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Crypticspeciation among morphologically homogeneous speciesis a phenomenon increasingly reported in cosmopolitan
marine invertebrates. This situation usually leads to the discovery of new species, each of which occupies a smaller
fraction of the original distributional range. The resolution of the taxonomic status of species complexes is essential
because species are used as the unit of action for conservation and natural resource management politics. Before
the present study, Ommastrephes bartramii was considered a monotypic cosmopolitan species with a discontinuous
distribution. Here, individuals from nearly its entire distributional range were evaluated with mitochondrial DNA
(cytochrome c oxidase subunit I and 16S rRNA). Four distinct species were consistently identified using four molecular
species delimitation methods. These results, in combination with morphological and metabolic information from the
literature, were used to resurrect three formerly synonymized names (Ommastrephes brevimanus, Ommastrephes
caroli and Ommastrephes cylindraceus) and to propose revised distributional ranges for each species. In addition,
diagnostic characters from the molecular sequences were incorporated in the species description. At present, only one
of the four newly recognized species (Ommastrephes bartramii) is commercially exploited by fisheries in the North
Pacific, but it now appears that the distributional range of this species is far smaller than previously believed, which
is an essential consideration for effective fisheries management.

ADDITIONAL KEYWORDS: Cephalopoda — Ommastrephes brevimanus — Ommastrephes caroli — Ommastrephes
cylindraceus — phylogeny — systematics — taxonomy.
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Com oy . . . .

[Version of record, published online 19 March 2020; http:/ Traditionally, species descriptions were based solely
zoobank.org/urn:lsid:zoobank.org:pub:69C6D660-9970-4EDO- on morphological characters. However, reliance on
943E-067F183867B9] morphological characters alone can overlook species
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that evolved and developed genetic barriers (e.g.
habitat, life history or recognition systems) without
a parallel morphological differentiation, leading
to species complexes (Knowlton, 1993). Species
complexes can be either cryptic (i.e. there are no
morphological differences) or pseudocryptic (i.e.
there are morphological differences that might be
overlooked or considered as intraspecific variation
owing to mistaken or overconservative taxonomic
practices). For marine animals, this situation is
common owing to the long-standing general belief that
the oceanic realm is a continuum, devoid of barriers
for genetic exchange. As a result, many marine taxa
with relatively homogeneous morphology have been
assigned to species described previously from a distant
place (e.g. Carrera-Parra et al.,2011) or several similar
species from distant areas have been synonymized
under a single cosmopolitan morphospecies, but in
fact represent different biological species (e.g. Valdés
et al., 2017). With a recent increase in the inclusion
of molecular tools in taxonomy, it was revealed that
many ‘cosmopolitan’ species in fact represent multiple
morphologically similar species (e.g. Kawauchi &
Giribet, 2010). This is a direct consequence of physical
barriers to dispersal in marine environments and
several biological and physiological factors that affect
the dispersal capabilities in species.

Conservation and natural resource management
are limited by taxonomic resolution. However, recently
there appears to be an increase in the recognition
of cryptic species of marine invertebrates, which
typically results in species that occupy a small portion
of the original distribution described for the previously
cosmopolitan species (e.g. Bickford et al., 2007; Calvo
et al.,2009; Amor et al., 2017). Given that conservation
and resource management politics work at the species
level, it is especially important to ascertain how many
cryptic species are involved in problematic taxa and
to describe and name the newly discovered species
(Templado et al., 2016). However, owing to practical
reasons or journal requirements (Jorger & Schrodl,
2013), many researchers postpone formal description of
discovered cryptic species, and they remain unnamed
and, therefore, excluded from conservation planning
and natural resource management.

Squids of the family Ommastrephidae Steenstrup,
1857 are considered the most economically and
commercially important cephalopods worldwide
(Roper et al., 2010). Their abundance, rapid growth and
massive body size make them one of the most exploited
invertebrate fishing resources (Arkhipkin et al., 2015b).
Ecologically, these oceanic squids are both important
prey (Romeo et al., 2012) and predators (Villanueva
et al., 2017), occupying a wide range of trophic levels
in marine pelagic food webs (Coll et al., 2013). They are

characterized by a short life span, usually < 2 years
(Arkhipkin et al., 2015a), and by a unique paralarval
phase known as rhynchoteuthion (Roper et al., 2010;
Ferndndez-Alvarez et al., 2017), with a detritivore
diet (Fernéandez-Alvarez et al., 2018a). The neon flying
squid, Ommastrephes bartramii (Lesueur, 1821), is the
second largest representative of the family, exceeded
in size only by the Humboldt flying squid, Dosidicus
gigas (d’Orbigny, 1835). Neon flying squids can reach
a maximal size of 1020 mm in dorsal mantle length
(DML) and 35 kg in weight (Guerra et al., 2010), but
usually attain smaller sizes. Ommastrephes d’Orbigny,
1834 is currently considered a monotypic genus
with a cosmopolitan distribution, with three distinct
populations defined by region (Nesis, 1987; Roper et al.,
2010): the North Atlantic, the Southern Hemisphere and
the North Pacific. These undescribed populations were
defined according to differences in the size structure
(Zalygalin et al., 1983), the spermatophore structure
(Nigmatullin et al., 2003) and the substrate-inhibitory
traits of optic ganglia cholinesterases (Shevtsova et al.,
1979; Rozengart & Basova, 2005). These morphological
and metabolic differences have created some doubts
regarding the taxonomic accuracy of considering the
genus Ommastrephes to be monotypic. Some literature
before the 1990s considered at least two species to
exist within the genus (e.g. Roper et al., 1984; Lozano
Soldevilla & Franquet Santaella, 1986; Clarke, 2003).
The ocean basins inhabited by Ommastrephes are also
fragmented (Roperet al.,2010), containing geographical
barriers that might lead to speciation events. The aim
of this study, therefore, was to use molecular analyses
of two mitochondrial markers in order to resolve this
long-standing debate among the cephalopod research
community.

MATERIAL AND METHODS
SAMPLE COLLECTION

Ommastrephes samples were obtained from local
markets (specimen ICMCO000070), from land
strandings or were collected by jigging during the
Atlantic research cruises MAFIA (Olivar et al., 2017)
and BATHYPELAGIC. After collection, a small piece
of the mantle was preserved in 96% ethanol for
molecular analysis. In some cases, a morphological
voucher was preserved in 4% buffered seawater
formalin and deposited in the following collections:
the Biological Reference Collections of the Institut de
Ciencies del Mar (Barcelona, Spain; CBR-ICM); Museu
Oceanografico of the Rio Grande Federal University
(Rio Grande, Rio Grande do Sul, Brazil; MORG); the
Central Marine Fisheries Research Institute (Kerala,
India; CMFRI); and the National Museum of New
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Zealand Te Papa Tongarewa (Te Aro, Wellington,
New Zealand; NMNZ). Information on the locality
and GenBank and collection accession numbers is
summarized in Table 1.

