

A guide to common deepsea invertebrates in New Zealand waters

Second edition

Ministry of
Fisheries
Te Tautiaki inga tini a Tangaroa

New Zealand Aquatic Envionment and Biocive sity Report No. 10 ISSN 1176.9440
2007

A guide to common deepsea invertebrates in New Zealand waters
 Second edition

Compiled by
D. M. Tracey
O. F. Anderson
J. R. Naylor

NIWA
Private Bag 14901
Wellington

Published by Ministry of Fisheries
 Wellington
 2007

ISSN 1176-9440
(C)

Ministry of Fisheries
2007

Citation:
Tracey, D.M.; Anderson, O.F.; Naylor, J. R. (Comps.)
A guide to common deepsea invertebrates in New Zealand waters.
New Zealand Aquatic Environment and Biodiversity Report No. 10. 282 p.

Design by Erika Mackay

Preface		4	
Purpose of the guide		5	
Structure of the guide		5	
Instructions for collection at sea		5	
Acknowledgments		6	$\boldsymbol{0}$
Phyla at a glance and group codes		7	
Table 1: Full list of taxa in guide		19	z
Individual guide sheets			II
Porifera	Sponges	27	-
Cnidaria	Anemones, corals, jellyfish, hydroids	47	z
Annelida	Bristle worms, leeches	81	O
Mollusca	Chitons, bivalves, sea snails, sea slugs, octopus, squid, tusk shells	91	3
Arthropoda	Isopods, amphipods, mysids, prawns, lobsters, crabs, barnacles, sea spiders	133	
Bryozoa	Bryozoans, moss animals, lace-corals, sea mats	197	
Echinodermata	Sea-stars, brittle stars, sea urchins, sea cucumbers, feather stars, sea lilies	203	
Tunicata	Sea squirts, salps	265	
Index 1 (taxon list ordered alphabetically by common name)		271	
Index 2 (taxon list ordered alphabetically by scientific name)		275	
Index 3 (taxon list ordered alphabetically by MFish code)		279	

Worldwide, fisheries managers are facing concerns about the effects of fishing, not only on fish stocks, but also on other species caught incidentally during fishing, particularly those that live on the sea floor. Although these organisms are not part of New Zealand's
 Quota Management System, catch records of all species are recorded whenever possible by Ministry of Fisheries observers and scientists during commercial fishing trips and research surveys. In 2004, the Ministry of Fisheries published two pictorial identification guides on deepsea invertebrates and offshore crabs to enable observers and researchers to recognise these organisms more easily, and to improve the standard of catch records of these species.

We are pleased to announce this expanded, updated version of the original guides. This Guide to Common Deepsea Invertebrates in New Zealand Waters (Second edition) amalgamates the two 2004 guides, and incorporates a further 98 species. Identification sheets are provided for over 200 invertebrate species, each with an improved colour image and a description of the key diagnostic features. Taxonomic experts have had direct input to each section to provide up-to-date knowledge. Most of the species in the guide are commonly encountered when trawling in water depths of more than 200 m .

The updated guide continues to build on the knowledge and expertise gained by marine scientists during the last 30 years of research in New Zealand waters. With more accurate identification, trends in the capture and distribution of incidental bycatch can be better monitored.
The ongoing development of accessible identification guides is an important step towards the goal of a healthy aquatic environment, as given in the Ministry of Fisheries Statement of Intent 2006-2011.

Pamela Mace
Chief Scientist
Ministry of Fisheries, February 2007

PURPOSE OF THE GUIDE

In New Zealand, invertebrates caught on or close to the seabed (termed 'benthic' in this guide) are identified and weighed by observers or researchers on board commercial and research trawlers. Because identification can be difficult, recording of the invertebrate catch while at sea has been variable, and specimens of many species have had to be retained for later examination by experts ashore.
This guide will enable observers and researchers to more readily identify the more common organisms while at sea, thereby streamlining the process of recording bycatch species. Over 180 benthic invertebrate taxa caught in New Zealand waters are included in the guide (Table 1). The guide provides images of each taxon, written descriptions of the main diagnostic features and details that will assist users to distinguish specimens from similar or closely related organisms. Although the descriptions provided have been checked by taxonomic experts, the guide does not replace formal taxonomic texts.

STRUCTURE OF THE GUIDE

The first section 'Phyla at a glance and group codes' provides a general anatomical description of each phylum and provides representative images of typical phylum species (pages 9-18). This will assist users to distinguish the phyla, as well as their classes and orders, and to place organisms in the correct higher taxon. The phyla description section is followed by a reference table (Table 1) which lists all taxa included in the guide. The group codes are used when identification to a low level is not possible.
Phyla in Table 1 and the identification sheets are arranged in conventional phylogenetic order, from structurally and anatomically less advanced groups (sponges), to the more advanced (echinoderms and tunicates). Each phylum is colour coded.
The identification sheets assume some prior biological knowledge. General notes on some morphological components used for identifying species within a taxon are provided where necessary. Each sheet contains the following information:

