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ABSTRACT 

An outstanding modification of the diaspore surface structure in many species of 

the Angiosperms is the presence of a mucilaginous layer. In these species, when the dry 

seed coat or the pericarp comes in contact with water, imbibes the outer cell wall 

completely and release a mucilaginous substance; a phenomenon known as 

myxospermy. Mucilage is composed of polysaccharides, mostly of pectins, and forms a 

gel like envelop around the diaspore that holds a considerable amount of water due to its 

hydrophilic nature. The seed weight as well as the volume increases significantly once 

the mucilage is released. Once it dries up, mucilage becomes stiff then gluing the 

diaspore to the surface on which it settles.  

There are differences in mucilage composition depending on the species. 

However, the main component of the mucilage of the pericarp and seed coat in all 

species are pectins. The polysaccharide and acidic qualities of mucilage make them very 

hydrophilic so in the presence of water they hydrate rapidly, thus forming super 

absorbent hydrogels. After water absorption, the mucilage breaks through the cell wall 

forming the mucilaginous envelope surrounding the seed. In addition to pectin, mucilage 

in some species also contains strands of elementary fibrils of cellulose of different widths 

embedded in the pectin envelope. Mucilage can therefore be distinguished in “true” 

mucilage consisting almost exclusively of pectin, and “cellulosic” mucilage, which, 

additionally to pectin, also contains cellulose fibrils. Cellulosic mucilage seems to add an 

additional strength to the pectin mucilage layer and has been hypothesized that it 

prevents mucilage of being washed away from the seed coat or fruit pericarp making the 

mucilage more rigid and thus, resulting in an enhanced adhesion of the mucilage to the 

diaspore. 

Mucilage release after wetting in seeds and fruits is a common feature in many 

families of Angiosperms. From bibliographical references we found that 1369 species of 

102 plant families, belonging to 40 different orders have diaspores which secrete 

mucilage on wetting.  

Recently it has been proposed that seed mucilage could be an evolutionary 

advanced trait because a relation between the ordinal phylogenetic position of plant 

families and the frequency of myxodiasporic taxa they comprise was found. However, 

this relation only occurs if the absolute numbers of myxodiasporic taxa are taken into 



ABSTRACT 

2 

account. There are families with a very large amount of species in contrast to families 

with a low number of species, thus it is much more likely to find references for 

myxodiaspory in those families. Also, in many cases, the larger families are usually those 

in which more research has been conducted resulting in a higher rate of mucilage 

discovery.  

Several different functions have been proposed for myxodiaspory which can be 

grouped under two main hypotheses. One related to seed germination and the other one 

related to seed dispersal. As mucilage absorbs rapidly a big amount of water and retains 

it during a certain time period, it has been hypothesized that mucilage should serve as a 

way to absorb and store water for germination. Contrarily, several authors also found 

that the presence of mucilage inhibited the germination in some other species. The 

ability to absorb and store water has furthermore been discussed to enhance seed 

survival under strong climatic conditions as mucilage secretion can be activated by 

morning dew. The absorbed moisture might not trigger germination but can promote 

other processes in the embryo, such as repair and restoration of the DNA of the embryo 

damaged by insolation.  

The functions of myxodiaspory have also been frequently discussed in relation to 

seed dispersal as the hydrated mucilage coat is extremely sticky, and, once it dries up, 

works effectively as glue. Two main roles have been recognized for it, first, regarding to 

the adhesion of the diaspore to the fur and feathers of animals, functioning as a dispersal 

mechanism (telechory), and second, regarding to its power of gluing the seed to the 

ground, thus working as anti-dispersal mechanism (antitelechory). In this sense 

myxodiaspory has been proven to reduce seed removal in semiarid and arid 

environments. Seeds deposited after dispersal on the soil surface of steeped slopes are 

then at a risk of being removed downslope with runoff water towards the lower parts of 

the slopes or in the valley bottoms where they can get buried or be affected by a 

stronger competition of seedlings than on the upper or medium parts of the slopes. On 

slopes the removal of diaspores by soil erosion can be a major difficulty to overcome in 

low competitive plants and, in consequence, anchoring the diaspore to the ground near 

the mother plant may be a favourable adaptation to avoid strong competition. However, 

in this scenario neither the role of this mechanism in the assembly of plant communities 

of eroded areas nor its adaptive character has been studied. 

Gluing the seed to the ground therefore not only hinders further movement by soil 

erosion, but additionally prevents massive seed collection by animals. Seed collection by 

granivorous animals was significantly reduced when seeds were glued to the soil or its 
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seed mass incremented due to adhered soil particle on the mucilage coat, which at the 

same time provoked a camouflaging effect for the seed.  

Mucilage secretion can probably not be reduced to only one single function and 

conflicting ideas about its ecological role may depend on the plant species studied. 

However, in some plant groups the influence of mucilage on the germination ability of 

seeds could be excluded if other seed characteristics, such as long dormancy, also 

apply. There are many species with physical dormancy in which the primary reason for 

the delay of germination is the lack of permeability of the seed (or fruit) coat to water. In 

the species of these families, seed mucilage seems therefore to be not very relevant for 

germination and it would be more likely that mucilage secretion played a function related 

to seed dispersal.  

 

In the present memory we present and discuss the results obtained in the study about 

origin and function of seed mucilage in the Cistaceae, a family of Mediterranean plants 

that live in open and degraded shrublands. Briefly, they are:  

 

In the first chapter, it was tested whether mucilage secretion can be considered a 

selective response to soil erosion in plant species inhabiting semiarid environments. The 

amount and type of mucilage secretion by seeds of Helianthemum violaceum and 

Fumana ericifolia (Cistaceae) was related with the number of raindrop impacts needed to 

remove these seeds after gluing them with their own mucilage to the ground as well as 

the time that these seeds resist water runoff without detaching. Also the amount of seed 

mucilage production by plants growing in habitats without erosion and plants affected by 

severe erosion by fitting mixed effect models was compared. The results show an 

important phenotypic variation in the amount of mucilage secretion in both species; but 

suggest that the effect of mucilage secretion in the rate of seed removal by erosion is 

species and mechanism dependent. For F. ericifolia, the amount of mucilage secreted by 

the seeds is directly proportional to their resistance to raindrop impacts and is positively 

related to the intensity of the erosive processes that the plants experience. Nevertheless, 

all the seeds resist the force of runoff during 60 minutes irrespective of the amount of 

mucilage they produce. In H. violaceum, mucilage secretion per se, and not the amount 

of mucilage produced by the seeds has an effect on the rate of seed removal by erosive 

processes. Furthermore, cellulosic fibrils were found only in the mucilage of F. ericifolia 
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but not in H. violaceum. Overall, these results only partially support the hypothesis that a 

selective response to soil erosion exist.  

In the second chapter, a test of Ellner-Shmida’s hypothesis was performed, that 

in semiarid environments aridity may select for the lack of seed dispersal mechanisms 

(atelechory) in many plants, whereas post-dispersal selective forces such as soil erosion, 

seed predation or limitations to water uptake by seeds may select for structures 

facilitating seed anchorage to the ground (antitelechory). Therefore the proportions of 

species with seed anchorage mechanisms and that of atelechoric species in shrubland 

colonizing flat areas and hillslopes in two sites differing in climate dryness were 

analyzed. Their relation with several soil properties involved in runoff generation, seed-

soil contact and water uptake by seeds and with nest density of granivorous ants was 

also explored. The results support the hypothesis that in semiarid shrubland the 

proportion of species with seed anchorage mechanisms increases because of soil 

erosion but not because of climate dryness. This is the first time that a direct relation 

between the proportion of species with seed anchorage mechanisms and soil erosion is 

shown in plant communities; supporting the view that soil erosion shapes species 

composition in communities.   

In the third chapter, the importance of mucilage secretion in seeds was evaluated 

as a mechanism to reduce seed collection by ants. Post-dispersal seed predation is a 

risk for plants in semiarid environments, leading to strategies to protect their propagules 

from seed collection by animals. Therefore three Mediterranean species with strong 

mucilage secretion on their seeds which become sticky upon wetting were selected. 

Seeds of Rosmarinus officinalis, Fumana ericoides and Fumana thymifolia were exposed 

to ants and survival was compared between dry loose seeds and seeds glued to the soil 

with previously secreted mucilage. The ant-plant interaction was analysed by scrutinizing 

seed collection by ants and by analysing the waste piles of ant nests. To test survival, 

groups of 10 seeds were placed on the ground. Each group consisted of 5 control (dry) 

and 5 mucilaginous seeds (previously mucilage secreted) and was covered by the cover 

of a Petri dish modified to permit only the entry of ants. Seeds were inspected weekly for 

seed disappearance and the survival function (Kaplan-Meier estimator –KM) was 

calculated. Seeds of the target species were important food items for ants and were 

actively collected, and more than 50% of the experimental seeds that were glued to the 

ground with their own mucilage survived at the end of the study period but only 0-20% of 

the control seeds survived after the same time of exposure. This seems to have positive 

implications for plant establishment for the studied species.  
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In the fourth chapter, the phylogenetic relationship of 19 Fumana species was 

constructed based on three molecular markers with coding (matK) and spacer (trnT-L) 

sequences of plastid and nucleic (ITS) DNA. The genus Fumana is one of the most 

diverse and least studied genera of the Cistaceae family with 21 recognized species with 

high morphological diversity, divided into three subgenera (Fumana, Fumanopsis and 

Pomelina). Bayesian Inference, Maximum Parsimony and Maximum Likelihood analysis 

as well as an estimation of the divergence times (BEAST) were applied. Phylogenetic 

relationships based on the plastid markers confirmed the monophyly of the genus. 

Results do not support the traditionally established infrageneric divisions, but confirm the 

presence of two main groups of species. Each clade clusters species differing in 

vegetative and reproductive characters and having been formerly grouped in three 

subgenera (Fumana, Fumanopsis and Pomelina). However, none of the clades clustered 

species exclusively from one of the recognized subgenera. Given the impossibility of 

defining morphologic characters which are common to all species of every clade we 

reject all infragenetic divisions and discard the existence of three subgenera. Significant 

ancestral character states were found in five cases (leaf form and leaf margin, glandular 

trichomes, diaspore and seed mucilage secretion), suggesting an adaptation to the 

Mediterranean environment and climate. A strong mucilage secretion was detected to be 

the most likely ancestral character state changing to a weak and absent state in four 

more recently separated species. Furthermore divergence times of Fumana date to 

around 16.97 Ma ago (24-10 Ma), with the divergence of major clades between the 

Middle and Late Miocene (15.61-8.8 Ma).  

In the fifth chapter, a phylogenetic approach to study mucilage seed evolution was 

applied and the hypothesis that the presence of seed mucilage in the Cistaceae is an 

ancestral character state related to the ability of species to colonize eroded slopes 

tested. The family Cistaceae provides a good opportunity to study the evolution of this 

character because there is a large variability of mucilage occurrence within this family 

and a well solved phylogeny available. To achieve these objectives the presence of the 

character seed mucilage was mapped along the phylogeny of the Cistaceae, and the 

relation of this character with traits associated to the competitive ability of the plants, 

such as relative growth rate (RGR), seed longevity and seed size of seven 

representative species of the family analysed. These results were discussed in the light 

of the environmental changes that occurred along the history of the family. The results 

show that seed mucilage secretion in the Cistaceae is the most likely ancestral character 

state and when the type of mucilage (cellulosic and pectin) was included in the analysis, 

pectin mucilage seems to be the ancestral character state in the family. Seed mucilage 
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was lost several times throughout the family but the most noticeable change is the total 

loss in the genus of Cistus. A pattern was found in the Cistaceae from low competitive 

species with strong mucilage secretion of cellulosic type, low RGR values, short seed 

longevities and big seed sizes that characterize the oldest genus (i.e. Fumana) towards 

the most modern species with a higher competitive ability, no mucilage secretion, higher 

RGR and seeds with longer viability and smaller sizes in the species of Cistus.  

