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ABSTRACT

Biodiversity varies dramatically across geographic space and across the tree of life, yet active

debate among biologists remains regarding the underlying causes of these diversity patterns.

By integrating phylogenies with species geographic range information and environmental or

climatic datasets, we can explore questions relating to the assembly of communities and

diversity gradients at continental to global scales.

In Chapter 1, I introduce major themes uniting macroevolution and macroecology. I

describe the underlying conceptual framework that links my different research chapters to-

gether. I explain how these efforts advance our understanding of large-scale patterns of

diversity, while providing critical assessments of tools and resources that facilitate the study

of diversification across environmental and geographic gradients.

In Chapter 2, I highlight the recent availability of several large-scale phylogenies for

squamate reptiles, and explore how they might affect macroevolutionary research. Using

Australian squamates as a case study, I find that a great deal of conflict exists across phylo-

genies, both in terms of divergence times and topology. I demonstrate that these differences

can be severe enough to alter conclusions drawn from downstream macroevolutionary anal-

yses. I further explore the potential sources of and solutions for these discrepancies.

To properly test hypotheses pertaining to limits on species’ geographic distributions, we

need accurate geographic range estimates. A majority of studies currently rely on a set of

xiii



19 bioclimatic variables for species distribution modeling and related ecological research. In

Chapter 3, I assemble a new bioclimatic dataset from variables described in the literature,

in order to increase the number of predictors that are easily accessible to ecologists and

evolutionary biologists. I find that incorporating these predictors into species distribution

modeling workflows leads to noticeably improved models, and I anticipate that they will

prove useful in macroecological studies as well.

In Chapter 4, I evaluate the performance of a number of approaches for estimating species-

specific “tip rates” of speciation. These metrics, which quantify recent variation in rates of

speciation across a phylogeny, are key for the study of trait-dependent diversification as well

as spatial variation in rates across biomes and latitudinal gradients. Under a number of sim-

ulation scenarios, I assess the performance of three model-free tip rate metrics, and compare

them to BAMM, a Bayesian model-based approach for estimating diversification rates. I

find that BAMM exhibits the least amount of error in speciation rates in all diversification

scenarios evaluated. One of the model-free metrics, DR, also performs well, although its

performance is hampered by high variance in rate estimates.

Finally, in Chapter 5, I explore how biogeographic rates of dispersal have contributed

to the latitudinal diversity gradient in marine fishes. There are dramatically more species

in the tropics than at high latitudes, but prior research has found that speciation rates

exhibit an inverse relationship with latitude, with the lowest rates in the tropics. I sought

to determine whether or not global patterns in biogeographic immigration in marine fishes

conform to an “out of the tropics” scenario, where lineages disperse out from the tropics

and enrich higher latitude assemblages. I find that dispersal rates are strongly biased in a

poles-to-tropics direction. However, given the strong latitudinal species richness gradient,

estimated per-lineage rates of dispersal translate to greater net movement from the tropics to

high latitudes, confirming that high latitude assemblages are enriched by tropical diversity

over macroevolutionary timescales.
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CHAPTER I

Introduction

Phylogenetic patterns coupled with the geographic distributions of species unlock a crit-

ical dimension of biodiversity. Spatial patterns in species richness provide a wealth of in-

formation that allows us to test a range of hypotheses pertaining to the ecological controls

on the size of regional species pools (Belmaker and Jetz 2012) as well as the environmental

correlates of species richness gradients (Hawkins et al. 2003, Currie et al. 2004). Integrating

phylogenetic information makes it possible to additionally examine the historical and biotic

factors, as well as the macroevolutionary processes, shaping the accumulation of diversity

across space and through time (Graham and Fine 2008, Freckleton and Jetz 2009, Morlon et

al. 2011). By evaluating both ecological and evolutionary hypotheses, biologists can assess

the relative roles of a number of potential predictors contributing to the spatial biodiversity

patterns that we observe today (Mittelbach et al. 2007, Belmaker and Jetz 2015, Holt et al.

2017).

Until relatively recently, the scale of analysis has been limited by the size of available

phylogenies, typically restricted to families or orders, as well as by the availability of large-

scale primary occurrence data. However, over the last decade, the emergence of new datasets

and analytical methods has led to a “big data” revolution in ecology and evolutionary biology,

with exciting opportunities for scientific inquiry. Natural history museums and collections

have made tremendous efforts to digitize their holdings, and digital aggregators have been
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brought online, making it possible to query and download millions of species occurrence

records on a global scale (Constable et al. 2010, Jetz et al. 2012, Robertson et al. 2014).

Additionally, high resolution, global environmental and climatic datasets have been made

available. Although global climatic data have been available for some time (Booth et al.

2014), a number of new and complementary datasets have been published in the last few

years (Tuanmu et al. 2015, Wilson and Jetz 2016, Karger et al. 2017, Hengl et al. 2017, Fick

and Hijmans 2017, Amatulli et al. 2018) that should make it possible to test more targeted

hypotheses and construct better geospatial models.

Alongside the increased availability of museum data and environmental data products,

great strides have been made in computational biology and phylogenetics. Improvements in

genetic sequence data acquisition and alignment (Smith et al. 2009, Thomson and Shaffer

2009, Hinchliff and Roalson 2013), as well as advances in computational phylogenetics (Zwickl

2006, Stamatakis 2014) have led to the recent inference of phylogenies with thousands, if not

tens of thousands of species. The development of supermatrix and megaphylogeny inference

methods, in particular, which typically involve large but mostly incomplete data matrices,

has made it possible to take greater advantage of sequence data repositories like GenBank.

Although concerns regarding the quality of these very large phylogenies have been raised

(Misof et al. 2013, Hinchliff and Smith 2014), the incorporation of genomic data is a very

active and promising topic of research (Zheng and Wiens 2016).

As large phylogenies become available for different groups of organisms and primary

occurrence data become more accessible and complete, it is increasingly feasible to test

hypotheses at broad spatial scales. This allows us to explore questions that were until recently

out of reach, or for which researchers previously had to rely on sister species pairs to control

for time since divergence (Cardillo 1999, Cardillo et al. 2005, Ricklefs 2006). Different

combinations of phylogenetic, trait and environmental turnover can help distinguish the

relative roles of conservatism versus lability in trait and niche evolution, in situ diversification

and environmental filtering. The power of such analyses emerges at the continental to global
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scale, where the replication of large biomes and spatial diversity patterns of large clades

enables direct comparison. For example, to examine the relationship between phylogeny,

traits and environment in desert ecosystems requires several large, independent desert biomes

across a continent (e.g., Sonoran vs. Chihuahuan vs. Mojave Deserts of North America).

For analyses that require different species communities and/or phylogenetic clades, a global

approach would further be necessary (e.g., North American deserts vs. Australian deserts)

to acquire a sufficient number of observations and thus data points for robust analyses.

Large-scale approaches such as these allow us to extract meaningful generalities about the

underlying macroecological and macroevolutionary processes shaping diversity across the

Earth’s major biomes.

Expanding analyses to a global scale with more inclusive phylogenies also has the po-

tential to fundamentally change our understanding of major patterns of biodiversity. For

example, the tropical Indo-Pacific has long been presumed to be a center of origination for

marine fishes (Briggs 2000, Briggs 2003, Cowman and Bellwood 2013), with greater rates of

speciation associated with coral reefs (Alfaro et al. 2007, Siqueira et al. 2016). However,

equipped with a large phylogeny and geographic data for thousands of marine fish species,

Rabosky et al. (2018) recovered a striking pattern of elevated speciation rates in the high

latitudes, and depressed speciation rates in the tropics. This inverse relationship between

species richness and speciation rates directly contradicts other studies, and leads us to re-

think our understanding of the factors generating and maintaining the latitudinal diversity

gradient over geologic timescales (Jablonski et al. 2006, Mittelbach et al. 2007, Weir and

Schluter 2007).

In order to test hypotheses that relate phylogenetic information to spatial diversity pat-

terns, appropriate metrics are required to summarize the most relevant aspects of species’

evolutionary history. Although the specifics will depend on the particular hypotheses being

tested, the unit of analysis is typically either taxonomic or geographic. If the unit of anal-

ysis is taxonomic, then geographic or environmental data are summarized by species or by
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clade (e.g., species-level mean annual temperature then averaged across a clade or latitu-

dinal range of the clade). From these clade-level data, diversification parameters can then

be calculated across the phylogenetic tree. There have been considerable methodological

developments in the estimation of speciation or net diversification rates for clades. Simple

metrics, such as “method-of-moments” estimators of net diversification rate (Magallón and

Sanderson 2001) that rely only on stem age and species richness to estimate rates have been

used in a number of studies (Adams et al. 2009, Castro-Insua et al. 2018, and many others).

Although these metrics are valuable, especially when the goal is to estimate rates for clades

that are phylogenetically highly incomplete, their performance can be unreliable (Stadler

et al. 2014). In such cases, model-based approaches to estimating diversification rates are

preferable, given a phylogeny with reasonably complete species sampling (Rabosky 2017).

A number of model-based approaches exist for inferring diversification rates (Alfaro et al.

2009, Morlon et al. 2011, Etienne and Haegeman 2012, Rabosky 2014, Lewitus and Morlon

2016), and the particulars of the phylogeny and the question at hand will determine which

approach is most appropriate.

If the unit of analysis is geographic, such as with ecoregions or grid cells, then the

goal is to summarize phylogenetic information for assemblages of species in each geographic

area, which will most likely not be monophyletic groups. Within this framework, biologists

have most often relied on phylogenetic diversity indices derived from either the variance-

covariance matrix (e.g., phylogenetic species variability; Helmus et al. 2007) or from the

patristic distance matrix (e.g., mean patristic distance, nearest neighbor distance; Webb et

al. 2002, Graham and Fine 2008) of the phylogeny to acquire species-specific or pairwise

values. These measures reflect different aspects of the phylogenetic relationships between

the species in a geographic region of interest as well as characteristics of those species in

relation to the full phylogeny (Fritz and Rahbek 2012, Tucker et al. 2016).

Certain biological questions are therefore best addressed at large spatial scales and across

large taxonomic groups. By querying phylogenetic relationships, rates of diversification, and
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the spatial configuration of species on a continental or global scale, we can test fundamental

hypotheses pertaining to factors driving the generation and maintenance of species assem-

blages, the roles of equilibrial and non-equilibrial forces in shaping species richness patterns,

and the ways in which traits or environmental attributes might promote or hinder diversifi-

cation. I explore these concepts in my dissertation in four major data chapters, as described

in greater detail below.

1.1 Overview of chapters

The primary goal of the dissertation research presented herein is to robustly evaluate vari-

ous aspects of spatial macroevolution and macroecology – both methodological and empirical

– that relate to the different components required in the study of diversity at continental and

global scales. In this context, I first perform critical assessments of large phylogenies in terms

of their value for macroevolutionary study. I then produce and apply a novel global biocli-

matic dataset to the study of species distributions today and in the past. I further explore

and evaluate macroevolutionary methods, focusing on approaches for estimating speciation

rates. Finally, I investigate how biogeographic rates of speciation and dispersal have shaped

the latitudinal diversity gradient in marine fishes.

An essential component to the study of geographic patterns of diversification is, of course,

the phylogeny. Time-calibrated phylogenies provide the historical framework from which we

can make inferences regarding the tempo of diversification. Furthermore, relationships be-

tween species and within geographic units, can tell us a great deal about the dispersal and

colonization history of a group. Due in part to methodological advances in phylogenetic

inference, and to ongoing sequencing efforts by many research labs, a number of large phylo-

genies have been published over the last decade, primarily for vertebrate groups (birds: Jetz

et al. 2012, Burleigh et al. 2105; amphibians: Pyron and Wiens 2011, Jetz and Pyron 2018;

squamates: Pyron et al. 2013, Tonini et al. 2016, Zheng and Wiens 2016; fish: Rabosky et
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al. 2013, Rabosky et al. 2018), plant groups (flowering plants: Zanne et al. 2014, Smith

et al. 2018; seed plants: Smith and Brown 2018), and even all of life (Hedges et al. 2015,

Hinchliff et al. 2015). With the availability of such phylogenies growing, biologists interested

in diversification, biogeography and trait evolution, have found these to be very attractive

resources for both large-scale analyses and targeted analysis of particular clades of interest.

However, many tend to take these trees at face value, unaware of topological constraints

that may have been applied or of the conflict that may exist between these trees and other

studies. A number of studies that use these trees have now been published on a vast range

of topics, making a critical evaluation of the consequences of the differences between these

trees for macroevolutionary analyses important and timely.

InChapter 2 (Title and Rabosky 2017) we evaluated all large phylogenies that have been

published for squamate reptiles (Pyron and Burbrink 2014, Wright et al. 2015, Hedges et al.

2015, Zheng and Wiens 2016, Tonini et al. 2016), to explore and highlight these potential

issues. We focused on 12 in situ radiations of squamates that have occurred in Australia.

We first explored topological differences among these trees, as well as compared the crown

clade ages of these radiations to those reported in the Australian squamate literature. We

then examined how differences in clade ages translate to differences in diversification rates.

Furthermore, we assessed whether or not the choice of phylogeny would influence the results

of macroevolutionary tests, such as whether or not species richness can be explained by the

estimated amount of time clades have diversified.

We found discordance in terms of the crown clade ages of Australian squamate radiations,

in particular when the clade ages of these large trees were compared to the more targeted

literature on Australian squamates. These differences in clade age resulted in significant

differences in net diversification rate estimates. Thus, hypotheses regarding the role of time

since divergence or diversification rate evaluated with different phylogenies had the potential

to lead to different results and interpretations. We also found some disagreement in topology,

with the phylogenies from Tonini et al. (2016) and Hedges et al. (2015) having the greatest
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number of differences from the other trees as well as from each other. Ultimately, a number

of factors contribute to the differences in the phylogenies that we explored. Two factors

with a large impact on tree inconsistencies were 1) the lack of overlap in calibration data

used to time-calibrate phylogenies and 2) differences in topological constraints imposed on

the backbone of some of the trees. At least some of the issues discussed in the context of

squamate reptiles are likely also present in large phylogenies for other groups (for instance,

topological constraints were imposed for the bird phylogeny in Jetz et al. 2012). It is

important that biologists using these trees be aware of the benefits and potential drawbacks

that accompany these otherwise fantastic resources. Over time, we expect that many of the

issues discussed in this chapter will be resolved or lessened, as we continue to make progress in

developing more robust phylogenetic inference approaches, and as fossil calibration datasets

are improved, evaluated and assessed.

At macroecological scales, environmental and climatic conditions have been hypothesized

to play a role in generating variation in species richness (Hawkins et al. 2003, Currie et

al. 2004). Ecological hypotheses have been proposed that suggest a role for climate in

determining the number of individuals or the number of niches that various regions can

support (Currie et al. 2004). whereas macroevolutionary hypotheses have been proposed

where higher temperatures can lead to greater rates of speciation (Rohde 1992). At finer

spatial scales, differences in environmental and climatic conditions are thought to play a role

in allopatric speciation via niche conservatism (Peterson et al. 1999, Kozak and Wiens 2010,

Hua and Wiens 2013, Jezkova and Wiens 2018). Different species may have different climatic

preferences and physiological tolerances, and their ranges may be limited by different factors

(Barbet-Massin and Jetz 2014). Therefore, it is important to have access to relevant climatic

and environmental datasets in order to properly characterize species’ environmental niches.

The vast majority of studies that have modeled species distributions, or that have em-

ployed climatic data in macroecological analyses, have relied on the WorldClim dataset

(Hijmans et al. 2005, Fick and Hijmans 2017), and in particular on a set of 19 bioclimatic
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variables. Although this climatic dataset has and continues to be an important resource, re-

cent research on species distribution modeling has pointed to better performance for models

built with variables that are a priori considered to be ecologically relevant to the species in

question (Kearney et al. 2008, Doswald et al. 2009, Rödder et al. 2009, Synes and Osborne

2011).

In Chapter 3 (Title and Bemmels 2018), we viewed this reliance on the 19 bioclimatic

variables as a limiting factor in biologists’ ability to select the most ecologically relevant

variables for species distribution modeling. Other climatic and environmental indices have

been described and are used in the literature (Synes et al. 2011, Braunisch et al. 2013, Met-

zger et al. 2013), but the advantage with WorldClim is the ready availability of global, high

resolution datasets under past, present and future climatic conditions. We therefore identi-

fied an additional set of 16 climatic and two topographic indices that have been described

in the literature and built a comprehensive dataset that makes these variables accessible for

multiple spatial resolutions and time periods, globally. We named this dataset ENVIREM

(ENVIronmental Rasters for Ecological Modeling).

Using 20 North American vertebrate species as case studies, we then assessed whether or

not the availability of the ENVIREM dataset in the pool of potential variables resulted in

improved species distribution modeling performance. Through the use of several evaluation

metrics, we found that the inclusion of this new dataset led to improvements in a majority

of cases. It is worth noting that an improvement in even a single species’ distribution model

should be viewed as justifying the value of the ENVIREM dataset, as the goal is to provide

a greater range of predictor options.

In testing hypotheses regarding the relationship between diversification and geographic

or environmental gradients, it is becoming increasingly commonplace to quantify relevant

patterns in phylogenetic measures in terms of geographic units, such as grid cells or ecore-

gions. Although phylogenetic indices based on pairwise patristic distance matrices have been

useful for quantifying geographic patterns in phylogenetic relationships and branch length
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distributions (Graham and Fine 2008, Tucker et al. 2016), it may be desirable to geograph-

ically represent speciation or net diversification rates. This enables us to more explicitly

test hypotheses that relate diversification processes to patterns of species richness, such as

the latitudinal diversity gradient (Mittelbach et al. 2007). A number of approaches now

exist to estimate species-specific “tip rates” of diversification that can be summarized for

geographic regions. Despite the growing appeal and use of such approaches (Freckleton et

al. 2008, Jetz et al. 2012, Kennedy et al. 2016, Harvey and Rabosky 2017, Quintero and

Jetz 2018, Rabosky et al. 2018), there is significant confusion in the literature regarding

whether these tip rates represent net diversification or speciation rates, and there has, as of

yet, not been a thorough evaluation of the relative performance of available tip rate met-

rics. A commonly utilized metric, the DR statistic (Jetz et al. 2012) is a model-free metric

based on the number of splitting events and internode distances from the root to the tips

of a phylogeny. This metric was originally described as a measure of net diversification rate

(speciation minus extinction rate); however, Belmaker and Jetz (2015) have since found it

to be a better measure of speciation rate. Despite this, studies still continue to use the DR

statistic to represent net diversification rate, a fundamentally different measure.

In Chapter 4, we compared a number of tip rate metrics, including the inverse of the

terminal branch lengths, the node density metric (Freckleton et al. 2008), the DR statistic

(Redding and Mooers 2006, Jetz et al. 2012) and BAMM, a model-based approach (Bayesian

Analysis of Macroevolutionary Mixtures; Rabosky 2014). We evaluated whether or not the

model-free metrics more tightly tracked the rate of speciation or net diversification, and

then evaluated the performance of each tip rate approach across a broad range of simulated

phylogenies. We found that all tip rate metrics are more accurately tracking speciation

rate than net diversification rate. This has implications for the interpretation of large-scale

diversity dynamics, as high speciation rates can be coupled with high extinction rates to lead

to low net diversification rates. In terms of performance, we found that in all tests, BAMM

performed better than the model-free tip rate metrics, exhibiting the greatest accuracy and
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the lowest amount of error. The DR statistic also performed reasonably well, and may

perform best for very small clades, where BAMM lacks the statistical power to accurately

detect rate shifts.

Finally, in Chapter 5, we explore the factors that have shaped the latitudinal diversity

gradient (LDG) in marine fishes. This group exhibits a strong richness gradient across

latitudes, with an order of magnitude more species in the tropics than in the polar regions

(Tittensor et al. 2010, Stuart-Smith et al. 2013, Rabosky et al. 2018). Geographic patterns

of species richness across regions are thought to have been influenced by the interplay between

speciation, extinction and dispersal (Ricklefs 2004, Wiens and Donoghue 2004, Goldberg et

al. 2005), as well as by variation in effective carrying capacities (MacArthur 1969, Mittelbach

et al. 2007). Several hypotheses have been proposed to explain how these different factors

may have generated and continue to maintain this richness gradient. One prominent model

is the “out of the tropics” model (Jablonksi et al. 2006), which suggests that speciation

rates are highest in the tropics and that there is a net movement of species out from the

tropics towards the poles. Rabosky et al. (2018) inferred a large phylogeny for ray-finned

fishes and acquired marine fish distribution data for thousands of marine taxa. They found

that, paradoxically, rates of speciation exhibit an inverse relationship with latitude, where

the highest rates are in the regions with the lowest species richness. Although Jablonski’s

“out of the tropics” model involves greater tropical speciation rates, the net movement of

species is still a core feature of the model, thereby marking the tropics as a major source

of diversity shaping the LDG. To test for the predominance of poleward movement of taxa

over evolutionary timescales, we modeled transition rates between tropical, temperate and

polar regions, based on the phylogenetic and geographic dataset of Rabosky et al. (2018).

In addition to latitudinal transitions, there is reason to believe that global source-sink

dynamics in marine fish biogeography might be different for shallow-water and deep-water

species. The shallow waters of the oceans exhibit a strong thermal gradient across latitudes,

but this gradient becomes weaker with ocean depth, as the environment becomes increas-
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ingly homogeneous. Evolutionary transitions from shallow to deep-water are also thought to

be relatively infrequent as they require significant adaptations to the lack of light, greater

pressure and other major environmental differences that deep-water taxa experience (Brown

and Thatje 2014, Priede 2017). Therefore, we might expect that the migration of taxa across

tropical, temperate and polar regions would be different at depth.

We found that rates of dispersal, both in shallow and deep-water, are generally biased in

a poles-to-tropics direction. Each rate of dispersal in deep-water was faster than its shallow-

water counterpart, which lends support to the notion that deep-water species experience

a more environmentally homogeneous landscape, with fewer biogeographic barriers than at

the surface. In particular, we found that rates of dispersal were greatest out of the Arctic

(Briggs 2003, Mecklenburg et al. 2011). This region has a long history of acting as a region

of biotic interchange between major ocean basins, especially before climate cooling in the

Middle Miocene, thus fueling southward species dispersal to temperate regions and to deeper

waters (Mecklenburg et al. 2011).

We additionally found that if we quantify dispersal events, rather than rates, through

ancestral state reconstruction, net movement of species does follow an “out of the tropics”

scenario, both for shallow and deep-water. Taken together, we view the net movement of

species as reflecting tropical inertia, where even with a slow rate of dispersal poleward, the

tremendous richness of the tropics increases the frequency of dispersal events over geologic

time, thus overcoming the expected pattern based on per-lineage rates alone.
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CHAPTER II

Do macrophylogenies yield stable macroevolutionary

inferences? An example from squamate reptiles1

2.1 Abstract

Advances in the generation, retrieval and analysis of phylogenetic data have enabled

researchers to create phylogenies that contain many thousands of taxa. These “macrophy-

logenies” – large trees that typically derive from megaphylogeny, supermatrix, or supertree

approaches – provide researchers with an unprecedented ability to conduct evolutionary

analyses across broad phylogenetic scales. Many studies have now used these phylogenies to

explore the dynamics of speciation, extinction, and phenotypic evolution across large swaths

of the tree of life. These trees are characterized by substantial phylogenetic uncertainty on

multiple levels, and the stability of macroevolutionary inferences from these datasets has

not been rigorously explored. As a case study, we tested whether five recently published

phylogenies for squamate reptiles – each consisting of more than 4000 species – yield congru-

ent inferences about the processes that underlie variation in species richness across replicate

evolutionary radiations of Australian snakes and lizards. We find discordance across the five

focal phylogenies with respect to clade age and several diversification rate metrics, and in

the effects of clade age on species richness. We also find that crown clade ages reported in
1Title, P.O. and Rabosky, D.L. (2017). Do macrophylogenies yield stable macroevolutionary inferences?

An example from squamate reptiles. Systematic Biology, 66, 843-856.
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the literature on these Australian groups are in conflict with all of the large phylogenies ex-

amined. Macrophylogenies offer an unprecedented opportunity to address evolutionary and

ecological questions at broad phylogenetic scales, but accurately representing the uncertainty

that is inherent to such analyses remains a critical challenge for our field.

2.2 Introduction

It is increasingly possible to conduct macro- evolutionary analyses across broad phylo-

genetic scales, thanks to the recent development of phylogenies that include thousands of

species. These data sets enable biologists to explore patterns that may be missed at smaller

scales and to test long-standing hypotheses that pertain to continental or global patterns.

For the purposes of this article, we use the term “macrophylogeny” to describe phylogenies

that (i) are typically produced via supermatrix (typically very large and often sparse genetic

data matrices; Driskell et al. 2004), supertree (the grafting of multiple phylogenies to one

another; Sanderson et al. 1998), or megaphylogeny (the use of automated pipelines to as-

semble genetic data matrices; Smith et al. 2009) methods, (ii) include several thousand or

more species-level taxa, and (iii) are sufficiently large that it is challenging or impossible to

adequately account for numerous sources of phylogenetic uncertainty during tree construc-

tion and time calibration. Macrophylogenies provide standardized phylogenetic frameworks

from which clades can be extracted and compared and several such trees have been used by

many hundreds of studies as a starting point for “downstream” comparative analyses. Such

macrophylogenies have been generated for birds (Jetz et al. 2012; Burleigh et al. 2015),

mammals (Bininda-Emonds et al. 2007; Faurby and Svenning 2015), amphibians (Pyron

and Wiens 2011), squamate reptiles (Pyron et al. 2013; Pyron and Burbrink 2014; Tonini

et al. 2016; Zheng and Wiens 2016), ray-finned fishes (Rabosky et al. 2013), flowering

plants (Zanne et al. 2014), and all of life (Hedges et al. 2015; Hinchliff et al. 2015). The

appearance of such large phylogenies for a broad range of taxa within the last few years can

be attributed to advances in sequence data acquisition and alignment (Smith et al. 2009;
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Thomson and Shaffer 2009; Hinchliff and Roalson 2013) and computational improvements

in phylogeny estimation (Zwickl 2006; Stamatakis 2014).

In this article, we ask a simple question: do different macrophylogenies yield congru-

ent macroevolutionary inferences? Our question is motivated by the observation that the

phylogenies listed above have been used by hundreds of subsequent studies involving charac-

ter evolution, biogeography, comparative analysis, and species diversification. We focus on

a single group of organisms—squamate reptiles—because multiple large- scale phylogenies

now exist for the group (Pyron and Burbrink 2014; Wright et al. 2015; Hedges et al. 2015;

Tonini et al. 2016; Zheng and Wiens 2016).

Although most researchers acknowledge that accommodating phylogenetic uncertainty

is important, phylogenies produced by different research groups may differ in fundamental

ways, and these differences may not be captured by simply considering posterior distributions

of phylogenies (when available) produced by a single research group. In addition, phyloge-

netic uncertainty is itself rather poorly defined at the scale of macrophylogenies, even when

researchers have made comprehensive distributions of phylogenies available for subsequent

analyses. For example, a number of studies have used Kuhn et al.’s (2011) distribution of

phylogenetic trees for all mammalian species for macroevolutionary analyses (e.g., Price et

al. 2012; Rolland et al. 2014). However, this distribution of phylogenies accounts for a very

weak form of uncertainty, as the only variation among trees comes from imputation, or the

randomized resolution of nodes using taxonomic constraints, for which there were polytomies

in the original Bininda-Emonds (2007) tree. Moreover, macrophylogenies are often distinct

from smaller phylogenies, in that their size has required researchers to implement strong

constraints on taxon monophyly (e.g., Rabosky et al. 2013; Zanne et al. 2014) or to fix the

topological backbone of their phylogenies (e.g., Jetz et al. 2012). Finally, computational

considerations can lead to challenges in validating tree optimizations due to the size of the

data sets (Misof et al. 2013; Wright et al. 2015). Particular genetic samples can cause

instability in phylogenetic inference (“rogue taxa”; Thomson and Shaffer 2009) and inference
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complications can arise from the fact that data matrices for macrophylogenies constructed

with supermatrix approaches often contain mostly missing data, leading to the presence of

“tree terraces”, or regions of tree space that cause ambiguity in phylogenetic inference (Misof

et al. 2013; Hinchliff and Smith 2014; Sanderson et al. 2015).

In this article, we compare macroevolutionary correlates of species richness using five

macrophylogenies (Table 1), that have recently been generated for squamate reptiles, to test

whether these phylogenies yield congruent results. The Pyron, Wright, Zheng and Tonini

trees were similarly inferred via supermatrix approaches. Specifically, Wright et al. (2015)

provided a reanalysis of the DNA sequence alignment from Pyron et al. (2013), which they

then further optimized in terms of both topology and branch length, thereby generating

several alternative phylogenies based on the same sequence data, fossil calibrations and time

calibration methodology (in this study, we use their “best” phylogeny with optimized topology

and branch lengths). Hedges et al. (2015) produced a timetree of life (TTOL), which was

generated by taking a tree representation of the NCBI taxonomy and repeatedly applying

time and topological constraints to nodes, iteratively moving from the tips of the tree to

the root. These constraints were taken from a database of phylogenies and divergence times

that Hedges et al. (2015) compiled from the scientific literature. Although the TTOL has

been presented as a resource for studying all of life, a number of studies have used taxonomic

subsets for phylogenetic analysis (see Oliveira et al. 2016; Marin and Hedges 2016; Rolland

and Salamin 2016). Zheng and Wiens (2016) combined the genetic data matrix from Pyron

et al. (2013) with the matrix from another study (Wiens et al. 2012) that sampled up to

44 nuclear genes for 161 squamate species, to generate their phylogeny. Finally, Tonini et

al. (2016) generated a squamate phylogeny for 9574 species, 5415 of which had genetic data,

the rest of which were imputed using PASTIS (Thomas et al. 2013). In this study, we focus

on a posterior distribution of 1000 trees for those taxa with genetic data only, where the

topology has been constrained to the maximum likelihood estimate, but where divergence

times vary.
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Multiple studies have now used these phylogenies as “point estimates” for studying

macroevolutionary patterns (Pyron and Burbrink 2014, Hedges et al. 2015, Scharf et al.

2015), and our goal in this article is to address whether these macrophylogenies yield con-

gruent inferences about evolutionary and ecological processes. As a focal question, we in-

vestigated the determinants of continental-scale patterns of species richness, a conceptual

issue of broad interest to evolutionary biologists and ecologists alike (Mittelbach et al. 2007;

Fritz and Rahbek 2012; Kennedy et al. 2014). We focus on Australia, because it is home

to multiple distinct radiations of squamate reptiles that differ greatly in species richness

(Table 2). To cross-reference these phylogenetic datasets, we also compiled phylogenetic

and biogeographic information on Australian squamate clades from the literature (Table

2). We assessed the influence that dataset choice might have on evaluating two hypotheses

that pertain to drivers of diversity: the relationship between species richness and clade age

and between species richness and diversification rate. Correlations between clade age and

species richness have often been examined to assess support for the “time-for-speciation”

effect (Stephens and Wiens 2003), which would imply that non-equilibrial factors play an

important role in maintaining diversity. The second hypothesis follows from the simple as-

sumption that clades with higher speciation rates should be more diverse than clades with

lower speciation rates, although correlations between speciation and extinction rates can

potentially weaken or even eliminate such relationships.

In evaluating these hypotheses, we show that these phylogenies are characterized by con-

siderable discord in clade age, with important consequences for macroevolutionary inference.

The incongruence that we find appears to be due to many factors, including time-calibration

methodology and topological differences. Phylogenetic uncertainty is typically highly condi-

tional on specific datasets and phylogenetic methodology, and our findings suggest an acute

need to both quantify and conceptualize uncertainty in its absolute sense.
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2.3 Methods

We identified 12 clades of Australian squamates that have radiated in situ by identifying

groups in which the majority of the species occur on the Australian continent (Greer 1979;

Hugall et al. 2008; Rawlings et al. 2008; Sanders et al. 2008; Oliver and Sanders 2009;

Skinner et al. 2011; Vidal et al. 2012; Marin et al. 2013; Rabosky et al. 2014a; Sistrom

et al. 2014). These clades account for roughly 93 percent of squamate species that occur in

Australia (Reptile Database, Uetz and Hošek 2015). For each of these squamate radiations,

we identified analogous clades in each of the five phylogenies, as well as in the literature

(taxa used to define these clades can be found in Table S1, available on Dryad at http:

//dx.doi.org/10.5061/dryad.60js5). In most cases, we were able to identify equivalent

clades across the three phylogenies that represent the Australian radiations. Phylogenies for

each clade and for each phylogenetic dataset can be found in the supplement (Figures S1 –

S12). The ease with which we identified clades across phylogenies can be categorized into

three scenarios.

In the first scenario, we identified in each phylogeny an equivalent node that represents

the Australian radiation, and that contains the same set of species (barring sampling dispar-

ities). This was the case for Agamidae, Carphodactylidae, Diplodactylidae, Pygopodidae,

Sphenomorphinae and Varanidae. In the second scenario, a node was identified that repre-

sents the Australian radiation, but due to topological differences, the group was not always

monophyletic. This situation arose for the Egernia group, the Eugongylus group, Gehyra and

Typhlopidae. Therefore, the node that identifies the clade with the most Australian species

was found, sometimes at the expense of either leaving out Australian species or by including

a few non-Australian species. Details regarding how we selected nodes for these clades can

be found in the supplementary materials (Figures S13 – S16). Finally, the third scenario

involved more problematic clades. For Elapidae and Pythonidae, Australian radiations were

easily identified for the Pyron, Wright, Zheng and Tonini phylogenies, but equivalent nodes

could not be found in the TTOL, where the topology was greatly different from the other
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macrophylogenies, and from the literature on these groups, such that no Australian radiation

node existed. For the TTOL, we chose the node that is the most recent common ancestor

to the species that are thought to belong to the Australian radiation, however, as a result,

other non-Australian species were included (Figures S5 and S9 for Elapidae and Pythonidae,

respectively). When calculating diversification metrics for these two clades from the TTOL,

we used sampled richness rather than known species richness (154 for Elapidae and 78 for

Pythonidae) as these clades no longer represent a subset of the set of species described in

the literature.

Once equivalent clades were identified, we then extracted the crown clade age of each

of these clades, and paired these ages with the known species richness of these clades (as

opposed to species richness as sampled in the phylogenies). Where species richness was not

found in the literature, we relied on species listings from the Reptile Database (Uetz and

Hošek 2015).

We extracted crown clade ages from the five macrophylogenies, and identified crown clade

ages from clade-specific literature (hereafter referred to as the “by-clade literature” dataset;

Table 2), for a total of six datasets. As Tonini et al. (2016) generated a distribution of 10000

trees, we calculated the mean crown clade age across 1000 trees for each Australian radiation

for our analyses, and report both the mean and 95 percent confidence interval (Table 2).

We compared these crown clade ages across phylogenetic datasets and used a t-test to assess

significance in Pearson correlation coefficients.

For each clade and for each dataset, we calculated three diversification metrics (Table

S2). We computed per-lineage net diversification rate, as per equation seven in Magallón

and Sanderson (2001), with a relative extinction rate of 0.5. As these clades might not be

diversifying under a constant-rate scenario, we also estimated speciation rates using BAMM

v2.5 (Rabosky 2014). BAMM is a Bayesian approach which requires an ultrametric phy-

logeny and identifies shifts in diversification, while allowing for temporal rate heterogeneity.

We performed separate BAMM analyses on each Australian squamate clade as extracted
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from each of the three phylogenies. We identified appropriate priors for speciation and ex-

tinction with BAMMtools (Rabosky et al. 2014b), and defined the prior for the distribution

of rate shifts by setting the expected number of shifts at ten. We accounted for incom-

plete sampling by setting the global sampling fraction according to the known richness for

each clade (Table 2), and ran BAMM for 30 million generations (100 million generations for

Sphenomorphinae, the largest clade). As the divergence times (but not the topology) vary

in the Tonini et al. (2016) distribution of trees, we extracted the clades of interest from 100

trees from the posterior distribution, and ran BAMM on each separately. To get an overall

estimate of speciation rate for a given clade from the BAMM analyses, we calculated mean

time-integrated rates across each clade phylogeny, averaged across the posterior distribution

of BAMM results (Rabosky et al. 2014b). For the Tonini dataset, the clade-specific esti-

mate was simply the median time-integrated rate taken from the distribution of 100 such

rates that were estimated for each focal clade. Finally, we calculated the DR statistic, a

species-specific measure of speciation rate at the tips of the tree (Jetz et al. 2012; Belmaker

and Jetz 2015). We predicted that the DR statistic would be more sensitive to variation

in branch lengths near the tips of the tree rather than to uncertainty in crown age. We

calculated the DR statistic on phylogenies pruned to the set of taxa with matching names

across all phylogenies in order to avoid any influence of sampling intensity. We made one

manual adjustment, where we changed the genus of the Australian blindsnakes in all phy-

logenies to Anilios in order to avoid the loss of all Australian blindsnakes in the common

set. For the Tonini dataset, we took the average of the DR statistic, calculated across 1000

trees from the posterior distribution. We then calculated the mean DR statistic for each

Australian radiation. We examined the congruence across datasets in several predictors of

species richness (clade age, diversification rate) and tested whether the relationship between

these macroevolutionary predictors and species richness differed across the focal phylogenies.