DNA EXTRACTION, AMPLIFICATION AND SEQUENCING

Total genomic DNA was extracted from ethanol-
fixed tissue using the NZY Tissue gDNA isolation
kit (NZYTech, Lisbon, Portugal), following the
manufacturer’s protocol, and resuspended in a final
volume of 100 pL. A negative control that contained no
tissue was included in every round of DNA extraction
to check for contamination. Sequences from the partial
mitochondrial cytochrome ¢ oxidase subunit I (COI)
gene were amplified using the primer pair LCO1490
and HCO2198 (Folmer et al., 1994). The partial
mitochondrial 16S rRNA (16S) fragment was amplified
using the primer pair 16sbr-H-myt and 16sar-L-myt
(Lydeard et al., 1996). Standard polymerase chain
reactions (PCRs) were performed using the NZYTaq
Green PCR Master Mix (NZYTech), following the
manufacturer’s protocol, in a total volume of 25 nL,
which included 0.5 uM of each primer, 25 ng of
template DNA and PCR-grade water up to 25 uL. The
PCRs consisted of an initial denaturation at 95 °C for
5 min, followed by 35 cycles of denaturation at 95 °C
for 30 s, annealing at 50 °C for COI and 45 °C for 16S
for 30 s and extension at 72 °C for 45 s, with a final
extension of 5 min at 72 °C. The amplified products
were sequenced using both forward and reverse PCR
primers on an ABI 3730xI sequencer. DNA sequence
data were edited and aligned with GENEIOUS v.8.1.5
(http://www.geneious.com). Ommastrephid squids
have duplicated regions of the mitochondrial genome,
including the gene COI (Yokobori et al., 2004; Staaf
et al., 2010). Although it is assumed that concerted
evolutionary mechanisms apply in ommastrephid
mitochondria (Allcock et al., 2015), several variable
positions were found. The International Union of Pure
and Applied Chemistry (IUPAC) ambiguity codes were
used to codify these nucleotide variable positions, as in
the study by Fernandez-Alvarez et al. (2015a).

PHYLOGENETIC ANALYSIS

Sequences generated in the present study and available
in GenBank from previous studies were used for the
development of COI and 16S rRNA databases (Table 1).
Sequences lacking locality data or with COI sequences
with stop codons or indels were excluded from our
analysis. The final alignment included 25 individuals
for COI and 69 individuals for 16S. Sequences were
aligned manually using the software BIOEDIT v.7.0.1
(Hall, 1999). Sequences were trimmed to be the same

length, resulting in 612 and 467 bp alignments for COI
and 168, respectively. For the 16S alignment, a single
gap needed to be added to the sequence KC603489
owing to the presence of a single nucleotide deletion.

As a preliminary species delimitation analysis, the
software TCS v.1.21 (Clement et al., 2000) was used
to construct the haplotype networks with a maximal
connectivity limit of 95% with the COI database. This
analysis resulted in four separate networks that were
named as Ommastrephes groups 1-4 to simplify the
nomenclature (Table 1). This nomenclature was applied
to both matrices. The TCS function of the software
PopART (Leigh & Bryant, 2015) was used to represent
the statistical parsimony networks. Uncorrected
p-distances within each Ommastrephes group and
between groups were calculated with MEGA v.6.06
(Tamura et al., 2013) for both molecular markers. The
online version of the software Automatic Barcode Gap
Discovery (ABGD; Puillandre et al., 2012) was used to
check the distribution and size of a potential barcoding
gap for both databases.

The phylogenetic relationships of Ommastrephidae
are not yet fully resolved. According to different
authors, the sibling genus of Ommastrephes might be
either D. gigas or Sthenoteuthis spp. (Lindgren et al.,
2012; Strugnell et al., 2017; Pardo-Gandarillas et al.,
2018). Uncorrected p-distances of both COI and 16S
show a closer relationship between Ommastrephes
and D. gigas (F.A.F.-A., pers. obs.). This species was
selected as the outgroup for the phylogenetic analyses.
Both gene regions were also analysed using Poisson
tree processes (PTP; Zhang et al., 2013). The starting
maximum likelihood (ML) trees were constructed with
the online version of RaxML (https://raxml-ng.vital-it.
ch/#/) using the GTR gamma model, with bootstrap
values calculated from 100 replicates. The obtained
tree was visualized and converted to Newick format
using FigTree v.1.4.3 (Rambaut, 2006-2009) and
submitted to the PTP portal (http://species.h-its.org/
ptp/). The default parameters and 300 000 Markov
chain Monte Carlo generations were used.

In this work, the unified species concept (De
Queiroz, 2007) was applied. The concordance of
results of molecular species delimitation methods
was considered as confirmation of the reproductive
isolation between groups and therefore the species
status for each Ommastrephes group.

DNA DIAGNOSTIC CHARACTERS

DNA sequences contain valuable diagnostic
characters for species descriptions, especially when
species complexes are involved. Here, COI and 16S
rRNA were examined for diagnostic characters.
Diagnostic molecular characters are nucleotides in a
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specific position and gene region that are the same
in all individuals examined for a single species and
consistently distinct from all other known species
(autapomorphies). Only homogeneous characters
were considered. Special care was taken to avoid the
inclusion of plesiomorphic characters as diagnostic
characters by the inclusion of the putative sister species
of the genus (D. gigas; see above) and the remaining
members of the subfamily Ommastrephinae Posselt,
1891, as outgroups (Table 1). For the presentation of the
results and to ensure the reproducibility of this work,
the general recommendations of Jorger & Schrold
(2013, 2014) were followed. To ensure transparency in
our selection of diagnostic nucleotides, the alignments
of COI and 16S matrices are provided are provided
(Supporting FASTA Files S1 and S2, respectively).

RESULTS

The haplotype parsimony statistical network analysis
of COI identifies four groups with conspicuous
geographical patterns (Fig. 1A). Ommastrephes group 1
includes exclusively North Atlantic individuals, and
45 mutations separate it from the closest group.
Ommastrephes groups 2—4 are more closely related,
with 15-20 mutations between them. Ommastrephes
group 2 is represented by individuals from Tropical
and South Atlantic and South Indian waters, whereas
groups 3 and 4 occur exclusively in the South and North
Pacific, respectively. The COI intragroup p-distances
range from 0.0 to 0.8% (Table 2), whereas intergroup
p-distances are 2.4-9.0% (Table 3). The ABGD
analysis of COI identifies four groups (prior maximal
distance P = 0.001) and a clear barcoding gap between
intra- and intergroup distances. Although there is a
tendency to group the sequences by geographical
origin, the statistical parsimony network analysis of
the 16S database (Fig. 1B) reveals a pattern that is not
as clear as for COI. The four Ommastrephes networks
are separated by two to five mutations. Intragroup
and intergroup distances are 0.0-0.9 and 0.7-1.9%,
respectively (Tables 2 and 3); therefore, there is an
overlap between the maximal intraspecific distance
and the minimal interspecific distance for 16S.

