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ABSTRACT

Widespread fish clades that occur mainly or exclusively in fresh water represent a key target of biogeographical
investigation due to limited potential for crossing marine barriers. Timescales for the origin and diversification of these
groups are crucial tests of vicariant scenarios in which continental break-ups shaped modern geographic distributions.
Evolutionary chronologies are commonly estimated through node-based palaeontological calibration of molecular
phylogenies, but this approach ignores most of the temporal information encoded in the known fossil record of a given
taxon. Here, we review the fossil record of freshwater fish clades with a distribution encompassing disjunct landmasses
in the southern hemisphere. Palaeontologically derived temporal and geographic data were used to infer the plausible
biogeographic processes that shaped the distribution of these clades. For seven extant clades with a relatively well-known
fossil record, we used the stratigraphic distribution of their fossils to estimate confidence intervals on their times of origin.
To do this, we employed a Bayesian framework that considers non-uniform preservation potential of freshwater fish
fossils through time, as well as uncertainty in the absolute age of fossil horizons. We provide the following estimates for
the origin times of these clades: Lepidosireniformes [125–95 million years ago (Ma)]; total-group Osteoglossomorpha
(207–167 Ma); Characiformes (120–95 Ma; a younger estimate of 97–75 Ma when controversial Cenomanian fossils
are excluded); Galaxiidae (235–21 Ma); Cyprinodontiformes (80–67 Ma); Channidae (79–43 Ma); Percichthyidae
(127–69 Ma). These dates are mostly congruent with published molecular timetree estimates, despite the use of
semi-independent data. Our reassessment of the biogeographic history of southern hemisphere freshwater fishes shows
that long-distance dispersals and regional extinctions can confound and erode pre-existing vicariance-driven patterns.
It is probable that disjunct distributions in many extant groups result from complex biogeographic processes that took
place during the Late Cretaceous and Cenozoic. Although long-distance dispersals likely shaped the distributions of
several freshwater fish clades, their exact mechanisms and their impact on broader macroevolutionary and ecological
dynamics are still unclear and require further investigation.
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I. INTRODUCTION

Freshwater fishes are a fundamental component of the
biosphere, constituting more than 20% of living vertebrate
species (Nelson, Grande & Wilson, 2016). Extant freshwater
fish clades with intercontinental, disjunct distributions have
long been model systems in historical biogeography, as seas
and oceans represent a relatively strong barrier to their
dispersal (Lundberg, 1993).

Continental vicariance driven by Mesozoic breakup of
Pangaea is a widely cited explanation for these disjunct
distributions (e.g. Novacek & Marshall, 1976; Parenti, 1981;

Greenwood, 1983; Chakrabarty, 2004; Sparks & Smith,
2005; Inoue et al., 2009). Alternative scenarios involve
more recent long-distance dispersals, via land (through
transient land bridges or after continental collision) or sea.
Despite obvious challenges, trans-oceanic dispersal has been
increasingly proposed as the probable mechanism underlying
the intercontinental distributions of several terrestrial and
freshwater groups (e.g. de Queiroz, 2005; Poux et al., 2006;
Pramuk et al., 2008; Samonds et al., 2012), including some
freshwater fish clades (Lundberg, 1993; McDowall, 2002;
Bonde, 2008; Friedman et al., 2013). Time is the critical
variable in testing whether distributions matching those
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predicted by vicariance arose by this mechanism (Upchurch
& Hunn, 2002; Donoghue & Moore, 2003). Vicariance can
be ruled out if lineages with a disjunct distribution are too
young to have been influenced by the corresponding geologic
event (e.g. breakup between South America and Africa for a
clade inhabiting both continents).

Traditionally, fossils and their stratigraphic context have
been the only source of information on evolutionary
timescales relevant to vicariance hypotheses. In the last
few decades, advances in molecular clock methods have
revolutionized the field of evolutionary biology (Ho &
Duchêne, 2014), and construction of a time-calibrated
molecular tree is now the conventional approach for timing
evolutionary events. However, fossils remain the principal
source of temporal information for molecular trees, requiring
a thorough understanding of the fossil record in order to
select calibrations and appropriate parameters properly for
timetree analysis (Parham et al., 2012). Alternative methods
for estimating the time of origin of a group rely only on
palaeontological and stratigraphic data (Strauss & Sadler,
1989; Marshall, 1997; Hedman, 2010), but are used less
frequently than molecular clocks.

Herein, we consider existing fossil and molecular evidence
for the evolutionary timescale of freshwater fish clades
with a widespread disjunct distribution that includes
southern hemisphere landmasses. We use phylogenetic
and palaeobiogeographic information to infer possible
biogeographic patterns for these clades, and to evaluate
whether vicariance associated with the Mesozoic breakup
of Gondwana, dispersal, or both shaped their geographic
distribution. We excluded taxa with a distribution limited
to the northern hemisphere, as during the Mesozoic
and Cenozoic North America and Eurasia were often
connected by transient land bridges (e.g. the Beringian
and Thulean land bridges; Brikiatis, 2014, 2016). Biotic
exchanges between former Laurasian landmasses were
relatively common in the late Mesozoic and Cenozoic and
involved several freshwater fish taxa (see Cavin, 2017),
including sturgeons (Choudhury & Dick, 1998), bowfins
(Grande & Bemis, 1998), cypriniforms (Imoto et al., 2013)
and pikes (Grande, 1999).

While we cover both extant taxa with no (or limited)
fossil record (Section II.1) and extinct taxa known only
from the fossil record (Section II.2), particular attention
is given to seven extant freshwater fish clades with more
extensive fossil records: Lepidosireniformes (South American
and African lungfishes), Osteoglossomorpha (bonytongues
and allies), Characiformes (characins and allies), Galaxiidae,
Cyprinodontiformes (killifishes), Channidae (snakeheads)
and Percichthyidae (Southern temperate perches). Most of
these groups (with the notable exceptions of galaxiids and
cyprinodontiforms) are usually classified as primary division
freshwater fishes (Myers, 1938), an ecological term indicating
low tolerance to salinity. Although widely used, Myers’ (1938)
classification of freshwater fishes is purely qualitative, has no
bearing on ancestral environmental adaptations (i.e. whether
a group of freshwater fishes derives from freshwater or marine

ancestors) and does not necessary reflect the dispersal abilities
of a fish clade.

For the seven focal clades listed above, we used the
temporal distribution of their fossil record quantitatively to
estimate their origin times, building upon the theoretical
framework developed by Marshall (1997). This method
utilizes an empirically derived fossil preservation potential
function to assess, for a given taxon, the plausible extent of
an early evolutionary history undetected by its fossil record
(in other words, how much older than its oldest known
fossil can a taxon plausibly be). By so doing, it accounts for
non-uniform fossil preservation over time. Furthermore, we
modified the method to consider uncertainty in the absolute
age of fossil-bearing deposits. The origin-time estimates
derived with this method were then compared with the
timescale of Gondwanan fragmentation to test for vicariant
scenarios, and with published molecular estimates to check
for congruency or discrepancy.

II. FRESHWATER FISH CLADES WITH
INTERCONTINENTAL DISTRIBUTIONS

(1) Extant taxa with disjunct distributions and no
(or limited) fossil record

Biogeographic hypotheses for clades with limited palaeon-
tological records are generally assessed through phylogenies
that are time-calibrated with fossils of other groups. Many
freshwater fish clades with disjunct distributions fall under
this category.

(a) Mordaciidae and Geotriidae

Southern hemisphere lampreys inhabit southern South
America and southern Oceania. The four species in these
groups are either anadromous or secondarily restricted to
freshwater (Potter et al., 2015), suggesting high dispersal
potential. Indeed, the monotypic Geotria inhabits river systems
throughout southern South America, New Zealand and
southern Australia, making it one of the most widespread
freshwater fishes (Berra, 2007). The unresolved phylogenetic
position of Geotria relative to mordaciids and northern
hemisphere lampreys (Potter et al., 2015) and the lack of
published timetrees for lampreys preclude further testing of
biogeographic scenarios.

(b) Atheriniformes

Within atheriniforms (silversides), the Malagasy Bedotiidae
is closely aligned to an Australasian group including
Melanotaeniidae, Pseudomugilidae and Telmatherinidae.
This relationship has been interpreted as evidence of
Cretaceous vicariance between Indo-Madagascar and
Austro-Antarctica (Sparks & Smith, 2004). However,
fossil-calibrated phylogenies identify an Eocene divergence
between bedotiids and Australasian taxa (Campanella
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et al., 2015), contradicting the vicariant hypothesis. Many
silverside clades show repeated freshwater invasions by
marine ancestors, and the last common ancestor of bedotiids
and the Australasian clades was likely marine or at least
euryhaline. Marine dispersal followed by freshwater invasion
best explains the biogeographic pattern seen in this group
(Campanella et al., 2015).

(c) Synbranchidae

Swamp eels occur in fresh and brackish waters of Central
and South America, West Africa, East Asia, Indo-Malaysia
and northern Oceania. Many synbranchids show broad
salinity tolerance, and air breathing allows extensive
survival out of water (Graham, 1997). Relationships within
synbranchids are poorly known (Rosen & Greenwood, 1976).
Nonetheless, a latest Cretaceous divergence of synbranchids
from their closest living relatives (Near et al., 2013) and the
intercontinental distributions of Monopteros and Ophisternon
(Rosen & Greenwood, 1976) imply multiple long-distance
dispersal events.

(d ) Mastacembelidae

Spiny eels inhabit Indo-Malaysia and Africa, with one species
restricted to the Middle East. Phylogenetic analyses support
an Indo-Malayan origin for mastacembelids, followed by
dispersal to the Middle East and from there to Africa during
the Miocene (Day et al., 2017). This is congruent with the
African invasion of several Asian mammals starting around
18 million years ago (Ma) (Koufos, Kostopoulos & Vlachou,
2005).

(e) Anabantidae

Climbing gouramies contain the Indo-Malayan Anabas and
three African genera. Anabas can tolerate long periods of
air exposure, move on land, and traverse small obstacles
(Davenport & Abdul Matin, 1990; Graham, 1997). A single
fossil anabantid, †Eoanabas thibetana, is known from late
Oligocene deposits of central Tibet (Wu et al., 2017). The
basal position of †Eoanabas and Anabas within anabantids, as
well as their affinity to several freshwater clades endemic
to Southeast Asia (Betancur-R et al., 2017), implies an
Indo-Malayan origin. Anabantid dispersal from Asia to
Africa probably occurred during the second half of the
Paleogene (Rüber, Britz & Zardoya, 2006).

(f ) Polycentridae

Polycentrids include African and South American leaffishes.
Collins, Britz & Rüber (2015) resolved the South
American leaffishes as a clade within African leaffishes.
There is no time-calibrated phylogenetic analysis targeting
polycentrids, but more inclusive timetrees suggest an Eocene
divergence between South American leaffishes and the
African Polycentropsis (Near et al., 2013). This would imply
transoceanic dispersal from Africa to South America in the

Paleogene, paralleling the well-known cases of monkeys and
caviomorph rodents (Poux et al., 2006).

(g) Gobioidei

Among gobies, multiple lineages with marine ancestors
colonized freshwater environments. Some of these (e.g.
Milyeringidae, Butidae, Eleotridae, Sicydiinae) display
disjunct intercontinental distributions. The fossil record of
gobies extends to the early Eocene (Bannikov & Carnevale,
2016). However, the uncertain systematic position of early
fossil gobies prevents an accurate estimate of the goby
evolutionary timescale based exclusively on fossils (Bannikov
& Carnevale, 2016). Molecular clock estimates indicate that
crown gobies are Late Cretaceous–Paleocene in age (Alfaro
et al., 2018; Li et al., 2018). Among goby lineages with
intercontinental distribution in freshwater environments,
butids and eleotrids can thrive in a wide range of salinities,
with some species inhabiting coastal marine habitats (Berra,
2007). Thus, marine dispersal is a likely explanation for their
widespread distribution. Sycidiines have an amphidromous
life cycle. Molecular data suggest a late Miocene origin
in the western Pacific Ocean and arrival in Africa and
the New World through current-driven westward marine
dispersal (Keith et al., 2011). The most striking case is that
of the blind cave gobies belonging to Milyeringidae, which
includes two genera of obligate troglobic fishes: the Malagasy
Typhleotris and Australian Milyeringa (Chakrabarty, Davis &
Sparks, 2012). Chakrabarty et al. (2012) proposed a vicariant
scenario with an Early Cretaceous origin of this group,
but their molecular estimate for the divergence between
Typhleotris and Milyeringa ranges from the Early Cretaceous to
the Eocene. An Early Cretaceous origin for a goby subclade
is in stark contrast not only with the known fossil record of
gobies, but also with the fossil record of acanthomorphs as a
whole (Patterson, 1993). More recent studies place the origin
of milyeringids firmly within the Cenozoic (Li et al., 2018).
Although a recent milyeringid origin would imply at least
one long-distance dispersal event between Madagascar and
Australia, such an event seems highly unlikely for troglobites
with marked physiological limitations and very restricted
habitat (Chakrabarty et al., 2012). The possibility of two
independent invasions of the subterranean environment
from extinct marine or brackish ancestors, followed by
independent acquisition of characters typical to troglobic
organisms (loss of functional eyes, loss of pigmentation, and
so on), cannot be excluded and could explain the striking
biogeographic pattern displayed by milyeringids. However,
the lack of milyeringid fossils precludes further assessment of
this hypothesis.

(2) Disjunct distributions in the fossil record

Several cases of disjunct distributions in freshwater fishes are
known exclusively from the fossil record. These fall into two
broad categories: widespread extinct clades; or extant clades
with present distribution restricted to only one landmass, but
for which fossils are found on multiple continents. Most cases
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discussed here are associated with the opening of the South
Atlantic, as Mesozoic and early Cenozoic freshwater deposits
of South America and Africa are much better sampled than
those of other southern landmasses.

