** PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research **34:** W609–W612.
- Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff CE, Brown JW, Sessa EB, Harmon LJ. 2015. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. *New Phytologist* 207: 454–467.
- **Thulin M, Moore AJ, El-Seedi H, Larsson A, Christin P-A, Edwards EJ. 2016.** Phylogeny and generic delimitation in Molluginaceae, new pigment data in Caryophyllales, and the new family Corbichoniaceae. *Taxon* **65:** 775–793.
- Valente LM, Britton AW, Powell MP, Papadopulos AST, Burgoyne PM, Savolainen V.
 2014. Correlates of hyperdiversity in southern African ice plants (Aizoaceae). Botanical Journal of the Linnean Society Linnean Society of London. 174:110-129.

- Walker JF, Yang Y, Moore MJ, Mikenas J, Timoneda A, Brockington SF, Smith SA. 2017. Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the carnivorous Caryophyllales. *bioRxiv*: 115741.
- Weiss H, Dobes C, Schneeweiss GM, Greimler J. 2002. Occurrence of tetraploid and hexaploid cytotypes between and within populations in *Dianthus* sect. *Plumaria* (Caryophyllaceae). *New Phytologist* **156**: 85-94.
- Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. *Proceedings of the National Academy of Sciences, USA* 106: 13875–13879.
- Yang Y, Moore M, Brockington S, Mikenas J, Olivieri J, Walker J, Smith S. 2017.

 Improved transcriptome sampling pinpoints 26 paleopolyploidy events in Caryophyllales, including two paleo-allopolyploidy events. *bioRxiv*: 143529.
- Yang Y, Moore MJ, Brockington SF, Soltis DE, Wong GK-S, Carpenter EJ, Zhang Y, Chen L, Yan Z, Xie Y et al. 2015. Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. *Molecular Biology and Evolution* 32: 2001–2014.
- **Yang Z. 2007.** PAML 4: phylogenetic analysis by maximum likelihood. *Molecular Biology and Evolution* **24:** 1586–1591.
- Zetter R, Hofmann CC, Draxler I, Durango de Cabrera J, Del MVergel M, Vervoorst F.
 1999. A rich middle Eocene microflora at Arroyo de los Mineros, near Cañadón Beta, NE
 Tierra del Fuego province, Argentina. Abhandlungen der Geologischen Bundesanstalt
 56: 439–460.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information tab for this article:

- **Fig. S1** The cladogram with support mapped for the bootstrap replicates described in the Materials and Methods section.
- **Fig. S2** The chronograms and mapping of temperature variables (bioclimatic variables 2–11) that are not presented in Fig. 1.

Fig. S3 The chronograms and mapping of precipitation variables (bioclimatic variables 13–19) that are not presented in Fig. 2.

Fig. S4 The chronograms and mapping of PCA axis 2 on the broader Caryophyllales.

Fig. S5 Principal component loadings for bioclimatic variables.

Table S1 Calibrations used for divergence time analysis

Please note: Wiley Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.

Fig. 1 Chronogram of the Caryophyllales with putative whole genome duplications mapped along with identified diversification shifts. Diversification analyses were performed on the maximum likelihood tree as well as the bootstrap tree set and those shifts that were identified in both groups are shown. The branches are colored based on Bioclim variable 1 (mean annual temperature). The numbers next duplications correspond to the numbers in Table 3 and the letters next to diversification shifts correspond to Table 4.

Fig. 2 The chronograms and mapping of diversification and whole genome duplications are as in Fig. 1 (see key for details [Author, please confirm amended text 'key' is correct]). (a) The branches are colored based on Bioclim variable 12 (mean annual precipitation), and (b) based on the principal component analyses (PCA) axis 1.

Fig. 3 Summary of whole genome duplication (WGD) events (with numbers corresponding to those in Table 3), distributions for climatic variables calculated between left and right clades (MAT, mean annual temperature; MAP, mean annual precipitation; PCA1, principal component axis 1), distributions for the rate of climatic variables calculated between left and right clades, and diversification shifts. Numbers along branches denote WGD, with the numbers corresponding to those in Fig. 1 and Table 3. Numbers inside clades denote the number of diversification rate shifts. Estimated species numbers are listed beside clade names. Box plots show the values estimated (ancestral values are listed in the top rows, rates in the bottom rows)

for both the left and right clades across bootstrap samples. Clades shaded grey denote a WGD; (b-d) have nested WGD.

Table 1 Voucher information and GenBank accession numbers for newly reported plastid *matK* sequences; families follow APG IV (Angiosperm Phylogeny Group, 2016)

				NCBI
4.0		Voucher specimen	Collection	accession
Family	Taxon	(Herbarium acronym)	locality	number
Achatocarpaceae	Achatocarpus gracilis H.Walter	Silvia H. Salas Morales <i>et al</i> . 5608 (TEX)	Mexico: Oaxaca	KY952292
Achatocarpaceae	Phaulothamnus spinescens A.Gray	Michael J. Moore <i>et</i> al. 976 (OC)	USA: Texas	KY952477
Achatocarpaceae	Phaulothamnus spinescens A.Gray	William R. Carr 27176 (TEX)	USA: Texas	KY952478
Amaranthaceae	Allenrolfea occidentalis (S.Watson) Kuntze	Michael J. Moore 474 (OC)	USA: Texas	KY952314
Amaranthaceae	Alternanthera caracasana Kunth	Michael J. Moore 1808 (OC)	USA: Texas	KY952319
Amaranthaceae	Amaranthus cruentus L.	Michael J. Moore 356 (OC)	USA: Ohio (cultivated)	KY952320
Amaranthaceae	Amaranthus sp.	Michael J. Moore 1801 (OC)	USA: Texas	KY952321
Amaranthaceae	Amaranthus sp.	Michael J. Moore 2186 (OC)	USA: Ohio	KY952322
Amaranthaceae	Amaranthus sp.	Michael J. Moore 2187 (OC)	USA: Illinois	KY952323
Amaranthaceae	Atriplex prosopidum I.M.Johnst.	Hilda Flores Olvera et al. 1658 (MEXU)	Mexico: Coahuila	KY952340
Amaranthaceae	Atriplex sp.	Michael J. Moore	USA: Texas	KY952338