The ML analyses of COI reveal four clades
consistent with the four Ommastrephes groups
identified in the haplotype parsimony analysis (Fig. 2).
Ommastrephes groups 2 and 3 are recovered as sister
taxa, Ommastrephes group 4 is the sister group of
this clade, and Ommastrephes group 1 is the sister
group of the clade formed by groups 2—4. Bootstrap
values of each group are high (96-98%), with the
exception of Ommastrephes group 4 (68%). The PTP
analysis recovers four species, which are consistent

with the four clades revealed in the ML analyses. The
ML analysis of 16S shows two well-supported clades
formed by Ommastrephes group 1 and another clade
formed by the remaining Ommastrephes sequences
(data not shown). The PTP analysis for 16S recovers
two species consistent with two clades from the
ML analysis. This indicates that 16S might be too
conserved to resolve the taxonomy of this genus.
Figure 2 summarizes the results of all the species
molecular delimitation methods for COI [haplotype
networks (TCS), p-distance, ABGD and PTP] and the
TCS and PTP analyses for 16S.

For COI, a total of 23 diagnostic positions are
identified (Table 4). Ommastrephes group 1 has
16 diagnostic positions, whereas Ommastrephes
groups 2, 3 and 4 have four, three and one diagnostic
position, respectively. No diagnostic positions for 16S
are recognized in Ommastrephes groups 1 and 4,
but one is identified for group 2 (435, G) and one for
group 3 (16, C) (Table 5). It is important to note that
diagnostic characters (as considered here) are not the
only variable positions among species, because only
homogeneous autapomorphies were considered.

DISCUSSION

SPECIFIC BIODIVERSITY OF THE GENUS
OMMASTREPHES

Previous empirical studies have shown that
individuals assigned to a statistical parsimony
network with a 95% probability for COI correspond to
species (Pons et al., 2006; Hart & Sunday, 2007; Bond
& Stockman, 2008; Kang et al., 2015). Statistical
parsimony network analysis of COI in the present
study with 95% confidence intervals identified four
isolated groups with a recognizable geographical
pattern: north-east Atlantic samples belong to
group 1; eastern tropical and South Atlantic together
with south Indian samples belong to group 2; South
Pacific samples belong to group 3; and north-western
and central-north Pacific individuals belong to
group 4 (Fig. 1). This pattern is also found in the
statistical parsimony networks of 16S. The maximal
intragroup COI p-distance is 0.8% (Table 2), whereas
intergroup distances range from 2.4 to 9.0% (Table 3),
suggesting the existence of a barcoding gap. This is
supported by the recognition of four different groups
with the ABGD analysis. Similar distances have
been reported between several other cephalopods,
such as octopuses (Allcock et al., 2011) and bobtail
squids (Gebhardt & Knebelsberger, 2015), and in
other invertebrates, such as land planarians (Lago-
Barcia et al., 2015), crustaceans (Robles et al., 2007)
and annelids (Tomioka et al., 2016), even including

© 2020 The Linnean Society of London, Zoological Journal of the Linnean Society, 2020, XX, 1-23

0202 yoJel\ 1z uo 1senb Agq 0££01 85/ 1 0BRIZ/UBBUUII00Z/SE0 L 0 | /I0P/10BASB-3]01LB-90UBAPE/UBSUUI|00Z/WOD dNo"oIWspeoe.//:sdny WwoJj papeojumoq


https://academic.oup.com/zoolinnean/article-lookup/doi/10.1093/zoolinnean/zlaa014#supplementary-data
https://academic.oup.com/zoolinnean/article-lookup/doi/10.1093/zoolinnean/zlaa014#supplementary-data

GLOBAL BIODIVERSITY OF GENUS OMMASTREPHES 7

A - B
Q

1 sample

@ NA
@ SA
O EA
@® NP
® spP

O

1 sample
SA 2
Sl

NP
SP

@e000e
pd

@ oJey

Figure 1. Haplotype statistical parsimony networks constructed by the TCS function of PopART. The geographical origins
of the samples are indicated on the map. For GenBank records, the approximate geographical position was inferred when
necessary. A, cytochrome ¢ oxidase subunit I (COI). B, map depicting the localities sampled for COI. C, 16S rRNA (16S). D,
map depicting the localities sampled for 16S. Abbreviations: EA, eastern tropical Atlantic; NA, North Atlantic; NP, North
Pacific; SA, South Atlantic; SI, Indian; SP, South Pacific.

© 2020 The Linnean Society of London, Zoological Journal of the Linnean Society, 2020, XX, 1-23

0202 yoJel\ 1z uo 1senb Agq 0££01 85/ 1 0BRIZ/UBBUUII00Z/SE0 L 0 | /I0P/10BASB-3]01LB-90UBAPE/UBSUUI|00Z/WOD dNo"oIWspeoe.//:sdny WwoJj papeojumoq



8 F A FERNANDEZ-ALVAREZ ET AL.

Table 2. Intraclade p-distances (expressed as
percentages) among Ommastrephes groups for two
mitochondrial gene regions [cytochrome c oxidase subunit
I(COI) and 16S rRNA (16S)]

Gene region Mean Range N
cor1

Ommastrephes group 1 0.1 0-0.3 5
Ommastrephes group 2 0.1 0-0.5 11
Ommastrephes group 3 0.1 0-0.2 5
Ommastrephes group 4 0.4 0-0.8 4
16S

Ommastrephes group 1 0.1 0-0.4 10
Ommastrephes group 2 0.2 0-0.4 19
Ommastrephes group 3 0 0 3
Ommastrephes group 4 0.2 0-0.9 37

Table 3. Interclade mean p-distances (expressed as
percentages) between Ommastrephes groups for two
mitochondrial gene regions [cytochrome ¢ oxidase subunit
I(COI) and 16S rRNA (16S)]

Gene region

CcoI

Ommastrephes group 1 - - -
Ommastrephes group 2 8.8 - -
Ommastrephes group 3 9.0 2.4
Ommastrephes group 4 7.8 3.4 3.1
16S