- Standard taxonomic hierarchy of the organism
- Scientific and common name
- 3-letter Ministry of Fisheries code
- Illustration (line drawing or photograph)
- Distinguishing features
- Colour
- Size
- Distribution
- Depth
- Similar species
- References

INSTRUCTIONS FOR COLLECTION AT SEA

The intention of the guide is to assist in the identification of the common deepsea benthic fauna in the New Zealand region. If you are not confident that you can identify the organism to species, genus, or family level, (i.e. guide sheet level), then we encourage the use of the codes provided in the Phyla At A Glance section (pages 9-18), and retain the specimen for identification ashore.
Specimens should be retained under the following circumstances:

- identification beyond phylum level is uncertain
- the specimen has been caught outside the given depth range or distribution
- they have been specifically requested by the Ministry of Fisheries
If samples or subsamples are retained, they should be preserved according to the facilities and materials available, and the following instructions should be followed.

Handling instructions: observers

- Place the benthic sample or a representative sub-sample of the organism in a plastic bag, separating the groups/species (particularly the sponges).
- Write the trip number and station number on a label, in pencil, and put inside the bag.
- Freeze immediately.

If the organism is fragile (e.g., a crab or prawn), place in a container of seawater and freeze. Dead shells are not to be recorded on catch forms, but dead shell specimens can be retained for taxonomists.
Please follow the Transport Instructions in the MFish Observer Manual, and send by frozen freight to: Collections Manager, NIWA, 301 Evans Bay Pde, Greta Pt, Kilbirnie, Wellington.

Note: Check the Observer Manual for instructions regarding specific project requests for samples by DOC or MFish. In some projects, the destination of samples may be different from the address given above.

Handling instructions: researchers
Freeze benthic organisms (as above), or, if chemicals are available, carry out instructions for the relevant phyla as described below. Use plastic containers large enough to avoid crowding the specimen, at least 5:1 volume of liquid. If large numbers of an organism are requested, freeze in bulk.
Different fixation and preservation methods are used depending on the purpose, e.g., samples for DNA analysis must be frozen or preserved in ethanol.
For taxonomic work, initially use 5-10\% buffered formalin as a fixative (10% formalin $=4 \%$ formaldehyde solution) or 95+ \% ethanol (EtOH) as a direct preservative.
Use a liquid volume at least 5-10 times that of the animal because water released from the body and tissues of the animal will dilute the fixative or preservative. For large specimens, use a syringe or knife to help fixative or preservative penetrate the tissue. The shells of minute molluscs ($<5 \mathrm{~mm}$) are highly susceptible to the acidic effects of formalin, so transfer to 80% ethanol within 2 days of fixation (if using formalin). After initial fixation or preservation, use 70-80\% ethanol for long term storage.
Material for DNA studies should be frozen or preserved and stored in 95+ \% ethanol. Specimens fixed in formalin are almost useless for DNA studies.

- Cnidaria

Hydroids, seafans, black corals, gorgonians - fix and preserve in 75\% ethanol

Anemones - fix in 10\% formalin (it is essential to inject the body cavity) and store in 75% ethanol or 10% formalin

- Annelida

Bristle worms, sea worms - fix in 10\% formalin and store in 75% ethanol

- Mollusca

Shelled forms, including chitons - either fix in 10% formalin and store in 75% ethanol, or fix and store in 80% ethanol

Sea slugs - fix in 10\% formalin and store in 75% ethanol
Octopus and squid - fix in 10\% formalin (essential to inject body cavity!) and store in 75% ethanol

- Arthropoda

Prawns, lobsters, barnacles, isopods, amphipods, sea spiders - fix and store in 75% ethanol (replace after a couple of days)

- Echinodermata

Sea-stars, brittle stars, sea urchins, sea cucumbers, feather stars, sea lilies - preserve in 75% ethanol

- Tunicata

Ascidians or sea squirts - Colonial: relax in seawater with a pinch of menthol crystals, then fix in 10% formalin, - Solitary: fix in 10% formalin

PROTECTED SPECIES: see page 50.

ACKNOWLEDGMENTS

This project was funded by the Ministry of Fisheries (ENV2005/20). Taxonomic information, general advice, images, and help in preparing this document were provided by NIWA personnel: S. Ahyong, N. Bagley, D. Bowden N. Bruce, M. Clark, M. Consalvey, N. Davey, D. Gordon, J. Grieve, M. Kelly, A-N. Lörz, E. Mackay, P. McMillan, P. Marriott, K. Neill, M.D. Oliver, M. Page, G.B. Read, A. Rowden, K. Schnabel, D. Stevens, R. Stewart, H. Sui. Contributions were also received from D.G. Fautin (University of Kansas, Lawrence, USA). D. M. Opresko (Oak Ridge National Laboratory, Tennessee, USA), J.A. Sanchez (Universidad de los Andes, Santafé de Bogotá D.C., Colombia), R. C. Willian (Northern Territory Museum, Australia), D.G. McKnight and J. Booth (on behalf of NIWA), B. Marshall and W.R. Webber (Te Papa Tongarewa, Museum of New Zealand, Wellington), S. O'Shea (Auckland University of Technology). For comprehensive reviews of version 1 of the guide we thank Keith Probert, (University of Otago), and Colin McLay, (Canterbury University).
D. Fisher (NIWA) and A. McKinnon and S. Lealand (Ministry of Fisheries) allocated the new Ministry of Fisheries species codes required. The "species" database used to produce the guide sheets was funded independently of this project by NIWA (NSOF project NNRC043 "Species ID tools").
We also thank the Ministry of Fisheries, particularly M. Livingston and M. Cryer for supporting the work on this expanded publication, and H. Palmer and Mike Beardsell (NIWA) for editorial comments.