		1689 (OC)		
A manageth a coop	Advissor	Michael J. Moore	LICA. Towar	V.V.052220
Amaranthaceae	Atriplex sp.	1699 (OC)	USA: Texas	KY952339
Amaranthaceae	Celosia argentea L. var.	Michael J. Moore 359	USA: Ohio	KY952359
	plumosa	(OC)	(cultivated)	K1932339
		Flora K. Samis 7		
Amaranthaceae	Charpentiera ovata	(Lyon Arboretum	USA: Hawaii	KY952360
7 Milarantinaceae	Gaudich. var. ovata	living collection,	Obri. Hawan	11752500
		accession 2011.0034)		
	Charpentiera tomentosa	Flora K. Samis 6		
Amaranthaceae	Sohmer var.	(Lyon Arboretum	USA: Hawaii	KY952361
	maakuaensis Sohmer	living collection,		111702001
		accession 88.0141)		
Amaranthaceae	Chenopodium album L.	Michael J. Moore 344	USA: Ohio	KY952362
		(OC)		
Amaranthaceae	Gossypianthus	Michael J. Moore	USA: Texas	KY952408
(0	lanuginosus (Poir.) Moq.	1807 (OC)		
	Guilleminea densa	Michael J. Moore et	Mexico:	
Amaranthaceae	(Humb. & Bonpl. ex	al. 2445 (OC)	Chihuahua	KY952412
	Schult.) Moq.			
Amaranthaceae	Kali tragus (L.) Scop.	Michael J. Moore 453	USA: Texas	KY952506
		(OC)		
		Flora K. Samis 3		
	Nototrichium	(Lyon Arboretum		
Amaranthaceae	divaricatum	living collection,	USA: Hawaii	KY952468
+	D.H.Lorence	accession 96.0036		
		#3)		
		Flora K. Samis 2		
Amaranthaceae	Nototrichium humile	(Lyon Arboretum	USA: Hawaii	KY952469
	Hillebr.	living collection,		
		accession 2001-0254)	76 .	
Amaranthaceae	Suaeda jacoensis	Hilda Flores Olvera	Mexico:	KY952514
	I.M.Johnst.	et al. 1662 (MEXU)	Coahuila	

	Suaeda jacoensis	Michael J. Moore et	Mexico:	
Amaranthaceae	I.M.Johnst.	al. 2617 (OC)	Nuevo Leon	KY952515
Amaranthaceae	Suaeda mexicana	Hilda Flores Olvera	Mexico:	I/X/070717
Amarantnaceae	(Standl.) Standl.	et al. 1654 (MEXU)	Coahuila	KY952516
Amanatha	Tidestromia lanuginosa	Michael J. Moore	IICA T	WW052521
Amaranthaceae	(Nutt.) Standl.	1128 (OC)	USA: Texas	KY952521
	Zuckia brandegeei			
	(A.Gray) S.L.Welsh &	Joseph L. M.	USA:	
Amaranthaceae	Stutz var. plummeri	Charboneau 9672		KY952528
	(Stutz & S.C.Sand.)	(RM)	Colorado	
(1)	Dorn			
2	Lauanharaaria	Flora K. Samis 11		
Cactaceae	Leuenbergeria	(Lyon Arboretum	LICA. Hawaii	KY952473
Cactaceae	quisqueyana (Alain) Lodé	living collection,	USA: Hawaii	
	Lode	accession 2000.0281)		
Caryophyllaceae	Moehringia macrophylla	Arianna Goodman 1	USA: Oregon	KY952464
Caryophynaceae	(Hook.) Fenzl	(OC)		K1752404
Caryophyllaceae	Paronychia lundellorum	William R. Carr	USA: Texas	KY952472
Caryophynaecae	Torr. & A.Gray	17607 (MEXU)		K1/324/2
Caryophyllaceae	Saponaria officinalis L.	Michael J. Moore et	USA: Indiana	KY952507
Caryophynaceae	Suponuria officinatis L.	al. 1819 (OC)	OS/1. Mulana	K1752507
		Flora K. Samis 5		
Caryophyllaceae	Schiedea kaalae Wawra	(Lyon Arboretum	USA: Hawaii	KY952509
Caryophynaceae	Schieueu kaanae wawia	living collection,	OSA. Hawan	K1/3230/
		accession 92.0513)		
Caryophyllaceae	Spergularia salina	Michael J. Moore	USA: Texas	KY952512
Caryophynaceae	J.Presl & C.Presl	1693 (OC)	ODIA. TOAds	131 /32312
Didiereaceae	Alluaudia ascendens	Michael J. Moore	USA	KY952318
Didiereaceae	(Drake) Drake	1645	(cultivated)	131 /32310
Dioncophyllaceae	Triphyophyllum	Carel C. H. Jongkind		
	peltatum (Hutch. &	et al. 7136 (WAG)	Liberia	KY952524
	Dalziel) Airy Shaw	ci ai. /130 (WAO)		
Droseraceae	Drosera burmannii Vahl	Michael J. Moore	USA	KY952400

	cv. Pilliga Red	1814 (OC)	(cultivated)	
Droseraceae	Drosera peltata Thunb.	Michael J. Moore 1817 (OC)	Australia: Tasmania (cultivated)	KY952401
Droseraceae	Drosera regia Stephens	Michael J. Moore 1812 (OC)	USA (cultivated)	KY952402
Drosophyllaceae	Drosophyllum lusitanicum (L.) Link	Michael J. Moore 1816 (OC)	USA (cultivated)	KY952403
Frankeniaceae	Frankenia gypsophila I.M.Johnst.	Michael J. Moore <i>et</i> al. 1880 (OC)	Mexico: Nuevo Leon	KY952406
Microteaceae	Microtea debilis Sw.	Manuel Rimachi 11128 (TEX)	Peru: Loreto	KY952415
Montiaceae	Claytonia sibirica L.	Arianna Goodman 2 (OC)	USA: Oregon	KY952363
Montiaceae	Phemeranthus parviflorus (Nutt.) Kiger	Michael J. Moore <i>et</i> al. 2214 (OC)	USA: New Mexico	KY952479
Nyctaginaceae	Abronia angustifolia Greene	Michael J. Moore et al. 2063 (OC)	Mexico: Coahuila	KY952281
Nyctaginaceae	Abronia angustifolia Greene	Michael J. Moore <i>et</i> al. 896 (OC)	USA: New Mexico	KY952282
Nyctaginaceae	Abronia bigelovii Heimerl	Michael J. Moore <i>et</i> al. 704 (OC)	USA: New Mexico	KY952283
Nyctaginaceae	Abronia elliptica A.Nelson	Norman A. Douglas 2039 (DUKE)	United States: Arizona	KY952284
Nyctaginaceae	Abronia fragrans Nutt. ex Hook.	Billie L. Turner 20- 22 (SRSC)	USA: Texas	KY952285
Nyctaginaceae	Abronia fragrans Nutt. ex Hook.	Glenn Kroh <i>et al</i> . 3021 (TEX)	USA: Texas	KY952286
Nyctaginaceae	Abronia macrocarpa L.A.Galloway	Steve L. Orzell <i>et al</i> . 6492 (TEX)	USA: Texas	KY952287
Nyctaginaceae	Abronia mellifera Douglas ex Hook.	N. Elizabeth Saunders BP 19 (SIU)	USA: Wyoming	KY952288