Ommastrephes group 1 - - -
Ommastrephes group 2 1.9 - -
Ommastrephes group 3 1.1 1.3
Ommastrephes group 4 1.3 0.8 0.7

minimal interspecific distances of ~1% in closely
related freshwater mites (Garcia-Jiménez et al.,
2017). The 16S p-distances are lower between
Ommastrephes groups (Table 3), a phenomenon
frequently reported for other animals in the
literature (e.g. Hebert et al., 2003; Rodriguez-Flores
et al.,2017). Although a small overlap between intra-
and intergroup distances is found between 16S
sequences (Tables 2 and 3), it is important to note
that each geographical region has unique haplotypes
that do not occur in other areas (Fig. 1B), which also
supports the hypothesis of allopatric reproductive
isolation. The 16S PTP analysis is able to isolate only
Ommastrephes group 1, the most divergent species in
the genus, as distinct from the other species (Fig. 2).
Consequently, this indicates that 16S rRNA is too
conserved to delimit species of Ommastrephes. The
combined evidence presented here suggests that

each Ommastrephes group should be considered a
single, geographically isolated species. This vision is
reinforced by the fact that the phylogenetic analysis
and most of the molecular species delimitation
molecular methods recognize four groups consistent
with the haplotype network analyses (Fig. 2).
Beyond molecular characters, differences known
among specimens from different regions include their
size structure (Zalygalin et al., 1983; Nigmatullin et al.,
2003), spermatophore morphology (Nigmatullin et al.,
2003) and substrate-inhibitory traits of optic ganglia
cholinesterases (Shevtsova et al., 1979, Rozengart &
Basova, 2005). The morphology of the copulatory organ
(the hectocotylus) can also have a high importance
for cephalopod taxonomy. The detailed morphology of
the hectocotylized arm (including index of modified
part length; number and size of suckers; and the
type, number and size of teeth in the chitinous rings
of the sucker) in mature males from different parts
of the genus range (North Pacific, two males; South
Pacific, eight males; South Atlantic, two males; and
North Atlantic, three males) was studied during the
USSR integrated target program ‘SQUID’ during
the 1980s. No significant differences were observed
among specimens from different areas (C.M.N, pers.
obs.). Ommastrephes group 4, which occurs in the
North Pacific, is distinguished from other congeners
by the small maximal size of females at maturity
(Roper et al., 2010). It is important to indicate that
maximal size at maturity does not generally represent
a good taxonomic character for ommastrephid squids,
because it is variable at the intraspecific level in most
species. For instance, in the related species D. gigas,
the smallest females mature at only 12% of the mantle
length of the largest ones (Nigmatullin et al., 2001),
and this difference might occur inter-annually in
members of the same geographical area (Hoving et al.,
2013, 2019; Fernandez-Alvarez et al., 2018b). North
Atlantic Ommastrephes have larger spermatophores
(< 53 mm, whereas other Ommastrephes species have
a maximal length of 41 mm), which are distinguished
from those of other species by the morphology of the
cement body, sperm reservoir and posterior empty
part (Nigmatullin et al., 2003; Sabirov & Nigmatullin,
2012). Furthermore, these differences are more
pronounced between Ommastrephes group 1 (North
Atlantic Ommastrephes) and the other Ommastrephes
species than they are among some other ommastrephid
genera (Nigmatullin et al., 2003). These morphological
differences are also consistent with the fact that
Ommastrephes group 1 is the most phylogenetically
divergent of the groups in all our phylogenetic
analyses (Figs 1, 2; Table 3) and has more diagnostic
molecular characters (Table 4). Therefore, it appears
that this species has had a longer evolutionary history
isolated from the remaining congeneric species. Given
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Figure 2. Summarized results from the molecular species delimitation analyses and the enzymatic and morphological
information, represented on the maximum likelihood tree resulting from the analysis of the cytochrome c oxidase subunit I
(COI) dataset. Values on the nodes represent the bootstrap values for COI. Black and grey bars to the right represent the
hypothesized species groupings based on the molecular delimitation results of TCS, p-distances, ABGD and PTP for COI,
and TCS and PTP for 16S rRNA (16S), in addition to the previously identified groups from the literature based on the
differences in substrate and inhibitor specificity of cholinesterase activities of the optical ganglia (after Shevtsova et al.,
1979; Rozengart & Basova, 2005), the spermatophore morphology (after Nigmatullin et al., 2003) and the maximal size at
maturity of females (Roper et al., 2010). It is important to note that Shevtsova et al. (1979) and Rozengart & Basova (2005)

did not include any South Pacific individuals in their studies.

that morphological differences are known at least
in the spermatophore between this species and the
remaining ones, it could be considered a pseudocryptic
species. As no important morphological differences
have been found to distinguish the remaining species,
they appear to be cryptic. Shevtsova et al. (1979) and
Rozengart & Basova (2005) compared the differences
in substrate- and inhibitor-specific cholinesterase
activities of optical ganglia among Ommastrephes
individuals from four geographical locations: the
North Atlantic, the South Atlantic, the Great
Australian Bight (south-eastern Indian Ocean) and
the North Pacific. They found significant differences
for these metabolic traits between specimens from all
the studied geographical areas with the exception of
the South Atlantic and south-western Indian Ocean
Ommastrephes specimens. None of their specimens
came from South Pacific waters, where Ommastrephes
group 3 occurs (and thus was not represented in Fig. 2).
The differences in metabolic traits are interpreted
as another source of evidence to support the specific
status of each Ommastrephes group.

Subadult and adult ommastrephid specimens
are nektonic organisms able to perform large-scale
horizontal oceanic migrations (Markaida et al.,
2005). Migrations related to feeding and reproductive
grounds have been described for the North Pacific
Ommastrephes (Ichii et al., 2009). However, the first
ontogenetic stages of ommastrephids are planktonic,
representing one of the smallest cephalopod hatchlings
recorded (mantle length of 1-2 mm; Villanueva et al.,
2016), and paralarval dispersion is likely to be limited
by oceanic features, such as the main oceanic gyres
and currents. In addition, hatching size is inversely
related to cephalopod distributional ranges (Villanueva
et al., 2016). Consequently, the distributional range of
Ommastrephes spp. seems to be shaped mainly by the
Equatorial oceanic currents (Fig. 3) and surface water
temperatures (Roper et al., 2010). The boundary between
Ommastrephes group 3 and 4 is likely to be formed by the
Pacific Equatorial currents. The distributional boundary
between Atlantic Ommastrephes groups 1 and 2 seems
to be influenced by the Canary and Atlantic Equatorial
currents, because Canary and Azores specimens belong
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Table 4. Molecular diagnostic characters obtained from cytochrome ¢ oxidase subunit I (COI)

Ommastrephes Outgroups

Position Group1l Group2 Group3 Group 4

gigas

Dosidicus Sthenoteuthis
pteropus

Eucleoteuthis
luminosa

Sthenoteuthis
oualaniensis

Hyaloteuthis
pelagica

6
30
36
48
60
81

103
153
159
177
198
228
258
273
306
334
366
429
432
450
454
493
534
573

N Rl B o NN o N N oW o W o W o Mo W~ - ST W S S
HrHEESPQrPERRPQQRPPQAFPASESS> Q>
HraHQarHErEr0aQrrQRrESAEQ R >
HraaQrQrHErPEPoQRrPARPPESS> B>
N R R P L R N N R S

SO rErrQrrAR>eAEAPREPAARR>AAQ

ol I I S B R R o W R R R
o Rl - S N N R A
e I S R R R A

Diagnostic characters are shown in bold. The alignment is provided in Supporting FASTA File S1 to name each nucleotide position unambiguously.