 

The present study on mucilage secretion by seeds showed clearly that 

myxodiaspory functions as antitelechoric mechanism in several species of the Cistaceae, 

as the mucilage effectively glued the seeds to the ground thus hindering further 

movement under simulated erosive conditions (drop impact and runoff) and preventing 

seed collection by granivorous ants. Furthermore, when testing the hypothesis of Ellner 

and Shmida, a higher frequency of antitelechoric species in plant communities of areas 

affected by erosive pressures in comparison to those communities of flat areas without 

soil erosion was found, but the frequency of this dispersal mechanism was not influenced 

by the increase of aridity. These results supporting the hypothesis that myxodiaspory is 

not an adaptation to aridity per se; instead, it should be considered a side effect to the 

consequence of this aridity. Regarding the evolutionary history of mucilage in the family 

of the Cistaceae, we found that the most ancestral character state is the presence of 

mucilage while the loss of mucilage is a derived character. The same pattern was found 

when focusing on the genus Fumana, in which a strong mucilage secretion was revealed 

to be the most ancestral state with a shift towards weak and absent mucilage in some of 

the more recent species.  

 

 

 

 

  



ABSTRACT 

7 

RESUMEN 

Introducción 

Formación y composición de mucílago 

 

En las semillas y frutos maduros, la cubierta de la semilla o del pericarpio, 

respectivamente, funciona como una protección del embrión contra la desecación 

temprana y el daño físico o biológico. La testa de la semilla o el pericarpio del fruto 

también pueden actuar como regulador de la absorción de agua, o del inicio de la 

germinación en algunas especies, o del mantenimiento de la latencia de las semillas 

mediante la prevención de la absorción de agua y el intercambio de gases en otras. En 

unos pocos casos, se ha comprobado que la cubierta de la semilla funciona como tejido 

de reserva durante la germinación. Además, en muchas especies la cubierta de la 

semilla o el pericarpio frecuentemente desempeña un papel en la dispersión de semillas 

mediante la modificación de sus propiedades o el desarrollo de estructuras 

especializadas. 

Una modificación destacada en la estructura de la superficie de la diáspora en 

muchas especies de angiospermas es la presencia de una capa mucilaginosa. En estas 

especies, cuando la testa de la semilla o el pericarpio del fruto entran en contacto con el 

agua, la capa celular externa se humedece por completo y libera una sustancia 

mucilaginosa; un fenómeno conocido como mixospermia. El mucílago se compone 

principalmente de polisacáridos y forma una cubierta gelatinosa alrededor de la 

diáspora, que absorbe y mantiene una cantidad considerable de agua debido a su 

naturaleza hidrófila. Con la secreción de mucílago, tanto el peso de la semilla como el 

volumen de la misma aumentan significativamente. Cuando se seca, el mucílago se 

vuelve rígido y pega la diáspora a la superficie sobre la que se asienta. 

Dependiendo de la especie hay diferencias en la composición del mucílago. Sin 

embargo, en todas las especies el componente principal del mucílago del pericarpio y de 

la cubierta de la semilla es la pectina. La mayoría de estudios sobre la composición del 

mucílago en semillas se han enfocado en la Arabidopsis thaliana, pero también se ha 
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investigado su composición en las semillas de albahaca (Ocimum ssp.), de lino (Linum 

ssp.) y de plantago (Plantago ssp.) 

La pectina está constituida por un grupo heterogéneo de polisacáridos ácidos 

que se caracteriza por la presencia de ácido galacturónico (GalA). Para simplificar, la 

estructura principal de la pectina comprende dos tipos de polímeros: 

ramnogalacturonano I (RG I) y homogalacturonan (HG). Analizando los azúcares 

presentes en el mucílago, se encontraron cantidades significativas de azúcares neutros 

como ramnosa (Rha), pero también se detectaron principalmente galactosa (Gal) y 

glucosa (Glc) así como fucosa (Fuc), arabinosa (Ara), xilosa (Xyl) y manosa (Man) [34-

48 % (w / w) de los azúcares neutros y ácidos totales en mucílago]. Los polisacáridos y 

su carácter ácido hacen que el mucílago sea muy hidrófilo, de modo que se hidratan 

muy rápido en presencia de agua, formando hidrogeles súper absorbentes. Eso permite 

que el mucílago rompa a través de las paredes de las células de la epidermis y facilite la 

absorción y retención de agua alrededor de la semilla.  

En algunas especies el mucílago, además de pectina, contiene filamentos de 

fibrillas de celulosa de diferentes anchuras asociados e integrados en la pectina. Por 

tanto, el mucílago se puede catalogar como "verdadero” mucílago, que se compone en 

la mayoría de las especies casi exclusivamente de pectina y mucílago "celulósico" que, 

además de la pectina, contiene también micro fibrillas de celulosa. Parece que el 

mucílago celulósico añade resistencia adicional a la capa de mucílago pectínico, y se ha 

sugerido que evita que el mucílago se lave de la testa de la semilla o del pericarpio de la 

fruta, produciendo una mayor rigidez que resulta en una mejor adherencia del mucílago 

a la diáspora. Esta diferencia estructural también influye en la fuerza de adherencia de 

la diáspora a cualquier superficie, por lo tanto, ayuda a su transporte en la piel o plumas 

de los animales, previene la remoción de las semillas por la erosión y su depredación 

por animales y también ayuda a que la raíz penetre en el suelo. 

El mucílago con fibrillas de celulosa se ha encontrado en varias familias de 

plantas, entre otras, en Asteraceae, Brassicaceae, Cistaceae (genus Fumana), 

Euphorbiaceae , Lamiaceae y Polemoniaceae mientras que el mucílago puro o pectínico 

se ha encontrado, entre otras, en la familia de las Linaceae, Plantaginaceae, Poaceae y 

Cistaceae (genus Helianthemum). Simples métodos de teñir como ha recopilado 

algunos autores ayudan a distinguir entre los dos tipos de mucílago. El rojo de rutenio y 

la safranina proporcionan reacciones muy fuertes de tinción en la pectina, en la que el 

rojo de rutenio típicamente revela su estructura homogénea. La tinción con azul de 
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metileno o I en KI+H2SO4 hace visible la presencia de fibrillas de celulosa en la matriz 

de la pectina. 

La producción de mucílago de semilla en la Arabidopsis thaliana es parte de un 

proceso de diferenciación excepcional durante el cual las células de la epidermis del 

óvulo maduro crecen, reorganizan su citoplasma, sintetizan y secretan el mucílago, y 

forman una pared celular secundaria. Después de una fase de producción extensiva de 

mucílago, éste se localiza entre la membrana plasmática y la pared periclinal exterior de 

la célula de la epidermis, lo que resulta en la compresión del protoplasto. Esta reducción 

del protoplasto da lugar a la formación de una columna citoplasmática en forma de 

volcán que se encuentra bajo el bolsillo de mucílago. La síntesis de una pared celular 

celulósica para rodear la columna citoplásmica resulta en la formación de la columella. 

En la mayoría de las especies el mucílago se origina de las células 

especializadas de la epidermis de la semilla, pero también puede estar presente en la 

epidermis y las células sub-epidérmicas o únicamente en estas últimas. Por otra parte, 

en algunas especies de la familia de las Lythraceae, el mucílago solo está presente en 

ciertas partes de la semilla, en otros casos se encuentra en sacos dentro de la testa de 

la semilla, como en la familia de las Sterculiaceae o incluso la capa de mucílago puede 

ser discontinua porque las células que lo contienen se encuentran dispersas entre las 

células sin mucílago (Lamiaceae). También las células mucilaginosas pueden estar 

presentes en la punta de pelos de la diaspora, que pueden ser unicelulares como en la 

Ruellia o multicelulares como en la Blepharis ciliaris o en la Blepharis persica. Además, 

el mucílago también se puede encontrar en el pericarpio de la diaspora como ocurre en 

las Asteraceae, Lamiaceae, Piperaceae o Urticaceae. Cuando el mucílago es producido 

por el pericarpio, el mucílago se denomina mixocárpico mientras que hablamos de 

mixospérmico para referirnos a la producción de mucílago por las semillas. 

 

Origen y linaje del mucílago 

 

La producción de mucílago en las semillas y los frutos después de la humectación es 

una característica común en muchas familias de angiospermas. En las referencias 

bibliográficas encontramos 1.369 especies de 102 familias de plantas, pertenecientes a 

40 órdenes diferentes que tienen diásporas que secretan mucílago una vez 

humectadas. La mayoría de estas especies se encontraron en las familias de las 
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Asteraceae (197 especies), Lamiaceae (158), Acanthaceae (144), Fabaceae (86), 

Brassicaceae (81), Cistaceae (76), Euphorbiaceae (52), Polemoniaceae (42), 

Plantaginaceae (32), Malvaceae (30), Podostemaceae (20), Linaceae (19), Rosaceae 

(18), Araceae (16), Rutaceae (16), Arecaceae (16), Scrophulariaceae (16), Poaceae 

(15), Solanaceae (15), Violaceae (14), Nyctaginaceae (13) y seguidas de otras 89 

familias en las que encontramos, al menos, entre 1 y 10 especies con semillas o 

diásporas mucilaginosas. 

Además de las referencias bibliográficas, en 2010 realicé en las instalaciones del 

Millennium Seed Bank - Royal Botanic Gardens, Kew, una prueba de secreción de 

mucílago por diásporas en 237 especies pertenecientes a 95 familias de plantas, y 

comprobé que el 8,4 % de estas especies (20 especies), que pertenece al 9,5 % (10) de 

las familias testadas secretan mucílago. Cuando se suman la información bibliográfica y 

mi propio estudio, encontramos que un total de 108 familias de angiospermas poseen 

diásporas que secretan mucílago. En otras de las familias de plantas que fueron 

analizadas por nosotros y en algunas citas bibliográficas se encontró que las semillas no 

segregaron mucílago.  