(a) †Mawsoniidae

†Mawsoniids represent a primarily continental radiation of
Mesozoic coelacanths. †Mawsonia and †Axelrodichthys have
been found in South American and African deposits ranging
from the Early Cretaceous to the Cenomanian (de Carvalho
& Maisey, 2008). Persistence of these †mawsoniid genera
in South America and Africa during opening of the South
Atlantic suggests vicariance. Post-Cenomanian †mawsoniids
are known only from Europe and Madagascar (Gottfried,
Rogers & Rogers, 2004; Cavin, Valentin & Garcia, 2016),
hinting at possible dispersals from Africa in the Late
Cretaceous. Cretaceous †mawsoniids are often found in
brackish deposits and thus they could have had relatively
high salinity tolerance and long-distance dispersal potential.

(b) Polypteridae

Bichirs are an exclusively freshwater clade of early diverging
actinopterygians that today occurs only in Africa, where
their fossil record extends back to the Cenomanian (Gayet,
Meunier & Werner, 2002; Grandstaff et al., 2012; Cavin
et al., 2015; Cavin, 2017). Fragmentary polypterid remains
from the Maastrichtian and Paleocene of Bolivia reveal
a more widespread distribution of this group in the
past (Gayet et al., 2002). Undescribed polypterid material
from the Albian–Cenomanian Alcântara Formation of
Brazil (Candeiro et al., 2011) suggests polypterid presence
in South America pre-dating South America–Africa
breakup. However, the lack of a phylogenetic framework
for fragmentary fossil polypterids precludes a reliable
reconstruction of their biogeographic history. The recent
recognition of †scanilepiforms – known from Triassic
freshwater deposits of North America and Eurasia – as
stem polypterids (Giles et al., 2017) suggests a Pangaean
distribution in the early Mesozoic, followed by vicariance
and regional extinctions.

(c) Lepisosteidae

Gars, like the only other extant holostean lineage (the bowfin
Amia), are now restricted to North America. Lepisosteids
have a broad Late Cretaceous distribution, with North
American, South American, European, Central Asian,
African, Malagasy and Indian deposits yielding gar fossils
of this age (Grande, 2010). The majority of the Late
Cretaceous lepisosteid material is fragmentary and diagnostic
only to family, so biogeographic scenarios are difficult
to reconstruct. While extant gars are mainly freshwater
fishes and most fossils are found in continental deposits,
some living species are occasionally found in brackish and
coastal marine environments (notably Atractosteus tristoechus,
the Cuban gar; Grande, 2010). Moreover, the discovery

of early lepisosteids in Late Jurassic marine deposits from
Mexico (Brito, Alvarado-Ortega & Meunier, 2017) suggests
that high salinity tolerance might be primitive for the
group. Marine dispersal probably played a major role in the
widespread distribution of lepisosteids during the Cretaceous.

(d ) †Obaichthyidae and other lepisosteoids

†Obaichthyids are the sister taxon to Lepisosteidae and
consist of two Aptian–Cenomanian genera: †Obaichthys and
†Dentilepisosteus. Like mawsoniid coelacanths, both genera
are present in Brazilian and Moroccan continental and
transitional deposits (Grande, 2010), suggesting vicariance
during late stages of the opening of the South Atlantic. A
similar pattern can be inferred for the basal lepisosteoids
†Araripelepidotes and †Pliodetes from the Aptian of Brazil and
Niger, respectively, which might be sister lineages (Cavin,
2010).

(e) †Vidalamiinae

†Vidalamiins are a Cretaceous–early Paleogene clade of
amiids closely related to the extant bowfin Amia. Within
†vidalamiins, †Calamopleurini occurs only in western
Gondwana while †Vidalamiini has a broader distribution
including North America, South America, Europe and the
Middle East (Grande & Bemis, 1998; Brito, Yabumoto
& Grande, 2008). While the geographic and temporal
distribution of †calamopleurine fossils is consistent with
vicariance related to the rifting of South America and Africa,
the biogeographic history of †Vidalamiini appears more
complex and likely involved marine dispersals. †Vidalamiin
fossils derive from continental and coastal marine deposits,
and several species were likely euryhaline (Grande & Bemis,
1998).

(f ) †Archaeomenidae and †Luisiellidae

†Archaeomenids and †luisiellids are poorly known freshwater
stem teleost groups with a southern Gondwanan distribution
(Sferco, López-Arbarello & Báez, 2015; Bean, 2017). The
age of these taxa (†Archaeomenidae: Early Jurassic–Early
Cretaceous; †Luisiellidae: Late Jurassic–Early Cretaceous)
is consistent with a continuous Jurassic range encompassing
South America, Antarctica and Australia [but see Su, 1994
for a putative †archaeomenid from the Early Jurassic of
China].

(g) †Cladocyclidae

†Cladocyclids include freshwater, brackish and coastal forms
belonging to the primarily marine †ichthyodectiforms, a
clade of predatory stem teleosts. †Cladocyclus and †Chiromystus
are both known from the Early–middle Cretaceous of South
America and Africa (Martill et al., 2011; Cavin, Forey &
Giersch, 2013), paralleling the pattern seen in †mawsoniids,
†obaichthyids and †vidalamiins. Additionally, †Cladocyclus
is known from Albian continental deposits of Australia
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(Berrell et al., 2014) and possibly Italy (Signore et al., 2006). As
†cladocyclids are often found in lagoonal and coastal marine
deposits, at least some species were probably euryhaline.
Thus, their palaeobiogeographic distribution may have been
shaped by a combination of dispersal and vicariance.

(h) Chanidae

Milkfishes, an ostariophysan clade, include the living marine
Chanos chanos and several extinct species, with some found
in continental and transitional deposits. †Dastilbe and
†Parachanos are of particular interest. These are found
in Aptian–Albian deposits of Brazil and Central Africa,
respectively (Fara, Gayet & Taverne, 2010), and could be
sister taxa (Near, Dornburg & Friedman, 2014). †Dastilbe
batai from the Aptian–Albian of Equatorial Guinea is
poorly preserved and may belong to the genus †Parachanos
(Dietze, 2007). Thus, the palaeobiogeographic distribution
of †Dastilbe and †Parachanos at the end of the Early
Cretaceous is consistent with vicariance associated with
opening of the South Atlantic. Notably, †Parachanos is
also known from Late Cretaceous deposits of Italy and
Croatia (Fara et al., 2010); long-distance dispersal from
Africa could explain the post-Albian European distribution
of this taxon, similar to †mawsoniid coelacanths. Another
freshwater chanid, †Nanaichthys from the Aptian of Brazil,
reveals a possible trans-Tethyan dispersal event during the
Early Cretaceous, as this genus appears to be closely related
to the Berriasian–Barremian †Rubiesichthys and †Gordichthys
from Spain (Amaral & Brito, 2012).

(3) Extant taxa with disjunct distributions and
known fossil record

Evolutionary timescales, and associated biogeographic sce-
narios, for geographically widespread extant clades can be
assessed by both molecular timescales and the temporal and
geographic distribution of their fossils. Seven of these clades
are covered in detail herein: Lepidosireniformes, Osteoglos-
somorpha, Characiformes, Galaxiidae, Cyprinodontiformes,
Channidae and Percichthyidae (Fig. 1). For these taxa, we
reviewed their fossil record focusing on biogeographically
relevant fossils. Then, we used the stratigraphic distribu-
tion of their fossils to infer times of evolutionary origin
in a Bayesian framework. Finally, biogeographic scenarios
involving vicariance and dispersal were evaluated on the
basis of our fossil-based estimates and published molecular
timetrees.

We did not include three clades prominently featured in
the historical biogeography literature: Dipnoi, Siluriformes
and Cichlidae. These groups (and the reasons for exclusion
from this review) will be briefly discussed here.

Dipnoi (crown lungfishes) includes Lepidosireniformes
(South American Lepidosiren and African Protopterus) and
Ceratodontiformes (the Australian Neoceratodus). Crown
lepidosireniforms are discussed below in the context of
the split between South America and Africa, but the
early biogeographic history of crown lungfishes has been

linked to vicariance and the progressive fragmentation
of Gondwana (Cavin et al., 2007). The relationships of
several Mesozoic lungfish genera relative to extant ones
are still debated, leading to considerable uncertainty for
the age of the dipnoan crown. Some phylogenetic studies
recover all extinct Mesozoic genera as stem lungfishes,
placing the origin of crown lungfishes in the Late Jurassic
(Schultze, 2004). By contrast, other analyses find several early
Mesozoic genera (e.g. †Ceratodus, †Arganodus, †Asiatoceratodus

and †Gosfordia) within the lungfish crown (Cavin et al.,
2007; Longrich, 2017). It has even been suggested that
Permian lungfishes like †Gnathorhiza may be more closely
related to Lepidosireniformes than to Neoceratodus (Kemp,
Cavin & Guinot, 2017), placing the minimum age for
the origin of crown lungfishes to around 300 Ma. The
identification of Triassic or Permian lungfishes as stem
lepidosireniforms, coupled with their widespread geographic
distribution, would strongly suggest a Gondwanan (if not
Pangaean) distribution of early crown lungfishes, followed
by a series of vicariant events and local extinctions (Cavin
et al., 2007). Little effort has been put into the development
of a precise timescale for lungfish evolution from a molecular
clock perspective, with recent estimates for crown lungfishes
ranging from the Permian to the Late Jurassic (Irisarri et al.,
2017). Because of the uncertain affinities of early Mesozoic
lungfish genera, we do not estimate the age of crown
lungfishes using quantitative biostratigraphical models here.
However, lepidosireniforms are considered in this framework
below.

Siluriformes (catfishes) is a major clade of globally
distributed otophysans that includes several thousand species.
While phylogenetic analyses strongly support the South
American endemics Loricarioidei and Diplomystidae as
the earliest branching lineages in the siluriform tree
(implying a South American origin for the group), deep-level
relationships among other siluriforms – collectively grouped
in Siluroidei – remain largely unknown (Betancur-R et al.,
2017). It is therefore not easy to identify biogeographically
relevant nodes in the siluriform phylogeny (i.e. nodes
corresponding to disjunct intercontinental distributions). The
siluriform fossil record extends to the Late Cretaceous of
South America (Gayet, 1990). However, these early fossils
are fragmentary and cannot be confidently assigned to any
extant lineage. Because of the uncertainties in siluriform
systematics and in the affinities of the earliest siluriform fossils,
we refrain from discussing the siluriform fossil record and
biogeography in detail here. However, there are indications
of long-distance dispersal in siluriform evolutionary history.
First, several lineages of catfishes are adapted to high-salinity
environments, with Ariidae and Plotosidae including mostly
coastal marine species (Berra, 2007). Specifically, ariids
recolonized freshwater environments after marine dispersal
several times during their history, achieving a worldwide
distribution in tropical fresh waters (Betancur-R, 2010).
More remarkably, molecular phylogenetics resolves the
recently discovered Lacantunia enigmatica from Mexico as
deeply nested within a diverse group of African catfishes (the
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Fig. 1. Family-level time-calibrated molecular phylogeny of extant non-tetrapod Osteichthyes (bony fishes), modified from
Betancur-R, Ortí & Pyron (2015). The seven clades of widespread freshwater fishes that represent the focus of this review are
highlighted in orange, while other extant clades with a disjunct distribution in the southern hemisphere that are discussed in the text
are highlighted in aquamarine. Coloured bands indicate the timeframe of the Western–Eastern Gondwana break-up and the South
America–Africa break-up. See following figures for sources of fish photographs.

‘Big Africa’ clade) with strong statistical support (Lundberg
et al., 2007). Molecular clock studies place origin of the ‘Big
Africa’ clade during the Late Cretaceous (Lundberg et al.,
2007). Thus, the presence of a member of this radiation
in Mexico requires a biogeographic scenario that involves
complex dispersal routes (Lundberg et al., 2007). A better
understanding of siluriform historical biogeography will
depend on the resolution of their deep-level phylogeny and
further analysis of the early fossil record of catfishes.

Cichlidae (cichlids) is a model system for several fields
in evolutionary biology, including historical biogeography.
The ‘Gondwanan’ geographic distribution of cichlids (which
includes the Neotropics, Africa, Madagascar and the Indian
subcontinent) has been the focus of considerable attention
among biogeographers. The topological congruence between
cichlid phylogeny and Gondwanan fragmentation (with
the Malagasy and Indian lineages branching first and the
African clade being sister group to the South American
one) has been often interpreted as evidence for vicariance
(Chakrabarty, 2004; Sparks & Smith, 2005). However, this
argument does not take into account the timescale of cichlid
evolution, which would be necessary to test a vicariant
hypothesis. Topological patterns that appear to be consistent

with a vicariant scenario may arise from dispersal events,
a phenomenon called pseudo-congruence (Donoghue &
Moore, 2003). Most recent molecular-clock studies agree
on a Late Cretaceous–Paleocene origin of crown cichlids,
inconsistent with the vicariant scenario (Friedman et al.,
2013; Matschiner et al., 2017). Matschiner (in press) reviews
more than 15 years of cichlid molecular-clock studies and
their implications for the group’s biogeographic history.
The oldest cichlid fossils are relatively recent, from middle
Eocene deposits of Africa and South America (Murray,
2000a; Malabarba, Malabarba & López-Fernández, 2014).
However, their derived anatomy suggests that a long portion
of the early cichlid fossil record might be missing. Friedman
et al. (2013) estimated the timing of cichlid origin based
on the temporal distribution of their fossil record, using a
comparable methodology to that applied here (see Section
III). They found that, even when accounting for non-uniform
fossil preservation through time, the estimated time of origin
only extends to the Late Cretaceous (Campanian), around
77 Ma. While Friedman et al. (2013) refer to this estimate
as the age for crown cichlids, it more conservatively marks
divergence between South American and African cichlids,
as every known cichlid fossil belongs to either Cichlinae
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(the Neotropical cichlid clade) or Pseudocrenilabrinae (the
African cichlid clade). Nonetheless, even a Campanian age
for the split between cichlines and pseudocrenilabrines would
reject the hypothesis of vicariance and suggest a transatlantic
dispersal event in the early history of cichlids. Because of the
amount of literature discussing vicariance and dispersal in
cichlid biogeography under several different approaches, we
do not consider this group in more detail here.