Table 5. Molecular diagnostic characters obtained from 16S rRNA (16S)

Ommastrephes Outgroups
Position Group 1 Group 2 Group3 Group4 Dosidicus Sthenoteuthis Eucleoteuthis Hyaloteuthis Hyaloteuthis
gigas oualaniensis  luminosa pelagica pelagica
16 T T C T T T T T T
435 A G A A A A A A A

Diagnostic characters are shown in bold. The alignment is provided in Supporting FASTA File S2 to name each nucleotide position unambiguously.

to group 1, whereas the specimen caught near Cape
Verde belongs to group 2. These sampling localities are
only ~1100-1600 km apart, whereas larger geographical
distances (~3500-3600 km) between conspecifics have
been confirmed for those Ommastrephes species with
genetics. Therefore, the Canary and Atlantic Equatorial
currents appear to represent the boundary to paralarval
distribution between these two species.

There are important conservation, economic and
food security (e.g. Jiao et al., 2018) ramifications for
the results of this study. Given that Ommastrephes is
an important fishing resource exploited commercially
in the North Pacific (Arkhipkin et al., 2015b), it is
important to define which species of this complex is
being impacted by fishery activities. The North Pacific
Ocean contains only Ommastrephes group 4 (Figs 1, 3).
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Figure 3. Schematic map of the distributional range of each species of the genus Ommastrephes, based on the distribution
of the genus depicted by Roper et al. (2010) and the results of the present study. Sampled points for both molecular markers
are depicted on the map. The oceanic currents that are likely to contribute to the reproductive isolation of each species are
depicted. Parts of the distributional range of each species that are not yet confirmed with molecular data are indicated with
a question mark.

Although the genus has a circumglobal distribution, UNTIDYING A GORDIAN KNOT:

it is not targeted commercially outside of the North OMMASTREPHES SPECIES TAXONOMY
Pacific, and in other regions it is caught only as bycatch
(Battaglia et al., 2010). Given that the operational unit
for conservation and natural resource management is
the species, the identification, definition and naming
of each biological species from taxonomically complex
groups is an increasingly important task.

Given that new cryptic species are being discovered
at an increasing rate (e.g. Jorger & Schrold, 2013),
currently many taxonomists agree that future
taxonomic descriptions should be integrative (Dayrat,
2005), ideally covering a range of aspects for species
delimitation (e.g. morphology, genetics, biogeography
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12 F. A.FERNANDEZ-ALVAREZ ET AL.

and behaviour). Traditional cephalopod taxonomy
involves the use of counts, measures and indices
(Roper & Voss, 1983), which were inadequate for
distinguishing Ommastrephes species (Roper et al.,
2010). For Ommastrephes, previous morphological
works have only revealed important morphological
differences in the spermatophore morphology of North
Atlantic specimens in comparison to individuals
from other regions (Nigmatullin et al., 2003; Sabirov
& Nigmatullin, 2012). Herein, molecular diagnostic
characters have been integrated into the descriptions,
and the geographical range of each species is reported
based on the available molecular information. Although
the addition of molecular characters is gaining support
among researchers working in other animal groups
(e.g. Jorger & Schrodl, 2013, 2014; Johnson et al.,
2014), as far as we know this is the first time that
molecular characters have been included as diagnostic
characters in cephalopod species descriptions, although
molecular data have commonly been used for detecting
new species or solving other taxonomic problems
(Allcock et al., 2015). It is important to note that a
molecular character was used in the diagnosis of an
octopod family previously (Strugnell et al., 2014: 227).

The phylogenetic analyses (Figs 1, 2; Tables 1-3)
support four distinct species of Ommastrephes and reveal
molecular diagnostic characters for each species (Tables 4
and 5). Therefore, we formally resurrect three previously
used species names to split O. bartramii into four
nominal species (see below). Several additional species
names considered previously to be junior synonyms of
O. bartramii have been researched and, where possible,
are listed in synonymy with the appropriate species
below. As a primary source of O. bartramii synonyms,
the compilation of Sweeney & Young (2003) is used as
a starting point, followed by a bibliographic review. For
objectivity of scientific names, we designated neotypes
for three of the species and, when possible, ethanol-
fixed tissues were stored in the Biological Reference
Collections of the Institut de Ciencies del Mar (CBR-
ICM; Spain) and National Museum of New Zealand Te
Papa Tongarewa (NMNZ; New Zealand).

GENUS OMMASTREPHES D’ORBIGNY, 1834 IN
18341847

Ommastrephes d’Orbigny, 1834 in 1834-1847: 45.

Synonyms
(?) Cycria Leach in Gray, 1849: 58. Listed as synonym
of Ommastrephes [fide Hoyle (1910: 408)]. Type species
with no type given [fide Hoyle (1910: 408)]

Lolimnites Risso, 1854: 41. [fide Adam (1942: 17)] Type
species Lolimnites meridionalis Risso, 1854, by monotypy.

Ommatostrephes Lovén, 1845: 122. Emendation
of Ommastrephes d’Orbigny 1834 in 1834-1847 [fide
Hoyle (1910: 411)].

Type species: Loligo bartramii Lesueur, 1821.

Diagnosis: The following diagnosis was adapted from
the morphological description of Roper et al. (2010);
additional paralarval characters have been added
following the descriptions of Sweeney et al. (1992), Young
& Hirota (1990), Sakurai et al. (1995) and Vijai et al.
(2015), as reviewed by Fernandez-Alvarez et al. (2017).