En un investigación reciente, algunos autores proponen que el mucílago de 

semilla debe ser un rasgo evolutivo avanzado debido a que encontraron una relación 

entre la posición filogenética ordinal de familias y la frecuencia de los taxones con 

aparición de semillas con mucílago. Además, al inspeccionar el hábitat de las familias 

con especies mixodiaspóricas, encontraron una mayor frecuencia de taxones que viven 

en hábitats secos en las familias filogenéticamente avanzadas (por ejemplo, Asteraceae, 

Brassicaceae y Poaceae) que en familias de los grupos basales de angiospermas (por 

ejemplo Nymphaeales y Magnolids en hábitats húmedos). Sin embargo, en su análisis 

los autores sólo representan el número absoluto de taxones mixodiaspóricos, y no sus 

números relativos. Así, hay familias con una gran cantidad de especies y otras con un 

bajo número de especies, por lo que es mucho más probable encontrar referencias a la 

mixodiasporia en aquellas familias. Además, generalmente, las familias sobre las que 

más investigaciones se han realizado son aquellas más grandes, resultando en una 

mayor tasa de descubrimientos de mucílago. Sin embargo proponemos que, dado que 

existen muchas especies con mucílago en muchas familias y órdenes a lo largo del 

árbol filogenético de las angiospermas, y ello unido a la evidencia paleontológica de que 

el mucílago de semillas ya existía en el Eoceno Medio, que el carácter del mucílago de 

semillas se podría considerar ancestral. El carácter del mucílago podría haberse perdido 

en algunos casos mientras que se ha conservado en otros. Se podría comprobar esta 
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hipótesis en diferentes niveles del árbol filogenético de las angiospermas, entre órdenes 

y familias, o comparando géneros y especies dentro de familias. Por otra parte, el 

carácter ancestral de la mixodiasporia en un determinado grupo de plantas puede ser 

testado al mismo tiempo que las diferencias entre los tipos de mucílago, distinguiendo 

entre mucílago de solo pectina y mucílago celulósico. A pesar de que el resultado de un 

análisis ancestral realizado a un nivel más pequeño podría no revelar el origen real de 

mucílago en el árbol filogenético de las Angiospermas, abriría muchas oportunidades 

para discutir la función actual o formular hipótesis sobre una función del mucílago en el 

pasado, en semillas de estas familias o géneros. 

 

Función de mucílago 

 

Se han propuesto dos hipótesis principales para delimitar varias funciones diferentes del 

mucílago en semillas. Una hipótesis está relacionada con la germinación de la semilla y 

la otra relacionada con la dispersión de semillas. 

El mucílago absorbe rápidamente una gran cantidad de agua y la retiene durante 

un cierto período de tiempo, por ello se ha planteado la hipótesis de que el mucílago 

podría servir como una forma de absorber y acumular agua para la germinación. Esto ha 

sido estudiado por un autor, que asocia la gran capa mucilaginosa de las semillas de 

Carrichtera annua con la posible capacidad de "sentir" el agua y regular la germinación. 

Otros autores argumentan que el mucílago favorece la germinación porque amplía la 

superficie de contacto entre la semilla y el sustrato, aumentando por tanto la difusión del 

agua.  

Además se plantea que esta área de contacto ampliada entre la diáspora y el 

suelo minimiza la pérdida de agua de la semilla. Una germinación acelerada gracias a la 

presencia de mucílago se ha descrito para Anastatica hierochuntica y además se 

comprobó que semillas mucilaginosas de A. sphaerocephala mostraron una menor 

sensibilidad al estrés por un aumento en el potencial osmótico (PEG) y la salinidad 

(NaCl) que semillas sin mucílago. 

Por el contrario, varios autores también apuntaron que la presencia de mucílago 

inhibió la germinación en algunas especies. Se manifestó que el exceso de agua 

alrededor de las semillas de Blepharis persica y Spinacia oleracea inhibió la 

germinación. Esto se interpretó como una prueba de que el mucílago limita el acceso de 
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oxígeno a la semilla, ya que en estas especies la germinación mejoraba 

significativamente con la eliminación de la capa de mucílago o mediante el aumento de 

la concentración de oxígeno en el agua circundante. Del mismo modo, el aumento de 

grosor en el mucílago de las semillas de Lesquerella perforata y L. stonensis 

(Brassicaceae) se pudo correlacionar con una reducción en la tasa de germinación. 

Algunos autores interpretaron este fenómeno como un mecanismo de prevención de la 

germinación de semillas en hábitats áridos, donde la primera lluvia no proporciona 

suficiente agua para un desarrollo exitoso y por lo tanto puede no ser la mejor 

oportunidad para el establecimiento de las plantas. 

El mucílago de la semilla no sólo se secreta bajo condiciones muy húmedas, sino 

también bajo una lluvia débil o incluso bajo el rocío de la noche, y posteriormente puede 

ser rehidratado después de secado. Estas condiciones normalmente no desencadenan 

la germinación, pero pueden promover otros procesos en el embrión, como la 

reparación y restauración del ADN. Las semillas depositadas en la superficie del suelo 

en condiciones desérticas pueden someterse a una insolación fuerte. Por lo tanto, se ha 

discutido si el mucílago de semillas mejora su supervivencia en condiciones climáticas 

extremas ya que el agua retenida aumenta la reparación del ADN del embrión de la 

semilla. En este contexto, el ADN de las semillas de dos especies de Artemisa se dañó 

artificialmente mediante radiación y fue analizada la influencia del mucílago en la 

reparación del ADN deteriorado. Encontraron una restauración del ADN en las semillas 

con una capa de mucílago intacta pero no en las semillas donde el mucílago se había 

eliminado. 

Una vez germinadas, las plántulas jóvenes son susceptibles de muchos peligros 

tales como la desecación, los patógenos o la competencia con la vegetación existente. 

Hay diversos autores que proponen que el mucílago de semillas influye positivamente 

en el establecimiento de las plántulas, afirmando que la presencia de mucílago aumenta 

considerablemente la resistencia de las plántulas de Artemisia spaerocephala y A. 

monosperma en ambientes desérticos. Se encontró que, en frutos de Cavanillesia 

platanifolia (Bombacaceae), una capa de mucílago abundante era necesaria para una 

exitosa expansión de los cotiledones y el posterior crecimiento de plántulas en 

condiciones de riego infrecuente. Además, el mucílago redujo el grado de 

marchitamiento de plántulas, aumentando así las probabilidades de supervivencia de las 

mismas en condiciones de sequía. También se ha propuesto que algunos compuestos 

orgánicos presentes en el mucílago de la semilla pueden ser utilizados por el embrión 

para su desarrollo, ya que las plántulas de Artemisia monosperma crecidas de semillas 
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con una capa de mucílago intacta tenían mayor vigor que las que carecían de ella. Unos 

autores muestra que los polisacáridos del mucílago (o sus derivados) son absorbidos 

por las raíces y posteriormente transportados a los brotes de las plántulas, lo cual 

proporciona una evidencia directa de la absorción de moléculas derivadas del mucílago 

en el crecimiento temprano de las plántulas.  

Las funciones de la mixodiasporia también se han discutido frecuentemente en 

relación a la dispersión de las semillas, dado que la capa de mucílago hidratado es 

extremadamente pegajosa y, una vez seca, funciona efectivamente como pegamento. 

Dos papeles principales han sido atribuidos a esta característica, en primer lugar, con 

respecto a la adhesión de la diáspora a la piel y plumas de los animales, lo que crea un 

mecanismo de dispersión (telecoria), y segundo, con respecto al poder de pegado de la 

semilla al suelo, funcionando así contra la dispersión (antitelecoria). 

El primer papel reclamado por el carácter pegajoso de mucílago es el 

relacionado con la capacidad de dispersar la semilla a larga distancia. Se ha descrito 

que especies de Euphorbia en Hawái han sido dispersadas entre islas, pegadas en las 

alas de los pájaros gracias a la secreción de mucílago de las semillas. Por otra parte, las 

semillas de Anastatica hierochuntica son comidas por aves (Phasianidae) en el desierto 

de Negev, y al mismo tiempo es probable que se adhieran al cuerpo del ave y así se 

dispersen a lo largo de grandes distancias. Según un autor la dispersión a larga 

distancia de cierta Polemoniaceae (Glieae y Polemoniae ) puede interpretarse como el 

resultado de ser transportada, pegada a los animales migratorios. Cuando las frutas y 

semillas mucilaginosas son consumidas por animales, no sólo pueden adherirse 

accidentalmente a estos y dispersase, sino que también se ha sugerido que el mucílago 

que cubre la semilla o fruto proporciona lubricación para el paso a través del tracto 

digestivo de los animales. La aptitud para la germinación de semillas comidas está 

inversamente relacionada con el tiempo que pasan en el tracto digestivo de los 

animales, y a continuación la excreción temprana evita daños a las semillas al mismo 

tiempo que asegura la dispersión a larga distancia. Esto ha sido descrito para las 

semillas de Cecropia, cuyos frutos componen una parte principal en la dieta de los 

murciélagos y cuyas células secretoras del mucílago se encuentran frecuentemente 

intactas en las heces de estos mamíferos. Se han observado otros animales que se 

alimentan de semillas con mucílago como la perdiz griega (Alectoris gracea), que 

consume la semilla de Lepidium perfoliatum, Sisymbrium altissimum y Descurainia 

pinnata.  
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El mucílago en las semillas funciona eficientemente como mecanismo 

antitelecórico. Diversas formas de mecanismos antitelecóricos están descritas para las 

plantas que viven en hábitats áridos, pero encontraron sólo dos mecanismos en los que 

la semilla misma restringe su dispersión secundaria en el espacio debido a que se 

adhiere a la tierra (mixospermia y trypanospermia). Diásporas con un mecanismo 

trypanospérmico tienen la capacidad de introducirse en el suelo debido a los 

mecanismos de perforación y giro producidos por la arista, vilano u otras estructuras de 

la semilla, mientras que diásporas mixospérmicas se pegan al suelo. 

Los mecanismos antitelecóricos han sido normalmente relacionados con las 

condiciones climáticas donde habitan las plantas y han sido reportadas más 

frecuentemente en ambientes áridos y semiáridos que en ambientes húmedos. Se ha 

establecido la teoría del “mother-site” (sitio de la planta madre), argumentando que en 

hábitats áridos y semiáridos las proximidades de la planta madre generalmente tienen 

condiciones favorables y adecuadas para el crecimiento de las plántulas. Se ha 

argumentado que la dispersión a larga distancia para las especies que viven en esos 

ambientes ofrece muy pocas ventajas, ya que existen condiciones favorables cerca de 

la planta madre y se encuentran variaciones significativas en el clima y el medio biótico 

generalmente más lejos que la distancia de dispersión que la semilla puede lograr. En 

consecuencia, se ha demostrado que la secreción del mucílago que adhiere la semilla al 

suelo favorece el establecimiento del Helianthemum squamatum, por eso la proximidad 

a una fuente de semillas es el principal predictor para la emergencia de las plántulas. 

Los ambientes áridos y semiáridos presentan diversas dificultades para el 

establecimiento de las plantas. En el Mediterráneo y ambientes semiáridos se produce 

con frecuencia la erosión del suelo en cuestas empinadas y las lluvias escasas se 

concentran a menudo en intensos eventos. Las semillas depositadas en la superficie del 

suelo de las laderas están en riesgo de ser arrastradas por la escorrentía del agua hacia 

las partes más bajas o hacia el fondo de los valles en los que pueden resultar 

enterradas o ser afectados por una competencia más fuerte que en las partes altas o 

medianas de las cuestas. Por lo tanto, la erosión en las laderas semiáridas puede 

suponer una dificultad importante a superar por las plantas poco competitivas y, en 

consecuencia, el anclaje de la diáspora al suelo cerca de la planta madre puede ser una 

adaptación favorable para evitar la fuerte competencia. La mixodiasporia se ha 

demostrado que reduce la remoción de semillas en ambientes áridos y semiáridos, pero 

ni el papel de este mecanismo en el conjunto de las comunidades vegetales de las 

zonas erosionadas, ni su carácter adaptativo ha sido estudiado. 
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Una semilla pegada al suelo no sólo reduce el movimiento por erosión, sino que 

también impide la recolección masiva de semillas por animales. Las hormigas 

granívoras son los principales depredadores de semillas en pastos, estepas y 

matorrales de las zonas semiáridas de la cuenca mediterránea, sobre todo durante la 

primavera y el verano. La recolección de semillas por animales granívoros se redujo 

significativamente cuando las semillas estaban pegadas al suelo o la masa de la semilla 

fue incrementada por las partículas de suelo adheridas a la capa de mucílago, lo que al 

mismo tiempo provocó un efecto de camuflaje para la semilla. Comparando la 

depredación de frutas sueltas y secas con las semillas pegadas al suelo de Artemisia 

monosperma, las sueltas se recogieron mucho más fácil y más rápido que las pegadas. 