III. MATERIALS AND METHODS

(1) Estimation of origin times of focal clades using
their fossil occurrences

We derived fossil-based estimates of the dates of origin for
the seven fish groups mentioned above (Lepidosireniformes,
Osteoglossomorpha, Characiformes, Galaxiidae, Cyprin-
odontiformes, Channidae and Percichthyidae) and for some
of their sub-clades. Our method is based on the number
and distribution through time of known stratigraphic hori-
zons that yielded fossils belonging the group of interest. This
approach builds upon the theoretical framework developed
by Marshall (1997), which accounts for non-uniform fossil
preservation and recovery through time by using an empir-
ically derived function of recovery potential. We combined
this framework with the Bayesian probability estimate for
the extension of observed stratigraphic ranges developed by
Strauss & Sadler (1989) to calculate 95% credibility intervals
(CIs) for the origin times of focal clades.

(a) Bayesian probability estimate for the extension of observed
stratigraphic ranges

Strauss & Sadler (1989) were the first to propose a Bayesian
estimate for stratigraphic CIs for a given focal group. They
derived the posterior density function of the endpoint θ of a
stratigraphic range given the data x as:

h (θ |x) =
(n − 2)

[(
θ − y

)−n+1 − θ−n+1
]

un

(1)

where y is the age of the last observed fossil (last appearance
datum), n is the number of fossil horizons and un is a factor
calculated by the equation:

un = (
z − y

)−n+2 − (
1 − y

)−n+2 − z−n+2 + 1 (2)

with z being the age of the first observed fossil (first
appearance datum). The posterior density function given
above is valid for each θ larger than z and smaller than a
prior upper bound; θ , y and z are rescaled to have the prior
upper bound equal to 1. This formula assumes a uniform
prior distribution of the fossil horizons bounded between
0 and 1, a condition that is almost always violated by the
empirical fossil record.

The Bayesian point estimator of θ [that is, the mean of
Equation 1] is given by:

(n − 2) un−1

(n − 3) un

+
y
[(

z − y
)−n+2 − (

1 − y
)−n+2

]

un

(3)

(b) Extension to non-random distributions of fossil horizons

In order to relax the strong assumption of uniform
distribution of fossil horizons, we utilized the logical
framework, introduced by Marshall (1997), of a preservation
and recovery potential function. Marshall (1997) extended
the use of stratigraphic confidence intervals for non-random
distributions of fossil horizons by reframing the problem
in terms of recovery potential rather than time. Given a
function representing preservation and recovery potential
over time, the area under this function between the age of
the first observed fossil and the age of the last observed fossil
corresponds to the duration of the focal clade (in units of
preservation potential). The confidence limit for the origin
time of this clade is the point at which the area under the
preservation potential function between the first appearance
and that point is equal to the duration of the lineage in
units of preservation potential multiplied by a scaling factor
that reflects the number of distinct fossil occurrences and the
desired level of confidence.

Friedman et al. (2013) applied this framework to Strauss
& Sadler’s (1989) Bayesian estimate to account for
heterogeneity through time in the fossil record of freshwater
fishes. They measured θ , y and z of Equations 1–3 in
terms of summed preservation potential and not in terms of
time. In order to calculate the area under the preservation
potential function easily, geological time was divided into
time bins, with each bin being assigned a value equal to
the proportion between the number of fossil horizons that
yielded fossils of the group of interest and the total number
of fossil horizons. Doing this, a uniform distribution of fossil
horizons is assumed only within each time bin, and not
throughout the entire fossil record. Posterior distributions,
Bayesian point estimates and 95% CIs were then calculated in
terms of accrued preservation potential, and later converted
in terms of absolute time in light of their empirical function
for preservation potential.

Herein, we applied the same method employed in
Friedman et al. (2013) with a few adjustments. We corrected
the script of Friedman et al. (2013) by adding a term that
was missing in their calculation of un (Equation 2). However,
we ascertained that this had no significant effect on the
results, as that term is several orders of magnitude smaller
than the resulting origin time estimate. We also employed
a different empirical preservation potential function, the
main difference being the use of time bins of 1 million years
(Myr) each rather than corresponding to chronostratigraphic
epochs (see Section III.3). Finally, we considered uncertainty
in the absolute age of fossil horizons.
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Table 1. Biogeographic areas selected for each of the analysed clades to build their empirical preservation potential function. X
indicates areas in which the clade is either present today or was present in the past according to the fossil record.

North and
Central America

South
America

Europe and
Western Asia

Africa and
Arabian Peninsula

North-Eastern
Asia Indo-Malaya Oceania

Lepidosireniformes X X
Osteoglossomorpha X X X X X X X
Osteoglossidae X X X X X X X
Characiformes X X X X
Alestidae X X
Galaxiidae X X X
Cyprinodontiformes X X X X X
Cyprinodontoidei X X X X
Channidae X X X X
Percichthyidae X X

(c) Extension to uncertain absolute age of fossil horizons

Uncertainty in the absolute age of fossil horizons was
considered by generating 1000 replicates for each Bayesian
time-estimate analysis. In each replicate, every horizon
was assigned an age randomly drawn from a uniform
distribution bounded by minimum and maximum age of
the chronostratigraphic stage (or stages) corresponding to
that horizon. The absolute ages for chronostratigraphic
epochs and stages were taken from the ICS International
Chronostratigraphic Chart (v. 2016/12). Median and
two-tailed 95% confidence intervals for the Bayesian
estimates of origin times (summarized by their 95% CIs)
were then calculated among the replicates.

(2) Assembly of fossil occurrence data sets

Fossil occurrences for the seven focal clades were
compiled through a comprehensive literature search (see
online Tables S1–S7). Different stratigraphic formations (or
localities in cases of no formalized stratigraphy) were treated
as different sampling horizons. The age of each horizon (to
stage level, when possible) was assigned according to the
literature. Marine fossil occurrences of the focal clades were
pruned from the analysis, as accounting for marine deposits
throughout the fossil record could heavily bias the recovery
potential function.

(3) Estimation of the empirical recovery potential
function

The recovery potential function used to account for
non-uniformity in fossil preservation and recovery through
time was derived empirically using a list of stratigraphic
horizons (formations and/or localities) with the potential
to yield fossils belonging to the group of interest. For every
freshwater fish clade analysed here, this criterion was satisfied
by non-marine deposits that yielded fish fossils. A list of
non-marine deposits that yielded fish fossils was compiled
through a literature search and implemented with records
from the Paleobiology Database (PBDB; https://paleobiodb
.org). The beginning of the Permian (around 299 Ma) was

chosen as the upper limit for the age of fossil horizons: this
represents the prior upper bound on the Bayesian estimates
for the origin times of the focal clades. This is a conservative
prior, as it does not artificially exclude vicariance scenarios;
moreover, the oldest fossils belonging to the analysed clades
come from the Middle Jurassic (around 167 Ma). Although
some molecular clock estimates place the origin of total-group
Osteoglossomorpha in the Carboniferous (e.g. Inoue et al.,
2009), a Carboniferous origin for any crown-teleost clade is
in strong disagreement with the fossil record (Arratia, 2015;
Friedman, 2015).

The list of non-marine fossil fish deposits comprised
a total of 935 unique horizons, ranging from the early
Permian to the Holocene (see online Table S8). Fossil
horizons were subdivided into seven broad, continental-scale
geographic areas (North and Central America; South
America; Europe and Western Asia; Africa and Arabian
Peninsula; Northeastern Asia; Indo-Malaya; Oceania). For
each clade, only fossil horizons from relevant geographic
areas (i.e. areas in which the clade is either present today or
was present in the past according to the fossil record) were
included (Table 1). The discrete recovery potential function
was built by dividing geologic time into bins of 1 Myr each,
with every bin being assigned a value equal to the total
number of fossil horizons present in that time interval. In so
doing, uniform recovery potential was assumed within each
time bin.

All calculations were performed in R version 3.4.1 (R Core
Team, 2017). The script is available online as Appendix S1.

IV. RESULTS AND DISCUSSION

Table 2 summarizes the ages of origin of the freshwater fish
clades considered here, as estimated from the stratigraphic
distribution of fossil occurrences. Range estimates encompass
uncertainty in fossil horizon age (i.e. they span from the
lower confidence interval of the lower CI of the posterior
distribution to the upper confidence interval of the upper CI
of the posterior distribution).
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Table 2. Fossil-based estimates for the time of origin of
widespread freshwater fish clades considered in this study.
Columns indicate lower 95% confidence interval of the lower
credibility interval (CI) of the Bayesian posterior distribution,
median point estimate, and upper 95% confidence interval of
the upper CI of the Bayesian posterior distribution, respectively.
Values result from 1000 replicates accounting for uncertainty
in absolute age of fossil horizons. All numbers are in units of
million years ago (Ma).

Replicates
lower 95%

Median point
estimate

Replicates
upper 95%

Lepidosireniformes
95.05 103.51 124.93

Total-group Osteoglossomorpha
167.03 182.44 206.89

Osteoglossidae (without †Chanopsis)
72.07 82.85 112.96

Osteoglossidae (with †Chanopsis)
103.22 123.96 154.42

Characiformes (with Cenomanian occurrences)
95.08 102.47 119.84

Characiformes (without Cenomanian occurrences)
75.07 83.40 97.30

Alestidae
53.13 60.37 72.10

Galaxiidae
21.15 97.13 235.02

Cyprinodontiformes
67.02 70.72 79.97

Cyprinodontoidei
42.02 46.27 54.77

Channidae
43.08 53.19 78.70

Percichthyidae
69.10 87.59 127.39

Results for seven focal clades are discussed below
in the context of their fossil record and geographic
distribution. Comparisons with molecular timescales permit
a comprehensive view of the biogeographic history for each
group at a continental scale.

(1) Lepidosireniformes (South American and
African lungfishes)

Lepidosireniformes (sensu Otero, 2011) includes two living
genera, the South American Lepidosiren (one extant species)
and the African Protopterus (four extant species). Molecular
and morphological data support monophyly of the group (e.g.
Betancur-R et al., 2013; Criswell, 2015). Lepidosireniform
fossils comprise mainly tooth plates and jaw fragments, with
some exceptions (see online Table S1) (Silva Santos, 1987).
Crown lepidosireniforms are distinguished on the basis of
tooth plate characters (Otero, 2011; Longrich, 2017). Like
modern species, fossils of the group are restricted to South
America and Africa (Fig. 2). The oldest fossils of Lepidosiren
derive from the Late Cretaceous El Molino Formation
(Maastrichtian of Bolivia; Schultze, 1991) and Vilquechico
Formation (?Coniacian–Maastrichtian of Peru; Arratia &

Cione, 1996). †Protopterus nigeriensis from the Cenomanian
Wadi Milk Formation of Sudan might represent the
oldest African crown lepidosireniform (Claeson et al., 2014).
However, Longrich (2017) did not find conclusive evidence
for assigning this species or other Late Cretaceous–Eocene
African fossils to Protopterus, and it is not clear whether
they belong within the lepidosireniform crown. Leaving
aside possible polyphyly of the genus (when including
fossils), Protopterus is represented in the African record by
up to eight different species (six extinct) and hundreds of
specimens without specific attribution, ranging from the
Late Cretaceous to the Holocene (Otero, 2011).

Extant Protopterus and Lepidosiren are strictly freshwater
(Berra, 2007) and deposits yielding fossils of these genera are
generally freshwater or estuarine (Cavin et al., 2007). Past
work cites these environmental associations as supporting a
vicariant model for the South American–African distribution
of Lepidosireniformes (Lundberg, 1993; Otero, 2011). The
early Late Cretaceous age of the first crown lepidosireniform
fossils is consistent with vicariance. Some Mesozoic (and
many Paleozoic) lungfishes outside Lepidosireniformes are
known from marine deposits, leading some to hypothesize
primitive marine habits and independently acquired
freshwater adaptations among the living lungfish genera
(Schultze, 1991). However, most (if not all) of the marine
Mesozoic fossils probably represent remains of freshwater
animals that have been reworked into marine deposits (Cavin
et al., 2007).

(a) Fossil-based estimate of origin time

The origin of crown Lepidosireniformes is estimated
to occur between the Aptian and the Cenomanian
(124.9–95.1 Ma; median point estimate: 103.5 Ma); this
overlaps with fragmentation of Western Gondwana (South
America + Africa; Heine, Zoethout & Müller, 2013). Our
fossil-based age estimate is consistent with molecular
divergence times between Protopterus and Lepidosiren (estimates
centered around 112–96 Ma; Broughton et al., 2013; Giles
et al., 2017). The limited suite of dental characters used for
the systematics of extinct lepidosireniforms results in some
ambiguity in the placement of some fossil remains. The
possible exclusion of Late Cretaceous taxa like †Protopterus
nigeriensis from the genus Protopterus (Longrich, 2017) could
strongly impact the fossil-based estimate of the age of origin
for the group, making it substantially younger. Nonetheless,
the currently known timescale for lepidosireniform origin
and evolution (based on fossil and molecular data) does not
reject the vicariance hypothesis. The disjunct distribution of
extant Lepidosireniformes can probably be considered as the
genuine product of an ancient vicariant event.

(2) Osteoglossomorpha (bonytongues and allies)

Osteoglossomorpha is one of the earliest diverging lineages of
modern teleosts (Arratia, 1999; Near et al., 2012), comprising
246 living species distributed across the Americas, Africa,
the Indo-Malayan region and Australia (Nelson et al., 2016).
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Fig. 2. Histogram showing the temporal distribution of distinct stratigraphic horizons bearing fossils of crown Lepidosireniformes.
Each time bin is 5 million years (Myr) in width. The inset displays the present-day geographic distribution of Lepidosireniformes (in
blue), as well as the main localities in which lepidosireniform fossils have been found (orange dots). Extant geographic ranges for
Figs 2–8 were taken from Berra (2007). Photograph of West African lungfish (Protopterus annectens) from Wikimedia Commons.