Many researchers are interested in the relationship between clade age and species richness

as well as the effect of time on lineage diversification within geographic regions (McPeek
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and Brown 2007; Rabosky et al. 2012, Tank et al. 2015), but the power to detect this

relationship from imperfect data on clade ages has rarely been addressed. We explored the

effects of uncertainty in clade age on our ability to recover true correlations between crown

clade age and species richness by performing a set of power simulations where we empirically

parameterized the error variance in clade age from the variance in ages observed across the

six empirical datasets. We simulated crown clade ages with fixed correlations to the observed

species richness (Table 2), such that the observed variance in age among clades was equal

to the mean among-clade variance across the six datasets in this study (variance = 94.595).

We then computed the variance in ages for each clade across the focal datasets (e.g., elapids:

variance = 182.82). We treated these clade-specific variances as the error distribution for

“true” clade age, and – for each simulation – added noise to each simulated age by drawing

normal random variables from these distributions. We performed this test across 20 true

correlations (1000 simulations per correlation), ranging from zero to 0.95, and tabulated

the frequency with which we observed a significant correlation between (log-transformed)

richness and clade age.

Topological differences across these macrophylogenies might influence comparisons of

crown clade ages, particularly if these differences lead to inconsistencies in how equivalent

clades are identified across phylogenies. Furthermore, topological differences can impact time

calibration and ultimately diversification analyses, as fossils or secondary calibrations will

interact with tree topology in the calibration process. We compared the topologies of the

macrophylogenies examined in this study to each other as well as to a maximum likelihood,

161-taxon phylogeny of squamates that was inferred from up to 46 genes (Reeder et al. 2015).

We pruned all phylogenies to the set of common taxa and calculated pairwise Robinson-

Foulds symmetric distances (Robinson and Foulds 1981) with the phangorn package v2.0.4

(Schliep 2011) in R. This metric determines the total number of branches that would need to

be removed or added in order to transform one phylogeny into the other. We then projected

these pairwise distances into two-dimensional space using multidimensional scaling.
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2.4 Results

2.4.1 Pairwise comparisons of phylogenetic datasets

The pairwise relationships in crown clade ages exhibit large amounts of noise (Figure

1), with some pairs exhibiting negative correlations. Significant positive correlations were

observed in only four of 15 possible comparisons. The TTOL and the by-clade literature

crown clade ages were not found to be significantly positively correlated with any other

dataset. Even if we omit Pythonidae – a clade that was highlighted as being problematic

during the analogous clade selection process – four pairwise comparisons retain negative

correlation coefficients. As Tonini et al. (2016) generated a distribution of trees, we were

also able to compare the by-clade literature clade ages to the 95 percent confidence interval

from the divergence times of the Tonini trees. Only six of the 12 clades showed overlap in

these two datasets (Figure S17).

Pairwise comparisons of diversification metrics exhibit a similar pattern to the compar-

ison of clade ages (Figure 1). This is expected, as crown clade age is a key component of

diversification metrics. Net diversification rates for the Pyron, Wright, Zheng and Tonini

phylogenies were significantly correlated (or nearly so with Wright – Tonini). Net diver-

sification rates for the TTOL and clade literature were also significantly correlated, likely

due to some of this literature being incorporated in the construction of the TTOL. Similar

patterns were found with speciation rates from BAMM (Figure S18), and net diversification

rates were highly correlated with BAMM speciation rates (Pearson’s correlation r = 0.88).

Mean clade values for the DR statistic were poorly correlated across phylogenies (Figure

S19), although individual species values showed relatively high correlations (Figure S20).

The DR statistic assumes that phylogenies are fully sampled, but we found that the metric

is relatively robust to levels of incomplete sampling in the focal phylogenies (Figure S21).
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2.4.2 Implications for drivers of diversity

We observed some conflict across the focal datasets regarding the roles of clade age

and diversification rate in the generation of species richness patterns. As the Pyron and

Wright trees generally behaved similarly to Zheng and Tonini, we present a subset of the

datasets (Figure 2), but all are presented in the supplementary material (Figure S22). Only

the Wright phylogeny led to significant relationships between crown clade age and species

richness for Australian squamates (Figure S22a). Net diversification rate had a significant

positive relationship with species richness for the TTOL and by-clade literature datasets

(Figure 2b). Time-variable speciation rates from BAMM exhibited a lack of a relationship

with species richness across datasets (Figure 2c), and the DR statistic was positively related

to species richness for the TTOL exclusively (Figure 2d).

2.4.3 Power analysis of the richness – clade age relationship

We found that a true correlation between clade age and species richness must be rel-

atively high to detect such a relationship in the presence of estimation error in clade age

(Figure 3). For example, even with a true correlation of 0.8, which would be considered a

strong relationship in the empirical literature, we would have failed to recover a significant

correlation in at least 50 percent of datasets, given the discordance in clade ages across the

focal datasets.

2.4.4 Comparisons of topology

We calculated Robinson-Foulds distances for two sets of trees: the macrophylogenies

presented throughout this study (3487 taxa in common) and these phylogenies in addition

to a backbone phylogeny from Reeder et al. (2015) for 118 taxa in common, representing 113

genera and 57 families. Topological discordance is highlighted across all taxonomic levels in

the first analysis, and across deeper parts of the trees in the second analysis. We found that

for both tree sets, the TTOL and Tonini trees tended to be most distant from each other
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and from all other datasets (Figure 4).

2.5 Discussion

We found that macrophylogenies for squamate reptiles that have been produced by dif-

ferent research groups do not lead to predictable and consistent inferences on the causes of

macroevolutionary patterns. Moreover, divergence times generally do not agree with those

found in the literature on particular squamate groups, nor are they consistent across macro-

phylogenies. Our motivation for this study is the observation that published phylogenies –

with or without uncertainty – are widely used as primary data for “downstream” macroevo-

lutionary analyses involving diversification, phenotypic evolution, and comparative analyses.

It is widely appreciated that calibrating phylogenies to an absolute timescale is a challenging

task (Graur and Martin 2004; Hugall et al. 2007; Lee et al. 2009; Smith et al. 2010), al-

though many significant advances have been made (Pyron 2011; Heath et al. 2014; Warnock

et al. 2015). Additionally, the inference of macrophylogenies poses inherent difficulties be-

cause of the typical sparseness of genetic data for large taxon sets (e.g., Hinchliff and Smith

2014), and the computational challenges of optimizing topologies and branch lengths when

the universe of possible trees is large (but see Smith et al. 2010; Sanderson et al. 2015;

Wright et al. 2015).

We documented a lack of consistency in both absolute and relative clade ages for Aus-

tralian squamates across several recent large phylogenetic datasets and the literature. These

differences can have a significant impact on macroevolutionary analyses, as shown here with

evaluations of the “time-for-speciation” effect and of the potential correlation between species

richness and diversification rates, where conclusions varied across datasets (e.g., Figure 2).

Similar inconsistencies would likely manifest themselves in the application of comparative

methods with trait data. For example, after Pyron and Burbrink (2014) found support for

viviparity as the reconstructed root state in squamates, Wright et al. (2015) showed that an

improved phylogeny – obtained from the same sequence alignment – led to decreased support
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for this controversial finding. If the primary difference between the five macrophylogenies

considered here was simply the relative divergence time of a common set of clades, we would

have observed highly concordant inferences across all datasets. However, this is not what we

find. In the by-clade literature, the 95 percent confidence interval on the crown clade age

has been reported for ten clades. Interestingly, out of 50 comparisons (ten clades and five

macrophylogenies), we find 25 cases where the macrophylogeny clade age is outside of the

95 percent confidence interval from the clade-specific literature.

Even if clade age was a dominant contributor to species richness patterns across the

Australian squamate clades, our analyses suggest that power to infer this relationship would

be relatively low given the variance in clade ages observed across the focal datasets (Figure

3). This lack of statistical power would presumably influence measures of diversification.

The rank ordering of Australian squamate clades by net diversification rate varies consider-

ably across datasets (Figure S23), which would likely impact any analyses relating traits to

diversification across the focal clades.

Why do we observe such discrepancies in clade ages across these datasets? This is a

difficult question to answer as the fossil calibrations, genetic markers, calibration method-

ology, tree topology and error associated with each of these has the potential to lead to

differences in node ages. Pyron and Burbrink (2014) constrained the divergence time for

Lepidosauria, and applied point estimate constraints for six suprafamilial groups, applying

secondary calibrations as inferred by Wiens et al. (2006). Wright et al. (2015) applied

the same constraints as Pyron and Burbrink (2014). Zheng and Wiens (2016) applied 13

primary fossil calibrations, mostly as minimum age constraints, which were summarized and

employed in a previous study (Mulcahy et al. 2012). Tonini et al. (2016) applied uniform

prior distributions on the 95 percent highest posterior densities for ten clade ages reported

by Jones et al. (2013). Pyron and Burbrink (2014), Wright et al. (2015) and Zheng and

Wiens (2016) used treePL (Smith and O’Meara 2012) to render their phylogenies ultrametric

and infer divergence times with these constraints. Tonini et al. (2016) time-calibrated their
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phylogenetic backbone using the independent gamma rates model (Ronquist et al. 2012b)

in MrBayes (Ronquist et al. 2012a), a relaxed-clock model that is similar to the one im-

plemented in BEAST. As Pyron and Burbrink (2014) and Wright et al. (2015) employed

the same genetic data, calibrations and calibration method, we wanted to determine how

much of the differences in clade ages between these two trees is due to treePL optimization

versus tree topology and branch length differences. We therefore re-calibrated the Pyron

phylogeny with the same treePL parameters used by Wright et al. (2015), as provided in

their supplementary material. We found that the resulting re-calibrated Pyron phylogeny

has virtually identical crown clade ages to the Wright phylogeny (Figure 5) and exhibited

very similar patterns and results to the Wright phylogeny in all analyses. Presumably, we

would have found an equivalent result had we recalibrated the Wright phylogeny with Pyron

et al.’s treePL parameters. This indicates that the majority of the Pyron – Wright discrep-

ancies appears to be due to how the different research teams optimized and ran treePL, or to

differences in the versions of treePL that were used for analysis. However, these differences

are consequential: clade ages differ by up to 25 million years between these trees; the rank

order of clades by diversification rate is in conflict; and clade age was a significant predictor

of species richness in Wright but not Pyron.

Although the Pyron, Zheng and Tonini phylogenies have been inferred from similar data

matrices of GenBank sequence data, the information used for time calibration is quite dis-

similar. Zheng and Wiens applied primary fossil calibrations, whereas Pyron and Burbrink

(2014) and Tonini et al. (2016) applied secondary calibrations, as they used clade ages de-

rived in Wiens et al. (2006) and Jones et al. (2013), respectively. If we compare the fossil

calibrations used by the source publications – Wiens et al. (2006), Mulcahy et al. (2012) and

Jones et al. (2013) – only one fossil was shared in all three, two were shared by Wiens et al.

(2006) and Mulcahy et al. (2012), and one was shared by Mulcahy et al. (2012) and Jones

et al. (2013). However, as the Pyron and Tonini phylogenies were calibrated with secondary

calibrations, use of the same fossil did not lead to use of the same date, or calibration of
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the same node. Therefore, despite highly overlapping genetic data, we would not necessarily

expect the node ages to be highly concordant.

Overall, there is little overlap between the set of fossil calibrations used in the Pyron,

Wright, Zheng and Tonini phylogenies and those used in the clade-specific literature (the

TTOL was not calibrated in the same way and therefore cannot be directly compared). The

original clade-specific studies for six out of 12 Australian clades (Diplodactylidae, Carpho-

dactylidae, Pygopodidae, Pythonidae, Typhlopidae, Elapidae) did not use any of the same

fossil calibrations as the macrophylogenies. Skinner et al. (2011), Sistrom et al. (2014) and

Vidal et al. (2012) shared some fossil calibrations with Wiens et al. (2006), and Hugall et

al. (2008) shared a fossil calibration with Jones et al. (2013), however the dates used were

not always the same. Most significantly, a fossil anguimorph, Parviraptor, representing the

split between Iguania and Anguimorpha, was used by Skinner et al. (2011) as well as by

Sistrom et al. (2014) in the calibration of four of the clades (Egernia, Eugongylus, Sphe-

nomorphinae and Gehyra), and by Wiens et al. (2006), the study from which Pyron and

Burbrink (2014) acquired their age constraints. However, Wiens et al. (2006) applied an age

that is substantially younger (24 million years) than that used by the other studies, and the

identity of Parviraptor has since become controversial (Hugall et al. 2007, Sanders and Lee

2008; Caldwell et al. 2015). The use of this potentially problematic earlier date has therefore

propagated to the Pyron and Wright phylogenies. The overlap in fossil calibrations between

datasets also does not necessarily lead to more or less congruence in clade ages, as Gehyra

and Varanidae, which share calibrations with Wiens et al. (2006) are not particularly more

stable in age across phylogenies. If we were to calculate the standard deviation of the clade

ages across datasets as a rough measure of stability of clade age, Gehyra and Varanidae

would rank tenth and fourth out of 12, respectively.

A worrisome finding is that none of the five macrophylogenies examined here, which

represent all of the available large-scale species-level phylogenies for squamates at the time

of writing, have crown clade ages that correspond to those found in the literature on these
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particular groups of Australian squamates (Figure 1). The lack of congruence with the lit-

erature is such that analyses of diversification or trait evolution will likely be at odds with

the literature on these groups, for example relating to the timing of biogeographic events.

Although detailed analyses focused on particular clades will be necessary to gain a full un-

derstanding of the source of these discrepancies, the minimal overlap in calibrations used

by the macrophylogeny studies in comparison to the clade-specific studies might play a role.

Overall, the TTOL had clade ages that were most consistent with the literature on particu-

lar clades, although the relationship was not statistically significant (Figure 1). This is not

surprising, as the divergence times in the TTOL are taken directly from the literature. How-

ever, in our examination of the TTOL topology, we found many phylogenetic relationships

that are at odds with current understanding of squamate relationships, and this may be due

to the fact that construction of the TTOL started with a tree representation of the NCBI

taxonomy, with the subsequent random resolution of polytomies using a birth-death poly-

tomy resolver (Hedges et al. 2015). Two of the more extreme examples that we identified

are Pythonidae and Elapidae (the two clades in our “third scenario”). It has been established

that Indo-Australian pythons form a monophyletic group (Rawlings et al. 2008; Reynolds

et al. 2014). In the TTOL, we found that the Australian pythons are polyphyletic; the

MRCA of Australian pythons in this tree defines a clade that also contains a biogeograph-

ically disparate set of taxa from another family (Boidae, Figure S9). Similarly, all previous

analyses have suggested monophyly of Australian elapid snakes (Keogh 1998). However, in

the TTOL, we found South American coral snakes, African and Asian cobras, and other

non-Australian elapid species interspersed throughout the Australian elapids, rendering this

group polyphyletic (Figure S5). We found a number of other surprising relationships in

Typhlopidae and Eugongylus-clade skinks. These issues in the TTOL were also captured by

our tree topology analyses, with the TTOL having the greatest Robinson-Foulds distance

from all other trees (Figure 4). Considering that all trees exhibit such large distances with

the TTOL, it is quite possible that other major topological problems exist in the TTOL
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outside of the Australian clades.

It is critical to recognize that “phylogenetic uncertainty”, as presented in the empirical

literature, is a metric that is highly conditional on the data, models, and other constraints

that enter a particular analysis. The distinction between absolute and conditional uncer-

tainty is likely to be especially acute for macrophylogenies, which frequently utilize a number

of constraining assumptions to ensure computational tractability. To illustrate this point,

we compared the Tonini phylogeny with the squamate phylogeny from Reeder et al. (2015).

Tonini et al. (2016) generated a distribution of 10000 trees to accommodate phylogenetic

uncertainty. However, the backbone of these phylogenies is constrained in terms of topology

(but not divergence times) and as a result does not vary across the posterior distribution.

The topology of this constrained backbone is different from Reeder et al. (2015; Figure

4b). Therefore, any diversification or phenotypic evolution study that integrates across the

posterior distribution of trees from Tonini et al. (2016) will not include the topology inferred

by Reeder et al. (2015). A similar situation can be found with recent phylogenies for birds,

where Jetz et al. (2012) also constrained the backbone of their tree to a topology of higher-

level avian relationships that ultimately was not recovered by a more recent genomic study

of avian phylogenetics (Prum et al. 2015). These two cases provide examples of phylogenetic

uncertainty that reflect built-in constraints (in this case, of the backbone) and therefore fail

to capture topologies that ultimately are being found to be more probable with larger or more

complete data matrices. Incorporating uncertainty in backbone topologies into the final dis-

tribution of trees would allow one to account more thoroughly for phylogenetic uncertainty.

Approaches that assess absolute phylogenetic uncertainty can potentially help assuage these

issues (Brown 2014b), including the use of posterior predictive simulations (Brown 2014a),

but the sheer size of the datasets considered here may render such approaches impractical

in many cases.
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2.6 Conclusions

We found that differences in timing and topology across the phylogenies we examined led

to considerable variation in the crown clade ages of Australian squamate groups, both in an

absolute and relative sense. This variation in age, in turn, influences our ability to recover

macroevolutionary determinants of species richness. As Australian squamates belong to dis-

tantly related clades that span the squamate tree, it is very likely that similar problems exist

for comparisons of other groups as well. Depending on the phylogenetic breadth of the group

being analyzed, and the ages of the nodes involved, the severity of such problems might vary,

as the age of nodes of interest can become less reliable with distance from the calibration

nodes if molecular rate variation is high (Duchêne et al. 2014). As we found that the fossil

calibrations used in the clade-specific literature were almost entirely non-overlapping with

the calibrations used by the macrophylogeny studies, it would appear that there is an oppor-

tunity to evaluate and incorporate more of these calibrations into large-scale phylogenetic

analyses for squamates, as incorporating calibration nodes throughout the tree should lead

to more reliable estimates of node ages at both deep and shallow timescales (Duchêne et

al. 2014). Ultimately, however, fossil calibrations need to be critically evaluated in terms

of both their placement and age, and further research into identifying the most appropriate

fossils for time calibration of phylogenies should be a priority (Near et al. 2005; Warnock

et al. 2015). Additionally, the vast majority of sensitivity and simulation-based studies on

divergence dating has focused on the program BEAST (Drummond and Rambaut 2007),

whereas phylogenies like those discussed here are too large to be calibrated with this pro-

gram. Simulation studies are needed to assess the performance and behavior of programs

that can work with large phylogenies, such as treePL (Smith and O’Meara 2012). We sus-

pect that, on account of constraints and other factors commonly used in macrophylogeny

construction, phylogenetic uncertainty is generally more conditional than typically acknowl-

edged. The conditional nature of this uncertainty can give a false sense of confidence in

both phylogenies and inferences derived from those phylogenies, as we have shown with the
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comparison of the macrophylogenies to Reeder et al. (2015).

Ultimately, the issues discussed in this study are likely to be resolved with the careful

evaluation and placement of fossil calibrations, larger, more complete molecular data matri-

ces, and a more rigorous presentation of phylogenetic uncertainty in the absolute sense, for

example through the use of posterior predictive simulations (Brown 2014a). In the mean-

time, we recommend that the Tonini or Zheng phylogenies be used over the Pyron or Wright

phylogenies, as the Wright tree was demonstrated to be an improvement over the Pyron tree,

and the Tonini and Zheng trees were inferred from larger genetic data matrices and improved

fossil information. Additionally, given the method of construction of the TTOL and the dis-

crepancies in topology observed here, we generally do not recommend use of this phylogeny

for downstream comparative analyses involving squamates. Finally, in conducting analyses

with macrophylogenies, concordance with the taxon-specific literature should be evaluated

if the timing of biogeographic events is important for the interpretation of results.
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Figure 2.1: Pairwise comparisons of crown clade ages (Ma) and net diversification rates (species
per million years), for Australian squamate clades in each of six different phylogenetic datasets.
A line of best fit was plotted when the t-test p-value was below 0.05. We generally find noisy
relationships between datasets, with negative trends in several cases.

32



15 25 35 45

3.
0

4.
0

5.
0

lo
g 

ric
hn

es
s

●

●

●

●

●

●

●

●

●

●

●

●

15 25 35
3.

0
4.

0
5.

0
clade age

●

●

●

●

●

●

●

●

●

●

●

●

30 40 50 60 70

3.
0

4.
0

5.
0

●

●

●

●

●

●

●

●

●

●

●

●

15 20 25 30 35

3.
0

4.
0

5.
0

●

●

●

●

●

●

●

●

●

●

●

●

0.04 0.08 0.12

3.
0

4.
0

5.
0

net diversification rate

lo
g 

ric
hn

es
s

●

●

●

●

●

●

●

●

●

●

●

●

0.10 0.15 0.20

3.
0

4.
0

5.
0

●

●

●

●

●

●

●

●

●

●

●

●

0.06 0.10 0.14

3.
0

4.
0

5.
0

●

●

●

●

●

●

●

●

●

●

●

●

0.10 0.20 0.30

3.
0

4.
0

5.
0

●

●

●

●

●

●

●

●

●

●

●

●

0.06 0.10 0.14 0.18

3.
0

4.
0

5.
0

BAMM speciation rate

lo
g 

ric
hn

es
s

●

●

●

●

●

●

●

●

●

●

●

●

0.10 0.15 0.20 0.25

3.
0

4.
0

5.
0

●

●

●

●

●

●

●

●

●

●

●

●

0.06 0.10 0.14

3.
0

4.
0

5.
0

●

●

●

●

●

●

●

●

●

●

●

●

0.05 0.07

3.
0

4.
0

5.
0

DR statistic

lo
g 

ric
hn

es
s

●

●

●

●

●

●

●

●

●

●

●

●

0.06 0.08 0.10 0.12

3.
0

4.
0

5.
0

●

●

●

●

●

●

●

●

●

●

●

●

0.05 0.10 0.15 0.20

3.
0

4.
0

5.
0

●

●

●

●

●

●

●

●

●

●

●

●

a)

b)

c)

d)

Zheng Tonini TTOL by−clade literature

Figure 2.2: Influence of dataset selection on macroevolutionary hypotheses. Examination of the
influence of dataset selection on (a) the relationship between clade age, (b) net diversification rate,
(c) BAMM speciation rates and (d) the DR net diversification rate statistic on log species richness,
for a subset of datasets (all datasets are shown in Figure S22). Each column represents the same
phylogenetic dataset. BAMM speciation rates and the DR statistic are not available for the by-
clade literature as separate, well-sampled clade phylogenies were not available. The line of best
fit is only plotted for those relationships that are statistically significant, as determined through
linear regression. The choice of phylogeny can have an appreciable impact on the outcome of these
hypotheses regarding controls on species richness; see text for discussion.
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Figure 2.3: Impact of uncertainty in clade age on the analysis of age-richness relationships, across
a range of true correlations. Age-richness datasets were simulated with fixed correlations and
uncertainty was parameterized from the observed variation in age across the focal clades. (a)
Proportion of simulations that recover a significant relationship between the two variables without
(white points) and with (black points) noise added to the crown clade ages. (b) Median p-value
and associated interquartile range across 1000 simulations of crown clade ages with added noise;
gray line illustrates theoretical relationship (e.g., no uncertainty in age).
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Figure 2.4: Comparisons of phylogenies in terms of Robinson-Foulds distances. Relative positions
in terms of tree topology of the five macrophylogenies alone (a), and (b) with the inclusion of the
phylogeny from Reeder et al. (2015). Pairwise Robinson-Foulds distances have been projected to
two-dimensional space via multi-dimensional scaling. Several phylogenies tend to cluster together,
and the Tonini and TTOL phylogenies have greater topological differences relative to all other trees.
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Figure S2.1: Phylogenies for Agamidae. The node used to define the clade is indicated in red,
and taxa in black occur in Australia.
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Figure S2.2: Phylogenies for Carphodactylidae. The node used to define the clade is indicated in
red, and taxa in black occur in Australia.
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Figure S2.3: Phylogenies for Diplodactylidae. The node used to define the clade is indicated in
red, and taxa in black occur in Australia.
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Figure S2.4: Phylogenies for Egernia. The node used to define the clade is indicated in red, and
taxa in black occur in Australia.
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Figure S2.5: Phylogenies for Elapidae. The node used to define the clade is indicated in red, and
taxa in black occur in Australia.
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Figure S2.6: Phylogenies for Eugongylus. The node used to define the clade is indicated in red,
and taxa in black occur in Australia.
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Figure S2.7: Phylogenies for Gehyra. The node used to define the clade is indicated in red, and
taxa in black occur in Australia.
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Figure S2.8: Phylogenies for Pygopodidae. The node used to define the clade is indicated in red,
and taxa in black occur in Australia.
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Figure S2.9: Phylogenies for Pythonidae. The node used to define the clade is indicated in red,
and taxa in black occur in Australia.
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Figure S2.10: Phylogenies for Sphenomorphinae. The node used to define the clade is indicated
in red, and taxa in black occur in Australia.
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Figure S2.11: Phylogenies for Typhlopidae. The node used to define the clade is indicated in red,
and taxa in black occur in Australia.
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Figure S2.12: Phylogenies for Varanidae. The node used to define the clade is indicated in red,
and taxa in black occur in Australia.
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Corucia zebrata

Tribolonotus

●

Wright + Zheng

Egernia

Corucia zebratadispersal to Melanesia

Bellatorias frerei

Tribolonotus

●

Figure S2.13: Geographic affinities of species belonging to, and closely related to the Egernia
group clade. The node highlighted in red is the node that was used to define the Australian
radiation. Different biogeographic scenarios are inferred from different phylogenies, such as the
dispersal of Corucia zebrata out of Australia with the Wright and Zheng phylogenies. Clades and
species in gray occur in Australia.
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Figure S2.14: Geographic affinities of species belonging to, and closely related to the Gehyra
clade. The node highlighted in red is the node that was used to define the Australian radiation.
Different biogeographic scenarios are inferred from different phylogenies, such as the dispersal of
Gehyra membranacruralis out of Australia with the Wright phylogeny.
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SE Asia
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S Asia
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●

Figure S2.15: Geographic affinities of species belonging to, and closely related to the Typhlopidae
clade. The node highlighted in red is the node that was used to define the Australian radiation. Dif-
ferent biogeographic scenarios are inferred from different phylogenies. In the TTOL, the Australian
blind snakes are separated into two clades. Clades in gray occur on the Australian mainland.
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Figure S2.16: Geographic affinities of species belonging to, and closely related to the Eugongylus
group clade. The node highlighted in red is the node that was used to define the Australian
radiation. Different biogeographic scenarios are inferred from different phylogenies, specifically
the phylogenetic placement of non-core-clade Australian species. Species numbers in parentheses
indicate the number of Australian species. Clades in gray occur on the Australian mainland.
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Figure S2.17: Comparison of crown clade ages between clade literature and Tonini et al. Clade
ages from the by-clade literature are shown as red points, and are compared to the 95 percent
confidence interval of crown clade ages from Tonini et al. (2016), as summarized from 1000 trees.
In a majority of cases, the divergence dates from the clade-literature are outside of, or close to the
edge of the 95 percent confidence intervals.
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Figure S2.18: Pairwise comparisons of BAMM speciation rates for Australian squamate clades.
Pearson correlation statistics are displayed in the top left corner of each plot.
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Figure S2.19: Pairwise comparisons of the DR statistic, averaged by Australian squamate clade.
Pearson correlation statistics are displayed in the top left corner of each plot.
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Figure S2.20: Pairwise comparisons of the per-species DR statistic for all Australian taxa. Cor-
relation coefficients are listed in the top left corner.
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Figure S2.21: Comparison of per-species DR statistic for Australian taxa from complete and
pruned trees. The pruned phylogenies were redued to a common set of 3487 taxa. Correlation
coefficients are listed in the bottom right corner of each plot.
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Figure S2.22: Examination of the influence of dataset selection on the relationship between species
richness and various predictors: a) the relationship between clade age, (b) net diversification rate,
(c) BAMM speciation rates and (d) the DR net diversification rate statistic on log species richness.
Each column represents the same phylogenetic dataset. BAMM speciation rates and the DR statistic
are not available for the by-clade literature as separate, well-sampled clade phylogenies were not
available. The line of best fit is only plotted for those relationships that are statistically significant,
according to linear regression.
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Figure S2.23: Pairwise comparisons of the rank order positions of different clades in terms of net
diversification rate. Best-fit lines have been plotted when the Spearman’s rank correlation test was
statistically significant (p < 0.05).
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clade dataset cladeAge richness net div. rate BAMM λ DR

Agamidae Pyron 39.74 98 0.09 0.082 0.066

Wright 51.84 0.07 0.064 0.048

Zheng 37.94 0.10 0.08 0.066

Tonini 38.74 0.09 0.08 0.068

TTOL 25.30 0.14 0.142 0.115

cladeLiterature 22.00 0.16

Carphodactylidae Pyron 36.35 30 0.07 0.085 0.064

Wright 42.58 0.06 0.076 0.059

Zheng 45.19 0.05 0.067 0.048

Tonini 40.13 0.06 0.084 0.059

TTOL 44.15 0.06 0.082 0.063

cladeLiterature 33.40 0.07

Diplodactylidae Pyron 35.34 77 0.10 0.08 0.062

Wright 36.70 0.09 0.082 0.064

Zheng 46.81 0.07 0.056 0.042

Tonini 38.88 0.09 0.077 0.06

TTOL 35.70 0.10 0.079 0.068

cladeLiterature 34.50 0.10

Egernia Pyron 44.01 48 0.07 0.059 0.036

Wright 52.37 0.06 0.054 0.036

Zheng 29.43 0.10 0.092 0.06

Tonini 23.76 0.12 0.113 0.083

TTOL 26.60 0.11 0.104 0.053

cladeLiterature 18.00 0.16

Elapidae Pyron 28.13 164 0.15 0.152 0.091

Wright 53.47 0.08 0.077 0.043

Zheng 29.44 0.14 0.147 0.08

Tonini 26.04 0.16 0.143 0.095

TTOL 28.20 0.14 0.152 0.198

cladeLiterature 11.50 0.36

Eugongylus Pyron 41.54 113 0.09 0.091 0.063

Wright 50.21 0.07 0.075 0.05

Zheng 37.00 0.10 0.082 0.056

Tonini 24.03 0.16 0.143 0.102

TTOL 32.50 0.12 0.115 0.08

cladeLiterature 20.00 0.19

Gehyra Pyron 39.25 19 0.05 0.071 0.056

Wright 40.49 0.05 0.064 0.052

Zheng 50.31 0.04 0.059 0.043

Tonini 31.50 0.06 0.076 0.066
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clade dataset cladeAge richness net div. rate BAMM λ DR

TTOL 37.56 0.05 0.069 0.054

cladeLiterature 11.24 0.18

Pygopodidae Pyron 29.89 44 0.09 0.09 0.066

Wright 34.62 0.08 0.075 0.056

Zheng 38.81 0.07 0.07 0.051

Tonini 26.90 0.10 0.12 0.081

TTOL 31.69 0.09 0.077 0.06

cladeLiterature 31.30 0.09

Pythonidae Pyron 17.83 28 0.13 0.159 0.08

Wright 25.36 0.09 0.109 0.058

Zheng 16.19 0.15 0.177 0.088

Tonini 11.50 0.21 0.264 0.121

TTOL 72.98 0.05 0.062 0.081

cladeLiterature 35.00 0.07

Sphenomorphinae Pyron 34.24 254 0.13 0.105 0.097

Wright 50.37 0.09 0.065 0.056

Zheng 33.65 0.14 0.099 0.086

Tonini 38.60 0.12 0.092 0.09

TTOL 36.50 0.12 0.114 0.101

cladeLiterature 24.24 0.19

Typhlopidae Pyron 27.87 42 0.10 0.138 0.06

Wright 38.55 0.07 0.093 0.041

Zheng 32.69 0.09 0.12 0.053

Tonini 16.36 0.17 0.179 0.112

TTOL 33.69 0.08 0.1 0.081

cladeLiterature 21.90 0.13

Varanidae Pyron 22.85 30 0.11 0.096 0.077

Wright 31.33 0.08 0.07 0.058

Zheng 28.01 0.09 0.076 0.059

Tonini 16.39 0.15 0.141 0.111

TTOL 29.97 0.08 0.119 0.092

cladeLiterature 27.04 0.09

Table S2.2: Diversification metrics for all clades and all phylogenetic datasets. “Clade age” is in
millions of years, “richness” is in number of species, “net div. rate”, “BAMM λ” and “DR stat” are in
number of species per million years. “Net div. rate” is net diversification rate, assuming a relative
extinction rate of 0.5.
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CHAPTER III

ENVIREM: an expanded set of bioclimatic and

topographic variables increases flexibility and improves

performance of ecological niche modeling1

3.1 Abstract

Species distribution modeling is a valuable tool with many applications across ecology

and evolutionary biology. The selection of biologically meaningful environmental variables

that determine relative habitat suitability is a crucial aspect of the modeling pipeline. The

19 bioclimatic variables from WorldClim are frequently employed, primarily because they are

easily accessible and available globally for past, present and future climate scenarios. Yet,

the availability of relatively few other comparable environmental datasets potentially limits

our ability to select appropriate variables that will most successfully characterize a species’

distribution. We identified a set of 16 climatic and two topographic variables in the litera-

ture, which we call the ENVIREM dataset, many of which are likely to have direct relevance

to ecological or physiological processes determining species distributions. We generated this

set of variables at the same resolutions as WorldClim, for the present, mid-Holocene, and

Last Glacial Maximum (LGM). For 20 North American vertebrate species, we then assessed
1Title, P.O. and Bemmels, J.B. (2017). ENVIREM: an expanded set of bioclimatic and topographic

variables increases flexibility and improves performance of ecological niche modeling. Ecography, 41, 291–307.
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whether including the ENVIREM variables led to improved species distribution models com-

pared to models using only the existing WorldClim variables. We found that including the

ENVIREM dataset in the pool of variables to select from led to substantial improvements in

niche modeling performance in 13 out of 20 species. We also show that, when comparing mod-

els constructed with different environmental variables, differences in projected distributions

were often greater in the LGM than in the present. These variables are worth consideration

in species distribution modeling applications, especially as many of the variables have direct

links to processes important for species ecology. We provide these variables for download at

multiple resolutions and for several time periods at envirem.github.io. Furthermore, we have

written the ‘envirem’ R package to facilitate the generation of these variables from other

input datasets.

3.2 Introduction

The ability to model a species’ geographic distribution, given occurrence records and

environmental information, is based on the assumption that abiotic factors directly or indi-

rectly control species distributions (Austin 2002). Species distribution modeling (SDM) has

led to a surge in research on topics such as species’ potential invasiveness (Thuiller et al.

2005), the impacts of climate change on species distributions (Thuiller 2004, Hijmans and

Graham 2006, Morin and Thuiller 2009), the relative importance of various predictors in

determining species range boundaries (Glor and Warren 2011), historical reconstructions of

species distributions (Svenning et al. 2011), conservation applications such as the identifi-

cation of suitable habitats for undiscovered populations or reintroductions (Martínez-Meyer

et al. 2006), analysis of broadscale patterns of species richness (Pineda and Lobo 2009),

and spatially-explicit demographic simulations (Chan and Brown 2011, He et al. 2013).

The ability to conduct such analyses at increasingly broad taxonomic and spatial scales has

largely been facilitated by successful efforts to digitize museum specimen records, georef-

erence associated localities (Guralnick et al. 2006, Ellwood et al. 2015) and provide this
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information in a standardized format through easily accessible data portals (Constable et al.

2010, Wieczorek et al. 2012). While progress has been made in these efforts to make high

quality occurrence records widely available (e.g. Global Biodiversity Information Facility,

www.gbif.org), additional progress is still needed in providing and exploring the utility of

different environmental datasets for modeling geographic distributions. In particular, it is

unknown if currently available and widely used environmental datasets are sufficient and

optimal for modeling distributions of terrestrial species.

The generation and projection of species distribution models requires data layers of en-

vironmental information that provide discriminatory power regarding presence and absence

of species. As we typically do not know the true distribution of a species, it can be chal-

lenging to determine when an appropriate set of environmental variables has been chosen.

Ideally, these variables should have direct relevance to ecological or physiological processes

determining species distributions, but for many species this information is not generally

available (Alvarado-Serrano and Knowles 2014). Correlative niche modeling approaches that

rely on statistical associations between species occurrences and environmental variables are

frequently used (Peterson et al. 2011, Alvarado-Serrano and Knowles 2014), in which the

environmental determinants of habitat suitability are not known a priori. The 19 bioclimatic

variables from WorldClim (Hijmans et al. 2005) are perhaps the most broadly employed set

of environmental data layers for this purpose, on account of their high resolution, global

coverage, and availability for both historical and future climate scenarios. However, the bi-

ological suitability of these bioclimatic variables and other such environmental datasets for

modeling the distribution of the species in question is often not thoroughly assessed.

