

Cyanobacteria Monitoring Program 2012 Report

Rhode Island RIDEM REQ. NO. 1180565/1194117

PREPARED FOR:

Rhode Island Department of Environmental Management Office of Water Resources Promenade Street Providence, Rhode Island 02915

PREPARED BY:

ESS Group, Inc. 401 Wampanoag Trail, Suite 400 East Providence, Rhode Island 02915

ESS Project No. R298-011

Revised January 30, 2013

CYANOBACTERIA MONITORING PROGRAM 2012 REPORT Rhode Island RIDEM REQ# 1180565/1194117

Prepared For:

Rhode Island Department of Environmental Management Office of Water Resources 235 Promenade Street Providence, Rhode Island 02908

Prepared By:

ESS Group, Inc. 401 Wampanoag Trail, Suite 400 East Providence, Rhode Island 02915

ESS Project No. R298-011

January 30, 2013

© 2013 ESS Group, Inc. – This document or any part may not be reproduced or transmitted in any form or by any means, electronic, or mechanical, including photocopying, microfilming, and recording without the express written consent of ESS Group, Inc. All rights reserved.

TABLE OF CONTENTS

SECTION	PAGE
1.0 INTRODUCTION	1
2.0 METHODS	1
 3.0 RESULTS	2 7
4.0 DISCUSSION AND CONCLUSIONS	8
5.0 REFERENCES	11

TABLES

Table A Table B Table C	Water Bodies Sampled by the Cyanobacteria Monitoring Program in 2012 Summary of 2012 Cyanobacteria Sampling Program Results Water Quality Observed during Cyanobacteria Screening
FIGURES	
Figure 1	Cyanobacteria Cell Density and Microcystin Levels (Pooled 2011 and 2012 Data)

APPENDICES

Appendix A	Cyanobacteria Identification and Enumeration Lab Reports
Appendix B	Microcystin Lab Reports

1.0 INTRODUCTION

ESS Group, Inc. (ESS) was contracted by the Rhode Island Department of Environmental Management (RIDEM) to conduct cyanobacteria monitoring in surface waters of the state of Rhode Island. Cyanobacteria (also known as blue-green algae) are a photosynthetic group of organisms naturally found in surface waters as phytoplankton, floating colonies, or attached to substrate. Under certain conditions, cyanobacteria may grow at high densities (blooms) and release toxins into the water degrading taste and odor and potentially raising public health risks, particularly for contact recreation. The Rhode Island cyanobacteria monitoring program was developed to screen for, respond to, and characterize blooms in the state's fresh waters. This annual report provides a summary of the cyanobacteria monitoring program methodology and results for 2012.

2.0 METHODS

A summary of the monitoring program methodology is presented in this section. For a full description of methodology used by this program, please refer to the project-specific Quality Assurance Project Plan (QAPP)(ESS, 2011).

Two types of sampling were completed as part of the cyanobacteria monitoring program: screening level and response level monitoring. Water quality parameters measured by this program for each type of sampling included both *in situ* parameters (Secchi depth, temperature, dissolved oxygen, and specific conductance) and laboratory-based analysis (enumeration and microcystins). In 2012, 19 cyanobacteria samples were collected from 14 water bodies, distributed across the state from Lincoln and Pawtucket to Newport and Charlestown (Table A). Of the 14 water bodies sampled, 11 were sampled as part of the annual screening program, 2 were sampled in response to reports of algae blooms from the public, and 1 was sampled as part of both the screening and response sampling programs.

The water bodies selected for screening level monitoring in the 2012 monitoring year included several that were previously sampled in 2010 or 2011, as well as some new ponds with anecdotal evidence of algal blooms, excessive phosphorus, and/or high levels of chlorophyll *a*. The new screening level ponds in 2012 include Pasquisett Pond, Scott Pond, and Blackamore Pond. Water bodies were selected for response level monitoring as prompted by specific public or agency requests to investigate suspected algae blooms.

Sampling Program	Water Body	Location	Long	Lat	WBID	Acres
	Barber Pond	South Kingstown	-71.56448	41.4992	RI0008039L-14	28.16
Screening Level	Pasquisett Pond	Charlestown	-71.633	41.42423	RI0008039L-06	76.61
	Almy Pond	Newport	-71.3107	41.45849	RI0010047L-01	49.85
	Scott Pond	Lincoln	-71.4087	41.89542	RI0001003L-01	42.13
	Blackamore Pond	Cranston	-71.44439	41.775731	RI0006018L-06	20.44
	Turner Reservoir	East Providence	-71.3432	41.8419	RI0004009L-01B	85.10
	Roger Williams Park Ponds	Providence	-71.41414	41.77731	RI0006017L-05	113.95
	Slater Memorial Park Pond	Pawtucket	-71.34652	41.8712	none	4.60
	Spectacle Pond	Cranston	-71.44225	41.79402	RI0006017L-07	38.81
	Warwick Pond	Warwick	-71.41531	41.72472	RI0007024L-02	84.72
	Spring Lake Reservoir #2 (Lower J.L. Curran Reservoir)	Cranston	-71.54574	41.74314	RI0006016L-02	18.08

Table A. Water Bodies Sampled by the Cyanobacteria Monitoring Program in 2012

Sampling Program	Water Body	Location	Long	Lat	WBID	Acres
Response Level	Mashapaug Pond	Providence	-71.43553	41.79313	RI0006017L-06	76.75
	Melville Pond	Portsmouth	-71.27175	41.58399	RI0007029L-01	13.60
Screening and Response Level	Slack Reservoir	Smithfield	-71.55258	41.86584	RI0002007L-03	133.61

ESS collected each of the screening level samples in mid-August. Screening level samples were collected from the surface (elbow deep and shallower) in at least one location at each water body, typically at the public access point. If no official public access point was present, samples were collected from the most readily accessible location. Where algae blooms were only observed away from the public access, ESS collected a second sample from the bloom. *In situ* water quality parameters were measured at the sampling location.

Each screening level cyanobacteria sample was sent to GreenWater Laboratory for identification/ enumeration. As in previous years, microcystin samples were automatically analyzed by the lab if the cell count for a given sample was greater than 50,000 cells per milliliter (mL), the microcystin analysis threshold established in the project-specific QAPP. In 2012, RIDEM requested that all samples be analyzed for microcystin, regardless of cell count.

RIDEM staff collected response level cyanobacteria samples using similar methods to those used for screening level sample collection. However, response level sampling focused only on collection of samples from active blooms. Response level monitoring samples were first screened by RIDEM staff to determine if a substantial number of cyanobacteria were present within the sample. Samples with substantial numbers of these cells were sent to the lab for detailed identification/enumeration and microcystin analysis.

All samples sent to the lab were shipped via overnight delivery and were accompanied by a completed chain-of-custody.

3.0 RESULTS

3.1 Cyanobacteria

Cell densities in 2012 ranged from 94 cells/mL to more than 5 million cells/mL (Table B). Cell density exceeded 50,000 cells/mL (the microcystin analysis threshold established in the project-specific QAPP) in 12 samples from 10 water bodies.

Potentially toxigenic cyanobacteria species were identified in 15 samples from 11 water bodies (Table B). *Microcystis* spp., *Anabaena* spp., *Aphanizomenon* spp., *Woronichinia naegeliana*, and *Plantothrix suspensa* were the primary dominant or co-dominant species in these samples. However, *Sphaerospermopsis (Anabaena) aphanizomenoides* was also found as a co-dominant in one sample from Almy Pond. Complete cyanobacteria identification and enumeration results may be found in Appendix A.

Measured microcystin levels in 2012 ranged from not detected at 0.15 µg/L to 48 µg/L (Table B). The highest microcystin levels were found in samples with high cell densities. However, not all samples with high cell densities demonstrated correspondingly high microcystin concentrations. The higher microcystin levels were measured in samples dominated by certain taxa, including *Microcystis* spp., *Anabaena* spp., *Woronichinia naegeliana*, and *Plantothrix suspensa*.

Complete microcystin laboratory results are presented in Appendix B.

Water Body	Station ID	Date	Cell Density (cells/mL)	Microcystin Level (µg/L)	Dominant Species	2012 Photograph	2011 Photograph*
Almy Pond	ALP1	8/16/2012	5,009,668	1.5	 Aphanocapsa planctonica (PTOX) Aphanizomenon gracile (PTOX) Sphaerospermopsis aphanizomenoides (PTOX) 		No photo available
Mashapaug Pond	MAP1/ MASH P	8/8/2012	311,293	7.0	 Microcystis botrys (PTOX) M. ichthyoblabe (PTOX) M. wesenbergii (PTOX) 	No photo available	
J.L. Curran Reservoir (Spring Lake Reservoir #2)	SPR1/UCR1	8/16/2012	202,213	0.2	• Aphanizomenon cf. ovalisporum (PTOX)		
Slater	SMP1	8/17/2012	4,783	0.27	Unidentified cyanophyte unicellsMicrocystis spp.(PTOX)		
Slater Memorial Park Pond	SMP2 (field duplicate station)	8/17/2012	1,530	0.29	Unidentified cyanophyte unicells		24

Water Body	Station ID	Date	Cell Density (cells/mL)	Microcystin Level (µg/L)	Dominant Species	2012 Photograph	2011 Photograph*
	SLR1	8/17/2012	13,649	0.16	• Woronichinia naegeliana (PTOX)		
Slack Reservoir	SLR1/SLK2	9/24/2012	902,080	48	 Woronichinia naegeliana (PTOX) Anabaena cicinalis (PTOX) 		
	SLK3	9/24/2012	50,376	3.7	Woronichinia naegeliana (PTOX)Aphanocapsa incerta	No photo available	
Roger Williams Park	RWP1	8/16/2012	315,581	0.15**	 Aphanizomenon cf. flos-aquae (PTOX) Cuspidothrix issatscenkoi (PTOX) 		
Williams Park Ponds	RWP2	8/16/2012	252,864	0.15**	Cuspidothrix issatscenkoi (PTOX)		

Table B. Summary of 2012 Cyanobacteria Sampling Program Results

Table B. Summary of 2012 Cyanobacteria Sampling Program Results

Water Body	Station ID	Date	Cell Density (cells/mL)	Microcystin Level (µg/L)	Dominant Species	2012 Photograph	2011 Photograph*
Spectacle Pond	SPP1	8/16/2012	32,417	0.15**	• Anabaena planctonica (PTOX)		
Warwick Pond	WAP1	8/17/2012	5,230	0.15**	• Cyanogrannis ferruginea		
Scott Pond	SCP1	8/17/2012	455,079	0.67	 Pseudanabaena sp. Aphanizomenon spp. (PTOX) 		No photo available
	BAP1	8/16/2012	2,241,352	4.8	• Planktothrix suspensa (PTOX)		
Barber Pond	BAP2	8/16/2012	3,657	0.4	 Planktothrix suspensa (PTOX) Woronichinia naegeliana (PTOX) 		

Table B. Summary of 2012 Cyanobacteria Sampling Program Results	Table B. Summar	of 2012 Cyanobacteria Sampling	Program Results
---	-----------------	--------------------------------	-----------------

Water Body	Station ID	Date	Cell Density (cells/mL)	Microcystin Level (µg/L)	Dominant Species	2012 Photograph	2011 Photograph*
Blackamore Pond	BMP1	8/16/2012	387,060	0.15**	 Aphanizomenon spp.(PTOX) Cyanogranis ferruginea 		No photo available
Pasquiset Pond	PAP1	8/17/2012	560,111	5.3	• Microcystis cf. aeruginosa (PTOX)		No photo available
Melville Pond	MEP1	7/23/2012	183,422	0.15**	 Anabaena planctonica (PTOX) Woronichinia naegeliana (PTOX) 	No photo available	No photo available
Turner Reservoir	TUR1	8/17/12	94	0.15**	Unidentified cyanophyte unicells		No photo available

NS = not sampled; PTOX = potentially toxigenic species *All photos by ESS, except Slack Reservoir photo at station SLK2, taken by RIDEM ** Reported value is the quantitation limit. Microcystins were not detected at this level.

3.2 Water Quality

Some water quality parameters (particularly temperature and dissolved oxygen) tend to be sensitive to diurnal trends and should be interpreted cautiously when comparing instantaneous water quality across multiple water bodies. Therefore, the analysis of water quality results will focus on summarizing the data and identifying potentially extreme values.

Instantaneous dissolved oxygen measurements were above state standards for fresh waters (5.0 mg/L) at each location, ranging from 6.1 mg/L at J.L. Curran Reservoir to 13.1 mg/L at Warwick Pond (Table C). In some cases, dissolved oxygen levels were supersaturated (i.e., greater than 100%), a condition that may result from high levels of primary productivity in the surveyed lakes and ponds.

Specific conductance was highest at Turner Reservoir (404.6 µS/cm) (Table C). Turner Reservoir is an impoundment on the highly urbanized Ten Mile River. The lowest specific conductance (74.9 µS/cm) was measured at Slater Memorial Park Pond.

Because cyanobacteria samples were primarily collected by wading into the water at shoreline access points, water clarity (as measured by Secchi depth) was limited to approximately 1.00 to 1.50 meter (i.e., pond bottom), depending on the pond bottom substrate and slope. Additional Secchi depth measurements were collected at selected ponds, particularly where water clarity appeared to vary significantly over the pond area. Water clarity was lowest at Almy Pond, where the pond-wide bloom reduced Secchi depth to approximately 0.25 meters (Table C). Water clarity was also less than 1.00 meter in Blackamore Pond, the Roger Williams Park Ponds, Pasquiset Pond, and Scott Pond.