All images are NIWA copyright.

Phyla at a glance and group codes

PHYLUM Porifera
 COMMON NAME Sponges (ONG)
 CLASSES
 Demospongiae, Hexactinellida, Calcareous

Sessile (attached) growth forms spongy or stony to the touch, some with obvious glass splinter-like spicules. Can be encrusting, tubular, trumpet- or fan-shaped, massive mounds, spherical, stalked, or branching, ranging in size from tiny ($5-10 \mathrm{~cm}$) to huge (several metres long). Many are like fibreglass strands. The sponge body has no obvious animal features and is often mistaken for a plant. It is typically composed of a skeleton of siliceous (occasionally calcareous) spicules (glass-like fragments) that may be embedded in hard collagen (spongin) fibres.

PHYLUM

Cnidaria

COMMON NAME Hydroids \& Hydrocorals (HDR)

CLASS

 HydrozoaSmall to moderate-sized coral-like forms, mostly colonial and generally attached, consisting of runners (attached to shells and rocks) with erect single or branching stems bearing tiny polyps. Some calcified hydroids e.g. hydrocorals of the family Stylasteridae, with microscopic polyps (right hand photo) resemble stony corals.

COMMON NAME Corals (COU),
anemones (ANT)

CLASS
Anthozoa
Large solitary polyps, much larger than those of hydroids, and almost always attached (1). Corals are a very diverse group. Stony corals (2) (SIA) have a calcareous skeleton that has radii; there are solitary and colonial species. Octocorals have polyps with 8 pinnate (feathery) tentacles. Some species are encrusting (stoloniferous), soft (SOC) (3) and mounded (e.g., Alcyoniidae), others are quilllike and embedded in sand or mud as a feathery stem (sea pens PTU), or erect and branching and very hard (gorgonians GOC) (4).

COMMON NAME Jellyfish (JFI)
CLASS Scyphozoa

Large medusae, comprising a jelly-like disk (umbrella) with the mouth and tentacles underneath. Most are free-swimming.

PHYLUM Annelida

COMMON NAME Bristle worms, sea worms (POL)

CLASS

Polychaeta

The body is segmented and each segment bears a pair of paddle-like appendages with bristles, hence polychaeta (many bristles). At the head end there may be tiny eyes, sensory antennae, and tentacles that can be short and stubby or very long or fan-
 like. May live in burrows or tubes, or be free-living.

PHYLUM
 Mollusca

COMMON NAME Snails, sea slugs (GAS)
CLASS
Gastropoda

Soft-bodied creatures with a broad, flat creeping sole or foot, generally protected with a well developed shell of one piece (often coiled, top \& left image). The shell may be completely lacking or small and concealed within the body (sea slugs, right).

COMMON NAME Chitons (CHT)

CLASS
Polyplacophora

Characteristically the shell is divided into 8 overlapping plates. Bilaterally symmetrical with an ovoid body with no eyes or tentacles on the tiny head.

COMMON NAME Mussels, clams, oysters (BIV) CLASS Bivalvia

Laterally compressed with two shells, hinged dorsally, that completely enclose the body in most species. Burrowing bivalve species have a tonguelike foot and long muscular suction tubes or siphons.

COMMON NAME Tusk shells (SPH)

CLASS

Scaphopoda
Deepwater molluscs with a distinctive tapering shell that has a hole at each end. The shell is cylindrical and shaped like an elephant's tusk. Some species grow up to 60 mm in length.

COMMON NAME Squid (SQX), octopus (OCP)

CLASS

Cephalopoda

Squids (top) have an elongate, torpedo-like body with, 8 arms and 2 tentacles. Arms have 2 or more rows of stalked suckers with rings and/or hooks running the entire length; tentacles have 2 or more rows of suckers and/or hooks at the distal end. Octopuses (bottom) have a short globular saclike body and 8 arms (no tentacles) with unstalked suckers along their length.

PHYLUM Arthropoda

COMMON NAME Sea spiders (PYC)
CLASS Pycnogonida
Pycnogonids resemble spiders. The body is much reduced with $8-12$ legs. The head has an obvious proboscis with adjacent appendages, a pair of which is used by males to carry egg masses.

COMMON NAME Krill (EUP)

CLASS	Malacostraca
ORDER	Euphausiacea

Shrimp-like plankton about 3 cm long. A shell-like carapace extends behind the head and forward as a rostrum, below which is a pair of stalked compound eyes. Unlike true shrimps, the sides of the carapace do not tightly enclose the gills.