The osteoglossomorph fossil record is rich (see online
Table S2), with more than 80 extinct species, and expands the
present distribution of the group to Europe and Northeastern
Asia (Wilson & Murray, 2008) (Fig. 3).

Morphological and molecular data strongly support
osteoglossomorph monophyly, but interpretations of
intrarelationships (reviewed in Hilton, 2003) have changed
considerably over time. Current classifications recognize six
main lineages (Nelson et al., 2016): Hiodontiformes (the sister
group to all other living osteoglossomorphs; Hilton, 2003),
Pantodontidae, Notopteridae, Gymnarchidae, Mormyridae
and Osteoglossidae (grouped together as Osteoglossiformes).

The oldest articulated osteoglossomorph fossils belong
to †Paralycoptera and derive from the Late Jurassic Lai
Chi Chong Formation of Hong Kong and Fenshuiling
Formation of Shandong, China (Tse, Pittman & Chang,
2015). The phylogenetic placement of †Paralycoptera is
uncertain. Some analyses place it on the osteoglossomorph
stem (Wilson & Murray, 2008) and others recover it as a
crown osteoglossiform (Li & Wilson, 1999; Zhang, 2006).
Fossil squamules from the Anoual Formation of Morocco
could push back the earliest osteoglossomorph occurrence
in the fossil record to the Middle Jurassic (early Bathonian;
Haddoumi et al., 2016). The otolith-based genus †Archaeglossus
(Schwarzhans, 2018) from the marine Middle–Late Jurassic
of England might also represent an early osteoglossomorph.
The presence of early Mesozoic osteoglossomorphs in
marine sediments would not be completely unexpected, as
crown teleosts probably originated in marine environments

(Betancur-R et al., 2015). Early Cretaceous deposits from
Northeastern Asia (Russia, Mongolia, China, Korea and
Japan) yield numerous early osteoglossomorphs (Wilson &
Murray, 2008). Many of these fossils belong to the abundant
†Lycoptera or closely related stem osteoglossomorphs (Li
& Wilson, 1999). However, some of these Asian genera
(e.g. †Huashia, †Kuntulunia, †Xixiaichthys) are unstable in
phylogenetic analyses (Li & Wilson, 1999; Zhang, 2006;
Wilson & Murray, 2008).

The oldest definitive crown osteoglossomorph is †Yanbiania
wangqinica, a hiodontiform from the Aptian–Albian Dalazi
Formation of China (Li & Wilson, 1999). Fossil hiodontiforms
are also known from Late Cretaceous deposits in North
America and Asia (Newbrey et al., 2013; Brinkman, Newbrey
& Neuman, 2014), but extant Hiodon is restricted to
North America. Among Osteoglossiformes, pantodontids,
gymnarchids and mormyrids are endemic to Africa, and
have a meagre fossil record in African Cenozoic deposits
(Wilson & Murray, 2008). Notopterids show a disjunct
distribution, with two African and two Indo-Malayan genera.
Notopterid fossils are limited to otoliths from the latest
Maastrichtian of India (Nolf, Rana & Prasad, 2008) and
a few articulated specimens from the Eocene–Oligocene of
Sumatra (Sangkarewang Formation; Sanders, 1934; de Smet
& Barber, 2005). †Palaeonotopterus greenwoodi from the early
Late Cretaceous (Cenomanian) Kem Kem Beds of Morocco
was originally interpreted as a notopterid (Forey, 1997), but
it probably represents a basal member of the clade uniting
Notopteridae, Mormyridae and Gymnarchidae (Wilson &
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Fig. 3. Histogram showing the temporal distribution of distinct stratigraphic horizons bearing fossils of total-group
Osteoglossomorpha. Each time bin is 5 million years (Myr) in width. The inset displays the present-day geographic distribution
of Osteoglossomorpha (in blue), as well as the main localities in which osteoglossomorph fossils have been found (orange dots).
Photograph of Lokundi mormyrid (Hippopotamyrus castor) modified from Sullivan, Lavoué & Hopkins (2016).

Murray, 2008). Nonetheless, †Palaeonotopterus demonstrates
that key divergences within crown osteoglossiforms had
occurred by 100 Ma.

Extant osteoglossids comprise two sub-clades, each with
an intercontinental distribution: Arapaiminae (sensu Forey &
Hilton, 2010) inhabits South America (Arapaima) and Africa
(Heterotis), while Osteoglossinae is distributed across South
America (Osteoglossum), Southeast Asia and northern Australia
(Scleropages). Osteoglossid fossils are known from every
continent (except Antarctica) and show a higher diversity of
the group in the past. †Chanopsis lombardi from the late Early
Cretaceous (Aptian–Albian) Loia and Bokungu formations
of the Democratic Republic of Congo (DRC) could
represent the oldest member of Osteoglossidae (Taverne,
2016). Although †Chanopsis shows features characteristic of
some osteoglossid sub-groups (e.g. lateral expansion of the
anterior end of the frontal) it lacks definitive osteoglossid
synapomorphies (Forey & Hilton, 2010) and has never
been included in a formal phylogenetic analysis. Other
putative early osteoglossids include †Laeliichthys from the
Aptian of Brazil and †Paradercetis from the Late Cretaceous
of DRC; both taxa have been assigned to Arapaiminae and
feature prominently in discussions about the biogeography
of the clade (Taverne, 1979; Lundberg, 1993). However,
characters suggesting a relationship between †Laeliichthys and
Arapaiminae might be plesiomorphies or homoplasies (Forey
& Hilton, 2010), while †Paradercetis is known from a poorly
preserved skull roof without any clear osteoglossomorph
features (A. Capobianco, personal observation of MRAC

RG 10.970 at the Royal Museum for Central Africa,
Tervuren). It is advisable to exclude these taxa from
discussions about osteoglossid evolution and biogeography
pending further study. †Laeliichthys and †Paradercetis aside,
jaw fragments from the Maastrichtian El Molino Formation
of Bolivia could represent the oldest arapaimines (Gayet
et al., 2001). Osteoglossine fossils are rare, but articulated
specimens of Scleropages from the early–middle Eocene
of China (Xiawanpu and Yangxi formations; Zhang &
Wilson, 2017) lie outside the current geographic range
of the genus. Perhaps unexpectedly, worldwide marine
deposits of Paleocene–early Eocene age yield the highest
diversity of fossil osteoglossids (e.g. †Brychaetus, †Furichthys,
†Heterosteoglossum, †Magnigena, †Opsithrissops; Bonde, 2008;
Forey & Hilton, 2010). Taverne (1979) grouped some of
the marine osteoglossids with the freshwater Phareodus in
Phareodontinae. However, †Magnigena and †Opsithrissops do
not seem to be closely related to †Brychaetus (Forey & Hilton,
2010), implying multiple marine invasions. Reexamination
of early Cenozoic osteoglossids (including marine forms)
is necessary to untangle the complex evolutionary and
biogeographic history of Osteoglossidae.

Extant osteoglossomorphs are restricted to fresh waters,
with notopterids occasionally found in brackish environ-
ments (Berra, 2007). Thus, their distribution (encompassing
all southern landmasses except for Antarctica) has been the
subject of various biogeographic hypotheses (Nelson, 1969;
Greenwood, 1973; Lundberg, 1993; Wilson & Murray,
2008). Africa has been proposed as the osteoglossomorph
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centre of origin (in a dispersalist scenario) due to the
presence of every major extant osteoglossomorph lineage
(except Hiodontidae; Darlington, 1957). However, the fossil
record shows the highest diversity of Late Jurassic–Early
Cretaceous osteoglossomorphs in northeastern Asia.
Whether this pattern is due to an Asian origin or to
geographical bias in the continental sedimentary record is
not clear. Another scenario (Kumazawa & Nishida, 2000)
involves a widespread Pangaean distribution during the
Permian–Triassic for which there is no palaeontological
evidence despite a wealth of fossil fishes of this age (Romano
et al., 2016). Cavin (2017) proposed a Laurasia–Gondwana
vicariant event during the Jurassic corresponding to the
divergence between the Laurasian Hiodontiformes and
the Gondwanan Osteoglossiformes. The highly unstable
phylogenetic position of several basal osteoglossomorphs
(and possibly osteoglossiforms) from the Cretaceous and
early Paleogene of North America and Asia (Murray et al.,
2018) makes this hypothesis difficult to evaluate at present.

The cosmopolitan distribution (encompassing North
and South America, Africa, Europe, continental Asia,
Indo-Malaya and Australia) of marine osteoglossomorphs
and †Phareodus-like freshwater osteoglossids in the early
Paleogene suggests a role for long-distance marine dispersal
(Bonde, 2008; Wilson & Murray, 2008). Thus, the disjunct
modern distribution of Arapaiminae and Osteoglossinae
could be explained by marine dispersal followed by
colonization of freshwater environments.

(a) Fossil-based estimate of origin time

The fossil-based estimate for total-group Osteoglossomorpha
ranges from the Late Triassic to the Middle Jurassic
(Rhaetian–Bathonian: 206.9–167.0 Ma; median point
estimate: 182.4 Ma), suggesting an early ghost lineage
extending for up to 40 Myr. The time of origin of total-group
Osteoglossomorpha is closely linked to the origin of the
teleost crown, as either osteoglossomorphs or elopomorphs
(or a clade including both) represent the sister group to all
other living teleosts (Arratia, 2010; Dornburg et al., 2014;
Hughes et al., 2018). The age discordance between the
oldest crown-teleost fossils, found in Late Jurassic deposits
(except for some very fragmentary Middle Jurassic remains;
Haddoumi et al., 2016), and molecular clock estimates, which
range from the late Carboniferous to the Late Triassic (Near
et al., 2012; Broughton et al., 2013; Dornburg et al., 2014), has
been called the ‘teleost gap’ (Near et al., 2012). It represents
one of the most striking differences between fossil and
molecular timescales that still remains partially unexplained.
Incompleteness of the fossil record and failure to recognize
early crown-teleost fossils are not sufficient explanations
for this phenomenon (Sallan, 2014), and specific choices
of calibration points for molecular phylogenies play some
role (Friedman, 2015; Giles et al., 2017). The fossil-based
estimate derived here for total-group Osteoglossomorpha
partially bridges that gap, possibly extending the origin of
this group as far back as the latest Triassic. Still, a significant
difference of at least 15–40 Myr remains, suggesting the

need for a revision of molecular clock studies focused on
broad-scale teleost relationships.

While total-group Osteoglossomorpha is old enough to
have been affected by the breakup of Gondwana (and even
Pangaea), the abundance of basal osteoglossomorphs in areas
not occupied by living lineages (northeastern Asia) or with
low present-day diversity (North America) suggests a complex
history where dispersal and/or local extinction might
have played a fundamental role. Moreover, at least three
subclades that are deeply nested within Osteoglossomorpha
(Notopteridae, Osteoglossinae, Arapaiminae) show disjunct
distributions. The sparse fossil record of notopterids indicates
that the group was already present in the Indian subcontinent
by the end of the Cretaceous, but it cannot be used
to derive an informative estimate for its time of origin.
Molecular estimates of divergence between African and
Asian notopterids show considerable variation (from the
Late Jurassic to the Late Cretaceous; Inoue et al., 2009;
Lavoué, 2016). Thus, neither an Africa–India vicariance
scenario nor a sweepstakes dispersal from Africa to India
across the Mozambique Channel can be confidently rejected
on the basis of the present evidence.

The fossil record of Arapaiminae and Osteoglossinae
gives a minimum latest Cretaceous and early Eocene age
for these two clades, respectively. However, derivation
of probabilistic fossil-based estimates of their origin
times is complicated by inadequate understanding of
the relationships of fossil osteoglosssids (Forey & Hilton,
2010). Nonetheless, it is possible to estimate an age for
Osteoglossidae as a whole. The fossil-based estimate for
osteoglossid origin varies greatly depending on the inclusion
or exclusion of †Chanopsis: Early Cretaceous and even the
latest Jurassic (Tithonian–Albian: 154.4–103.2 Ma; median
point estimate: 124.0 Ma) with †Chanopsis, or most of
the Late Cretaceous (Aptian–Campanian: 113.0–72.1 Ma;
median point estimate: 82.8 Ma) excluding this genus.
It is clear that the phylogenetic placement of †Chanopsis
has broad implications on the reconstruction of the early
evolutionary history of the group, and a phylogenetic
reassessment of this taxon is badly needed. Despite the
differences in the fossil-based origin times inferred here
relative to the position of †Chanopsis, both estimates are
approximately consistent with molecular dates for crown
Osteoglossidae (Early Cretaceous; Broughton et al., 2013).
These dates are old enough to allow for a significant
role of continental vicariance, particularly involving South
America–Africa drift and the fragmentation of the South
America–Antarctica–Australia block, in the biogeographic
history of the clade. However, the complex distributional
pattern of extant and fossil osteoglossids (Wilson & Murray,
2008; Lavoué, 2016) and the presence of marine forms in
the fossil record strongly suggest that dispersal has been a
fundamental process during osteoglossid evolution.

(3) Characiformes (characins and allies)

Characiformes is a major clade of otophysans containing
more than 2000 species, making it one of the most

Biological Reviews 94 (2019) 662–699 © 2018 Cambridge Philosophical Society



Vicariance and dispersal in freshwater fishes 675

Fig. 4. Histogram showing the temporal distribution of distinct stratigraphic horizons bearing fossils of Characiformes. Each
time bin is 5 million years (Myr) in width. The hatched rectangle represents the doubtful occurrences of characiforms teeth in
Cenomanian deposits of Africa. The inset displays the present-day geographic distribution of Characiformes (in blue), as well as the
main localities in which characiform fossils have been found (orange dots). Photograph of striped headstander (Anostomus anostomus)
by J. Armbruster from Wikimedia Commons.

diverse freshwater fish lineages (Nelson et al., 2016). Extant
characiforms are restricted to freshwater environments of
Africa and South and Central America, with one species in
the southwestern USA (Fig. 4).