Waterbody	Station ID	Date	Time	Water Temp (°C)	DO (mg/L)	DO (%)	Spec. Cond (µS/cm)	Salinity (ppt)	Secchi Depth (m)
Almy Pond	ALP1	8/16/2012	0945	25.3	6.9	82.5	274.5	0.1	0.25
Barber Pond	BAP1	8/16/2012	1100	26.4	6.5	79.8	76.3	0.0	1.00*
Barber Pond	BAP2	8/16/2012	1115	26.8	6.4	81.3	76.8	0.0	3.00*
J.L. Curran Reservoir	SPR1**/ UCR1	8/16/2012	1230	28.6	6.1	78.9	140.4	0.1	1.00*
Spectacle Pond	SPP1	8/16/2012	1345	28.8	7.4	92.6	284.0	0.2	1.00*
Blackamore Pond	BMP1	8/16/2012	1430	29.2	9.3	119.7	358.7	0.3	0.9
Roger Williams Park Ponds	RWP1	8/16/2012	1450	29.4	10.8	143.7	346.8	0.3	1.00*
Roger Williams Park Ponds	RWP2	8/16/2012	1505	29.2	7.0.	93.2	265.4	0.2	0.75
Pasquiset Pond	PAP1	8/17/2012	0900	26.6	6.8	84.9	102.6	0.1	0.75
Warwick Pond	WAP1	8/17/2012	1050	27.4	13.1	163.6	234.1	0.2	1.25*
Slack Reservoir	SLR1	8/17/2012	1200	27.7	6.6	83.0	174.5	0.1	1.50*
Scott Pond	SCP1	8/17/2012	1300	28.4	11.3	144.2	381.3	0.3	0.9
Slater Memorial Park Pond	SMP1	8/17/2012	1400	27.2	7.7	97.5	74.9	0.0	0.75*
Turner Reservoir	TUR1	8/17/2012	1423	28.8	12.6	170.9	404.6	0.3	1.0*

Table C. Water Quality Observed during Cyanobacteria Screening

On bottom

**2011 ID Code

3.3 Quality Assurance/Quality Control

All water quality QA/QC requirements were met during screening level monitoring by ESS. Water quality data was not collected by RIDEM staff during response level monitoring at all stations due to equipment malfunction or lack of availability.

Cyanobacteria sampling QA/QC requirements were met for all screening and response level monitoring samples and all internal lab QA/QC requirements were met for each sample. Additionally, one field duplicate was collected in accordance with the rate specified by the project-specific QAPP. The duplicate sample was collected from the same location in Slater Memorial Park Pond (SMP1/SMP2). Cell density and microcystin levels for the field duplicate were within the relative percent difference limits set in the QAPP.

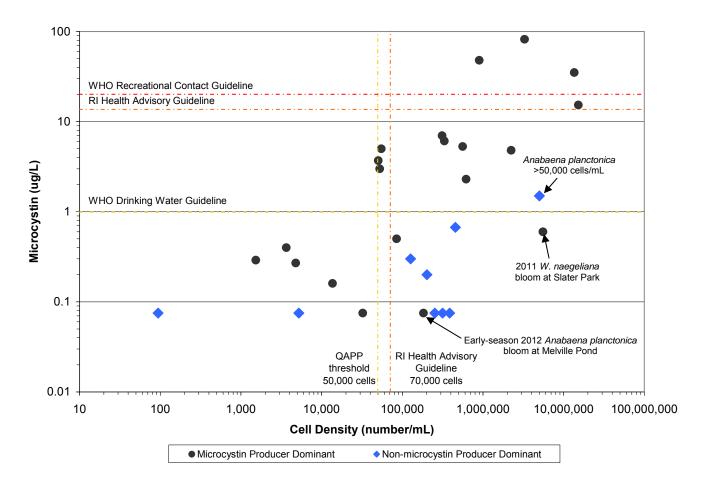
4.0 DISCUSSION AND CONCLUSIONS

ESS visited 12 water bodies statewide and collected 15 cyanobacteria samples as part of the 2012 screening level monitoring program. An additional four samples were collected by RIDEM in response to active blooms, including two at Slack Reservoir, one at Mashapaug Pond, and one at Melville Pond. In the following discussion, these data are compared to and pooled with observations from 2011 to examine potential relationships.

A Brief Comparison of Results from 2011 and 2012

As in 2011, the cyanobacteria monitoring program successfully detected and documented the intensity of multiple active blooms across the state. Cyanobacteria densities in 2012 exceeded the 50,000 cells/mL threshold established in the project-specific QAPP in 12 samples from 10 water bodies. Measured microcystin levels exceeded the World Health Organization (2003) drinking water guideline of 1 μ g/L in 6 samples from 5 water bodies and the recreational contact guideline of 20 μ g/L in a single sample collected at Slack Reservoir on September 24. Rhode Island health advisory guidelines for microcystin (14 μ g/L) were only exceeded in a single sample collected at Slack Reservoir on September 24. Rhode later bodies although guidelines for microcystin (14 μ g/L) were only exceeded in a single sample collected at Slack Reservoir on September 24. The September 24, 2012 Slack Reservoir sample coincided with a cell density of approximately 900,000 cells/mL. This represents just the third instance since the monitoring program began where microcystin concentrations exceeded the WHO recreational contact guidelines and fourth where they exceeded the Rhode Island health advisory guidelines.

In 2011, cell counts exceeded Rhode Island health advisory guidelines in microcystin levels in 8 samples from 7 water bodies. However, the Rhode Island health advisory guidelines for microcystin were only observed in two samples, both of which contained cell densities greater than 3 million cells/mL (Slack Reservoir and J.L. Curran Reservoir [Spring Lake Reservoir #2]).


In 2011, the highest microcystin levels measured were associated with blooms dominated by *Woronichinia naegeliana* or *Anabaena* spp. The highest microcystin levels in 2012 were associated with dominance by these taxa but also included blooms dominated by *Microcystis* spp. and *Planktothrix suspensa. Anabaena* spp. and *Microcystis* spp. blooms have long been recognized as potential generators of microcystins. However, both *Woronichinia naegeliana* and *Planktothrix* spp. also have a documented association with elevated microcystin levels in European and North American lakes and ponds (e.g., Willame et al 2005, Chen et al. 2009).

Examining the Pooled 2011 and 2012 Data

The pooled 2011 and 2012 data indicate a positive relationship between cell density and microcystin concentration (Figure 1). However, the variance in microcystin concentration clearly increases with increasing cell density.

When dominance by microcystin-producing taxa is factored into the relationship, it is apparent that blooms dominated by these taxa tend to produce microcystin in higher concentrations than blooms dominated by other cyanobacteria taxa (Figure 1). The two exceptions in the dataset include an early-season *Anabaena planctonica* sample from Melville Pond and the 2011 *Woronichinia naegeliana* bloom at Slater Memorial Park Pond. The reason for the lower-than-expected microcystin concentrations observed in these two blooms is uncertain.

Figure 1. Cyanobacteria Cell Density and Microcystin Levels (Pooled 2011 and 2012 Data)

Among samples with cell densities above the Rhode Island health advisory guideline only one sample not dominated by microcystin-producing taxa exceeded the WHO drinking water guidelines and none exceeded the Rhode Island health advisory criteria for microcystin (Figure 1). The single bloom exceeding WHO drinking water guidelines was dominated by *Aphanocapsa planctonica* (not a suspected microcystin producer) but *Anabaena planctonica* (a potential microcystin producer) was also present at a density exceeding 50,000 cells/mL. This suggests that focusing future cell density counts on potential microcystin-producing taxa (rather than enumerating all cyanobacteria or all potentially toxigenic taxa) may be sufficient for identifying blooms likely to be producing elevated concentrations of microcystin.

Although the Rhode Island health advisory guidelines are currently set at a cyanobacteria density of 70,000 cells/mL, the lower threshold at which excessive levels of microcystins are actually produced in Rhode Island cyanobacteria blooms remains difficult to define. Among the complicating factors in

examining this issue is the fact that, during a bloom cycle, microcystin concentrations may remain elevated even as cell density declines. RIDEM's decision to analyze microcystin in all samples (even those with cell densities below 50,000 cells/mL) collected in 2012 provided a glimpse of the range of microcystin concentrations that might be expected at the lower end of cyanobacteria cell densities. Cyanobacteria cell densities below 50,000 cells/mL have not yet produced microcystin concentrations above WHO drinking water guidelines and cell densities below 70,000 cells/mL have not yet resulted in concentrations above Rhode Island health advisory guidelines. However, with additional data, particularly data collected over the duration of a bloom (i.e., inception to senescence), it may be possible to establish the lower cell density threshold required to generate excessive microcystins with greater confidence.

Other Observations

The 2012 cyanobacteria monitoring program served as a reminder that blooms and production of associated toxins are dynamic with respect to time and space. Due to the early blooms observed at Barber Pond and Slack Reservoir, these water bodies were more extensively sampled and provide additional information on temporal and spatial variability.

Barber Pond was sampled by ESS during an active cyanobacteria bloom. This bloom was visibly characterized by a bright bluish surface scum at the public access location. However, cell density was more diffuse in offshore waters, where small clumps of cyanobacteria were observed in suspension below the water surface. Both cell density and microcystin concentration were much higher in the sample collected from surface scum at the public access location.

Slack Reservoir was sampled by ESS at a time when no direct evidence of a cyanobacteria bloom was observed despite the presence of several recently killed yellow and white perch washed up on the beach. The sample results from that day confirmed the unremarkable cyanobacteria cell density and microcystin concentration at the time. When Slack Reservoir was resampled by RIDEM just over a month later, a bloom was visible at the surface and both cyanobacteria cell density and microcystin concentration were substantially higher than before. However, the difference in both cell density and microcystin concentration at Slack Reservoir varied by an order of magnitude between the two locations sampled on the same date.

One variable that did not differ appreciably over space or time within each of these ponds was the dominant cyanobacteria species. *Woronichinia naegeliana* was the dominant species at Slack Reservoir in the 2011 sample and each sample collected over the span of more than one month in 2012. *Planktothrix suspensa* was the dominant species in each of the two samples from Barber Pond.

Investigating the factors contributing to the observed cyanobacteria blooms remains beyond the scope of this study. Phosphorus certainly plays a role in the development of cyanobacteria blooms and total maximum daily loads (TMDL) for phosphorus have been prepared for several of the ponds sampled in 2012, including Almy Pond, Mashapaug Pond, Spectacle Pond, the Roger Williams Park Ponds, Warwick Pond, and Barber Pond. Of these, Warwick Pond was the only pond not observed to host a cyanobacteria bloom during screening level sampling in 2012.

Phosphorus may not be the only nutrient responsible for creating conditions suitable for production of microcystin. While some cyanobacteria taxa (including microcystin producers like *Anabaena* spp.) are able to fix nitrogen from the atmosphere, allowing them to take advantage of excess phosphorus in the water column, taxa such as *Microcystis* spp. and *Woronichinia naegeliana* are not and may be more sensitive to available nitrogen. Additionally, there is growing evidence that nitrogen enrichment may actually enhance microcystin production by these species (Downing et al 2005, Van de Waal et al. 2010).

These observations underscore the importance of continuing to pursue watershed and lake management strategies that promote broad spectrum pollutant reductions, where possible.

5.0 REFERENCES

- Chen, H., J.M. Burke, T. Mosindy, P.M. Fedorak, and E.E. Prepas. 2009. Cyanobacteria and microcystin-LR in a complex lake system representing a range in trophic status: Lake of the Woods, Ontario, Canada. Journal of Plankton Research, 31(9): 993-1008.
- Downing, T.G., C. Meyer, M.M. Gehringer, and M. van de Venter. 2005. Microystin content of *Microcystis aeruginosa* is modulated by nitrogen uptake rate relative to growth rate or carbon fixation rate. Environmental Toxicology, 20(3): 257-262.
- ESS Group, Inc. (ESS). 2011. Quality Assurance Project Plan. Rhode Island Department of Environmental Management Cyanobacteria Monitoring Program. Revised October 13, 2011.
- ESS Group, Inc. (ESS). 2012. Rhode Island Cyanobacteria Monitoring Program 2011 Report.
- Massachusetts Department of Public Health. Date unspecified. MDPH Guidelines for Cyanobacteria in Freshwater Recreational Water Bodies in Massachusetts.
- Van de Waal, D.B., G. Ferreruela, L. Tonk, E. Van Donk, J. Huisman, P.M. Visser, and H.C.P. Matthijs. 2010. Pulsed nitrogen supply induces dynamic changes in the amino acid composition and microcystin production of the harmful cyanobacterium *Planktothrix agardhii*. FEMS Microbiology Ecology, 74(2): 430-438.
- Willame, R., T. Jurczak, J. Iffly, T. Kull, J. Meriluoto, and L. Hoffmann. 2005. Distribution of hepatotoxic cyanobacterial blooms in Belgium and Luxembourg. Hydrobiologia, 551: 99-117.
- World Health Organization. 2003. Guidelines for Safe Recreational Water Environments, Volume 1: Coastal and Fresh Waters.

Appendix A

Cyanobacteria Identification and Enumeration Lab Reports

ESS Group PTOX Cyanobacteria ID and Enumeration Report

Prepared: July 27, 2012 Prepared By: GreenWater Laboratories

Samples: 1

1. Melville Pond (collected on 7/23/12)

Sample 1: Melville Pond

Total potentially toxigenic (PTOX) cyanobacteria cell numbers in the Melville Pond sample collected on 7/23/12 were 183,422 cells/mL. Potentially toxigenic species observed in the sample included *Anabaena planctonica* (98,959 cells/mL; Fig. 1), *Woronichinia naegeliana* (83,951 cells/mL; Fig. 2) and *Microcystis wesenbergii* (512 cells/mL; Fig. 3). Many loose cells and cell pairs of *W. naegeliana* were present.

Fig. 1 Anabaena planctonica 400X (scale bar = 10μ m)

Fig. 2 *Woronichinia naegeliana* 400X (scale bar = 20μ m)

aquatic analysis ... research ... consulting

Fig. 3 *Microcysits wesenbergii* 400X (scale bar = 10µm)

ESS Group PTOX Cyanobacteria ID and Enumeration Report

Prepared: August 13, 2012 Prepared By: GreenWater Laboratories

Samples: 1

1. Mashapaug Pond (collected on 8/08/12)

Sample 1: Mashapaug Pond

Total potentially toxigenic (PTOX) cyanobacteria cell numbers in the Mashapaug Pond sample collected on 8/8/12 were 311,293 cells/mL. Potentially toxigenic species observed in the sample included *Microcystis botrys* (123,149 cells/mL; Fig. 1), *Microcystis ichthyoblabe* (86,864 cells/mL; Fig. 2), *Microcystis wesenbergii* (47,516 cells/mL; Fig. 3) *Anabaena planctonica* (25,918 cells/mL; Fig. 4), *Microcystis* sp. (15,080 cells/mL; Fig. 5), *Aphanizomenon* cf. *flos-aquae* (6,597 cells/mL), *Woronichinia naegeliana* (3,616 cells/mL) and *Anabaena crassa* (2,553 cells/mL).