Nyctaginaceae	Abronia mellifera Douglas ex Hook.	N. Elizabeth Saunders BP 20 (SIU)	USA: Wyoming	KY952289
Nyctaginaceae	Abronia nana S.Watson var. nana	Robert C. Sivinski <i>et al.</i> 3108 (NMC)	USA: Arizona	KY952290
Nyctaginaceae	Abronia umbellata Lam.	N. Elizabeth Saunders LU 45 (SIU)	USA: California	KY952291
Nyctaginaceae	Acleisanthes acutifolia Standl.	James Henrickson <i>et</i> al. 22916 (TEX)	Mexico: Coahuila	KY952293
Nyctaginaceae	Acleisanthes angustifolia (Torr.) R.A.Levin	Michael J. Moore 460 (OC)	USA: Texas	KY952294
Nyctaginaceae	Acleisanthes cf. purpusiana (Heimerl) R.A.Levin	James Henrickson 23026 (TEX)	Mexico: Coahuila	KY952309
Nyctaginaceae	Acleisanthes chenopodioides (A.Gray) R.A.Levin	Michael J. Moore et al. 733 (OC)	USA: Texas	KY952295
Nyctaginaceae	Acleisanthes crassifolia A.Gray	Michael J. Moore <i>et</i> al. 569 (OC)	USA: Texas	KY952296
Nyctaginaceae	Acleisanthes diffusa (A.Gray) R.A.Levin var. diffusa	Michael J. Moore <i>et</i> al. 624 (OC)	USA: Texas	KY952297
Nyctaginaceae	Acleisanthes lanceolata (Wooton) R.A.Levin var. lanceolata	Michael J. Moore et al. 870 (OC)	USA: New Mexico	KY952298
Nyctaginaceae	Acleisanthes lanceolata (Wooton) R.A.Levin var. lanceolata	Michael J. Moore et al. 903 (OC)	USA: Texas	KY952299
Nyctaginaceae	Acleisanthes lanceolata (Wooton) R.A.Levin var. megaphylla	Alfred T. Richardson 1666 (TEX)	Mexico: Chihuahua	KY952300

	(B.A.Fowler &			
	B.L.Turner) Spellenb. &			
	J.Poole			
Nuctoring Top =	Acleisanthes longiflora	Michael J. Moore 435	LICA. Taxas	WW052201
Nyctaginaceae	A.Gray	(OC)	USA: Texas	KY952301
Nyctaginaceae	Acleisanthes longiflora	Michael J. Moore et	USA: Texas	KY952302
Nyctagiliaceae	A.Gray	al. 571 (OC)	USA. Texas	K1932302
Nyctaginaceae	Acleisanthes nana	Jackie Smith et al.	Mexico: San	KY952303
Tyctagmaceae	I.M.Johnst.	798 (TEX)	Luis Potosi	K1932303
Nyctaginaceae	Acleisanthes obtusa	Michael J. Moore et	USA: Texas	KY952304
Tyctaginaceae	(Choisy) Standl.	al. 984 (OC)	USA. Texas	K1932304
Nyctaginaceae	Acleisanthes palmeri	George S. Hinton	MexicoNuevo	KY952305
Tyctaginaceae	(Hemsley) R.A.Levin	28620 (TEX)	Leon	K1932303
Nyctaginaceae	Acleisanthes parvifolia	Michael J. Moore 452	USA: Texas KY	KY952306
Nyctaginaceae	(Torr.) R.A.Levin	(OC)	USA. Texas	K1932300
Nyctaginaceae	Acleisanthes purpusiana	James Henrickson	Mexico:	KY952307
Tyctagmaccac	(Heimerl) R.A.Levin	22709 (TEX)	Coahuila	
Nyctaginaceae	Acleisanthes purpusiana	Billie L. Turner 6205	Mexico:	KY952308
Tyctaginaccae	(Heimerl) R.A.Levin	(TEX)	Coahuila	K1932308
	Acleisanthes undulata	James Henrickson	Mexico:	KY952310
Nyctaginaceae	(B.A.Fowler &	23195 (TEX)	Coahuila	
	B.L.Turner) R.A.Levin	23173 (1271)	Countina	
	Acleisanthes wrightii	Michael J. Moore et		
Nyctaginaceae	(A.Gray) Benth. &	al. 620 (OC)	USA: Texas	KY952311
	Hook.	ui. 020 (OC)		
Nyctaginaceae	Allionia choisyi Standl.	Norman A. Douglas	Mexico:	KY952315
Tyeugmusuu	Throwa chorsyr Standi.	2187 (DUKE)	Coahuila	111752515
Nyctaginaceae	Allionia incarnata L.	Michael J. Moore et	Mexico:	KY952316
		al. 1352 (OC)	Nuevo Leon	
Nyctaginaceae	Allionia sp.	Michael J. Moore 424	USA: Texas	KY952317
7		(OC)		
Nyctaginaceae	Andradea floribunda	André M. Amorim	Brazil	KY952324
,	Allemão	2294 (NY)		

Nyctaginaceae	Andradea floribunda Allemão	Jacquelyn Ann Kallunki 701 (NY)	Brazil	KY952325
Nyctaginaceae	Anulocaulis annulatus (Coville) Standl.	Richard W. Spellenberg 3162 (NMC)	USA: California	KY952326
Nyctaginaceae	Anulocaulis eriosolenus (A.Gray) Standl.	James Henrickson <i>et</i> al. 23103 (TEX)	Mexico: Coahuila	KY952327
Nyctaginaceae	Anulocaulis eriosolenus (A.Gray) Standl.	Michael J. Moore <i>et</i> al. 611 (OC)	USA: Texas	KY952328
Nyctaginaceae	Anulocaulis hintoniorum B.L.Turner	Patricia Hernández Ledesma 52 (MEXU)	Mexico: Coahuila	KY952329
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. gypsogenus (Waterf.) Spellenb. & T.Wootten	Michael J. Moore 402 (OC)	USA: New Mexico	KY952330
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. howardii Spellenb. & T.Wootten	Thomas Wootten et al. s.n. (NMC)	USA: New Mexico	KY952331
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. lasianthus I.M.Johnston	Michael J. Moore et al. 610 (OC)	USA: Texas	KY952332
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. leiosolenus	Michael J. Moore 493 (OC)	USA: Texas	KY952333
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. leiosolenus	Michael J. Moore et al. 825 (OC)	USA: Nevada	KY952334
Nyctaginaceae	Anulocaulis leiosolenus (Torr.) Standl. var. leiosolenus	Michael J. Moore et al. 853 (OC)	USA: Arizona	KY952335
Nyctaginaceae	Anulocaulis reflexus I.M.Johnst.	Michael J. Moore et al. 242 (TEX)	Mexico: Chihuahua	KY952336