COMMON NAME Sea slaters (ISO)

CLASS	Malacostraca
ORDER	Isopoda

Dorsoventrally flattened body with a shield-shaped head and no carapace. Most legs appear similar in shape and size. There are many parasitic forms (e.g., fish lice). Small to $2-5 \mathrm{~cm}$ long, although a few species are much larger.

COMMON NAME Sand hoppers (APH)
CLASS
Malacostraca

ORDER
Amphipoda

Body laterally compressed (compared with isopods) and antennae often relatively long, giving a shrimplike appearance. There is no carapace. Generally 1 cm long or less (a few species are larger).

COMMON NAME Shrimps, prawns (NAT)
CLASS
Malacostraca
ORDER
Decapoda

Carapace well developed, often with a long rostrum. Five pairs of legs, of which any of the first 2 or 3 pairs may be large and chelate (clawed). Shrimps and prawns are often called natant decapods, (i.e. able to swim).

COMMON NAME	Deep-sea blind lobsters (PLY)
CLASS	Malacostraca
ORDER	Decapoda

All legs, or the first four pairs, have pincers; these are long and slender on the first pair and small and short on the rest. Elongate, flattopped cephalothorax, bordered with sharp spines. Rostrum small, often with two spines. Eyes represented by pigment-free points at the front of carapace.

COMMON NAME Rock lobster (CRA), Packhorse rock lobster (PHC)

CLASS	Malacostraca
ORDER	Decapoda

Rostrum small. Frontal horns over eyes. Large spiny antennae and spiny carapace. Pincers on females only - small and on last pair of legs. Photo is of packhorse lobster.

COMMON NAME	Slipper (shovel-nosed) lobsters (SLL)
CLASS	Malacostraca
ORDER	Decapoda

Rostrum very reduced. Second antennae modified to a hinged series of five, flat plates. Pincers on females only - small and on last pair of legs. Carapace flattened and often with strong spines on margins. Eyes are small.

COMMON NAME Clawed lobsters, scampi (SCl)

CLASS	Malacostraca
ORDER	Decapoda

Cylindrical carapace with well developed rostrum. First 3 pairs of legs clawed; first pair in the form of heavy chelipeds.

COMMON NAME True crab (true crabs) (CRB)

CLASS	Malacostraca
ORDER	Decapoda

Abdomen reduced and tightly flexed beneath thorax. First legs in form of heavy chelipeds (having large claws); third legs never chelate. Eyes on the outside of second antennae.

COMMON NAME King crab
(lithodid crabs) (KIC)
CLASS
Malacostraca
ORDER
Decapoda
Abdomen asymmetrical (in females only) and flexed under thorax. First legs in the form of heavy chelipeds (claws); third legs never chelate. Appear to have only four pairs of legs because the fifth legs are much reduced and turned under the body. Eyes between antennae.

COMMON NAME Hermit crab (hermit crabs) (PAG)

CLASS	Malacostraca
ORDER	Decapoda

Abdomen asymmetrical and housed within a gastropod shell or anemone or folded beneath the carapace. First pair of legs are chelipeds.

CLASS	Maxillopoda
ORDER	Thoracica

There are stalked (goose barnacles), left photo, and non-stalked (acorn barnacles), right photo. The mantle surface of any barnacle bears at least 5 major plates, which are pulled together for protection.

PHYLUM Sipuncula

COMMON NAME Peanut worms (SIP)
Unsegmented and rigid worm-like body divided into a narrow anterior section containing the mouth, surrounded by a fringe of tentacles, and a large posterior trunk. Gut is U-shaped, and the anus opens as a tiny pore in the anterior part of the body.

PHYLUM Echiura

COMMON NAME Spoon worms (EHI)
Unsegmented and soft, sausage-shaped body, with a scoop-like process (proboscis) at the head end; proboscis may be rather flattened and cannot be retracted into the trunk. The anus is at the posterior end of the body.

PHYLUM Priapulida

COMMON NAME Penis worms (PDL)
Elongate, with a retractable proboscis and extended trunk region. The proboscis is wider and ornamented with rib-like papillae and minute thorn-like spines. The trunk is covered with small spines or tubercles and is externally (not internally) segmented. There are 1 or 2 branched tail-like processes.

Bryozoa
PHYLUM
COMMON NAME Moss animals, sea mats, lace corals (COZ)

A very diverse group, forming colonies of tiny boxor tube-like individual zooids. Colonies may be a few centimetres in height or diameter, being erect and bushy, flat and encrusting, large and lacy, or coral-like. Individual zooids rarely exceed 1 mm in length.

PHYLUM Brachiopoda

COMMON NAME Lamp shells (BPD)

Resemble bivalve molluscs, but the valves enclose the body dorsally and ventrally rather than laterally. Ventral valve typically larger than the dorsal, unlike most clams which have two equal valves. Each valve is bilaterally symmetrical and may be ornamented with concentric growth lines and a fluted or spiny surface. Attached species have a short stalk emerging from the hinge area of the valves.