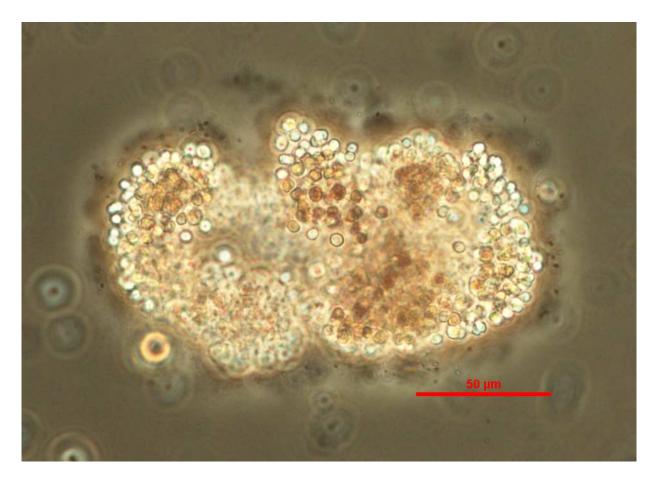
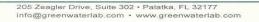



Fig. 1 *Microcystis botrys* 200X (scale bar = 50μ m)

aquatic analysis ... research ... consulting



Fig. 2 *Microcystis ichthyoblabe* 400X (scale bar = 10μ m)

Fig. 3 *Microcystis wesenbergii* 400X (scale bar = $20\mu m$)

Fig. 4 Anabaena planctonica 400X (scale bar = 50μ m)

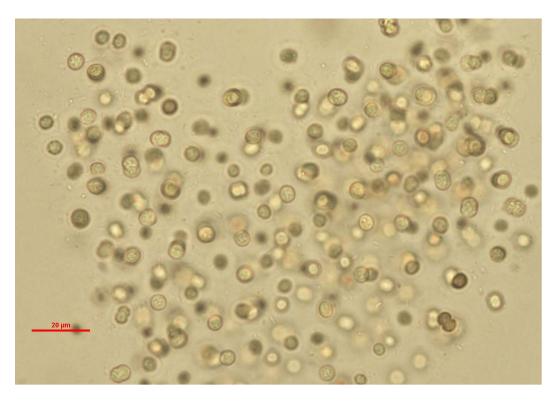
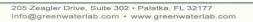



Fig. 5 *Microcystis* sp. 400X (scale bar = 20μ m)

386.328.0882.voice • 386.328.9646.fax cyanomail@cyanolab.com • www.cyanolab.com

ESS Group Cyanobacteria ID and Enumeration Report

Prepared: August 22, 2012 Prepared By: GreenWater Laboratories

Samples: 1 (collected on 8/16/12) 1. Almy Pond

Sample 1: Almy Pond

Total cyanobacteria cell numbers in the Almy Pond sample collected on 8/16/12 were 5,009,668 cells/mL. The dominant species in the sample was *Aphanocapsa planctonica* (3,387,396 cells/mL; Fig. 1). Many loose unicells and cell pairs of *A. planctonica* were present (Fig. 2).

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 498,346 cells/mL (9.9% of total cyanobacteria cell numbers). Potentially toxigenic species observed in the sample included *Aphanizomenon gracile/Sphaerospermopsis aphanizomenoides* (408,404 cells/mL; Figs. 3-4), *Anabaena* sp. (84,822 cells/mL; Fig. 5), *Anabaena* sp. (3,120 cells/mL), *Snowella lacustris* (940 cells/mL), *Planktothrix agardhii* (660 cells/mL) and *Microcystis wesenbergii* (400 cells/mL). Filaments of *Aphanizomenon gracile* and *Sphaerospermopsis aphanizomenoides* (formerly *Aphanizomenon aphanizomenoides*) lacking akinetes could not be reliably distinguished and so these two species were counted together.

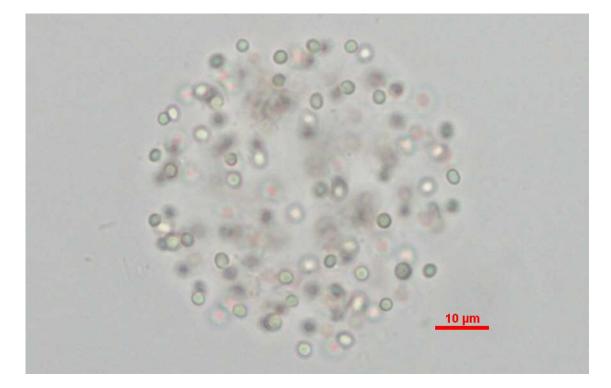


Fig. 1 Aphanocapsa planctonica 400X (scale bar = $10\mu m$)

	Cyano
205 Zeagler Drive, Suite 302 • Palatka, FL 32177	386.328.0882,voice • 386.328.9646,fax
info@greenwaterlab.com • www.greenwaterlab.com	cyanomail@cyanolab.com • www.cyanolab.com

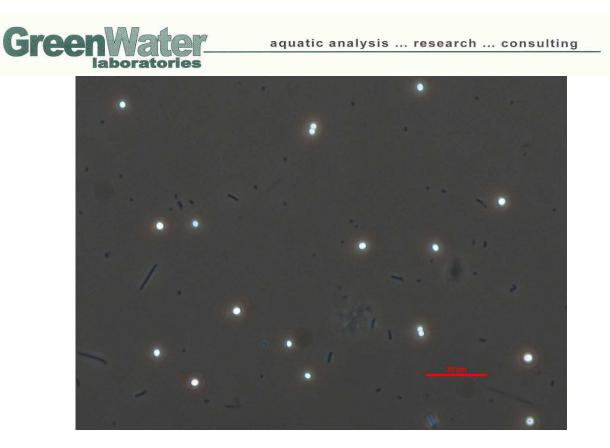


Fig. 2 Aphanocapsa planctonica unicells and cell pairs 400X (scale bar = 20μ m)

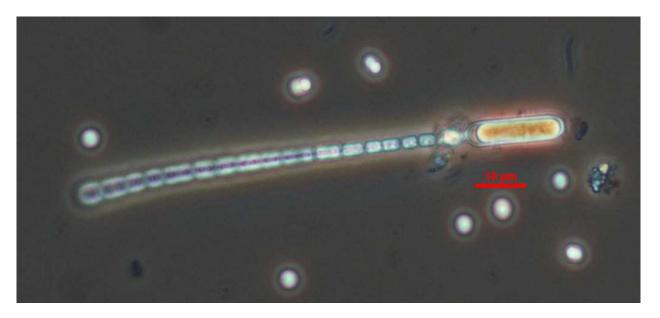


Fig. 3 Aphanizomenon gracile 400X (scale bar = 10μ m)

205 Zeagler Drive, Suite 302 • Palatka, FL 32177 info@greenwaterlab.com • www.greenwaterlab.com 386.328.0882,voice • 386.328.9646,fax cyanomail@cyanolab.com • www.cyanolab.com

Fig. 4 Sphaerospermopsis aphanizomenoides 400X (scale bar = $10\mu m$)

Fig. 5 Anabaena sp. 400X (scale bar = 20μ m)

ESS Group Cyanobacteria ID and Enumeration Report

Prepared: August 27, 2012 Prepared By: GreenWater Laboratories

Samples: 2 (collected on 8/16/12)

- 1. BAP1
- 2. BAP2

Sample 1: BAP1

Total cyanobacteria cell numbers in the BAP1 sample collected on 8/16/12 were 2,241,352 cells/mL. The dominant species in the sample was *Planktothrix suspensa* (2,186,531 cells/mL; Figs. 1-3). *Planktothrix suspensa* may just be a form of *Planktothrix agardhii* with more elongated aerotopes and less attenuated trichome ends.

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 2,224,073 cells/mL (99.2% of total cyanobacteria cell numbers). Potentially toxigenic species observed in the sample included *Planktothrix suspensa* (2,186,531 cells/mL), *Woronichinia naegeliana* (27,762 cells/mL), *Microcystis botrys* (4,880 cells/mL), *Anabaena* cf. *lemmermannii* (2,945 cells/mL), *Microcystis* sp. (1,850 cells/mL), *Aphanizomenon* sp. (60 cells/mL) and *Anabaena* sp. (45 cells/mL).

Sample 2: BAP2

Total cyanobacteria cell numbers in the BAP2 sample collected on 8/16/12 were 3,657 cells/mL. The dominant species in the sample were *Planktothrix suspensa* (1,524 cells/mL) and *Woronichinia naegeliana* (1,115 cells/mL; Fig. 4).

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 3,201 cells/mL (87.5% of total cyanobacteria cell numbers). Potentially toxigenic species observed in the sample included *Planktothrix suspensa* (1,524 cells/mL), *Woronichinia naegeliana* (1,115 cells/mL), *Microcystis* sp. (466 cells/mL), *Microcystis botrys* (95 cells/mL) and *Anabaena* cf. *lemmermannii* (1 cell/mL).

Fig. 1 *Planktothrix suspensa* 100X (scale bar = 100µm)

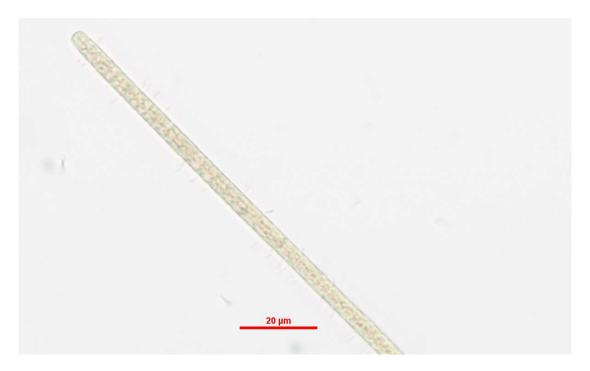


Fig. 2 *Planktothrix suspensa* 400X (scale bar = $20\mu m$)

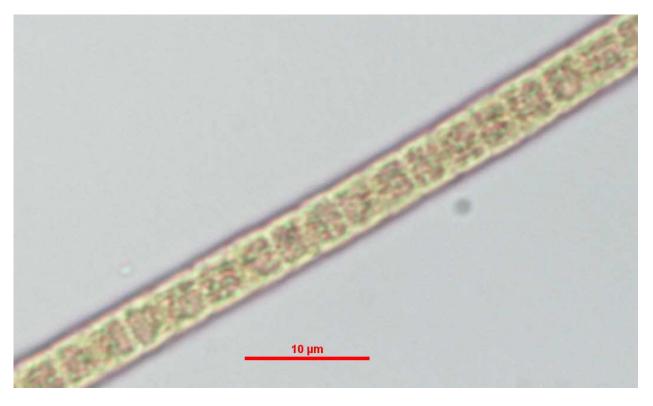


Fig. 3 *Planktothrix suspensa* 1000X (scale bar = 10μ m)

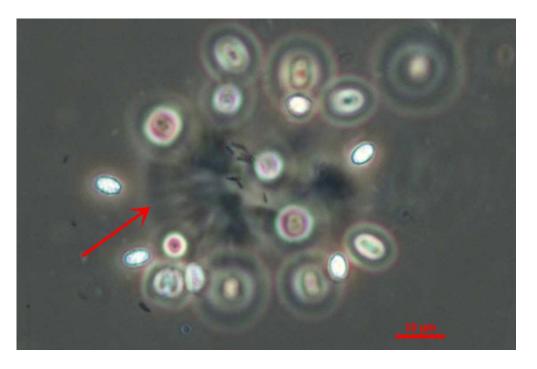


Fig. 4 Woronichinia naegeliana 400X (scale bar = $10\mu m$) Arrow pointed at mucilaginous stalks

205 Zeagler Drive, Suite 302 • Palatka, FL 32177 info@greenwaterlab.com • www.greenwaterlab.com 'g

ESS Group Cyanobacteria ID and Enumeration Report

Prepared: September 3, 2012 Prepared By: GreenWater Laboratories

Samples: 3 (collected on 8/16/12)

- 1. RWP1
- 2. RWP2
- 3. UCR1

Sample 1: RWP1

Total cyanobacteria cell numbers in the RWP1 sample collected on 8/16/12 were 315,581 cells/mL. The dominant species in the sample were *Aphanizomenon* cf. *flos-aquae* (144,512 cells/mL; Fig. 1) and *Cuspidothrix issatschenkoi* (113,096 cells/mL; Fig. 2).

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 313,981 cells/mL (99.5% of total cyanobacteria cell numbers). Potentially toxigenic species observed in the sample included *Aphanizomenon* cf. *flos-aquae* (144,512 cells/mL), *Cuspidothrix issatschenkoi* (113,096 cells/mL), *Cylindrospermopsis raciborskii* (52,778 cells/mL), *Anabaena smithii* (2,199 cells/mL), *Microcystis* unicells and cell pairs (942 cells/mL), *Microcystis wesenbergii* (306 cells/mL), *Microcystis* sp. (90 cells/mL) and *Microcystis ichthyoblabe* (58 cells/mL). The *Cylindrospermopsis raciborskii* morphotype in the sample (Fig. 3) in the past would have been identified as a species of *Raphidiopsis*, however, recent molecular evidence indicates that most (if not all) *Raphidiopsis* are actually forms of *Cylindrospermopsis* lacking terminal heterocytes and having acute end cells.

Sample 2: RWP2

Total cyanobacteria cell numbers in the RWP2 sample collected on 8/16/12 were 252,864 cells/mL. The dominant species in the sample was *Cuspidothrix issatschenkoi* (195,976 cells/mL).

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 249,144 cells/mL (98.5% of total cyanobacteria cell numbers). Potentially toxigenic species observed in the sample included *Cuspidothrix issatschenkoi* (195,976 cells/mL), *Cylindrospermopsis raciborskii* (27,763 cells/mL), *Aphanizomenon* cf. *flos-aquae* (16,331 cells/mL), *Microcystis wesenbergii* (4,263 cells/mL), *Anabaena smithii* (1,361 cells/mL), *Microcystis* unicells and cell pairs (1,180 cells/mL), *Microcystis* sp. (998 cells/mL), *Microcystis ichthyoblabe* (819 cells/mL) and *Woronichinia naegeliana* (453 cells/mL).

Sample 3: UCR1

Total cyanobacteria cell numbers in the UCR1 sample collected on 8/16/12 were 202,213 cells/mL. The dominant species in the sample was a species of *Aphanizomenon* most closely matching *Aphanizomenon ovalisporum* (140,742 cells/mL; Figs. 4-6). The akinete shape and size fits with *A. ovalisporum*, however, the length and swollen ends of some vegetative cells differs from most descriptions of this species.

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 196,007 cells/mL (96.9% of total cyanobacteria cell numbers). Potentially toxigenic species observed in the sample included *Aphanizomenon* cf. *ovalisporum* (140,742 cells/mL), *Anabaena planctonica* (22,619 cells/mL), *Aphanizomenon* cf. *flos-aquae* (22,619 cells/mL), *Anabaena/Aphanizomenon* sp. (6,911 cells/mL), *Woronichinia naegeliana* (2,670 cells/mL), *Microcystis* sp. (314 cells/mL), *Microcystis* sp. (114 cells/mL) and *Microcystis* sp. (18 cells/mL).