Numerous morphological characters support characiform
monophyly (Wiley & Johnson, 2010), including the presence
of multicuspid teeth in the jaws (lost in predators like Hepsetus

and Salminus; Fink & Fink, 1981). The species-poor African
Citharinoidei and species-rich Neotropical and African
Characoidei represent the principal characiform lineages.
Surprisingly, some molecular work questions characiform
monophyly (Chen, Lavoué & Mayden, 2013; Chakrabarty
et al., 2017), but other analyses suggest these results are
spurious (Arcila et al., 2017).

Isolated teeth are the most common characiform fossils
(see online Table S3) (Malabarba & Malabarba, 2010;
Gaudant, 2014). These are sufficiently diagnostic to
support a characiform attribution but often inadequate
for more precise placements. The oldest fossil putative
characiform teeth come from the Cenomanian of Morocco
(Ifezouane Formation; Dutheil, 1999) and Sudan (Wadi
Milk Formation; Werner, 1994). These occurrences would
demonstrate presence of the group in Africa shortly after
tectonic separation from South America. However, their
attribution to characiforms has been challenged and they
might instead represent ginglymodian multicuspid teeth,
common in Cretaceous continental deposits of Africa, India

and China (Cavin, 2017). The African record also yields
the oldest articulated characiform, †Eocitharinus macrognathus

from the middle Eocene Mahenge Formation (Lutetian of
Tanzania; Murray, 2003b; this is also the earliest known
citharinoid). Alestidae, an African subclade of Characoidei,
has a relatively abundant fossil record that spans the Ceno-
zoic. Teeth of Hydrocynus appear in late Paleocene–early
Eocene deposits of Algeria (Hammouda et al., 2016). Possible
alestid fossils from the Oligocene Baid Formation of Saudi
Arabia (Micklich & Roscher, 1990) and Eocene and middle
Miocene deposits of southwestern Europe (Gaudant, 2014)
indicate a broader distribution of this clade in the past.
Fragmentary material from the Maastrichtian Maevarano
Formation of Madagascar has been tentatively referred to
Characiformes (Ostrowski, 2012), but requires further study.

The Maastrichtian El Molino Formation of Bolivia is the
oldest horizon yielding characiform fossils in South America,
which today is home to the greatest diversity of characiforms
(Gayet, 1991). Various tooth morphologies are present in
these latest Cretaceous Bolivian deposits, indicating that the
diversification of modern lineages (characids, serrasalmids
and possibly acestrorhynchids) was underway by the end
of the Late Cretaceous (Gayet et al., 2001, 2003). Complete
fossils of South American characiforms (including bryconids,
curimatids, triportheids and several characid lineages)
are known from the Eocene–Oligocene Entre-Corregos
Formation and the Oligocene Tremembé Formation of
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southeastern Brazil (Malabarba, 1998; Weiss, Malabarba
& Malabarba, 2014).

The recent discovery of putative characiform dentaries
and vertebral centra from late Campanian North American
deposits (Dinosaur Park and Kaiparowits formations) greatly
extends the known geographic range of the group and
implies an elaborate biogeographic scenario (Newbrey et al.,
2009; Brinkman et al., 2013). Although the dentaries show
an interdigitating hinge joint at the symphysis (a character
thought to be unique to characiforms), these identifications
should be approached with caution given the limited
material. Characiforms also appear in the European fossil
record by the end of the Cretaceous, with teeth found in
Maastrichtian deposits in France and Romania (Grigorescu
et al., 1985; Otero, Valentin & Garcia, 2008). There are
no extant European characiforms, but fossils are found
throughout the Cenozoic (including articulated specimens;
Gaudant, 1980), with the youngest examples from the latest
Miocene (Gaudant, 2014).

Extant characiforms are strictly freshwater (with isolated
brackish records; Lundberg, 1993), and all known fossils
come from freshwater or at most brackish deposits. However,
marine Early and Late Cretaceous fossils from Europe and
South America (†Salminops, †Sorbinicharax and †Santanichthys)
have been aligned with characiforms in the past (Gayet, 1985;
Taverne, 2003; Filleul & Maisey, 2004), leading to hypotheses
of a marine origin for Characiformes and of better dispersal
abilities in early characiforms than might be predicted from
modern forms (Calcagnotto, Schaefer & DeSalle, 2005;
Otero et al., 2008). Restudy of †Salminops and †Sorbinicharax

failed to find evidence that these genera are even otophysans
(Mayrinck, Brito & Otero, 2015; Mayrinck et al., 2017).
†Santanichthys is better interpreted as a basal member of
Otophysi or Ostariophysi rather than a stem characiform
(Malabarba & Malabarba, 2010). Thus, a marine origin
of Characiformes is not supported by palaeontological and
phylogenetic data.

Two factors further complicate attempts to reconstruct
characiform biogeographic history. First, extant African
characiforms belong to three distinct clades (Citharinoidei,
Alestidae and the monotypic Hepsetidae). Second,
characiform fossils are found in areas outside their
present distribution (Fig. 4). Several non-mutually exclusive
hypotheses have been formulated to explain the presence
of three different characiform lineages in Africa: a single
vicariant event between Africa and South America when
characiforms were already diversified, followed by extinction
of several African lineages to account for the rarity of
sister pairs between extant American and African clades;
multiple vicariant events associated with the diachronous
split between South America and Africa; and trans-oceanic
dispersal events from South America to Africa, usually
associated with the questionable hypothesis of a marine
ecology in early characiforms (Lundberg, 1993; Malabarba
& Malabarba, 2010). Evaluating these proposals without a
well-supported phylogenetic framework for Characiformes
is prohibitive; in fact, apart from the basal split between

Citharinoidei and Characoidei, there is no agreement
across different analyses about the relationships among
major characiform lineages (see Dahdul, 2010). Arcila
et al. (2017) recently recovered a single African characoid
clade, with a strongly supported sister-group relationship
between Hepsetidae and Alestidae. Given the low support
for most other basal nodes within Characoidei, an alternative
hypothesis with a diverse South American characoid clade
nested within an African radiation cannot be excluded a
priori. Under this scenario, only one event (either a pre-drift
dispersal, or a post-drift oceanic dispersal, or a vicariant
event) would be necessary to explain the current distribution
of characiforms. Characiform fossils found in Europe and
North America are difficult to interpret in a biogeographic
framework, as their phylogenetic affinities are unclear. It
has been proposed that European characiforms, which are
mainly found in Maastrichtian, early Eocene, Oligocene and
middle Miocene deposits, are the result of multiple waves
of immigration, presumably from Africa, instead of a single
colonization of the continent (Gaudant, 2014). The North
American Campanian fossils, if confirmed as characiforms,
hint at possible dispersals from South America or Europe
(there is evidence for both routes from early Campanian
terrestrial vertebrates; Newbrey et al., 2009; Cavin, 2017).
The widespread distribution of characiforms in the latest
Cretaceous may suggest multiple long-distance dispersal
events during the biogeographic history of the clade.

(a) Fossil-based estimate of origin time

The fossil-based divergence time estimate for characiforms
depends heavily on the inclusion or exclusion of the
Cenomanian fossil teeth from northern Africa. When
including these putative characiform occurrences, our
estimate is consistent with a vicariant scenario involving
the South America–Africa split, as the origin of the
clade is estimated as Albian–Cenomanian (119.8–95.1 Ma;
median point estimate: 102.5 Ma). This is generally
congruent with molecular clock estimates for the age
of crown Characiformes (mostly ranging from 120 to
80 Ma; Near et al., 2012; Betancur-R et al., 2015). Without
Cenomanian occurrences, our estimate shifts forwards
in time by around 20 Myr to the Late Cretaceous
(Cenomanian–Campanian: 97.3–75.1 Ma; median point
estimate: 83.4 Ma), rejecting the vicariant scenario. Thus,
a careful taxonomic reassessment of the Cenomanian
multicuspid teeth from the Ifezouane and Wadi Milk
formations could substantially impact the reconstruction of
characiform biogeographic history. Particular caution should
be applied when interpreting these results for two main
reasons besides uncertainty on Cenomanian occurrences:
the phylogenetic position of most early characiform fossils is
unknown, so placement in the crown rather than on the stem
is not assured; and the divergence between Citharinoidei and
Characoidei may not correspond to a South America–Africa
split, if South American characoids are nested within
an African radiation. In this last case, the divergence
between South American and African characiforms would
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have occurred later than the citharinoid–characoid split.
Considering these two factors, together with the inclusion of
Cenomanian fossils, our older estimate is more likely to be
a conservative test of the vicariant scenario (i.e. it is likely
to be an overestimate of true divergence time rather than
underestimate). If we exclude the doubtful Cenomanian
fossils, some of the oldest known characiforms – from
Maastrichtian and Paleocene deposits – are unambiguous
members of modern lineages that are deeply nested
within characiform phylogeny (Gayet et al., 2001, 2003).
Hence, our younger estimate is more likely to be an
underestimate of the true age of characiform origin. The
apparent absence in the fossil record of early crown
characiforms and the sudden appearance of several derived
lineages in the Maastrichtian–Paleocene could be the
result of different phenomena, which are not mutually
exclusive: an early evolutionary history characterized by
low diversification rates, followed by rapid diversification
from the Maastrichtian onwards; the lack of appropriate
depositional settings in the fossil record to recover Late
Cretaceous characiforms; or a high degree of endemism
before a rapid geographic expansion at the end of the Late
Cretaceous (less likely under a vicariant scenario).

The fossil-based estimate for the origin of the African
Alestidae could at most extend to the latest Cretaceous
(Maastrichtian–Ypresian: 72.1–53.1 Ma; median point
estimate: 60.4 Ma), significantly postdating the separation of
South America and Africa. A stable phylogenetic placement
of alestids (and of the other African characoid taxon,
Hepsetidae) is needed before interpreting this result in light
of a biogeographic scenario. Nonetheless, the timescale of
alestid evolution is consistent with the emergence of modern
characiform lineages during the Maastrichtian–Paleocene.
The fossil record of characiforms in Europe hints at multiple
dispersals of alestids from Africa during the Cenozoic, a
pattern found in other non-marine vertebrates (Koufos et al.,
2005; Tabuce & Marivaux, 2005).

(4) Galaxiidae (galaxiids)

Galaxiidae includes more than 50 species of freshwater
and diadromous fishes inhabiting temperate regions of the
southern hemisphere (southern South America, South Africa,
Australia, New Zealand and New Caledonia) (Fig. 5). Both
morphological and molecular phylogenies strongly support
galaxiid monophyly (McDowall & Burridge, 2011; Burridge
et al., 2012).

The galaxiid fossil record is restricted to Miocene
lacustrine deposits of New Zealand (see online Table S4)
(McDowall & Pole, 1997; Lee, McDowall & Lindqvist, 2007).
The earliest examples belong to †Galaxias effusus from the
early Aquitanian Foulden Hills Diatomite (Lee et al., 2007).
The Maastrichtian †Stompooria rogersmithi from freshwater
deposits of South Africa was originally described as a galaxiid
(Anderson, 1998). Although these specimens are articulated,
subsequent study indicates they are too poorly preserved to
permit precise taxonomic identification (Wilson & Williams,
2010). Significantly, †Stompooria differs from living galaxiids in

several features, including the presence of scales (McDowall
& Burridge, 2011).

Because of their peculiar distribution and the complex life
cycle of some species, galaxiids have been at the centre of
a long-standing debate concerning the relative contributions
of vicariance and sweepstakes dispersal [see McDowall,
2010 for a review]. While most galaxiids are exclusively
freshwater, at least 11 species are diadromous (i.e. they
migrate between fresh waters and sea during their life cycle;
McDowall, 2007). Some diadromous species show broad
distributions (e.g. Galaxias maculatus occurs in Australia, New
Zealand, Chatham Islands, southern South America and
Falkland Islands; McDowall, 1972), implying that open
seaways are not a barrier to their dispersal. Diadromy has
been lost many times during galaxiid evolution, indicated
by phylogenetic studies and by the existence of landlocked
populations of otherwise diadromous species (Allibone &
Wallis, 1993; Waters & Wallis, 2001). Time-calibrated total
evidence analyses imply a complex scenario of vicariant
events associated with the early divergences followed by
multiple marine dispersals since the Oligocene (Burridge
et al., 2012). Moreover, ancestral life-history reconstructions
show that diadromy cannot be rejected as the ancestral state
for most of the nodes corresponding to disjunct geographic
distributions (Burridge et al., 2012).

(a) Fossil-based estimate of origin time

The fossil-based estimate for the origin time of galaxiids is
extremely broad and spans the whole Mesozoic and most
of the Cenozoic (235.0–21.2 Ma; median point estimate:
97.1 Ma), failing to give insight into their biogeographic
history. This is a consequence of the very low number of
distinct stratigraphic horizons in which galaxiid fossils have
been found (only four when excluding †Stompooria). Published
timetrees place the origin of crown Galaxiidae in the Late
Cretaceous–early Paleogene, with a very long stem lineage
extending to the Early Cretaceous (Burridge et al., 2012;
Betancur-R et al., 2017).

Fossil Galaxias from the early Miocene of Otago show
that galaxiids were present there shortly after the Oligocene
‘drowning’ event that almost completely submerged New
Zealand [Cooper & Cooper, 1995; Landis et al., 2008; see
Sharma & Wheeler, 2013 for a critique of this scenario].
This is consistent with the total-evidence analysis of Burridge
et al. (2012), which indicates that the earliest New Zealand
galaxiid clades diverged from their sister groups around the
Oligocene–Miocene boundary. Thus, the presence of several
lineages of galaxiids in New Zealand is better explained
through multiple long-distance dispersal events.