Para las semillas de Salvia columbariae se encontraron resultados similares, en los que 

la recolección de semillas por hormigas granívoras se redujo significativamente en un 94 

% para las semillas camufladas (semillas con mucílago secretado y luego recubiertas de 

arena). Sin embargo, esos experimentos se realizaron en tiempos muy cortos y todavía 

no se han realizado estudios de larga duración, a lo largo de varias semanas o durante 

el período completo de germinación de la semilla. 

Las funciones del mucílago en semillas seguramente no puedan reducirse a una 

sola, y las ideas contradictorias sobre su papel ecológico pueden depender de las 

especies de plantas estudiadas. Sin embargo, en algunos grupos de plantas la 

influencia del mucílago en la capacidad de germinación de las semillas podría ser 

excluida si la semilla también presenta otras características, como una larga dormancia. 

Hay muchas especies en las que la dormancia fisiológica es la principal razón para el 

aplazamiento de la germinación, causada por la falta de permeabilidad de la testa o el 

pericarpio de las semillas o del fruto al agua. Antes de que estas semillas puedan 

germinar, la capa impermeable tiene que ser rota o al menos abierta para que el agua y 

los gases puedan llegar al embrión. Esto se ha demostrado en especies con dormancia 

fisiológica, en las cuales las semillas empezaron a germinar por el daño mecánico o 

químico de su cubierta. La dormancia física está presente en al menos 15 familias de 

angiospermas, entre otras en las Anacardiaceae, Bombaceae, Cistaceae, Fabaceae, 

Malvaceae y Rhmnaceae. Por lo tanto, en especies de estas familias, la secreción de 

mucílago de la semilla parece no ser relevante para la germinación, sino que parece 

más probable que cumpla una función relacionada con la dispersión de las semillas. 
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Hipótesis 
 

En el presente trabajo queremos probar críticamente la hipótesis de que la 

secreción de mucílago en semillas de plantas de simiente dura puede funcionar como 

un mecanismo antitelecórico, pegando las semillas al suelo y evitando su remoción. 

Nuestra hipótesis es que la secreción de mucílago de semilla debe considerarse una 

adaptación de las plantas que habitan en ecosistemas secos y abiertos, como matorral 

semiárido y mediterráneo, a los riesgos que imponen las condiciones de erosión y la 

depredación de semillas por hormigas granívoras.  

 

También tenemos como objetivo estudiar la historia evolutiva de la secreción de 

mucílago de semilla. Dado que las evidencias sobre el carácter ancestral de la secreción 

de mucílago de semilla son contradictorias, nuestro propósito es analizarlo en toda una 

familia. Elegimos la familia de las Cistaceae porque es un componente importante de la 

flora mediterránea, con una parte de esta familia evolucionada recientemente. Además, 

la presencia del carácter del mucílago en las semillas es muy heterogénea a lo largo de 

la familia y las semillas presentan dormancia física. 

 

A lo largo de la tesis aplicamos diversos enfoques a las pruebas de estas hipótesis:  

 

1) Probamos si la secreción de mucílago de las semillas impide o dificulta que sean 

removidas por procesos erosivos (Capítulo 1). Comprobamos experimentalmente si un 

incremento en la cantidad de mucílago secretado por las semillas reduce sus 

posibilidades de ser removidas por el impacto de las gotas de lluvia y por la escorrentía. 

Del mismo modo, también se evaluó el efecto del ambiente materno en la cantidad de 

mucílago secretado por las semillas, mediante la comparación del mucílago de semillas 

recogidas de individuos de plantas que viven en ambientes erosivos y no erosivos. 

 

2) Comprobamos la hipótesis de Ellner y Shmida de que el mecanismo de dispersión 

antitelecórico en ambientes semiáridos no es una adaptación de las plantas al aumento 

de la aridez o  a las limitaciones que impone, sino más bien un efecto secundario de 

otras fuerzas como la erosión o la depredación de semillas (Capítulo 2). Para 

comprobarlo se analizaron, en el ámbito de la comunidad vegetal, el efecto cruzado del 

aumento de aridez y del aumento de erosión en la proporción de especies de plantas 

con semillas mucilaginosas. 
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3) Para comprobar si la secreción de mucílago reduce la recolección de semillas por 

hormigas granívoras, hemos comparado la proporción de semillas recogidas por 

hormigas entre las semillas pegadas a la tierra con su propio mucílago y otras semillas 

de la misma especie sin mucílago secretado (Capítulo 3). 

 

4) Para probar si la secreción de mucílago de las semillas del género Fumana es un 

carácter derivado, hemos reconstruido un árbol filogenético molecular del género 

usando dos marcadores de plástidos (matK ,trnTL) y un marcador nuclear (ITS), en el 

que fueron analizados la aparición de mucílago en semillas y otros caracteres 

morfológicos (Capítulo 4) . 

 

5) Para estudiar la historia de la evolución del carácter de mucílago en semilla en la 

familia de la Cistaceae, trazamos la aparición del mucílago a lo largo del árbol 

filogenético ya construido por otros autores. Para probar la hipótesis de que la secreción 

del mucílago en esta familia está relacionada con hábitats estresantes, relacionamos en 

condiciones experimentales el carácter del mucílago y la capacidad de las plantas para 

colonizar hábitats muy competitivos (Capítulo 5).  

 

 

Discusión General 

 

Nuestro estudio sobre la secreción de mucílago en semillas mostró claramente 

que la mixodiasporia funciona como mecanismo antitelecorico en varias especies de 

Cistaceae. Mostramos que el mucílago pegó efectivamente las semillas al suelo, lo que 

impidió el movimiento bajo condiciones erosivas simuladas (impacto de gota de lluvia y 

escorrentía) y redujo la recolección de semillas por hormigas granívoras. En cuanto a la 

historia evolutiva del mucílago en la familia de la Cistaceae, encontramos que el 

carácter ancestral es la presencia de mucílago, mientras que la pérdida de mucílago es 

un carácter derivado. El mismo patrón se observó cuando se analizó el género Fumana, 

en el que una fuerte secreción de mucílago se reveló como el carácter ancestral, con un 

cambio hacia un estado débil o incluso ausente mucílago en algunas de las especies 

más recientes.  
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Nuestros resultados muestran que la secreción de mucílago funciona 

eficientemente como un mecanismo antitelecórico, como ha sido propuesto por varios 

autores, ya que las semillas de las especies estudiadas que han sido pegadas al suelo 

con su propio mucílago sobreviven más tiempo a la depredación por hormigas 

granívoras, al arrastre por escorrentía y a la erosión que las semillas sin mucílago. 

En relación con el papel de la secreción de mucílago en la restricción de la 

depredación de semillas por hormigas, nuestro trabajo va más allá en el marco temporal 

que los estudios experimentales previos, que recogieron sus efectos sólo durante unos 

días, lo que podría ser tiempo insuficiente para garantizar que el mecanismo funcione 

hasta que las semillas puedan germinar. En la F. ericoides, las semillas germinan entre 

3-24 meses después de ser dispersadas y en la F. thymifolia normalmente entre 4-5 

meses (50% germinadas), por lo tanto están expuestas a recolección en la temporada 

en que las hormigas granívoras tienen su máxima actividad, desde la primavera hasta 

finales del verano. En el presente estudio, las semillas de F. ericoides pegadas a la 

tierra con su propio mucílago mantuvieron un 71 % de probabilidad de supervivencia, 

incluso después de 3 meses (91 días ) y F. thymifolia 68 % después de 2,5 meses (84 

días), por lo tanto, casi el doble de posibilidades de supervivencia para esas semillas . 

Algunos autores propusieron que la antitelecoria no debe considerarse como una 

adaptación a la aridez por sí misma o por las restricciones que impone la falta de agua a 

las semillas. Sino que se debería considerar como un efecto secundario de la 

consecuencia de esta aridez, es decir, la posibilidad de que las semillas sean 

recolectadas por los animales o ser removidas por los procesos de erosión en tales 

hábitats abiertos. La frecuencia de plantas con mecanismo antitelecórico, como la 

mixospermia, sería entonces favorecida en las comunidades de plantas afectadas por la 

erosión del suelo, pero no se vería afectado por el aumento de la aridez. En 

consecuencia, encontramos una mayor frecuencia de especies con recursos 

antitelecóricos en las comunidades vegetales de las zonas afectadas por la presión de 

la erosión, en comparación con las comunidades de las zonas planas, sin erosión del 

suelo, pero la frecuencia no fue influenciado por el aumento de la aridez. Por el 

contrario, la proporción de especies con recursos atelecóricos (con ausencia del 

mecanismo de dispersión) aumentó ligeramente con la sequedad, pero no fue 

influenciado por la erosión del suelo. Estos resultados están de acuerdo con otros que 

apoyan la hipótesis de que los mecanismos de anclaje en diásporas desempeñan un 
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papel en la conformación/composición de las especies en las comunidades afectadas 

por una intensa erosión del suelo. 

Sin embargo, la secreción de mucílago como mecanismo antitelecórico no sólo 

podría ser un efecto secundario sino un mecanismo de adaptación per se a la 

escorrentía en el suelo. Pusimos a prueba la respuesta de adaptación de semillas 

mixospérmicas a la erosión del suelo esperando encontrar dos supuestos hechos 

realidad: en primer lugar, que existen dentro de poblaciones y entre poblaciones 

variación de esta capacidad, y que esta variación se debe relacionar con la presión de la 

erosión del suelo en el que viven las plantas y segundo, que una mayor cantidad de 

mucílago podría estar relacionada con una mayor adherencia al suelo y una mayor 

resistencia de las semillas a ser removidos por la lluvia (impacto de gota de lluvia y el 

escorrentía de agua). 

De acuerdo con nuestra hipótesis, hemos detectado una variación individual de 

mucílago de semillas entre los individuos dentro de la población y entre las poblaciones. 

Se encontró una mayor cantidad de mucílago en semillas recogidas de individuos que 

habían crecido bajo condiciones de alta presión erosiva del suelo. Sin embargo, eso 

resultados son sólo válidos para F. ericifolia pero no para H. violaceum, para la que las 

diferencias no fueron significativas. Apoyando nuestra hipótesis también encontramos 

que una mayor cantidad de mucílago de semilla se tradujo en una adherencia de 

semillas, más fuerte y por más tiempo, bajo impacto de gotas de agua en una de las 

especies estudiadas (F. ericifolia) pero no en la otra especie (H. violaceum).  