Fig. 1 Aphanizomenon cf. flos-aquae 400X (scale bar = $10\mu m$)

aquatic analysis ... research ... consulting

Fig. 2 *Cuspidothrix issatschenkoi* 400X (scale bar = $20\mu m$)

aquatic analysis ... research ... consulting

Fig. 3 *Cylindrospermopsis raciborskii* 400X (scale bar = 20µm)

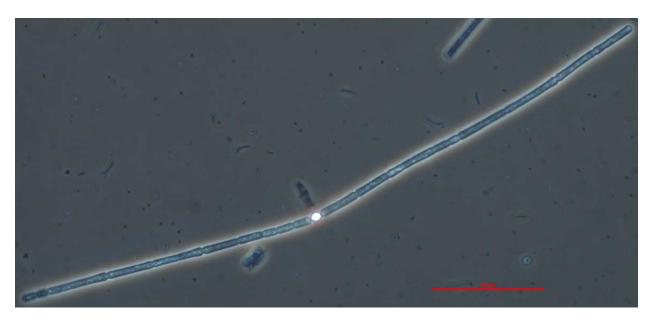
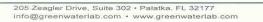



Fig. 4 Aphanizomenon cf. ovalisporum 400X (scale bar = $50\mu m$)

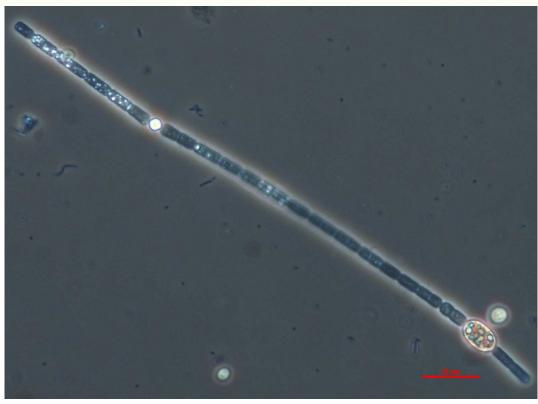


Fig. 5 Aphanizomenon cf. ovalisporum 400X (scale bar = $20\mu m$)

Fig. 6 Aphanizomenon cf. ovalisporum 400X (scale bar = $20\mu m$)

ESS Group Cyanobacteria ID and Enumeration Report

Prepared: September 4, 2012 Prepared By: GreenWater Laboratories

Samples: 1 (collected on 8/16/12) 1. SPP1

Sample 1: SPP1

Total cyanobacteria cell numbers in the SPP1 sample collected on 8/16/12 were 32,417 cells/mL. The dominant species in the sample was *Anabaena planctonica* (21,488 cells/mL; Fig. 1).

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 30,783 cells/mL (95.0% of total cyanobacteria cell numbers). Potentially toxigenic species observed in the sample included *Anabaena planctonica* (21,488 cells/mL), *Aphanizomenon* sp. (4,273 cells/mL; Fig. 2), *Woronichinia naegeliana* (2,432 cells/mL), *Aphanizomenon* cf. *flos-aquae* (1,696 cells/mL), *Microcystis* sp. (471 cells/mL), *Microcystis* sp. (157 cells/mL), *Microcystis* spp. unicells and cell pairs (157 cells/mL), *Microcystis wesenbergii* (92 cells/mL) and *Anabaena* cf. *crassa* (17 cells/mL).

Fig. 1 Anabaena planctonica 400X (scale bar = 10μ m)

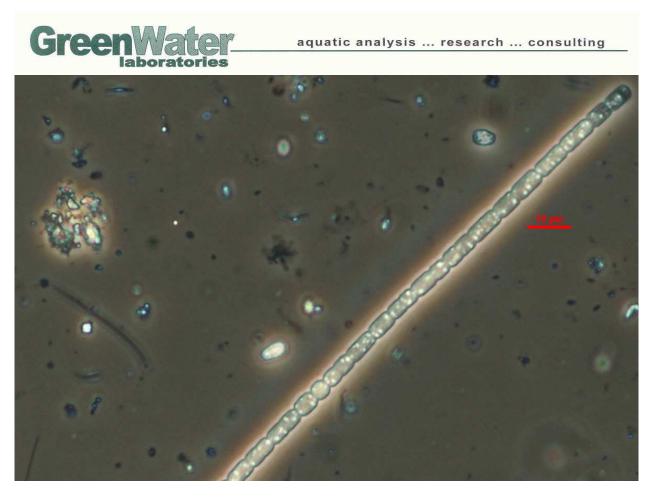


Fig. 2 Aphanizomenon sp. 400X (scale bar = 10μ m)

ESS Group Cyanobacteria ID and Enumeration Report

Prepared: September 13, 2012 Prepared By: GreenWater Laboratories

Samples: 6

- 1. BMP1 (collected on 8/16/12)
- 2. SCP1 (collected on 8/17/12)
- 3. SMP1 (collected on 8/17/12)
- 4. SMP2 (collected on 8/17/12)
- 5. TUR1 (collected on 8/17/12)
- 6. WAP1 (collected on 8/17/12)

Sample 1: BMP1

Total cyanobacteria cell numbers in the BMP1 sample collected on 8/16/12 were 387,060 cells/mL. The dominant species in the sample were *Aphanizomenon* cf. *klebahnii* (244,100 cells/mL; Fig. 1) and *Aphanizomenon* sp. (82,466 cells/mL; Fig. 2).

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 352,540 cells/mL (91.1% of total cyanobacteria cell numbers). Potentially toxigenic species observed in the sample included *Aphanizomenon* cf. *klebahnii* (244,100 cells/mL), *Aphanizomenon* sp. (82,466 cells/mL), *Woronichinia naegeliana* (12,526 cells/mL), *Anabaena planctonica* (8,953 cells/mL), *Microcystis* sp. (4,477 cells/mL) and *Microcystis wesenbergii* (18 cells/mL).

Sample 2: SCP1

Total cyanobacteria cell numbers in the SCP1 sample collected on 8/17/12 were 455,079 cells/mL. The dominant species in the sample were filamentous species including *Pseudanabaena* sp. (104,614 cells/mL; Fig. 3), *Aphanizomenon* sp. (96,132 cells/mL; Fig. 4) and *Aphanizomenon gracile* (84,822 cells/mL; Fig. 5).

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 304,657 cells/mL (66.9% of total cyanobacteria cell numbers). Potentially toxigenic species observed in the sample included *Aphanizomenon* sp. (96,132 cells/mL), *Aphanizomenon gracile* (84,822 cells/mL), *Planktothrix* sp. (55,606 cells/mL; Fig. 6), *Anabaena planctonica* (54,035 cells/mL; Fig. 7), *Cuspidothrix issatschenkoi* (5,184 cells/mL), *Microcystis* sp. (3,770 cells/mL), *Aphanizomenon* sp. (3,456 cells/mL), *Aphanizomenon* cf. *flos-aquae* (589 cells/mL), *Cylindrospermopsis raciborskii* (471 cells/mL), *Microcystis* sp. (340 cells/mL) and *Microcystis* wesenbergii (252 cells/mL).

Sample 3: SMP1

Total cyanobacteria cell numbers in the SMP1 sample collected on 8/17/12 were 4,783 cells/mL. The dominant species in the sample were small (5um) unicells (1,853 cells/mL) and *Microcystis* spp. (1,332 cells/mL).

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 1,559 cells/mL (32.6% of total cyanobacteria cell numbers). Potentially toxigenic species observed in the sample included *Microcystis* unicells and cell pairs (1,131 cells/mL), *Anabaena* cf. *circinalis* (165 cells/mL), *Microcystis wesenbergii* (101 cells/mL), *Microcystis botrys* (58 cells/mL), *Microcystis* sp. (42 cells/mL), *Woronichinia naegeliana* (32 cells/mL) and *Aphanizomenon* cf. *flos-aquae* (30 cells/mL).

Sample 4: SMP2

Total cyanobacteria cell numbers in the SMP2 sample collected on 8/17/12 were 1,530 cells/mL. The dominant species in the sample were small (5µm) unicells (1,131 cells/mL).

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 264 cells/mL (17.3% of total cyanobacteria cell numbers). Potentially toxigenic species observed in the sample included *Microcystis* unicells and cell pairs (142 cells/mL), *Microcystis wesenbergii* (45 cells/mL), *Microcystis* sp. (37 cells/mL), *Anabaena* cf. *circinalis* (24 cells/mL) and *Woronichinia naegeliana* (16 cells/mL).

Sample 5: TUR1

Total cyanobacteria cell numbers in the TUR1 sample collected on 8/17/12 were 94 cells/mL. The only cyanophyte species in the sample were small (5µm) unicells (94 cells/mL).

No potentially toxigenic cyanobacteria (PTOX Cyano) were observed in the sample.

Sample 6: WAP1

Total cyanobacteria cell numbers in the WAP1 sample collected on 8/17/12 were 5,230 cells/mL. The dominant species in the sample was the colonial species *Cyanogranis ferruginea* (4,653 cells/mL; Fig. 8).

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 27 cells/mL (0.5% of total cyanobacteria cell numbers). *Microcystis wesenbergii* (27 cells/mL) was the only PTOX Cyano species observed in the sample.

Fig. 1 Aphanizomenon cf. klebahnii BMP1 400X (scale bar = $10\mu m$)

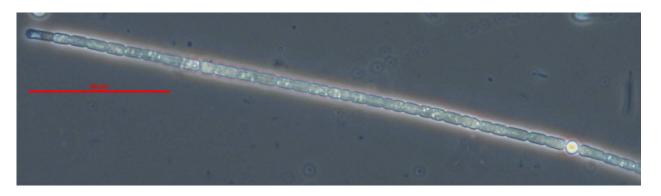


Fig. 2 Aphanizomenon sp. BMP1 400X (scale bar = $50\mu m$)

205 Zeagler Drive, Suite 302 • Palatka, FL 32177 info@greenwaterlab.com • www.greenwaterlab.com 386.328.0882,voice • 386.328.9646,fax cyanomail@cyanolab.com • www.cyanolab.com

aquatic analysis ... research ... consulting

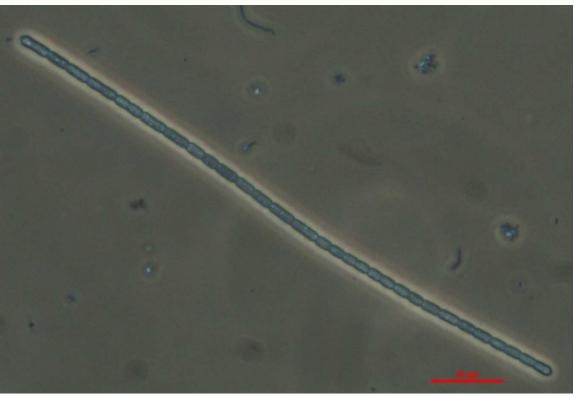


Fig. 3 *Pseudanabaena* sp. SCP1 400X (scale bar = 20μ m)

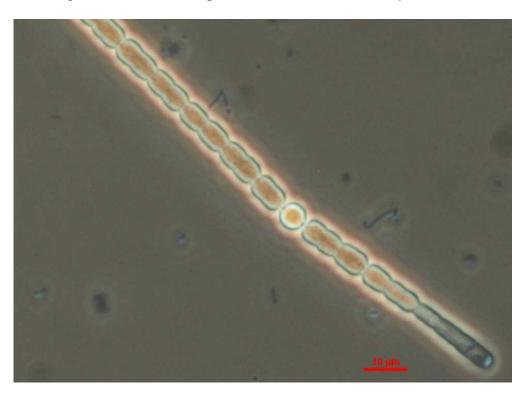


Fig. 4 Aphanizomenon sp. SCP1 400X (scale bar = $10\mu m$)

aquatic analysis ... research ... consulting

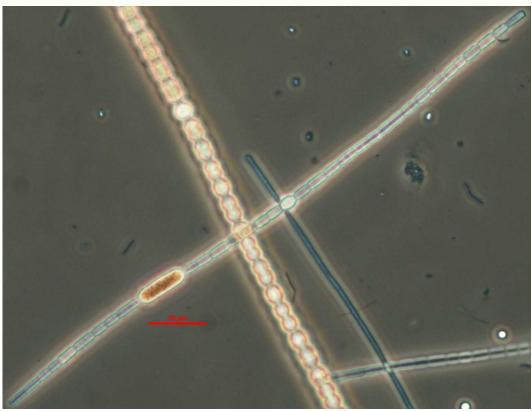


Fig. 5 Aphanizomenon gracile SCP1 400X (scale bar = 20μ m)

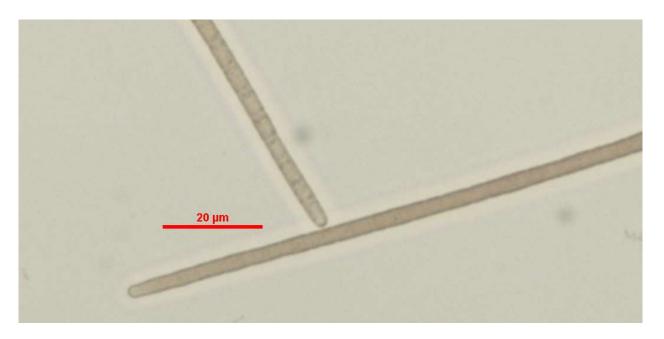


Fig. 6 *Planktothrix* sp. SCP1 400X (scale bar = $20\mu m$)

205 Zeagler Drive, Suite 302 • Palatka, FL 32177 info@greenwaterlab.com • www.greenwaterlab.com

Fig. 7 Anabaena planctonica SCP1 400X (scale bar = $50\mu m$)

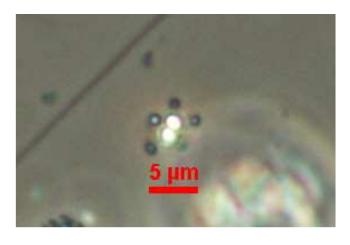


Fig. 8 *Cyanogranis ferruginea* WAP1 400X (scale bar = 5μ m)

ESS Group Cyanobacteria ID and Enumeration Report

Prepared: September 4, 2012 Prepared By: GreenWater Laboratories

Samples: 1 (collected on 8/17/12) 1. PAP1

Sample 1: PAP1

Total cyanobacteria cell numbers in the PAP1 sample collected on 8/17/12 were 560,111 cells/mL. The dominant species in the sample was *Microcystis* cf. *aeruginosa* (555,428 cells/mL; Fig. 1). The size of the cells and the nature of the colonial mucilage (extending past the outer cells of the colony) fit the description of *M. aeruginosa*, however, no large colonies exhibiting the characteristic clathration (holes) in the colony were observed.