(5) Cyprinodontiformes (killifishes and allies)

Cyprinodontiformes comprises more than 1200 species
occurring in the Americas, the Mediterranean region,
Africa and Southeast Asia and living predominantly in
freshwater and brackish environments. Cyprinodontiform
monophyly – and its division into two subclades with
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Fig. 5. Histogram showing the temporal distribution of distinct stratigraphic horizons bearing fossils of Galaxiidae. Each time bin is
5 million years (Myr) in width. The inset displays the present-day geographic distribution of Galaxiidae (in blue), as well as the main
localities in which galaxiid fossils have been found (orange dots). Photograph of spotted galaxias (Galaxias truttaceus) by N. Litjens
from Wikimedia Commons.

approximately equal modern diversity: Aplocheiloidei and
Cyprinodontoidei – is strongly supported by morphological
and molecular studies (Parenti, 1981; Setiamarga et al., 2008).
However, phylogenetic relationships among major killifish
lineages (especially within Cyprinodontoidei) differ wildly
across studies, with recent molecular phylogenies challenging
the monophyly of long-standing taxa like Cyprinodontidae
and Poeciliidae (Pohl et al., 2015).

European and North American cyprinodontoids dominate
the cyprinodontiform fossil record (see online Table S5).
Very few fossil occurrences are known from Africa and
South America, and none from Madagascar, India and
Southeast Asia (Fig. 6). The oldest fossils referred to
Cyprinodontiformes come from the Maastrichtian El Molino
Formation of Bolivia (Gayet, 1991). These articulated, poorly
preserved specimens do not exhibit typical cyprinodontiform
synapomorphies of the caudal skeleton (Arratia & Cione,
1996). The El Molino fossils could represent a very
basal lineage of killifishes or small-bodied freshwater fishes
unrelated to killifishes. Undescribed material from the
middle Eocene Lumbrera Formation of Argentina was
listed as an indeterminate poeciliid by Arratia & Cione
(1996). The earliest definitive cyprinodontiform fossils come
from early Oligocene (Rupelian) deposits of Europe (Spain,
France, Switzerland and Germany) and are represented
by articulated specimens (Gaudant, 1982; Frey, Maxwell
& Sánchez-Villagra, 2016). Numerous killifish species were
present in Europe by the end of the Oligocene, probably
representing every major living lineage of Old World

cyprinodontoids (Aphanius-like cyprinodontids, valenciids
and procatopodine poeciliids; Costa, 2012). The European
genera Aphanius and Valencia have fossil records that extend to
the early and middle Miocene, respectively (Reichenbacher
& Kowalke, 2009; Gaudant et al., 2015). Killifishes also
appear in the Oligocene of North America (Coatzingo
Formation of Mexico; Guzmán, 2015), and the genus
Fundulus is first found in early Miocene (Burdigalian)
deposits of Nevada (Lugaski, 1977). Other extant killifish
genera (Cyprinodon and several goodeids) have been found
in Pliocene and Pleistocene deposits of the southern USA
and Mexico (Smith, 1981; Miller & Smith, 1986). Only
one fossil aplocheiloid species has ever been formally
described (†Kenyaichthys kipkechi from the late Miocene
Lukeino Formation of Kenya; Altner & Reichenbacher,
2015). Several fossil aplocheiloid specimens are also known
from the Oligocene Daban Formation of Somalia (Van
Couvering, 1982), but remain undescribed. These two cases
represent the only examples of fossil killifishes in Sub-Saharan
Africa.

Several killifishes live in brackish environments, and some
fundulids and cyprinodontids inhabit coastal marine settings
(Berra, 2007). Nonetheless, the widespread distribution
of cyprinodontiforms has been interpreted as a ‘reduced
Pangaean’ distribution by Parenti (1981, p. 534), who argued
that the origin of Cyprinodontiformes should extend to the
Late Triassic. Similarly, the origins of both cyprinodontids
and aplocheiloid killifishes have been hypothesized to have
occurred in the Late Jurassic–Early Cretaceous based on
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Fig. 6. Histogram showing the temporal distribution of distinct stratigraphic horizons bearing fossils of Cyprinodontiformes. Each
time bin is 5 million years (Myr) in width. The inset displays the present-day geographic distribution of Cyprinodontiformes (in blue),
as well as the main localities in which cyprinodontiform fossils have been found (orange dots). Photograph of an African killifish
(Nothobranchius kilomberoensis) from Wikimedia Commons.

modern geographic distributions (Parker & Kornfield, 1995;
Murphy & Collier, 1997). Others emphasized the high
salinity tolerance shown by several cyprinodontiforms in
arguing for marine dispersal, with a South American origin
and successive dispersals to Africa during the Late Cretaceous
to early Paleogene (Lundberg, 1993; Briggs, 2003).

Traditional classifications place Old World cyprinodon-
toids in three unrelated lineages, but molecular phylogenies
resolve them as a clade nested within an American radia-
tion (Pohl et al., 2015). This topology implies only one event
(either vicariance or long-distance dispersal) to explain the
presence of cyprinodontoids on both sides of the Atlantic.

Recent phylogenies of Aplocheiloidei indicate that African
and Indo-Malayan cyprinodontoids are sister lineages
(Furness et al., 2015; Pohl et al., 2015), contradicting a
hypothesized South American and African clade (Murphy
& Collier, 1997). The branching order of major clades
within Aplocheiloidei is incongruent with the sequence of
Gondwanan breakup, suggesting that a purely vicariant
scenario is overly simplistic. Unfortunately, the scant
aplocheiloid fossil record provides few temporal and
biogeographic constraints.

(a) Fossil-based estimate of origin time

Cyprinodontiformes (with the inclusion of the El Molino
fossils) is estimated to originate during the Late
Cretaceous (Campanian–Maastrichtian: 80.0–67.0 Ma;
median point estimate: 70.7 Ma), whereas its major

sub-clade Cyprinodontoidei probably appeared during the
early-middle Eocene (Ypresian–Lutetian: 54.8–42.0 Ma;
median point estimate: 46.3 Ma).

The fossil-based time estimate for Cyprinodontiformes
rejects the vicariant hypothesis for this group, as South
America, Africa and the Indo-Malagasy block were
already separated from each other by seaways during the
Campanian–Maastrichtian (Ali & Aitchison, 2008; Granot &
Dyment, 2015). This timescale agrees with recent molecular
studies that put the origin of killifishes in the Late Cretaceous
(Near et al., 2013; Matschiner et al., 2017). However, this
result should be treated with caution for two reasons. First, the
fossil-based estimate is strongly reliant on the Maastrichtian
El Molino Formation material, whose cyprinodontiform
affinity is dubious at best; the next oldest occurrence is around
20 Myr younger than the El Molino fossils. Additionally,
the taxonomic distribution of fossil cyprinodontiforms
among the two main sub-clades – Cyprinodontoidei and
Aplocheiloidei – is extremely uneven, so that the two
aplocheiloid occurrences in the Oligocene–Miocene do not
contribute to the time estimate derived here. Thus, a time
estimate focused only on the cyprinodontoid fossil record
may be more reliable than a cyprinodontiform estimate.

The estimated age for Cyprinodontoidei strongly rejects
the vicariant hypothesis by placing cyprinodontoid origin
in the early–middle Eocene. This is congruent with some
molecular estimates (Near et al., 2013; Betancur-R et al.,
2017), but significantly younger than others (Matschiner
et al., 2017). In any case, a latest Cretaceous–early Paleogene
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Fig. 7. Histogram showing the temporal distribution of distinct stratigraphic horizons bearing fossils of Channidae. Each time bin is
5 million years (Myr) in width. The inset displays the present-day geographic distribution of Channidae (in blue), as well as the main
localities in which channid fossils have been found (orange dots). Photograph of giant snakehead (Channa micropeltes) from Wikimedia
Commons.

origin for this transatlantic clade strongly suggests a key role
of long-distance dispersal in its biogeographic history.

A higher probability of long-distance dispersal events
in killifishes compared to other freshwater fishes should
be expected on the basis of remarkable physiological,
behavioural and life-history traits, including not only high
salinity tolerance, but also a facultative amphibious lifestyle,
desiccation-resistant eggs and developmental diapause, that
are present in at least some members of this group (Turko
& Wright, 2015; Furness, 2016). In this regard, killifishes
could represent a valuable biogeographic model system to
study the timing and directionality of rare biotic exchanges
among geographically separated landmasses during the
last 80 Myr.

(6) Channidae (snakeheads)

The freshwater, predatory Channidae includes two extant
genera: Parachanna (Western and Central Africa) and Channa
(Indo-Malayan region and East Asia) (Fig. 7). Together with
anabantoids (gouramies and allies), snakeheads are labyrinth
fishes (Anabantiformes = Anabantoidei + Channoidei;
Wiley & Johnson, 2010). This group is characterized by
the presence of the suprabranchial organ, an accessory
air-breathing apparatus (Wiley & Johnson, 2010). Channid
monophyly is supported by numerous morphological
synapomorphies (Wiley & Johnson, 2010; Murray, 2012)
and molecular phylogenetic analyses (e.g. Li, Musikasinthorn
& Kumazawa, 2006).

The earliest snakehead fossils come from middle Eocene
(Lutetian) deposits of Indo-Pakistan and consist mainly of
cranial material (see online Table S6) (Khare, 1976; Murray
& Thewissen, 2008). The channid affinity of these middle
Eocene fossils is clear, but their exact relationships to modern
lineages is unclear. Fragmentary fossils of Parachanna appear
in late Eocene (early–middle Priabonian) formations of
Egypt and Libya (Murray et al., 2010a; Otero et al., 2015).
More complete cranial remains and isolated vertebrae are
known from the latest Eocene–earliest Oligocene Jebel
Qatrani Formation in the Fayum Depression (Murray, 2012).
Fossil snakeheads are also found in early–middle Miocene
deposits of Europe and Central Asia, areas with no extant
channids (e.g. Gaudant & Reichenbacher, 1998; Kordikova,
Heizmann & Pronin, 2003). Better-preserved specimens are
needed to determine whether European fossils belong to
Parachanna or Channa (Gaudant, 2015). The range expansion
of Channa into East Asia appears to have happened relatively
recently, as the oldest snakehead remains in this region come
from early Pleistocene deposits of China (Liu & Su, 1962).

Snakeheads are currently restricted to freshwater
environments, although at least one species (Channa
punctata) has moderate salinity tolerance and can thrive
in brackish waters (Dubey et al., 2016). Fossil snakeheads
are usually found in freshwater deposits, although some
of the earliest representatives of the group come from
estuarine/transitional deposits (Subathu and Birket Qarun
formations of India and Egypt, respectively; Khare, 1976;
Murray et al., 2010a). Channids are facultatively amphibious,
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can survive outside of water for days in a humid environment
and are capable of short bursts of overland movement
(Chew et al., 2003). Thus, channids probably have good
dispersal potential over the mainland, but they are limited
by other environmental factors including water salinity
and atmospheric humidity. It has been hypothesized
that the geographic distribution of channids has been
strongly controlled by climatic variables (precipitation and
temperature), and that their presence in Europe and
Central Asia during the early–middle Miocene and recent
invasion of East Asia reflect broad-scale changes in Eurasian
atmospheric circulation patterns (Böhme, 2004).

Two biogeographic scenarios have been proposed for
channids. The first involves an origin in the Indo-Malayan
region, followed by dispersal to Africa (Briggs, 1995).
Although a late Miocene–early Pliocene age has been pre-
viously hypothesized for this dispersal event (Böhme, 2004),
Parachanna fossils in late Eocene–early Oligocene deposits of
northern Africa set a minimum age of around 40 Ma (Mur-
ray, 2012). The second scenario postulates a vicariant event
between the Indo-Malagasy block and the rest of Gondwana
during the Late Jurassic–Early Cretaceous (Li et al., 2006).

Regardless of scenario, the fossil record of channids
implies dispersal to Europe by 20 Ma. Gaudant (2015)
proposed Africa as the source of immigration on the
basis of palaeobiogeographic affinities between Europe
and Africa during the early–middle Miocene. Specifically,
European fossil channids have been found in association with
specimens of alestid characiforms, a group now restricted to
Africa. However, a phylogenetic appraisal of the European
channids is needed to distinguish between African and Asian
origins.

(a) Fossil-based estimate of origin time

The fossil-based estimate for the origin of Chan-
nidae ranges from the Late Cretaceous to the Eocene
(Campanian–Lutetian: 78.7–43.1 Ma; median point
estimate: 53.2 Ma), long after the separation of the Indian
subcontinent from continental Africa. Thus, it rejects the
hypothesis of Early Cretaceous vicariance associated with the
Parachanna–Channa divergence. Instead, this date is consistent
with the hypothesis of origin in the Indian (or Indo-Malagasy)
subcontinent, followed by dispersal into Africa before the late
Eocene. Although the exact timing of initial collision between
India and continental Asia is still debated (ranging between
50 and 35 Ma; Ali & Aitchison, 2008; Najman et al., 2010),
the fossil record of terrestrial mammals shows a strong signal
of biotic exchange between Southeast Asia and Africa in the
middle Eocene (Tabuce & Marivaux, 2005). It is possible that
channid dispersal to Africa was coeval with this mammalian
exchange.

Because of ambiguities concerning Eocene fossils from
Indo-Pakistan, it is unclear whether our estimate pertains to
the channid crown or total group. We therefore compare our
results to molecular estimates for both clades. Only studies
that used mitochondrial data and/or calibrations based on
vicariance hypotheses found origin times significantly older

than the fossil-based estimate (Li et al., 2006; Wang & Yang,
2011). Other studies provide relatively broad estimates that
overlap with the fossil-based one and are consistent with
a dispersal-to-Africa scenario (e.g. Adamson, Hurwood &
Mather, 2010; Matschiner et al., 2017). Surprisingly, none
of these molecular timetrees has sufficient scope to estimate
the origin time of channids accurately, as they are either
focused on channids with sparse outgroup sampling, or
they encompass the whole teleost tree and include only few
channid species. A time-calibrated phylogeny focused on
Anabantaria (the clade comprising synbranchiforms and
anabantiforms; Betancur-R et al., 2017) would be needed to
assess the timescale of anabantiform – and channid – origin
and diversification properly. Because most anabantarian
lineages are endemic to the Indo-Malayan region, it is
possible that this clade originated in the isolated Indian
subcontinent during the Late Cretaceous. An anabantarian
timetree would be necessary to test this hypothesis.