PHYLUM Echinodermata

COMMON NAME Sea stars (ASR)
CLASS Asteroidea

Star-shaped, free-moving echinoderms with prominent rays or arms projecting from a central area and usually covered with calcareous plates and spines. Arm usually wider at the base, merges into the disc (in contrast to ophiuroids). At least 5, and often many more, arms and in some species these may be so short that the body appears pentagonal.

Extremely long, slender flexible arms, clearly differentiated from the central disc. The arms are much branched in basket stars.

COMMON NAME Sea urchins (ECN)

CLASS
 Echinoidea

Body called a test, covered with spines and without arms. Circular or oval and the test often spherical. Irregular echinoids, such as the sand dollars and heart urchins, are flattened and have much smaller and far more numerous spines.

COMMON NAME Sea cucumbers (HTH)

CLASS Holothuroidea

Elongated cylindrical body with a circle of tentacles around the mouth. There is no obvious calcareous skeleton (unlike sea urchins). Instead, microscopic calcareous elements called spicules are embedded in the skin; a few species have spicules in dense numbers and can be very firm.

COMMON NAME Feather stars and sea lilies (CRN)

CLASS
Crinoidea

Free-living or attached by a stalk with root-like processes to the substratum. Arms are pinnately branched (feather-like). In contrast to other echinoderms, the mouth faces upwards.

PHYLUM Tunicata

COMMON NAME Tunicates, sea squirts (ASC)

CLASS

Ascidiacea

Attached, colonial or solitary. One end is attached to the substratum and the other contains two openings that may be extended as separate siphons. Body feels gelatinous or leathery and has a basket shape. Colonial forms can resemble sponges (or even encrusting bryozoans); tunicate
 individuals can be recognised by their small siphonal openings.

COMMON NAME Salps (SAL)

CLASS

 ThaliaceaSalps may be solitary or colonial, are gelatinous, transparent, free-swimming and planktonic. Siphons are at opposite ends of body (cf. tunicates).

Table 1: Full list of taxa in guide

Table 1: Summary of the 204 taxa included in this guide. Phyla are arranged in conventional phylogenetic order and then within phyla, the table is sorted alphabetically by class/order (suborder for natant decapods), then family, then species name.
s, species; g, genus; f, family; f+, several families; c, class; o, order; n, natant decapods.

Class or Order	Family	Common Name	Scientific name	Mfish code	Page
Demospongiae (c)	Ancorinidae	Knobbly sandpaper sponge (s)	Ancorina novaezelandiae	ANZ	30
Demospongiae (c)	Geodiidae	Ostrich egg sponge (s)	Geodinella vestigifera	GVE	31
Demospongiae (c)	Pachastrellidae	Fibreglass cup sponge (s)	Poecillastra laminaris	PLN	32
Demospongiae (c)	Pachastrellidae	Yoyo sponge (s)	Thenea novaezelandiae	THN	33
Demospongiae (c)	Irciniidae	Rubber sponge (s)	Psammocinia sp.	PHW	34
Demospongiae (c)	Suberitidae	Fleshy club sponge (s)	Suberites affinis	SUA	35
Demospongiae (c)	Callyspongiidae	Airy finger sponge (s)	Callyspongia sp.	CRM	36
Demospongiae (c)	Corallistidae	Smooth white cup sponge (s)	Corallistes fulvodesmus	CFU	37
Demospongiae (c)	Scleritodermiidae	Pimpled ear sponge (s)	Aciculites pulchra	APU	38
Demospongiae (c)	Crellidae	Orange frond sponge (s)	Crella incrustans	CIC	39
Demospongiae (c)	Hymedesmiidae	Grey fibrous massive sponge (g)	Phorbas spp.	PHB	40
Demospongiae (c)	Tetillidae	Furry oval sponge (s)	Tetilla leptoderma	TLD	41
Hexactinellida (c)	Farreidae	Lacey honeycomb sponge (s)	Farrea sp.	FAR	42
Hexactinellida (c)	Euplectellidae	Basket-weave horn sponge (s)	Euplectella regalis	ERE	43
Hexactinellida (c)	Rossellidae	Floppy tubular sponge (s)	Hyalascus sp.	HYA	44
Hexactinellida (c)		Glass sponges (c)		GLS	45