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 556,966 cells/mL (99.4% of total cyanobacteria cell numbers). Potentially toxigenic species observed in the sample included *Microcystis* cf. *aeruginosa* (555,428 cells/mL), *Anabaena* sp. (1,178 cells/mL), *Microcystis botrys* (240 cells/mL) and *Anabaena* sp. (120 cells/mL).

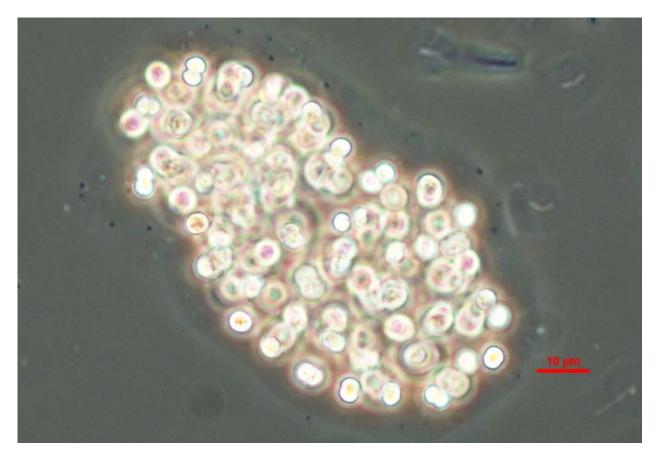


Fig. 1 *Microcystis* cf. *aeruginosa* 400X (scale bar = $10\mu m$)

ESS Group Cyanobacteria ID and Enumeration Report

Prepared: September 3, 2012 Prepared By: GreenWater Laboratories

Samples: 1 (collected on 8/17/12) 1. SLR1

Sample 1: SLR1

Total cyanobacteria cell numbers in the SLR1 sample collected on 8/17/12 were 13,649 cells/mL. The dominant species in the sample was *Woronichinia naegeliana* (9,048 cells/mL; Fig. 1). The majority of the *W. naegeliana* was in the form of unicells and cell pairs.

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 11,270 cells/mL (82.6% of total cyanobacteria cell numbers). Potentially toxigenic species observed in the sample included *Woronichinia naegeliana* (9,048 cells/mL), *Microcystis wesenbergii* (1,241 cells/mL), *Microcystis* unicells and cell pairs (314 cells/mL), *Microcystis botrys* (245 cells/mL), *Anabaena* sp. (181 cells/mL), *Anabaena* sp. (115 cells/mL), *Microcystis* sp. (102 cells/mL), *Microcystis* sp. (13 cells/mL), *Anabaena* cf. *lemmermannii* (9 cells/mL) and *Anabaena* sp. (2 cells/mL).

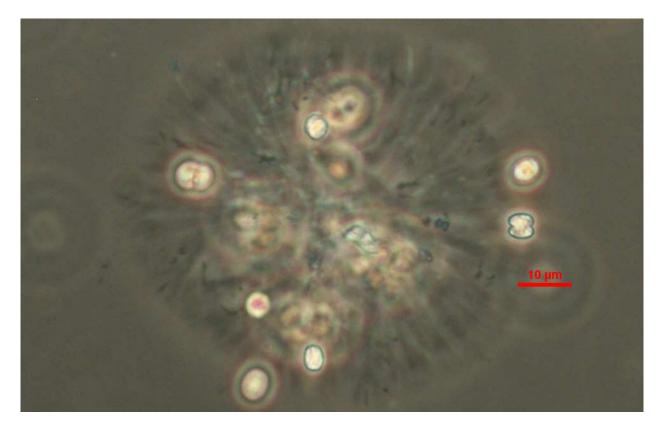


Fig. 1 Woronichinia naegeliana 400X (scale bar = $10\mu m$)

ESS Group Cyanobacteria ID and Enumeration Report

Prepared: September 28, 2012 Prepared By: GreenWater Laboratories

Samples: 2 (collected on 9/24/12)

- 1. SLK2
- 2. SLK3

Sample 1: SLK2

Total cyanobacteria cell numbers in the SLK2 sample collected on 9/24/12 were 902,080 cells/mL. The dominant species in the sample were *Woronichinia naegeliana* (395,052 cells/mL; Fig. 1), *Anabaena circinalis* (197,919 cells/mL; Fig. 2), *Microcystis aeruginosa* (131,003 cells/mL; Fig. 3) and *Microcystis ichthyoblabe* (104,929 cells/mL; Fig. 4).

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 878,206 cells/mL (97.4% of total cyanobacteria cell numbers). Potentially toxigenic species observed in the sample included *Woronichinia naegeliana* (395,052 cells/mL), *Anabaena circinalis* (197,919 cells/mL), *Microcystis aeruginosa* (131,003 cells/mL), *Microcystis ichthyoblabe* (104,929 cells/mL), *Microcystis wesenbergii* (23,248 cells/mL), *Microcystis botrys* (20,499 cells/mL), *Anabaena lemmermannii* (4,005 cells/mL) and *Anabaena planctonica* (1,550 cells/mL).

Sample 2: SLK3

Total cyanobacteria cell numbers in the SLK3 sample collected on 9/24/12 were 50,376 cells/mL. The dominant species in the sample was *Woronichinia naegeliana* (22,436 cells/mL).

Total numbers of potentially toxigenic cyanobacteria (PTOX Cyano) were 35,706 cells/mL (70.9% of total cyanobacteria cell numbers). Potentially toxigenic species observed in the sample included *Woronichinia naegeliana* (22,436 cells/mL), *Anabaena circinalis* (8,796 cells/mL), *Microcystis wesenbergii* (1,774 cells/mL), *Microcystis aeruginosa* (1,263 cells/mL), *Microcystis ichthyoblabe* (1,113 cells/mL), *Microcystis botrys* (223 cells/mL), *Anabaena planctonica* (67 cells/mL), *Anabaena/Aphanizomenon* sp. (19 cells/mL) and *Microcystis* sp. (15 cells/mL).

Fig. 1 Woronichinia naegeliana 400X (scale bar = $20\mu m$)

Fig. 2 Anabaena circinalis 400X (scale bar = $10\mu m$)

aquatic analysis ... research ... consulting

Fig. 3 *Microcystis aeruginosa* 200X (scale bar = 100µm)

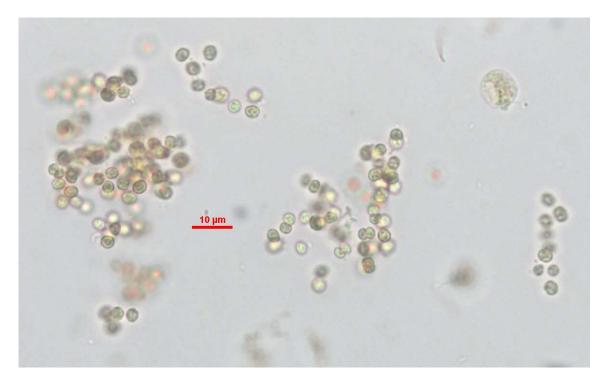


Fig. 4 *Microcystis ichthyoblabe* 400X (scale bar = 10μ m)

R

Sample	Sampling Date	Genus	Species	Algal Group	Counting Unit	Cells/Unit	Species	Species	PTOX Cyano Total	PTOX Cyano Total
							Units/mL	Cells/mL	Units/mL	Cells/mL
Melville Pond	7/23/2012	Anabaena	planctonica	Cyanobacteria	filament	35	2,827	98,959	45,198	183,422
Melville Pond	7/23/2012	Woronichinia	naegeliana (unicell)	Cyanobacteria	cell	1	30,473	30,473		
Melville Pond	7/23/2012	Woronichinia	naegeliana (colony)	Cyanobacteria	colony	277	108	29,916		
Melville Pond	7/23/2012	Woronichinia	naegeliana (cell pair)	Cyanobacteria	colony	2	11,781	23,562		
Melville Pond	7/23/2012	Microcystis	wesenbergii	Cyanobacteria	colony	64	8	512		

Sample	Sampling Date	Genus	Species	Algal Group	Counting Unit	Cells/Unit	Species	Species	PTOX Cyano Total	PTOX Cyano Total
							Units/mL	Cells/mL	Units/mL	Cells/mL
Mashapaug Pond	8/08/2012	Microcystis	botrys	Cyanobacteria	colony	392	314	123,149	24,076	311,293
Mashapaug Pond	8/08/2012	Microcystis	ichthyoblabe (colony)	Cyanobacteria	colony	20	3,456	69,114		
Mashapaug Pond	8/08/2012	Microcystis	wesenbergii	Cyanobacteria	colony	121	393	47,516		
Mashapaug Pond	8/08/2012	Anabaena	planctonica	Cyanobacteria	filament	55	471	25,918		
Mashapaug Pond	8/08/2012	Microcystis	sp. (colony)	Cyanobacteria	colony	77	157	12,095		
Mashapaug Pond	8/08/2012	Microcystis	ichthyoblabe (unicell)	Cyanobacteria	cell	1	10,524	10,524		
Mashapaug Pond	8/08/2012	Microcystis	ichthyoblabe (cell pair)	Cyanobacteria	colony	2	3,613	7,226		
Mashapaug Pond	8/08/2012	Aphanizomenon	cf. flos-aquae	Cyanobacteria	filament	28	236	6,597		
Mashapaug Pond	8/08/2012	Anabaena	crassa	Cyanobacteria	filament	65	39	2,553		
Mashapaug Pond	8/08/2012	Woronichinia	naegeliana (unicell)	Cyanobacteria	cell	1	2,199	2,199		
Mashapaug Pond	8/08/2012	Microcystis	sp. (cell pair)	Cyanobacteria	colony	2	942	1,885		
Mashapaug Pond	8/08/2012	Woronichinia	naegeliana (cell pair)	Cyanobacteria	colony	2	628	1,257		
Mashapaug Pond	8/08/2012	Microcystis	sp. (unicell)	Cyanobacteria	cell	1	1,100	1,100		
Mashapaug Pond	8/08/2012	Woronichinia	naegeliana (colony)	Cyanobacteria	colony	40	4	160		

Sample	Sampling Date	Genus	Species	Algal Group	Counting Unit	Cells/Unit	Species	Species	-	Cyano Total
							Units/mL	Cells/mL	Units/mL	Cells/mL
Almy Pond	8/16/2012	Aphanocapsa	planctonica (unicell)	Cyanobacteria	cell	1	2,877,676	2,877,676	3,147,606	5,009,668
Almy Pond	8/16/2012	Geitlerinema/Jaaginema	sp.	Cyanobacteria	filament	19	37,699	716,278		
Almy Pond	8/16/2012	Aphanizomenon/Sphaerospermopsis	gracile/aphanizomenoides	Cyanobacteria	filament	13	31,416	408,404		
Almy Pond	8/16/2012	Aphanocapsa	planctonica (cell pair)	Cyanobacteria	colony	2	175,928	351,856		
Almy Pond	8/16/2012	Planktolyngbya	limnetica	Cyanobacteria	filament	41	6,283	257,609		
Almy Pond	8/16/2012	Aphanocapsa	planctonica (colony)	Cyanobacteria	colony	67	2,356	157,864		
Almy Pond	8/16/2012	Anabaena	sp.	Cyanobacteria	filament	27	3,142	84,822		
Almy Pond	8/16/2012	Coelosphaerium	kuetzingianum	Cyanobacteria	colony	34	2,356	80,110		
Almy Pond	8/16/2012	Aphanocapsa	conferta	Cyanobacteria	filament	48	785	37,699		
Almy Pond	8/16/2012	Pseudanabaena	mucicola	Cyanobacteria	filament	3	6,283	18,849		
Almy Pond	8/16/2012	Aphanocapsa	sp.	Cyanobacteria	colony	41	140	5,740		
Almy Pond	8/16/2012	Coelomoron/Coelosphaerium	sp.	Cyanobacteria	colony	45	100	4,500		
Almy Pond	8/16/2012	cyanophyte unicell	sp.	Cyanobacteria	cell	1	3,142	3,142		
Almy Pond	8/16/2012	Anabaena	sp.	Cyanobacteria	filament	13	240	3,120		
Almy Pond	8/16/2012	Snowella	lacustris	Cyanobacteria	colony	47	20	940		
Almy Pond	8/16/2012	Planktothrix	agardhii	Cyanobacteria	filament	33	20	660		
Almy Pond	8/16/2012	Microcystis	wesenbergii	Cyanobacteria	colony	20	20	400		

Sample	Sampling Date	Genus	Species	Algal Group	Counting Unit	Cells/Unit	Species	Species	Cyano Total	Cyano Total
							Units/mL	Cells/mL	Units/mL	Cells/mL
BAP1	8/16/2012	Planktothrix	suspensa	Cyanobacteria	filament	96	22,776	2,186,531	48,618	2,241,352
BAP1	8/16/2012	Woronichinia	naegeliana (unicell)	Cyanobacteria	cell	1	15,708	15,708		
BAP1	8/16/2012	cyanophyte colony	sp.	Cyanobacteria	colony	15	785	11,781		
BAP1	8/16/2012	Woronichinia	naegeliana (cell pair)	Cyanobacteria	colony	2	3,927	7,854		
BAP1	8/16/2012	Microcystis	botrys	Cyanobacteria	colony	122	40	4,880		
BAP1	8/16/2012	Woronichinia	naegeliana (colony)	Cyanobacteria	colony	70	60	4,200		
BAP1	8/16/2012	cyanophyte unicell, oval/rod 2.5-5um	spp.	Cyanobacteria	cell	1	3,927	3,927		
BAP1	8/16/2012	Anabaena	cf. lemmermannii	Cyanobacteria	filament	5	589	2,945		
BAP1	8/16/2012	Microcystis	sp.	Cyanobacteria	colony	370	5	1,850		
BAP1	8/16/2012	cyanophyte cell pair	spp.	Cyanobacteria	colony	2	785	1,571		
BAP1	8/16/2012	Aphanizomenon	sp.	Cyanobacteria	filament	6	10	60		
BAP1	8/16/2012	Anabaena	sp.	Cyanobacteria	filament	9	5	45		
BAP2	8/16/2012	Planktothrix	suspensa	Cyanobacteria	filament	97	16	1,524	914	3,657
BAP2	8/16/2012	Woronichinia	naegeliana (unicell)	Cyanobacteria	cell	1	534	534		
BAP2	8/16/2012	Microcystis	sp.	Cyanobacteria	colony	168	2	403		
BAP2	8/16/2012	Woronichinia	naegeliana (cell pair)	Cyanobacteria	colony	2	157	314		
BAP2	8/16/2012	Woronichinia	naegeliana (colony)	Cyanobacteria	colony	34	8	267		
BAP2	8/16/2012	cyanophyte colony	sp.	Cyanobacteria	colony	7	31	220		
BAP2	8/16/2012	cyanophyte cell pair	spp.	Cyanobacteria	colony	2	63	126		
BAP2	8/16/2012	Microcystis	botrys	Cyanobacteria	colony	159	1	95		
BAP2	8/16/2012	cyanophyte colony	sp.	Cyanobacteria	colony	10	8	79		
BAP2	8/16/2012	Microcystis	sp.	Cyanobacteria	cell	1	63	63		
BAP2	8/16/2012	cyanophyte unicell, oval/rod 2.5-5um	spp.	Cyanobacteria	cell	1	31	31		
BAP2	8/16/2012	Anabaena	cf. lemmermannii	Cyanobacteria	filament	4	0.2	1		