Maximal mantle length 1020 mm. Mantle wide;
posterior end without pronounced pointed tail. Fins
rhomboidal; slightly attenuate posteriorly. Fin length
40-50% and width 60-85% of mantle length; fin angle
46-65°. Funnel groove with foveola with five to eight,
occasionally nine, longitudinal folds and two to five
(usually three or four) distinct side pockets. Small,
scattered, subcutaneous photogenic tissue embedded
in tissue of mantle, head and ventral arms, without
large dorsal mantle photophore or ocular or intestinal
photophores. Long, broad, silvery or golden opalescent
strip along ventral midline from anterior fin edge to
mantle opening and similar ventral strip on ventral
surface of head and ventral arms; relatively dense
aggregations of small subcutaneous photogenic tissue
under opalescent tissue. Arms with 24—35 pairs of arm
suckers. Arm tips not attenuate; tips of trabeculae of
protective membranes do not project beyond edge of
membrane. Ventral protective membranes of arms
IIT wide and in adult females expanded into large,
triangular, membranous lobe; in males, right or left
ventral arm hectocotylized, with tip lacking suckers.
Tentacle suckers covering ~60% of tentacle length.
Four to seven suckers with denticulate rings present
on carpus proximal to first carpal knob. Carpal-locking
apparatus on tentacular stalk with two to five knobs
and two to four smooth-ringed suckers. Largest medial
manus suckers with four enlarged, pointed teeth, one
at each quadrant. Dactylus of tentacular club with four
series of small suckers. Cone flags of gladius short,
rhomboidal, with distinct radial creases. Greatest width
of cone flags ~56% width of rachis. Marginal rigidity
ribs of rachis doubled. Axial rigidity rib of rachis wide
rounded-rectangular in cross-section. Lateral plates
of gladius not adhered to dorsal surface of rachis but
forming wide free folds over rachis. Stem of rachis short;
width of stem slightly greater than its thickness. Cone
short and laterally flattened. Rostrum absent. Thick
alveola covered with tiny ribs and thorns. Monoflagellate
spermatozoon. Hatchlings with skin sculpture; without
ocular or visceral photophores. Two rows of pegs present
in proboscis suckers; diameter of lateral proboscis
suckers 200% that of central suckers and with unequal
number of pegs. Three leaflets in the gills.
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OMMASTREPHES BARTRAMII (LESUEUR, 1821)
Loligo bartramii Lesueur, 1821: 90, pl. 7.

Type material: Academy of Natural Sciences (ANSP).
Not extant [fide Voss (1962: 1); Lu et al. (1995: 312)].

Neotype: National Museum of Nature and Science,
Tokyo, specimen NSMT-Mo 67507, mature male,
270 mm DML, collected by squid jigging at 41.95°N,
135.17°W on 8 September 2009.

Type locality: Not designated in the original
description. Here it is designated, based on the
neotype, as North Pacific waters (Table 1; Fig. 3) (see
‘Remarks’).

Synonyms
(?) Loligo touchardii Souleyet, 1852: 22, pl. 2, figs 6-13
[fide Pfeffer (1912: 466)] MNHN Syntype 7-3-724 [fide
Lu et al. (1995: 326)]. Locality: Pacific Ocean.

(?) Ommastrephes ensifer Owen, 1881: 144, pl. 28.
Type repository unresolved [Royal College of Surgeons,
London, UK?]. Type locality not designated.

Diagnosis

Ommastrephes with a maximal mantle length of
600 mm and weight of 6 kg; maximal spermatophore
length of 21-41 mm (9.5 + 1.45% DML), cement body
of spermatophore 11%, sperm reservoir 44.7% and
posterior empty end 22% of spermatophore length;
cytochrome ¢ oxidase subunit I diagnostic character:
454, C.

Name of the species in the phylogenetic analyses:
Ommastrephes group 4.

Distribution: Temperate North Pacific, from the coasts
of China (25°N) to Russia (60°N) in the west, and
probably from Alaska (55°N) to the Gulf of California
(20°N) in the east. The distribution has been confirmed
using molecular tools for the majority of its range,
excluding north-eastern Pacific waters (Fig. 3).

Remarks: Ommastrephes bartramii was described as
Loligo bartramii by Lesueur (1821: 90-92, pl. VII) and
was later transferred to the genus Ommastrephes by
d’Orbigny (1834-1848). In his description, Lesueur
did not provide any specific locality for the species,
and the type specimen no longer exists (Voss, 1962:
1; Lu et al., 1995: 312). The only reference to the
origin of the material he examined is that they came
‘from the collection of the academy, and that from the
Philadelphia Museum’ (Lesueur, 1821: 89). Without

any further accurate reference, it is possible that
the material came from the Philadelphia shores and
adjacent waters. However, Lesueur also participated
in the Baudin Expedition (1800-1803; see Péron &
Freycinet, 1816) from Le Havre (France) to Australia,
and he might have collected specimens during this
cruise, covering the distribution area of Ommastrephes
groups 1, 2 and 3. Based on the available information,
it is not possible to exclude any other specimens that
were previously donated to the Philadelphia Museum
from other localities. Therefore, the type locality data
of the O. bartramii type material remains unresolved
and uncertain.

Although the type locality remains uncertain, the
name ‘Ommastrephes bartramii’ has been widely used
in the North Pacific, where the only commercial fishery
for this squid occurs and where the majority of studies
on this genus have been conducted. The International
Code of Zoological Nomenclature (ICZN) precludes the
substitution of a long-accepted name in its accustomed
meaning in order to increase taxonomic stability (ICZN
Article 32.2; International Commission on Zoological
Nomenclature, 1999). The name O. bartramii referring
to North Pacific individuals (i.e. Ommastrephes
group 4) has been used in > 25 works authored by
more than ten researchers in the last 50 years (e.g.
Young & Hirota, 1990; Sakurai et al., 1995; Ichii et al.,
2009, 2017; Vijai et al., 2015; Budyansky et al., 2017;
Fang et al., 2017; Feng et al., 2017, 2018a, b, 2019;
Igarashi et al., 2017, 2018; McKinnell & Seki, 2017;
Tang et al., 2017; Wang et al., 2017; Wen et al., 2017,
Yu et al., 2017a, b, 2018, 2019; Hu et al., 2018; Jiao
et al., 2018; Ding et al., 2019; Zhang et al., 2019), which
is in agreement with the conditions described in the
ICZN Article 23.9.1.2. Although O. bartramii is the
name that has been used commonly for the remaining
species in other parts of the distributional range of
the genus (recent examples: Franjevic et al., 2015 and
Tsiamis et al., 2015 for Mediterranean individuals;
Villanueva & Sédnchez, 1993 for the South Atlantic;
and Guerra et al., 2010 for the South Pacific), these
species are far less studied, and consequently, the
name is less commonly applied to them. Therefore,
either considering the name O. bartramii invalid
or designating a neotype from a location outside of
the North Pacific would generate further taxonomic
instability and create problems in tracking the current
biological information on the species, instead of solving
the taxonomy of the genus.

In order to fix a suitable type locality for the species
and ensure the stability of the name, the specimen
NSMT-Mo 67507 from the National Museum of
Nature and Science (Tokyo) is hereby designed as
a neotype. The neotype locality is north-east Pacific,
41.95°N, 135.17°W.
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OMMASTREPHES BREVIMANUS (GOULD, 1852)
Onychoteuthis brevimanus Gould, 1852: 483, fig. 596.