En consecuencia, el entorno donde vive la madre de la planta tiene un impacto 

crítico en el éxito del establecimiento de plántulas de F. ericifolia, como ocurre con los 

ecosistemas áridos y semiáridos que se caracterizan por una escasa vegetación, que a 

menudo está dispuesta como un mosaico con parches con vegetación densa y parches 

de suelo vacío que está bajo la influencia de la escorrentía de agua y la erosión del 

suelo.  

Nuestros resultados indican que la secreción de mucílago puede ser una 

respuesta adaptativa, que parece ser dependiente de la especie. Sin embargo, que esta 

respuesta dependa de la especie podría estar relacionado con las diferencias en el tipo 

de mucílago de semilla entre las especies estudiadas. Hasta ahora poca atención se ha 

puesto en las diferencias estructurales del mucílago en las semillas dentro de una 

familia de plantas. Aquí, encontramos que la H. violaceum tiene un mucílago del tipo 

pectina mientras que la F. ericifolia tiene un mucílago celulósico. Los dos tipos se 

comportaron de manera diferente bajo la escorrentía y las condiciones del impacto de la 



ABSTRACT 

20 

gota de agua. Las semillas con mucílago celulósico de F. ericifolia mostraron una 

adhesión más fuerte en los experimentos de escorrentía (100 % de semillas 

permanecieron pegadas durante el experimento), que las semillas con mucílago 

pectínico de H. violaceum (60 % de las semillas se quedaron pegadas), lo que podría 

ser un resultado de la fuerza adicional que se supone que añaden los hilos celulósicos 

al mucílago. Del mismo modo encontramos una relación positiva entre la secreción de 

mucílago de las semillas de F. ericifolia y su resistencia al impacto de gota de agua, 

mientras que en semillas de H. violaceum no se encontró relación evidente. 

Al analizar las relaciones filogenéticas y la aparición de mucílago en la familia de 

las Cistaceae, se encontró que en las semillas el carácter ancestral más probable es la 

presencia de mucílago, con una tendencia a la pérdida del mismo hacia los casos más 

recientemente separados (Cistus, Halimium). Como se supone que las especies 

mixospérmicas de esta familia se han adaptado a los procesos de erosión del suelo, 

podemos predecir que las estrategias del ciclo de vida de esas plantas para colonizar en 

esas condiciones ambientales erosivas deben diferir fuertemente de la de las especies 

no mixospérmicas. La erosión del suelo es un proceso geomorfológico que aumenta 

tanto la tensión como la frecuencia de las perturbaciones que afectan a las plantas y por 

lo tanto tiende a reducir la cubierta vegetal y la diversidad de especies. Las estrategias 

del ciclo de vida para hacer frente a esta condición ambiental deben entonces enfocarse 

en proporcionar semillas con suficientes recursos para establecerse y sobrevivir en 

condiciones tan pobres. Por el contrario, las especies con semillas sin secreción de 

mucílago pueden ser arrastradas con frecuencia cuesta abajo, donde tendrán que 

competir con otros congéneres y otras especies de plantas. Al centrarse en las 

estrategias del ciclo de vida, se encontró una relación significativa entre la pérdida de 

mucílago en semillas y los rasgos relacionados con la competitividad, como la tasa de 

crecimiento relativo (RGR), la longevidad de las semillas y un tamaño más pequeño de 

la semilla. Esto demuestra la ventaja que tienen las plantas con semillas sin mucílago 

para establecerse y sobrevivir bajo condiciones de mayor competitividad o bajo una 

mayor frecuencia de perturbaciones ambientales que otras especies de Cistaceae con 

semillas mucilaginosas. Esto es coherente con la hipótesis de Grime, según la cual los 

hábitats no perturbados y ricos en nutrientes deberían tener más especies con altas 

capacidades competitivas, en comparación con los hábitats perturbados y estresantes, 

como los entornos erosivos en el presente caso. 

La historia filogenética de la familia de la Cistaceae emerge desde el Mioceno 

hasta el Pleistoceno, y los cambios climáticos y ecológicos parecen haber provocado 
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diversos cambios en las características de las plantas, lo que indica que presiones 

similares podrían haber provocado cambios en el mucílago de semillas y en los rasgos 

competitivos. Analizando el carácter ancestral del género Fumana, se encontró una 

tendencia similar: que el carácter ancestral más probable es una fuerte secreción de 

mucílago con una tendencia hacia su pérdida en un grupo de especies más 

recientemente separadas. Sin embargo, tres de las cuatro especies del género Fumana 

con menor cantidad de mucílago se encuentran con frecuencia en entornos montañosos 

donde se esperaba una gran cantidad de mucílago, debido a la presión de la erosión del 

suelo y las ventajas de un mecanismo antitelecórico. Curiosamente, el cambio hacia una 

pérdida de mucílago de semillas en estas especies está conectado con un cambio en 

las capacidades de dispersión de la semilla en general, en las que se cambia de la 

dispersión por semillas a una dispersión del fruto entero, quedando la semilla retenida 

en el interior de la cápsula. El entorno de estas especies es muy rocoso, por lo que 

sospechamos que la dispersión de semillas dentro  de la cápsula les confiere más 

posibilidades de ser captadas en una grieta rocosa que a una sola semilla mucilaginosa, 

que podría quedar pegada a las piedras donde el establecimiento de plántulas sería 

imposible. En este caso, la pérdida de mucílago de semilla es provocada por otros 

factores que en el caso de la familia de la Cistaceae. 

Concluyendo, la familia Cistaceae ofrece un caso interesante para estudiar el 

origen y la función de mucílago de semillas desde el punto de vista ecológico y 

evolutivo. Nuestros resultados ofrecen evidencia sobre el carácter ancestral de esta 

característica y las fuerzas ambientales que le dieron forma. También encontramos 

apoyo para nuestra hipótesis de que la secreción de mucílago en las semillas de las 

especies de esta familia puede estar relacionada con una colonización exitosa de 

hábitats abiertos y frecuentemente erosionados. Encontramos que existe variabilidad 

fenotípica en la cantidad de mucílago secretada por las semillas en algunas especies y 

que esta variabilidad está relacionada con la capacidad de estas semillas para resistir a 

las fuerzas erosivas. Sin embargo, la heredabilidad de este rasgo permanece sin testar. 

Se necesita más investigación para confirmar esta tendencia en otras familias de 

plantas que viven en condiciones semiáridas, y también para profundizar en el 

conocimiento de la relación entre los diferentes tipos de mucílago, su historia evolutiva y 

sus funciones ecológicas. 

 

 



ABSTRACT 

22 

Conclusiones 

 

I. La secreción de mucílago reduce la remoción de semillas producida por los procesos 

erosivos que se originan en condiciones naturales. Estos procesos pueden ser: 

desprendimiento por gota de lluvia y remoción por la escorrentía de agua. 

 

II. El valor adaptativo de la secreción de mucílago depende de la especie, así 

encontramos una relación entre la cantidad de mucílago de semilla y la fuerza de la 

adhesión en el caso del impacto de gota de lluvia para Fumana ericifolia, pero no para 

Helianthemum violaceum. 

 

III. El valor adaptativo de las secreciones de mucílago parece depender del mecanismo, 

así encontramos que la pérdida de semillas por impacto de gota de lluvia fue 

proporcional a la cantidad secretada de mucílago de semilla, pero fue así no para el 

proceso de escorrentía de agua. 

 

IV. La cantidad de mucílago de semillas en algunas especies está influenciada por las 

condiciones en las que la planta madre vive, ya que se detectó una relación positiva 

entre la erosión que la planta madre experimenta y la cantidad de mucílago secretada 

por las semillas de estas plantas en Fumana ericifolia. A pesar de ello, el individuo y no 

la población de la que se recogió la semilla tuvieron la mayor influencia sobre la 

variación en la cantidad de mucílago producido.  

 

V. Los resultados indican que los mecanismos antitelecóricos, como la mixodiasporia, 

no se adaptan a los ambientes áridos porque no se ha detectado que un aumento en la 

aridez cause un aumento en la frecuencia de su aparición. Por otra parte, los 

mecanismos antitelecóricos parecen ser favorecidos por la escorrentía superficial, como 

se predijo por Ellner y Shmida (1981), ya que se detectó una mayor frecuencia de 

especies con mecanismos antitelecóricos en áreas con condiciones erosivas que en las 

zonas sin condiciones erosivas. 

 

VI. Los mecanismos de anclaje de las diásporas influyen fuertemente en la composición 

de las comunidades de especies afectadas por la erosión, así que la erosión intensa del 

suelo puede dar forma a la composición de las comunidades de especies. 
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VII. Las especies estudiadas fueron extensivamente depredadas por diversas hormigas 

granívoras en el área de estudio, ya que se encontró que flores, cálices, cápsulas y 

semillas fueron muy depredados durante el período de tiempo estudiado. El mucílago de 

semillas reduce significativamente la depredación por hormigas granívoras. Al comparar 

las semillas que fueron pegados a la tierra con su propio mucílago previamente 

secretado y las semillas sin mucílago, las probabilidades de supervivencia de las 

semillas fueron un 54 % más altos para R. officinalis, el 58% para F. ericoides y el 54 % 

para F. thymifolia. Una tasa mayor de supervivencia de semillas debe aumentar el índice 

de establecimiento de plántulas de las especies estudiadas. 

 

VIII. Las relaciones filogenéticas de la Fumana, basadas en la reconstrucción 

filogenética a partir de dos marcadores moleculares, confirmaron la monofilia. Los 

resultados no son compatibles con las divisiones infragenéricas tradicionalmente 

establecidas, pero confirman la presencia de dos grupos principales de especies. 

 

IX. Los tiempos de divergencia de Fumana tuvieron lugar sobre 16.97 Ma atrás (24-10 

Ma), con una divergencia de las principales clados entre el Mioceno medio y superior 

(15.61 a 8.8 Ma). 

 

X. Se realizó una reconstrucción de los estados ancestrales en nueve caracteres 

morfológicos en el género Fumana. Estados ancestrales significativos fueron 

encontrados en cinco casos (forma y márgenes de la hoja, tricomas glandulares, 

secreción de mucílago). Esto sugiere una adaptación al medio ambiente en el clima 

mediterráneo. 

 

XI. La secreción de mucílago en semillas en el género Fumana es el estado ancestral 

más probable, habiendo evolucionado de una fuerte secreción de mucílago a una forma 

reducida y casi ausente de mucílago en 4 de las 19 especies estudiadas. 

 

XII. La secreción de mucílago en semillas en el género de las Cistaceae parece ser el 

estado ancestral de este carácter. Además, el mucílago de las semillas parece haberse 

desarrollado de mucílago pectínico a un mucílago celulósico en el género Fumana, y a 

una pérdida total del mucílago de semillas en el género Cistus. 

 

XIII. Se encontraron dos patrones en especies de la familia de las Cistaceae:  
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1º. Fuerte secreción de mucílago de tipo celulósico, bajos valores de RGR, una 

reducida longevidad y tamaños grandes de la semilla en los géneros más 

antiguos (es decir, Fumana). 