Sample	Sampling Date	Genus	Species	Algal Group	Counting Unit	Cells/Unit	Species	Species	•	Cyano Total
DWD4	0/40/0040	A . h		0	C 1		Units/mL	Cells/mL	Units/mL	Cells/mL
RWP1	8/16/2012	Aphanizomenon	cf. flos-aquae	Cyanobacteria	filament	23	6,283	144,512	12,063	315,581
RWP1	8/16/2012	Cuspidothrix	issatschenkoi	Cyanobacteria	filament	36	3,142	113,096		
RWP1	8/16/2012	Cylindrospermopsis	raciborskii	Cyanobacteria	filament	42	1,257	52,778		
RWP1	8/16/2012	Anabaena	smithii	Cyanobacteria	filament	28	79	2,199		
RWP1	8/16/2012	Microcystis	spp. (unicell)	Cyanobacteria	cell	1	628	628		
RWP1	8/16/2012	cyanophyte filament	sp.	Cyanobacteria	filament	4	157	628		
RWP1	8/16/2012	Aphanocapsa	planctonica	Cyanobacteria	colony	16	39	628		
RWP1	8/16/2012	cyanophyte unicell, sphere 2.5-5um	spp.	Cyanobacteria	cell	1	314	314		
RWP1	8/16/2012	Microcystis	spp. (cell pair)	Cyanobacteria	colony	2	157	314		
RWP1	8/16/2012	Microcystis	wesenbergii	Cyanobacteria	colony	102	3	306		
RWP1	8/16/2012	Microcystis	sp.	Cyanobacteria	colony	45	2	90		
RWP1	8/16/2012	Microcystis	ichthyoblabe	Cyanobacteria	colony	58	1	58		
RWP1	8/16/2012	Snowella	litoralis	Cyanobacteria	colony	28	1	28		
RWP2	8/16/2012	Cuspidothrix	issatschenkoi	Cyanobacteria	filament	20	9,799	195,976	16,084	252,864
RWP2	8/16/2012	Cylindrospermopsis	raciborskii	Cyanobacteria	filament	18	1,542	27,763		
RWP2	8/16/2012	Aphanizomenon	cf. flos-aquae	Cyanobacteria	filament	18	907	16,331		
RWP2	8/16/2012	Microcystis	wesenbergii	Cyanobacteria	colony	114	37	4,263		
RWP2	8/16/2012	cyanophyte unicell, sphere 2.5-5um	spp.	Cyanobacteria	cell	1	1,361	1,361		
RWP2	8/16/2012	Anabaena	smithii	Cyanobacteria	filament	30	45	1,361		
RWP2	8/16/2012	Aphanocapsa	sp.	Cyanobacteria	colony	7	181	1,270		
RWP2	8/16/2012	Microcystis	sp.	Cyanobacteria	colony	44	23	998		
RWP2	8/16/2012	Microcystis	ichthyoblabe	Cyanobacteria	colony	81	10	819		
RWP2	8/16/2012	Microcystis	spp. (unicell)	Cyanobacteria	cell	1	817	817		
RWP2	8/16/2012	cyanophyte unicell, oval/rod 2.5-5um	spp.	Cyanobacteria	cell	1	635	635		
RWP2	8/16/2012	Microcystis	spp. (cell pair)	Cyanobacteria	colony	2	181	363		
RWP2	8/16/2012	cyanophyte filament	sp.	Cyanobacteria	filament	3	91	272		
RWP2	8/16/2012	Woronichinia	naegeliana (unicell)	Cyanobacteria	cell	1	272	272		
RWP2	8/16/2012	Woronichinia	naegeliana (cell pair)	Cyanobacteria	colony	2	91	181		
RWP2	8/16/2012	cyanophyte cell pair	spp.	Cyanobacteria	colony	2	91	181		
UCR1	8/16/2012	Aphanizomenon	cf. ovalisporum	Cyanobacteria	filament	32	4,398	140,742	11,392	202,213
UCR1	8/16/2012	Anabaena	planctonica	Cyanobacteria	filament	24	942	22,619	,	,
UCR1	8/16/2012	Aphanizomenon	cf. flos-aquae	Cyanobacteria	filament	18	1,257	22,619		
UCR1	8/16/2012	Anabaena/Aphanizomenon	sp.	Cyanobacteria	filament	44	157	6,911		
UCR1	8/16/2012	Snowella	litoralis	Cyanobacteria	colony	49	79	3,848		
UCR1	8/16/2012	Woronichinia	naegeliana (unicell)	Cyanobacteria	cell	1	1,728	1,728		
UCR1	8/16/2012	cyanophyte unicell, sphere 2.5-5um	spp.	Cyanobacteria	cell	1	1,571	1,571		
UCR1	8/16/2012	Woronichinia	naegeliana (cell pair)	Cyanobacteria	colony	2	471	942		
UCR1	8/16/2012	cyanophyte cell pair	spp.	Cyanobacteria	colony	2	314	628		
UCR1	8/16/2012	Microcystis	spp.	Cyanobacteria	cell	1	314	314		
UCR1	8/16/2012	cyanophyte unicell, oval/rod 2.5-5um	spp.	Cyanobacteria	cell	1	157	157		
UCR1	8/16/2012	Microcystis	spp.	Cyanobacteria	colony	38	3	114		
UCR1	8/16/2012	Microcystis	sp. sp.	Cyanobacteria	colony	18	1	18		
UCKI	0/10/2012	Microcysus	эр.	Cyanobaciend	coloriy	10	I	10		

Sample	Sampling Date	Genus	Species	Algal Group	Counting Unit	Cells/Unit	Species Units/mL	Species Cells/mL	Cyano Total Units/mL	Cyano Total Cells/mL
SPP1	8/16/2012	Anabaena	planctonica	Cyanobacteria	filament	38	565	21,488	3,255	32,417
SPP1	8/16/2012	Aphanizomenon	sp.	Cyanobacteria	filament	34	126	4,273		
SPP1	8/16/2012	Aphanizomenon	cf. flos-aquae	Cyanobacteria	filament	18	94	1,696		
SPP1	8/16/2012	Woronichinia	naegeliana (unicell)	Cyanobacteria	cell	1	1,225	1,225		
SPP1	8/16/2012	Woronichinia	naegeliana (cell pair)	Cyanobacteria	colony	2	597	1,194		
SPP1	8/16/2012	Aphanocapsa	sp.	Cyanobacteria	colony	10	94	942		
SPP1	8/16/2012	Microcystis	sp.	Cyanobacteria	colony	30	16	471		
SPP1	8/16/2012	Cyanogranis	ferruginea	Cyanobacteria	colony	3	94	283		
SPP1	8/16/2012	cyanophyte unicell	spp.	Cyanobacteria	cell	1	188	188		
SPP1	8/16/2012	Microcystis	sp.	Cyanobacteria	colony	262	1	157		
SPP1	8/16/2012	Microcystis	spp. (cell pair)	Cyanobacteria	colony	2	63	126		
SPP1	8/16/2012	cyanophyte cell pair	spp.	Cyanobacteria	colony	2	63	126		
SPP1	8/16/2012	cyanophyte unicell, oval/rod 2.5-5um	spp.	Cyanobacteria	cell	1	94	94		
SPP1	8/16/2012	Microcystis	wesenbergii	Cyanobacteria	colony	46	2	92		
SPP1	8/16/2012	Microcystis	spp. (unicell)	Cyanobacteria	cell	1	31	31		
SPP1	8/16/2012	Anabaena	cf. crassa	Cyanobacteria	filament	84	0.2	17		
SPP1	8/16/2012	Woronichinia	naegeliana (colony)	Cyanobacteria	colony	64	0.2	13		

Sample	Sampling Date	Genus	Species	Algal Group	Counting Unit	Cells/Unit	Species	Species	Cyano Total	•
BMP1	8/16/2012	Aphanizomenon	cf. klebahnii	Cyanobacteria	filament	21	Units/mL 11,624	Cells/mL 244,100	Units/mL 31,736	Cells/mL 387,060
BMP1	8/16/2012	Aphanizomenon	sp.	Cyanobacteria	filament	15	5.498	82.466	01,700	007,000
BMP1	8/16/2012	Cyanogranis	ferruginea	Cyanobacteria	colony	10	2,670	26,703		
BMP1	8/16/2012	Anabaena	planctonica	Cyanobacteria	filament	38	236	8.953		
BMP1	8/16/2012	Woronichinia	naegeliana (unicell)	Cyanobacteria	cell	1	6,911	6,911		
BMP1	8/16/2012	Microcystis	sp.	Cyanobacteria	colony	114	39	4,477		
BMP1	8/16/2012	Woronichinia	naegeliana (cell pair)	Cyanobacteria	colony	2	2,199	4,398		
BMP1	8/16/2012	cyanophyte colony	sp.	Cyanobacteria	colony	18	157	2,827		
BMP1	8/16/2012	Aphanocapsa	sp.	Cyanobacteria	colony	15	157	2,356		
BMP1	8/16/2012	cyanophyte unicell	sp.	Cyanobacteria	cell	1	1,257	1,257		
BMP1	8/16/2012	Woronichinia	naegeliana (colony)	Cyanobacteria	colony	31	39	1,217		
BMP1	8/16/2012	cyanophyte unicell, oval/rod 2.5-5um	spp.	Cyanobacteria	cell	1	785	785		
BMP1	8/16/2012	cyanophyte cell pair	sp.	Cyanobacteria	colony	2	157	314		
BMP1	8/16/2012	Aphanocapsa	conferta	Cyanobacteria	colony	90	2	180		
BMP1	8/16/2012	cyanophyte colony	sp.	Cyanobacteria	colony	50	1	50		
BMP1	8/16/2012	Coelosphaerium	sp.	Cyanobacteria	colony	46	1	46		
BMP1	8/16/2012	Microcystis	wesenbergii	Cyanobacteria	colony	9	2	18		
SCP1	8/17/2012	Pseudanabaena	sp.	Cyanobacteria	filament	37	2,827	104,614	14,783	455,079
SCP1	8/17/2012	Aphanizomenon	sp.	Cyanobacteria	filament	34	2,827	96,132	,	,
SCP1	8/17/2012	Aphanizomenon	gracile	Cyanobacteria	filament	27	3,142	84,822		
SCP1	8/17/2012	Planktothrix	sp.	Cyanobacteria	filament	177	314	55,606		
SCP1	8/17/2012	Anabaena	planctonica	Cyanobacteria	filament	43	1,257	54,035		
SCP1	8/17/2012	cyanophyte filament	sp.	Cyanobacteria	filament	27	1,571	42,411		
SCP1	8/17/2012	Cuspidothrix	issatschenkoi	Cyanobacteria	filament	44	118	5,184		
SCP1	8/17/2012	Microcystis	sp.	Cyanobacteria	colony	32	118	3,770		
SCP1	8/17/2012	Aphanizomenon	sp.	Cyanobacteria	filament	11	314	3,456		
SCP1	8/17/2012	cyanophyte unicell, sphere 2.5-5um	spp.	Cyanobacteria	cell	1	1,571	1,571		
SCP1	8/17/2012	cyanophyte filament	sp.	Cyanobacteria	filament	120	7	840		
SCP1	8/17/2012	cyanophyte cell pair	spp.	Cyanobacteria	colony	2	314	628		
SCP1	8/17/2012	Aphanizomenon	cf. flos-aquae	Cyanobacteria	filament	15	39	589		
SCP1	8/17/2012	Cylindrospermopsis	raciborskii	Cyanobacteria	filament	12	39	471		
SCP1	8/17/2012	Microcystis	sp.	Cyanobacteria	colony	170	2	340		
SCP1	8/17/2012	cyanophyte unicell, oval/rod 2.5-5um	spp.	Cyanobacteria	cell	1	314	314		
SCP1	8/17/2012	Microcystis	wesenbergii	Cyanobacteria	colony	36	7	252		
SCP1	8/17/2012	Snowella	litoralis	Cyanobacteria	colony	22	2	44		
SMP1	8/17/2012	cyanophyte unicell, oval/rod 2.5-5um	spp.	Cyanobacteria	cell	1	1,005	1,005	3,046	4,783
SMP1	8/17/2012	cyanophyte unicell, sphere 2.5-5um	spp.	Cyanobacteria	cell	1	848	848		
SMP1	8/17/2012	Microcystis	spp. (unicell)	Cyanobacteria	cell	1	817	817		
SMP1	8/17/2012	Aphanocapsa	sp.	Cyanobacteria	colony	6	94	565		
SMP1	8/17/2012	cyanophyte tetrad	spp.	Cyanobacteria	colony	4	94	377		
SMP1	8/17/2012	Microcystis	spp. (cell pair)	Cyanobacteria	colony	2	157	314		
SMP1	8/17/2012	Geitlerinema	splendidum	Cyanobacteria	filament	26	8	204		
SMP1	8/17/2012	Anabaena	cf. circinalis	Cyanobacteria	filament	55	3	165		
SMP1	8/17/2012	Aphanocapsa	sp.	Cyanobacteria	colony	20	8	157		
SMP1	8/17/2012	Microcystis	wesenbergii	Cyanobacteria	colony	504	0.2	101		
SMP1	8/17/2012	Microcystis	botrys	Cyanobacteria	colony	145	0.4	58		
SMP1	8/17/2012	Pseudanabaena	sp.	Cyanobacteria	filament	6	8	47		
SMP1	8/17/2012	Microcystis	sp.	Cyanobacteria	colony	53	1	42		
SMP1	8/17/2012	Woronichinia	naegeliana (colony)	Cyanobacteria	colony	79	0.4	32		
SMP1	8/17/2012	Aphanizomenon	cf. flos-aquae	Cyanobacteria	filament	19	2	30		
SMP1	8/17/2012	Merismopedia	glauca	Cyanobacteria	colony	84	0.2	17		