In the absence of specific knowledge about the environmental variables most likely to

determine species distributions, it may be tempting to construct models using a large num-

ber of predictor variables, but such models run the risk of poor performance. For example,

models built with several highly collinear variables are at an increased risk of overfitting

and overparameterization (Dormann et al. 2012, Wright et al. 2014), and may behave
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unexpectedly when projected to other time periods or geographic regions where they may

encounter combinations of variables that have no analog in model training (Dormann et al.

2012, Owens et al. 2013, Warren et al. 2014). Additionally, whether large sets of environ-

mental variables or smaller subsets of environmental data are used can greatly impact model

predictions (Rödder et al. 2009, Synes and Osborne 2011, Braunisch et al. 2013). Vari-

able reduction approaches can reduce model overfitting and improve model transferability

(Warren et al. 2014, Wright et al. 2014), yet the relative merits of various approaches are

poorly characterized and continue to be explored (Araújo and Guisan 2006, Braunisch et

al. 2013). In general, variables may be reduced either statistically, or by selecting variables

from ecological theory that are likely to be important given the physiology of the organism in

question (Kearney et al. 2008, Doswald et al. 2009, Rödder et al. 2009, Synes and Osborne

2011).

Given the recognized importance of variable selection in constructing ecological niche

models (Synes and Osborne 2011, Braunisch et al. 2013), increasing the availability of easily

accessible datasets of environmental variables that may be ecologically and physiologically

important to a variety of organisms should be a priority for improving flexibility and perfor-

mance of SDM. Several environmental datasets are already available with which to perform

SDM (e.g. WorldClim (Hijmans et al. 2005), PRISM (www.prism.oregonstate.edu; Daly

et al. 2002), ClimateNA (Wang et al. 2012, Hamann et al. 2013, Wang et al. 2016)),

but not all of these datasets are transferable among time periods or geographic regions or

easily integrated with other variables. Additional environmental data layers that conceptu-

ally complement and are formatted for easy use alongside the 19 bioclimatic variables from

WorldClim (Hijmans et al. 2005) – one of the most widely used environmental datasets

for SDM – would broaden the options available for selection of environmental variables

(whether based on ecological theory or through statistical variable reduction) and may lead

to improved model performance for some species. Despite the description in the literature

of formulae for many such variables that could be computed for particular regions or time
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periods (see Synes and Osborne 2011 as an example), the use of such variables is limited to

those researchers with the GIS skills necessary to generate these datasets and the desire to

assemble them from several disparate sources.

To help satisfy this need, we introduce the ENVIREM dataset (ENVIronmental Rasters

for Ecological Modeling): specifically, we provide a set of biologically relevant climatic and

topographic variables (all of which have previously been described in the literature) at mul-

tiple resolutions and time periods. The variables we include were selected in particular

because we hypothesize they are likely to have direct relevance to ecological or physiolog-

ical processes determining distributions of many species. They should therefore facilitate

ecologically-informed variable selection, and may also result in improved model performance

using statistical variable-thinning approaches. As these variables are intended to comple-

ment the existing WorldClim dataset (Hijmans et al. 2005), we provide the ENVIREM

dataset at the same extents and resolutions as WorldClim, for the present, mid-Holocene,

and Last Glacial Maximum (LGM). We also provide an R package (R Core Team) that will

enable users to generate these variables from primary sources for any resolution, geographic

area, or time period, including for future time periods of interest (for which we have not

provided static rasters due to the large number of climate change models in existence that

are continually updated as climate-change projections improve). Finally, through several

case studies, we show that the ENVIREM variables can improve model performance and be

valuable additions to the set of variables that are currently widely used in species distribution

modeling.

3.3 Methods

We compiled a list of biologically relevant climatic variables (Table1) that could be derived

from monthly temperature and precipitation data (WorldClim ver. 1.4, Hijmans et al. 2005)

and monthly extraterrestrial solar radiation (available from www.cgiar-csi.org). These

variables are described by Thornthwaite (1948), Daget (1977), Hargreaves and Hargreaves
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(1985), Willmott and Feddema (1992), Vörösmarty et al. (2005), Zomer et al. (2006, 2008),

Rivas-Martínez and Rivas-Sáenz (2009), Sayre et al. (2009) and Metzger et al. (2013). We

additionally produced two elevation-derived topographic variables, terrain roughness index

(Wilson et al. 2007) and topographic wetness index (Boehner et al. 2002, Conrad et al.

2015), generated from a global 30 arc-second elevation and bathymetry digital elevation

model (Becker et al. 2009). All variables were produced at the same resolutions as the

bioclimatic variables that are currently available through WorldClim: 30 arc-seconds, and

2.5, 5 and 10 arc-minutes. Topographic variables were produced at a 30 arc-second resolution,

and subsequently coarsened to match the lower resolutions, rather than constructed directly

from lower-resolution elevation data. As such, the topographic variables of large grid cells

at coarser scales represent the average fine-scale (i.e. 30 arc-second) values within each

grid cell. Calculating the topographic variables in this manner was particularly important

to avoid loss of information regarding terrain roughness index when scaling up to coarser

resolutions. For the two climate variables related to growing degree-days (GDD), we note

that GDD are accumulated on a daily basis, whereas our estimates are approximations based

on mean monthly temperature (Table 1).

We generated rasters for all variables at multiple spatial resolutions for current climatic

conditions, the mid-Holocene (approximately 6000 yr ago) and the Last Glacial Maximum

(LGM, approximately 22000 yr ago). For the paleoclimate datasets, we generated variables

from three global general circulation models (GCMs): the Community Climate SystemModel

ver. 4 (CCSM4, Collins et al. 2006), the Model for Interdisciplinary Research On Climate

(MIROC-ESM, Hasumi and Emori 2004), and the model of the Max Planck Inst. for Meteo-

rology (MPI-ESM-P, Stevens et al. 2013). Fine-scale monthly rasters for these paleoclimate

scenarios were generated from coarse-resolution GCM output using the delta downscaling

method (Ramirez-Villegas and Jarvis 2010, and www.worldclim.org/downscaling) and are

available with the WorldClim dataset. As the formulae for some ENVIREM variables require

mean monthly temperature, which is available from the WorldClim dataset in the present
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but not for other time periods, we calculated mean monthly temperature in all time periods

as the mean of the maximum and minimum temperatures. In the present, this calculation is

highly correlated with the available mean monthly temperatures (Pearson correlation coef-

ficient > 0.99). All raster manipulation and variable creation was carried out in R with the

raster package 2.5-2 (Hijmans et al. 2016).

Additional variables derived from and complementing the 19 bioclimatic variables from

WorldClim (Hijmans et al. 2005) will only be of value in SDM applications if they represent

information not currently contained in the 19 bioclimatic variables. To assess the degree of

novelty of these new variables, we calculated the Pearson correlation coefficient between each

of the ENVIREM variables and the 19 bioclimatic variables from WorldClim, at a global

scale (10 arc-minute resolution), and also by biogeographic realm (Olson et al. 2001, Table

2, Table S2), for both the present and the past (CCSM4 global circulation model). Similarly,

we also calculated correlation coefficients between terrain roughness index and topographic

wetness index with elevation (Table 3) to explore whether these variables contain topographic

information not captured by elevation alone.

3.3.1 Case studies

To investigate how the inclusion of the ENVIREM variables could affect the performance

and predictions of species distribution models, we generated species distribution models with

Maxent ver. 3.3.3k (Phillips et al. 2006) for 20 North American terrestrial vertebrate species,

using the curated occurrence dataset from Waltari et al. (2007). Specifically, we generated

niche models using three different sets of initial environmental predictor variables. Firstly,

we generated models using only the 19 bioclimatic variables from WorldClim (referred to

hereafter as the bioclim model). Secondly, we built models using the 19 bioclimatic vari-

ables plus 14 of the climatic ENVIREM variables (hereafter referred to as the bioclim +

envirem-clim model). Finally, we generated niche models with the 19 bioclimatic variables

and 16 ENVIREM variables, including 14 climatic variables and the two topographic vari-
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ables (the bioclim + envirem-all model). Note that none of the models, including bioclim +

envirem-all, included elevation as a predictor variable. We chose not to include two variables,

aridityIndexThornthwaite as it was conceptually redundant with the climaticMoistureIndex,

and monthCountByTemp10 because it is a categorical variable that would not have been

amenable to the variable selection procedure that we applied. Finally, we did not generate

any models using only the ENVIREM variables without the 19 bioclimatic WorldClim vari-

ables, as the ENVIREM variables are intended to supplement, not replace, the bioclimatic

variables. All distribution modeling was performed in the dismo package ver. 1.0-15 in R

(Hijmans 2016) from rasters at a 2.5 arc-minute resolution. This resolution is likely a rea-

sonable match to the locational accuracy of the species occurrences, as these come primarily

from museum collections, and is the resolution used for SDM in the original study (Waltari

et al. 2007).

To construct each model, we first spatially thinned the occurrence records, retaining

only occurrences that were greater than ten kilometers in proximity to one another, using

the spThin package in R (Aiello-Lammens et al. 2015). For each species individually, we

defined the model-training region by adding a 1000 km buffer around all occurrence records

(Figure S1). All occurrence data and rasters were transformed and projected to the North

America Albers Equal Area Conic projection, as it has been shown that a failure to account

for changing grid-cell area across latitudes can negatively impact SDM results (Budic et al.

2015). We statistically thinned variables to include in each model for each species using the

‘corSelect’ function in the fuzzySim package ver. 1.6.3 in R (Barbosa 2015) where each pair

of variables that is correlated above a set threshold is tested against the response variable

(species presence and absence) with a bivariate model. The variable with a better fit as

measured with AIC is selected while the other is dropped, and the procedure is repeated

until all pairwise correlations are below the threshold. We applied a correlation threshold of

0.75, and generated pseudo-absences from 10000 randomly sampled points throughout the

training region (excluding grid cells with known occurrence records) because there were no
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true absence records in our data.

For each species, we measured SDM performance for the bioclim, the bioclim + envirem-

clim and the bioclim + envirem-all models (with reduced sets of variables via statistical

thinning as described above, Table 4) using three threshold-independent evaluation metrics:

AUCTEST, AUCDIFF, and the size-corrected Akaike information criterion (AICc). AUCTEST

is a metric that measures the discriminatory ability of the species distribution model at test

localities withheld during model construction, and thus represents the ability of the model

to predict species presence (Peterson et al. 2011). AUCDIFF is the difference between the

AUC calculated from training localities and AUCTEST, and is a measure of model overfitting,

with higher values of AUCDIFF representing more overfit models (Warren and Seifert 2011).

AICc is an information theoretic metric that balances model fit against degrees of freedom

from parameterization (i.e. model complexity), such that lower values of AICc correspond to

models with better goodness-of-fit accounting for model complexity (Burnham and Anderson

2004, Warren and Seifert 2011). For AUC metrics, we partitioned calibration and evaluation

data via the masked geographically-structured partitioning scheme described by Radosavlje-

vic and Anderson (2014), implemented in the R package ENMeval ver. 0.2.1 (Muscarella et

al. 2014), which leads to more realistic and less biased estimates of SDM performance than

the more traditionally used random k -fold partitioning scheme. This partitioning scheme

divides occurrence records into four geographic regions with an equal number of occurrence

records, and calculates AUC metrics as the average of those metrics calculated individually

using each of the four possible partitions of geographic regions into one region of evaluation

data and three regions of calibration data. AICc was calculated from the full, non-partitioned

models.

The complexity of SDMs built with Maxent can be adjusted with the regularization

multiplier, increased values of which lead to less parameterized models, as well as with the

inclusion of additional feature classes (i.e. transformations of the original predictor variables)

that allow for increasingly complex models. We evaluated distribution models across different
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sets of permissible feature classes, and for each of these, across a range of regularization

multiplier values. The evaluation metrics described above were used to determine optimal

feature class and model complexity for each model individually (Muscarella et al. 2014).

After selecting optimal feature class and model complexity for each model, we also com-

pared performance of the optimal models across each of the three variable sets (i.e. bioclim,

bioclim + envirem-clim, and bioclim + envirem-all) using the same evaluation metrics. The

AUC metrics describe absolute performance of the models (ranging from 0 to 1). AICc,

however, describes relative performance of candidate models. For this metric, we define a

model as having substantial support over another if it has a difference in AICc greater than

or equal to four, as models with AICc values more similar than this are generally considered

to have equivalent support (Burnham and Anderson 2004). Although we present results for

all evaluation metrics, we ultimately favor AICc for selecting the optimal model and variable

set for each species, as the focus of our case studies is on model comparison, and AICc has

been shown to perform better than AUC metrics according to a range of criteria, including

the selection of optimal levels of model complexity, model transferability in space and time,

and the relative ranking of variable importance (Warren and Seifert 2011, Warren et al.

2014, Moreno-Amat et al. 2015).

Theimpact of using different environmental variables in niche modeling may not be ap-

parent if two sets of variables lead to similar projected distributions in the present. However,

if the degree of correlation between two different sets of variables differs in the past compared

to in the present, then variable choice might have a greater effect on SDM projections to

other time periods. To explore this possibility, we calculated niche similarity in the present

and in the LGM using Schoener’s D (Schoener 1968, Warren et al. 2008), a metric that

quantifies the degree of niche overlap in geographic space. Values of D range from 0 (com-

pletely different niches across geographic space) to 1 (identical niches over geographic space).

Overlap was quantified with the fuzzySim package in R (Barbosa 2015). For each case-study

species we focused the niche overlap calculation on the geographic regions of the model pro-
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jections where comparisons among models are most meaningful, rather than across broad

regions of the continent where all models predict low habitat suitability and are thus very

similar. In particular, we calculated niche overlap statistics only over the geographic region

predicted to contain suitable habitat in at least one of the models. To define this region,

we first reduced the geographic extents of interest for both the projected bioclim and bio-

clim + envirem-clim models individually using a habitat suitability threshold that preserved

95% of the training presences. We further excluded areas outside the model training region,

except for a few species where the majority of the predicted LGM distribution lay outside

the training region. Finally, we combined these regions for both the bioclim and bioclim +

envirem-clim models and calculated niche overlap from (non-thresholded) model projections

within this combined region. We did not project the bioclim + envirem-all model to the

LGM, because topographic variables are difficult to interpret for the LGM in glaciated re-

gions of North America. These regions have experienced substantial changes in topography

since the LGM due to glacial erosion (Bell and Laine 1985). However, we note that models

using topographic variables could be projected to the LGM in particular regions of interest

where topographic variables can be assumed to have remained static since the LGM (e.g.

unglaciated regions of California, Bemmels et al. 2016).

3.3.2 Data deposition

The ENVIREM dataset has been deposited through the Univ. of Michigan Deep Blue

Data repository http://dx.doi.org/doi:10.7302/Z2BR8Q40 (Title and Bemmels 2017),

and can be accessed through the project website at www.envirem.github.io. The ‘envirem’

R package is available on CRAN.

3.4 Results

The ENVIREM dataset comprises variables that were generated for three time periods

(present, mid-Holocene and the LGM), using several different general circulation models
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(CCSM4, MIROC-ESM, MPI-ESM-P) at multiple resolutions, so as to facilitate integration

with rasters from WorldClim (Hijmans et al. 2005). All rasters are available for download at

envirem.github.io. To enable users to generate these variables from other circulation models

or time periods, we have provided all code in an R package ‘envirem’, available from CRAN.

At a global scale, most new climatic variables were highly correlated with at least one

of the 19 bioclimatic variables from WorldClim (Table 2). The aridity-related variables (i.e.

climatic moisture index and Thornthwaite’s aridity index) and some of the PET-related

variables were the least redundant at the global scale. However, many of the new variables

were less highly correlated with the 19 bioclimatic variables within specific biogeographic

realms. Oceania and the Afrotropics were the realms with the greatest number of new

variables with lower maximum correlation coefficients (60.85), indicating that niche models

of species from those regions may benefit most from the inclusion of these new variables. More

often than not, correlations were lower during the mid-Holocene and LGM than in the present

(Table S2, Table 2), which indicates that even if specific sets of variables are redundant in

the present, they may not necessarily be redundant in other time periods and variable choice

could have greater impacts on model projections to other time periods. All new climatic

variables had a maximum correlation of 6 0.85 in at least one biogeographic realm during

at least one time period, with the exception of continentality, thermicity index, maximum

temperature of the coldest month and minimum temperature of the warmest month. Some

new variables were consistently most highly correlated with the same bioclimatic variable

from WorldClim across regions, while other new variables were most highly correlated with

different bioclimatic variables across different regions (Table S1).

In terms of topographic variables derived from elevation, terrain roughness index was not

highly correlated with elevation globally or in any biogeographic region (Table 3). Topo-

graphic wetness index was also not highly correlated with elevation (Table 3), even though

higher values of topographic wetness are conceptually associated with lower elevations at a

local scale (i.e. within a given watershed; Boehner et al. 2002).
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3.4.1 Case studies

Statistical thinning of the sets of variables prior to ecological niche modeling substantially

reduced the number of variables, with three to 11 variables retained in each model (Table

4 S3, S4). For all species, at least one ENVIREM variable was retained in the bioclim +

envirem-clim models. For the bioclim + envirem-all models, at least one topographic variable

was retained for 19 of 20 species. For most species, one or more bioclimatic variables that

were retained in the bioclim model were dropped from the bioclim + envirem-clim and

bioclim + envirem-all models and were replaced by one or more of the ENVIREM variables,

indicating that these variables are more strongly predictive of the presence and absence of

the species than the dropped bioclim variables (Table S3, S4). The impact of including

ENVIREM variables on model performance varied among species, but models containing

ENVIREM variables performed substantially better (according to the AICc metric) than the

bioclim model in 13 of 20 species.

In Figure 1, we highlight results for four species that show particularly distinct improve-

ment with the ENVIREM variables: the spotted salamander Ambystoma maculatum, the

blue grouse Dendragapus obscurus, the California gnatcatcher Polioptila californica and the

mountain chickadee Poecile gambeli. In these four species, inclusion of ENVIREM variables

led to improvements in all metrics of model performance, although differences in AICc val-

ues were more substantial than differences in AUC metrics for these species. Across the

16 other case study species (Figure S2-S5), an improvement in performance when includ-

ing ENVIREM variables was found for ten species according to greater AUCTEST values

(Arborimus longicaudus, Chamaea fasciata, Desmognathus wrighti, Dicamptodon tenebro-

sus, Elaphe obsoleta, Glaucomys sabrinus, Glaucomys volans, Lampropeltis zonata, Martes

americana and Myodes gapperi). However, substantial improvements in model performance

(improvement by more than four AICc units) were found for all but seven species according to

AICc values, with no substantial difference for Dicamptodon tenebrosus, Elaphe obsoleta and

Lepus arcticus, and a substantial decrease in performance for four species (Crotalus atrox,
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Dicrostonyx groenlandicus, Glaucomys volans and Myodes gapperi). Inclusion of ENVIREM

topographic variables specifically led to especially notable improvements in AICc scores for

Poecile gambeli (Figure 1), Eumeces fasciatus, Blarina brevicauda and Plethodon idahoensis

(Figure S2-S5).

The optimal Maxent parameters identified by the model evaluation metrics were typically

not concordant across the bioclim, bioclim + envirem-clim, and bioclim + envirem-all models

(Table S5). Similarly, as the different metrics evaluate the niche models using conceptually

different criteria, AUC-based evaluations did not identify the same Maxent parameters as

AICc-based evaluations (Table S5). As the focus of our case studies is on the choice of

variables employed, an in-depth examination of the differences between AUC and AICc-

based optimization of Maxent is beyond the scope of our study. We therefore focus the rest

of our results and discussion on comparing predictions of models that were optimized based

on AICc (see Methods).

Projections of the AICc-optimized species distribution models constructed with and with-

out the ENVIREM variables generally did not differ greatly at continental scales for the

current time period, but regional-scale differences in habitat suitability were observed. For

the four case-study species showing greatest improvement in all evaluation metrics, the over-

all suitable ranges are very similar, though not identical, at the continental scale (Figure

2). In finer-scale maps focusing on a particular region of interest, however, there are more

substantial differences in suitability across the landscape at a regional scale (Figure 2). For

example, suitability of the California Central Valley for Polioptila californica is much higher

in the bioclim model than in the bioclim + envirem-clim model. Similarly, regions of the

California coast and northwestern Great Basin for Dendragapus obscurus are also consider-

ably different across models, as well as large areas of the interior range of Poecile gambeli.

Niche overlap (Schoener’s D) between the two models averaged 0.9 for these four species and

0.91 across all modelled species (Figure S6, Table S6).

Differences between the predictions of the AICc-optimized bioclim and bioclim + envirem-
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clim models become more pronounced when projected to the LGM (Figure 3, Table S5). In

particular, Schoener’s D niche overlap scores are much lower in the LGM (mean = 0.71, 0.71

and 0.72 for GCM CCSM4, MPI-ESM-P and MIROC-ESM, respectively) compared to the

present, and for many species there are considerable differences between models in predicted

distribution in the LGM (Figure 3). For Ambystoma maculatum, habitat suitability in the

bioclim model was highest on exposed continental shelf off the coast of North Carolina,

whereas in the bioclim + envirem-clim model the highest habitat suitability was in the

Lower Mississippi River Valley. For Dendragapus obscurus, connectivity between regions was

greater in the bioclim + envirem-clim model, and areas of high habitat suitability included

the Columbia Plateau and northern Cascades. Both models for this species also showed

marginally to moderately suitable habitat in western Canada and Alaska, although this may

be an overprediction as at least part of this region was covered by the Cordilleran ice sheet

during the LGM (Dyke et al. 2002). For Polioptila californica, the bioclim model predicted

large regions of California to be suitable, including California’s Central Valley, whereas in the

bioclim + envirem-clim model, higher suitability was primarily restricted to Baja California

and coastal regions of southern California. For Poecile gambeli, visual differences between

model projections were even greater, with high habitat suitability in the Rocky Mountains

in the bioclim + envirem-clim model only, and much higher habitat suitability throughout

most of the species’ range overall, and the Great Basin in particular.

3.5 Discussion

We have generated 18 climatic and topographic variables that will be valuable in a broad

array of applications for species distribution modelling, and have made these variables easily

available and complementary to an existing widely-used environmental dataset. Although

they are largely derived from the same underlying dataset as the bioclimatic variables from

WorldClim, we have demonstrated that including the ENVIREM variables in SDM can lead

to notable improvements in performance and differences in projections of species distribution
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models. Inclusion of these new variables led to substantial improvement in SDM performance

(AICc metric) in 13 out of 20 species, and substantially worse performance in only four

species. Although inclusion of the ENVIREM variables did not always lead to significantly

improved performance, the fact that they were beneficial to many species indicates that

they are generally worth consideration when constructing species distribution models. The

species-specific nature of our results also highlight the importance of following best practices

for variable selection and parameter optimization, as we have done here. The importance

of particular variables in SDM will be a function of the species under study, its distribution

in geographic and climatic space, the time period and geographic region of interest, and the

ultimate question being addressed. Nonetheless, the links to ecological and physiological

processes represented in many of the ENVIREM variables mean that they will likely be

particularly useful for a wide variety of applications.

3.5.1 Potential applications

As we have showcased here, the ENVIREM dataset will be of immediate value in SDM

applications and will potentially lead to the generation of better species distribution mod-

els. If variable selection is done via statistical approaches, then inclusion of these variables

will allow researchers to start with a larger pool of biologically relevant options, thereby

increasing the odds that variables that are highly informative regarding the presence and

absence of a species will be discovered. If the goal is to select variables a priori based on

the ecology and natural history of the organism, then the ENVIREM variables will provide

valuable options, as they are likely to be ecologically relevant to certain species and may

have specific ties to biological processes for many species. SDM has been employed as a tool

in a large variety of studies, and the inclusion of new variables has the potential to impact

their conclusions. Identifying better sets of predictor variables for certain species could,

among other things, potentially alter projections of species’ invasiveness for particular re-

gions (Peterson and Nakazawa 2008), alter our understanding of potentially suitable habitat
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for species introductions (Martínez-Meyer et al. 2006), lead to identification of new areas

of high habitat suitability for conservation interest, affect predictions of shifts in habitat

suitability in response to future climate change (Thuiller 2004, Hijmans and Graham 2006,

Morin and Thuiller 2009), lead to new phylogeographic hypotheses about where species may

have been distributed in the past (Chan and Brown 2011, He et al. 2013, Bemmels et al.

2016), and impact our understanding of the evolution of climatic tolerances across related

species (Title and Burns 2015, Kozak and Wiens 2016).

With these additional variables, ecologists and evolutionary biologists will also be able to

craft more specific hypotheses that are informed by the ecology of the organisms under study.

For example, in an integrative distributional, demographic and coalescent (iDDC) framework

(Knowles and Alvarado-Serrano 2010, Brown and Knowles 2012, He et al. 2013), these

variables will allow for the specification of competing hypotheses pertaining to the relative

importance of different climatic and topographic variables in constraining the distribution of

species over time (Bemmels et al. 2016), giving researchers greater flexibility than currently

exists in modeling spatial and genetic patterns over time. Another example would be the

inclusion of these additional variables in the spatial mapping of the velocity of climate

change, which can tell us how organisms must move to track their current climatic conditions

(Hamann et al. 2015). To our knowledge, this is the only existing multi-variable dataset that

is truly complementary to WorldClim in its geographic breadth, application and accessibility.

The Climond dataset (Kriticos et al. 2011) provides an extended suite of bioclimatic variables

only at 10 and 30 arc-minutes for current and future climate scenarios, while the Ecoclimate

dataset (Lima-Ribeiro et al. 2015) provides only the standard 19 bioclimatic variables for

multiple past, present and future time periods at 30 arc-minutes. Other variables potentially

useful for biodiversity modeling have been released, such as habitat heterogeneity (Tuanmu

and Jetz 2015), global cloud cover (Wilson and Jetz 2016) and region-specific variables, such

as ClimateNA (Wang et al. 2012, Hamann et al. 2013, Wang et al. 2016), but these variables

are either not transferrable to other time periods, not available globally or not available at
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finer spatial resolutions. In contrast, the ENVIREM dataset includes additional variables

(some of which overlap with the Climond dataset) at all of the resolutions currently available

fromWorldClim, for past and current time periods. If researchers wish to perform SDM using

occurrences that have high spatial precision in areas where region-specific datasets for all

desired time periods are available, then alternatives to the ENVIREM dataset may prove

most useful (e.g. ClimateNA; Wang et al. 2016). However, such a situation is likely to

represent only a small minority of SDM applications, making the ENVIREM dataset more

generally applicable. In addition, the envirem R package makes it possible to generate these

variables for other time periods, or from alternative input datasets (for example PRISM;

Daly et al. 2002), allowing users to easily customize their use of these variables.

3.5.2 Biological relevance of ENVIREM variables

Although the potential applications of these variables to SDM are vast, one unique ben-

efit of the ENVIREM variables is their potential for improving our ability to construct niche

models informed by ecological knowledge and natural history. Biologically informed niche

models may be constructed for species for which the conceptual relationships between par-

ticular variables and biological processes relevant to determining a species’ distribution are

known a priori (Kearney et al. 2008, Doswald et al. 2009, Rödder et al. 2009, Synes and

Osborne 2011), or may be constructed with the intention of exploring and testing different

hypotheses about these relationships (Bemmels et al. 2016).

The potential mechanisms by which the ENVIREM variables may determine distribu-

tions are numerous and will be specific to the species of interest. In general, subsets of the

ENVIREM variables may directly control species distributions, or (more commonly) may

impact other processes that in turn determine distributions (Austin 2002). The particular

variables included in the ENVIREM dataset were selected because of their clear concep-

tual links to particular ecological processes and indices. For example, growing degree-days

are predictive of plant phenology and growth rate (McMaster and Wilhelm 1997), processes
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which impact species range limits (Morin et al. 2007) and drive local adaptation (Howe et al.

2003). Evapotranspiration not only describes climate generally, but is also physiologically

linked to plant growth potential due to its impact on gas exchange with the atmosphere and

temperature regulation (Thornthwaite 1948, Katul et al. 2012). The more complex climatic

indices included in the ENVIREM variables (e.g. thermicity, aridity, moisture, Emberger’s

pluviothermic quotient) may characterize environmental conditions that are more directly

physiologically relevant to given species than simple descriptors of climate such as tempera-

ture or precipitation alone (Daget 1977). Finally, the topographic ENVIREM variables could

conceivably be important predictors of habitat types associated with local- to regional-scale

relief that may be key predictors of species distributions at these spatial scales (Lassueur et

al. 2006, Austin and Van Niel 2011). We have provided just a few examples of potential links

to biological factors that could determine species distributions, but the ecological relevance

of any of the ENVIREM variables is likely to be species-specific and different species’ dis-

tributions may be associated with environmental variables because of different mechanisms.

Nonetheless, it is this type of conceptual relevance and these potential links to physiological

and ecological processes that will make the ENVIREM variables particularly useful for many

SDM applications.

3.5.3 Incorporating ENVIREM variables into SDM best practices

Ideally, the choice of variables for niche modeling should be informed by knowledge of the

natural history and ecology of the organism under study, as this approach has been shown

to produce more realistic niche models (Rödder et al. 2009, Saupe et al. 2012). However,

it is most often the case that such information is not readily known (Alvarado-Serrano and

Knowles 2014). How one should go about choosing bioclimatic variables is still an open

question, the impact of which can be considerable (Peterson and Nakazawa 2008, Synes and

Osborne 2011, Braunisch et al. 2013). It is generally not considered best practice to include

all bioclimatic variables, as they exhibit a high degree of collinearity. This collinearity tends
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to lead to overly complex, overfit models (Rodda et al. 2011). Additionally, the nature of the

correlation between bioclimatic variables may differ across time periods, potentially leading

to unexpected behavior in SDM projections (Rodda et al. 2011, Synes and Osborne 2011,

Dormann et al. 2012, Warren et al. 2014). While we expect that many researchers will find

the ENVIREM variables extremely useful for a variety of applications, we recommend that

the merits of including all or some of the ENVIREM variables should be carefully considered

relative to the specific application, and that variable thinning, model optimization, and other

best practices in ecological niche modeling should be followed (Merow et al. 2013, Alvarado-

Serrano and Knowles 2014). For example, as we do not have in-depth ecological information

about the species whose ecological niches were modeled in our case studies, we employed a

statistical approach to variable thinning in order to reduce the number of correlated variables,

while retaining the variables with the greatest explanatory power.

An important finding of our case studies was that the difference between the bioclim and

bioclim + envirem-clim models, as measured with Schoener’s D, was small in the present,

but greater in the LGM. Choice of predictor variables has previously been shown to have

large impacts on model projections to other time periods or geographic regions (Peterson

and Nakazawa 2008, Synes and Osborne 2011, Braunisch et al. 2013). The impact of

variable selection points both to the utility of additional variables for developing and testing

hypotheses about shifts in species distributions across different time periods and in novel

spatial contexts, but also to the need for caution when making modeling decisions. Ideally,

models could be evaluated in past time periods with independent fossil occurrences (Davis

et al. 2014, Gavin et al. 2014, Moreno-Amat et al. 2015), but their availability will depend

on the taxon under study.

In addition to the question of which environmental variables to use, a growing number

of studies have demonstrated that species-specific tuning of virtually all steps in the niche

modeling pipeline can lead to improved results, and that Maxent’s default behavior is often

not sufficient to achieve optimal performance (Anderson and Gonzalez 2011, Warren and
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Seifert 2011, Merow et al. 2013, Radosavljevic and Anderson 2014, Moreno-Amat et al.

2015). Although we could have held all aspects save the predictor variables constant in the

generation of niche models in order to be able to compare the results directly, generating

models in this way is considered poor practice. Instead, we chose to independently generate

the best possible models, given current best practices. We found that Maxent’s default

parameters were rarely optimal (Table S5), which echoes the findings of others that parameter

tuning is an important step toward generating less overfit and more transferable species

distribution models (Anderson and Gonzalez 2011, Warren and Seifert 2011, Merow et al.

2013, Radosavljevic and Anderson 2014, Moreno-Amat et al. 2015). Different evaluation

metrics most often did not lead to the selection of the same optimized parameters (Table

S5). This is expected, as AICc is intended to minimize the number of necessary parameters,

while AUC metrics are not. Regardless of the environmental variables selected for SDM,

the optimization of model parameters should always be considered, as model parameters can

have a large impact on model performance and predictions (Figure 2, Figure S2-S5).

3.5.4 Utility of topographic variables in SDM

In addition to climatic variables, we also generated two topographic indices: topographic

roughness and topographic wetness. These variables offer novel information as they are

not redundant with elevation (Table 3), an environmental variable which is already broadly

available for SDM. The use of elevation in SDM has been controversial (Hof et al. 2012),

and may be particularly problematic when projecting to other time periods or geographic

contexts where relationships between elevation and the climatic factors determining a species’

niche may be different than the relationships in the context in which the model was built.

However, the topographic roughness and topographic wetness indices are less likely to suffer

from this complication because they are less causally linked than elevation to regional-scale

climate, and they contain topographic information that may be useful for determining species

distributions independent of climate. In particular, topographic roughness index may be
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a reasonable surrogate for habitat heterogeneity and microsite availability that could be

relevant to determining geographic distributions of some species, and topographic wetness

index may help distinguish between areas that experience similar regional climate but differ

markedly in microhabitat due to relative drainage position within a watershed.

However, it is important to consider whether topographic variables are available at an

appropriate geographic scale for predicting species distributions. Variation in topographic

features associated with microhabitats may occur at a much finer scale than that at which

topographic variables are assessed, which could reduce their utility for SDM (Lassueur et al.

2006, Austin and Van Niel 2011, Pradervand et al. 2014). Since all topographic ENVIREM

variables at all resolutions are ultimately averaged from values calculated from the finest-

scale (30 arc-second) elevational model (see Methods), we have minimized concerns about

the potential mismatch between the scale at which the indices were generated and at which

topography is relevant to a species. However, it is still important to consider whether

variation in topographic roughness and wetness at the 30 arc-second scale (approximately

926 m at the equator) is likely to be meaningful for the species in question for the particular

geographic region of interest and intended modeling application.

Nonetheless, our case studies revealed that including topographic variables led to distinct

improvement in SDM performance for several species, in some cases significantly exceeding

the improvement gained by adding only the climatic ENVIREM variables (Figure 1, Figure

S2-S5). These results once again emphasize the species-specific nature of the degree of utility

of any new variable. Topographic variables are likely to be particularly useful for exploring

competing hypotheses regarding whether local- to regional-scale factors such as microsite

availability are important in determining species’ distributions (Bemmels et al. 2016).

Beyond general considerations about whether or not topographic variables are important

for modeling a species’ distribution, care should also be taken in assessing whether or not

static variables (i.e. variables that do not change over time) are appropriate to use for a given

SDM application. The topographic variables we derive can be assumed to be largely static
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through time (especially in unglaciated regions, with the exception of changes in coastline

reflecting sea-level changes). Stanton et al. (2012) explored the inclusion of static variables

in SDM and found that including such variables when projecting to future climate-change

scenarios typically improved, and rarely hindered, SDM performance when the variables were

known to influence species distributions. Nonetheless, we recommend particular caution

when projecting to contexts where topography may have changed substantially over the

timescale of interest, for example due to Pleistocene glacial erosion in North America (Bell

and Laine 1985).

3.6 Conclusions

The ENVIREM variables constitute a valuable dataset for species distribution model-

ing for a variety of applications. Although they are complementary to and largely derived

from the WorldClim database that is already widely in use, they contain novel information

not captured by this database. In particular, the ENVIREM variables include conceptually

novel climatic variables that may more closely reflect specific ecological and physiological

processes, as well as topographic variables distinct from elevation that may represent non-

climatic local- to regional-scale aspects of a species’ niche. In our exploration of case studies

for 20 North American vertebrate species, the impact of including the ENVIREM variables

was species-specific: in 13 out of 20 cases model performance substantially improved com-

pared to a model using only WorldClim variables, particularly when topographic ENVIREM

variables were included; in seven cases model performance was not substantially different

or declined. In general, models built with and without the ENVIREM variables produced

habitat suitability predictions differing only modestly and at local scales in the current time

period, but sometimes resulted in dramatic regional-scale differences in predicted habitat

suitability when projected to a different time period. Overall, our results highlight how the

ENVIREM variables often improve model performance, even when biological information

about the variables that are most relevant to determining habitat suitability for a given
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species is not known a priori. Furthermore, when knowledge about the determinants of

species distributions is available from ecological theory, the ENVIREM variables may be

particularly useful for developing and testing the predictions of species-specific hypotheses.