(7) Percichthyidae (South American and Australian
temperate perches)

Percichthyidae includes more than 20 species of perch-like
freshwater fishes, distributed across Australia and southern
South America (Fig. 8). Molecular phylogenies show that
Percichthyidae sensu Johnson (1984) is polyphyletic, with the
catadromous Percalates distantly related to other percichthyids
(e.g. Near et al., 2013; Lavoué et al., 2014). Thus, we
use the term Percichthyidae to contain members of the
group as historically construed minus Percalates (i.e. sensu
Betancur-R et al., 2017). Percalates and percichthyids share
several morphological features, to the point that Percalates has
been synonymized to the percichthyid genus Macquaria in
the past (MacDonald, 1978); consequently, the fossil record
of percichthyids is difficult to evaluate. New morphological
studies are needed to identify percichthyid synapomorphies
permitting correct taxonomic identification of perch-like
fossil fishes found in freshwater sediments of southern
continents. In fact, various fossil specimens reported in
the literature as percichthyids have been referred to the
non-percichthyid Percalates (Hills, 1934).

The Maastrichtian El Molino Formation of Bolivia yields
the oldest putative percichthyid fossils (see online Table S7),
including the articulated anterior half of a skeleton referred
to the genus Percichthys (Gayet & Meunier, 1998). Other
articulated percichthyid specimens have been found in
deposits from the early–middle Eocene of Argentina and the
Oligocene of Brazil, and in the early Miocene Río Pedregoso
Formation of Chile (originally interpreted as late Paleocene
in age; Arratia, 1982; Pedroza et al., 2017). These fossils show
a broader distribution of percichthyids in South America,
where they are today restricted to the southernmost tip of
the continent. Percichthyid fossils are also found in Australia,
with the oldest examples being at least early–middle Miocene
in age (Hills, 1946; Turner, 1982). Two scales from the early
Miocene Bannockburn Formation of New Zealand show
some similarities with those of percichthyids (McDowall &
Lee, 2005). Although the material is too scant for precise
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Fig. 8. Histogram showing the temporal distribution of distinct stratigraphic horizons bearing fossils of Percichthyidae. Each time
bin is 5 million years (Myr) in width. The inset displays the present-day geographic distribution of Percichthyidae (in blue), as well
as the main localities in which percichthyid fossils have been found (orange dots). Photograph of nightfish (Bostockia porosa) by the
Australian Museum from Wikimedia Commons.

taxonomic identification, none of the extant freshwater fishes
of New Zealand shows a comparable scale morphology,
suggesting the existence of an extinct lineage of perch-like
fishes in New Zealand.

Berra (2007) assigned Percichthyidae to Myers’ ‘peripheral
division’ of freshwater fishes. However, this classification
stemmed from the inclusion of the catadromous Percalates

in the group. Excluding Percalates from Percichthyidae,
extant percichthyids occur almost exclusively in freshwater
environments (with a few species rarely recorded in
estuaries; Arratia, 1982). Additionally, percichthyid fossils
are only found in freshwater deposits. Chen et al. (2014)
recovered an antitropical clade of temperate freshwater
fishes, named Percichthyoidea, uniting the North American
centrarchids and elassomatids, the East Asian sinipercids,
and percichthyids. They proposed a freshwater origin for
percichthyoids and a complex biogeographic history to
account for its distribution. However, other studies place
marine taxa (like Enoplosus) as deep branches within this
broader clade (Near et al., 2013; Betancur-R et al., 2017),
hinting at a marine origin followed by freshwater invasions:
one in the northern hemisphere and another in the southern
hemisphere, leading to percichthyids.

(a) Fossil-based estimate of origin time

Because of the relatively poor percichthyid fossil record,
our fossil-based time estimate for percichthyid origin
spans most of the Cretaceous, from the Barremian to the

Maastrichtian (127.4–69.1 Ma; median point estimate:
87.6 Ma). Strikingly, it is significantly older than molecular
clock estimates, which indicate a Paleocene–Oligocene
origin for crown Percichthyidae (Near et al., 2013; Chen
et al., 2014; the oldest known percichthyid fossils pre-date the
upper bound of this range). Moreover, the South American
clade including the genera Percichthys and Percilia appears
to be nested within the Australian radiation (Lavoué et al.,
2014). This is in contrast with the early appearance of South
American percichthyids, including extinct species attributed
to Percichthys. Two hypotheses can be proposed to explain
this discrepancy. First, published molecular-clock analyses
underestimate the divergence times of the main lineages
within Centrarchiformes (like Percichthyidae), due to inad-
equate fossil calibrations. Second, the early South American
fossil percichthyids may not be percichthyids at all, but
rather more closely related to Percalates or to another lineage
of perch-like fishes. Detailed anatomical studies of perci-
chthyids and their relatives are needed to identify diagnostic
characters for determining the relationship of these fossils.

Although circum-Antarctic deep water circulation was
established only around 31 Ma (Lawver & Gahagan, 2003),
geophysical and palaeopalynological evidence suggest that
the seaway between east Antarctica and Australia formed
by the beginning of the Paleocene (Woodburne & Case,
1996; Bowman et al., 2012). Thus, the Maastrichtian age
of the Bolivian percichthyid fossils would suggest that early
percichthyids would have been able to disperse overland
between South America and Australia via Antarctica. It is
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Fig. 9. Fossil-derived timescale for the origin of the focal clades considered in this review. Galaxiidae is not included because its
estimate was not informative (see Section IV.4). The timescale for characiform origin shown here and in Fig. 10 is the older estimate
from this study (i.e. including Cenomanian occurrences; see Section IV.3). The dot indicates the median point estimate, while the
bar encompasses the range of estimates when accounting for both non-uniform distribution of the fossil record and uncertainty in
the age of fossil horizons. As in Fig. 1, coloured bands indicate the timeframe of the Western–Eastern Gondwana breakup (in light
ocre) and the South America–Africa breakup (in light green). The horizontal axis represents time, with scale provided in million
years ago (Ma). Paleogeographic maps are taken from Scotese (2014). Small blue boxes refer to the age of the palaeogeographic
reconstructions relative to the timescale. See previous figures for sources of fish photographs.

possible that the Percichthys + Percilia clade diverged from
other percichthyids because of a vicariant event caused by
submersion of the South Tasman Rise and the separation of
Australia from Antarctica during the Paleocene.

V. HISTORICAL BIOGEOGRAPHY OF
WIDESPREAD FRESHWATER FISH CLADES

(1) Biogeographic patterns and the origin of
modern geographic distributions

General patterns concerning the biogeographic history
of widespread freshwater fishes can be gathered from

the individual study cases presented here. Continental
vicariance cannot be rejected for some of these clades:
lepidosireniforms, osteoglossomorphs, characiforms and
percichthyids (Fig. 9). However, osteoglossomorphs and
characiforms are probably characterized by a complex
biogeographic history that involved several long-distance
dispersals as well as continental vicariance and that has
been partially concealed by regional extinctions. In fact,
the fossil record of these two groups greatly expands
their present geographic distribution, highlighting the
importance of palaeontological data in reconstructing the
biogeographic history of extant organisms. While the fossil
record of galaxiids does not capture their early evolutionary
history, molecular clock studies suggest a similar pattern
of early vicariance followed by long-distance dispersals,
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although on a more recent timescale. Among all the
extant clades examined here, crown lepidosireniforms are
probably the only group whose continental geographic
distribution has been driven purely by a strict vicariant event:
separation of South American and African landmasses. By
contrast, cyprinodontiforms and channids are likely much
younger than any major continental breakup that might
have affected their geographic distribution. Thus, their
intercontinental distribution is probably the result of multiple
dispersal events, either overland (channids) or transoceanic
(cyprinodontiforms).

There is no doubt that the progressive breakup of
Gondwana had a massive impact on the geographic
distribution of terrestrial and freshwater organisms living
at the time of these geologic events. However, it seems that,
at least for freshwater fishes, the pre-existing background
of vicariance-driven distributions has been progressively
eroded through time by extinctions and intercontinental
dispersals. In fact, while the separation of South America
and Africa corresponds to several vicariant events that can be
inferred from the Aptian–Cenomanian fossil record of these
continents (involving †mawsoniids, lepisosteoids, amiids,
†cladocyclids and chanids; see Section II.2), lungfishes are
the only freshwater fishes inhabiting both continents today
for which the same process can be confidently identified
as the primary cause of their present disjunct distribution.
Together, the evidence presented here strongly suggests that
rare intercontinental dispersals can have a significant effect
on biogeographic patterns across continents. The relevance
of long-distance dispersals in freshwater fish biogeography
highlighted here parallels a growing literature supporting a
prominent role of these events in the biogeographic history
of a wide variety of terrestrial and freshwater organisms (de
Queiroz, 2005; Gamble et al., 2011; Pyron, 2014; Rota, Peña
& Miller, 2016; Scheben et al., 2016).

(2) Oceanic dispersal in freshwater fishes

While in some cases marine intercontinental dispersal of
freshwater organisms could be explained by marine ancestry
(e.g. osteoglossids), there is no evidence for past adaptations
to open marine environments in several freshwater clades
for which an oceanic dispersal event likely happened (e.g.
cichlids, killifishes, synbranchids). The exact mechanisms
by which transoceanic dispersal of freshwater fishes could
happen are difficult to evaluate because this kind of dispersal
is rare and relatively improbable (although it becomes almost
inevitable over geological timescales). Proposed mechanisms
(not mutually exclusive) include formation of giant freshwater
plumes following catastrophic events like typhoons or tropical
river floods; rafting of large chunks of soil and vegetation
[see Houle, 1998 for dispersal of terrestrial vertebrates,
but these ‘floating islands’ might include puddles of fresh
water as well]; ‘stepping-stone’ dispersal across island arches
(Gilpin, 1980; however, this mechanism may be unfeasable
for freshwater organisms); or bird-mediated zoochory of fish
eggs (Hirsch et al., 2018). Strikingly, most freshwater fish taxa
for which transoceanic dispersal has been inferred possess

peculiar physiological or behavioural adaptations (e.g. high
salinity tolerance, drought-resistant eggs, air-breathing and
amphibious lifestyle) that might have increased their chance
of surviving such an improbable journey. A similar pattern
is also seen in terrestrial vertebrates for which sweepstakes
dispersal has been inferred. For example, small body size,
arboreal habits and heterothermy are common features of
mammals that survived transoceanic journeys (Kappeler,
2000; Nowack & Dausmann, 2015), while drought- and
salinity-resistant eggs and adhesive digits are probably some
of the adaptations that allowed geckos to disperse multiple
times across oceans and to colonize oceanic islands (Gamble
et al., 2011). In this sense, while long-distance dispersals have
a stochastic nature, we would expect a strong phylogenetic
component for these events, which should be clustered within
clades possessing those traits mentioned above. Among
freshwater fishes examined here, the only exception to this
general pattern seems to be represented by the poorly studied
polycentrid leaffishes (see Section II.1), thus encouraging
further investigation of this clade’s natural history.

(3) Congruence and discrepancy between the fossil
record and molecular divergence-time estimates

The fossil-based age estimates inferred herein for several
clades of widespread freshwater fishes are generally
congruent with molecular timescales published in the
last 10 years (Fig. 10). This is a striking result, as these
two different approaches draw upon semi-independent
data: although time calibration of molecular phylogenies
commonly employs fossil data, these are usually limited to
a very small subset of the known fossil record of a clade
(Parham et al., 2012). Moreover, molecular timescales of
some taxa are often estimated using exclusively external
fossil calibrations – that is, fossils belonging to other, closely
related taxa. As a result, there is very minor overlap between
the data informing our fossil-based age estimates and the data
informing evolutionary timescales in molecular phylogenies.
Yet, for several taxa (Lepidosireniformes, Osteoglossidae,
Characiformes, Cyprinodontiformes, Cyprinodontoidei,
Channidae), the fossil-based timescales inferred in this study
are not significantly different from published molecular
ones, providing support for the evolutionary timescales
presented here.

Deviations are worth discussing, as they might highlight
problematic issues in either of these approaches for estimating
evolutionary timescales. The origin of Percichthyidae
estimated here is significantly older than corresponding
molecular estimates; this may be due to the misidentification
of some articulated specimens from the Maastrichtian El
Molino Formation as belonging to the genus Percichthys
(see Section IV.7). The most striking discrepancy is
represented by the age that we derived for total-group
Osteoglossomorpha (latest Triassic–Middle Jurassic), which
is significantly younger than most recent molecular estimates.
This relates to a broader discrepancy between the oldest
crown teleost fossils (Middle–Late Jurassic) and the age
of crown teleosts inferred by molecular clock studies: the
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Fig. 10. Comparison between fossil-derived estimates (in orange) and recently published molecular estimates (in grey) for the origin
times of: 1, Lepidosireniformes; 2, total-group Osteoglossomorpha; 3, Characiformes; 4, Cyprinodontiformes; 5, Channidae; 6,
Percichthyidae. Molecular estimates for channids refer to stem Channidae (see Section IV.6). Galaxiidae is not included because
its fossil-based estimate was not informative (see Section IV.4). The dot indicates the point estimate, while the bar (when present)
encompasses 95% confidence or credibility interval. The horizontal axis represents time, with scale provided in million years
ago (Ma). See previous figures for sources of fish photographs.

so-called ‘teleost gap’ (Near et al., 2012). While the use of
rapidly evolving molecular markers and misidentified fossil
calibrations can yield unrealistically old estimates for the
crown teleost radiation, correcting for these factors still
results in an inferred Permo-Triassic origin of crown teleosts
(Dornburg et al., 2014; Giles et al., 2017). The wealth of stem
teleosts found in Middle Triassic–Middle Jurassic formations
(Arratia, 2015; López-Arbarello & Sferco, 2018) suggests that
it should not be impossible (at least theoretically) to find crown
teleost fossils in deposits of that age. Incompleteness of the
fossil record can only partially account for this gap. According
to our fossil-based estimates, even when accounting for
non-uniform fossil preservation potential through time it
would be very unlikely to find any stem osteoglossomorph
fossils older than 207 Ma. However, it should be noted
that this estimate is based on the temporal distribution of
non-marine deposits, which is likely not appropriate when
trying to derive age estimates for the earliest divergences in
the teleost tree, as the early evolutionary history of teleosts
probably occurred in marine environments (Betancur-R
et al., 2015; Guinot & Cavin, 2018). In summary, the gap
between the earliest molecular divergence estimates within
crown teleosts and the oldest crown teleost fossils can be
only partially explained by an incomplete fossil record or

by failure to recognize crown teleosts among known Triassic
fossils. It is possible that high heterogeneity in the rates of
molecular evolution at the base of the teleost radiation or
biased effective calibration prior densities are responsible
for pushing molecular estimates towards older dates, but
more studies about the impact of prior specification on the
molecular timescale of early teleost evolution are needed to
test these hypotheses.