SMP1	8/17/2012	cyanophyte filament	sp.	Cyanobacteria	filament	13	0.2	3		
SMP2	8/17/2012	cyanophyte unicell, sphere 2.5-5um	spp.	Cyanobacteria	cell	1	754	754	1,307	1,530
SMP2	8/17/2012	cyanophyte unicell, oval/rod 2.5-5um	spp.	Cyanobacteria	cell	1	377	377		
SMP2	8/17/2012	Microcystis	spp. (unicell)	Cyanobacteria	cell	1	126	126		
SMP2	8/17/2012	cyanophyte tetrad	spp.	Cyanobacteria	colony	4	31	126		
SMP2	8/17/2012	Microcystis	wesenbergii	Cyanobacteria	colony	75	1	45		
SMP2	8/17/2012	Microcystis	sp.	Cyanobacteria	colony	37	1	37		
SMP2	8/17/2012	Anabaena	cf. circinalis	Cyanobacteria	filament	30	1	24		
SMP2	8/17/2012	Microcystis	spp. (cell pair)	Cyanobacteria	colony	2	8	16		
SMP2	8/17/2012	Woronichinia	naegeliana (cell pair)	Cyanobacteria	colony	2	8	16		
SMP2	8/17/2012	cyanophyte filament	sp.	Cyanobacteria	filament	13	1	8		
SMP2	8/17/2012	Pseudanabaena	sp.	Cyanobacteria	filament	10	0.2	2		
TUR1	8/17/2012	cyanophyte unicell, oval/rod 2.5-5um	spp.	Cyanobacteria	cell	1	63	63	94	94
TUR1	8/17/2012	cyanophyte unicell, sphere 2.5-5um	spp.	Cyanobacteria	cell	1	31	31		
WAP1	8/17/2012	Cyanogranis	ferruginea	Cyanobacteria	colony	3	1,551	4,653	2,102	5,230
WAP1	8/17/2012	Dactylococcopsis	irregularis	Cyanobacteria	cell	1	373	373		
WAP1	8/17/2012	cyanophyte unicell, oval/rod 2.5-5um	spp.	Cyanobacteria	cell	1	157	157		
WAP1	8/17/2012	Microcystis	wesenbergii	Cyanobacteria	colony	31	1	27		
WAP1	8/17/2012	cyanophyte unicell, sphere 2.5-5um	spp.	Cyanobacteria	cell	1	20	20		

Sample	Sampling Date	Genus	Species	Algal Group	Counting Unit	Cells/Unit	Species	Species	Cyano Total	Cyano Total
							Units/mL	Cells/mL	Units/mL	Cells/mL
PAP1	8/17/2012	Microcystis	cf. aeruginosa (colony)	Cyanobacteria	colony	19	23,562	447,673	105,190	560,111
PAP1	8/17/2012	Microcystis	cf. aeruginosa (unicell)	Cyanobacteria	cell	1	54,977	54,977		
PAP1	8/17/2012	Microcystis	cf. aeruginosa (cell pair)	Cyanobacteria	colony	2	26,389	52,778		
PAP1	8/17/2012	Merismopedia	punctata	Cyanobacteria	colony	262	12	3,144		
PAP1	8/17/2012	Anabaena	sp.	Cyanobacteria	filament	5	236	1,178		
PAP1	8/17/2012	Microcystis	botrys	Cyanobacteria	colony	120	2	240		
PAP1	8/17/2012	Anabaena	sp.	Cyanobacteria	filament	10	12	120		

Sample	Sampling Date	Genus	Species	Algal Group	Counting Unit	Cells/Unit	Species	Species	Cyano Total	-
							Units/mL	Cells/mL	Units/mL	Cells/mL
SLR1	8/17/2012	Woronichinia	naegeliana (unicell)	Cyanobacteria	cell	1	5,278	5,278	7,476	13,649
SLR1	8/17/2012	Woronichinia	naegeliana (cell pair)	Cyanobacteria	colony	2	1,696	3,393		
SLR1	8/17/2012	Aphanocapsa	sp.	Cyanobacteria	colony	22	63	1,382		
SLR1	8/17/2012	Microcystis	wesenbergii	Cyanobacteria	colony	79	16	1,241		
SLR1	8/17/2012	Pseudanabaena	sp.	Cyanobacteria	filament	9	94	848		
SLR1	8/17/2012	Woronichinia	naegeliana (colony)	Cyanobacteria	colony	16	24	377		
SLR1	8/17/2012	Microcystis	botrys	Cyanobacteria	colony	153	2	245		
SLR1	8/17/2012	Microcystis	spp. (unicell)	Cyanobacteria	cell	1	188	188		
SLR1	8/17/2012	Anabaena	sp.	Cyanobacteria	filament	23	8	181		
SLR1	8/17/2012	cyanophyte tetrad	spp.	Cyanobacteria	colony	4	31	126		
SLR1	8/17/2012	Microcystis	spp. (cell pair)	Cyanobacteria	colony	2	63	126		
SLR1	8/17/2012	Anabaena	sp.	Cyanobacteria	filament	36	3	115		
SLR1	8/17/2012	Microcystis	sp.	Cyanobacteria	colony	13	8	102		
SLR1	8/17/2012	Snowella	litoralis	Cyanobacteria	colony	100	0.2	20		
SLR1	8/17/2012	Microcystis	sp.	Cyanobacteria	colony	16	1	13		
SLR1	8/17/2012	Anabaena	cf. lemmermannii	Cyanobacteria	filament	9	1	9		
SLR1	8/17/2012	cyanophyte filament	sp.	Cyanobacteria	filament	15	0.2	3		
SLR1	8/17/2012	Anabaena	sp.	Cyanobacteria	filament	12	0.2	2		

Sample	Sampling Date	Genus	Species	Algal Group	Counting Unit	Cells/Unit	Species	Species	Cyano Total	-
							Units/mL	Cells/mL	Units/mL	Cells/mL
SLK2	9/24/2012	Woronichinia	naegeliana (colony)	Cyanobacteria	colony	318	1,021	324,681	84,401	902,080
SLK2	9/24/2012	Anabaena	circinalis	Cyanobacteria	filament	21	9,425	197,919		
SLK2	9/24/2012	Microcystis	aeruginosa	Cyanobacteria	colony	556	236	131,003		
SLK2	9/24/2012	Microcystis	ichthyoblabe (colony)	Cyanobacteria	colony	41	2,199	90,163		
SLK2	9/24/2012	Woronichinia	naegeliana (unicell)	Cyanobacteria	cell	1	43,982	43,982		
SLK2	9/24/2012	Woronichinia	naegeliana (cell pair)	Cyanobacteria	colony	2	13,195	26,389		
SLK2	9/24/2012	Microcystis	wesenbergii	Cyanobacteria	colony	148	157	23,248		
SLK2	9/24/2012	Microcystis	botrys	Cyanobacteria	colony	87	236	20,499		
SLK2	9/24/2012	Aphanocapsa	sp.	Cyanobacteria	colony	13	942	12,252		
SLK2	9/24/2012	Aphanocapsa	sp.	Cyanobacteria	colony	30	314	9,425		
SLK2	9/24/2012	Microcystis	ichthyoblabe (unicell)	Cyanobacteria	cell	1	9,111	9,111		
SLK2	9/24/2012	Microcystis	ichthyoblabe (cell pair)	Cyanobacteria	colony	2	2,827	5,655		
SLK2	9/24/2012	Anabaena	lemmermannii	Cyanobacteria	filament	51	79	4,005		
SLK2	9/24/2012	Anabaena	planctonica	Cyanobacteria	filament	31	50	1,550		
SLK2	9/24/2012	cyanophyte tetrad	spp.	Cyanobacteria	colony	4	314	1,257		
SLK2	9/24/2012	Pseudanabaena	mucicola	Cyanobacteria	filament	3	314	942		
SLK3	9/24/2012	Woronichinia	naegeliana (unicell)	Cyanobacteria	cell	1	13,299	13,299	16,204	50,376
SLK3	9/24/2012	Aphanocapsa	incerta	Cyanobacteria	colony	460	26	12,043		
SLK3	9/24/2012	Anabaena	circinalis	Cyanobacteria	filament	24	367	8,796		
SLK3	9/24/2012	Woronichinia	naegeliana (colony)	Cyanobacteria	colony	189	26	4,948		
SLK3	9/24/2012	Woronichinia	naegeliana (cell pair)	Cyanobacteria	colony	2	2,094	4,189		
SLK3	9/24/2012	Microcystis	wesenbergii	Cyanobacteria	colony	313	6	1,774		
SLK3	9/24/2012	Microcystis	aeruginosa	Cyanobacteria	colony	947	1	1,263		
SLK3	9/24/2012	Microcystis	ichthyoblabe (colony)	Cyanobacteria	colony	85	13	1,113		
SLK3	9/24/2012	Aphanocapsa	sp.	Cyanobacteria	colony	18	52	942		
SLK3	9/24/2012	Aphanothece	sp.	Cyanobacteria	colony	13	52	681		
SLK3	9/24/2012	cyanophyte filament	sp.	Cyanobacteria	filament	8	52	419		
SLK3	9/24/2012	cyanophyte tetrad	spp.	Cyanobacteria	colony	4	105	419		
SLK3	9/24/2012	Microcystis	botrys	Cyanobacteria	colony	167	1	223		
SLK3	9/24/2012	cyanophyte cell pair	spp.	Cyanobacteria	colony	2	52	105		
SLK3	9/24/2012	Anabaena	planctonica	Cyanobacteria	filament	25	3	67		
SLK3	9/24/2012	cyanophyte unicell, sphere 2.5-5um	spp.	Cyanobacteria	cell	1	52	52		
SLK3	9/24/2012	Anabaena/Aphanizomenon	sp.	Cyanobacteria	filament	56	0.3	19		
SLK3	9/24/2012	Microcystis	sp.	Cyanobacteria	colony	46	0.3	15		
SLK3	9/24/2012	Pseudanabaena	sp.	Cyanobacteria	filament	31	0.3	10		

Appendix B

Microcystin Lab ReportsTitle

Microcystin Analysis Report Project: ESS Group (Melville Pond)

Sample Identification

Sample Collection Date

Melville Pond

7/23/12

Toxin – Microcystin (MC)

Sample Prep – The sample was ultrasonicated to lyse cells and release toxins. A duplicate sample was spiked (lab fortified matrix, LFM) with 1.0 μ g/L MCLR, which provided quantitative capability and additional qualitative confirmation.

Analytical Methodology – A microcystins (MC) enzyme linked immunosorbent assay (ELISA) from Abraxis LLC was utilized for the quantitative and sensitive congener-independent detection of MCs. The ELISA kit is sensitive down to a limit of detection/quantification (LOD/LOQ) of 0.15 μ g/L. The average recoveries for a laboratory fortified blank (LFB) spiked with 1 μ g/L MCLR and the LFM were 94% and 113%, respectively.

Summary of Results

Sample

 $\frac{\text{MC levels}}{(\mu g/L)}$

Melville Pond

ND

ND = not detected above the LOD/LOQ LOD/LOQ = $0.15 \ \mu g/L$

Submitted by:

Date:

Mark T. Aubel, Ph.D.

7/25/12

GreenWater Laboratories 205 Zeagler Drive Suite 302

Palatka FL 32177 Ph (386) 328-0882 Fax (386) 328-0882 Contact:

markaubel@greenwaterlab.com amandafoss@greenwaterlab.com

			ESS Gr	oup				
		MI	CROCYSTIN	N RESULTS				
Tested on: Method: Analyte: Analyzed by:	7/25/2012 Enzyme-Linked ImmunoSo Microcystins Amanda Foss	rbent Assay (EI	JISA)					
Sample ID/ Date Collected	Initial Conc. Factor	Dilution Ratio	Assay Value, ug/L	Final Dilution Factor	Avg. LFB Recovery(%)	Avg. LFM Recovery(%)	Final Concentration (ug/L)	Average (ug/L)
Melville Pond 7/23/12	1x 1x	none	ND ND	1 1	94 94	113 113	ND ND	ND
ND = Not detected above LOD/LOQ LOD/LOQ = 0.15 µg/L LFB = 1.0 µg/L MCLR LFM = 1.0 µg/L MCLR								

Submitted by:

Date:

Mark T. Aubel, Ph.D. 7/25/2012 Submitted to: Matt Ladewig ESS Group 401 Wampanoag Trail Suite 400 East Providence RI 02915 (401) 330-1204 mladewig@essgroup.com

Microcystin Analysis Report Project: ESS Group (Mashapaug Pond)

Sample Identification

Sample Collection Date

MASH P (Mashapaug Pond)

8/8/12

Toxin – Microcystin (MC)

Sample Prep – The sample was ultrasonicated to lyse cells and release toxins. A sample dilution (1:2) was necessary to acquire an absorbance value within range of the standard curve.

Analytical Methodology – A microcystins (MC) enzyme linked immunosorbent assay (ELISA) from Abraxis LLC was utilized for the quantitative and sensitive congener-independent detection of MCs. The ELISA kit is sensitive down to a limit of detection/quantification (LOD/LOQ) of 0.15 μ g/L. The average recovery for a laboratory fortified blank (LFB) spiked with 1 μ g/L MCLR was 93%.

Summary of Results

Sample

 $\frac{\text{MC levels}}{(\mu g/L)}$

7.0

MASH P (Mashapaug Pond)

ND = not detected above the LOD/LOQ LOD/LOQ = $0.15 \ \mu g/L$

Submitted by:

Date:

Mark T. Aubel, Ph.D.

Mark 1. At 8/10/12

GreenWater Laboratories

Contact:

205 Zeagler Drive Suite 302 Palatka FL 32177 Ph (386) 328-0882 Fax (386) 328-0882 markaubel@greenwaterlab.com amandafoss@greenwaterlab.com

ESS Group								
MICROCYSTIN RESULTS								
Tested on: Method: Analyte: Analyzed by:	8/10/2012 Enzyme-Linked ImmunoSo Microcystins Amanda Foss	orbent Assay (EL	JSA)					
Sample ID/ Date Collected	Initial Conc. Factor	Dilution Ratio	Assay Value, ug/L	Final Dilution Factor	Avg. LFB Recovery(%)	Avg. LFM Recovery(%)	Final Concentration (ug/L)	Average (ug/L)
Mash P (Mashapaug Pond) 8/8/12 ND = Not detected above LOD/LOQ LOD/LOQ = 0.15 µg/L LFB = 1.0 µg/L MCLR LFM = 1.0 µg/L MCLR	1x 1x	1:2 1:2	3.73 3.23	2 2	93 93	-	7.5 6.5	7.0

Submitted by:

Date:

Mark T. Aubel, Ph.D. 8/10/2012

Microcystin Analysis Report Project: ESS Group (Almy Pond)

Sample Identification

Almy Pond (ALP1)

Sample Collection Date

8/16/12

Toxin – Microcystin (MC)

Sample Prep – The sample was ultrasonicated to lyse cells and release toxins.