[^0]| Scleractinia (0) | Flabellidae | Flabellum cup corals (g) | Flabellum spp. | COF | 77 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Scleractinia (0) | Oculinidae | Madrepora coral (g) | Madrepora oculata | MOC | 78 |
| Scleractinia (0) | Oculinidae | Deepwater branching coral (g+) | Oculina virgosa | OVI | 79 |
| Zoanthidea (0) | Epizoanthidae | Zoanthid anemone (o) | Epizoanthus sp. | EPZ | 80 |
| Amphinomida (0) | Amphinomidae | Fire worm (s) | Chloeia inermis | CIM | 85 |
| Eunicida (0) | Eunicidae | Eunice sea-worm (s) | Eunice (undescribed) | EUN | 86 |
| Eunicida (o) | Onuphidae | Quill worm (g) | Hyalinoecia tubicola | HTU | 87 |
| Phyllodocida (0) | Aphroditidae | Sea mouse (f) | Aphrodita spp. | ADT | 88 |
| Phyllodocida (0) | Polynoidae | Thermiphione scaleworm (g) | Thermiphione (undescribed) | THE | 89 |
| Bivalvia (c) | Limidae | Giant file shell (s) | Acesta maui | AMA | 97 |
| Bivalvia (c) | Limidae | Lesser giant file shell (s) | Acesta saginata | ASG | 98 |
| Bivalvia (c) | Pectinidae | Queen scallop (s) | Zygochlamys delicatula | QSC | 99 |
| Bivalvia (c) | Pectinidae | Scallop (f) | Delectopecten fosterianus | DFO | 100 |
| Bivalvia (c) | Pectinidae | Scallop (f) | Veprichlamys kiwaensis | VKI | 101 |
| Bivalvia (c) | Euciroidae | Euciroa bivalve (g) | Euciroa galatheae | EGA | 102 |
| Cephalopoda (c) | Octopodidae | Deepwater octopus (f) | Benthoctopus spp. | BNO | 103 |
| Cephalopoda (c) | Octopodidae | Yellow octopus (s) | Enteroctopus zealandicus | EZE | 104 |
| Cephalopoda (c) | Octopodidae | Deepwater octopus (s+) | Graneledone spp. | DWO | 105 |
| Cephalopoda (c) | Octopodidae | Common octopus (s) | Pinnoctopus cordiformis | OCT | 106 |
| Cephalopoda (c) | Opisthoteuthididae | Umbrella octopus (s) | Opisthoteuthis spp. | OPI | 107 |
| Cephalopoda (c) | Architeuthidae | Giant squid (g) | Architeuthis spp. | GSQ | 108 |
| Cephalopoda (c) | Cranchiidae | Glass squid (f) | | CHQ | 109 |
| Cephalopoda (c) | Histioteuthidae | Violet squid (g) | Histioteuthis spp. | VSQ | 110 |
| Cephalopoda (c) | Ommastrephidae | Gould's arrow squid (s) | Nototodarus gouldi | NOG | 111 |
| Cephalopoda (c) | Ommastrephidae | Sloan's arrow squid (s) | Nototodarus sloanii | NOS | 112 |
| Cephalopoda (c) | Ommastrephidae | Ommastrephid squid (g) | Ommastrephes spp. | OMM | 113 |
| Cephalopoda (c) | Ommastrephidae | Todarodes squid (g) | Todarodes filippovae | TSQ | 114 |
| Cephalopoda (c) | Onychoteuthidae | Warty squid (g) | Moroteuthis ingens | MIQ | 115 |
| Cephalopoda (c) | Onychoteuthidae | Warty squid (g) | Moroteuthis robsoni | MRQ | 116 |
| Cephalopoda (c) | Pholidoteuthidae | Large red scaly squid (s) | Pholidoteuthis boschmai | PSQ | 117 |
| Gastropoda (c) | Capulidae | Cap limpet (s) | Malluvium calcareum | MCC | 118 |
| Gastropoda (c) | Ranellidae | Tritons (f) | Fusitriton magellanicus | FMA | 119 |
| Gastropoda (c) | Buccinidae | Whelk ($f+$) | Aeneator recens | AER | 120 |
| Gastropoda (c) | Buccinidae | Knobbed Whelk (f+) | Austrofusus glans | KWH | 121 |
| Gastropoda (c) | Buccinidae | Whelk ($f+$) | Penion chathamensis | PCH | 122 |
| Gastropoda (c) | Turbinellidae | Pagoda shell (s) | Coluzea mariae | CMR | 123 |
| Gastropoda (c) | Turridae | Turrid (f) | Comitas onokeana vivens | COV | 124 |
| Gastropoda (c) | Volutidae | Volute (f) | Alcithoe larochei | ALL | 125 |
| Gastropoda (c) | Volutidae | Volute (f) | Alcithoe wilsonae | AWI | 126 |
| Gastropoda (c) | Volutidae | Golden volute (s) | Provocator mirabilis | GVO | 127 |
| Gastropoda (c) | Nudibranchia (0) | Sea slug, Nudibranch (0) | | NUD | 128 |
| Gastropoda (c) | Calliostomatidae | Maurea (s) | Calliostoma selectum | CSS | 129 |
| Gastropoda (c) | Calliostomatidae | Top shell ($\mathrm{f}+$) | Calliostoma turnerarum | CTN | 130 |
| Polyplacophora (c) | | Chiton (c) | | CHT | 131 |
| | | | | | |
| Amphipoda (0) | Eurytheneidae | Amphipod (o) | Eurythenes gryllus | EUG | 139 |
| Decapoda (o) | Atelecyclidae | Pteropeltarion crab (s) | Pteropeltarion novaezelandiae | PNO | 140 |