Type material: Not extant [fide Johnson (1964: 32)].

Neotype: National Museum of New Zealand Te
Papa Tongarewa (NMNZ), New Zealand, specimen
M.318162, female, 580 mm DML, beached in Princess
Bay, Wellington, New Zealand on 24 May 2015. Ethanol-
fixed tissues available through the accession number
M.318162/1. The GenBank sequences MK995130
(COI) and MK991817 (16S) refer to the neotype.

Type locality: One hundred and twenty miles west of
Tutuila, Samoa Islands (south-western Pacific). The
neotype was collected in Princess Bay, Wellington,
New Zealand. According with the ICZN Article 76.3,
the neotype locality becomes the type locality of the
species.

Synonyms

Ommastrephes caroli stenodactyla Rancurel, 1976: 81.
[fide Dunning (1998: 426)].

Type material: Museum National d’Histoire Naturelle
(MNHN), Laboratoire Biologie Invertebres Marins et
Malacologie, syntypes 1974, 1975, 1976, 1977 [fide Lu
et al. (1995: 325)].

Type locality: Auameo, Ile des Pins, New Caledonia
(south-western Pacific).

Diagnosis

Ommastrephes with a maximal mantle length of
1020 mm and weight of 35 kg; maximal spermatophore
length 21-41 mm (9.5 = 1.45% DML), cement body
of spermatophore 11%, sperm reservoir 44.7%
and posterior empty end 22% of spermatophore
length. Cytochrome ¢ oxidase subunit I diagnostic
characters: 36, G; 60, C; 450, G; 16S rRNA diagnostic
character: 16, C.

Name of the species in the phylogenetic analyses:
Ommastrephes group 3.

Distribution: Tropical and temperate South Pacific.
Present in the Kermadec Islands, New Zealand (Braid
& Bolstad, 2019).

OMMASTREPHES CAROLI (FURTADO, 1887) [NOMEN
PROTECTUM]

Ommatostrephes caroli Furtado, 1887: 5, pls 1, 2.

Type material: Kobenhavns Universitet, Zoologisk
Museum (ZMUC), syntypes (suckers only) [fide
Kristensen & Knudsen (1983: 221)].

Type locality: ‘Barre de Lisbonne’, Portugal (North
Atlantic Ocean).

Synonyms

Loligo pironneauii Souleyet, 1852: 20, pl. 2, figs 1-5
[fide Pfeffer (1912: 466)] MNHN. Syntype 2-4-402
(gladius only) [fide Lu et al. (1995: 322)]. Locality:
48°N, 22°W of Paris, France (North Atlantic Ocean)
[nomen oblitum].

Lolimnites meridionalis Risso, 1854: 41, pl. 19,
figs 1-3 [fide Adam (1942: 18)]. Locality: ‘Regions
profondes’, (?) Nice, France (north-western
Mediterranean Sea) [nomen oblitum].

(?) Ommatostrephes bartrami sinuosus Lonnberg,
1896: 701. Zoologiska Museet, Uppsala Universitets
(ZMUU), holotype 126 [fide Wallin (1991: 66)]. Locality:
Teneriffe, Canary Islands, Spain (North Atlantic).

Diagnosis

Ommastrephes with a maximal mantle length of
900 mm and weight of 25 kg; maximal spermatophore
length 21-54 mm (11.15 + 3.5% DML), cement body
of spermatophore 9.8%, sperm reservoir 33% and
posterior empty end 30.3% of spermatophore length.
Cytochrome ¢ oxidase subunit I diagnostic characters:
6,T; 48, G; 81, A; 153, G; 159, G; 177, C; 198, G; 228, G;
258, C; 273, G; 334, G; 366, C; 429, G; 432, C; 534, G;
573, G.

Name of the species in the phylogenetic analyses:
Ommastrephes group 1.

Distribution: NorthAtlantic,confirmed with molecular
tools from the Bay of Biscay (43°N) to Canary Islands
(27°N), Azores (40°N) and the Mediterranean Sea
(Fig. 3). Also known to occur in the north-eastern
Atlantic from the Bay of Biscay, from Scandinavia
(60°N) and in the north-western Atlantic from the Gulf
of Mexico (24°N) to Nova Scotia (45°N).

Remarks: The name O. caroli has been used marginally
to refer some North Atlantic Ommastrephes specimens
during part of the 20* century (e.g. Rees, 1950; Lozano
Soldevilla & Franquet Santaella, 1986). To the best of
our knowledge, the remaining names that might be
resurrected for Ommastrephes group 1 have not been
used beyond their original descriptions. In accordance
with ICZN Article 23.9.1.1, junior synonyms should be
applied when the senior synonym or homonym has not
been used as a valid name after 1899. It is important
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to note that the conditions described in ICZN Article
23.9.1.2 also apply here, because O. caroli has been
used to refer to members of this species in >25 works
authored by more than ten authors in the last 50 years
(Threlfall et al., 1971; Young, 1972; Clarke & Lu, 1974;
Clarke & Stevens, 1974; Holme, 1974; Roper & Young,
1975; Clarke et al., 1976, 1979; Wormuth, 1976; Roper,
1977; Clarke, 1978; Muntz & Johnson, 1978; Pérez-
Géndaras & Guerra, 1978; Arnold, 1979; Roper & Lu,
1979; Guerra & Pérez-Gandaras, 1983; Roper et al.,
1984; Guerra, 1985; Martins et al., 1985; Guescini
& Manfrin, 1986; Pérez-Gandaras, 1986; Lozano
Soldevilla & Franquet Santaella, 1986; Clarke &
Maddock, 1988; Mangold & Boletzky, 1988; Vecchione
et al., 1989; Vecchione & Roper, 1991; Gouveia, 1992;
Clarke, 2003). Therefore, O. caroli is hereby designated
as nomen protectum and conferred on Ommastrephes
group 1, while L. pironneauii and L. meridionalis are
both considered senior synonyms [nomina oblital.
Tissues of the individuals of O. caroli according the
sense of this article can be accessed at the Biological
Reference Collections of the Institut de Ciéncies del
Mar CBR-ICM, Barcelona, through the accession
numbers ICMC000070, ICMC000110, ICMC000398
and ICMC000399.

OMMASTREPHES CYLINDRACEUS D’ORBIGNY, 1835 IN
1834-1847

Loligo cylindracea d’Orbigny, 1835 in 1834-1847: 54,
pl. 8, figs 3, 4.

Type material: MNHN type; specimen not extant [fide
Lu et al. (1995: 314)].