Nyctaginaceae	Anulocaulis reflexus	Michael J. Moore 483	USA: Texas	KY952337
Tyetagmaeeae	I.M.Johnst.	(OC)	OSTI. TOXUS	11752557
Nyataginagaa	Boerhavia anisophylla	Norman A. Douglas	Mexico:	KY952341
Nyctaginaceae	Torr.	2194 (DUKE)	Durango	K 1952341
Nyotaginagga	Boerhavia ciliata	Norman A. Douglas	USA: Texas	KY952342
Nyctaginaceae	Brandegee	2145 (DUKE)	USA. Texas	K1932342
Nyctaginaceae	Boerhavia coccinea	Michael J. Moore 366	USA: New	KY952343
Tyctagmaccac	Mill.	(OC)	Mexico	K1732343
	Boerhavia coulteri	Richard W.		
Nyctaginaceae	(Hook.f.) S.Watson var.	Spellenberg 13273	USA: Arizona	KY952344
Tyctagmaccae	palmeri (S.Watson)	(NMC)	OSA. Alizolia	K1332344
9	Spellenb.	(INIVIC)		
	Boerhavia dominii		Australia:	
Nyctaginaceae	Meikle & Hewson	H. Smyth 42 (NY)	South	KY952345
			Australia	
α	Boerhavia gracillima Heimerl	Richard W.		
Nyctaginaceae		Spellenberg 12447	USA: Texas	KY952347
		(NMC)		
	Boerhavia intermedia	Richard W.		
Nyctaginaceae	M.E.Jones	Spellenberg 13279	USA: Arizona	KY952348
	W.L.Jones	(NMC)		
Nyctaginaceae	Boerhavia lateriflora	Norman A. Douglas	Mexico:	KY952349
Tyctagmaccac	Standl.	2161 (DUKE)	Sonora	K1732347
Nyctaginaceae	Boerhavia linearifolia	Michael J. Moore et	USA: Texas	KY952350
Tyctaginaceae	A.Gray	al. 581 (OC)	USA. Texas	K1932330
1	Boerhavia purpurascens	Richard W.		
Nyctaginaceae	A.Gray	Spellenberg 13261	USA: Arizona	KY952351
	71.01ay	(NMC)		
Nyctaginaceae	Boerhavia repens L.	J. S. Rose 2	USA: Hawaii	KY952352
Nyctaginaceae		Richard W.		
	Boerhavia repens L.	Spellenberg 7183	Yemen: Sana	KY952353
		(NMC)		
Nyctaginaceae	Boerhavia sp.	Erin Tripp et al. 4090	Namibia	KY952346

		(OC)		
Nyctaginaceae	Boerhavia torreyana	Michael J. Moore et	USA: Texas	KY952354
Tyctagmaccac	(S.Watson) Standl.	al. 633 (OC)	OBA. Texas	K1732334
Nyctaginaceae	Bougainvillea	Michael Nee 51257	Bolivia: Santa	KY952355
Nyctagillaceae	campanulata Heimerl	(TEX)	Cruz	K1932333
Nyctaginaceae	Bougainvillea glabra	Michael J. Moore 538	USA: Ohio	KY952356
Tyctagmaccac	Choisy	(OC)	(cultivated)	K1732330
Nyctaginaceae	Bougainvillea spinosa	J. Saunders et al.	Argentina:	KY952357
Tryctaginaceae	(Cav.) Heimerl	3371 (TEX)	San Juan	K1732331
Nyctaginaceae	Bougainvillea stipitata	Michael Nee 50723	Bolivia: Santa	KY952358
Tyctagmaccae	Griseb.	(TEX)	Cruz	K1 /32330
Nyctaginaceae	Colignonia glomerata	Michael Nee 52523	Bolivia	KY952364
Tryctaginaceae	Griseb.	(NY)	Donvia	K1932304
		Martin Grantham 63	Ecuador	
Nyctaginaceae	Colignonia scandens	(SFBG living		KY952365
Nyctaginaceae	Benth.	collection, accession		K1752505
(O		1996-0202)		
Nyctaginaceae	Commicarpus ambiguus	Mats Thulin 11015	Somalia:	KY952366
Ttyctaginaccae	Meikle	(UPS)	Sanaag	K1752500
Nyctaginaceae	Commicarpus arabicus	Mats Thulin et al.	Yemen: Taizz	KY952367
Tyetaginaceae	Meikle	9294 (UPS)	Temen. Tuizz	11732307
	Commicarpus arabicus	Richard W.		
Nyctaginaceae	Meikle	Spellenberg 7217	Yemen: Ibb	KY952368
	TYZOMCO.	(NMC)		
	Commicarpus arabicus	Richard W.		
Nyctaginaceae	Meikle	Spellenberg 7297	Yemen: Ibb	KY952369
	Monte	(NMC)		
Nyctaginaceae	Commicarpus australis	Richard W.	Australia:	
	(Meikle) Govaerts	Spellenberg et al.	Western	KY952370
	(112011110) 00 (110111)	9469 (NMC)	Australia	
Nyctaginaceae	Commicarpus boissieri	Mats Thulin 11423	Oman: Dhofar	KY952371
J	(Heimerl) Cufod.	(UPS)	Jimin Dilotul	111702011
Nyctaginaceae	Commicarpus boissieri	Carl J. Rothfels et al.	Oman: Ash	KY952373

	(Heimerl) Cufod.	4331	Sharqiyah	
Nyataginagaa	Commicarpus	Patricia Hernández	Mexico: Baja	LV052272
Nyctaginaceae	brandegeei Standl.	Ledesma 55 (MEXU)	California Sur	KY952372
Nyctaginaceae	Commicarpus coctoris N.A.Harriman	Richard W. Spellenberg <i>et al.</i> 12883 (NMC)	Mexico: Oaxaca	KY952374
Nyctaginaceae	Commicarpus commersonii (Baill.) Cavaco	Mats Thulin <i>et al</i> . 11836 (UPS)	Madagascar: Toliara	KY952380
Nyctaginaceae	Commicarpus decipiens Meikle	Erin Tripp <i>et al.</i> 4127 (NMC)	Namibia	KY952375
Nyctaginaceae	Commicarpus grandiflorus (A.Rich.) Standl.	Mats Thulin <i>et al</i> . 9311 (UPS)	Yemen: Taizz	KY952376
Nyctaginaceae	Commicarpus greenwayi Meikle	Mats Thulin 606 (UPS)	Tanzania: Iringa	KY952377
Nyctaginaceae	Commicarpus helenae (Roem. & Schult.) Meikle	Richard W. Spellenberg <i>et al.</i> 7504 (NMC)	Yemen: Dhamar	KY952378
Nyctaginaceae	Commicarpus hiranensis Thulin	Mats Thulin <i>et al</i> . 11225 (UPS)	Ethiopia: Harerge	KY952379
Nyctaginaceae	Commicarpus mistus Thulin	Mats Thulin <i>et al</i> . 9786 (UPS)	Yemen: Mahrah	KY952381
Nyctaginaceae	Commicarpus parviflorus Thulin	Mats Thulin 6318 (UPS)	Somalia: Banaadir	KY952382
Nyctaginaceae	Commicarpus pedunculosus (A.Rich.) Cufod.	Mats Thulin 1301 (UPS)	Ethiopia: Arussi	KY952383
Nyctaginaceae	Commicarpus plumbagineus (Cav.) Standl.	Mats Thulin 10747 (UPS)	Somalia: Togdheer	KY952384
Nyctaginaceae	Commicarpus plumbagineus (Cav.)	Mats Thulin et al. 11330 (UPS)	Ethiopia: Harerge	KY952385