2º. Ausencia de secreción de mucílago, un mayor RGR, semillas con mayor 

longevidad y un tamaño más pequeño de la semilla en las especies más 

modernas, es decir en el género Cistus. 
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Introduction 

 

In ripe seeds and fruits (diaspores), the seed coat or the pericarp acts, 

respectively, as a protection of the embryo against early desiccation and physical or 

biological damage. The seed coat or pericarp can also act as a regulator of water 

uptake, releasing seed germination in some species or maintaining seed dormancy by 

preventing water absorption and gas exchange in others. In a few cases, the seed coat 

has been reported to function as a reserve tissue during germination. Together to 

germination, in those species in which the seed or the fruit are the dispersal units, the 

seed coat or the pericarp can also play a role in seed dispersal by modifying its 

properties or developing specialized structures (Werker, 1997).  

An outstanding modification of the diaspore surface structure in many species of 

the Angiosperms is the presence of a mucilaginous layer. In these species, when the dry 

seed coat or the pericarp comes in contact with water, imbibes the outer cell wall 

completely and release a mucilaginous substance; a phenomenon known as 

myxospermy. Mucilage is composed of polysaccharides, mostly of pectins, and forms a 

gel like envelop around the diaspore that holds a considerable amount of water due to its 

hydrophilic nature. The seed weight as well as the volume increases significantly once 

the mucilage is released (Deng et al., 2012). Once it dries up, mucilage becomes stiff 

then gluing the diaspore to the surface on which it settles.  

There are differences in mucilage composition depending on the species. 

However, the main component of the mucilage of the pericarp and seed coat in all 

species are pectins. Most studies about the components of seed mucilage use seeds of 

Arabidopsis thaliana (Macquet et al., 2007; Moïse et al., 2005; Penfield et al., 2001; 

Usadel et al., 2004; Western, Skinner and Haughn, 2000), but there are also studies 

examining mucilage composition from basil’s seeds (Ocimum ssp. ;Anjaneyalu, Khan 

and Tharanathan, 1983; Anjaneyalu, Khan and Tharanathan, 1984; Khan et al., 1987), 

flax (Linum ssp. ;Fedeniuk and Biliaderis, 1994; Naran, Chen and Carpita, 2008) and 

plantains (Plantago ssp. ;Guo et al., 2009; Yamada et al., 1986).  

Formation and composition of mucilage 



INTRODUCTION 

26 

Pectins consist of a heterogeneous group of acidic polysaccharides characterized 

by the presence of galacturonic acid (GalA). To simplify, the pectin backbone comprises 

2 key types of polymer: rhamnogalacturonan I (RG I) and homogalacturonan (HG) 

(Haughn and Western, 2012). When analyzing the different sugars which are contained 

in the mucilage, significant amounts of neutral sugars, other than rhamnose (Rha), were 

detected, mainly galactose (Gal) and glucose (Glc), but also fucose (Fuc), arabinose 

(Ara), xylose (Xyl) and mannose (Man) [34–48% (w/w) of the total neutral and acidic 

sugars in mucilage] (Penfield et al., 2001; Usadel et al., 2004; Western et al., 2000). The 

polysaccharides and acidic qualities of mucilage make them very hydrophilic so in the 

presence of water they hydrate rapidly, thus forming super absorbent hydrogels (Deng et 

al., 2012; Fahn and Werker, 1972; Frey-Wyssling, 1976; Zwieniecki, Melcher and 

Holbrook, 2001). After water absorption, the mucilage breaks through the cell wall 

forming the mucilaginous envelope surrounding the seed. 

In addition to pectin, mucilage in some species also contains strands of 

elementary fibrils of cellulose of different widths embedded in the pectin envelope (Fahn 

and Werker, 1972; Kreitschitz and Vallès, 2007; Mühlethaler, 1950; Schnepf and 

Deichgräber, 1983). Mucilage can therefore be distinguished in “true” mucilage in most 

species consisting almost exclusively of pectins, and “cellulosic” mucilage, which, 

additionally to pectins, also contains cellulose fibrils. However, in some species the “true” 

mucilage can contain hemicellulose, as for example occurring in flaxseeds (Linaceae), in 

which together with the RGI, more than 50% of arabinoxylose was found. So these 

established definitions should be revised in future studies. 

Cellulosic mucilage seems to add an additional strength to the pectin mucilage 

layer and has been hypothesized that it prevents mucilage of being washed away from 

the seed coat or fruit pericarp making the mucilage more rigid and thus, resulting in an 

enhanced adhesion of the mucilage to the diaspore (Grubert, 1974; Harpaz-Saad et al., 

2011; Sullivan et al., 2011). This structural difference influence the degree of adhesion of 

diaspores to any surface, therefore helping their transport on the fur or feathers of 

animals, preventing seed removal by erosion and predation by animals and also helping 

the root to penetrate into the soil (Gutterman, Witztum and Evenari, 1967).  

Cellulosic mucilage has been found in various plant families amongst others in 

Asteraceae, Brassicaceae, Cistaceae, Euphorbiaceae, Lamiaceae and Polemoniaceae 

(genus Fumana, Grubert, 1974; Hedge, 1970; Kreitschitz and Vallès, 2007; Schnepf and 

Deichgräber, 1983; Vaughan and Whitehouse, 1971) while pure pectin mucilage has 

been reported amongst others for Linaceae, Plantaginaceae, Poaceae and Cistaceae 
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(genus Helianthemum, Fahn and Werker, 1972; Grubert, 1974; Hyde, 1970; Kreitschitz, 

Tadele and Gola, 2009; Mühlethaler, 1950). Simple staining reactions as assembled by 

Kreitschitz (2007) help to distinguish between both types of seed mucilage. Ruthenium 

red as well as safranin provides very strong staining reactions for pectin, in which 

ruthenium red typically reveals their homogenous structure. Staining with methylene blue 

or I in KI+H2SO4 confirms the presence of cellulosic strands in the pectin envelope.  

Seed mucilage production in Arabidopsis thaliana is part of an exceptional 

differentiation process during which the epidermal cells of the mature ovule grow, 

rearrange their cytoplasm, synthesize and secrete mucilage, and form a secondary cell 

wall (Western et al., 2000). After a phase of extensive mucilage production, mucilage is 

placed between the plasma membrane and the outer periclinal wall of the epidermis cell, 

resulting in the compression of the protoplast (Windsor et al., 2000). This reduction of the 

protoplast results in the formation of a volcano-shaped cytoplasmic column that lies 

under the mucilage pocket. Synthesis of a cellulosic cell wall to surround the cytoplasmic 

column results in the formation of the volcano-shaped columella (Western et al., 2000; 

Windsor et al., 2000; Western, 2012). 

The mucilage originates from specialized epidermal cells of the seed coat in most 

species (Fahn and Werker, 1972; Grubert, 1974; Grubert, 1981; Haughn and Western, 

2012; Werker, 1997; Western et al., 2000) but can also be present in both, epidermal 

and sub epidermal cells or only in the latter (Werker, 1997). Furthermore in some 

species of the Lythraceae, mucilage occurs only in a certain parts of the seed (Panigrahi, 

1986), in sacs within the seed coat, as in the testa of Sterculiaceae (Boesewinkel and 

Bouman, 1984; Corner, 1976) or the mucilage layer is discontinuous as cells with 

mucilage are scattered between cells without mucilage (Lamiaceae , Witztum, 1978). 

Also mucilage cells can be present at the tip of hairs, which can be unicellular as in 

Ruellia (Grubert, 1974; Haberlandt, 1965) or multicellular as in Blepharis ciliaris or 

Blepharis persica (Gutterman and Witztum, 1977; Gutterman et al., 1967). Furthermore, 

mucilage is also found in the pericarp of diaspores as in the Asteraceae, Lamiaceae, 

Piperaceae or Urticaceae (Grubert, 1974; Ridley, 1930; Werker, 1997). Mucilage, when 

the origin of the mucilage producing tissue varies between the testa and pericarp, can 

then be classified following Ryding (2001) into “myxodiaspory” as the condition of having 

mucilaginous diaspores, “myxocarpy” when the carpel or pericarp produces mucilage 

while “myxospermy” refers to the condition of mucilaginous seeds.  
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Mucilage release after wetting in seeds and fruits is a common feature in many 

families of Angiosperms. From bibliographical references we found that 1369 species of 

102 plant families (Table 1), belonging to 40 different orders have diaspores which 

secrete mucilage on wetting. Most of these species were found in the plant family of the 

Asteraceae (197 species), Lamiaceae (158), Acanthaceae (144), Fabaceae (86), 

Brassicaceae (81), Cistaceae (76), Euphorbiaceae (52), Polemoniaceae (42), 

Plantaginaceae (32), Malvaceae (30), Podostemaceae (20), Linaceae (19), Rosaceae 

(18), Araceae (16), Rutaceae (16), Arecaceae (16), Scrophulariaceae (16), Poaceae 

(15), Solanaceae(15), Violaceae (14), Nyctaginaceae (13) and followed by 89 further 

plant families which have been found to have at least between 1 and 10 species with 

mucilaginous seeds or diaspores.  

Additional to the bibliographic references, in 2010 I performed at the facilities of 

the Millennium Seed Bank- Royal Botanic Gardens, Kew, a survey of mucilage secretion 

by diaspores of 237 species belonging to 95 plant families, and found that 8.4% of these 

species (20 species), belonging to 9.5% (10) of the tested families secrete mucilage. 

When adding up the bibliographic information and my own survey, I found that a total of 

108 Angiosperm families have diaspores that secrete mucilage on wetting.  

Many plant families have seeds without mucilage secretion. Negative annotations 

were obtained by testing at least two species of as many genera as possible or detailed 

description in literature. Furthermore certain characteristics were classified to be 

incompatible to the production of seed mucilage (for example very big or winged seeds). 

The following list represents families for which no mucilage in seeds could be found:  

Alseuosmiaceae, Apocynaceae , Araliaceae, Aceraceae, Begoniaceae, 

Betulaceae, Bignoniaceae, Bixaceae, Burseraceae, Buxaceae, Canellaceae, 

Cannabaceae,Calycanthaceae, Calyceraceae, Chrysobalanaceae, Clethraceae, 

Commelinaceae, Coriariaceae, Cornaceae, Crassulaceae, Crossosomataceae, 

Cunoniaceae, Cyrillaceae, Daphniphyllaceae, Diapensiaceae, Dipterocarpaceae 

Droseraceae, Elaeagnaceae, Elaeocarpaceae, Elatinaceae, 

EleagnaceaeEscalloniaceae, Eucommiaceae, Fouquieriaceae, Gentianaceae, 

Geraniaceae, Griseliniaceae,  Gyrostemonaceae, Haemodoraceae, Haloragaceae, 

Hamamelidaceae, Hernandiaceae, Hydrangeaceae, Hippocastaneaceae, Icacinaceae, 

Origin and ancestry of mucilage 
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Liliaceae, Loasaceae, Magnoliaceae, Malpighiaceae, Marcgraviaceae, 

Melastomataceae, Meliaceae, Menispermaceae, Menyanthaceae, Molluginaceae, 

Monimiaceae, Myrtaceae, Nelumbonaceae, Ochnaceae, Oleaceae, Oxalidacea, 

Papaveraceae, Parnassiaceae, Passifloraceae, Phrymaceae, Pittosporaceae, 

Plumbaginaceae, Polygalceae, Polygonaceae, Proteaceae, Resedaceae, Salicaceae, 

Sapotaceae, Sarraceniaceae, Staphyleaceae, Stylidiaceae, Styracaceae, Surianaceae, 

Tamaricaceae, Theaceae, Theophrastaceae, Thymelaeaceae, Tiliaceae, Trapaceae, 

Ulmaceae, Vahliaceae, Verbenaceae, Vitaceae, Winteraceae. Resedacea. 