	Decapoda (o)	Atelecyclidae	Frilled crab (s)	Trichopeltarion fantasticum	TFA	141
	Decapoda (o)	Chirostylidae	Squat lobsters ($\mathrm{f}+$)	Gastroptychus spp.	GTC	142
	Decapoda (o)	Chirostylidae	Squat lobsters ($\mathrm{f}+$)	Uroptychus spp.	URP	143
	Decapoda (o)	Galatheidae	Squat lobster (g)	Munida spp.	MNI	144
	Decapoda (o)	Geryonidae	Red crab (s)	Chaceon bicolor	CHC	145
	Decapoda (o)	Goneplacidae	Two-spined crab (s)	Carcinoplax victoriensis	CVI	146
	Decapoda (o)	Goneplacidae	Policeman crab (s)	Neommatocarcinus huttoni	NHU	147
	Decapoda (o)	Homolidae	Antlered crab (s)	Dagnaudus petterdi	DAP	148
	Decapoda (o)	Homolidae	Carrier crab (s)	Homola orientalis	HOO	149
	Decapoda (o)	Homolidae	Yaldwyn's crab (s)	Yaldwynopsis spinimana	YSP	150
	Decapoda (o)	Inachindae	Dell's spider crab (s)	Platymaia maoria	PTM	151
	Decapoda (o)	Inachindae	Deep-sea spider crab (s)	Vitjazmaia latidactyla	VIT	152
	Decapoda (o)	Lithodidae	Long-spined king crab (s)	Lithodes cf. longispinus	LLT	153
	Decapoda (o)	Lithodidae	Murray's king crab (s)	Lithodes murrayi	LMU	154
	Decapoda (o)	Lithodidae	Brodie's king crab (s)	Neolithodes brodiei	NEB	155
	Decapoda (o)	Lithodidae	Warty king crab (s)	Paralomis dawsoni	PDA	156
$\stackrel{\stackrel{n}{0}}{.0}$	Decapoda (o)	Lithodidae	Prickly king crab (s)	Paralomis zealandica	PZE	157
응	Decapoda (o)	Majidae	Giant spider crab (s)	Jacquinotia edwardsii	GSC	158
41	Decapoda (o)	Majidae	Giant masking crab (s)	Leptomithrax australis	SSC	159
	Decapoda (o)	Majidae	Garrick's masking crab (s)	Leptomithrax garricki	GMC	160
	Decapoda (o)	Majidae	Long-handed masking crab (s)	Leptomithrax longimanus	LHC	161
	Decapoda (o)	Majidae	Long-legged masking crab (s)	Leptomithrax longipes	LLC	162
-	Decapoda (o)	Majidae	Spiny masking crab (s)	Teratomaia richardsoni	SMK	163
	Decapoda (o)	Nephropidae	Scampi (f)	Metanephrops challengeri	SCI	164
-	Decapoda (o)	Paguridae	Hermit crab ($f+$)	Diacanthurus rubricatus	DIR	165
ค- ¢	Decapoda (o)	Palinuridae	Deepwater rock lobster (s)	Projasus parkeri	PPA	166
-	Decapoda (o)	Parapaguridae	Hermit crab (f+)	Sympagurus dimorphus	SDM	167
	Decapoda (o)	Polychelidae	Deepsea blind lobster (s)	Polycheles spp.	PLY	168
$\boxed{\varepsilon}$	Decapoda (o)	Portunidae	Dwarf swimming crab (s)	Liocarcinus corrugatus	LCO	169
$\bigcirc \frac{80}{\circ}$	Decapoda (o)	Portunidae	Hairy red swimming crab (s)	Nectocarcinus antarcticus	NCA	170
-	Decapoda (o)	Portunidae	Smooth red swimming crab (s)	Nectocarcinus bennetti	NCB	171
	Decapoda (o)	Portunidae	Paddle crab (s+)	Ovalipes catharus	PAD	172
$\frac{\stackrel{y}{\circ}}{80}$	Decapoda (o)	Portunidae	Swimming crab (f)	Ovalipes molleri	OVM	173
-	Decapoda (o)	Scyllaridae	Prawn killer (s+)	Ibacus alticrenatus	PRK	174
	Isopoda (0)	Aegidae	Fish biter (s)	Aega monophthalma	AMO	175
	Isopoda (0)	Cymothoidae	Gill biter or tongue biter (f)	Elthusa neocytta	ENE	176
	Isopoda (0)	Cymothoidae	Gill biter (s)	Elthusa propinqua	ELP	177
	Isopoda (0)	Serolidae	Spiny serolid isopod (s)	Acutiserolis spp.	ACU	178
	Lophogastrida (0)	Gnathophausiidae	Giant red mysid (s)	Neognathophausia ingens	NEI	179
	Natantia (n)	Aristaeidae	Royal red prawn (s)	Aristaeomorpha foliacea	AFO	180
	Natantia (n)	Aristaeidae	Scarlet prawn (s)	Aristaeopsis edwardsiana	PED	181
	Natantia (n)	Campylonotidae	Sabre prawn (s)	Campylonotus rathbunae	CAM	182
	Natantia (n)	Glyphocrangonidae	Goblin prawn (s)	Glyphocrangon lowryi	GLO	183
	Natantia (n)	Nematocarcinidae	Omega prawn (s)	Lipkius holthuisi	LHO	184
	Natantia (n)	Nematocarcinidae	Spider prawn (f)	Nematocarcinus spp.	NEC	185
	Natantia (n)	Oplophoridae	Subantarctic ruby prawn (s)	Acanthephyra spp.	ACA	186
	Natantia (n)	Oplophoridae	Scarlet prawn (s)	Notostomus auriculatus	NAU	187
	Natantia (n)	Oplophoridae	Deepwater prawn (s+)	Oplophorus spp.	OPP	188
	Natantia (n)	Pandalidae	Golden prawn (s)	Plesionika martia	PLM	189
	Natantia (n)	Pasiphaeidae	Deepwater prawn (s)	Pasiphaea aff. tarda	PTA	190