	Standl.			
	Commicarpus	Richard W.		
Nyctaginaceae	plumbagineus (Cav.)	Spellenberg et al.	Yemen: Ta'izz	KY952386
	Standl.	7374 (NMC)		
	Commicarpus	Richard W.	Marian	
Nyctaginaceae	praetermissus	Spellenberg et al.	Mexico:	KY952387
	N.A.Harriman	12905 (NMC)	Michoacán	
Nuctosino	Commicarpus reniformis	Mats Thulin 4200	Somalia: Sool	VV052200
Nyctaginaceae	(Chiov.) Cufod.	(UPS)	Somana: Sooi	KY952388
Nuctosino	Commicarpus reniformis	Mats Thulin et al.	Yemen:	VV052200
Nyctaginaceae	(Chiov.) Cufod.	8337 (UPS)	Hadramaut	KY952389
Nuctosinosas	Commicarpus scandens	Michael J. Moore	USA: Texas	VV052200
Nyctaginaceae	(L.) Standl.	1127 (OC)	USA: Texas	KY952390
	Ci	Richard W.	Marian	KY952391
Nyctaginaceae	Commicarpus scandens (L.) Standl.	Spellenberg et al.	Mexico: Puebla	
		12887 (NMC)		
(0	Commicarpus sinuatus Meikle	Mats Thulin 10737	Somalia: Woqooyi Galbeed	
Nyctaginaceae		(UPS)		KY952392
		(OFS)		
	Commissions sinuatus	Richard W.	Yemen:	
Nyctaginaceae	Commicarpus sinuatus Meikle	Spellenberg 7144	Sana'a	KY952393
	Weikie	(NMC)	Sana a	
	Commissions sinuatus	Richard W.	Yemen: Dhamar	
Nyctaginaceae	Commicarpus sinuatus	Spellenberg 7506		KY952394
	Meikle	(NMC)		
1	Commicarpus	Erin Tripp <i>et al</i> . 4049		
Nyctaginaceae	squarrosus (Heimerl)	(NMC)	Namibia	KY952395
	Standl. var. squarrosus	(INIVIC)		
Nyctaginaceae	Commicarpus	Mats Thulin <i>et al</i> .	Yemen:	
	stenocarpus (Chiov.)	8062 (UPS)	Hadramaut	KY952396
	Cufod.	0002 (UF3)	Hauramaut	
Nyataginagas	Cuscatlania vulcanicola	José L. Linares 12938	El Salvador:	KV052207
Nyctaginaceae	Standl.	(MEXU)	Sonsonate	KY952397

Nyctaginaceae	Cuscatlania vulcanicola	José L. Linares 13440	El Salvador:	KY952398
Tyeugmaeeue	Standl.	(MEXU)	Sonsonate	111752570
Nyctaginaceae	Cyphomeris gypsophiloides (M.Martens & Galeotti) Standl.	Michael J. Moore et al. 582 (OC)	USA: Texas	KY952399
Nyctaginaceae	Grajalesia fasciculata (Standl.) Miranda	José L. Linares 13416 (MEXU)	El Salvador: Sonsonate	KY952409
Nyctaginaceae	Guapira discolor (Spreng.) Little	Richard W. Spellenberg 13294 (NMC)	USA: Florida	KY952410
Nyctaginaceae	Guapira eggersiana (Heimerl) Lundell	Scott A. Mori 25542/40 (NY)	French Guiana	KY952411
Nyctaginaceae	Mirabilis albida (Walter) Heimerl	Norman A. Douglas 2035 (DUKE)	USA: Arizona	KY952416
Nyctaginaceae	Mirabilis albida (Walter) Heimerl	William R. Carr 11075 (TEX)	USA: Texas	KY952417
Nyctaginaceae	Mirabilis alipes (S.Watson) Pilz	Arnold Tiehm 13461 (TEX)	USA: Nevada	KY952418
Nyctaginaceae	Mirabilis bigelovii A.Gray var. retrorsa (A. Heller) Munz	James D. Morefield et al. 3780 (TEX)	USA: California	KY952419
Nyctaginaceae	Mirabilis cf. glabrifolia (Ortega) I.M.Johnst.	Michael J. Moore <i>et</i> al. 1244 (OC)	Mexico: San Luis Potosi	KY952428
Nyctaginaceae	Mirabilis cf. nesomii B.L.Turner	George S. Hinton 25567 (TEX)	Mexico: Nuevo Leon	KY952449
Nyctaginaceae	Mirabilis coccinea (Torr.) Benth. & Hook.f.	Norman A. Douglas 2133 (DUKE)	USA: Arizona	KY952420
Nyctaginaceae	Mirabilis coccinea (Torr.) Benth. & Hook.f.	Steven P. McLaughlin <i>et al</i> . 9354 (ARIZ)	USA: Arizona	KY952421
Nyctaginaceae	Mirabilis comata (Small) Standl.	Norman A. Douglas 2084 (DUKE)	USA: Arizona	KY952422

Nyctaginaceae	Mirabilis decumbens (Nutt.) Daniels	Richard W. Spellenberg <i>et al</i> . 4073 (TEX)	Mexico: Zacatecas	KY952423
Nyctaginaceae	Mirabilis donahooiana Le Duc	Alice Le Duc <i>et al</i> . 247 (TEX)	Mexico: Michoacán	KY952424
Nyctaginaceae	Mirabilis exserta Brandegee	Pedro Tenorio 10586 (MEXU)	Mexico	KY952425
Nyctaginaceae	Mirabilis gigantea (Standl.) Shinners	J. Quayle et al. 752 (TEX)	USA: Texas	KY952426
Nyctaginaceae	Mirabilis glabra (S.Watson) Standl.	Michael J. Moore <i>et</i> al. 674 (OC)	USA: New Mexico	KY952446
Nyctaginaceae	Mirabilis glabrifolia (Ortega) I.M.Johnst.	Guy Nesom <i>et al</i> . 7654 (TEX)	Mexico: Coahuila	KY952427
Nyctaginaceae	Mirabilis glabrifolia (Ortega) I.M.Johnst.	Michael J. Moore <i>et al.</i> 1325 (OC)	Mexico: Nuevo Leon	KY952429
Nyctaginaceae	Mirabilis gracilis (Standl.) LeDuc	Alice Le Duc <i>et al</i> . 71 (TEX)	Mexico: Jalisco	KY952430
Nyctaginaceae	Mirabilis grandiflora (Standl.) Standl.	EDL 1863 (MEXU)	Mexico	KY952431
Nyctaginaceae	Mirabilis greenei S.Watson	George E. Pilz 998 (TEX)	USA: California	KY952432
Nyctaginaceae	Mirabilis himalaica (Edgew.) Heimerl var. chinensis Heimerl	D. E. Boufford <i>et al</i> . 32449 (F)	China: Xizang (Tibet)	KY952433
Nyctaginaceae	Mirabilis himalaica (Edgew.) Heimerl var. chinensis Heimerl	D. E. Boufford <i>et al</i> . 41198 (F)	China: Xizang (Tibet)	KY952434
Nyctaginaceae	Mirabilis himalaica (Edgew.) Heimerl var. chinensis Heimerl	D. E. Boufford <i>et al</i> . 41435 (F)	China: Xizang (Tibet)	KY952435
Nyctaginaceae	Mirabilis hintoniorum Le Duc	Patricia Hernández Ledesma 118 (MEXU)	Mexico: Michoacán	KY952436