In a recent study, Yang et al. (2012b) proposed that seed mucilage must be an 

evolutionary advanced trait because they found a relation between the ordinal 

phylogenetic position of plant families and the frequency of myxodiasporic taxa they 

comprise. Furthermore, when they inspected the habitat of the species of the families 

with myxodiasporic species, they found a higher frequency of taxa living in dry habitats in 

phylogenetically advanced families (e.g. Asteraceae, Brassicaceae and Poaceae) than in 

basal ones (e.g. Nymphaeales and Magnolids in moist habitats). However, in their 

analysis Yang and colleagues (2012b) only account for the absolute numbers of 

myxodiasporic taxa, not for their relative numbers. There are families with a very large 

amount of species in contrast to families with a low number of species, thus it is much 

more likely to find references for myxodiaspory in those families. Also, in many cases, 

the larger families are usually those in which more research has been conducted 

resulting in a higher rate of mucilage discovery. Nevertheless, we propose, that, since 

mucilage secretion in seeds or fruits has been found in many plant species, families and 

orders all along the angiosperm family tree, and also there is paleontological evidence 

that seed mucilage existed as early as in the Middle Eocene (Smith and Stockey, 2003), 

the character of seed mucilage could be considered as ancestral. The character might 

have been lost in some branches of the clade as it has been conserved in others. This 

hypothesis could be proven at different levels of the angiosperm phylogenetic tree, 

comparing orders and families, or comparing genera and species within families. 

Furthermore, the ancestral character state of myxodiaspory in a certain group of plants 

could be tested, as well as a differentiation of the type of mucilage could be made, 

distinguishing between pectic and cellulosic mucilage. Even though the result of an 

ancestral analysis performed at a smaller level might not reveal the real origin of 

mucilage in the Angiosperm phylogenetic, it still opens many opportunities to discuss the 

actual function and a hypothetical former function of seed mucilage secretion in this plant 

family or genus.  
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Table 1: Bibliographic references for plant families in which species with seed or fruit 

mucilage secretion were found. 

 
Family 
 

Reference 
 

Family 
 

Reference 
 

Actinidiaceae (1) Acanthaceae  (2)(3)(4)(5)(6) 

Acoraceae (7) Adoxaceae (4)(8) 

Aizoaceae (4) Amaranthaceae (4) 

Amaryllidaceae (4) Anacardiaceae (4) 

Annonaceae (4) Apiaceae (4) 

Apocynaceae (4) Aquifoliaceae (4) 

Araceae (7)(4) Arecaceae  (4) 

Aristolochiaceae (1) Asteraceae (9) 
(10)(11)(4)(12)(13)(14) 
(15)(16) 

Balsaminaceae (10)(4) Berberidaceae (4) 

Bignoniaceae (4) Bixaceae (4) 

Bombacaceae (17) Boraginaceae (4) 

Brassicaceae (10)(18)(19)(20) 
(21)(4)(12) 
(22)(23)(24)(25) 
(8)(26)(27) 
(28)(29) 

Burseraceae (4) 

Cactaceae (4) Campanulaceae (4)(1) 

Capparaceae (4) Caprifoliaceae (4)(8) 

Caricaceae (4) Caryophyllaceae (4) 

Casuarinaceae (1) Celastraceae (4) 

Cistaceae (4)(30)(12)(31) 
(32)(8) 

Combretaceae (4) 

Connaraceae (4) Convolvulaceae (4) 

Crassulaceae (1) Cucurbitaceae (4) 

Cyperaceae (4) Dilleniaceae (4) 

Dioscoreaceae (4) Dipsacaceae (4) 

Ebenaceae (4) Ericaceae (4) 

Euphorbiaceae (33)(34)(4)(35) 
(36)(8)(28) 

Fabaceae (4)(37) 

Frankeniaceae (34) Garryaceae (1) 

Geraniaceae (37) Gesneriaceae (4) 

Goodeniaceae (4) Hydrocharitaceae (7)(4)(37) 

Hydrostachyaceae (4) Iridaceae (4) 

Juncaceae (4)(37)(8) Lamiaceae (10)(38)(3)(18)(4)(39) 
(14)(40)(8)(28) 

Lauraceae (41)(4) Lentibulariaceae (4) 

Liliaceae (4) Limnanthaceae (4) 

Linaceae (10) 
(18)(42)(43)(4) 
(23)(14)(44)(37) 
(8)(26) 

Loganiaceae (4)(1) 

Loranthaceae (45)(4)(12) Lythraceae (4)(37) 

Malvaceae (4) Marantaceae (4) 

Martyniaceae (4) Menispermaceae (4) 

Mimosaceae (12) Moraceae (4) 
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Musaceae (4) Myrtaceae (4) 

Nyctaginaceae (7)(4)(34) Nymphaeaceae (4) 

Oleaceae (4) Onagraceae  (4)(28) 

Orchidaceae (4) Oxalidaceae (4) 

Palemoniaceae (8) Pandanaceae (1) 

Papaveraceae (4) Passifloraceae (4) 

Piperaceae (37) Plantaginaceae (4)(12)(46)(23)(14)(47) 
(37)(8)(26)(28) 

Poaceae (4)(48)(14) Podostemaceae (37)(4) 

Polemoniaceae (49)(34)(4)(50) 
(37) 

Ranunculaceae (4)(1) 

Rhamnaceae (4) Rosaceae (18)(4) 

Rubiaceae (4) Rutaceae (4) 

Salicaceae (4) Salpindaceae (4) 

Salvadoraceae (4) Sapindaceae (4) 

Sapotaceae (4) Saxifragaceae (33)(4) 

Scrophulariaceae (4)(37)(8) Simaroubaceae (4) 

Solanaceae (4)(8) Sterculiaceae (51)(37) 

Theophrastaceae (4) Urticaceae (4)(37)(8) 

Verbenaceae (8)(4) Violaceae (10)(8) 

Vitaceae (4) Zygophyllaceae (4)(4)(37) 
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2. Gutterman Y, Witztum Y, Evenari M. 1967. Israel Journal of Botany 16: 213-234 
3. Bouman F, Meense ADJ, Marley RM, Reynolds T. 1992. In: Advances in Labiatae Science. RM 

Harley, T Reynolds (Eds.). Kew, Royal Botanic Gardens, pp. 193-202 
4. Grubert M. 1974. Acta Biologica Venezuelica 8: 315-551 
5. Schnepf E, Deichgräber G. 1983. Protoplasma 114: 222-234 
6. Witztum Y, Gutterman Y, Evenari M. 1969. Botanical Gazette 130: 238-241 
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and Oxford 
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18. Cerdà A, García-Fayos P. 2002. In Aportaciones a la geomorfología de España en el inicio del tercer 

milenio : actas de la IV Reunión Nacional de Geomorfología, Madrid, 17-20 septiembre 2000, ed. A 
González Pérez, J Vegas Salamanca, MJ Machado. Madrid, Instituto Geológico y Minero de España, 
2000, pp. 235-240 
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21. Garnock-Jones PJ. 1991. New Zealand Journal of Botany 29: 71-82 
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Several different functions have been proposed for myxodiaspory which can be 

grouped under two main hypotheses. One related to seed germination and the other one 

related to seed dispersal (Cerdà and García-Fayos, 1997; García-Fayos and Cerdà, 

1997; Grubert, 1974; Gutterman and Shem-Tov, 1997a; Huang, Gutterman and 

Osborne, 2004; Ridley, 1930; Ryding, 2001; Van der Pijl, 1972; Witztum, Gutterman and 

Evenari, 1969; Zaady, Gutterman and Boeken, 1997). 

As mucilage absorbs rapidly a big amount of water and retains it during a certain 

time period, it has been hypothesized that mucilage should serve as a way to absorb and 

store water for germination (Fahn and Werker, 1972; Gutterman and Shem-Tov, 1997b; 

Kreitschitz et al., 2009; Sun et al., 2012; WenNi et al., 2011; Young and Evans, 1973). 

This has been studied by Gat-Tilman (1995), who associates the large mucilaginous 

envelope of the Carrichtera annua seeds which the possible ability to "sense" water and 

regulate germination. Harper (1966) justify this capability of the mucilage to germination 

to the facilitation of water diffusion from the substrate to the seed by increasing the 

number of pathways and its surface area. It is hypothesized that this enlarged area of 

contact between the diaspore and the soil furthermore minimizes water loss of the seed 

(Evans, Young and Hawkes, 1979; Gutterman et al., 1967; Hadas, 1982; Mott, 1974; 

Witztum et al., 1969). A general accelerated germination by the presence of the 

mucilage envelope has been described for Anastatica hierochuntica (Friedman and 

Function of mucilage 
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Stein, 1980; Gutterman and Shem-Tov, 1997b). Furthermore, mucilaginous seeds of A. 

sphaerocephala were found to show less sensitivity to increasing osmotic potential 

(PEG) and salinity (NaCl) stress than demucilaged seeds (Yang et al., 2011).  

Contrarily, several authors also found that the presence of mucilage inhibited the 

germination in some other species (Atwater, 1980; Edwards, 1968; Fitch, Walck and 

Hidayati, 2007; Heydecker and Orphanos, 1968; Witztum et al., 1969). Excess water in 

the surrounding of seeds of Blepharis persica and Spinacia oleracea was found to 

prevent germination (Heydecker and Orphanos, 1968; Witztum et al., 1969). It was 

interpreted as an evidence of shortage of oxygen, since in these species seed 

germination could be enhanced strongly by the removal of the mucilage coat or by 

increasing oxygen concentration in the surrounding water (Heydecker and Orphanos, 

1968; Witztum et al., 1969). Likewise, the increase in mucilage thickness in seeds of 

Lesquerella perforata and L. stonensis (Brassicaceae) correlated with a reduction in 

germination rate (Fitch et al., 2007). Witztum (1969) and Gutterman (1996) interpreted 

this phenomenon as a mechanism of preventing seed germination in those arid habitats 

where the first rain predictably does not provide enough water for a successful 

development and therefore may not be the best opportunity for plant establishment. 

Seed mucilage not only secretes under very humid conditions but can also be 

secreted under light rain and even under night dew, and also it can be rehydrated after 

drying. This might not trigger germination but can promote other processes in the 

embryo, such as repair and restoration of the DNA (Huang et al., 2008; Osborne, Sharon 

and Ben-Ishai, 1980). Seeds deposited on the soil surface under desert conditions can 

undergo strong insolation. It has therefore been discussed that seed mucilage improves 

seed survival under strong climatic conditions as the retained water enhances DNA 

repair of the embryo of the seed. In this context, the DNA of seeds of two Artemisa 

species were artificially damaged via radiation and the influence of the mucilage 

envelope in repairing the DNA analyzed (Huang et al., 2008). They found that seeds with 

intact mucilage coat showed DNA restoration while demucilaged seeds did not (Huang et 

al., 2008).  