(4) Limitations of the stratigraphic approach to
infer origin times and test biogeographic
hypotheses

The stratigraphic approach utilized here presents several
limitations. Firstly, at least 15–20 distinct fossil horizons
are needed in order to obtain an informative range of age
estimates, meaning a range that is precise enough not to
encompass several geologic periods and to provide some
insight on evolutionary timescales. Several clades have a
very limited fossil record and are often concentrated in a
few distinct fossil horizons, as in the cases of galaxiids and
percichthyids. Additionally, many of the estimates derived
here rely heavily on the correct taxonomic identification of
the oldest known representatives of a clade. This can be
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particularly problematic when the oldest putative fossils
of a clade are very fragmentary (e.g. teeth, scales or
isolated otoliths, as in lepidosireniforms, osteoglossomorphs
and characiforms) or when, even with better preserved
articulated fossils, their phylogenetic affinities are dubious
(e.g. El Molino cyprinodontiforms and percichthyids, or of
the putative osteoglossid †Chanopsis). While a possible solution
to the former could be to restrict the analysis to articulated
fossils only, with the preservation potential function based
upon fossil horizons that can yield articulated specimens
(Friedman et al., 2013), this approach ignores considerable
information coming from microfossil assemblages and,
more importantly, drastically lowers the number of distinct
stratigraphic horizons from which the focal clade is known.

Another possible issue stems from the phylogenetic
interpretation of the results of this type of analysis – in
other words, the phylogenetic node to which an age estimate
pertains. We believe that it is more appropriate to refer this
estimate to the least inclusive clade containing all the fossils
considered in the analysis (see Section II.3 for an example
involving cichlids).

While we used the estimated origin time of widespread
freshwater fish clades as a test of a simple vicariant
scenario for each of these clades, it is clear that our
approach is very limited in scope and can only determine
whether the evolutionary timescale of the group of
interest is compatible with the timescale of relevant
continental breakups. Model-based biogeographic analyses
that include fossil taxa in a phylogenetic framework,
allow for heterogeneity in dispersal rates through time,
and constrain vicariant events to the known timescales of
underlying geologic events are needed to reconstruct the
biogeographic history of these clades in more detail. While
significant progress has been made towards the development
of complex biogeographic models [Ronquist & Sanmartín,
2011; Matzke, 2014; but see Ree & Sanmartín, 2018 for
a critique of the Dispersal–Extinction–Cladogenesis +
Jump dispersal (DEC + J) model], two major challenges
remain: the inclusion of fossil taxa in a ‘total-evidence’
phylogeny (Ronquist, Lartillot & Phillips, 2016), which
requires the collection of morphological data for both extant
and extinct taxa – a complex and time-consuming task that
requires high levels of taxon-specific expertise; and the
lack of models accounting for taphonomic biases and the
incomplete nature of the fossil record in phylogeny-based
biogeographic reconstruction software. It is worth noting
that fragmentary fossil specimens that can be assigned to
broad clades but are not sufficiently diagnostic to permit
finer taxonomic resolution can often provide invaluable
geographic and temporal information. These specimens have
very few informative morphological characters, so they will
likely be ignored in any phylogeny-based biogeographic
reconstruction [although see Silvestro et al., 2016 for a
way to estimate biogeographic parameters using fossil data
without phylogenies, and Cau, 2017 for an approach
towards specimen-level phylogenetics in palaeontology].
Consequently, even a qualitative assessment of the

geographic and temporal distribution of fossils belonging
to a certain clade – including fragmentary specimens – has
the potential to greatly improve our understanding of its
biogeographic history.

(5) Future directions

Stressing the importance of the fossil record in biogeographic
reconstruction, we hope that further attention will be directed
towards ways of integrating fossil data into analytically
explicit biogeographic reconstructions. Ultimately, a better
understanding of the early biogeographic history of
freshwater fishes will come from detailed morphological
studies able to solve the systematics of some key fossil taxa. For
example, the Maastrichtian El Molino Formation in Bolivia
records the first occurrence of several freshwater fish lineages
that still occur in South American freshwater environments
(Gayet, 1991; Gayet et al., 2001), and thus represents
one of the oldest fossil fish assemblages with a modern
taxonomic composition in southern landmasses. Moreover,
it is one of the very few freshwater fish communities
known from around the Cretaceous–Paleogene boundary
in the southern hemisphere. Yet, despite the biogeographic
and palaeoenvironmental importance of these fossils, the
systematic position of the El Molino fishes (including those
for which articulated specimens are known) is still highly
uncertain.

Time-calibrated phylogenetic trees based mainly (if not
exclusively) on molecular data will remain, for the foreseeable
future, the primary way to derive evolutionary timescales for
a group of organisms and thus test alternative biogeographic
hypotheses. Accuracy and precision of molecular timescales
strongly depend on the choices made for time calibration
(Duchêne, Lanfear & Ho, 2014). The fossil-based estimates
derived here for the origin of widespread freshwater
fish taxa could be used in future studies as calibration
priors for the relevant nodes, with the advantage that
soft maximum bounds were objectively inferred from the
temporal distribution of the fossil record and not arbitrarily
decided (as often happens in node calibrations; Bromham
et al., 2018). The use of analytically derived calibration
distributions removes a layer of subjectivity in the process
of molecular dating and can potentially yield timescales
that better reflect what we know from the palaeontological
record [see also Hedman, 2010 and Matschiner et al., 2017
for different approaches to deriving fossil-based origin time
distributions].

Comparing separate molecular evolutionary timescales
across freshwater fish taxa can be problematic because
available analyses are usually focused on specific clades.
These commonly differ in the methods employed, in the
kind of data analysed and in prior assumptions – which, in
the case of Bayesian dating, include priors on distribution
of node times, branch-rates and calibration distributions,
among others. Thus, it might be expected that different
studies do not show comparable timescales, making the task
of building a comprehensive timescale of biogeographic
evolution in freshwater fishes particularly challenging.
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While substantial progress has been made towards the
reconstruction of a fish timetree encompassing every major
fish lineage (Near et al., 2012; Betancur-R et al., 2017),
these studies are not targeted towards the reconstruction
of intercontinental biogeographic patterns and so they lack
several key taxa and internal nodes. A possible solution could
be to perform a ‘fish-wide’ time-calibrated phylogenetic
analysis that specifically targets every biogeographically
relevant freshwater taxon, in order to derive a unified
timescale of continental-scale biogeographic events across
freshwater fishes.

Finally, among freshwater fishes, descendants of past
long-distance dispersals play a fundamental role in freshwater
communities and can be subject to spectacular radiations,
as in the cases of cichlids in the Neotropics, galaxiids
in New Zealand and killifishes in Africa. Several recent
studies suggest that ecological opportunity through invasion
of new adaptive zones – including colonization of new
geographic areas – can influence diversification patterns
(e.g. Burbrink & Pyron, 2010; Burress & Tan, 2017).
However, the impact of long-distance dispersal events
on macroevolutionary dynamics – including diversification
rates and modes – and continental-scale biotic assemblages
is still largely unexplored.

VI. CONCLUSIONS

(1) Vicariance and dispersal both played crucial roles
in structuring the distribution of modern freshwater
fishes. However, even when clades are old enough to
have experienced continental vicariance, the pre-existing
vicariance-driven distribution is often confounded and
eroded through time by successive dispersals and regional
extinctions during the Late Cretaceous and Cenozoic. The
only known examples of present-day disjunct intercontinental
distributions consistent with pure vicariance are South
American and African lungfishes (Lepidosireniformes) and,
possibly, Southern temperate perches (Percichthyidae).

(2) The evidence presented here shows that oceanic
long-distance dispersal likely happened in several freshwater
fish taxa. This complements recent studies stressing the
importance of long-distance dispersal in terrestrial lineages.
However, the means by which oceanic dispersal by
freshwater fishes is achieved, and the impact of these rare
events on macroevolutionary dynamics are still relatively
unknown and could represent important future areas of
investigation in biogeographic research.

(3) Fossils provide invaluable temporal, geographic and
environmental information that can be used to reconstruct
the biogeographic history of a clade. Specifically, fossil
data can expand the present geographic distribution of a
clade and reveal past dispersal or vicariant events that have
been obscured by regional extinction. Moreover, fossils can
show that extinct members of a clade had environmental
tolerances differing from modern species. For example, while
all living osteoglossomorphs are restricted to freshwater

habitats, several fossil osteoglossomorphs were found in
marine deposits of Paleocene–early Eocene age all over
the world, suggesting a substantial role of marine dispersal in
the past (if not present) geographic distribution of the group.

(4) Methods to infer origin times using the temporal
distribution of the known fossil record of a clade complement
time-calibrated molecular phylogenies as means to establish
evolutionary timescales. Fossil-based estimates can be
compared with molecular estimates and, when conflicts
between the two arise, can point out problematic issues
in either evaluation of the fossil record or the methods
used to infer molecular timetrees. Fossil-based age ranges
can be also used to calibrate relevant nodes on molecular
phylogenies, avoiding the necessity to specify user-defined,
subjective calibration parameters.
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*Arambourg, C. (1952). Les vertébrés fossiles des gisements de phosphates
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cyprinodontidae de l’Oligocène de Sarreal (Province de Tarragona, Catalogne).
Estudios Geológicos 38, 95–102.

*Gaudant, J. (1988). Les Cyprinodontiformes (poissons téléostéens) oligocènes
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*González-Rodríguez, K. A., Espinosa-Arrubarrena, L. & González-Barba,
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from Eocene continental deposits of Méridja Hamada, northwestern Sahara, Algeria.
Canadian Journal of Earth Sciences 53, 1042–1052.
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*Jost, J., Kälin, D., Schulz-Mirbach, T. & Reichenbacher, B. (2007). Late Early
Miocene lake deposits near Mauensee, central Switzerland: fish fauna (otoliths, teeth),
accompanying biota and palaeoecology. Eclogae Geologicae Helvetiae 99, 309–326.

Kappeler, P. M. (2000). Lemur origins: rafting by groups of hibernators? Folia

Primatologica 71, 422–425.
Keith, P., Lord, C., Lorion, J., Watanabe, S., Tsukamoto, K., Couloux, A. &

Dettai, A. (2011). Phylogeny and biogeography of Sicydiinae (Teleostei: Gobiidae)
inferred from mitochondrial and nuclear genes. Marine Biology 158, 311–326.

Kemp, A., Cavin, L. & Guinot, G. (2017). Evolutionary history of lungfishes with a
new phylogeny of post-Devonian genera. Palaeogeography, Palaeoclimatology, Palaeoecology

471, 209–219.
Khare, S. K. (1976). Eocene fishes and turtles from the Subathu Formation, Beragua

coal mine, Jammu and Kashmir. Journal of the Palaeontological Society of India 18, 36–43.
*Khosla, A. (2014). Upper Cretaceous (Maastrichtian) charophyte gyrogonites

from the Lameta Formation of Jabalpur, Central India: palaeobiogeographic and
palaeoecological implications. Acta Geologica Polonica 64, 311–323.

Kordikova, E. G., Heizmann, E. P. & Pronin, V. G. (2003). Tertiary litho-and
biostratigraphic sequence of the Ustyurt Plateau area, SW Kazakhstan, with the
main focus on vertebrate faunas from the Early to Middle Miocene. Neues Jahrbuch
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paléobiogéographiques de la découverte d’une nouvelle localité éocène à vertébrés
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–Dipnoi– (In Beceten, Sénonien du Niger). Comptes Rendus de l. Académie des Sciences.

Série II 325, 635–638.
*Martinelli, A. & Forasiepi, A. (2004). Late Cretaceous vertebrates from Bajo de

Santa Rosa (Allen Formation), Río Negro province, Argentina, with the description
of a new sauropod dinosaur (Titanosauridae). Revista del Museo Argentino de Ciencias

Naturales Nueva Serie 6, 257–305.
Matschiner, M. (in press). Gondwanan vicariance or trans-Atlantic dispersal of

cichlid fishes: a review of the molecular evidence. Hydrobiologia, 1–28.
Matschiner, M., Musilová, Z., Barth, J. M., Starostová, Z., Salzburger,
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der Fundstellen Edelbeuren–Maurerkopf und Wannenwaldtobel 2 (Miozän, Obere
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*Sigé, B., Sempere, T., Butler, R. F., Marshall, L. G. & Crochet, J. Y.
(2004). Age and stratigraphic reassessment of the fossil–bearing Laguna Umayo
red mudstone unit, SE Peru, from regional stratigraphy, fossil record, and
paleomagnetism. Geobios 37, 771–794.

Signore, M., Pede, C., Bucci, E. & Barbera, C. (2006). First report of the genus
Cladocyclus in the Lower Cretaceous of Pietraroja (Southern Italy). Bollettino della
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d’Histoire Naturelle. Section C, Sciences de la Terre, Paléontologie, Géologie, Minéralogie 10,
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