Nyctaginaceae	Mirabilis jalapa L.	Michael J. Moore s.n.	USA (cultivated)	KY952437
Nyctaginaceae	Mirabilis laevis (Benth.) Curran	Andrew C. Sanders <i>et al.</i> 29410 (TEX)	USA: California	KY952438
Nyctaginaceae Mirabilis latifolia (A.Gray) Diggs, Lipscomb & O'Kennon		Victor L. Cory 24549 (GH)	USA: Texas	KY952439
Nyctaginaceae	Mirabilis linearis (Pursh) Heimerl	Billie L. Turner 21- 854 (TEX)	USA: Texas	KY952440
Nyctaginaceae	Mirabilis linearis (Pursh) Heimerl var. decipiens (Standl.) S.L.Welsh	Michael J. Moore et al. 1984 (OC)	Mexico: Coahuila	KY952441
Nyctaginaceae	Mirabilis longiflora L.	Michael J. Moore <i>et</i> al. 1230 (OC)	Mexico: San Luis Potosi	KY952442
Nyctaginaceae	Mirabilis longiflora L. var. wrightiana (A.Gray ex Britton & Kearney) Kearney & Peebles	Alice Le Duc 185 (TEX)	USA: New Mexico	KY952443
Nyctaginaceae	Mirabilis melanotricha (Standl.) Spellenb.	Michael J. Moore <i>et</i> al. 1191 (OC)	Mexico: San Luis Potosi	KY952444
Nyctaginaceae	Mirabilis melanotricha (Standl.) Spellenb.	Norman A. Douglas 2067 (DUKE)	USA: New Mexico	KY952445
Nyctaginaceae	Mirabilis multiflora (Torr.) A.Gray	Michael J. Moore 1110 (OC)	USA: Texas	KY952447
Nyctaginaceae	Mirabilis multiflora (Torr.) A.Gray	Norman A. Douglas 2037 (DUKE)	USA: Arizona	KY952448
Nyctaginaceae	Mirabilis nesomii B.L.Turner	Michael J. Moore <i>et</i> al. 2179 (NMC)	Mexico: Nuevo Leon	KY952450
Nyctaginaceae	Mirabilis nesomii B.L.Turner	Michael J. Moore <i>et</i> al. 2643 (NMC)	Mexico: Nuevo Leon	KY952451
Nyctaginaceae	Mirabilis nyctaginea (Michx.) MacMill.	William R. Carr 14590 (TEX)	USA: Texas	KY952452

Nyctaginaceae (Standl.) Standl. (MEXU) Nyctaginaceae (A.Gray) A.Gray (MEXU) Omega S. Hinton (A.Gray) A.Gray (25572 (TEX))	California	KY952453	
Nyctaginaceae			
(A.Gray) A.Gray 25572 (TEX)	Mexico:	VV052454	
[255,2 (1111)	Nuevo Leon	KY952454	
Nyctaginaceae Mirabilis polonii Le Duc Alice Le Duc 259	Mexico:	KY952455	
(MEXU)	Nuevo Leon	K1932433	
Mirabilis pringlei Alice Le Duc et al.	. Mexico:	VV052456	
Nyctaginaceae Weath. 63 (TEX)	Jalisco	KY952456	
Nyctaginaceae Mirabilis pudica Arnold Tiehm 1097	71 USA: Nevada	KY952457	
Barneby (TEX)	OSA. Nevada	K1932437	
Nyctaginaceae Mirabilis texensis Billie L. Turner 22-	- USA: Texas	KY952458	
(J.M.Coult.) B.L.Turner 417 (TEX)	USA. Texas	K1932436	
Nyctaginaceae Mirabilis triflora Benth. Ramón Cuevas G. o	et Mexico:	VV052450	
Nyctaginaceae Mirabilis triflora Benth. al. 3415 (MEXU)	Jalisco	KY952459	
Mirabilis urbani Mark Fishbein et a.	l. Mexico:	KY952460	
Nyctaginaceae Heimerl 5107 (MEXU)	Michoacan	K 1932400	
Mirabilis violacea (L.) Patricia Hernández	Mexico:		
Nyctaginaceae Heimerl Heimerl Ledesma 63 (MEX	Distrito	KY952461	
Tremen Ledesina 03 (MLX	Federal		
Nyctaginaceae Mirabilis viscosa Cav. Michael J. Moore e	et Mexico: San	KY952462	
Nyctaginaceae Mirabilis viscosa Cav. al. 1824 (NMC)	Luis Potosi	K 1 932402	
Nyctaginaceae Mirabilis viscosa Cav. Patricia Hernández	Mexico	KY952463	
Ledesma 13 (MEX		K1932403	
Nyctaginaceae Neea belizensis Cyrus L. Lundell	Guatemala:	KY952465	
Donn.Sm. 17692 (TEX)	Petén	K1 /32403	
Nyctaginaceae Neea cauliflora Poepp. Schanke S15106	Peru	KY952466	
& Endl. (NY)	reiu	K 1 932400	
Nyctaginaceae Neea psychotrioides Robert L. Wilbur	Costa Rica:	KY952467	
Donn.Sm. 63654	Heredia	K1932407	
Nyctaginaceae Nyctaginia capitata Michael J. Moore e	USA: Texas	KY952470	
Choisy al. 617 (OC)	USA. Texas	K1332470	
Nyctaginaceae Okenia hypogaea Thomas R. Van	Mexico:	KY952471	
Schltdl. & Cham. Devender et al. 92-	- Sonora		

		1069 (NMC)			
		C. Martínez 1209	Mexico:		
Nyctaginaceae	Pisonia aculeata L.	(TEX)	Oaxaca	KY952483	
Nyctaginaceae	Pisonia brunoniana Endl.	J. S. Rose 3	USA: Hawaii	KY952484	
Nyctaginaceae	Pisonia capitata (S.Watson) Standl.	Ana L. Reina Guerrero <i>et al</i> . 2000- 193 (NMC)	Mexico: Sonora	KY952485	
Nyctaginaceae	Pisonia capitata (S.Watson) Standl.	Thomas R. Van Devender <i>et al.</i> 2003- 17 (TEX)	USA: Arizona	KY952486	
Nyctaginaceae	Pisonia macranthocarpa	Dennis E. Breedlove	Mexico:	KY952487	
	(Donn.Sm.) Donn.Sm.	et al. 30361 (TEX)	Chiapas	K1952487	
Nyctaginaceae	Pisonia sandwicensis Hillebr.	Flora K. Samis 1 (Lyon Arboretum living collection)	USA: Hawaii	KY952488	
Nyctaginaceae	Pisonia sylvatica Standl.	José L. Linares 13403 (MEXU)	El Salvador: Sonsonate	KY952489	
Nyctaginaceae	Pisonia umbellifera (J.R.Forst. & G.Forst.) Seem.	Flora K. Samis 12 (Lyon Arboretum living collection, accession 68.0453)	USA: Hawaii	KY952490	
Nyctaginaceae	Pisonia zapallo Griseb.	Israel G. Vargas <i>et al</i> . 2001 (TEX)	Bolivia: Santa Cruz	KY952491	
Nyctaginaceae	Pisoniella arborescens (Lag. & Rodr.) Standl.	Alice Le Duc <i>et al</i> . 231 (NMC)	Mexico: Oaxaca	KY952492	
Nyctaginaceae	Pisoniella arborescens (Lag. & Rodr.) Standl.	William R. Anderson 13522 (NY)	Mexico: Oaxaca	KY952493	
Nyctaginaceae	Ramisia brasiliensis Oliv.	Jomar G. Jardim 1507 (NY)	Brazil	KY952495	
Nyctaginaceae	Reichenbachia hirsuta Spreng.	Michael Nee 47813 (NY)	Bolivia	KY952496	
Nyctaginaceae	Reichenbachia	Maria Maguidaura	Brazil	KY952497	