Asteroidea (c)	Brisingidae ${ }^{\ddagger}$	Armless stars ($f+$)		BRG	207
Asteroidea (c)	Asteriidae	Cat's-foot star (s)	Cosmasterias dyscrita	CDY	208
Asteroidea (c)	Asteriidae	Sea-star (c)	Pseudechinaster rubens	PRU	209
Asteroidea (c)	Asteriidae	Cross-fish (s)	Sclerasterias mollis	SMO	210
Asteroidea (c)	Zoroasteridae	Rat-tail stars (g)	Zoroaster spp.	ZOR	211
Asteroidea (c)	Benthopectinidae	Sea-star (c)	Benthopecten spp.	BES	212
Asteroidea (c)	Benthopectinidae	Sea-star (c)	Cheiraster monopedicellaris	CMP	213
Asteroidea (c)	Astropectinidae	Magnificent sea-star (s)	Dipsacaster magnificus	DMG	214
Asteroidea (c)	Astropectinidae	Abyssal star (s)	Plutonaster knoxi	PKN	215
Asteroidea (c)	Astropectinidae	Geometric star (s)	Psilaster acuminatus	PSI	216
Asteroidea (c)	Radiasteridae	Sea-star (c)	Radiaster gracilis	RGR	217
Asteroidea (c)	Echinasteridae	Sea-star (c)	Henricia compacta	HEC	218
Asteroidea (c)	Astropectinidae	Sea-star (c)	Proserpinaster neozelanicus	PNE	219
Asteroidea (c)	Goniasteridae	Pentagon star ($\mathrm{s}+$)	Ceramaster patagonicus	CPA	220
Asteroidea (c)	Goniasteridae	Trojan star (s)	Hippasteria phrygiana	HTR	221
Asteroidea (c)	Goniasteridae	Rock star (s)	Lithosoma novaezelandiae	LNV	222
Asteroidea (c)	Goniasteridae	Sladen's star (s)	Mediaster sladeni	MSL	223
Asteroidea (c)	Goniasteridae	Sea-star (c)	Pillsburiaster aoteanus	PAO	224
Asteroidea (c)	Odontasteridae	Pentagonal tooth-star (s)	Odontaster benhami	ODT	225
Asteroidea (c)	Pterasteridae	Sea-star (c)	Diplopteraster sp.	DPP	226
Asteroidea (c)	Pterasteridae	Sea-star (c)	Hymenaster carnosus	HYC	227
Asteroidea (c)	Solasteridae	Sun-star (f)	Crossaster multispinus	CJA	228
Asteroidea (c)	Solasteridae	Chubby sun-star (s)	Solaster torulatus	SOT	229
Crinoidea (c)		Feather stars (0)		CMT	230
Crinoidea (c)		Sea lilies with cirri (0)		CRN	231
Crinoidea (c)		Sea lilies without cirri (o+)		CRN	232
Echinoidea (c)	Cidaridae	Parasol urchin (s)	Goniocidaris parasol	GPA	233
Echinoidea (c)	Cidaridae	Umbrella urchin (s)	Goniocidaris umbraculum	GOU	234
Echinoidea (c)	Cidaridae	Cidaroid urchin (0)	Ogmocidaris benhami	OBE	235
Echinoidea (c)	Cidaridae	Cidaroid urchin (0)	Stereocidaris spp.	STC	236
Echinoidea (c)	Histocidaridae	Cidaroid urchin (0)	Histocidaris spp.	HIS	237
Echinoidea (c)	Histocidaridae	Cidaroid urchin (0)	Poriocidaris purpurata	PCD	238
Echinoidea (c)	Laganidae	Sand dollar (0)	Peronella hinemoae	PHI	239
Echinoidea (c)	Echinidae	Deepsea urchin (s)	Dermechinus horridus	DHO	240
Echinoidea (c)	Echinidae	Deepsea kina (s)	Gracilechinus multidentatus	GRM	241
Echinoidea (c)	Echinothuriidae	Tam O'Shanters (0)		ECT	242
Echinoidea (c)	Echinothuriidae, Phormosomatidae	Tam O'Shanters (0)		TAM	243

\ddagger Includes families Brisingidae, Hymenodiscidae,
Novodiniidae, Freyellidae

[^0]: ${ }^{\circ}$ Protected under the Wildlife Act 1953