The significant improvements in model performance we observed for many species when fol-

lowing best practices in species distribution modeling suggest that the ENVIREM variables

are worth general consideration for SDM, as their main benefit is providing a more compre-

hensive set of environmental variables to choose from, whether through statistical variable

thinning or variable selection informed by ecological knowledge.
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Figure 3.2: Predicted habitat suitability during the current time period for four case study species,
from Maxent models optimized in terms of feature class and regularization parameter according to
the AICc metric, for models constructed with and without the ENVIREM variables. Suitability
scores range from 0 (blue) to 1 (red). The central, continental-scale maps show habitat suitability
within the training region only (see text for explanation), with predicted habitat suitability below
a 95% training presence threshold considered to be unsuitable (grey). The outer maps show detail
from the region within the box on the continental maps, selected to highlight local-scale differences
between the models. Occurrence records are shown as black points. Schoener’s D niche overlap
is calculated between the bioclim and the bioclim + envirem-clim models, exclusively within the
thresholded training regions (Figure S1; see the Methods section for additional details).
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Figure 3.3: Predicted habitat suitability during the Last Glacial Maximum for four case study
species, for models constructed with and without the ENVIREM variables. Suitability scores range
from 0 (blue) to 1 (red). Optimization of model parameters and thresholding are as in Figure
2. Schoener’s D niche overlap is calculated between the bioclim and the bioclim + envirem-clim
models, exclusively within the thresholded training regions (Figure S1; see the Methods section
for additional details). Habitat suitability is shown within the training region only, with predicted
habitat suitability below a 95% training presence threshold considered to be unsuitable (grey).
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Table 3.2: Pearson correlations between ENVIREM and WorldClim variables. The correlation is
shown between each of the climatic ENVIREM variables and the WorldClim bioclimatic variable
with which the ENVIREM variable is most strongly correlated (Table S1), globally and in separate
biogeographic realms. For each variable and realm, the bottom-left triangle contains the correlation
coefficient in the present, and the top-right triangle contains the correlation coefficient in the LGM
(CCSM4) for the same bioclimatic variable. Grey shading indicates that the absolute value of the
correlation is 60.85.
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mean diurnal temp range [bio2] + + + + + + + +
isothermality [bio3] +
temp seasonality [bio4] +
max temp warmest month [bio5]
min temp coldest month [bio6]
temp annual range [bio7] + + + + + +
mean temp of wettest quarter [bio8] + + + + + +
mean temp of driest quarter [bio9] + + +
mean temp of warmest quarter [bio10] + + + +
mean temp of coldest quarter [bio11]
annual precip [bio12] +
precip of wettest month [bio13]
precip of driest month [bio14] + + + + + +
precip seasonality [bio15] + + + + + + + + +
precip of wettest quarter [bio16] + + +
precip of driest quarter [bio17] +
precip of warmest quarter [bio18] + + + + + + + + +
precip of coldest quarter [bio19] + + + + + + +
annualPET
climaticMoistureIndex + + + + + +
continentality + +
embergerQ
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PETseasonality + + + + + +
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Table 3.4: Variables included in final models for four case study species. Variables included in
each model were selected using a statistical variable selection approach (see Methods section for
additional details).
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Figure S3.1: Occurrence records and training regions, for the 20 case study species (occurrence
records from Waltari et al. 2007).
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Figure S3.2: Model performance for 16 case study species. Model performance is shown for those
16 case study species not highlighted in the main text. Each line represents the set of feature
classes that led to the best performance according to either AUCTEST (top and middle panels) or
AICc (bottom panel), with performance evaluated across a range of regularization multiplier values.
AUCDIFF is a measure of model overfitting for the model selected by maximizing AUCTEST. In the
AUC plots, the dotted line represents the value for the best-performing model. In the AICc plots,
the grey shading represents a ∆AICc of 4 from the best (lowest) AICc score. Performance of models
within the grey polygon is not considered to be substantially different (Burnham and Anderson
2004).
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Figure S3.3: Model performance for 16 case study species. Model performance is shown for those
16 case study species not highlighted in the main text. Each line represents the set of feature
classes that led to the best performance according to either AUCTEST (top and middle panels) or
AICc (bottom panel), with performance evaluated across a range of regularization multiplier values.
AUCDIFF is a measure of model overfitting for the model selected by maximizing AUCTEST. In the
AUC plots, the dotted line represents the value for the best-performing model. In the AICc plots,
the grey shading represents a ∆AICc of 4 from the best (lowest) AICc score. Performance of models
within the grey polygon is not considered to be substantially different (Burnham and Anderson
2004).

98



●
●

● ● ● ● ● ●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

rm

M
ea

n.
A

U
C

●
● ● ● ● ● ● ●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

rm

M
ea

n.
A

U
C

● ● ● ● ● ● ● ●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

rm

M
ea

n.
A

U
C

● ● ● ● ● ● ● ●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

rm

M
ea

n.
A

U
C

● ● ● ● ● ● ● ●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

rm

M
ea

n.
A

U
C

.D
IF

F

●
● ● ● ● ● ● ●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

rm

M
ea

n.
A

U
C

.D
IF

F

●
● ● ● ● ● ● ●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

rm

M
ea

n.
A

U
C

.D
IF

F

●
●

● ● ● ● ● ●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

rm

M
ea

n.
A

U
C

.D
IF

F

● bioclim
bioclim + envirem−clim
bioclim + envirem−all

●

●
●

●

●

●

●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

25
70

25
90

26
10

26
30

rm

A
IC

c

●

●
●

●

●
●

●

●

●

●

●

●
●

●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

67
40

67
60

67
80

68
00

rm

A
IC

c

●

●

●

●

●
●

●

●

●

●
●

●

● ●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

38
80

39
00

39
20

39
40

39
60

rm

A
IC

c

●

●

●
●

●

● ●

●

●

●

●

● ●
●

●

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

77
0

77
5

78
0

78
5

79
0

rm

A
IC

c

●

●

●

●

● ● ● ●

Eumeces fasciatus Glaucomys sabrinus Glaucomys volans Lampropeltis zonata

A
U

C
T

E
ST

A
U

C
D

IF
F

A
IC

c

regularization multiplier

Figure S3.4: Model performance for 16 case study species. Model performance is shown for those
16 case study species not highlighted in the main text. Each line represents the set of feature
classes that led to the best performance according to either AUCTEST (top and middle panels) or
AICc (bottom panel), with performance evaluated across a range of regularization multiplier values.
AUCDIFF is a measure of model overfitting for the model selected by maximizing AUCTEST. In the
AUC plots, the dotted line represents the value for the best-performing model. In the AICc plots,
the grey shading represents a ∆AICc of 4 from the best (lowest) AICc score. Performance of models
within the grey polygon is not considered to be substantially different (Burnham and Anderson
2004).
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Figure S3.5: Model performance for 16 case study species. Model performance is shown for those
16 case study species not highlighted in the main text. Each line represents the set of feature
classes that led to the best performance according to either AUCTEST (top and middle panels) or
AICc (bottom panel), with performance evaluated across a range of regularization multiplier values.
AUCDIFF is a measure of model overfitting for the model selected by maximizing AUCTEST. In the
AUC plots, the dotted line represents the value for the best-performing model. In the AICc plots,
the grey shading represents a ∆AICc of 4 from the best (lowest) AICc score. Performance of models
within the grey polygon is not considered to be substantially different (Burnham and Anderson
2004).
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Figure S3.6: Predicted habitat suitability in the present for 16 case study species not highlighted in
the main text, from Maxent models optimized in terms of feature class and regularization parameter
according to the AICc metric, for models constructed with and without the ENVIREM variables.
Suitability scores range from 0 (blue) to 1 (red). Habitat suitability is shown within the training
region only, with predicted habitat suitability below a 95% training presence threshold considered
to be unsuitable (grey). 101
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tro

pic

oceania

austra
lasia

global

1
1

0.98
0.98

0.98
0.98

0.96
0.97

0.99
0.98

1
1

0.97
0.97

0.98
0.98

0.79
0.8

0.89
0.89

0.95
0.95

0.68
0.66

0.62
0.45

−0.82
−0.82

0.91
0.89

0.83
0.81

0.74
0.75

0.98
0.97

0.99
0.99

0.94
0.93

0.84
0.8

0.84
0.82

0.94
0.94

0.91
0.9

0.98
0.97

0.73
0.75

0.91
0.93

0.97
0.97

0.93
0.91

−0.76
−0.62

0.96
0.95

0.7
0.69

0.83
0.84

0.92
0.92

0.87
0.86

0.89
0.85

0.84
0.8

−0.74
−0.8

0.74
0.71

0.87
0.87

0.93
0.93

0.87
0.87

0.87
0.88

0.91
0.92

0.82
0.79

0.58
0.43

0.93
0.92

0.9
0.89

0.87
0.87

0.95
0.94

0.93
0.92

0.74
0.79

0.49
0.58

0.62
0.73

0.7
0.74

0.95
0.95

0.98
0.98

0.99
0.99

0.98
0.97

0.96
0.93

0.96
0.94

1
1

0.96
0.96

0.98
0.97

0.98
0.98

1
1

1
1

0.97
0.97

0.92
0.92

0.98
0.98

0.97
0.96

1
1

1
1

0.91
0.9

0.85
0.84

1
0.99

1
1

1
1

1
1

0.96
0.96

1
1

0.93
0.92

0.89
0.88

1
1

1
1

1
1

1
1

0.97
0.97

0.95
0.95

0.91
0.92

0.94
0.94

0.88
0.88

0.94
0.93

0.92
0.92

0.97
0.97

0.93
0.92

1
1

1
1

0.99
0.99

0.99
0.99

0.99
0.99

1
0.99

1
1

1
1

0.93
0.93

−0.82
−0.8

−0.59
−0.59

0.91
0.9

0.98
0.98

0.89
0.9

0.95
0.95

0.81
0.81

−0.84
−0.85

−0.78
−0.74

−0.73
−0.73

0.89
0.88

−0.83
−0.81

−0.8
−0.86

−0.91
−0.9

−0.81
−0.81

0.88
0.88

0.94
0.93

0.96
0.96

0.8
0.79

0.9
0.86

0.83
0.87

0.94
0.93

0.91
0.91

Table S3.2: Pearson correlations between ENVIREM and WorldClim variables for current and
mid-Holocene climate. Correlations are shown between each of the climatic ENVIREM variables and
the WorldClim bioclimatic variable with which the ENVIREM variable is most strongly correlated
(Table S1), globally and in separate biogeographic realms. For each variable and realm, the bottom-
left triangle contains the correlation coefficient in the present, and the top-right triangle contains
the correlation coefficient in the mid-Holocene (CCSM4) for the same bioclimatic variable. Grey
shading indicates that the absolute value of the correlation is 6 0.85.
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annual mean temp [bio1]
mean diurnal temp range [bio2] + + + + + + + + + + + + + + +
isothermality [bio3] + + + + + + + + + + + + + + + +
temp seasonality [bio4] + + +
max temp warmest month [bio5] + + + + +
min temp coldest month [bio6] + + + + + +  
temp annual range [bio7] + + + + + + + +
mean temp of wettest quarter [bio8] + + + + + + + + + + + + +
mean temp of driest quarter [bio9] + + + + + + +
mean temp of warmest quarter [bio10] + + + + +
mean temp of coldest quarter [bio11]
annual precip [bio12] + + +
precip of wettest month [bio13] +
precip of driest month [bio14] + + + + + +
precip seasonality [bio15] + + + + + + + + + + + + + + + + + + + + +
precip of wettest quarter [bio16] + + +
precip of driest quarter [bio17] + + + + + +
precip of warmest quarter [bio18] + + + + + + + + + + + +
precip of coldest quarter [bio19] + + + + + + + + + +
annualPET + +
climaticMoistureIndex + + + + + + + +
continentality + + + +
embergerQ + +
growingDegDays0
growingDegDays5
maxTempColdest
minTempWarmest + + + + + +
PETColdestQuarter + +
PETDriestQuarter + + + +
PETseasonality + + + + + + + +
PETWarmestQuarter + +
PETWettestQuarter + + + + + + + +
thermicityIndex
topoRoughness + +
topoWetness + + + + + +

Table S3.3: Variables included in final models for 16 case study species. Variables to include in
each model were selected using a statistical variable selection approach (see Methods section for
additional details).
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annual mean temp [bio1] +
mean diurnal temp range [bio2] + + + + + + + + + + +
isothermality [bio3] + + + + + +
temp seasonality [bio4] + + + +
max temp warmest month [bio5] +
min temp coldest month [bio6] + + +
temp annual range [bio7] + + + + + + + + +
mean temp of wettest quarter [bio8] + + + + + + + + +
mean temp of driest quarter [bio9] + + + + + + + +
mean temp of warmest quarter [bio10] + + + + +
mean temp of coldest quarter [bio11]
annual precip [bio12] + + +
precip of wettest month [bio13] + + +
precip of driest month [bio14] + + + + + +
precip seasonality [bio15] + + + + + + + + + + + + + + + + + + +
precip of wettest quarter [bio16] +
precip of driest quarter [bio17] + + + + + + + + + + + +
precip of warmest quarter [bio18] + + + + + + + + + + + + + + + + + +
precip of coldest quarter [bio19] + + + + + + + + +
annualPET
climaticMoistureIndex + + + + + + + + + + + +
continentality + +
embergerQ + +
growingDegDays0
growingDegDays5 + + + + + +
maxTempColdest
minTempWarmest + + + + + + + + + +
PETColdestQuarter +
PETDriestQuarter + +
PETseasonality + + + + + + + + + +
PETWarmestQuarter
PETWettestQuarter + + + + + + + + + + + +
thermicityIndex
topoRoughness +
topoWetness + + + + + + +

Table S3.4: Variables included in final models for 16 case study species. Variables to include in
each model were selected using a statistical variable selection approach (see Methods section for
additional details).
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AUC AICc
Species Variable Set Feature Class RM Feature Class RM
Ambystoma maculatum bioclim LQH 2.50 LQHPT 3.00

bioclim + envirem-clim LQHP 2.50 LQHPT 3.00
bioclim + envirem-all LQHP 1.00 LQHP 3.50

Dendragapus obscurus bioclim H 2.50 LQHPT 2.00
bioclim + envirem-clim LQ 2.50 LQHP 4.00
bioclim + envirem-all LQHP 0.50 LQHP 4.00

Polioptila californica bioclim L 4.00 LQ 2.00
bioclim + envirem-clim LQHP 4.00 LQHP 4.00
bioclim + envirem-all LQHP 4.00 LQHP 4.00

Poecile gambeli bioclim H 2.00 LQHPT 4.00
bioclim + envirem-clim LQ 3.00 LQ 2.00
bioclim + envirem-all LQ 1.00 LQ 2.00

Arborimus longicaudus bioclim LQH 0.50 LQ 0.50
bioclim + envirem-clim H 1.00 LQHP 2.00
bioclim + envirem-all H 1.50 LQHPT 2.00

Blarina brevicauda bioclim H 2.00 LQHPT 1.00
bioclim + envirem-clim H 2.50 LQHPT 1.00
bioclim + envirem-all H 2.00 LQHPT 1.00

Chamaea fasciata bioclim LQHPT 3.50 LQHP 3.00
bioclim + envirem-clim LQH 3.00 LQHP 4.00
bioclim + envirem-all LQHP 4.00 LQHPT 3.50

Crotalus atrox bioclim H 2.50 LQHP 4.00
bioclim + envirem-clim LQH 4.00 LQ 2.00
bioclim + envirem-all LQHPT 3.50 LQ 2.50

Desmognathus wrighti bioclim LQH 1.00 LQH 2.00
bioclim + envirem-clim LQ 0.50 LQ 1.50
bioclim + envirem-all LQH 2.00 LQ 2.00

Dicamptodon tenebrosus bioclim H 4.00 LQ 1.00
bioclim + envirem-clim LQH 3.00 LQ 1.00
bioclim + envirem-all LQH 3.00 LQ 1.00

Dicrostonyx groenlandicus bioclim H 1.00 LQ 0.50
bioclim + envirem-clim H 1.00 LQ 0.50
bioclim + envirem-all H 1.50 LQ 1.00

Elaphe obsoleta bioclim H 4.00 LQHPT 1.50
bioclim + envirem-clim H 4.00 LQHPT 2.50
bioclim + envirem-all LQHP 4.00 LQHPT 1.50

Eumeces fasciatus bioclim LQ 3.00 LQHPT 2.00
bioclim + envirem-clim L 4.00 LQH 3.50
bioclim + envirem-all L 4.00 LQ 2.50

Glaucomys sabrinus bioclim LQH 4.00 LQHP 3.00
bioclim + envirem-clim LQHPT 1.00 LQHPT 2.50
bioclim + envirem-all LQHPT 1.00 LQHPT 3.00

Glaucomys volans bioclim H 4.00 LQHPT 2.00
bioclim + envirem-clim LQHP 0.50 LQHPT 1.00
bioclim + envirem-all LQHP 1.00 LQHP 4.00

Lampropeltis zonata bioclim LQHP 3.50 LQ 2.50
bioclim + envirem-clim LQHP 4.00 LQHPT 3.50
bioclim + envirem-all LQHP 4.00 LQ 3.50

Lepus arcticus bioclim LQHP 4.00 LQ 1.00
bioclim + envirem-clim H 4.00 LQ 2.00
bioclim + envirem-all H 0.50 LQ 4.00

Martes americana bioclim LQHP 3.50 LQHPT 2.50
bioclim + envirem-clim LQ 1.00 LQHPT 4.00
bioclim + envirem-all LQHPT 3.00 LQHPT 4.00

Myodes gapperi bioclim LQHP 1.50 LQHPT 1.00
bioclim + envirem-clim LQHPT 1.00 LQHPT 1.50
bioclim + envirem-all LQHPT 1.00 LQHPT 1.00

Plethodon idahoensis bioclim H 3.00 LQ 0.50
bioclim + envirem-clim H 4.00 LQ 1.00
bioclim + envirem-all H 4.00 LQ 1.00

Table S3.5: Optimized Maxent parameters for all 20 case study species, using AUC and AICc.
The possible feature classes are linear (L), quadratic (Q), hinge (H), product (P) and threshold (T).
The regularization multiplier (RM) controls the complexity of the model.
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Species Schoener’s D
Current LGM CCSM4 LGM MPI-ESM-P LGM MIROC-ESM

Ambystoma maculatum 0.91 0.84 0.76 0.89
Arborimus longicaudus 0.88 0.61 0.47 0.55
Blarina brevicauda 0.94 0.78 0.80 0.77
Chamaea fasciata 0.97 0.96 0.97 0.97
Crotalus atrox 0.93 0.76 0.89 0.75
Dendragapus obscurus 0.93 0.79 0.79 0.83
Desmognathus wrighti 0.82 0.26 0.18 0.41
Dicamptodon tenebrosus 0.96 0.93 0.85 0.86
Dicrostonyx groenlandicus 0.92 0.77 0.79 0.72
Elaphe obsoleta 0.93 0.86 0.83 0.84
Eumeces fasciatus 0.93 0.81 0.77 0.80
Glaucomys sabrinus 0.88 0.68 0.77 0.66
Glaucomys volans 0.88 0.60 0.65 0.62
Lampropeltis zonata 0.88 0.77 0.86 0.86
Lepus arcticus 0.95 0.89 0.90 0.90
Martes americana 0.90 0.78 0.76 0.73
Myodes gapperi 0.90 0.62 0.67 0.53
Plethodon idahoensis 0.91 0.01 0.01 0.02
Poecile gambeli 0.87 0.73 0.54 0.79
Polioptila californica 0.87 0.85 0.89 0.84

Table S3.6: Schoener’s D niche overlap for all case study species, between the bioclim and bioclim
+ envirem-clim models, in both the present and during the LGM with three GCMs.
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CHAPTER IV

Diversification rates and phylogenies: what are we

estimating, and how good are the estimates?

4.1 Abstract

Species-specific diversification rates, or “tip rates”, can be computed quickly from phylo-

genies and are widely used to study diversification rate variation in relation to geography,

ecology, and phenotypes. These tip rates provide a number of theoretical and practical

advantages, such as the relaxation of assumptions of rate homogeneity in trait-dependent

modeling approaches. However, there is significant confusion in the literature regarding

whether these metrics estimate speciation or net diversification rates. Additionally, no study

has yet compared the relative performance and accuracy of tip rate metrics.

We compared the statistical performance of three model-free rate metrics (inverse termi-

nal branch lengths; node density metric; DR statistic) and a model-based approach (BAMM).

We applied each method to a large set of simulated phylogenies that had been generated

under different diversification processes; scenarios included multi-regime time-constant and

diversity-dependent trees, as well as trees where the rate of speciation evolves under a dif-

fusion process. We summarized performance in relation to the type of rate variation, the

magnitude of rate heterogeneity and rate regime size. We also compared the ability of the

metrics to estimate both speciation and net diversification rates.
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We show decisively that model-free tip rate metrics estimate the rate of speciation and

not net diversification. Error in net diversification rate estimates is high and increases

dramatically as a function of the relative extinction rate. In contrast, error in speciation rate

estimates is low and relatively insensitive to extinction. Across all diversification scenarios,

BAMM inferred the most accurate tip rates and exhibited lower error than non-model-based

approaches. DR was highly correlated with true speciation rates but exhibited high sample

variance, and was the best metric for very small rate regimes.

We found that DR and BAMM are useful metrics for studying speciation rate dynamics

and trait-dependent diversification. Although BAMM was more accurate than DR overall,

the two approaches have complementary strengths. Because tip rate metrics are more reliable

estimators of speciation rate, we recommend that empirical studies using these metrics ex-

ercise caution when drawing biological interpretations in any situation where the distinction

between speciation and net diversification is important.

4.2 Introduction

Rates of speciation and extinction vary through time and among lineages (Nee et al. 1992,

Sanderson and Donoghue 1996, Etienne and Haegeman 2012, Jetz et al. 2012, Moen and

Morlon 2014, Alfaro et al. 2018), contributing to dramatic heterogeneity in species richness

across the tree of life (Alfaro et al. 2009, Jetz et al. 2012, Barker et al. 2013). By character-

izing variation in rates of speciation and extinction, we can better understand the dynamics

of biological diversity through time, across geographic and environmental gradients (Zink et

al. 2004, Ricklefs 2006, Mittelbach et al. 2007, Silvestro et al. 2011, Rabosky, Title and

Huang 2015), and in relation to traits and key innovations (FitzJohn et al. 2009, Near et al.

2012, Beaulieu and O’Meara 2016). Consequently, there has been great interest in statistical

methods for inferring rates of speciation and extinction from molecular phylogenies.

Although rates of diversification have traditionally been quantified for clades, there has

been a growing interest in estimating species-specific rates of diversification, which we refer
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to here as “tip rates”. Tip rates are increasingly used to describe patterns of geographic and

trait-associated variation in diversification (Freckleton et al. 2008, Jetz et al. 2012, Kennedy

et al. 2016, Harvey and Rabosky 2017, Quintero and Jetz 2018, Rabosky et al. 2018). It

may seem strange to view evolutionary rates as a property of individual lineages, but such

rates emerge naturally from the birth-death model we typically use to conceptualize the

diversification process (Nee et al. 1992, Nee et al. 1994). Under the birth-death process,

individuals (species) are characterized by per-lineage rates of species origination (speciation,

λ) and extinction (µ). For the purposes of inference, these rates are typically assumed

to be constant among contemporaneous members of a focal clade. However, tip rates can

be viewed as our best estimate of the present-day rate of speciation or extinction for an

individual lineage, conditional on past (usually recent) evolutionary history. As such, they

provide information about the expected amount of time that will elapse before a lineage

splits or becomes extinct.

A number of approaches have been used to estimate tip rates, including both model-based

and non-model-based approaches. These approaches vary in terms of how much information

they derive from a focal species relative to the amount of information they incorporate from

other regions of the phylogeny. On one end of the spectrum, tree-wide estimates of speciation

and extinction rates under a constant-rate birth-death (CRBD) model provides tip rates that

are maximally auto-correlated across species in the clade; such rates for any given species

are not independent of rates for any other species in the group of interest. On the other end

of the spectrum, terminal branch lengths can be used to derive a censored estimate of the

rate of speciation that is minimally autocorrelated with rates for other species in the focal

clade. Terminal branch lengths are largely unique to each species (rates might be identical

only for sister taxa), but provide a noisy measure of speciation, due to the stochasticity

inherent in the diversification process (Nee et al. 1994). In contrast to single (terminal)

branch estimates, tree-wide estimates should be less susceptible to stochastic noise, because

they incorporate information from the entirety of the tree (e.g., multiple branches are used
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in the estimates). Of course, the tree-wide estimate necessarily assumes that all tips share a

common underlying diversification process. Other tip rate metrics fall somewhere between

these two extremes, incorporating some tree-wide information but relaxing the assumption

of homogeneous rates across all lineages (node density metric: Freckleton et al. 2008, DR:

Jetz et al. 2012). The estimation of tip-specific rates thus entails a tradeoff between the

precision of individual estimates and the stochastic error associated with those estimates.

BAMM (Bayesian Analysis of Macroevolutionary Mixtures, Rabosky 2014) is a model-

based approach that can accommodate heterogeneity in the rate of diversification through

time and among lineages. BAMM simulates a posterior distribution of macroevolutionary

rate shift configurations given a phylogeny of interest; marginal rates of speciation and

extinction for individual taxa can then be extracted from this distribution. In this framework,

the correlation in rates between any pair of species is a function of the posterior probability

that they share a common macroevolutionary rate regime (Rabosky et al. 2014). If the

tree-wide posterior probability of rate variation is low, the marginal rates estimates for

individual species will be similar across the entire tree, as under a CRBD model. Likewise,

any pair of taxa that are consistently assigned to the same macroevolutionary rate regime

will necessarily have perfectly autocorrelated rates.

Tip rates are best suited to a host of questions and hypotheses where the diversifica-

tion dynamics over the evolutionary history of a group are either less relevant, or no more

relevant, than the rates of diversification closer to the present day. For example, many

hypotheses involving trait-dependent diversification implicitly assume a time-homogeneous

effect of the trait on diversification rate (Coyne and Orr 2004, Kay et al. 2006, Jablonski

2008, FitzJohn 2010, Claramunt et al. 2011). Harvey and Rabosky (2017) found that the use

of tip rates for assessing correlations between continuous traits and diversification has good

performance across a range of diversification scenarios. Furthermore, hypotheses pertain-

ing to non-historical geographic patterns of diversity are also better addressed with recent

rates of diversification. For example, many hypotheses for the latitudinal diversity gradient
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propose time-homogeneous effects of particular environmental factors (temperature, energy,

geographic area) on rates of diversification (Mittelbach et al. 2007, Kennedy et al. 2014,

Rabosky et al. 2015, Rabosky et al. 2018). Put simply, if such time-homogeneous processes

have shaped the latitudinal diversity gradient (e.g., correlation between speciation and tem-

perature: Rohde 1992), then the effect should be manifest in the distribution of present-day

evolutionary rates.

At present, there is significant confusion in the literature over what quantity various tip

rate metrics actually measure. The DR statistic (Jetz et al. 2012) was originally described

as a measure of net diversification rate, where net diversification rate (r) is the difference

between the rate of speciation (λ) and extinction (µ). However, subsequent work suggested

that DR was a better measure of speciation rate (Belmaker and Jetz 2015). Many studies

have nonetheless continued to describe DR as an estimate of the lineage-level net diversi-

fication rate (Marin and Hedges 2016, Oliveira et al. 2016, Cai et al. 2017, Quintero and

Jetz 2018, and many others). The node density metric of Freckleton et al. (2008) has also

been described as a measure of net diversification. Whether these metrics more accurately

measure speciation or net diversification is critically important for interpreting biodiversity

patterns (e.g., two regions might differ dramatically in speciation rate, but net diversifica-

tion rates in each might nonetheless be zero). An initial objective of our study is thus to

compare the ability of DR, node density, and other metrics to estimate speciation and net

diversification rates.

Despite the potential utility of tip rates in geographic and trait-based analyses of spe-

ciation rate heterogeneity (Jetz et al. 2012, Belmaker and Jetz 2015, Oliveira et al. 2017,

Quintero and Jetz 2018), there has yet been no comparative assessment of the accuracy and

precision of the estimates. BAMM has low power to infer small rate regimes (Rabosky et

al. 2017, Meyer and Wiens 2017), leading to the possibility that other approaches might

perform better for smaller phylogenies or when the variation in rates among clades is subtle.

However, DR and related methods will always identify variation in tip rates, even when
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none exists, provided there is stochastic variation in branch lengths. A goal of this study

is therefore to evaluate the trade-off between the stochastic noise inherent in non-model-

based approaches, and the conservative but less noisy estimates from model-based metrics.

We compare the performance of these metrics across a range of simulation scenarios, which

include both discrete and continuous variation in rates.

4.3 Methods

4.3.1 Tip rate metrics

We assessed the accuracy of four tip rate metrics in this study at quantifying rates of

speciation. As we demonstrate below (see also Belmaker and Jetz 2015), these metrics are

estimators of speciation rate and not net diversification rate, and we refer to them as such

throughout. The first metric is the inverse of the equal splits measure (Redding and Mooers

2006), also called the DR statistic (Jetz et al. 2012), DivRate (Belmaker and Jetz 2015,

Oliveira et al. 2017), or tip DR (Quintero and Jetz 2018), which we denote in this study

as λDR. This species-specific measure incorporates the number of splitting events and the

internode distances along the root-to-tip path of a phylogeny, while giving greater weight

to branches closer to the present (Redding and Mooers 2006, Jetz et al. 2012). λDR is

computed as:

λDRi
=

Ni∑
j=1

lj
1

2j−1

where λDRi
is the tip rate for species i, Ni is the number of branches between species i

and the root, lj is the length of branch j, starting at the terminal branch (j = 1) and ending

with the root.

We also considered a simpler metric, node density (Freckleton et al. 2008, denoted by

λND). This is simply the number of splitting events along the path between the root and tip of

a phylogeny, divided by the age of the phylogeny. While λDR down-weights the contribution
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of branch lengths that are closer to the root, λND equally weights the contributions of all

branches along a particular root-to-tip path, regardless of where they occur in time. Under

a pure-birth model (µ = 0), both λDR and λND should yield unbiased estimates of the rate

of speciation.

The third measure we considered is the inverse of the terminal branch lengths (λTB).

Rapid speciation rates near the present should be associated with proportionately shorter

terminal branches, smaller values of λTB should thus characterize species with faster rates

of speciation. This measure has recently been used as a summary statistic to assess model

adequacy in trait-dependent diversification studies (Bromham et al. 2016, Gomes, Sorenson

and Cardoso 2016, Harvey and Rabosky 2017). It should be noted that λTB is theoretically

expected to overestimate the rate of speciation. Under a pure-birth process, the set of

waiting times between successive speciation events can be thought of as draws from an

exponential distribution with rate λ. However, terminal branches are not waiting times

between successive events: they are censored observations, in that they are random samples

of times that are necessarily less than the next speciation event, which has not yet occurred

at the present.

Finally, we considered a Bayesian, model-based approach to estimating tip rates. BAMM

(Rabosky 2014) assumes that phylogenies are generated by set of discrete diversification

regimes. Using MCMC, the program simulates a posterior distribution of rate shift regimes,

from which marginal posterior rate distributions can be extracted for each tip in the phy-

logeny. We denote BAMM tip speciation rates (mean of the marginal posterior) as λBAMM .

As BAMM also estimates extinction rates for each regime, we also calculated tip-specific net

diversification rate as λBAMM - µBAMM , denoted as rBAMM .

4.3.2 Tip rate metrics estimate speciation, not net diversification

As suggested previously (Belmaker and Jetz 2015), DR and presumably other tip-based

measurements, more accurately estimate the rate of speciation than the rate of net diversifi-
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cation. However, numerous studies continue to refer to DR as a measure of net diversification

(Marin and Hedges 2016, Oliveira et al. 2016, Cai et al. 2017, Quintero and Jetz 2018, and

many others). This is incorrect and it is straightforward to demonstrate that λTB, λND and

λDR are more reliable measures of speciation rates and not net diversification rates, at least

when extinction is moderate to high.

To illustrate this property of the metrics, we applied all approaches to constant-rate

birth-death phylogenies simulated across a range of relative extinction rates (ε = λ/µ) ,

including pure-birth trees (ε = 0) as well as trees exhibiting very high turnover (ε = 1). To

evaluate accuracy of speciation estimates as a function of ε, we generated 1000 phylogenies

with 100 tips each, where λ and ε were drawn from uniform distributions (λ: [0.05, 0.3];

ε: [0, 1]). Importantly, when λ is sampled uniformly with respect to ε, the distribution of

r is not uniform: the mean, range and variance in r decrease dramatically as ε increases.

To evaluate the accuracy of r as a function of ε, we thus generated a second set of trees

by sampling r and ε from uniform distributions (r : [0.05, 0.3], ε [0, 1]). As a result, λ has

constant mean and variance with respect to ε in the first set of simulations, and the same

is true for r in the second set of simulations (Figure S1). All phylogeny simulations were

conducted with the TreeSim package in R (Stadler 2011).

We compared tip rate metrics to true speciation rates λTRUE (with the first simulation set)

and to true net diversification rates rTRUE (with the second simulation set). We evaluated

mean per-tip accuracy of the tip rate metrics with two measures of error:

mean absolute error =
Ni∑
i=1

|λi − λTRUEi
|/N

mean proportional error =
Ni∑
i=1

λi − λTRUEi

λTRUEi

/N

where λi is the estimated tip rate for species i out of N total species, λTRUE is the

true tip rate. Mean absolute error captures the magnitude in error in tip rates, and mean
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proportional error quantifies the bias in tip rates, as a function of the true tip rates (Rabosky

et al. 2014).

4.3.3 Assessment of tip rate metrics

We tested the performance of the metrics by compiling publicly-available datasets from

a number of simulation-based studies (Table 1). These simulated trees include rate het-

erogeneity in time and across lineages. Together, these phylogenies present a wide range

of tree sizes and diversification rate shifts, providing an ideal comparative dataset for our

purposes. To more easily distinguish between these tree types in the text, we refer to

the BAMM-type, multi-regime time-constant phylogenies simply as “multi-regime”, and the

multi-regime diversity-dependent phylogenies simply as “diversity-dependent”, even though

discrete rate shifts are present in both types of trees. In addition to discrete-shift scenar-

ios (e.g., BAMM-type process), we simulated phylogenies under an “evolving rates” model of

diversification (Rabosky 2010; as corrected in Beaulieu and O’Meara 2015) to explore perfor-

mance of tip rate metrics when diversification rates change continuously and independently

along branches, as might occur if diversification rates are correlated with an underlying con-

tinuous trait (FitzJohn 2010). In these simulations, we allowed the logarithm of λ to evolve

across the tree under a Brownian motion process, while holding ε constant. The magnitude of

rate heterogeneity among branches is controlled by the diffusion parameter σ, where greater

values lead to greater heterogeneity in speciation rates. Although published phylogenies

with rate data were unavailable for this simulation scenario, we used simulation code and

parameters taken directly from Beaulieu and O’Meara (2015) to generate trees with similar

statistical properties to those in their study. Simulations were performed with the following

parameters: λ = 0.078, 0.103, 0.145, 0.249 and ε = 0.0, 0.25, 0.50, 0.75. We simulated

100 phylogenies for each (λ , ε) pair, and for three values of σ (σ = 0.03, 0.06, 0.12). We

evaluated tip rate accuracy by comparing estimated to true tip rates, using the absolute and

proportional error metrics described above. We also examined the correlation between true
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and estimated tip rates, combining tip rates from all phylogenies generated under the same

class of diversification process, and visualizing these data as density scatterplots, generated

with the LSD package in R (Schwalb et al. 2018), where colors indicate the density of points.

Size of diversification rate regimes might be an important factor in a tip rate metric’s

ability to accurately estimate rates. For example, BAMM’s statistical power in detecting a

shift to a new rate regime is a function of the number of taxa in that rate regime, and tip

rates for taxa from small regimes will more likely be parameterized according to the larger

parent regime or the tree-wide average rate (Rabosky et al. 2017); this is the expected

behavior when BAMM fails to identify a rate shift. However, non-model-based approaches

such as those examined in this study might be more accurate for small regimes. To explore

how rate regime size influences the accuracy of tip rate metrics, we calculated the mean tip

rate for each true rate regime from all multi-regime phylogenies (simulation datasets from

Moore et al. 2016, Rabosky et al. 2017, Meyer and Wiens 2017, Mitchell et al. 2018). We

then calculated the Pearson correlation coefficient and the slope of a linear model between

true and estimated mean regime rates. We explored the performance of all metrics with

respect to regime sample size, as in Rabosky et al. (2017: Figure 13). For comparison, we

repeated all performance summaries on tip rates estimated by applying a simple constant-

rate birth-death (CRBD) process to each simulated phylogeny. This exercise is an important

control, because it indicates how much error we would expect for each simulated phylogeny

under the simplifying (incorrect) assumption that rates are constant among lineages and

through time for each dataset.

4.4 Results

4.4.1 Speciation or net diversification?

As expected, the tip rate metrics examined in this study are more accurate estimators

of the rate of speciation (λ) and not the net rate of species diversification (r). Mean abso-
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lute error increased exponentially with respect to the relative extinction rate ε (Figure 1).

However, mean absolute error in speciation rate was largely invariant with respect to ε (0.95

quantile of r -based and λ-based mean absolute error for λDR: 2.28 and 0.17, respectively).