	paraguayensis	Hatschbach 49218		
	(D.Parodi) Dugand &	(NY)		
	Daniel			
Nyctaginaceae	Salpianthus arenarius Bonpl.	Richard W. Spellenberg 12903 (NMC)	Mexico: Michoacán	KY952503
Nyctaginaceae	Salpianthus macrodontus Standl.	Thomas R. Van Devender <i>et al.</i> 91- 894 (NMC)	Mexico: Sonora	KY952504
Nyctaginaceae	Salpianthus purpurascens (Cav. ex Lag.) Hook. & Arn.	Richard W. Spellenberg <i>et al.</i> 12885 (NMC)	Mexico: Oaxaca	KY952505
Nyctaginaceae	Tripterocalyx carneus (Greene) L.A.Galloway	Norman A. Douglas 2060 (DUKE)	USA: New Mexico	KY952525
Nyctaginaceae	Tripterocalyx crux- maltae (Kellogg) Standl.	Arnold Tiehm <i>et al</i> . 12213 (TEX)	USA: Nevada	KY952526
Nyctaginaceae	Tripterocalyx micranthus (Torr.) Hook.	B. MacLeod <i>et al</i> . 751 (TEX)	USA: Colorado	KY952527
Phytolaccaceae	Agdestis clematidea Moc. & Sessé ex DC.	George S. Hinton 25023 (TEX)	Mexico: Tamaulipas	KY952313
Phytolaccaceae	Gallesia integrifolia (Spreng.) Harms	Michael Nee <i>et al.</i> 50072 (TEX)	Bolivia: Santa Cruz	KY952407
Phytolaccaceae	Hilleria latifolia (Lam.) H.Walter	Michael Nee 33807 (TEX)	Bolivia: Santa Cruz	KY952413
Phytolaccaceae	Petiveria alliacea L.	Lucas C. Majure 4132 (FLAS)	USA: Florida	KY952476
Phytolaccaceae	Phytolacca americana L.	Michael J. Moore 342 (OC)	USA: Ohio	KY952480
Phytolaccaceae	Phytolacca icosandra L.	Mark H. Mayfield <i>et</i> al. 1001 (TEX)	Mexico: Guerrero	KY952481
Phytolaccaceae	Phytolacca octandra L.	Juan A. Encina et al. 1545 (TEX)	Mexico: Nuevo Leon	KY952482

Phytolaccaceae	Rivina humilis L.	Michael J. Moore 1129 (OC)	USA: Texas	KY952499
Phytolaccaceae	Seguieria aculeata Jacq.	Elsa Zardini <i>et al.</i> 22101 (TEX)	Paraguay	KY952510
Phytolaccaceae	Seguieria paraguariensis Morong	Michael Nee 48735 (TEX)	Bolivia: Santa Cruz	KY952511
Phytolaccaceae	Trichostigma octandrum (L.) H.Walter	Michael Nee 47094 (TEX)	Bolivia: Santa Cruz	KY952522
Phytolaccaceae	Trichostigma peruvianum (Moq.) H.Walter	Flora K. Samis 10 (Lyon Arboretum living collection, accession 94.0377)	USA: Hawaii	KY952523
Plumbaginaceae	Aegialitis annulata R.Br.	Christopher T. Martine 4043 (OC)	Australia: Western Australia	KY952312
Plumbaginaceae	Limonium limbatum Small	Michael J. Moore <i>et</i> al. 694 (OC)	USA: New Mexico	KY952414
Plumbaginaceae	Plumbago scandens L.	Michael J. Moore <i>et al.</i> 1828 (OC)	Mexico: San Luis Potosi	KY952494
Polygonaceae	Eriogonum longifolium Nutt. var. longifolium	Michael J. Moore 1796 (OC)	USA: Texas	KY952404
Polygonaceae	Eriogonum rotundifolium Benth.	Michael J. Moore 1769 (OC)	USA: New Mexico	KY952405
Polygonaceae	Persicaria odorata LaLlave	Flora K. Samis 9 (Lyon Arboretum living collection, accession 88.0439)	USA: Hawaii	KY952475
Polygonaceae	Persicaria sp.	Michael J. Moore	USA: Ohio	KY952474
Polygonaceae	Reynoutria japonica (Houtt.) Ronse Decr.	Michael J. Moore 2188 (OC)	USA: Ohio	KY952498
Polygonaceae	Rumex albescens Hillebr.	Flora K. Samis 4 (Lyon Arboretum	USA: Hawaii	KY952500

		living collection,			
		accession 2008-0119)			
Polygonaceae	Rumex sp.	Michael J. Moore	USA: Texas	KY952501	
1 orygonaceae	Tumes sp.	1800 (OC)	CSTI. Tenas	111752501	
Polygonaceae	Rumex sp.	Michael J. Moore	USA: Texas	KY952502	
Torygonaccae	Rumes sp.	1805 (OC)	CB11. Textus	K1732302	
Sarcobataceae	Sarcobatus vermiculatus	Michael J. Moore et	USA: Utah	KY952508	
Sarcobataccac	(Hook.) Torr.	al. 813 (OC)	OSM. Otan	131 752500	
Stegnospermataceae	Stegnosperma cubense	Silvia H. Salas	Mexico:	KY952513	
Stegnospermataceae	A.Rich.	Morales 2649 (NY)	Oaxaca	K1752515	
Talinaceae	Talinum cf. aurantiacum	Michael J. Moore et	Mexico:	KY952517	
Tamacac	Engelm.	al. 1985 (OC)	Coahuila	13.1 /3.2.3.1 /	
		Flora K. Samis 8			
Talinaceae	Talinum fruticosum (L.)	(Lyon Arboretum	USA: Hawaii	KY952518	
Tamaccac	Juss.	living collection,	OS/1. Hawan	K1732310	
α		accession 2012.0008)			
Talinaceae	Talinum paniculatum	Michael J. Moore	USA	KY952520	
Tumaceac	(Jacq.) Gaertn.	1789 (OC)	(cultivated)	181 732320	
		Michael J. Moore et	Mexico:		
Talinaceae	Talinum sp.	al. 1974 (MEXU)	Coahuila	KY952519	

Table 2 List of primers used to amplify the *matK* sequences newly reported here; within each primer name, the number indicates the approximate position of the primer in nucleotides downstream from the start of *matK*