Analytical Methodology – A microcystins (MC) enzyme linked immunosorbent assay (ELISA) from Abraxis LLC was utilized for the quantitative and sensitive congener-independent detection of MCs. The ELISA kit is sensitive down to a limit of detection/quantification (LOD/LOQ) of 0.15 μ g/L. The average recovery for a laboratory fortified blank (LFB) spiked with 1 μ g/L MCLR was 94%.

Summary of Results

Sample

 $\frac{MC \text{ levels}}{(\mu g/L)}$

1.5

Almy Pond (ALP1)

 $LOD/LOQ = 0.15 \ \mu g/L$

Submitted by:

The

Date:

Mark T. Aubel, Ph.D. 8/23/12

GreenWater Laboratories 205 Zeagler Drive Suite 302

Palatka FL 32177 Ph (386) 328-0882 Fax (386) 328-0882 Contact:

markaubel@greenwaterlab.com amandafoss@greenwaterlab.com

			ESS Gr	oup				
		MIG	CROCYSTI	N RESULTS				
Tested on: Method: Analyte: Analyzed by:	8/23/2012 Enzyme-Linked ImmunoSo Microcystins Amanda Foss	orbent Assay (E	LISA)					
Sample ID/ Date Collected	Initial Conc. Factor	Dilution Ratio	Assay Value, ug/L	Final Dilution Factor	0	Avg. LFM Recovery(%)	Final Concentration (ug/L)	Average (ug/L)
ALP1 Almy Pond 8/16/12	1x 1x	none	1.52 1.55	1 1	94 94	-	1.5 1.6	1.5
ND = Not detected above LOD/LOQ LOD/LOQ = 0.15 μg/L LFB = 1.0 μg/L MCLR LFM = 1.0 μg/L MCLR								

Submitted by:

Date:

Mark T. Aubel, Ph.D. 8/23/2012

Microcystin Analysis Report Project: ESS Group (Barber Pond)

Sample Identification	Sample Collection Date
BAP1 (Barber Pond- Launch)	8/16/12
BAP2 (Barber Pond- Center)	8/16/12

Toxin – Microcystin (MC)

Sample Prep – The samples were ultrasonicated to lyse cells and release toxins. A duplicate BAP2 sample was spiked (lab fortified matrix, LFM) at 1.0 μ g/L MCLR, which provided quantitative capability and additional qualitative confirmation.

Analytical Methodology – A microcystins (MC) enzyme linked immunosorbent assay (ELISA) from Abraxis LLC was utilized for the quantitative and sensitive congener-independent detection of MCs. The ELISA kit is sensitive down to a limit of detection/quantification (LOD/LOQ) of 0.15 μ g/L. The average recovery for a laboratory fortified blank (LFB) spiked with 1 μ g/L MCLR was 94%.

Summary of Results

Sample)

MC levels
(µg/L)
4.8

BAP1 (Barber Pond- Launch)4.8BAP2 (Barber Pond- Center)0.4

 $LOD/LOQ = 0.15 \ \mu g/L$

Submitted by:

Date:

Mark T. Aubel, Ph.D. 8/17/12

GreenWater Laboratories 205 Zeagler Drive

Suite 302 Palatka FL 32177 Ph (386) 328-0882 Fax (386) 328-0882 Contact:

markaubel@greenwaterlab.com amandafoss@greenwaterlab.com

ESS Group								
		MI	CROCYSTI	N RESULTS				
Tested on: Method: Analyte: Analyzed by:	8/17/2012 Enzyme-Linked ImmunoSo Microcystins Amanda Foss	rbent Assay (El	LISA)					
Sample ID/ Date Collected	Initial Conc. Factor	Dilution Ratio	Assay Value, ug/L	Final Dilution Factor	Avg. LFB Recovery(%)	Avg. LFM Recovery(%)	Final Concentration (ug/L)	Average (ug/L)
BAP1 Barber Pond (Launch) 8/16/12	1x 1x	none	5.00 4.53	1 1	94 94	-	5.0 4.5	4.8
BAP2 Barber Pond (Center) 8/16/12	1x 1x	none	0.37 0.36	1 1	94 94	118 118	0.4 0.4	0.4
ND = Not detected above LOD/LOQ LOD/LOQ = 0.15 μg/L LFB = 1.0 μg/L MCLR LFM = 1.0 μg/L MCLR								

Submitted by:

Date:

Mark T. Aubel, Ph.D. 8/17/2012

Microcystin Analysis Report Project: ESS Group

Sample Identification	Sample Collection Date
UCR1 (Upper Curran Reservoir)	8/16/12
SPP1 (Spectacle Pond)	8/16/12
BMP1 (Blackamore Pond)	8/16/12
RWP1 (Roger Williams Park Pond)	8/16/12
RWP2 (Roger Williams Park Pond) WAP1 (Warwick Pond) SLR1 (Slack's Reservoir)	8/16/12 8/16/12 8/17/12 8/17/12 8/17/12
SCP1 (Scott Pond)	8/17/12
SMP1 (Slater Memorial Park Pond)	8/17/12
SMP2 (Slater Memorial Park Pond)	8/17/12
TUR1 (Turner Reservoir)	8/17/12

Toxin – Microcystin (MC)

Sample Prep – The samples were ultra-sonicated to lyse all cells and release toxins. Duplicate samples of BMP1, SLR1, SCP1 and SMP1 were spiked (lab fortified matrix, LFM) at 1.0 μ g/L MCLR, which provided quantitative capability and additional qualitative confirmation.

Analytical Methodology – A microcystins (MC) enzyme linked immunosorbent assay (ELISA) from Abraxis LLC was utilized for the quantitative and sensitive congener-independent detection of MCs. The ELISA kit is sensitive down to a limit of detection/quantification (LOD/LOQ) of 0.15 μ g/L. The average recoveries for laboratory fortified blanks (LFB) spiked with 1 μ g/L MCLR ranged from 83 - 94%.

Summary of Results

Sample	$\frac{MC \text{ levels}}{(1)}$
	(µg/L)
UCR1 (Upper Curran Reservoir)	0.20
SPP1 (Spectacle Pond)	ND
BMP1 (Blackamore Pond)	ND
RWP1 (Roger Williams Park Pond)	ND
RWP2 (Roger Williams Park Pond)	ND
WAP1 (Warwick Pond)	ND
SLR1 (Slack's Reservoir)	0.16
SCP1 (Scott Pond)	0.67
SMP1 (Slater Memorial Park Pond)	0.27
SMP2 (Slater Memorial Park Pond)	0.29
TUR1 (Turner Reservoir)	ND

ND = not detected above the LOD/LOQ LOD/LOQ = $0.15 \ \mu g/L$

Che

Submitted by:

Date:

Mark T. Aubel, Ph.D. 9/6/12

386.328.0882.voice + 386.328.9846.fax cyanomali@cyanolab.com + www.cyanolab.com

GreenWater Laboratories 205 Zeagler Drive Suite 302

Palatka FL 32177 Ph (386) 328-0882 Fax (386) 328-0882

Contact:

markaubel@greenwaterlab.com amandafoss@greenwaterlab.com

ESS Group

MICROCYSTIN RESULTS

Tested on: Method: Analyte: Analyzed by:

8/17/2012, 8/28/12 & 9/5/12 Enzyme-Linked ImmunoSorbent Assay (ELISA) Microcystins Amanda Foss

Sample ID/ Date Collected	Initial Conc. Factor	Dilution Ratio	Assay Value, ug/L	Final Dilution Factor	Avg. LFB Recovery(%)	Avg. LFM Recovery(%)	Final Concentration (ug/L)	Average (ug/L)
UCR1 Upper Curran Reservoir	1x	none	0.19	1	94	_	0.19	0.20
8/16/12	1x	none	0.20	1	94	-	0.20	0.20
SPP1 Spectacle Pond	1x	none	0.06	1	94	-	ND	ND
8/16/12	1x	none	0.07	1	94	-	ND	
BMP1 Blackamore Pond	1x	none	0.10	1	94	123	ND	ND
8/16/12	1x	none	0.11	1	94	123	ND	
RWP1 Roger Willams Park Pond	1x	none	0.05	1	94	-	ND	ND
8/16/12	1x	none	0.03	1	94	-	ND	
RWP2 Roger Willams Park Pond	1x	none	0.11	1	94	-	ND	ND
8/16/12	1x	none	0.16	1	94	-	ND	
WAP1 Warwick Pond	1x	none	0.07	1	84	-	ND	ND
8/17/12	1x	none	0.07	1	84	-	ND	
SLR1 Slack's Reservoir	1x	none	0.13	1	83	104	0.13	0.16
8/17/12	1x	none	0.19	1	83	104	0.19	
SCP1 Scott Pond	1x	none	0.64	1	84	116	0.64	0.67
8/17/12	1x	none	0.69	1	84	116	0.69	
SMP1 Slater Memorial Park Pond	1x	none	0.26	1	84	79	0.26	0.27
8/17/12	1x	none	0.27	1	84	79	0.27	
SMP2 Slater Memorial Park Pond	1x	none	0.26	1	84	-	0.26	0.29
8/17/12	1x	none	0.31	1	84	-	0.31	
TUR1 Turner Reservoir	1x	none	0.00	1	84	-	ND	ND
8/17/12	1x	none	0.00	1	84	-	ND	

LOD/LOQ = $0.15 \mu g/L$ LFB = $1.0 \mu g/L$ MCLR LFM = $1.0 \mu g/L$ MCLR

Submitted by:

Date:

<u>Umanda Ficss</u> Amanda Foss, M.S. 9/5/2012

Microcystin Analysis Report Project: ESS Group (Pasquiset Pond)

Sample Identification

Sample Collection Date

PAP1 (Pasquiset Pond)

8/17/12

Toxin – Microcystin (MC)

Sample Prep – The sample was ultra-sonicated to lyse all cells and release toxins. A sample dilution (1:10) was necessary to accommodate the calibrated range for ELISA analysis.

Analytical Methodology – A microcystins (MC) enzyme linked immunosorbent assay (ELISA) from Abraxis LLC was utilized for the quantitative and sensitive congener-independent detection of MCs. The ELISA kit is sensitive down to a limit of detection/quantification (LOD/LOQ) of 0.15 μ g/L. The average recovery for a laboratory fortified blank (LFB) spiked with 1 μ g/L MCLR was 83%.

Summary of Results

Sample

MC levels (µg/L)

5.3

PAP1 (Pasquiset Pond)

ND = not detected above the LOD/LOQ LOD/LOQ = $0.15 \ \mu g/L$

Submitted by:

Date:

Mark T. Aubel, Ph.D. 8/28/12

GreenWater Laboratories 205 Zeagler Drive Suite 302

Palatka FL 32177 Ph (386) 328-0882 Fax (386) 328-0882 Contact:

markaubel@greenwaterlab.com amandafoss@greenwaterlab.com

ESS Group									
MICROCYSTIN RESULTS									
Fested on: Method: Analyte: Analyzed by:	8/28/2012 Enzyme-Linked ImmunoSorbent Assay (ELISA) Microcystins Amanda Foss								
Sample ID/ Date Collected	Initial Conc. Factor	Dilution Ratio	Assay Value, ug/L	Final Dilution Factor	Avg. LFB Recovery(%)	Avg. LFM Recovery(%)	Final Concentration (ug/L)	Average (ug/L)	
PAP1 Pasquiset Pond 8/17/12	1x 1x	1:10 1:10	0.50 0.55	10 10	83 83	-	5.0 5.5	5.3	
ND = Not detected above LOD/LOQ LOD/LOQ = 0.15 µg/L LFB = 1.0 µg/L MCLR LFM = 1.0 µg/L MCLR									

Submitted by:

Date:

Mark T. Aubel, Ph.D. 8/28/2012

Microcystin Analysis Report Project: ESS Group (Slack Reservoir)

Sample IdentificationSample Collection DateSLK29/24/12SLK39/24/12

Toxin – Microcystin (MC)

Sample Prep – The samples were ultrasonicated to lyse cells and release toxins. A dilution (1:10) of sample SLK2 was necessary to accommodate the calibrated range for ELISA analysis.

Analytical Methodology – A microcystins (MC) enzyme linked immunosorbent assay (ELISA) from Abraxis LLC was utilized for the quantitative and sensitive congener-independent detection of MCs. The ELISA kit is sensitive down to a limit of detection/quantification (LOD/LOQ) of 0.15 μ g/L. The average recovery for a laboratory fortified blank (LFB) spiked with 1 μ g/L MCLR was 81%.

Summary of Results

Sample	MC levels (µg/L)
SLK2	48
SLK3	3.7

 $LOD/LOQ = 0.15 \ \mu g/L$

Submitted by:

Date:

Mark T. Aubel, Ph.D.

9/26/12

Cyang

GreenWater Laboratories 205 Zeagler Drive

Suite 302 Palatka FL 32177 Ph (386) 328-0882 Fax (386) 328-0882 Contact:

markaubel@greenwaterlab.com amandafoss@greenwaterlab.com

ESS Group									
		MI	CROCYSTIN	RESULTS					
Fested on: Method: Analyte: Analyzed by:	9/26/2012 Enzyme-Linked ImmunoSorbent Assay (ELISA) Microcystins Amanda Foss								
Sample ID/ Date Collected	Initial Conc. Factor	Dilution Ratio	Assay Value, ug/L	Final Dilution Factor	Avg. LFB Recovery(%)	Avg. LFM Recovery(%)	Final Concentration (ug/L)	Average (ug/L)	
			<u>_</u>						
SLK#2	1x	1:10	4.90	10	81	-	49.0	48	
9/24/12	1x	1:10	4.70	10	81	-	47.0		
SLK#3	1x	none	3.60	1	81	-	3.60	3.7	
9/24/12	1x	none	3.83	1	81	-	3.83		
ND = Not detected above LOD/LOQ LOD/LOQ = $0.15 \ \mu g/L$									
$LFB = 1.0 \ \mu g/L \ MCLR$									
$LFM = 1.0 \ \mu g/L \ MCLR$									

Submitted by:

Amanda Ficss

Date:

Amanda Foss, M.S. 9/26/2012