Note that r and λ for these simulations were drawn from identical uniform distributions, and

absolute error in the rates is thus comparable. Proportional error generally exhibited the

same pattern, and in terms of λ versus r, differences in speciation-based error varied across

ε (Figure S2). λND and λDR had a tendency to overestimate λ when relative extinction was

low, and underestimate λ when relative extinction was high. This trend was not present in

λBAMM . Overall, error was highest for λTB by two orders of magnitude (Figure S3), and

decreased progressively with λND and λDR, with the lowest overall error in λBAMM . BAMM

estimates of net diversification rate were relatively accurate, except at the highest values of

ε (Figure 1, Figure S2).

4.4.2 Tip rate accuracy across rate-variable phylogenies

Tip rates estimated with BAMM were consistently more accurate than those obtained us-

ing the other methods across all diversification scenarios considered, including multi-regime,

diversity-dependent and evolving rates trees (Figure 2). λDR was the second-most accurate

metric, although its relationship with true rates was substantially weaker than λBAMM . λND

and λTB were correlated with true rates but performed relatively poorly in all scenarios,

with λTB massively overestimating tip rates (Figure S4). All metrics performed best for

multi-regime trees, followed by evolving rates and diversity-dependent trees, respectively.

For diversity-dependent trees, λND rates are effectively uncorrelated with the true rates

(Figure 2). Additionally, the performance of the different tip rate metrics for multi-regime

phylogenies is not sensitive to the source of the simulated phylogenies (Figure S5). We found

that BAMM substantially outperformed all other metrics on datasets from studies that inde-

pendently assessed BAMM’s performance (Figure S5: Moore et al. 2016, Meyer and Wiens

2017). Tip rates were also generally but more weakly correlated with true net diversification
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rates, with the exception of λND, which was not at all correlated with true rates (Figure S6).

In terms of mean per-tip error, λBAMM consistently outperformed the other metrics for

multi-regime, diversity-dependent and evolving rates trees (Figure 3). Error in λBAMM

increased as a function of rate heterogeneity for evolving rate phylogenies, but was largely

independent of the magnitude of rate heterogeneity for the other scenarios. λDR generally

exhibited greater error than λBAMM , and this error increased as a function of the level of

heterogeneity for both the evolving rates and multi-regime trees. Error in λDR was generally

invariant to the number of rate regimes for the diversity-dependent scenarios. However,

λDR tended to have greater error than tree-wide estimates of speciation rates from a simple

model that assumes no variation in rates through time or among lineages (λCRBD). λND

performed somewhat similarly to λDR for constant-rate and evolving rates trees, but worse

for diversity-dependent trees. Error in λTB increased with increasing rate heterogeneity for

constant-rate and evolving rates trees, but was relatively unaffected by rate heterogeneity in

diversity-dependent trees (Figure S7). However, error for this metric was far greater than

for all other tip metrics.

4.4.3 Effects of regime size on performance

Both metrics of performance assessment – the Pearson correlation and OLS slope –

generally increased with increasing regime size (Figure 4). This was found to be true for all tip

rate metrics, although λTB and λND never achieved high performance. λDR tended to perform

better than other metrics when small rate regimes were included (e.g., 10 tips or fewer);

however, the slope between estimated and true rates was greater than 1 across the majority

of minimum regime sizes, indicating that λDR overestimates speciation rates (see also Figure

S2). Similar patterns were observed for net diversification rates with λDR, but the magnitude

of the overestimation was greater than for speciation (Figure S8). λBAMM , in contrast,

approached a slope of 1 when estimating speciation rates and slightly underestimated net

diversification rates (regimes with > 30 tips: OLS slope = 0.96 for λ, 0.87 for r).
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Absolute error in regime mean tip rates was lowest for λDR and λBAMM , regardless of the

size of the rate regime (Figure 5). BAMM’s ability to accurately estimate tip rates improved

with regime size, whereas absolute error was relatively consistent across regime sizes for λDR

for regimes greater than 10 species. We also found that λDR slightly outperformed λBAMM

for small rate regimes.

Note that, in Figures 4 and 5, each rate regime is treated as a single data point. Rate

regimes of sizes 1000, 100, and 1 tip are equivalent under this method of error assessment.

Figure 4 assesses how well these methods estimate rates for individual regimes, regardless of

the size of those regimes. In contrast, Figures 1-3 ask how well these methods perform at

estimating rates for a given tip.

4.5 Discussion

We assessed several tip rate metrics and confirmed that these are more accurate esti-

mators of the rate of speciation, rather than net diversification (Figures 1, 4, S6, S8; see

also Belmaker and Jetz 2015). This distinction was especially pronounced at high relative

extinction rates, where the rate of lineage turnover is high, and rates of speciation and net di-

versification have the potential to be most differentiated. Net diversification rate is a critical

determinant of species richness, yet this quantity is potentially independent of the underlying

rate of speciation. Misinterpretation of tip rate metrics could therefore lead to highly mis-

leading perspectives on large-scale diversity dynamics. As we demonstrate (Figures 1, S2),

tip rate metrics (λND, λDR) provide relatively little information about net diversification,

and high values of these metrics are fully consistent with equilibrial models of speciation

where the true net diversification rate is zero. Thus, λDR and λND should not be used to

support claims about the dynamics of species richness or net diversification per se without

independent evidence bearing on plausible levels of extinction.

In terms of accuracy, we found that BAMM performed better than non-model-based

metrics across all datasets we considered: estimated tip rates were most highly correlated
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with true tip rates, and mean per-tip error in rates was lower across a range of rate-variable

simulation scenarios. BAMM is expected to perform well for phylogenies with discrete shifts

in diversification rates as this type of rate variation is most consistent with BAMM’s as-

sumptions (Rabosky 2014, Mitchell and Rabosky 2016, Rabosky et al. 2017, Mitchell et

al. 2018). However, BAMM performed surprisingly well for the evolving rates phylogenies,

which conform poorly to the assumptions of the inference model. In these trees, the rate

of speciation changes continuously under a diffusion process, and as a result, the phylogeny

exhibits rate heterogeneity without discrete rate shifts.

On evolving rates phylogenies, λBAMM performed better than λDR (Figure 2; Spearman’s

ρ for λBAMM = 0.83, ρ for λDR = 0.62), despite the fact that λDR does not rely on the

detection of distinct rate regimes to estimate tip rates (Figure 5). λBAMM also exhibited the

lowest mean per-tip error across varying levels of rate heterogeneity (Figure 3).

Why do λBAMM and λDR exhibit such striking differences in performance across the

simulation scenarios considered here? To illustrate the differences between inference under

these metrics, we compared true tip rates to λBAMM and to λDR on a simulated birth-death

tree with a single rate shift (Figure 6), as well as on one evolving rates tree simulated for this

study (Figure 7). It is clear that if BAMM has the statistical power to detect true rate shifts,

then it will perform well under rate shift scenarios. In contrast, λDR tracks true rate shifts

but exhibits high sample variance. With an evolving rates tree (Figure 7), the simulation

model is very different from the inference model in BAMM. However, it conservatively places

rate shifts in order to accommodate rate heterogeneity that is spread across the phylogeny

under a rather different model of rate variation. λDR also broadly tracks the overall pattern

of the true rates, but the variance in the corresponding estimates is so high that performance

is negatively affected. If we calculate mean (absolute) per-tip error in λBAMM and λDR, the

error is relatively similar between λBAMM and λDR, but the variance in per-tip error for λDR

is higher. Overall, BAMM exhibited substantially lower error than λDR under precisely this

scenario (Figure 3).
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Thus, although BAMM is conservative in the estimation of tip rates relative to λDR,

the method exhibits lower overall error. It appears that λDR can recover more subtle rate

heterogeneity relative to BAMM (see Rabosky et al. 2017 for discussion of power in BAMM),

but this apparent power advantage comes at the cost of increased variance (error) in the

resulting estimates. Remarkably, on a per-tip basis, we find that a simple constant-rate

birth-death process (λCRBD) frequently yields tip estimates that are more accurate than

those obtained with λDR (Figure 3), despite the simplifying (and incorrect) assumption

that rates are identical across all tips in a given tree. Given that λDR can and does track

true heterogeneity in speciation rate (Figures 6, 7), this pattern suggests that the metric is

especially sensitive to the stochastic variation in branch lengths that can emerge even when

all tips have the same underlying speciation rate.

Regardless of the performance summaries presented in this article, important questions

remain with respect to how well tip rate metrics can estimate the true rate of speciation

from empirical phylogenies. The phylogenies analyzed in this study were simulated under

idealized processes and neglect potential biases and sources of uncertainty that are present

in real datasets. For example, if the process of speciation takes time to complete, as is gen-

erally believed to be the case (i.e., the protracted speciation process; Rosindell et al. 2010,

Etienne and Rosindell 2012), then the most recent speciation events may still be on-going

at the present and typical species-level molecular phylogenies may fail to recognize these

events. This will lead to an overestimation of terminal branch lengths, as some terminal

branches potentially include incipient species. A related bias might arise due to incomplete

taxon sampling, which disproportionately affects the length of terminal (or otherwise recent)

branch lengths (Pybus and Harvey 2000). Likewise, variation in taxonomic practice across a

phylogeny might lead to spurious rate variation, particularly if different species concepts are

used, or if some clades in the phylogeny – but not others – have been subject to population

genetic analysis or screens for cryptic species diversity. Additionally, it has been shown that

BAMM and other methods may fail to infer accurate speciation rate dynamics if the phy-
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logeny is in diversity decline – that is, when extinction rates increase towards the present

and ultimately exceed speciation rates (Quental and Marshall 2011, Burin et al. 2018). A

major, if obvious, caveat in the interpretation of tip rates is that they apply to recent spe-

ciation rates and are necessarily limited with respect to inferences about historical variation

in speciation rate.

The greater the importance of the terminal branches in tip rate metrics, the greater the

impact these biases might have on tip rate estimates. On one end of the spectrum, metrics

such as λTB will be very sensitive to such biases as they rely exclusively on terminal branch

lengths. Such approaches may retain utility as summary statistics (e.g., Bromham et al.

2016), but we did not find λTB to be an accurate estimate of speciation rates in any of

our analyses. On the other end of the spectrum, a metric like λND would be minimally

impacted as this metric is attempting to capture an average speciation rate over an entire

root-to-tip path and does not upweight the contribution of recent branch lengths. λDR is

likely somewhere in the middle of this spectrum, as it gives decreasing weight to branches

towards the root. λBAMM is potentially sensitive to such issues as well, although it may be

possible to analytically correct for some biases in the mechanics of the model itself (e.g.,

Rosindell et al. 2010, Etienne and Rosindell 2012).

Potential empirical biases aside, tip rates present a number of practical advantages in

the study of diversification rate variation. First, tip rates can be summarized and compared

across non-monophyletic assemblages of species (Jetz et al. 2012, Kennedy et al. 2016,

Belmaker and Jetz 2015, Oliveira et al. 2017, Quintero and Jetz 2018, Rabosky et al.

2018), making it possible to summarize rate characteristics of entire communities or regional

assemblages of species. Second, estimation of rates at the present should be more robust

to the influence of extinction, as extinction can erase the history of lineage splitting deeper

in the phylogeny (Nee et al. 1994, Nee et al. 1994, Rabosky and Lovette 2008). Third,

tip-specific rates can be paired with species-specific trait values or geographic attributes in

order to test potential trait- or geography-dependent speciation rates (Freckleton et al. 2008,
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Jetz et al. 2012, Rabosky and Goldberg 2017, Harvey and Rabosky 2017). Tip rates make

it possible to relax strong assumptions of rate homogeneity within character states, which

are inherent to certain trait-dependent models, including BiSSE and GeoSSE (Maddison

et al. 2007, Goldberg et al. 2011, Ng and Smith 2014). Recent work has provided a

conceptually rich and robust interpretive framework for SSE models that does not assume

rate-constancy within character states (Beaulieu and O’Meara 2016, Caetano et al. 2018),

but tip rates nonetheless can provide an important check on results obtained with SSE

models by providing a direct means of visualizing the relationship between branch lengths

and character states (Bromham et al. 2016, Hua and Bromham 2016, Harvey and Rabosky

2017). Visual inspection of data in this fashion has the potential to reduce false positives by

calling attention to potential outliers and other sources of model inadequacy (Maddison and

FitzJohn 2014, Rabosky and Goldberg 2015). A final advantage for non-model based tip

rates, especially λDR, is that they can profitably be applied to extremely large phylogenies:

there are few computational limits to using them on phylogenies with tens of thousands of

tips or more, in contrast to formal model-based approaches for which BAMM, HiSSE, and

other methods are poorly suited.

In summary, tip rates offer a number of theoretical and practical advantages, particularly

in the study of associations between traits and diversification. We found that λBAMM out-

performed other metrics evaluated in this study and proved to be relatively accurate, even

under diversification scenarios that depart from the BAMM inference model. λDR underper-

formed in comparison to λBAMM , but in many cases still did reasonably well, particularly

for small rate regimes. Despite our performance results, λDR is likely to remain a useful tool

in the study of trait- and geography-dependent diversification (Rabosky and Goldberg 2017,

Harvey and Rabosky 2017).
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Figure 4.1: Mean absolute error in tip rate metrics for speciation and net diversification rate.
Error in λ is shown in top panels, and error in r in bottom panels, for three different tip rate
metrics, across a range of relative extinction rates. For BAMM, the estimated speciation and net
diversification rates are presented in the top and bottom panels, respectively. Absolute error of
zero implies perfect accuracy. Inset plots show error in λ with truncated y-axis scale to facilitate
comparison among metrics. All tip rate metrics track λ more accurately than they track r. See
Figure S3 for λTB, which performed much worse than the other metrics.
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Figure 4.2: True tip rates (λTRUE) in relation to estimated tip rates. Tip rates were compared
separately for different major categories of phylogeny simulations (rows). Plotting region is restricted
to the 99th percentile of true rates, but Spearman correlations between true and estimated rates
(lower right of each figure panel) are based on the full range of the data. Colors indicate the density
of points in the scatter plots. The horizontal gaps in λND for diversity-dependent trees are an
artefact of all trees having the same crown age. λBAMM exhibited the strongest correlation with
true rates for all simulation categories.
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Figure 4.3: Mean per-tip absolute error in speciation rates as a function of the magnitude of rate
heterogeneity in each simulated phylogeny. Results are presented separately for different categories
of rate variation (Table 1); left column shows estimates from a constant-rate birth-death model
for reference. The boxes and whiskers represent the 0.25 – 0.75, and the 0.05 – 0.95 quantile
ranges, respectively. In some cases, λND and λDR had more error than a simple CRBD model
with no variation in tip rates. λBAMM had the least amount of error across all amounts of rate
heterogeneity. See Figure S7 for λTB.

128



0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

minimum regime size

P
ea

rs
on

 c
or

re
la

tio
n

(a)

λCRBD

λTB

λND

λDR

λBAMM

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

minimum regime size

O
LS

 s
lo

pe

(b)

Figure 4.4: Performance of tip rate metrics as a function of minimum regime size, including
Pearson correlation (a) and OLS regression slope (b) for mean rates with respect to λTRUE . λDR
and λBAMM outperform the other metrics when summarized in this fashion, although λDR tends
to overestimate the rate of speciation. The x-axis denotes the minimum regime size across which
performance was summarized. For example, x = 20 corresponds to the correlations and slopes
computed for all regimes with 20 or more tips; a value of x = 1 is the corresponding results for all
regimes. The OLS slope for λTB is not visible as it ranges between 15 and 23.
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Figure 4.5: Mean per-regime absolute error in relation to true rate regime size, as binned into
10 size categories. The boxes and whiskers represent the 0.25 – 0.75, and the 0.05 – 0.95 quantile
ranges, respectively. Perfectly estimated rates have an error of zero. λDR and λBAMM exhibit the
least error when averaged by regimes, and λDR does slightly better for small clades (10-clade median
error 0.07 for λDR, and 0.08 for λBAMM ).
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Figure 4.6: Examination of true and estimated tip rates in a single rate-shift tree. The location
of the rate shift is represented by an orange circle. Subplots to the right of the tree illustrate true
and estimated rates for each tip (left) and corresponding absolute error (right). Asterisks at the
bottom denote mean per-tip error in tip rate metrics. Mean per-tip error is relatively low and similar
between λDR and λBAMM , but the sample variance in λDR tip rates is high. In this example, the
variance in absolute per-tip error in λDR is 0.002 versus 0.0003 for λBAMM . On average, λDR tends
to either overestimate or underestimate rates relative to λBAMM , even if the mean per-tip error is
relatively low for both metrics.
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Figure 4.7: Examination of true and estimated tip rates in a simulated “evolving rates” tree, such
that the speciation rate itself varies under a diffusion model. See Figure 6 for additional details.
Neither metric is particularly well equipped to infer the true rate variation in this case. However
λBAMM ’s conservative estimates are still more accurate relative to λDR, which is negatively impacted
by high variance in tip rates. Here, variance in absolute per-tip error in λDR is 0.012 versus 0.003
for λBAMM .
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simulation model number
of trees

tree
size

regime
number

source

single-regime, constant-rate birth-death 100 100 1 Mitchell & Rabosky 2016

single- and multi-regime, constant-rate
birth-death

100 51-
148

1-6 Moore et al. 2016

single- and multi-regime, constant-rate
birth-death

400 10-
4296

1-67 Rabosky et al. 2017

multi-regime, constant-rate birth-death 20 939-
3708

11 Meyer & Wiens 2017

single- and multi-regime, constant-rate
birth-death

188 4-
3955

1-73 Mitchell, Etienne & Rabosky 2018

single-regime, constant-rate birth-death,
uniform lambda

1000 100 1 this study

single-regime, constant-rate birth-death,
uniform net diversification

1000 100 1 this study

pure birth root regime, 1-4 discrete shifts to
diversity-dependent regimes

1200 54-
882

1-5 Rabosky 2014, Mitchell & Rabosky 2016

speciation rate evolves via diffusion process 1200 25-
1208

1 Rabosky 2010, Beaulieu & O’Meara
2015, Rabosky 2016, this study

Table 4.1: Summary of simulated phylogenies.
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Figure S4.1: Details of simulations for disentangling speciation from net diversification rate. From
the top row, it is clear that when λ is sampled uniformly with respect to ε, the distribution of r is
not uniform: the mean, range and variance in r decrease dramatically as ε increases. The reverse
is true for the distribution of λ when r is sampled uniformly with respect to ε (bottom row). Our
simulation design ensures that λ and r are sampled from identical uniform distributions with respect
to ε and ensures comparability of the resulting error estimates.
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Figure S4.2: Log proportional accuracy in λ (top) and r (bottom) for different tip rate metrics,
across a range of relative extinction rates. For BAMM, the estimated net diversification rate is
presented. Proportional error of 0 implies perfect accuracy. Inset plots reveal greater detail in error
for λ to ease metric comparison. All tip metrics track λ much more accurately than they track r,
and λBAMM does so with the least amount of error. See Figure S3 for λTB.
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Figure S4.3: Mean absolute error in λ (top) and r (bottom) for λTB, with λDR and λBAMM on
the same scale for comparison. For BAMM, the estimated net diversification rate is presented. λTB
more accurately tracks λ than r, but the amount of error is orders of magnitude greater than for
other metrics.
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Figure S4.4: True tip rates (top row: λTRUE , bottom row: rTRUE) in relation to λTB. Tip rates
were compared separately for different major categories of phylogeny simulations (rows). Plotting
region is restricted to the 99th percentile of true rates, but Spearman correlations between true and
estimated rates (lower right of each figure panel) are based on the full range of the data. Colors
indicate the density of points in the scatter plots. λTB is not particularly correlated with true tip
rates.

137



Figure S4.5: Comparison of λDR and λBAMM to true tip rates for separate simulation datasets.
Data are separated by source, to confirm that patterns described in the main text are not driven by
any one simulation study. Spearman’s correlation is presented in the bottom right corner. Colors
indicate the density of points in the scatter plots. Regardless of the dataset, λBAMM performs
noticeably better than λDR.
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Figure S4.6: True net diversification tip rates (rTRUE) in relation to estimated tip rates. Tip rates
were compared separately for different major categories of phylogeny simulations (rows). Plotting
region is restricted to the 99th percentile of true rates, but Spearman correlations between true and
estimated rates (lower right of each figure panel) are based on the full range of the data. Colors
indicate the density of points in the scatter plots. The horizontal gaps in λND for diversity-dependent
trees are an artefact of all trees having the same crown age. Relative performance comparison aside,
correlations with rTRUE are lower than with λTRUE (Figure 2).
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Figure S4.7: Mean per-tip absolute error in λTB as a function of the magnitude of rate heterogene-
ity in each simulated phylogeny. λDR and λBAMM are included on the same scale for comparison.
Results are presented separately for different categories of rate variation (Table 1). The boxes
and whiskers represent the 0.25 – 0.75, and the 0.05 – 0.95 quantile ranges, respectively. Error in
λTB generally increases with increasing rate heterogeneity, and this error is almost two orders of
magnitude greater than error in other tip rate metrics.
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Figure S4.8: Performance of tip rate metrics as a function of regime size, including Pearson
correlation (a) and OLS regression slope (b) for mean rates with respect to rTRUE . λDR and rBAMM

outperform the other metrics when summarized in this fashion, although λDR overestimates the
rate of net diversification (more so than it overestimated λTRUE , Figure 4). The x-axis denotes the
minimum regime size across which performance was summarized. For example, x = 20 corresponds
to the correlations and slopes computed for all regimes with 20 or more tips; a value of x = 1 is the
corresponding results for all regimes. The OLS slope for λTB is not visible as it ranges between 10
and 25.
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CHAPTER V

Dispersal and the latitudinal diversity gradient in marine

fishes

5.1 Abstract

Marine fishes exhibit a striking latitudinal diversity gradient (LDG), with far more species

occurring in the tropics than in extratropical regions. Speciation rates are substantially el-

evated in polar and high-latitude temperate regions relative to the tropics, suggesting that

faster tropical speciation cannot explain the LDG in marine fish diversity. However, we do

not yet understand the role of lineage dispersal over macroevolutionary timescales in gen-

erating and maintaining the LDG. The “out of the tropics” model posits that tropical taxa

expand their ranges and disperse out, thereby enriching high latitude regions. However,

extratropical diversification and environmental niche conservatism might be expected to in-

fluence the strength of the gradient as well as the movement of species from polar-temperate

to tropical regions. We assessed latitudinal source-sink dynamics in marine fishes by esti-

mating biogeographic transition rates and dispersals between tropical, temperate and polar

regions while distinguishing between taxa with predominately shallow versus deep-water dis-

tributions. We find that biogeographic transition rates are greatest out of the Arctic and

towards the tropics. Although rates are strongest in the opposing direction, the total num-

ber of dispersal events out of the tropics exceeds that of dispersal events out of the poles.
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These results indicate that, even with relatively low dispersal rates, high species richness

and ‘tropical’ inertia will drive macroevolutionary source-sink dynamics. We also find a

strong pattern of greater movement of deep-water lineages than shallow-water lineages in

either direction, suggesting that environmental conservatism and the depth distribution of

biogeographic corridors likely play important roles in shaping global patterns of marine fish

diversity.

5.2 Introduction

The latitudinal diversity gradient (LDG), whereby species richness is highest in the tropics

and declines towards the poles, is one of the best-known yet poorly-understood biodiversity

patterns observed today (Hillebrand 2004). Over macroevolutionary timescales, geographic

patterns of species richness and endemism have been shaped by the interplay between vari-

ation in speciation and extinction rates, regional carrying capacities (MacArthur 1969, Mit-

telbach et al. 2007, Rabosky and Hurlbert 2015), and biogeographic dispersal (Ricklefs 2004,

Wiens and Donoghue 2004, Goldberg et al. 2005, Fine 2015, Antonelli et al. 2018). Due to

the spatial configuration and environmental characteristics of geographic regions, some will

tend to exchange species more readily than others (Donoghue and Edwards 2014). Certain

regions can thus behave as macroevolutionary sources, or centers of origination which then

export species to other regions (Briggs 2003, Goldberg et al. 2005, Jablonski et al. 2006,

Roy and Goldberg 2007). Likewise, other regions may be characterized as macroevolutionary

sinks, where a significant proportion of the within-region diversity has originated elsewhere

and arrived through dispersal.

Jablonski et al. (2006) described a “out of the tropics” model (OTT), where they pro-

posed that species origination is greater in the tropics, and that, through tropical species

range expansion, there is a net migration of species out of the tropics and into extratropical

regions. This model assumes that 1) speciation rates are greater in the tropics, 2) extinction

rates are no greater in the tropics than outside of the tropics, and 3) dispersal out of the
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tropics is greater than dispersal into the tropics. An implication of this model is also that

most extratropical lineages will have tropical ancestors. A related model – the “tropical

conservatism hypothesis” (TCH; Wiens and Donoghue 2004) – suggests that, like the OTT

model, there is greater speciation in, and greater dispersal out of the topics, but that dis-

persal is less frequent and limited to those lineages that are capable of adapting to novel

environmental conditions (Smith et al. 2012, Kerkhoff et al. 2014).

The geography of marine fish richness is characterized by a strong LDG (Tittensor et al.

2010, Stuart-Smith et al. 2013, Rabosky et al. 2018). However, marine richness is not equally

distributed near the equator, but tends to be concentrated in shallow tropical continental

shelf environments (Briggs and Bowen 2013). The tropical Indo-Pacific in particular has

the greatest species richness globally (Tittensor et al. 2010, Rabosky et al. 2018) and has

been described as a center of origination for reef-associated fishes, where species diversity

has both accumulated and been exported to neighboring regions (Briggs 2003, Alfaro et al.

2007, Cowman and Bellwood 2013, Siqueira et al. 2016). In comparison, the highly endemic

fish fauna of the Antarctic has been characterized by origination at near off-shore islands

and export to other regions of the Southern Ocean (Briggs 2003, Dornburg et al. 2017).

A number of hypotheses for the LDG predict faster speciation in the tropics (Rohde

1992, Allen et al. 2002, Jablonski et al. 2006, Mittelbach et al. 2007), yet Rabosky et al.

(2018) found that rates of speciation for marine fishes exhibit an inverse latitudinal gradient.

Significantly elevated rates at high latitudes indicate that, paradoxically, the regions with

the fewest species are those characterized by the highest rates of speciation. The OTT and

TCH hypotheses were framed around the assumption that rates of speciation are highest in

the tropics. An additional core feature of these models is higher net movement of species

from the tropics to higher latitudes and thus an appreciable fraction of extratropical diversity

with tropical origins. Even if rates of speciation are not systematically higher in the tropics

(Rabosky et al. 2018), the tropics might still be a dominant source of high-latitude species

richness, thus helping to “flatten” what would otherwise be an even more severe LDG in
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species richness.

Regardless of regional variation in diversification, a comprehensive understanding of the

contributions of tropical conservatism and OTT dynamics to the LDG requires that we char-

acterize the dynamics of inter-regional dispersal in the marine realm. It is thus important to

characterize the extent to which tropical and extratropical regions serve as sources or sinks

for species originating elsewhere. In this study, we quantify the magnitude and directionality

of dispersal between major latitudinal zones to assess the roles of speciation rates and immi-

gration in the shaping of the LDG. To do so, we characterize both the numbers of dispersals

and regional transition rates, and the number of within-region speciation events.

We maintain a distinction between shallow and deep-water species composition in our

analyses in order to account for the major environmental, ecological and biogeographic differ-

ences these marine regions entail. Species can be found in all regions of the ocean, from the

surface to the abyssal depths, where the temperature, pressure, dissolved oxygen and light

environment that those species experience is so dramatically different that it requires ma-

jor physiological adaptations for survival (Portner 2002, Rogers 2015, Priede 2017). Ocean

temperature is greatest at the surface, but drops precipitously at the thermocline and then

exhibits relatively little variation throughout the remaining depth. Because of this depth

stratification, the surface waters within the first 200 meters exhibit a strong latitudinal gra-

dient in temperature, but this gradient is markedly weaker at depth. Deep-water ocean

temperatures are therefore notably more homogeneous on a global scale (standard deviation

of global marine temperature at 0, 200, and 500m: 11.3, 7.0 and 3.9◦C, respectively; Figure

S1; Boyer et al. 2013). The environmental differences between shallow and deep-water trans-

late into strong ecological and physiological barriers for marine fishes (Brown and Thatje

2014, Priede 2017). As a result, colonization of deeper ocean waters is likely to be relatively

rare, as evidenced by the fact that over 70 percent of extant marine fish diversity occurs

within the first 500m from the surface (Priede and Froese 2013). As the deep-water marine

environment is globally more environmentally homogeneous (Figure S1), it is thought that
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species will experience fewer biogeographic barriers at depth; indeed, 82 percent of marine

fish species with circumglobal distributions are bathypelagic or bathydemersal (Gaither et

al. 2016).

If the OTT model is contributing to the LDG, then we expect to observe a high ratio of

dispersals from low to high latitudes relative to within-region speciation events in temperate

and polar regions, as well as greater transition rates from the tropics to those extratropical

regions. Given the greater environmental homogeneity in deep water, we expect to maintain

the same predictions for deep-water regions, only with greater magnitude.

5.3 Methods

5.3.1 Data acquisition

We obtained geographic range data for 12,018 out of approximately 15,500 known marine

fish species (Mora et al. 2008) at a grid cell resolution of 150 x 150 km from Rabosky et

al. (2018). The majority of these ranges were acquired from AquaMaps (Ready et al. 2010,

Kaschner et al. 2016) in the form of vetted species distribution models, and were expanded

upon by incorporating geographic range data from IUCN as well as from other literature

sources (Coll et al. 2010, Mecklenburg et al. 2016, Rabosky et al. 2018). We also obtained

a phylogeny of ray-finned fishes from Rabosky et al. (2018), containing 11,638 taxa with

genetic data and 5,231 marine species (available at https://fishtreeoflife.org). We obtained

depth classifications from FishBase (http://fishbase.org), where species were classified as

shallow-water if the FishBase descriptor included pelagic, pelagic-neritic, pelagic-oceanic,

reef-associated or demersal. Conversely, species were classified as deep-water if they were

described as bathy-demersal, bathy-pelagic or bentho-pelagic. Taken together, we were able

to combine geographic, phylogenetic and depth data for 4,987 marine fish species.
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5.3.2 Geographic partitioning

We partitioned the globe into tropical, north temperate, south temperate, north polar

and south polar regions. We opted to not use strict latitudinal thresholds, as major oceanic

currents (e.g., the Gulf Stream) cause extensive regional variation in the latitudinal extent of

both warm-water and cold-water; it is thus difficult to select any single latitudinal threshold

that remains appropriate on a global scale. Additionally, as marine environmental conditions

and fish taxonomic composition differ markedly between continental shelf regions and open

ocean, we combined two marine regionalization datasets: Marine Ecoregions of the World

(MEOW; Spalding et al. 2007) and Pelagic Provinces of the World (PPOW; Spalding et

al. 2012). We manually modified pelagic province boundaries for the Leeuwin Current,

Agulhas Current and the Non-gyral Southwest Pacific pelagic provinces by dividing them

at 25 degrees latitude into tropical (northern) and temperate (southern) halves so that they

more naturally align with the latitudinal ranges of the neighboring MEOW realms (Figure

1).

We rasterized these latitudinal zones to the same equal area grid as the species geographic

range data, and classified each species in terms of which latitudinal zones it occurs in. A

species was coded as occupying a region if its geographic range occupied 20 percent or more

of the region grid cells, or if 50 percent or more of the species’ range was found in that region.

The latter criterion allowed us to account for small-ranged endemics. In the rare case where

a species did not match either criterion, we assigned it to the region which overlapped with a

minimum of ten percent of its range. This assignment was done for shallow and deep-water

species separately, and a species could only be in shallow or deep regions, but never both,

due to the FishBase depth categories.

5.3.3 Biogeographic transition rates

We developed a biogeographic transition model for tropical, temperate and polar re-

gions (Figure 2) that closely follows the logic for the dispersal-extinction-cladogenesis (DEC)
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model as developed by Ree and Smith (2008). We chose to model transitions between these

states for the northern and southern hemispheres separately, in order to avoid producing a

model with an unwieldy number of parameters. Specifically, we allow transitions between

regions in single-step increments; i.e., a tropical species must first disperse to the temper-

ate region, and then undergo local extinction (range contraction) in the tropics in order to

become a purely temperate species, rather than entirely shift its range in one step. As dis-

cussed above, we maintain a distinction between shallow and deep-water species. Therefore,

tropical-shallow and tropical-deep are separate states in our model. A species can only be

either shallow-water or deep-water, but can undergo an evolutionary shift between those

states. As species can occur in multiple geographic regions simultaneously, our complete

list of states that species can occupy is: tropical-shallow, temperate-shallow, polar-shallow,

tropical+temperate-shallow, temperate+polar-shallow, tropical+temperate+polar-shallow,

and those same states for deep-water, totaling 12 states. We did not include a tropical+polar

state, as this would have necessitated a discontinuity in the species’ range, and no species in

our dataset appear to show such a distribution.

To differentiate between transitions to and from particular regions, we parameterized

the model such that transition rates included directional information to track “gain of the

temperate state”, “gain of the tropical state” and “gain of the polar state”. These parameters

were defined separately for shallow-water and deep-water transitions between geographic

states. We included a range contraction parameter (local extinction), which defines the

loss of a region, but constrained it to be identical for all regions, as Ree and Smith (2008)

found that this parameter had relatively low accuracy. We also defined two pairs of vertical

transition rates – shallow to deep, and deep to shallow – for tropical/temperate regions and

for polar regions. We opted to define separate vertical transition rates for the polar regions,

as the difference in temperature between shallow and deep water is minimized and therefore,

we might expect transitions to be more frequent than in tropical or temperate waters, where

the vertical temperature gradient is stronger.
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We implemented this model as an asymmetric Markov k -state model (Mk; Lewis 2001)

for discrete character evolution using the diversitree package (FitzJohn 2012) in R (R Core

Team 2018). We supplied a 12x12 state matrix which defined parameter constraints (Table

S1). We also considered multiple constrained submodels (Table 1) to test specific hypotheses

about the directionality of inter-regional dispersal. In particular, we designed several models

to specifically represent OTT scenarios, where transition rates from tropical to temperate

and temperate to polar were constrained to be greater than transition rates from temperate

to tropical and polar to temperate regions. By fitting these models, we were able to estimate

per-lineage biogeographic transition rates between regions, and also assess support for partic-

ular scenarios through a statistical model selection framework. We fitted these models with

a bounded Nelder-Mead optimization approach, as implemented in the dfoptim R package

(Varadhan et al. 2018). In order to identify reasonable starting parameters, we first sampled

2000 initial values from a uniform distribution [0.001, 2], and calculated the likelihood for

those parameters. We then selected the 100 sets of starting values that returned the highest

log likelihood, and performed the optimization with lower and upper bounds of 1e-6 and 10,

in order to find the maximum likelihood parameter estimates. By performing 100 optimiza-

tions per model, we could ensure with reasonable confidence that the optimization had in

fact found the global optimum in parameter space.

A concern has been raised that maximum likelihood methods to estimate transition rates

will tend to be biased by the frequency and distribution of states at the tips (Nosil and

Mooers 2005), with a tendency for greater transition rates toward the more frequent state.

Unlike state-dependent diversification models, such as BiSSE and GeoSSE (Maddison et

al. 2007, Goldberg et al. 2011), the Mk models we employ do not incorporate speciation

and extinction, which can lead to biased transition rate estimates (Goldberg and Igic 2008).

Given that a majority of marine fish species occur in the tropics, it is possible that these

issues might manifest themselves in our analyses. However, certain comparisons of rates

should still be appropriate.
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5.3.4 Ancestral state reconstruction

Although per-lineage transition rates between geographic regions are informative, they

do not necessarily bear on the net exchange of species counts between those regions, as the

actual number of events will depend on species richness patterns. It is entirely possible,

for example, for the per-lineage rate of dispersal from temperate to tropical regions to be

greater than tropical to temperate, but for the total number of species transition events to be

greater out of the tropics, simply because there are more species in the tropics (i.e., the same

realized dispersal of 5 species can hypothetically result from a low per-lineage dispersal rate

of 0.001 from a 5000-species region, or from a high dispersal rate of 0.5 from a 10-species

region). We therefore reconstructed biogeographic ancestral states under both parsimony

and likelihood (ML) in order to enumerate speciation events within a region (no dispersal)

and speciation coupled with dispersal events. Parsimony approaches have been shown to

perform well, especially when there is heterogeneity in the rate of character evolution across

the phylogeny (Tuffley and Steel 1997, King and Lee 2015, Davis Rabosky et al. 2016).

We implemented a parsimony-based version of our biogeographic transition matrix through

Sankoff parsimony (Sankoff 1975), which makes use of a cost matrix. This allowed us to

define the number of steps required to move from one state to another. For example, a shift

from tropical-shallow to temperate-shallow has a cost of 2: a new region must be gained by

dispersal (temperate), and an ancestral region must be lost (tropical). We assumed that gain

or loss of any single region (tropical, temperate, polar) entails unit cost. For these analyses,

we reconstructed ancestral geographic states for northern and southern hemisphere regions

within the same parsimony framework. To account for uncertainty in ancestral character

states, we generated 1,000 equally parsimonious reconstructed histories. Parsimony analyses

were run with the R package rbor (https://www.github.com/blueraleigh/rbor).