Primer name	Sequence (5'→3')	Notes
matK.300F.Car		Works broadly across most of
	TTG CAG TCA TTG TGG AAA TTC C	Caryophyllales, but generally
		fails in Caryophyllaceae and
		Frankeniaceae
matK.1350R.Car	GCC AAA GTT CTA GCA CAA GAA	Works broadly across most of

	AG	Caryophyllales
matK.210F.Car	TTC GGC TAA TGA TTC TCA CCA A	Designed specifically for
matik.2101 .Car	THE GOE TAN TON THE TEN CENT	Caryophyllaceae
matK.1345R.Car	GAG CCA AAG TTC TAG CAC AAG	Designed specifically for
	AA	Caryophyllaceae
matK.1355R.Car	TGT GTT TAC GAG CTA AAG TTC	Designed specifically for
matk.1333K.car	TAG	Caryophyllaceae
matK.300F.Fra	TCG CTG TCT TTG CTG AAA TTC C	Designed specifically for
	rederd for frocto AAA free	Frankeniaceae

Table 3 Summary of whole genome duplication (WGD) events at identified clades with distance to diversification shift in the maximum likelihood (ML) and bootstrap (BS) tree sets and climate occupancy information

No.	Putative WGD	Distance to diversification shift in nodes ML(BS)	Subtending species (sister)	Mean annual temp °C (sister)	Mean annual precip mm (sister)
	Tribe Nyctagineae				
	within the			17.49	
1	Nyctaginaceae	0 (0)	123 (40)	(20.08)	482.9 (997.08)
				19.64	1007.58
2	Phytolaccoid clade	6 (6)	182 (407)	(18.36)	(452.47)
3	Claytonia	NA	38 (15)	5.28 (7.25)	790.5 (970.36)
	+			16.19	699.87
4	Portulacineae	1 (1)	1600 (38)	(19.35)	(736.42)
				16.27	797.74
5	Amaranthus	0 (0)	28 (1)	(27.09)	(117.63)
	Tribe				
	Gomphrenoideae				
	within			17.91	871.95
6	Amaranthaceae	7 (7)	172 (41)	(16.65)	(1289.5)

	in Caryophyllaceae				
	(Alsinoideae +				
	Caryophylloideae				
	sensu Greenberg				
	and Donoghue			11.44	761.43
7	2011)	9 (9)	793 (13)	(12.06)	(720.00)
				16.3.	1084.17
8	Polygonaceae	13 (13)	670 (70)	(16.89)	(794.28)
					794.28
9	Plumbaginaceae	na	70 (670)	16.89 (16.3)	(1084.17)
					1280.57
10	Droseraceae	8 (na)	67 (108)	16.3 (19.08)	(1491.72)
				22.52	2170.5
11	Nepenthaceae	4 (na)	89 (19)	(20.05)	(1611.63)
					1899.13
12	Ancistrocladaceae	0 (na)	15 (3)	24.17 (25.6)	(2882.4)
	(0			14.09	568.32
13	Tamaricaceae	na	19 (3)	(16.21)	(469.61)

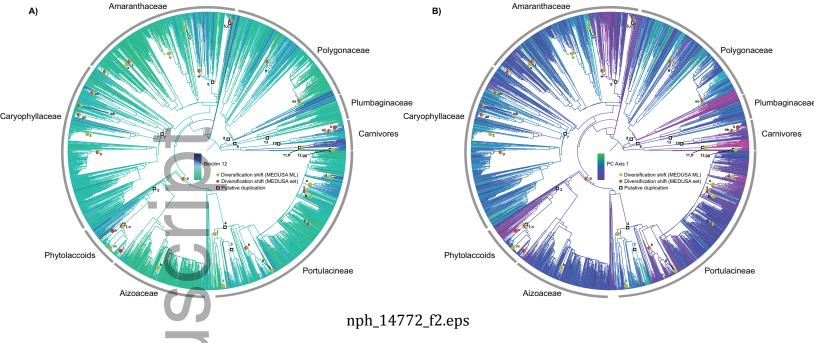

Numbers correspond to those in Figs 1 and 2. Entries with 'na' suggest no significant shift near node.

Table 4 Summary of diversification shifts with rough correspondence to included taxa

No	0		Mean shift	Mean shift
	Family	Diversification shift	(ML)	(BS)
			1.795	2.200
a	Cactaceae	Echinops	7	8
			6.915	
b	Cactaceae	within Gymnocalycium	2	
				0.055
c	Cactaceae	Gymnocalycium	-0.001	5
			0.117	
d	Cactaceae	Hylocereus+Selenicereus	5	
e	Cactaceae	Rhipsalis+Schlumbergera+Echinocereus+relati	0.051	

		ves	4	
f	Cactaceae	Stenocactus	-0.057	-0.019
			0.262	
g	Anacampserotaceae	Anacampseros	4	
			0.042	0.044
h	Portulacaceae	Portulaca	7	7
			0.941	
i	Montiaceae	Montiopsis	8	
			0.032	
j	Montiaceae	Montiaceae	5	
		Drosanthemum+Delosperma+Hereroa+relative	0.146	
k	Aizoaceae	s	9	
				0.074
1	Nyctaginaceae	Boerhavia		7
			0.964	
m	Nyctaginaceae	Commicarpus	2	
	()		0.048	0.048
n	Nyctaginaceae	Tribe Nyctagineae	4	5
О	Nyctaginaceae	Abronia+Tripterocalyx		-0.084
	Nyctag.+Aizo+Cact.+relativ		0.016	
p	es	Nyctag.+Aizo+Cact.+relatives	8	0.019
			0.273	0.164
r	Amaranthaceae	Salicornia	2	9
			0.102	
S	Amaranthaceae	Suaeda clade 1	7	
t	Amaranthaceae	Suaeda clade 2	-0.036	-0.028
			0.038	
u	Amaranthaceae	Atriplex	4	
			0.118	
v	Amaranthaceae	Corispermum	6	
			0.021	0.013
W	Amaranthaceae	Froelichia+Gomphrena+relatives	7	2
X	Amaranthaceae	Amaranthus	0.335	0.204

			0.066	0.040		
у	Caryophyllaceae	Dianthus	2	9		
			0.713			
Z	Caryophyllaceae	Cerastium	7			
			0.460			
aa	Caryophyllaceae	within Arenaria	6	0.425		
			1.097			
bb	Caryophyllaceae	within Moehringia	1	0.995		
			0.233	0.276		
cc	Caryophyllaceae	Schiedea	9	7		
dd	Polygonaceae	within Fagopyrum	-0.04	-0.034		
			0.043	0.036		
ee	Polygonaceae	Eriogonum+relatives	2	4		
ff	Nepenthaceae	within Nepenthes	0.042			
	7		0.142			
gg	Ancistrocladaceae	Ancistrocladus	6			
	V		0.223	0.207		
hh	Droseraceae	within Drosera 1	7	6		
				0.162		
ii	Droseraceae	within <i>Drosera</i> 2		2		
Letter	Letters correspond to those in Figs 1 and 2.					