Neotype: Biological Reference Collections of the
Institut de Ciencies del Mar CBR-ICM, Barcelona,
specimen ICMC000400, immature subadult, 144 mm
DML, collected by fish jigging at 25.87°S,45.76°W on 18
December 2014. The GenBank sequences MK995138
(COI) and MK991824 (16S) refer to the neotype.
Ethanol-fixed tissues from another specimen fished in
the same batch are available under the accession code
ICMC000401.

Type locality: Austral Atlantic, 35°S, 40°W off Paris,
slightly south of Buenos Aires parallel of latitude,
Argentina (South Atlantic). The neotype was collected
off Ilha Comprida, Sdo Paulo, Brazil. According to
ICZN Article 76.3, the neotype locality becomes the
type locality of the species.

Synonyms

Loligo cylindricus d’Orbigny, 1835 in 1834-1847: pl. 3,
figs 3, 4.

Loligo vitreus Rang, 1837: 71, pl. 96.

Type material: MNHN type; specimen not extant [fide
Lu et al. (1995: 327)].

Type locality: Equatorial coast of Africa (Equatorial
Atlantic).

Diagnosis

Ommastrephes with a maximal mantle length of
900 mm and weight of 25 kg; maximal spermatophore
length 21-41 mm (9.5 = 1.45% DML), cement body
of spermatophore 11%, sperm reservoir 44.7% and
posterior empty end 22% of spermatophore length.
Cytochrome ¢ oxidase I diagnostic characters: 30, G;
103, G; 306, A; 493, T; 16S rRNA diagnostic character:
435, G.

Name of the species in the phylogenetic analyses:
Ommastrephes group 2.

Distribution: Tropical and South Atlantic (from 14
to ~50°S) and tropical and south Indian (~10-35°S)
waters. A significant part of the distributional range
for this species was confirmed with COI (Fig. 3), but
specimens were not available for genetic analysis
from the eastern part of the Indian Ocean or from the
southernmost part of the Atlantic Ocean. The absence
of differences in substrate- and inhibitor-specific
cholinesterase activities of optical ganglia between
specimens sampled in the South Atlantic and south-
eastern Indian waters reported by Shevtsova et al.
(1979) and Rozengart & Basova (2005) supports the
conspecificity of all Ommastrephes specimens within
the distributional range depicted for O. cylindraceus
(Fig. 3). It is also noteworthy that Dunning (1998)
described a discontinuous distributional range of
Ommastrephes spp. at the tip of South America and
the south-eastern tip of Australia and considered
both populations reproductively isolated. The results
provided here (Figs 1-3; Tables 2—5) support this point
of view and ensure the recognition of O. cylindraceus
and O. brevimanus as different species.

The single specimen of this species analysed
from Cape Verdean waters (18°N) merits further
discussion. Zuev et al. (1976) sampled Equatorial
Atlantic waters extensively without finding any
Ommastrephes individuals. Therefore, it is commonly
accepted that the genus Ommastrephes is not present
in Equatorial Atlantic owing to the temperature (see
Roper et al., 2010). However, sequences obtained
herein reveal that the Cape Verde individual belongs
to O. cylindraceus (Figs 1-3; Tables 2-5). This isolated
spot from the remaining distributional range of the
species can be explained by drift of specimens from the
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Southern Hemisphere, along with the subsurface and
intermediate waters of southern origin with the South
Atlantic central water (100—500 m, 5-18 °C) and the
Antarctic intermediate water (500-1200 m, 2—6 °C),
which penetrate from the southern subtropical zone
to the north-western coast of Africa up to 20-24 and
28-34°N, respectively (Aristegui et al., 2009; Machini
& Pelegri, 2009). Similar cases of distant migrations
far outside the main distributional range of the species
to the other hemisphere with deep waters are also
known (Mdller et al., 2003; Arkhipkin et al., 2010).

Unavailable Ommastrephes names:

Ommastrephes ayresii Gabb in Carpenter, 1864: 613,
664 [nomen nudum].

Ommastrephes californica Heath, 1908: 582 [nomen
nudum].

Ommastrephes crassus Lafont, 1871: 275, pl. 16 [nomen
nudum].

CONCLUSION

The long-standing problem of Ommastrephes taxonomy
(Roper et al., 2010) is here re-evaluated using two
molecular markers and multiple molecular species
delimitation methods in combination with metabolic
and morphological knowledge in an integrative
taxonomic approach. This study has revealed the
presence of four species of Ommastrephes that
occupy distinct geographical regions, all previously
believed to be a single monotypic cosmopolitan
species (O. bartramii). Although the type specimen for
O. bartramii is no longer extant and the type locality
unknown, we have designated a neotype for this
species and applied this name to the well-studied and
commercially exploited species in the North Pacific
in accordance with ICZN regulations. Three other
names were resurrected for the additional species
recognized in the present study using all available
morphological, metabolic and molecular data in an
integrative approach, and neotypes were designated
for each species. There are currently no known
morphological characters that separate O. bartramii
from O. brevimanus or O. cylindraceus, and they
appear to represent cryptic species. Ommastrephes
caroli represents a pseudocryptic species, because
it exhibits morphological differences from the other
species in this genus. Although our study included
specimens from each species, the entire distributional
area for each species has not yet been sampled, and
our inferred species distributions should be used with
caution until more detailed molecular information is
available. We also used this information to hypothesize
the oceanographic features that delimit the distribution

of each species. Given that only spermatophores
showed important taxonomic differences for a single
one of the recognized species (Ommastrephes group 1,
defined here as O. caroli), molecular characters proved
to be especially useful for the recognition of diagnostic
differences between the species. The single species
of the genus commercially exploited at present is
O. bartramii, but it is important to note that the real
distributional range of the species is far smaller than
previously considered (e.g. Roper et al., 2010). Thus,
this knowledge is important for the proper fishery
management of the species. Although every effort was
made to obtain samples from the greatest possible
geographical range of Ommastrephes, including
requesting international collaboration during the
2015 Cephalopod International Advisory Council
Conference (Hakodate, Japan; Fernandez-Alvarez
et al., 2015b), which resulted in many participants
contributing material, the entire distributional range
for each Ommastrephes species was not covered.
This is a direct consequence of the oceanic lifestyle
of this genus coupled with the absence of directed
fisheries in most of its distributional range, which
makes its collection from some localities a fortuitous
phenomenon. However, specimens were available for
sequencing from the majority ofthe distributional range
of O. bartramii, O. brevimanus and O. cylindraceus.
The metabolic results of Shevtsova et al. (1979) and
Rozengart & Basova (2005) suggest conspecifity of the
South Atlantic and the south-eastern Indian Ocean
specimens and were used herein to complement genetic
data to delimit the distribution of O. cylindraceus. This
study increases the number of accepted species of the
family Ommastrephidae from 22 (Roper et al., 2010)
to 25, which represents a 13% increase in the known
biodiversity of the family.
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