From the parsimony reconstructions, we visited each internal node and examined the

reconstructed state of that node (the parent node) and of its two descendant nodes. We

counted the number of within-region speciation events by tallying the number of times a
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biogeographic state was shared between the node and both descendant nodes. We also

counted the number of dispersal events, by tracking states present in a descendant node but

not the parent node. If the parent node had multiple states that were not present in the

descendant node, then we employed the cost matrix described above for parsimony in order to

identify the more likely dispersal source. If more than one region was equally likely, the count

was split (for instance, if a parent node was found in tropical+temperate and a descendant

node had states tropical+temperate+polar, then the cost matrix would identify temperate-

to-polar as more likely than tropical-to-polar, adding a tally to temperate→ polar).

We generated 1000 joint ancestral reconstructions, under the best-fit Mk transition rate

model, with the asr.joint function in diversitree (FitzJohn 2012). Similarly to the event

counting approach under parsimony, we then visited all reconstructed internal node states

and tracked dispersal and within-region speciation events. As the transition rate models

were fit for each hemisphere separately, we counted events for each hemisphere separately as

well. If multiple dispersal sources were possible, we again used the cost matrix.

We also calculated, for each region, the ratio of dispersal events to within-region speci-

ation events, as counted through ancestral state reconstruction. This quantity allows us to

more explicitly evaluate the influence of an OTT scenario, where dispersal events should be

an important contributor to species assembly in the extratropics.

5.3.5 Sister pairs

As an additional check on relative counts of dispersal and within-region speciation, we

also identified all sister species pairs in the phylogeny, and tallied the regions they occur

in. This exercise has the benefit of not requiring reconstructed states at internal nodes.

We would expect that the counts of sister pairs within the same region would follow the

pattern we recover in within-region speciation event counts from ancestral state reconstruc-

tion. Additionally, although there is no directionality of dispersal in the sister pair data, we

would expect the region pairs that share more sister species to also be the region pairs that
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exchange species more frequently.

5.4 Results

The intersection of the geographic dataset for marine fishes, the phylogenetic sampling,

and the depth classifications from FishBase resulted in a total of 4987 species, with 4475

occurring in the tropics and northern hemisphere, and 3916 species occurring in the tropics

and southern hemisphere. Of the 4987 species, 3918 were classified as shallow-water and

1069 as deep-water, according to the FishBase depth categories. A majority of species were

found to occur exclusively in tropical, temperate or polar regions, with 92.6 percent of species

occupying a single geographic state, 3.9 percent occurring in two states (tropical+temperate

or temperate+polar) and 3.3 percent occurring in all three states. Species richness as sum-

marized by region reflected the general pattern observed in the full gridded dataset (Figure

1, Table 1), with large, successive drops in richness from the tropics to the poles for shallow-

water, and a less pronounced drop in richness between tropics and temperate regions for

deep-water. When considering the intersection of species with both geographic and phylo-

genic data, the deep-water north temperate region had slightly greater species richness than

the deep-water tropical region. Mean speciation rates, computed as the average species-

specific rate from a BAMM analysis performed in Rabosky et al. (2018), for those species in

each geographic region, produced an inverse relationship with richness (Figure S2; correla-

tion test of richness and mean speciation rates for both hemispheres combined: Spearman’s

ρ = -0.866).

5.4.1 Biogeographic modeling

We fit 10 biogeographic transition models to the northern and southern hemisphere sub-

sets of the dataset. In both cases, we found overwhelming support for the most parameter-

rich model (depicted in Figure 2, Table 2, Table S2), for which the transition rates were

unconstrained in both direction and value, with the exception of vertical transitions for
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tropical and temperate regions, which were constrained to have the same value. Notably,

models that enforced poleward dispersal, and therefore emulated the OTT model, were re-

jected with significantly lower model fit than the best-fit model.

Dispersal rates from poles-to-tropics were each greater than their corresponding tropics-

to-poles transition rates except for the rate from the shallow southern polar to temperate

region, which was zero (Figure 3, Figure S3, Table 3). Dispersal rates out of the shallow-

water Arctic were estimated to be 20 times faster than dispersal into the Arctic region.

For deep-water, dispersal out of the Arctic was over 100 times greater than in the opposite

direction. The bias towards poleward dispersal was not quite as extreme in the southern

hemisphere, but rates out of the deep-water Southern Ocean were still several times greater

than rates in the opposite direction.

Statistical model selection also favored the best-fit model over a model where vertical

transition rates from shallow to deep were constrained to be identical to rates from deep to

shallow (Table 2). Parameter estimates indicate that dispersals at high latitudes are more

likely from shallow to deep (Figure 3, Table 3), but the opposite in tropical and temperate

waters. The greatest vertical transition rates were the polar shallow to deep rates, which

were many times the equivalent tropical/temperate rates.

5.4.2 Ancestral state reconstructions

We generated ancestral state reconstructions using Sankoff parsimony and maximum like-

lihood. By generating 1000 ancestral reconstructions, and tracking the frequency with which

each state transitioned to another, we were able to summarize dispersal event and within-

region speciation event counts, while accounting for uncertainty in identity and placement

of the state transitions.

With parsimony, we recovered dispersal event counts that were consistently biased to-

wards movement away from the tropics, for both shallow and deep-water species (Figure

3, S4). Dispersal counts were greatest for both shallow and deep-water dispersals from the

153



tropics to both northern and southern temperate regions. With the maximum likelihood re-

constructions (Figure S5), there wasn’t as much of a clear pattern in direction or magnitude

of counts. Generally speaking, dispersals occurred more frequently in deep-water, except

into and out of the north polar region. Parsimony counts for vertical dispersals were more

numerous from shallow to deep waters for all regions, with the exception of the southern

temperate region, where the opposite was found. Vertical transition counts were not as

consistent with the ML-based counts (Figure S5).

The number of within-region speciation events from either reconstruction approach was

highly correlated with species richness, with the greatest number in the tropics, and de-

creasing towards the poles (Table 4). In deep-water, the number of speciation events within

temperate regions was much more similar to the tropics, with slightly greater counts for the

north temperate, which reflects our species counts (Table 1).

Ratios of dispersals to within-region speciation events led to significant differences be-

tween regions. From our parsimony analysis, we found that all regions were more influenced

by OTT dispersals than by dispersals in the other direction (Figure 4), in both shallow and

deep water. The Arctic is heavily dominated by dispersal out of the north temperate. In

contrast, dispersal plays a much more minor role for the Southern Ocean, especially in shal-

low water. Ratios based on the ML reconstructions were very different (Figure S6), with the

pattern in deep-water essentially opposite from what was found with parsimony.

5.4.3 Sister pairs

We identified 1414 sister pairs. Of these pairs, 75 percent were found to occur within the

same geographic region, and 25 percent were found to occur in non-overlapping geographic

regions. The shallow tropics and shallow temperate regions contained the greatest number

of same-region sister pairs (Table 4). Vicariant sister pairs were most frequently found in

the shallow-tropics / shallow-temperate and shallow-tropics / deep-tropics (Table S3). We

also normalized the sister species counts by region, by dividing the number of within-region
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sister species by the number of sister species pairs that were in that region and any other

(Table 4). The shallow-water tropics still had more within-region sister pairs than pairs that

were not both within the tropics. However, the deep-water north temperate had the most

within-region sister pairs, relative to the number of pairs shared with other regions.

5.5 Discussion

The biogeographic flux of marine fishes at a global scale is characterized by a pattern of

greater rates of dispersal from the poles to the tropics. However, parsimony-derived counts

of realized dispersal events depict the opposite pattern, with the net movement of species

out from the tropics, towards the poles. This pattern was evident for both shallow-water and

deep-water species. Model selection and parameter estimates strongly favored the poles-to-

tropics directionality of rates over OTT models, as well as over other models that constrained

various rates to be identical (Table 2). Caution is warranted in interpreting the importance

of directionality in transition rates however, as we generally find greater transition rates

towards the more frequent state (the tropics).

The most striking pattern to emerge from our transition rate estimates was the magnitude

of the asymmetry in immigration and emigration rates into and out of the polar regions

(Figure 3, Figure S3), for both the shallow and deep ocean, and in particular the Arctic.

The high latitudes are currently harsh environments dominated by ice and high season-

ality; however, the northern and southern polar regions have been shaped by independent

geologic and climatic histories, leaving indelible marks on the current makeup of the regional

fish faunas. When the Bering seaway opened up 3.0-3.5 mya, the Arctic was ice-free and

characterized by a temperate climate, thus the seaway provided a habitable dispersal route

between the northern Pacific and northern Atlantic Ocean basins (DeVries and Steffensen

2005, Mecklenburg et al. 2011). The region was then dominated by a number of young

and phylogenetically disparate families (such as the zoarcid eelpouts). As the Arctic cooled,

species either adapted to these colder conditions, shifted their distributions to the northern
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temperate regions, shifted to warmer, deeper waters, or shifted their habitat preferences

to the mouths of rivers (Mecklenburg et al. 2011). In contrast, the Southern Ocean has

likely maintained its current state of freezing water temperatures and continental glaciers

for approximately the last 25 mya (Kennett 1982). Whereas Arctic marine environments are

connected to temperate regions via shallow continental shelves, the Antarctic continental

shelf and the Southern Ocean are separated from the southern temperate region by deep

waters and the Antarctic Circumpolar Current. The fish fauna in the Antarctic is highly

endemic, with the majority of species belonging to the notothens (icefishes), as well as rep-

resentatives from the Liparidae (snailfishes) and Zoarcidae (eelpouts). Physiological studies

have found that a number of notothen species have extremely narrow temperature and salin-

ity tolerance (Somero and DeVries 1967, O’Grady and DeVries 1982), as they have evolved

in isolation in an environmentally stable region for tens of millions of years. In contrast,

the Arctic fauna is characterized by broader environmental tolerances and lower endemicity

(DeVries and Steffensen 2005).

The differences in dispersal rates out of the high latitudes and into the temperate regions

are consistent with these contrasting biogeographic histories. The Southern Ocean’s highly

endemic, environmentally specialized fauna does not have a history of dispersing out to

warmer waters, except in a few rare cases (Cheng et al. 2003, Eastman 2005). In contrast,

the cooling of the Arctic region has led to many dispersals out to the north temperate

Pacific and Atlantic (Mecklenburg et al. 2011, Briggs and Bowen 2012). The contrast in

migration rates from the polar to temperate regions in the northern and southern hemispheres

might also reflect the greater temperature seasonality of the Arctic, compared to the relative

stability of the Antarctic (Clarke and Crame 2010). Arctic species’ broad thermal tolerance

ranges may be related to wide annual range in temperature in the region, predisposing

them to the warmer temperatures of the north temperate waters and imparting greater

dispersal capability. In contrast, Antarctic species, and in particular the perciform notothens,

have developed highly specialized adaptations (such as antifreeze mechanisms; Portner 2002,
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Eastman 1993, Near et al. 2012) to inhabit an extreme, narrow range of thermal conditions.

Such adaptations may have lessened these species’ ability to disperse across the Antarctic

Circumpolar Current into warmer southern temperate waters. We see further evidence of

these hemisphere differences in the ratios of dispersal to speciation events in the polar regions

(Figure 4). The Arctic has had a dynamic history of acting as a region of species exchange,

whereas the Southern Ocean has been a stable region with relatively low immigration and

emigration, and the host of in situ diversification. These parsimony-based ratios show greater

influence of dispersal in the Arctic and greater influence of within-region speciation in the

Southern Ocean.

There are a number of reasons why the transition rates estimated in this study may

provide an inadequate description of the tempo and directionality of inter-regional disper-

sal. Major sources of bias include state-dependent diversification, non-equilibrium dynamics

of trait evolution, and heterotachy. By employing Mk models to estimate transition rates,

we do not account for the possibility of regional (e.g., “state-dependent”) differences in di-

versification rates that might bias both transition rates and ancestral area reconstructions

(Maddison et al. 2007, Goldberg and Igic 2008, Goldberg et al. 2011). For instance, if

species in the tropical state have a greater net diversification rate than species outside of

the tropics, then we would potentially overestimate the transition rate toward the tropical

state, as that state is rising in frequency due to increased diversification rates, not dispersals.

Likewise, if high extinction rates prevent the accumulation of diversity at high latitudes, we

might find low transition rates towards the high latitudes.

Additionally, the distribution of character states might not be at equilibrium. Transi-

tion rate models, as well as trait-dependent diversification models, generally assume that the

distribution of character states is the product of long-term rates of character evolution, speci-

ation and extinction rates (Goldberg and Igic 2008, O’Meara et al. 2016). If species richness

is still accumulating in the high latitudes, then marine fish diversity is not at equilibrium,

and estimated transition rates can be biased as a result.
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Transition rate models also do not explicitly account for heterogeneity in rates of character

evolution (King and Lee 2015). However, as analyses are conducted on trees of increasing

size, the likelihood that rates do vary across the tree increases as well. Across a phylogeny

of global fish diversity that spans almost 200 mya, it is more likely than not that rates of

dispersal have not been constant, and that heterotachy is present.

Given these potential issues, we hesitate to attach too much importance to the poles-

to-tropics directionality of rates in our analyses, and some of the unexpected patterns in

ML ancestral reconstructions (Figure S6) might be related to these issues. However, certain

contrasts in rates probably do represent biological results. The strong contrast in rates of

exchange between the Arctic and Southern Ocean are consistent with the climatic history of

these regions, as discussed above. Furthermore, the differences in rates between shallow and

deep-water regions are also not likely to be an artefact.

We recovered a very clear pattern of greater dispersal rates for deep-water species, relative

to shallow-water species (Figure 3, S4). Every inter-regional deep-water rate was greater

than its shallow-water counterpart, save for the dispersal rate from the north temperate to

polar region. This is consistent with the idea that with greater depth, marine environmental

conditions are more homogeneous (Figure S1; Gaither et al. 2016, Priede 2017). Features

such as ocean fronts, that act as significant barriers to dispersal in surface waters, are more

permeable at depth (as was found, for example, with the North Atlantic Subpolar Front,

Vecchione et al. 2015), and the overall latitudinal gradient in temperature is less extreme

at depth. This is supported by the finding that a majority of species with circumglobal

distributions are deep-water species (Gaither et al. 2016). Additionally, there have been

multiple instances of interhemispheric dispersal events of deep-water lineages, particularly in

the families Scorpaenidae, Liparidae and Zoarcidae, dispersing from the North Pacific to the

south temperate and Southern Ocean, through the tropics via cold deep waters (“isothermic

submersion”, Briggs 2003, Mecklenburg et al. 2011). Furthermore, in the Southern Ocean,

the composition of species in the shallow-waters is dominated by the endemic notothen
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icefishes. In deep-water, however, representatives of other families are a larger percentage of

the diversity, thus reducing Arctic endemism at depth.

Rates of dispersal from shallow to deep water were much greater in the high latitudes

than all other vertical dispersal rates. In the Arctic, this is consistent with adaptation to

deeper, ice-free waters documented for a number of lineages in response to regional cooling

over the last several million years (Mecklenburg et al. 2011). We might also expect rates of

dispersal to be greater in the high latitudes simply because the sea temperature of shallow

and deep water is more similar in these regions than anywhere else on the planet. Evidence

of this can be found in the average depth ranges of tropical and polar species, where polar

species generally have broader depth ranges, according to FishBase depth data (median

tropical and polar depth range: 50m and 700m, across 8291 and 282 species, respectively).

Taken together, we find that rates of dispersal seem to reflect historical and current en-

vironmental similarity across latitudinal regions. Rates are low between the tropics and the

high latitudes, where the environmental conditions are exceedingly harsh and colonization

necessitates specialized adaptations. In contrast, rates between the high latitudes and the

temperate regions are drastically higher for the Arctic. We see lower immigration and em-

igration rates out of the shallow Southern Ocean, which is inhabited primarily by species

that have evolved narrow environmental niches. Perhaps most convincing is that dispersal

rates are substantially higher for deep-water species, which experience greater environmental

homogeneity than at the surface. Additionally, rates from shallow to deep-water in the high

latitudes, which are most similar in terms of temperature, are the highest vertical dispersal

rates.

Counts of dispersal events via parsimony analysis capture a pattern that is in stark

contrast to the pattern in transition rates across latitudinal zones (Figure 3). These event

counts are strongly correlated with species richness of the dispersal source regions (Spearman

r = 0.833). If we take speciation as an example, the tropics have significantly lower rates of

speciation than the higher latitudes (Figure 1, Rabosky et al. 2018); however, we count a
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much greater number of speciation events in the tropical region (Figure S4). If a lineage has

on average a relatively low probability of undergoing speciation, but there are many such

lineages, then the realized outcome will be many speciation events. Likewise, if there is a

low probability that a species would disperse out of the tropics, but there are thousands

of tropical taxa, the realized outcome will be more dispersal events than in the opposite

direction. Therefore, we may find a strong pattern of rates of dispersal biased in a “poles to

tropics” direction, but tropical inertia due to high species richness results in a net realized

dispersal pattern out of the tropics. In their original description of the OTT model, Jablonski

et al. (2006) considered counts of range expansion out of the tropics, and commented on

the events that allowed for extratropical expansion likely being infrequent (Jablonski et al.

2013). Our results are thus in agreement with the dispersal aspect of the OTT model.

Our results add to a growing number of studies that have found support for niche con-

servatism as a key concept in the generation and maintenance of the latitudinal diversity

gradient. In similar studies that explored the LDG in different groups of organisms, dis-

persal rates as inferred with GeoSSE (Goldberg et al. 2011) were found to be greater from

extratropical to tropical regions in amphibians (Pyron and Wiens 2013), squamates (Pyron

2014), and in the Pheidole genus of ants (Economo et al. 2018). Although rates of dispersal

were not explicitly estimated, a significant role for niche conservatism in the LDG was found

for birds (Duchene and Cardillo 2015) and for new world woody angiosperms (Kerkhoff et

al. 2014). Additionally, Jablonski et al. (2013) found in marine bivalves that species with

broad latitudinal ranges appeared to be tracking regions of similar temperature, providing

another indication that thermal niche conservatism may be an important mechanism in the

shaping of the LDG. No other study has examined the role of dispersal in the generation

and maintenance of the LDG for marine fishes as a whole. Siqueira et al. (2016) focused

on four coral reef-associated fish families, and found that speciation rates were greater in

the tropics, while dispersal rates were greater out of the tropics. Cowman and Bellwood

(2013) characterized the Indo-Australian Archipelago as a region of diversity accumulation
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and a subsequent source of species movement into neighboring regions; however, their analy-

ses focused only on three reef-associated families and longitudinal lineage exchange between

major ocean basins. These studies do not contradict our findings, but rather differ from our

analyses in both taxonomic and geographic scope.

5.6 Conclusion

The tropics contain the greatest number of marine fish species, and over the evolutionary

history of the group, more species have dispersed out of the tropics, into the temperate,

and ultimately into the polar regions. However, biogeographic rates of dispersal are greatest

in the opposite direction: from the poles towards the tropics. The frequency and direction

of dispersal events reflect the realized movement of lineages, resulting from species richness

inertia despite the directionality of the biogeographic transition rates. But high rates of

dispersal associated with the Arctic, indicate that the assembly of regional communities in

the northern high latitude regions is dominated by dispersal. In contrast, regional assembly

in the Southern Ocean has been dominated by in situ diversification. This is likely due to

the contrast in biogeographic and climatic histories of these regions.

Our results also highlight the importance of environmental niche conservatism in shaping

global patterns of diversity, and in determining the most likely dispersal routes. We found

that, the more environmentally similar regions are, the greater the rate of transition be-

tween them. This was particularly clear in the distinction between shallow and deep-water

transition rates. With recent anthropogenic climate change, the Arctic is warming faster

than the global average (Hoegh-Guldberg and Bruno 2010). With this shift, there are al-

ready documented cases of northern temperate species dispersing north into regions that

were once outside their tolerance ranges, and this is expected to increase dramatically over

the next century (Fossheim et al. 2015, Wisz et al. 2015). The biogeographic response to

climate change points to the sensitivity of marine species to sea temperature as determining

geographic range limits and provides an example of the global biogeographic repercussions
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that are likely to accompany a rapidly changing climate.
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Figure 5.1: Latitudinal regions and latitudinal diversity gradients. Tropical (red), temperate
(orange) and polar (blue) regions, as delineated from the MEOW (Spalding et al. 2007) and PPOW
(Spaling et al. 2012) datasets. Polygons visible within the colored regions show the MEOW marine
realms that separate marine shelf from open ocean regions. Latitudinal gradients for species richness
(dark orange) and speciation rates (light blue) are shown for shallow-water species (left) and for
deep-water species (right).
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Figure 5.2: Conceptual diagram of the biogeographic transition model that had the best model fit.
Transition rate parameters are labeled, and rates that are constrained to the same value have the
same label. This model was fit for the northern and southern hemispheres separately. Tr = tropical,
Te = temperate, Po = polar, SD = shallow→ deep, DS = deep→ shallow, E = local extinction.
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Figure 5.4: Ratios of dispersal to within-region speciation, based on parsimony. In (a) and (b),
out-of-the-Tropics (OTT) dispersals were used, therefore there is no ratio for the Tropics. In (c) and
(d), poles-to-Tropics (PTT) dispersals were used, hence there are no ratios for the polar regions,
and there is both a south Temperate→Tropics and a north Temperate→Tropics ratio. Boxplots
represent the distribution of ratios from 1000 parsimony-based ancestral state reconstructions, in
terms of their 5-95 and 25-75% quantiles. The Arctic exhibits a signature of dispersal-dominated
assembly, whereas in the Southern Ocean, within-region speciation is the dominant process of lineage
accumulation.
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hemisphere region depth full richness subset richness mean speciation rate
northern tropical shallow 6167 2796 0.09
northern temperate shallow 1412 968 0.14
northern polar shallow 96 78 0.14
northern tropical deep 2149 579 0.09
northern temperate deep 1230 591 0.13
northern polar deep 108 75 0.17
southern tropical shallow 6167 2796 0.09
southern temperate shallow 971 452 0.10
southern polar shallow 67 52 0.20
southern tropical deep 2149 579 0.09
southern temperate deep 1242 458 0.09
southern polar deep 430 185 0.17

Table 5.1: Richness and speciation rate values for the different latitudinal regions. Richness was
calculated as the number of species whose range is in each region (but not exclusively). Counts
from our geographic dataset are shown as ‘full richness’, and as ‘subset richness’ when intersected
with the taxa in the phylogeny.
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hemisphere model K logLik AICc ∆AICc wtAICc

north unconstrained 13 -3898.55 7823.18 0.00 1.00

north all shallow transitions equal 10 -3915.05 7850.15 26.96 0.00

north OTT model enforced for shallow 13 -3915.05 7856.18 32.99 0.00

north deep→ shallow = shallow→ deep for tropical/tem-
perate only

12 -3916.63 7857.33 34.15 0.00

north deep→ shallow = shallow→ deep 11 -3917.75 7857.55 34.37 0.00

north OTT model enforced for deep 13 -3921.88 7869.83 46.65 0.00

north shallow polar import = export, deep polar import
= export

11 -3952.11 7926.27 103.09 0.00

north OTT model enforced for shallow and deep 13 -3964.81 7955.70 132.52 0.00

north all deep transitions equal 10 -4056.26 8132.57 309.39 0.00

north shallow transitions equal, deep transitions equal 7 -4102.63 8219.29 396.11 0.00

south unconstrained 13 -2993.12 6012.31 0.00 1.00

south deep→ shallow = shallow→ deep for tropical/tem-
perate only

12 -2999.86 6023.77 11.47 0.00

south deep→ shallow = shallow→ deep 11 -3007.91 6037.87 25.56 0.00

south shallow polar import = export, deep polar import
= export

11 -3014.66 6051.37 39.06 0.00

south all shallow transitions equal 10 -3016.47 6052.98 40.67 0.00

south OTT model enforced for shallow 13 -3013.72 6053.51 41.20 0.00

south OTT model enforced for deep 13 -3025.80 6077.68 65.37 0.00

south OTT model enforced for shallow and deep 13 -3058.92 6143.92 131.61 0.00

south all deep transitions equal 10 -3102.04 6224.12 211.81 0.00

south shallow transitions equal, deep transitions equal 7 -3117.34 6248.69 236.38 0.00

Table 5.2: Model fit comparison for the northern and southern hemispheres. We found strong
support in each hemisphere for the unconstrained model.
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hemisphere region depth within-region speciation events within-region sister species normalized sister pairs

parsimony ML

tropical shallow 2701.49 2580.73 702 0.60

tropical deep 403.4 272.35 93 0.20

northern temperate shallow 543.72 547.14 133 0.25

northern polar shallow 12.53 25.9 3 0.07

northern temperate deep 292.21 197.21 82 0.21

northern polar deep 6.47 11.02 3 0.08

southern temperate shallow 159.83 264.91 53 0.20

southern polar shallow 25.15 4.04 5 0.15

southern temperate deep 223.67 146.1 46 0.15

southern polar deep 40.44 32.93 11 0.12

Table 5.4: Counts of within-region speciation events and sister pairs. We also calculated normalized
sister pair counts, which represent the percent of within-region pairs, compared to the number of
pairs pairs that include that region. There is a latitudinal gradient in all of these quantities.
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placed midway between those regions.
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CHAPTER VI

Conclusion

The work that I have presented in this dissertation touches on a wide range of topics

that are linked in their relevance to the study of spatial patterns of biodiversity. In addition

to the findings presented in these four research chapters, it is clear that there are countless

potential extensions of the topics discussed herein and many exciting opportunities to further

interweave phylogenetic history and geographic information across taxonomic, temporal and

spatial scales.

In Chapter 2 (Title and Rabosky 2017), we drew attention to a number of potential issues

that are in many ways unique to the large phylogenies currently being produced. With Aus-

tralian squamates as a case study, we demonstrated that differences in estimated divergence

times and topologies across existing large squamate phylogenies result in discrepancies that

can have a meaningful impact on downstream analyses. This is largely due to the inherent

difficulties in phylogenetic inference with thousands of taxa when the genetic data are sparse,

and when the tree space that needs to be searched is large. However, this field is rapidly

experiencing improvements and methodological advances that will mitigate some of these

issues in the future (Smith et al. 2010, Sanderson et al. 2015, Wright et al. 2015, Smith and

Brown 2018).

The different squamate phylogenies also differed substantially in terms of crown clade ages

for the different Australian groups. Perhaps more worrisome, none of the large phylogenies
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were consistent with the crown clade ages reported in the literature on these groups. A closer

look at the fossil calibration datasets employed in the time calibration of each phylogeny

revealed that only one fossil calibration was shared amongst all of them, and there was little

overlap with the fossil datasets used in the Australian squamate literature. Given these

findings, the conflict in divergence times may not be particularly surprising. Fortunately, a

number of recent works have since been published that present promising fossil calibrations

for use in squamate phylogenetics (Head et al. 2015, Head et al. 2016), including the oldest

known fossil stem squamate (Simões et al. 2018).

In Chapter 3 (Title and Bemmels 2018), we developed a comprehensive, open-source

bioclimatic resource that we believe will be useful for a number of applications. As we

demonstrated with several case studies, simply having a greater number of climatic variables

to select from gives us greater flexibility in choosing predictors appropriate to the species

under study, either through ecologically-informed manual selection or statistical variable

reduction (Warren et al. 2014). Additionally, some of the climatic variables we generated

have more direct relevance to ecological and physiological processes that may be important

in determining species range limits (for example, growing degree-days is linked to plant

phenology and growth rate; McMaster and Wilhelm 1997). These variables also make it

possible to craft more targeted hypotheses in a statistical phylogeographic framework. For

instance, Bemmels et al. (2016) used the ENVIREM dataset, in conjunction with the typical

19 bioclimatic variables from WorldClim (Hijmans et al. 2005), to test spatially-explicit

phylogeographic hypotheses.

Perhaps equally important, but somewhat lacking, is the development of evaluation met-

rics that can accurately identify biologically relevant predictors. Although it is essential to

have an adequate set of predictors to select from, current approaches are hindered by issues

of variable collinearity and spatial autocorrelation, where species distribution models will ap-

pear to perform well simply because true presences that are close in geographic space were

correctly classified as present (Lobo et al. 2008, Veloz 2009). Fourcade et al. (2017) went
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so far as to demonstrate that predictors entirely generated from classical paintings, and not

environmental data, could lead to species distribution models with reasonable performance,

using current approaches. Therefore, although we view the ENVIREM dataset as a valuable

new resource, other advances are desperately needed so that we may take full advantage of

these climatic predictors and fit biologically meaningful models.

In Chapter 4, we evaluated the accuracy of a number of model-free tip rate metrics, as well

as a Bayesian model-based approach, BAMM (Rabosky 2014). We tested these approaches

against a number of different simulated diversification scenarios, including time-constant

trees with multiple rate regimes, diversity-dependent trees, and trees where the rate of

speciation evolves continuously, rather than via discrete shifts (Rabosky 2010, Beaulieu and

O’Meara 2015). We demonstrated that model-free approaches (inverse of the terminal branch

lengths, node density from Freckleton et al. 2008, DR from Jetz et al. 2012) all clearly track

the rate of speciation and not diversification rates. This became notably apparent when the

rate of lineage turnover was high. In such a scenario, the rate of speciation can theoretically

take on a range of values, but net diversification (speciation minus extinction) must be low.

This has important implications for the interpretation of these metrics in diversification

dynamic studies, as a large tip rate value can still imply that equilibrial dynamics are in

effect (it can be matched by high rates of extinction), whereas if tip rates represent net

diversification rates, this would not be true.

We found that BAMM performed best in all of our evaluations. Furthermore, BAMM had

the least amount of error with trees where the rate of speciation changes continuously, which

is quite different from BAMM’s inference model. The DR metric also performed reasonably

well in our evaluations, outperforming BAMM for small rate regimes. However, whereas

BAMM might be conservative in its placement of diversification rate shifts, DR suffers from

high variance in tip rate estimates.

Overall, tip rates estimated with both BAMM and DR are proving to be valuable ap-

proaches to quantifying diversification rate variation across phylogenies. Of obvious relevance
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to the major themes of this dissertation, tip rates lend themselves well to the study of diversi-

fication in a geographic context, as these rates can be summarized across species assemblages

by grid-cell (Jetz et al. 2012, Kennedy et al. 2016, Oliveira et al. 2017, Quintero and Jetz

2018, Rabosky et al. 2018). Additionally, tip rates can be useful in the study of trait-

dependent diversification (Rabosky and Goldberg 2017, Harvey and Rabosky 2017), as they

make it possible to relax certain assumptions regarding rate homogeneity within character

states. They are also easy to calculate, and can therefore be applied to very large phylo-

genies. Future research could explore how DR performs for very large phylogenies, where

BAMM is incapable of converging due to the extremely large number of potential rate shift

locations. Although the same issues with DR that were found in this study would persist,

it would be important to assess whether or not this has any notable effect on hypothesis

testing, especially when the phylogeny contains thousands of species.

Several biases may exist in empirical phylogenies that were not explored in this study.

For instance, phylogenies rarely contain complete species representation, and there may be

bias in terms of the phylogenetic placements of those missing species. BAMM can account

for missing species analytically by incorporating the fraction of included species for different

nodes in the tree (Rabosky 2014). Despite these analytical corrections, BAMM may still

have lower statistical power to detect rate shifts, as power is related to the number of species

in a potential rate regime (Rabosky et al. 2017). Stochastic polytomy resolution, whereby

missing species are added to the phylogeny according to taxonomic constraints, may provide

a way to improve performance. By generating many possible trees with complete species

sampling, tip rate metrics can be calculated while integrating across alternative placements

of missing taxa. Estimates of DR should improve (Rabosky et al. 2018) and BAMM should

benefit from increased statistical power to identify rate shifts.

In Chapter 5, we explored how biogeographic dispersal has contributed to the latitudinal

diversity gradient in marine fishes. We found that rates of dispersal are higher in a poles-to-

tropics direction. Additionally, we recovered greater dispersal rates in deep-water, compared
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to shallow-water lineages. This supports the notion that biogeographic barriers in shallow

versus deep-water are not equivalent, and that there is greater environmental homogeneity on

a global scale at depth (Vecchione et al. 2015, Gaither et al. 2016, Priede 2017). We found

a strong contrast in rates between the northern and southern high latitudes, with dispersal

rates out of the Arctic being the greatest, and relatively low dispersal rates assoeciated with

the Southern Ocean, thus reflecting the Arctic’s history as an area of biotic interchange

between the north Pacific and north Atlantic oceans (Mecklenburg et al. 2011).

Counts of dispersal, as estimated through ancestral state reconstruction, show that direc-

tionality of dispersal rates does not imply realized net movement of species in that direction.

Rather, the strong latitudinal gradient in species richness is such that a lower rate of migra-

tion from a large species pool still leads to more dispersals than a higher rate of migration

from a small pool of species.

Overall, we find that the net migration of species across latitudes does support a key

prediction of the “out of the tropics” model of Jablonski et al. (2006); however, latitudinal

gradients in speciation rates do not (Rabosky et al. 2018). A critical piece of the puzzle

that is currently missing is an understanding of how rates of extinction vary across latitudes.

Previous research indicates that rates of extinction are likely to be elevated at high latitudes

(Weir and Schluter 2007, Clarke and Crame 2010, Botero et al. 2014, Weir 2014) and that

the high latitudes might therefore be characterized as regions of increased lineage turnover.

A number of studies have investigated the differences in diversification and dispersal in and

out of the tropics in a number of groups of organisms (Pyron and Wiens 2013, Pyron 2014,

Rolland et al. 2014, Economo et al. 2018, Pulido-Santacruz and Weir 2016) and have found

that rates of extinction are typically higher outside of the tropics. Although it is difficult

to accurately estimate rates of extinction from extant-only molecular phylogenies (Rabosky

2010, Mitchell et al. 2018), information from groups with a robust fossil record (such as

marine bivalves, Jablonski et al. 2017) and knowledge of past environmental change (Clarke

and Crame 2010, Mecklenburg et al. 2011) support the possibility that rates of extinction
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might be high at high latitudes, but a thorough understanding of how rates of extinction

and net diversification rate vary with latitude is needed.

The dispersal rate patterns that we present appear to indicate that environmental toler-

ances might be important in determining which species are more likely to disperse between

particular regions (Kerkhoff et al. 2014, Duchêne and Cardillo 2015), as we find greater dis-

persal in deep waters. Additional analyses that estimate dispersal rates for different groups

within marine fishes would allow us to take a more detailed look at these patterns, and

incorporate information on evolutionary lability and conservatism in species environmental

preferences as well as ecological attributes of these diverse groups.

This body of work, along with other studies, strengthens the call to link phylogenetic

information with species distributions. These studies also highlight the insights that can be

gained through the formal evaluation of phylogenetic methods and geospatial datasets in a

comparative framework. Finally, this work demonstrates the importance of global scale and

phylogenetically comprehensive analyses. Surprising findings that arise from this integrated

viewpoint challenge some of our former conceptions about the processes underlying major

biodiversity patterns across broad spatial and taxonomic scales.

185



BIBLIOGRAPHY

186



BIBLIOGRAPHY

Adams, D., Kozak, K.H. & Wiens, J.J. (2009) Are rates of species diversification correlated
with rates of morphological evolution? Proceedings of the Royal Society of London Series
B: Biological Sciences, 276, 2729–2738.

Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B. & Anderson, R.P. (2015)
spThin: an R package for spatial thinning of species occurrence records for use in ecological
niche models. Ecography, 38, 1–5.

Alfaro, M.E., Faircloth, B.C., Harrington, R.C., Sorenson, L., Friedman, M., Thacker, C.E.,
Oliveros, C.H., Černý, D. & Near, T.J. (2018) Explosive diversification of marine fishes at
the Cretaceous–Palaeogene boundary. Nature Ecology & Evolution, 2, 688–696.

Alfaro, M.E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D.L., Carnevale,
G. & Harmon, L.J. (2009) Nine exceptional radiations plus high turnover explain species
diversity in jawed vertebrates. Proceedings of the National Academy of Sciences, 106,
13410–13414.

Alfaro, M.E., Santini, F. & Brock, C.D. (2007) Do reefs drive diversification in marine
teleosts? Evidence from the pufferfishes and their allies (order Tetraodontiformes). Evo-
lution, 61, 2104–2126.

Allen, A.P., Brown, J.H. & Gillooly, J.F. (2002) Global biodiversity, biochemical kinetics,
and the energetic-equivalence rule. Science, 297, 1545–1548.

Alvarado-Serrano, D.F. & Knowles, L.L. (2014) Ecological niche models in phylogeographic
studies: applications, advances and precautions. Molecular Ecology Resources, 14, 233–
248.

Amatulli, G., Domisch, S., Tuanmu, M.N., Parmentier, B., Ranipeta, A., Malczyk, J. &
Jetz, W. (2018) A suite of global, cross-scale topographic variables for environmental and
biodiversity modeling. Scientific Data, 5, 180040.

Anderson, R.P. & Gonzalez Jr, I. (2011) Species-specific tuning increases robustness to sam-
pling bias in models of species distributions: An implementation with Maxent. Ecological
Modelling, 222, 2796–2811.

Antonelli, A., Zizka, A., Carvalho, F.A., Scharn, R., Bacon, C.D., Silvestro, D. & Condamine,
F.L. (2018) Amazonia is the primary source of Neotropical biodiversity. Proceedings of
the National Academy of Sciences, 60, 201713819–6.

187



Araújo, M.B. & Guisan, A. (2006) Five (or so) challenges for species distribution modelling.
Journal of Biogeography, 33, 1677–1688.

Austin, M.P. (2002) Spatial prediction of species distribution: an interface between ecological
theory and statistical modelling. Ecological Modelling, 157, 101–118.

Austin, M.P. & Van Niel, K.P. (2011) Improving species distribution models for climate
change studies: variable selection and scale. Journal of Biogeography, 38, 1–8.

Barbet-Massin, M. & Jetz, W. (2014) A 40-year, continent-wide, multispecies assessment of
relevant climate predictors for species distribution modelling. Diversity and Distributions,
20, 1285–1295.

Barbosa, A.M. (2015) fuzzySim: applying fuzzy logic to binary similarity indices in ecology.
Methods in Ecology and Evolution, 6, 853–858.

Barker, F.K., Burns, K.J., Klicka, J., Lanyon, S.M. & Lovette, I.J. (2013) Going to extremes:
contrasting rates of diversification in a recent radiation of new world passerine birds.
Systematic Biology, 62, 298–320.

Beaulieu, J.M. & O’Meara, B.C. (2015) Extinction can be estimated from moderately sized
molecular phylogenies. Evolution, 69, 1036–1043.

Beaulieu, J.M. & O’Meara, B.C. (2016) Detecting Hidden Diversification Shifts in Models
of Trait-Dependent Speciation and Extinction. Systematic Biology, 65, 583–601.

Becker, J.J., Sandwell, D.T., Smith, W.H.F., Braud, J., Binder, B., Depner, J., Fabre,
D., Factor, J., Ingalls, S., Kim, S.H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A.,
Trimmer, R., Von Rosenberg, J., Wallace, G. & Weatherall, P. (2009) Global Bathymetry
and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Marine Geodesy, 32,
355–371.

Bell, M. & Laine, E.P. (1985) Erosion of the Laurentide region of North America by glacial
and glaciofluvial processes. Quaternary Research, 23, 154–174.

Belmaker, J. & Jetz, W. (2012) Regional Pools and Environmental Controls of Vertebrate
Richness. The American Naturalist, 179, 512–523.

Belmaker, J. & Jetz, W. (2015) Relative roles of ecological and energetic constraints, diver-
sification rates and region history on global species richness gradients. Ecology Letters,
18, 563–571.

Bemmels, J.B., Title, P.O., Ortego, J. & Knowles, L.L. (2016) Tests of species-specific models
reveal the importance of drought in postglacial range shifts of a Mediterranean-climate
tree: insights from integrative distributional, demographic and coalescent modelling and
ABC model selection. Molecular Ecology, 25, 4889–4906.

Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D.,
Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L. & Purvis, A. (2007) The delayed
rise of present-day mammals. Nature, 446, 507–512.

188



Böhner, J., Köthe, R., Conrad, O., Gross, J., Ringeler, A. & Selige, T. (2002) Soil Regional-
isation by Means of Terrain Analysis and Process Parameterisation, volume EUR 20398
EN, pp. 213–222. The European Soil Bureau, Joint Research Centre, Ispra.

Booth, T.H., Nix, H.A., Busby, J.R. & Hutchinson, M.F. (2014) bioclim: the first species
distribution modelling package, its early applications and relevance to most current Max-
Entstudies. Diversity and Distributions, 20, 1–9.

Botero, C.A., Dor, R., McCain, C.M. & Safran, R.J. (2014) Environmental harshness is pos-
itively correlated with intraspecific divergence in mammals and birds. Molecular Ecology,
23, 259–268.

Boyer, T., Antonov, J.I., Baranova, O.K., Coleman, C., Garcia, H.E., Grodsky, A., Johnson,
D.R., Locarnini, R.A., Mishonov, A.V., O’Brien, T.D., Paver, C.R., Reagan, J.R., Seidov,
D., Smolyar, I.V. & Zweng, M.M. (2013) World ocean database. Technical Report 209,
NOAA, Silver Spring, MD.

Braunisch, V., Coppes, J., Arlettaz, R., Suchant, R., Schmid, H. & Bollmann, K. (2013)
Selecting from correlated climate variables: a major source of uncertainty for predicting
species distributions under climate change. Ecography, 36, 971–983.

Briggs, J.C. (2000) Centrifugal speciation and centres of origin. Journal of Biogeography,
27, 1183–1188.

Briggs, J.C. (2003) Marine centres of origin as evolutionary engines. Journal of Biogeography,
30, 1–18.

Briggs, J.C. & Bowen, B.W. (2012) A realignment of marine biogeographic provinces with
particular reference to fish distributions. Journal of Biogeography, 39, 12–30.

Briggs, J.C. & Bowen, B.W. (2013) Marine shelf habitat: biogeography and evolution. Jour-
nal of Biogeography, 40, 1023–1035.

Bromham, L., Hua, X. & Cardillo, M. (2016) Detecting Macroevolutionary Self-Destruction
from Phylogenies. Systematic Biology, 65, 109–127.

Brown, A. & Thatje, S. (2013) Explaining bathymetric diversity patterns in marine ben-
thic invertebrates and demersal fishes: physiological contributions to adaptation of life at
depth. Biological Reviews, 89, 406–426.

Brown, J.L. & Knowles, L.L. (2012) Spatially explicit models of dynamic histories: exami-
nation of the genetic consequences of Pleistocene glaciation and recent climate change on
the American Pika. Molecular Ecology, 21, 3757–3775.

Brown, J.M. (2014a) Detection of Implausible Phylogenetic Inferences Using Posterior Pre-
dictive Assessment of Model Fit. Systematic Biology, 63, 334–348.

Brown, J.M. (2014b) Predictive approaches to assessing the fit of evolutionary models. Sys-
tematic Biology, 63, 289–292.

189



Budic, L., Didenko, G. & Dormann, C.F. (2015) Squares of different sizes: effect of geograph-
ical projection on model parameter estimates in species distribution modeling. Ecology
and Evolution, 6, 202–211.

Burin, G., Alencar, L.R.V., Chang, J., Alfaro, M.E. & Quental, T.B. (2018) How Well Can
We Estimate Diversity Dynamics for Clades in Diversity Decline? Systematic Biology,
105.

Burleigh, J.G., Kimball, R.T. & Braun, E.L. (2015) Building the avian tree of life using a
large-scale, sparse supermatrix. Molecular Phylogenetics and Evolution, 84, 53–63.

Burnham, K.P. & Anderson, D.R. (2004) Multimodel Inference: Understanding AIC and
BIC in Model Selection. Sociological Methods & Research, 33, 261–304.

Caetano, D., O’Meara, B. & Beaulieu, J. (2018) Hidden state models improve the adequacy of
state-dependent diversification approaches using empirical trees, including biogeographical
models. biorxivorg.

Cai, T., Fjeldså, J., Wu, Y., Shao, S., Chen, Y., Quan, Q., Li, X., Song, G., Qu, Y., Qiao, G.
& Lei, F. (2017) What makes the Sino-Himalayan mountains the major diversity hotspots
for pheasants? Journal of Biogeography, 45, 640–651.

Caldwell, M.W., Nydam, R.L., Palci, A. & Apesteguía, S. (2015) The oldest known snakes
from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution. Nature
Communications, 6, 1–11.

Cardillo, M. (1999) Latitude and rates of diversification in birds and butterflies. Proceedings
of the Royal Society of London Series B: Biological Sciences, 266, 1221–1225.

Cardillo, M., Orme, C.D.L. & Owens, I.P.F. (2005) Testing for Latitudinal Bias in Diversi-
fication Rates: An Example Using New World Birds. Ecology, 86, 2278–2287.

Castro-Insua, A., Gómez-Rodriguez, C., Wiens, J.J. & Baselga, A. (2018) Climatic niche di-
vergence drives patterns of diversification and richness among mammal families. Scientific
Reports, p. 8781.

Chan, L.M. & Brown, J.L. (2011) Integrating statistical genetic and geospatial methods
brings new power to phylogeography. Molecular Phylogenetics and Evolution, 59, 523–
537.

Cheng, C.H.C. (2003) Functional Antifreeze Glycoprotein Genes in Temperate-Water New
Zealand Nototheniid Fish Infer an Antarctic Evolutionary Origin. Molecular Biology and
Evolution, 20, 1897–1908.

Claramunt, S. (2010) Discovering exceptional diversifications at continental scales: the case
of the endemic families of Neotropical suboscine passerines. Evolution, 64, 2004–2019.

Clarke, A. & Crame, J.A. (2010) Evolutionary dynamics at high latitudes: speciation and
extinction in polar marine faunas. Philosophical Transactions of the Royal Society B:
Biological Sciences, 365, 3655–3666.

190



Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F., Aguzzi, J., Balles-
teros, E., Bianchi, C.N., Corbera, J., Dailianis, T., Danovaro, R., Estrada, M., Froglia, C.,
Galil, B.S., Gasol, J.M., Gertwagen, R., Gil, J., Guilhaumon, F., Kesner-Reyes, K., Kit-
sos, M.S., Koukouras, A., Lampadariou, N., Laxamana, E., López-Fé de la Cuadra, C.M.,
Lotze, H.K., Martin, D., Mouillot, D., Oro, D., Raicevich, S., Rius-Barile, J., Saiz-Salinas,
J.I., San Vicente, C., Somot, S., Templado, J., Turon, X., Vafidis, D., Villanueva, R. &
Voultsiadou, E. (2010) The Biodiversity of the Mediterranean Sea: Estimates, Patterns,
and Threats. PLoS ONE, 5, e11842–36.

Collins, W.D., Bitz, C.M., Blackmon, M.L., Bonan, G.B., Bretherton, C.S., Carton, J.A.,
Chang, P., Doney, S.C., Hack, J.J. & Henderson, T.B. (2006) The community climate
system model version 3 (CCSM3). Journal of Climate, 19, 2122–2143.

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wich-
mann, V. & Böhner, J. (2015) System for automated geoscientific analyses (saga) v. 2.1.4.
Geoscientific Model Development, 8, 1991–2007.

Constable, H., Guralnick, R.P., Wieczorek, J., Spencer, C. & Peterson, A.T. (2010) VertNet:
A new model for biodiversity data sharing. PLoS Biology, 8, e1000309.

Cowman, P.F. & Bellwood, D.R. (2013) The historical biogeography of coral reef fishes:
global patterns of origination and dispersal. Journal of Biogeography, 40, 209–224.

Coyne, J.A. & Orr, H.A. (2004) Speciation. Sinauer, Cambridge.

Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guegan, J.F., Hawkins, B.A., Kauf-
man, D.M., Kerr, J.T., Oberdorff, T., O’Brien, E. & Turner, J.R.G. (2004) Predictions and
tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology
Letters, 7, 1121–1134.

Daget, P. (1977) Le bioclimat méditerranéen: analyse des formes climatiques par le système
d’Emberger. Vegetatio, 32, 87–103.

Daly, C., Gibson, W.P., Taylor, G.H., Johnson, G.L. & Pasteris, P. (2002) A knowledge-based
approach to the statistical mapping of climate. Climate research, 22, 99–113.

Davis, E.B., McGuire, J.L. & Orcutt, J.D. (2014) Ecological niche models of mammalian
glacial refugia show consistent bias. Ecography, 37, 1133–1138.

Davis Rabosky, A.R., Cox, C.L., Rabosky, D.L., Title, P.O., Holmes, I.A., Feldman, A. &
McGuire, J.A. (2016) Coral snakes predict the evolution of mimicry across New World
snakes. Nature Communications, 7, 11484.

Developers, K..M. (2004) K-1 coupled gcm (miroc) description. Technical Report K-1 Tech-
nical Report 1, Univ. of Tokyo, Cent. for Clim. Syst. Res., Tokyo.

DeVries, A.L. & Steffensen, J.F. (2005) The Arctic and Antarctic Polar Marine Environ-
ments. Physiology of Polar Fishes, pp. 1–24. Elsevier, New York.

191



Donoghue, M.J. & Edwards, E.J. (2014) Biome Shifts and Niche Evolution in Plants. Annual
Review of Ecology, Evolution, and Systematics, 45, 547–572.

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G.,
Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E.,
Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D. & Lautenbach, S. (2012) Collinear-
ity: a review of methods to deal with it and a simulation study evaluating their perfor-
mance. Ecography, 36, 27–46.

Dornburg, A., Federman, S., Lamb, A.D., Jones, C.D. & Near, T.J. (2017) Cradles and
museums of Antarctic teleost biodiversity. Nature Ecology & Evolution, pp. 1–6.

Doswald, N., Willis, S.G., Collingham, Y.C., Pain, D.J., Green, R.E. & Huntley, B. (2009)
Potential impacts of climatic change on the breeding and non-breeding ranges and migra-
tion distance of European Sylviawarblers. Journal of Biogeography, 36, 1194–1208.

Driskell, A.C., Ané, C., Burleigh, J.G., McMahon, M.M., O’Meara, B.C. & Sanderson, M.J.
(2004) Prospects for building the tree of life from large sequence databases. Science, 306,
1172–1174.

Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling
trees. BMC Evolutionary Biology, 7, 214.

Duchêne, D.A. & Cardillo, M. (2015) Phylogenetic patterns in the geographic distributions
of birds support the tropical conservatism hypothesis. Global Ecology and Biogeography,
24, 1261–1268.

Duchêne, S., Lanfear, R. & Ho, S.Y.W. (2014) The impact of calibration and clock-model
choice on molecular estimates of divergence times. Molecular Phylogenetics and Evolution,
78, 277–289.

Dyke, A.S., Andrews, J.T., Clark, P.U. & England, J.H. (2002) The Laurentide and Innuitian
ice sheets during the last glacial maximum. Quaternary Science Reviews, 21, 9–31.

Eastman, J.T. (1993) Antarctic fish biology: evolution in a unique environment. Academic
Press.

Eastman, J.T. (2005) The nature of the diversity of Antarctic fishes. Polar Biology, 28,
93–107.

Economo, E.P., Huang, J.P., Fischer, G., Sarnat, E.M., Narula, N., Janda, M., Guénard, B.,
Longino, J.T. & Knowles, L.L. (2018a) Evolution of the latitudinal diversity gradient in
the hyperdiverse ant genus Pheidole. biorxivorg, pp. 1–41.

Economo, E.P., Narula, N., Friedman, N.R., Weiser, M.D. & Guénard, B. (2018b) Macroe-
cology and macroevolution of the latitudinal diversity gradient in ants. Nature Commu-
nications, p. 1778.

192



Ellwood, E.R., Dunckel, B.A., Flemons, P., Guralnick, R.P., Nelson, G., Newman, G., New-
man, S., Paul, D., Riccardi, G., Rios, N., Seltmann, K.C. & Mast, A.R. (2015) Accelerating
the Digitization of Biodiversity Research Specimens through Online Public Participation.
BioScience, 65, 383–396.

Etienne, R.S. & Haegeman, B. (2012) A Conceptual and Statistical Framework for Adaptive
Radiations with a Key Role for Diversity Dependence. The American Naturalist, 180,
E75–E89.

Etienne, R.S. & Rosindell, J. (2012) Prolonging the Past Counteracts the Pull of the Present:
Protracted Speciation Can Explain Observed Slowdowns in Diversification. Systematic
Biology, 61, 204–213.

Faurby, S. & Svenning, J.C. (2015) A species-level phylogeny of all extant and late Quater-
nary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Molecular
Phylogenetics and Evolution, 84, 14–26.

Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces
for global land areas. International Journal of Climatology, 21, 455–14.

Fine, P.V.A. (2015) Ecological and Evolutionary Drivers of Geographic Variation in Species
Diversity. Annual Review of Ecology, Evolution, and Systematics, 46, 369–392.

FitzJohn, R.G., Maddison, W.P. & Otto, S.P. (2009) Estimating Trait-Dependent Speciation
and Extinction Rates from Incompletely Resolved Phylogenies. Systematic Biology, 58,
595–611.

FitzJohn, R.G. (2010) Quantitative traits and diversification. Systematic Biology, 59, 619–
633.

FitzJohn, R.G. (2012) Diversitree: comparative phylogenetic analyses of diversification in
R. Methods in Ecology and Evolution, pp. no–no.

Fossheim, M., Primicerio, R., Johannesen, E., Ingvaldsen, R.B., Aschan, M.M. & Dolgov,
A.V. (2015) Recent warming leads to a rapid borealization of fish communities in the
Arctic. Nature Climate Change, 5, 673–677.

Fourcade, Y., Besnard, A.G. & Secondi, J. (2017) Paintings predict the distribution of
species, or the challenge of selecting environmental predictors and evaluation statistics.
Global Ecology and Biogeography, 27, 245–256.

Freckleton, R. & Jetz, W. (2009) Space versus phylogeny: disentangling phylogenetic and
spatial signals in comparative data. Proceedings of the Royal Society of London Series B:
Biological Sciences, 276, 21.

Freckleton, R.P., Phillimore, A.B. & Pagel, M. (2008) Relating Traits to Diversification: A
Simple Test. The American Naturalist, 172, 102–115.

193



Fritz, S.A. & Rahbek, C. (2012) Global patterns of amphibian phylogenetic diversity. Journal
of Biogeography, 39, 1373–1382.

Gaither, M.R., Bowen, B.W., Rocha, L.A. & Briggs, J.C. (2015) Fishes that rule the world:
circumtropical distributions revisited. Fish and Fisheries, 17, 664–679.

Gaither, M.R., Violi, B., Gray, H.W.I., Neat, F., Drazen, J.C., Grubbs, R.D., Roa-Varón,
A., Sutton, T. & Hoelzel, A.R. (2016) Depth as a driver of evolution in the deep sea: In-
sights from grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides. Molecular
Phylogenetics and Evolution, 104, 73–82.

Gavin, D.G., Fitzpatrick, M.C., Gugger, P.F., Heath, K.D., Rodríguez-Sánchez, F., Do-
browski, S.Z., Hampe, A., Hu, F.S., Ashcroft, M.B., Bartlein, P.J., Blois, J.L., Carstens,
B.C., Davis, E.B., de Lafontaine, G., Edwards, M.E., Fernandez, M., Henne, P.D., Her-
ring, E.M., Holden, Z.A., Kong, W.s., Liu, J., Magri, D., Matzke, N.J., McGlone, M.S.,
Saltré, F., Stigall, A.L., Tsai, Y.H.E. & Williams, J.W. (2014) Climate refugia: joint infer-
ence from fossil records, species distribution models and phylogeography. New Phytologist,
204, 37–54.

Glor, R.E. & Warren, D.L. (2011) Testing ecological explanations for biogeographic bound-
aries. Evolution, 65, 673–683.

Goldberg, E.E., Lancaster, L.T. & Ree, R.H. (2011) Phylogenetic inference of reciprocal
effects between geographic range evolution and diversification. Systematic Biology, 60,
451–465.

Goldberg, E.E., Roy, K., Lande, R. & Jablonski, D. (2005) Diversity, endemism, and age
distributions in macroevolutionary sources and sinks. The American Naturalist, 165, 623–
633.

Gomes, A.C.R., Sorenson, M.D. & Cardoso, G.C. (2016) Speciation is associated with chang-
ing ornamentation rather than stronger sexual selection. Evolution, 70, 2823–2838.

Graham, C.H. & Fine, P.V.A. (2008) Phylogenetic beta diversity: linking ecological and
evolutionary processes across space in time. Ecology Letters, 11, 1265–1277.

Graur, D. & Martin, W. (2004) Reading the entrails of chickens: molecular timescales of
evolution and the illusion of precision. Trends in Genetics, 20, 80–86.

Greer, A.E. (1979) A phylogenetic subdivision of Australian skinks. Records of the Australian
Museum, 32, 339–371.

Guralnick, R.P., Wieczorek, J., Beaman, R. & Hijmans, R.J. (2006) BioGeomancer: auto-
mated georeferencing to map the world’s biodiversity data. PLoS Biology, 4, e381.

Hamann, A., Roberts, D.R., Barber, Q.E., Carroll, C. & Nielsen, S.E. (2014) Velocity of cli-
mate change algorithms for guiding conservation and management. Global Change Biology,
21, 997–1004.

194



Hamann, A., Wang, T., Spittlehouse, D.L. & Murdock, T.Q. (2013) A Comprehensive,
High-Resolution Database of Historical and Projected Climate Surfaces for Western North
America. Bulletin of the American Meteorological Society, 94, 1307–1309.

Hargreaves, G.L. & Hargreaves, G.H. (1985) Irrigation water requirements for Senegal River
basin. Journal of Irrigation and Drainage Engineering, 111, 265–275.

Harvey, M.G. & Rabosky, D.L. (2017) Continuous traits and speciation rates: Alternatives
to state-dependent diversification models. Methods in Ecology and Evolution, 12, 751–10.

Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guegan, J.F., Kaufman, D.M., Kerr,
J.T., Mittelbach, G.G., Oberdorff, T., OBrian, E.M., Porter, E.E. & Turner, J.R.G. (2003)
Energy, Water, and Broad-Scale Geographic Patterns of Species Richness. Ecology, 84,
3105–3117.

He, Q., Edwards, D.L. & Knowles, L.L. (2013) Integrative testing of how environments
from the past to the present shape genetic structure across landscapes. Evolution, 67,
3386–3402.

Head, J.J. (2015) Fossil calibration dates for molecular phylogenetic analysis of snakes 1:
Serpentes, Alethinophidia, Boidae, Pythonidae. Palaeontologia Electronica, 18, 1–17.

Head, J.J., Mahlow, K. & Müller, J. (2016) Fossil calibration dates for molecular phylogenetic
analysis of snakes 2: Caenophidia, Colubroidea, Elapoidea, Colubridae. Palaeontologia
Electronica, 19, 1–21.

Heath, T.A., Huelsenbeck, J.P. & Stadler, T. (2014) The fossilized birth-death process for
coherent calibration of divergence-time estimates. Proceedings of the National Academy of
Sciences, 111, E2957–E2966.

Hedges, S.B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. (2015) Tree of life reveals
clock-like speciation and diversification. Molecular Biology and Evolution, 32, 835–845.

Helmus, M.R., Bland, T.J., Williams, C.K. & Ives, A.R. (2007) Phylogenetic measures of
biodiversity. The American Naturalist, 169, E68–83.

Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M.,
Blagotić, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B., Guevara,
M.A., Vargas, R., MacMillan, R.A., Batjes, N.H., Leenaars, J.G.B., Ribeiro, E., Wheeler,
I., Mantel, S. & Kempen, B. (2017) SoilGrids250m: Global gridded soil information based
on machine learning. PLoS ONE, 12, e0169748–40.

Hijmans, R.J. (2016a) dismo: species distribution modeling. R package version 1.0-15.

Hijmans, R.J. (2016b) raster: Geographic Data Analysis and Modeling. R package version
2.5-8.

Hijmans, R.J., Cameron, S., Parra, J.L. & Jones, P. (2005) Very high resolution interpolated
climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

195



Hijmans, R.J. & Graham, C.H. (2006) The ability of climate envelope models to predict the
effect of climate change on species distributions. Global Change Biology, 12, 2272–2281.

Hillebrand, H. (2004) On the Generality of the Latitudinal Diversity Gradient. The American
Naturalist, 163, 192–211.

Hinchliff, C.E. & Roalson, E.H. (2013) Using supermatrices for phylogenetic inquiry: an
example using the sedges. Systematic Biology, 62, 205–219.

Hinchliff, C.E. & Smith, S.A. (2014) Some Limitations of Public Sequence Data for Phylo-
genetic Inference (in Plants). PLoS ONE, 9, e98986.

Hinchliff, C.E., Smith, S.A., Allman, J.F., Burleigh, J.G., Chaudhary, R., Coghill, L.M.,
Crandall, K.A., Deng, J., Drew, B.T., Gazis, R., Gude, K., Hibbett, D.S., Katz, L.A.,
Laughinghouse IV, H.D., McTavish, E.J., Midford, P.E., Owen, C.L., Ree, R.H., Rees,
J.A., Soltis, D.E., Williams, T. & Cranston, K.A. (2015) Synthesis of phylogeny and tax-
onomy into a comprehensive tree of life. Proceedings of the National Academy of Sciences,
112, 12764–12769.

Hof, A.R., Jansson, R. & Nilsson, C. (2012) The usefulness of elevation as a predictor variable
in species distribution modelling. Ecological Modelling, 246, 86–90.

Holt, B.G., Costa, G.C., Penone, C., Lessard, J.P., Brooks, T.M., Davidson, A.D.,
Blair Hedges, S., Radeloff, V.C., Rahbek, C., Rondinini, C. & Graham, C.H. (2017) En-
vironmental variation is a major predictor of global trait turnover in mammals. Journal
of Biogeography, 19, 134–13.

Howe, G.T., Aitken, S.N., Neale, D.B., Jermstad, K.D., Wheeler, N.C. & Chen, T.H. (2003)
From genotype to phenotype: unraveling the complexities of cold adaptation in forest
trees. Canadian Journal of Botany, 81, 1247–1266.

Hua, X. & Bromham, L. (2016) PHYLOMETRICS: an R package for detecting macroevo-
lutionary patterns, using phylogenetic metrics and backward tree simulation. Methods in
Ecology and Evolution, 7, 806–810.

Hua, X. & Wiens, J.J. (2013) How Does Climate Influence Speciation? The American
Naturalist, 182, 1–12.

Hugall, A.F., Foster, R., Hutchinson, M. & Lee, M.S.Y. (2008) Phylogeny of Australasian
agamid lizards based on nuclear and mitochondrial genes: implications for morphological
evolution and biogeography. Biological Journal of the Linnean Society, 93, 343–358.

Hugall, A.F., Foster, R. & Lee, M.S.Y. (2007) Calibration Choice, Rate Smoothing, and
the Pattern of Tetrapod Diversification According to the Long Nuclear Gene RAG-1.
Systematic Biology, 56, 543–563.

Jablonski, D., Belanger, C.L., Berke, S.K., Huang, S., Krug, A.Z., Roy, K., Tomasovych,
A. & Valentine, J.W. (2013) Out of the tropics, but how? Fossils, bridge species, and
thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proceedings
of the National Academy of Sciences, 110, 10487–10494.

196



Jablonski, D., Roy, K. & Valentine, J.W. (2006) Out of the Tropics: Evolutionary Dynamics
of the Latitudinal Diversity Gradient. Science, 314, 102–106.

Jablonski, D. (2008) Species selection: Theory and data. Annual Review of Ecology, Evolu-
tion, and Systematics, 39, 501–524.

Jablonski, D., Huang, S., Roy, K. & Valentine, J.W. (2017) Shaping the Latitudinal Diversity
Gradient: New Perspectives from a Synthesis of Paleobiology and Biogeography. The
American Naturalist, 189, 1–12.

Jetz, W. & Pyron, R.A. (2018) The interplay of past diversification and evolutionary isolation
with present imperilment across the amphibian tree of life. Nature Ecology & Evolution,
2, 850–858.

Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. (2012) The global diversity
of birds in space and time. Nature, 491, 444–448.

Jezkova, T. & Wiens, J.J. (2018) Testing the role of climate in speciation: New methods and
applications to squamate reptiles (lizards and snakes). Molecular Ecology, 27, 2754–2769.

Jones, M.E., Anderson, C.L., Hipsley, C.A., Müller, J., Evans, S.E. & Schoch, R.R. (2013)
Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards,
snakes, and tuatara). BMC Evolutionary Biology, 13, 208.

Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmer-
mann, N.E., Linder, H.P. & Kessler, M. (2017) Data Descriptor: Climatologies at high
resolution for the earth’s land surface areas. Scientific Data, 4, 1–20.

Kaschner, K., Watson, R., Trites, A.W. & Pauly, D. (2006) Mapping world-wide distributions
of marine mammal species using a relative environmental suitability (RES) model. Marine
Ecology Progress Series, 316, 285–310.

Katul, G.G., Oren, R., Manzoni, S., Higgins, C. & Parlange, M.B. (2012) Evapotranspiration:
A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate
system. Reviews of Geophysics, 50, 1–25.

Kay, K., Voelckel, C., Yang, J.Y., Hufford, K.M., Kaska, D.D. & Hodges, S.A. (2006) Floral
characters and species diversification. Oxford Univ. Press Oxford, Oxford.

Kearney, M., Phillips, B.L., Tracy, C.R., Christian, K.A., Betts, G. & Porter, W.P. (2008)
Modelling species distributions without using species distributions: the cane toad in Aus-
tralia under current and future climates. Ecography, 31, 423–434.

Kennedy, J.D., Borregaard, M.K., Jønsson, K.A., Holt, B., Fjeldså, J. & Rahbek, C. (2016)
Does the colonization of new biogeographic regions influence the diversification and ac-
cumulation of clade richness among the Corvides (Aves: Passeriformes)? Evolution, pp.
38–50.

197



Kennedy, J.D., Wang, Z., Weir, J.T., Rahbek, C., Fjeldså, J. & Price, T.D. (2014) Into and
out of the tropics: the generation of the latitudinal gradient among New World passerine
birds. Journal of Biogeography, 41, 1746–1757.

Kennett, J.P. (1982) Marine Geology, 813 pp. Prentice-Hall, Englewood Cliffs, NJ.

Keogh, J.S. (1998) Molecular phylogeny of elapid snakes and a consideration of their biogeo-
graphic history. Biological Journal of the Linnean Society, 63, 177–203.

Kerkhoff, A.J., Moriarty, P.E. & Weiser, M.D. (2014) The latitudinal species richness gra-
dient in New World woody angiosperms is consistent with the tropical conservatism hy-
pothesis. Proceedings of the National Academy of Sciences, 111, 8125–8130.

King, B. & Lee, M.S.Y. (2015) Ancestral State Reconstruction, Rate Heterogeneity, and the
Evolution of Reptile Viviparity. Systematic Biology, 64, 532–544.

Knowles, L.L. & Alvarado-Serrano, D.F. (2010) Exploring the population genetic conse-
quences of the colonization process with spatio-temporally explicit models: insights from
coupled ecological, demographic and genetic models in montane grasshoppers. Molecular
Ecology, 19, 3727–3745.

Kozak, K.H. & Wiens, J.J. (2010) Accelerated rates of climatic-niche evolution underlie rapid
species diversification. Ecology Letters, 13, 1378–1389.

Kozak, K.H. & Wiens, J.J. (2016) What explains patterns of species richness? The relative
importance of climatic-niche evolution, morphological evolution, and ecological limits in
salamanders. Ecology and Evolution, 6, 5940–5949.

Kriticos, D.J., Webber, B.L., Leriche, A., Ota, N., Macadam, I., Bathols, J. & Scott, J.K.
(2011) CliMond: global high-resolution historical and future scenario climate surfaces for
bioclimatic modelling. Methods in Ecology and Evolution, 3, 53–64.

Kuhn, T.S., Mooers, A.O. & Thomas, G.H. (2011) A simple polytomy resolver for dated
phylogenies. Methods in Ecology and Evolution, 2, 427–436.

Lassueur, T., Joost, S. & Randin, C.F. (2006) Very high resolution digital elevation models:
Do they improve models of plant species distribution? Ecological Modelling, 198, 139–153.

Lee, M.S.Y., Oliver, P.M. & Hutchinson, M.N. (2009) Phylogenetic uncertainty and molecu-
lar clock calibrations: A case study of legless lizards (Pygopodidae, Gekkota). Molecular
Phylogenetics and Evolution, 50, 661–666.

Lewis, P.O. (2001) A likelihood approach to estimating phylogeny from discrete morpholog-
ical character data. Systematic Biology, 50, 913–925.

Lewitus, E. & Morlon, H. (2016) Characterizing and Comparing Phylogenies from their
Laplacian Spectrum. Systematic Biology, 65, 495–507.

198



Lima-Ribeiro, M.S., Varela, S., González-Hernández, J., de Oliveira, G., Diniz-Filho, J.A.F.
& Terribile, L.C. (2015) Ecoclimate: A database of climate data from multiple models for
past, present, and future for macroecologists and biogeographers. Biodiversity Informatics,
10, 1–21.

Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008) AUC: a misleading measure of the
performance of predictive distribution models. Global Ecology and Biogeography, 17, 145–
151.

MacArthur, R.H. (1969a) Patterns of communities in the tropics. Biological Journal of the
Linnean Society, 1, 19–30.

MacArthur, R.H. (1969b) Patterns of communities in the tropics. Biological Journal of the
Linnean Society, 1, 19–30.

Maddison, W.P. & FitzJohn, R.G. (2014) The Unsolved Challenge to Phylogenetic Correla-
tion Tests for Categorical Characters. Systematic Biology, 64, 127–136.

Maddison, W.P., Midford, P.E. & Otto, S. (2007) Estimating a binary character’s effect on
speciation and extinction. Systematic Biology, 56, 701.

Magallón, S. & Sanderson, M.J. (2001) Absolute diversification rates in angiosperm clades.
Evolution, 55, 1762–1780.

Marin, J., Donnellan, S.C., Blair Hedges, S., Doughty, P., Hutchinson, M.N., Cruaud, C.
& Vidal, N. (2012) Tracing the history and biogeography of the Australian blindsnake
radiation. Journal of Biogeography, 40, 928–937.

Marin, J., Donnellan, S.C., Hedges, S.B., Puillandre, N., Aplin, K.P., Doughty, P., Hutchin-
son, M.N., Couloux, A. & Vidal, N. (2013) Hidden species diversity of Australian burrow-
ing snakes (Ramphotyphlops). Biological Journal of the Linnean Society, 110, 427–441.

Marin, J. & Hedges, S.B. (2016) Time best explains global variation in species richness of
amphibians, birds and mammals. Journal of Biogeography, 43, 1069–1079.

Martínez-Meyer, E., Peterson, A.T., Servín, J.I. & Kiff, L.F. (2006) Ecological niche mod-
elling and prioritizing areas for species reintroductions. Oryx, 40, 411–8.

McMaster, G.S. & Wilhelm, W.W. (1997) Growing degree-days: one equation, two interpre-
tations. Agricultural and Forest Meteorology, 87, 291–300.

McPeek, M.A. & Brown, J.M. (2007) Clade age and not diversification rate explains species
richness among animal taxa. The American Naturalist, 169, E97–E106.

Mecklenburg, C.W., Mecklenburg, A.T., Sheiko, B.A. & Steinke, D. (2016) Pacific Arctic
Marine Fishes. CAFF International Secretariat.

Mecklenburg, C.W., Møller, P.R. & Steinke, D. (2011) Biodiversity of arctic marine fishes:
taxonomy and zoogeography. Marine Biodiversity, 41, 109–140.

199



Merow, C., Smith, M.J. & Silander Jr, J.A. (2013) A practical guide to MaxEnt for modeling
species’ distributions: what it does, and why inputs and settings matter. Ecography, 36,
1058–1069.

Metzger, M.J., Bunce, R.G.H., Jongman, R.H.G., Sayre, R., Trabucco, A. & Zomer, R.
(2013) A high-resolution bioclimate map of the world: a unifying framework for global
biodiversity research and monitoring. Global Ecology and Biogeography, 22, 630–638.

Meyer, A.L.S. & Wiens, J.J. (2017) Estimating diversification rates for higher taxa: BAMM
can give problematic estimates of rates and rate shifts. Evolution, 72, 39–53.

Misof, B., Meyer, B., von Reumont, B.M., Kück, P., Misof, K. & Meusemann, K. (2013)
Selecting informative subsets of sparse supermatrices increases the chance to find correct
trees. BMC bioinformatics, 14, 348.

Mitchell, J.S., Etienne, R.S. & Rabosky, D.L. (2018) Inferring Diversification Rate Variation
From Phylogenies With Fossils. Systematic Biology.

Mitchell, J.S. & Rabosky, D.L. (2016) Bayesian model selection with BAMM: effects of
the model prior on the inferred number of diversification shifts. Methods in Ecology and
Evolution, 8, 37–46.

Mittelbach, G.G., Schemske, D.W., Cornell, H.V., Allen, A.P., Brown, J.M., Bush, M.B.,
Harrison, S.P., Hurlbert, A.H., Knowlton, N., Lessios, H.A., McCain, C.M., McCune,
A.R., McDade, L.A., McPeek, M.A., Near, T.J., Price, T.D., Ricklefs, R.E., Roy, K., Sax,
D.F., Schluter, D., Sobel, J.M. & Turelli, M. (2007) Evolution and the latitudinal diversity
gradient: speciation, extinction and biogeography. Ecology Letters, 10, 315–331.

Moen, D. & Morlon, H. (2014) Why does diversification slow down? Trends in Ecology and
Evolution, 29, 190–197.

Moore, B.R., Höhna, S., May, M.R., Rannala, B. & Huelsenbeck, J.P. (2016) Critically
evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures.
Proceedings of the National Academy of Sciences, 113, 9569–9574.

Mora, C., Tittensor, D.P. & Myers, R.A. (2008) The completeness of taxonomic inventories
for describing the global diversity and distribution of marine fishes. Proceedings of the
Royal Society of London Series B: Biological Sciences, 275, 149–155.

Moreno-Amat, E., Mateo, R.G., Nieto-Lugilde, D., Morueta-Holme, N., Svenning, J.C. &
García-Amorena, I. (2015) Impact of model complexity on cross-temporal transferability in
Maxent species distribution models: An assessment using paleobotanical data. Ecological
Modelling, 312, 308–317.

Morin, X., Augspurger, C. & Chuine, I. (2007) Process-Based Modeling of Species’ Distribu-
tions: What Limits Temperate Tree Species’ Range Boundaries? Ecology, 88, 2280–2291.

200



Morin, X. & Thuiller, W. (2009) Comparing Niche- and Process-Based Models to Reduce
Prediction Uncertainty in Species Range Shifts under Climate Change. Ecology, 90, 1301–
1313.

Morlon, H., Parsons, T. & Plotkin, J. (2011) Reconciling molecular phylogenies with the
fossil record. Proceedings of the National Academy of Sciences, 108, 16327–16332.

Morlon, H., Schwilk, D.W., Bryant, J.A., Marquet, P.A., Rebelo, A.G., Tauss, C., Bohannan,
B.J.M. & Green, J.L. (2010) Spatial patterns of phylogenetic diversity. Ecology Letters,
14, 141–149.

Mulcahy, D.G., Noonan, B.P., Moss, T., Townsend, T.M., Reeder, T.W., Sites Jr., J.W.
& Wiens, J.J. (2012) Estimating divergence dates and evaluating dating methods using
phylogenomic and mitochondrial data in squamate reptiles. Molecular Phylogenetics and
Evolution, 65, 974–991.

Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J.M., Uriarte, M. &
Anderson, R.P. (2014) ENMeval: An R package for conducting spatially independent
evaluations and estimating optimal model complexity for Maxentecological niche models.
Methods in Ecology and Evolution, 5, 1198–1205.

Near, T.J., Bolnick, D.I. & Wainwright, P.C. (2005) Fossil calibrations and molecular di-
vergence time estimates in centrarchid fishes (Teleostei: Centrarchidae). Evolution, 59,
1768–1782.

Near, T.J., Dornburg, A., Kuhn, K.L., Eastman, J.T., Pennington, J.N., Patarnello, T.,
Zane, L., Fernandez, D.A. & Jones, C.D. (2012) Ancient climate change, antifreeze, and
the evolutionary diversification of Antarctic fishes. Proceedings of the National Academy
of Sciences, 109, 3434–3439.

Nee, S., Holmes, E.C., May, R.M. & Harvey, P.H. (1994a) Extinction Rates Can Be Esti-
mated From Molecular Phylogenies. Philosophical Transactions of the Royal Society B:
Biological Sciences, 344, 77–82.

Nee, S., May, R.M. & Harvey, P.H. (1994b) The reconstructed evolutionary process. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 344, 305–311.

Nee, S., Mooers, A. & Harvey, P.H. (1992) Tempo and Mode of Evolution Revealed From
Molecular Phylogenies. Proceedings of the National Academy of Sciences, 89, 8322–8326.

Ng, J. & Smith, S.D. (2014) How traits shape trees: new approaches for detecting character
state-dependent lineage diversification. Journal of Evolutionary Biology, 27, 2035–2045.

Nosil, P. & Mooers, A.O. (2005) Testing hypotheses about ecological specialization using
phylogenetic trees. Evolution, 59, 2256–2263.

O’Grady, S.M. & DeVries, A.L. (1982) Osmotic and ionic regulation in polar fishes. Journal
of Experimental Marine Biology and Ecology, 57, 219–228.

201



Oliveira, B.F., Machac, A., Costa, G.C., Brooks, T.M., Davidson, A.D., Rondinini, C. &
Graham, C.H. (2016) Species and functional diversity accumulate differently in mammals.
Global Ecology and Biogeography, 25, 1119–1130.

Oliver, P.M. & Sanders, K.L. (2009) Molecular evidence for Gondwanan origins of multiple
lineages within a diverse Australasian gecko radiation. Journal of Biogeography, 36, 2044–
2055.

Olson, D., Dinerstein, E., Wikramanayake, E., Burgess, N., Powell, G., Underwood, E.,
D’amico, J., Itoua, I., Strand, H. & Morrison, J. (2001) Terrestrial ecoregions of the
world: a new map of life on earth. BioScience, 51, 933–938.

Owens, H.L., Campbell, L.P., Dornak, L.L., Saupe, E.E., Barve, N., Soberón, J., Ingenloff,
K., Lira-Noriega, A., Hensz, C.M., Myers, C.E. & Peterson, A.T. (2013) Constraints on
interpretation of ecological niche models by limited environmental ranges on calibration
areas. Ecological Modelling, 263, 10–18.

Penone, C., Weinstein, B.G., Graham, C.H., Brooks, T.M., Rondinini, C., Hedges, S.B.,
Davidson, A.D. & Costa, G.C. (2016) Global mammal beta diversity shows parallel as-
semblage structure in similar but isolated environments. Proceedings of the Royal Society
of London Series B: Biological Sciences, 283, 20161028.

Peterson, A.T. & Nakazawa, Y. (2008) Environmental data sets matter in ecological niche
modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecology and
Biogeography, 17, 135–144.

Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura,
M. & Araújo, M.B. (2011) Ecological Niches and Geographic Distributions. Extinction
Risk from Climate Change. Princeton University Press.

Peterson, A.T., Soberón, J. & Sánchez-Cordero, V. (1999) Conservatism of ecological niches
in evolutionary time. Science, 285, 1265–1267.

Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species
geographic distributions. Ecological Modelling, 190, 231–259.

Pineda, E. & Lobo, J.M. (2009) Assessing the accuracy of species distribution models to
predict amphibian species richness patterns. Journal of Animal Ecology, 78, 182–190.

Portner, H.O. (2002) Climate variations and the physiological basis of temperature depen-
dent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Com-
parative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 132,
739–761.

Pradervand, J.N., Dubuis, A., Pellissier, L., Guisan, A. & Randin, C. (2014) Very high resolu-
tion environmental predictors in species distribution models: Moving beyond topography?
Progress in Physical Geography, 38, 79–96.

202



Price, S.A., Hopkins, S.S.B., Smith, K.K. & Roth, V.L. (2012) Tempo of trophic evolution
and its impact on mammalian diversification. Proceedings of the National Academy of
Sciences, 109, 7008–7012.

Priede, I.G. & Froese, R. (2013) Colonization of the deep sea by fishes. Journal of Fish
Biology, 83, 1528–1550.

Priede, I.G. (2017) Deep-sea fishes: biology, diversity, ecology and fisheries. Cambridge
University Press.

Prum, R.O., Berv, J.S., Dornburg, A., Field, D.J., Townsend, J.P., Lemmon, E.M. &
Lemmon, A.R. (2015) A comprehensive phylogeny of birds (Aves) using targeted next-
generation DNA sequencing. Nature, 526, 569–573.

Pulido-Santacruz, P. & Weir, J.T. (2016) Extinction as a driver of avian latitudinal diversity
gradients. Evolution, 70, 860–872.

Pybus, O.G. & Harvey, P.H. (2000) Testing macro-evolutionary models using incomplete
molecular phylogenies. Proceedings of the Royal Society of London Series B: Biological
Sciences, 267, 2267–2272.

Pyron, R.A. (2011) Divergence Time Estimation Using Fossils as Terminal Taxa and the
Origins of Lissamphibia. Systematic Biology, 60, 466–481.

Pyron, R.A. (2014) Temperate extinction in squamate reptiles and the roots of latitudinal
diversity gradients. Global Ecology and Biogeography, 23, 1126–1134.

Pyron, R.A. & Burbrink, F.T. (2014) Early origin of viviparity and multiple reversions to
oviparity in squamate reptiles. Ecology Letters, 17, 13–21.

Pyron, R.A., Burbrink, F.T. & Wiens, J.J. (2013) A phylogeny and revised classification of
Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13,
93.

Pyron, R.A. & Wiens, J.J. (2011) A large-scale phylogeny of Amphibia including over 2800
species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular
Phylogenetics and Evolution, 61, 543–583.

Pyron, R.A. & Wiens, J.J. (2013) Large-scale phylogenetic analyses reveal the causes of
high tropical amphibian diversity. Proceedings of the Royal Society of London Series B:
Biological Sciences, 280, 20131622.

Quental, T.B. & Marshall, C.R. (2011) The Molecular Phylogenetic Signature of Clades in
Decline. PLoS ONE, 6, e25780.

Quintero, I. & Jetz, W. (2018) Global elevational diversity and diversification of birds. Na-
ture, 555, 246–250.

R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria.

203



Rabosky, D.L. (2010) Extinction rates should not be estimated from molecular phylogenies.
Evolution, 64, 1816–1824.

Rabosky, D.L. (2014) Automatic detection of key innovations, rate shifts, and diversity-
dependence on phylogenetic trees. PLoS ONE, 9, e89543.

Rabosky, D.L. (2017) How to make any method "fail": BAMM at the kangaroo court of
false equivalency. arXivorg.

Rabosky, D.L., Chang, J., Title, P.O., Cowman, P.F., Sallan, L., Friedman, M., Kaschner,
K., Garilao, C., Near, T.J., Coll, M. & Alfaro, M.E. (2018) An inverse latitudinal gradient
in speciation rate for marine fishes. Nature, pp. 1–20.

Rabosky, D.L., Donnellan, S.C., Grundler, M. & Lovette, I.J. (2014a) Analysis and Visual-
ization of Complex Macroevolutionary Dynamics: An Example from Australian Scincid
Lizards. Systematic Biology, 63, 610–627.

Rabosky, D.L. & Goldberg, E.E. (2015) Model Inadequacy and Mistaken Inferences of Trait-
Dependent Speciation. Systematic Biology, 64, 340–355.

Rabosky, D.L. & Goldberg, E.E. (2017) FiSSE: A simple nonparametric test for the effects
of a binary character on lineage diversification rates. Evolution, 106, 13410–11.

Rabosky, D.L., Grundler, M., Anderson, C., Title, P.O., Shi, J.J., Brown, J.W., Huang,
H. & Larson, J.G. (2014b) BAMMtools: an R package for the analysis of evolutionary
dynamics on phylogenetic trees. Methods in Ecology and Evolution, 5, 701–707.

Rabosky, D.L. & Hurlbert, A.H. (2015) Species Richness at Continental Scales Is Dominated
by Ecological Limits. The American Naturalist, 185, 572–583.

Rabosky, D.L. & Lovette, I.J. (2008) Explosive evolutionary radiations: decreasing speciation
or increasing extinction through time? Evolution, 62, 1866–1875.

Rabosky, D.L., Mitchell, J.S. & Chang, J. (2017) Is BAMM Flawed? Theoretical and Prac-
tical Concerns in the Analysis of Multi-Rate Diversification Models. Systematic Biology,
66, 477–498.

Rabosky, D.L., Santini, F., Eastman, J., Smith, S.A., Sidlauskas, B., Chang, J. & Alfaro,
M.E. (2013) Rates of speciation and morphological evolution are correlated across the
largest vertebrate radiation. Nature Communications, 4, 1958.

Rabosky, D.L., Slater, G.J. & Alfaro, M.E. (2012) Clade age and species richness are decou-
pled across the eukaryotic tree of life. PLoS Biology, 10, e1001381.

Rabosky, D.L., Title, P.O. & Huang, H. (2015) Minimal effects of latitude on present-day
speciation rates in New World birds. Proceedings of the Royal Society of London Series
B: Biological Sciences, 282, 20142889.

Radosavljevic, A. & Anderson, R.P. (2014) Making better Maxent models of species distri-
butions: complexity, overfitting and evaluation. Journal of Biogeography, 41, 629–643.

204



Ramirez-Villegas, J. & Jarvis, A. (2010) Downscaling global circulation model outputs: the
delta method decision and policy analysis Working Paper No. 1, volume 1, pp. 1–18. In-
ternational Center for Tropical Agriculture (CIAT).

Rawlings, L.H., Rabosky, D.L., Donnellan, S.C. & Hutchinson, M.N. (2008) Python phylo-
genetics: inference from morphology and mitochondrial DNA. Biological Journal of the
Linnean Society, 93, 603–619.

Ready, J., Kaschner, K., South, A.B., Eastwood, P.D., Rees, T., Rius, J., Agbayani, E.,
Kullander, S. & Froese, R. (2010) Predicting the distributions of marine organisms at the
global scale. Ecological Modelling, 221, 467–478.

Redding, D.W. & Mooers, A.O. (2006) Incorporating Evolutionary Measures into Conserva-
tion Prioritization. Conservation Biology, 20, 1670–1678.

Ree, R.H. & Smith, S.A. (2008) Maximum Likelihood Inference of Geographic Range Evo-
lution by Dispersal, Local Extinction, and Cladogenesis. Systematic Biology, 57, 4–14.

Reeder, T.W., Townsend, T.M., Mulcahy, D.G., Noonan, B.P., Wood Jr, P.L., Sites Jr,
J.W. & Wiens, J.J. (2015) Integrated Analyses Resolve Conflicts over Squamate Reptile
Phylogeny and Reveal Unexpected Placements for Fossil Taxa. PLoS ONE, 10, e0118199.

Reynolds, R.G., Niemiller, M.L. & Revell, L.J. (2014) Toward a Tree-of-Life for the boas
and pythons: Multilocus species-level phylogeny with unprecedented taxon sampling .
Molecular Phylogenetics and Evolution, 71, 201–213.

Ricklefs, R.E. (2004) A comprehensive framework for global patterns in biodiversity. Ecology
Letters, 7, 1–15.

Ricklefs, R.E. (2006a) Global variation in the diversification rate of passerine birds. Ecology,
87, 2468–2478.

Ricklefs, R.E. (2006b) Global variation in the diversification rate of passerine birds. Ecology,
87, 2468–2478.

Rivas-Martínez, S. & Rivas-Sáenz, S. (2009) Synoptical worldwide bioclimatic classification
system. www.globalbioclimatics.org. Accessed 15 February 2016.

Robertson, T., Döring, M., Guralnick, R.P., Bloom, D., Wieczorek, J., Braak, K., Otegui,
J., Russell, L. & Desmet, P. (2014) The GBIF Integrated Publishing Toolkit: Facilitating
the Efficient Publishing of Biodiversity Data on the Internet. PLoS ONE, 9, e102623.

Robinson, D.F. & Foulds, L.R. (1981) Comparison of phylogenetic trees. Mathematical
Biosciences, 53, 131–147.

Rodda, G.H., Jarnevich, C.S. & Reed, R.N. (2011) Challenges in Identifying Sites Climati-
cally Matched to the Native Ranges of Animal Invaders. PLoS ONE, 6, e14670.

205

www.globalbioclimatics. org


Rödder, D., Schmidtlein, S., Veith, M. & Lötters, S. (2009) Alien Invasive Slider Turtle in
Unpredicted Habitat: A Matter of Niche Shift or of Predictors Studied? PLoS ONE, 4,
e7843–9.

Rogers, A.D. (2015) Environmental Change in the Deep Ocean. Annual Review of Environ-
ment and Resources, 40, 1–38.

Rohde, K. (1992) Latitudinal Gradients in Species Diversity: The Search for the Primary
Cause. Oikos, 65, 514.

Rolland, J., Condamine, F.L., Jiguet, F. & Morlon, H. (2014) Faster speciation and reduced
extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS
Biology, 12, e1001775.

Rolland, J. & Salamin, N. (2016) Niche width impacts vertebrate diversification. Global
Ecology and Biogeography, 25, 1252–1263.

Ronquist, F., Klopfstein, S., Vilhelmsen, L., Schulmeister, S., Murray, D.L. & Rasnitsyn,
A.P. (2012a) A Total-Evidence Approach to Dating with Fossils, Applied to the Early
Radiation of the Hymenoptera. Systematic Biology, 61, 973–999.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget,
B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012b) MrBayes 3.2: Efficient Bayesian
Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology,
61, 539–542.

Rosindell, J., Cornell, S.J., Hubbell, S.P. & Etienne, R.S. (2010) Protracted speciation revi-
talizes the neutral theory of biodiversity. Ecology Letters, 13, 716–727.

Roy, K. & Goldberg, E.E. (2007) Origination, extinction, and dispersal: Integrative mod-
els for understanding present-day diversity gradients. American Naturalist, pp. S71–85.
University of California, San Diego, San Diego, United States.

Sanders, K.L., Lee, M.S.Y., Leys, R., Foster, R. & Scott Keogh, J. (2008) Molecular phy-
logeny and divergence dates for Australasian elapids and sea snakes (hydrophiinae): evi-
dence from seven genes for rapid evolutionary radiations. Journal of Evolutionary Biology,
21, 682–695.

Sanders, K.L. & Lee, M.S.Y. (2008) Molecular evidence for a rapid late-Miocene radiation
of Australasian venomous snakes (Elapidae, Colubroidea). Molecular Phylogenetics and
Evolution, 46, 1165–1173.

Sanderson, M.J. & Donoghue, M.J. (1996) Reconstructing shifts in diversification rates on
phylogenetic trees. Trends in Ecology and Evolution, 11, 15–20.

Sanderson, M.J., McMahon, M.M., Stamatakis, A., Zwickl, D.J. & Steel, M. (2015) Impacts
of Terraces on Phylogenetic Inference. Systematic Biology, 64, 709–726.

206



Sanderson, M.J., Purvis, A. & Henze, C. (1998) Phylogenetic supertrees: assembling the
trees of life. Trends in Ecology and Evolution, 13, 105–109.

Sankoff, D. (1975) Minimal Mutation Trees of Sequences. Siam Journal on Applied Mathe-
matics, 28, 35–42.

Saupe, E.E., Barve, V., Myers, C.E., Soberón, J., Barve, N., Hensz, C.M., Peterson, A.T.,
Owens, H.L. & Lira-Noriega, A. (2012) Variation in niche and distribution model per-
formance: The need for a priori assessment of key causal factors. Ecological Modelling,
237-238, 11–22.

Sayre, R., Comer, P., Warner, H. & Cress, J. (2009) A new map of standardized terrestrial
ecosystems of the conterminous United States: US Geological Survey Professional Paper
1768. Technical report, US Geological Survey.

Scharf, I., Feldman, A., Novosolov, M., Pincheira-Donoso, D., Das, I., Böhm, M., Uetz,
P., Torres-Carvajal, O., Bauer, A., Roll, U. & Meiri, S. (2014) Late bloomers and baby
boomers: ecological drivers of longevity in squamates and the tuatara. Global Ecology and
Biogeography, 24, 396–405.

Schliep, K.P. (2011) phangorn: phylogenetic analysis in R. Bioinformatics, 27, 592–593.

Schoener, T.W. (1968) The Anolis Lizards of Bimini: Resource Partitioning in a Complex
Fauna. Ecology, 49, 704–726.

Silvestro, D., Schnitzler, J. & Zizka, G. (2011) A Bayesian framework to estimate diversifi-
cation rates and their variation through time and space. BMC Evolutionary Biology, 11,
311.

Simões, T.R., Caldwell, M.W., Tałanda, M., Bernardi, M., Palci, A., Vernygora, O., Bernar-
dini, F., Mancini, L. & Nydam, R.L. (2018) The origin of squamates revealed by a Middle
Triassic lizard from the Italian Alps. Nature, 557, 706–709.

Siqueira, A.C., Oliveira-Santos, L.G.R., Cowman, P.F. & Floeter, S.R. (2016) Evolutionary
processes underlying latitudinal differences in reef fish biodiversity. Global Ecology and
Biogeography, 25, 1466–1476.

Sistrom, M., Hutchinson, M., Bertozzi, T. & Donnellan, S.C. (2014) Evaluating evolution-
ary history in the face of high gene tree discordance in Australian Gehyra (Reptilia:
Gekkonidae). Heredity, 113, 52–63.

Skinner, A., Hugall, A.F. & Hutchinson, M.N. (2011) Lygosomine phylogeny and the origins
of Australian scincid lizards. Journal of Biogeography, 38, 1044–1058.

Smith, B.T., Bryson Jr., R.W., Houston, D.D. & Klicka, J. (2012) An asymmetry in niche
conservatism contributes to the latitudinal species diversity gradient in New World verte-
brates. Ecology Letters, 15, 1318–1325.

207



Smith, S.A., Beaulieu, J.M. & Donoghue, M.J. (2010) An uncorrelated relaxed-clock analysis
suggests an earlier origin for flowering plants. Proceedings of the National Academy of
Sciences, 107, 5897–5902.

Smith, S.A., Beaulieu, J.M. & Donoghue, M.J. (2009) Mega-phylogeny approach for compar-
ative biology: an alternative to supertree and supermatrix approaches. BMC Evolutionary
Biology, 9, 37.

Smith, S.A. & Brown, J.W. (2018) Constructing a broadly inclusive seed plant phylogeny.
American Journal of Botany, 66, 152–13.

Smith, S.A., Brown, J.W., Yang, Y., Bruenn, R., Drummond, C.P., Brockington, S.F.,
Walker, J.F., Last, N., Douglas, N.A. & Moore, M.J. (2018) Disparity, diversity, and
duplications in the Caryophyllales. New Phytologist, 217, 836–854.

Smith, S.A. & O’Meara, B.C. (2012) treePL: divergence time estimation using penalized
likelihood for large phylogenies. Bioinformatics, 28, 2689–2690.

Somero, G.N. & DeVries, A.L. (1967) Temperature tolerance of some Antarctic fishes. Sci-
ence, 156, 257–258.

Spalding, M.D., Fox, H.E., Allen, G.R. & Davidson, N. (2007) Marine ecoregions of the
world: a bioregionalization of coastal and shelf areas. BioScience, 57, 573–583.

Spalding, M.D., Agostini, V.N., Rice, J. & Grant, S.M. (2012) Pelagic provinces of the world:
A biogeographic classification of the world’s surface pelagic waters. Ocean and Coastal
Management, 60, 19–30.

Stadler, T. (2011) Simulating Trees with a Fixed Number of Extant Species. Systematic
Biology, 60, 676–684.

Stadler, T., Rabosky, D.L., Ricklefs, R.E. & Bokma, F. (2014) On Age and Species Richness
of Higher Taxa. The American Naturalist, 184, 447–455.

Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis
of large phylogenies. Bioinformatics, 30, 1312–1313.

Stanton, J.C., Pearson, R.G., Horning, N., Ersts, P. & Reşit Akçakaya, H. (2012) Combining
static and dynamic variables in species distribution models under climate change. Methods
in Ecology and Evolution, 3, 349–357.

Stephens, P.R. & Wiens, J.J. (2003) Explaining species richness from continents to com-
munities: the time-for-speciation effect in emydid turtles. The American Naturalist, 161,
112–128.

Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann,
M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L.,
Lohmann, U., Pincus, R., Reichler, T. & Roeckner, E. (2013) Atmospheric component
of the MPI-M Earth System Model: ECHAM6. Journal of Advances in Modeling Earth
Systems, 5, 146–172.

208



Stuart-Smith, R.D., Bates, A.E., Lefcheck, J.S., Duffy, J.E., Baker, S.C., Thomson, R.J.,
Stuart-Smith, J.F., Hill, N.A., Kininmonth, S.J., Airoldi, L., Becerro, M.A., Campbell,
S.J., Dawson, T.P., Navarrete, S.A., Soler, G.A., Strain, E.M.A., Willis, T.J. & Edgar,
G.J. (2013) Integrating abundance and functional traits reveals new global hotspots of fish
diversity. Nature, 501, 539–542.

Svenning, J.C., Fløjgaard, C., Marske, K.A., Nogues-Bravo, D. & Normand, S. (2011) Ap-
plications of species distribution modeling to paleobiology. Quaternary Science Reviews,
30, 2930–2947.

Swenson, N.G., Erickson, D.L., Mi, X., Bourg, N.A., Forero-Montaña, J., Ge, X., Howe, R.,
Lake, J.K., Liu, X., Ma, K., Pei, N., Thompson, J., Uriarte, M., Wolf, A., Wright, S.J., Ye,
W., Zhang, J., Zimmerman, J.K. & Kress, W.J. (2012) Phylogenetic and functional alpha
and beta diversity in temperate and tropical tree communities. Ecology, 93, S112–S125.

Synes, N.W. & Osborne, P.E. (2011) Choice of predictor variables as a source of uncertainty
in continental-scale species distribution modelling under climate change. Global Ecology
and Biogeography, 20, 904–914.

Tank, D.C., Eastman, J.M., Pennell, M.W., Soltis, P.S., Soltis, D.E., Hinchliff, C.E., Brown,
J.W., Sessa, E.B. & Harmon, L.J. (2015) Nested radiations and the pulse of angiosperm
diversification: increased diversification rates often follow whole genome duplications. New
Phytologist, 207, 454–467.

Thomas, G.H., Hartmann, K., Jetz, W., Joy, J.B., Mimoto, A. & Mooers, A.O. (2013)
PASTIS: an R package to facilitate phylogenetic assembly with soft taxonomic inferences.
Methods in Ecology and Evolution, 4, 1011–1017.

Thomson, R.C. & Shaffer, H.B. (2009) Sparse supermatrices for phylogenetic inference: tax-
onomy, alignment, rogue taxa, and the phylogeny of living turtles. Systematic Biology,
59, 42–58.

Thornthwaite, C.W. (1948) An approach toward a rational classification of climate. Geo-
graphical Review, 38, 55–94.

Thuiller, W. (2004) Patterns and uncertainties of species’ range shifts under climate change.
Global Change Biology, 10, 2020–2027.

Thuiller, W., Richardson, D.M., Pyšek, P., Midgley, G.F., Hughes, G.O. & Rouget, M.
(2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a
global scale. Global Change Biology, 11, 2234–2250.

Title, P.O. & Bemmels, J.B. (2017) ENVIREM: an expanded set of bioclimatic and topo-
graphic variables increases flexibility and improves performance of ecological niche mod-
eling. Ecography, 41, 291–307.

Title, P.O. & Burns, K.J. (2015) Rates of climatic niche evolution are correlated with species
richness in a large and ecologically diverse radiation of songbirds. Ecology Letters, 18, 433–
440.

209



Title, P.O. & Rabosky, D.L. (2017) Do Macrophylogenies Yield Stable Macroevolutionary
Inferences? An Example from Squamate Reptiles. Systematic Biology, 66, 843–856.

Tittensor, D.P., Mora, C., Jetz, W., Lotze, H.K., Ricard, D., Berghe, E.V. & Worm, B.
(2010) Global patterns and predictors of marine biodiversity across taxa. Nature, 466,
1098–1101.

Tonini, J.F.R., Beard, K.H., Ferreira, R.B., Jetz, W. & Pyron, R.A. (2016) Fully-sampled
phylogenies of squamates reveal evolutionary patterns in threat status. Biological Conser-
vation, 204, 23–31.

Tuanmu, M.N. & Jetz, W. (2015) A global, remote sensing-based characterization of terres-
trial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and
Biogeography, 24, 1329–1339.

Tucker, C.M., Cadotte, M.W., Carvalho, S.B., Davies, T.J., Ferrier, S., Fritz, S.A., Grenyer,
R., Helmus, M.R., Jin, L.S., Mooers, A.O., Pavoine, S., Purschke, O., Redding, D.W.,
Rosauer, D.F., Winter, M. & Mazel, F. (2017) A guide to phylogenetic metrics for conser-
vation, community ecology and macroecology. Biological Reviews, 92, 698–715.

Tuffley, C. & Steel, M. (1997) Links between maximum likelihood and maximum parsimony
under a simple model of site substitution. Bulletin of Mathematical Biology, 59, 581–607.

Uetz, P. & Hošek, J. (2015) The reptile database. http://www.reptile-database.org.
Accessed 15 September 2015.

Varadhan, R., University, J.H., Borchers, H.W. & Research., A.C. (2018) dfoptim:
Derivative-Free Optimization. R package version 2018.2-1.

Vecchione, M., Falkenhaug, T., Sutton, T., Cook, A., Gislason, A., Hansen, H.Ø., Heino, M.,
Miller, P.I., Piatkowski, U., Porteiro, F., Søiland, H. & Bergstad, O.A. (2015) The effect
of the North Atlantic Subpolar Front as a boundary in pelagic biogeography decreases
with increasing depth and organism size. Progress in Oceanography, 138, 105–115.

Veloz, S.D. (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for
presence-only niche models. Journal of Biogeography, 36, 2290–2299.

Vidal, N., Marin, J., Sassi, J., Battistuzzi, F.U., Donnellan, S.C., Fitch, A.J., Fry, B.G.,
Vonk, F.J., Rodriguez de la Vega, R.C., Couloux, A. & Hedges, S.B. (2012) Molecular
evidence for an Asian origin of monitor lizards followed by Tertiary dispersals to Africa
and Australasia. Biology Letters, 8, 853–855.

Vörösmarty, C.J., Douglas, E.M., Green, P.A. & Revenga, C. (2005) Geospatial Indicators
of Emerging Water Stress: An Application to Africa. Ambio, 34, 230–236.

Waltari, E., Hijmans, R.J., Peterson, A.T., Nyári, Á.S., Perkins, S.L. & Guralnick, R.P.
(2007) Locating Pleistocene Refugia: Comparing Phylogeographic and Ecological Niche
Model Predictions. PLoS ONE, 2, e563.

210

http://www.reptile-database.org


Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. (2016) Locally Downscaled and
Spatially Customizable Climate Data for Historical and Future Periods for North America.
PLoS ONE, 11, e0156720–17.

Wang, T., Hamann, A., Spittlehouse, D.L. & Murdock, T.Q. (2012) ClimateWNA—High-
Resolution Spatial Climate Data for Western North America. Journal of Applied Meteo-
rology and Climatology, 51, 16–29.

Warnock, R.C., Parham, J.F., Joyce, W.G., Lyson, T.R. & Donoghue, P.C. (2014) Cal-
ibration uncertainty in molecular dating analyses: there is no substitute for the prior
evaluation of time priors. Proceedings of the Royal Society of London Series B: Biological
Sciences, 282, 20141013.

Warren, D.L., Glor, R.E. & Turelli, M. (2008) Environmental niche equivalency versus con-
servatism: quantitative approaches to niche evolution. Evolution, 62, 2868–2883.

Warren, D.L. & Seifert, S. (2011) Ecological niche modeling in Maxent: the importance of
model complexity and the performance of model selection criteria. Ecological Applications,
21, 335–342.

Warren, D.L., Wright, A.N., Seifert, S.N. & Shaffer, H.B. (2014) Incorporating model com-
plexity and spatial sampling bias into ecological niche models of climate change risks faced
by 90 California vertebrate species of concern. Diversity and Distributions, 20, 334–343.

Webb, C.O., Ackerly, D., McPeek, M.A. & Donoghue, M.J. (2002) Phylogenies and commu-
nity ecology. Annual Review of Ecology and Systematics, 33, 475–505.

Weinstein, B.G., Tinoco, B., Parra, J.L., Brown, L.M., McGuire, J.A., Stiles, F.G. & Gra-
ham, C.H. (2014) Taxonomic, Phylogenetic, and Trait Beta Diversity in South American
Hummingbirds. The American Naturalist, 184, 211–224.

Weir, J.T. (2014) Environmental harshness, latitude and incipient speciation. Molecular
Ecology, 23, 251–253.

Weir, J.T. & Schluter, D. (2007) The latitudinal gradient in recent speciation and extinction
rates of birds and mammals. Science, 315, 1574–1576.

Wieczorek, J., Bloom, D., Guralnick, R.P., Blum, S., Döring, M., Giovanni, R., Robertson,
T. & Vieglais, D. (2012) Darwin Core: An Evolving Community-Developed Biodiversity
Data Standard. PLoS ONE, 7, e29715.

Wiens, J.J., Brandley, M.C. & Reeder, T.W. (2006) Why does a trait evolve multiple times
within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution,
60, 123–141.

Wiens, J.J. & Donoghue, M.J. (2004) Historical biogeography, ecology and species richness.
Trends in Ecology and Evolution, 19, 639–644.

211



Wiens, J.J., Hutter, C.R., Mulcahy, D.G., Noonan, B.P., Townsend, T.M., Sites Jr, J.W.
& Reeder, T.W. (2012) Resolving the phylogeny of lizards and snakes (Squamata) with
extensive sampling of genes and species. Biology Letters, 8, 1043–1046.

Willmott, C. & Feddema, J. (1992) A More Rational Climatic Moisture Index. The Profes-
sional Geographer, 44, 84–88.

Wilson, A.M. & Jetz, W. (2016) Remotely Sensed High-Resolution Global Cloud Dynamics
for Predicting Ecosystem and Biodiversity Distributions. PLoS Biology, 14, e1002415–20.

Wilson, M.F.J., O’Connell, B., Brown, C., Guinan, J.C. & Grehan, A.J. (2007) Multiscale
Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental
Slope. Marine Geodesy, 30, 3–35.

Wisz, M.S., Broennimann, O., Gronkjaer, P., Moller, P.R., Olsen, S.M., Swingedouw, D.,
Hedeholm, R.B., Nielsen, E.E., Guisan, A. & Pellissier, L. (2015) Arctic warming will
promote Atlantic–Pacific fish interchange. Nature Climate Change, 5, 261–265.

Wright, A.N., Hijmans, R.J., Schwartz, M.W. & Shaffer, H.B. (2014) Multiple sources of
uncertainty affect metrics for ranking conservation risk under climate change. Diversity
and Distributions, 21, 111–122.

Wright, A.M., Lyons, K.M., Brandley, M.C. & Hillis, D.M. (2015) Which came first: The
lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states. Journal
of Experimental Zoology Part B: Molecular and Developmental Evolution, 324, 504–516.

Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., FitzJohn, R.G.,
McGlinn, D.J., O’Meara, B.C., Moles, A.T., Reich, P.B., Royer, D.L., Soltis, D.E.,
Stevens, P.F., Westoby, M., Wright, I.J., Aarssen, L., Bertin, R.I., Calaminus, A., Go-
vaerts, R., Hemmings, F., Leishman, M.R., Oleksyn, J., Soltis, P.S., Swenson, N.G., War-
man, L. & Beaulieu, J.M. (2014) Three keys to the radiation of angiosperms into freezing
environments. Nature, 506, 89–92.

Zheng, Y. & Wiens, J.J. (2016) Combining phylogenomic and supermatrix approaches, and
a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes
and 4162 species. Molecular Phylogenetics and Evolution, 94, 537–547.

Zink, R.M., Klicka, J. & Barber, B. (2004) The tempo of avian diversification during the
Quaternary. Philosophical Transactions of the Royal Society B: Biological Sciences, 359,
215–220.

Zomer, R., Trabucco, A., van Straaten, O. & Bossio, D. (2006) Carbon, land and water:
A global analysis of the hydrologic dimensions of climate change mitigation through af-
forestation/reforestation, volume 101. IWMI.

Zomer, R.J., Trabucco, A., Bossio, D.A. & Verchot, L.V. (2008) Climate change mitigation:
A spatial analysis of global land suitability for clean development mechanism afforestation
and reforestation. Agriculture, Ecosystems and Environment, 126, 67–80.

212



Zwickl, D.J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large bi-
ological sequence datasets under the maximum likelihood criterion. Ph.D. thesis, The
University of Texas at Austin.

213


	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Overview of chapters

	Do macrophylogenies yield stable macroevolutionary inferences? An example from squamate reptiles
	Abstract
	Introduction
	Methods
	Results
	Pairwise comparisons of phylogenetic datasets
	Implications for drivers of diversity
	Power analysis of the richness – clade age relationship
	Comparisons of topology

	Discussion
	Conclusions
	Data Archiving
	Acknowledgements
	Funding

	ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling
	Abstract
	Introduction
	Methods
	Case studies
	Data deposition

	Results
	Case studies

	Discussion
	Potential applications
	Biological relevance of ENVIREM variables
	Incorporating ENVIREM variables into SDM best practices
	Utility of topographic variables in SDM

	Conclusions
	Acknowledgements
	Funding

	Diversification rates and phylogenies: what are we estimating, and how good are the estimates?
	Abstract
	Introduction
	Methods
	Tip rate metrics
	Tip rate metrics estimate speciation, not net diversification
	Assessment of tip rate metrics

	Results
	Speciation or net diversification?
	Tip rate accuracy across rate-variable phylogenies
	Effects of regime size on performance

	Discussion
	Acknowledgements


	Dispersal and the latitudinal diversity gradient in marine fishes
	Abstract
	Introduction
	Methods
	Data acquisition
	Geographic partitioning
	Biogeographic transition rates
	Ancestral state reconstruction
	Sister pairs

	Results
	Biogeographic modeling
	Ancestral state reconstructions
	Sister pairs

	Discussion
	Conclusion
	Acknowledgements


	Conclusion
	BIBLIOGRAPHY