Once germinated, very young seedlings are susceptible to many hazards such as 

desiccation (Miles, 1973), pathogens (Augspurger, 1984) or competition from existing 

vegetation (Aguilera and Lauenroth, 1993). There are diverse authors who proposed that 

mucilage in seeds influence seedling establishment positively, as for example Huang 

(2004), who states that the presence of the mucilage envelope considerably increase the 

endurance of the seedling of Artemisia spaerocephala and A. monosperma under desert 
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environments. Garwood (1985) found that in fruits of Cavanillesia platanifolia 

(Bombacaceae), a copious mucilage layer was necessary for a successful expansion of 

the cotyledons and later seedling growth when watering was infrequent. Additionally, 

mucilage reduced the degree of seedling wilting thus increasing the survival probabilities 

of the seedling under drought conditions (Garwood, 1985). 

It has also been suggested that some organic compounds present in the 

mucilaginous envelop of the seed can be used by the embryo for its development 

(Huang and Gutterman, 1999), since seedlings from seeds with intact mucilage layer in 

Artemisia monosperma had greater vigor than those without it. Yang (2012a) shows that 

polysaccharides (or its derivatives) of seed mucilage are absorbed by roots and 

subsequently transported to shoots of seedlings, which provides direct evidence for the 

absorption of mucilage-derived molecules in early seedling growth. Also mucilage as 

nutrient reservoir has been proposed for Capsella bursa-pastoris, hypothesizing that it 

attracts soil organism, contains proteases and absorbs amino acids (Barber, 1978).  

The functions of myxodiaspory have also been frequently discussed in relation to 

seed dispersal as the hydrated mucilage coat is extremely sticky, and, once it dries up, 

works effectively as glue. Two main roles have been recognized for it, first, regarding to 

the adhesion of the diaspore to the fur and feathers of animals, functioning as a dispersal 

mechanism (telechory), and second, regarding to its power of gluing the seed to the 

ground, thus working as anti-dispersal mechanism (antitelechory).  

The first role claimed for the sticky character of mucilage is its relation to the long 

distance dispersal ability of seeds (Grubert, 1974; Ridley, 1930; Ryding, 2001; 

Swarbrick, 1971; Van der Pijl, 1972). Euphorbia species in Hawaii have been reported to 

be dispersed between islands attached to the bird’s wings caused by the mucilage 

secretion of their seeds (Baiges, Espadaler and Blanché, 1991; Carlquist, 1966). 

Furthermore, seeds of Anastatica hierochuntica in the Negev Desert are eaten by birds 

(Phasianidae) but at the same time they are likely to adhere to the bird's body and then 

dispersed to large distances (Friedman and Stein, 1980). According to Weberling (1968) 

the long distance dispersal of certain Polemoniaceae (Glieae and Polemoniae) can be 

interpreted as the result of being transported glued to migrant animals. When 

mucilaginous fruits and seeds are being consumed by predators, not only can seeds 

stick accidentally to the animal and be dispersed, but it has also been suggested that the 

mucilage that covered the seed or fruit provides lubrication for passage through the 

digestive tract of animals. The germinability of eaten seeds is inversely related to the 

time they the pass into the digestive track of animals (Verdú and Traveset, 2004) and 
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then early dropping avoids seed damage at the same time that it assures long distance 

dispersal. This has been described for seeds of Cecropia, whose fruits are a main 

component in the bat diet and whose mucilage cells of the seeds are often found intact in 

their feces (Lobova et al., 2003). Feeding on seeds that are able to secrete mucilage has 

also been observed in chukar partridges (Alectoris gracea), which consumes seed of 

yellow flowered pepperweeds (Lepidium perfoliatum), tumble-mustard (Sisymbrium 

altissimum) and tansymustard (Descurainia pinnata; Savage, Young and Evans, 1969). 

Seed mucilage can furthermore work effectively as antitelechoric mechanism. 

Van Rheede van Oudtshoorn and van Rooyen (1999) describe diverse forms of 

antitelechoric mechanisms for plants inhabiting dry habitats but they found only two 

mechanisms in which the seed itself is actually restricting their secondary dispersal in 

space due to soil adhering mechanisms (myxospermy and trypanospermy; Van Rheede 

van Oudtshoorn and Van Rooyen, 1999). Trypanospermic diaspores have the ability to 

bore their diaspores into the soil because drilling mechanisms of the awn, pappus or 

other seed or fruit coat structures (Stamp, 1984) while myxospermic diaspores glue them 

to the ground (Grubert, 1974).  

Antitelechoric mechanisms have been normally related to the climatic conditions 

where plants live and have more frequently been reported in arid and semiarid 

environments than in mesic habitats (Ellner and Shmida, 1981; Jenny and Halfmann, 

1993; Ryding, 2001; Vanrooyen, Theron and Grobbelaar, 1990). The theory of the 

mother site has been established (Zohary, 1937), hypothesizing that in arid and semiarid 

habitats the vicinity of the mother plant usually has favorable and appropriate conditions 

for seedling growth. It has been argued that long distance dispersal for species living in 

those environments carries very little advantage as favorable conditions are close to the 

mother plant (mother-site) and significant variations in the climate and biotic environment 

are usually found farther away than the dispersal distance that the seed can achieve 

(Ellner and Shmida, 1981). In these circumstances, mucilage secretion adhering the 

seed on crusted soil has been proven to favour establishment in Helianthemum 

squamatum, in which the proximity to a seed source is the main predictor for seedling 

emergence (Escudero et al., 1999). 

Arid and semiarid environments present diverse difficulties for plant 

establishment. Soil erosion occurs frequently on steep slopes (Poesen and Hooke, 1997) 

and intense rainfalls are often concentrated into a small number of intense events in 

Mediterranean and semiarid environments (Rodriguez-Iturbe and Porporato, 2004; 

Thompson, 2005). Seeds deposited after dispersal on the soil surface of steeped slopes 
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are then at a risk of being removed downslope with runoff water towards the lower parts 

of the slopes or in the valley bottoms where they can get buried (García-Fayos et al., 

1995) or be affected by a stronger competition of seedlings than on the upper or medium 

parts of the slopes (Cantón et al., 2004). Therefore, on semiarid slopes the removal of 

diaspores by soil erosion can be a major difficulty to overcome in low competitive plants 

and, in consequence, anchoring the diaspore to the ground near the mother plant may 

be a favourable adaptation to avoid strong competition. Myxodiaspory has been proven 

to reduce seed removal in semiarid and arid environments (Cerdà and García-Fayos, 

2000; Friedman and Orshan, 1975; García-Fayos and Cerdà, 1997; Gutterman, 1990; 

Hsiao and Chuang, 1981; Lu et al., 2010; Sun et al., 2012) but neither the role of this 

mechanism in the assembly of plant communities of eroded areas nor its adaptive 

character has been studied.  

Gluing the seed to the ground therefore not only hinders further movement by soil 

erosion, but additionally prevents massive seed collection by animals (Fuller and Hay, 

1983; Gutterman, 2003; Gutterman and Shem-Tov, 1997a; Huang, Gutterman and Hu, 

2000; Sun et al., 2012; Yang et al., 2013). Harvester ants are the main seed predators in 

pastures, steppes and scrublands in the semi-arid areas of the Mediterranean basin, 

mainly during the late spring and summer (Azcárate et al., 2005; Diaz, 1994; García-

Fayos and Gasque, 2006; López-Vila and García-Fayos, 2005). Seed collection by 

granivorous animals was significantly reduced when seeds were glued to the soil or its 

seed mass incremented due to adhered soil particle on the mucilage coat, which at the 

same time provoked a camouflaging effect for the seed (Fuller and Hay, 1983; 

Gutterman and Shem-Tov, 1997a; Young and Evans, 1973). Comparing the predation of 

loose, dry fruits to adhered achenes of Artemisia monosperma, the loose ones were 

collected much easier and faster than the glued ones (6 hours vs. 3 days; Huang et al., 

2000). Similar results were found for seeds of Salvia columbariae, in which seed 

collection by harvester ants was reduced significantly by 94% for camouflaged seeds 

(seeds with mucilage secreted and then coated in sand; Fuller and Hay, 1983). However, 

those studies run for a very short time while long time studies over several weeks or a 

long germination period of the seed are still lacking.  

Mucilage secretion can probably not be reduced to only one single function and 

conflicting ideas about its ecological role may depend on the plant species studied. 

However, in some plant groups the influence of mucilage on the germination ability of 

seeds could be excluded if other seed characteristics, such as long dormancy, also 

apply. There are many species with physical dormancy in which the primary reason for 
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the delay of germination is the lack of permeability of the seed (or fruit) coat to water. 

Before these seeds can germinate, the impermeable layer needs to be broken or at least 

opened so water and gases can pass (Rolston, 1978; Werker, 1980; Werker, 1997); as 

evidenced since in species with physical dormancy the germination is promoted by the 

mechanical or chemical damage of the seed coat (Baskin and Baskin, 1998). Physical 

dormancy is present in at least 15 Angiosperm families, amongst others in 

Anacardiaceae, Bombaceae, Cistaceae, Fabaceae, Malvaceae and Rhmnaceae (Baskin 

and Baskin, 1998). In the species of these families, seed mucilage seems therefore to be 

not very relevant for germination and it would be more likely that mucilage secretion 

played a function related to seed dispersal.  
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In the present work we want to critically test the hypothesis that seed mucilage 

secretion in plants with hard coated seeds can work as an antitelechoric mechanism, 

gluing the seeds to the ground and hindering further movement. We assume that it is 

unlikely that mucilage secretion is related to germination functions in plant species in 

which the seed coat is extremely hard and whose seeds show physical dormancy or 

deep physiological dormancy with long periods of stratification before germination (sensu 

Baskin and Baskin, 1998).  

We hypothesize that seed mucilage secretion should be considered an 

adaptation to the hazards that erosive conditions and seed predation by granivorous ants 

impose to plants that inhabits open dry habitats, such as semiarid and Mediterranean 

shrubland. Because of the trade-off that exists between colonizing stressful habitats and 

colonizing high competitive environments (Grime, 2001), plant adaptations to one of 

these conditions must decrease the ability of these plants to colonize successfully in the 

other conditions. Therefore, we predicted that if mucilage secretion characterizes plants 

that colonize stressful habitats, these plants also must have lower competitive ability 

than phylogenetic related plants that cannot secrete mucilage.  

We also aim to study the evolutionary history of seed mucilage secretion. Since 

evidences are contradictory about the ancestral character of seed mucilage secretion 

(see above) we aim to analyse it in a whole family. We choose the family Cistaceae 

because it is important component in the Mediterranean flora, where a part of this family 

radiated recently (Guzmán, Lledó and Vargas, 2009; Guzmán and Vargas, 2009), 

because a heterogeneous occurrence of mucilage character along the family has been 

found and because their seeds present physical dormancy. 

 

Along the thesis we apply diverse approaches and focus to tests these hypotheses: 

 

1) We test if mucilage secretion by seeds prevents them to be removed by erosive 

processes (Chapter 1). We approached it experimentally by examining whether an 

increase in the amount of mucilage secreted by seeds reduces its possibilities of being 

removed by drop impact and by runoff. Likewise, we also evaluated the consequences of 

the maternal environment on the amount of mucilage secreted by seeds by comparing 

Hypothesis  
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seed mucilage of seeds collected from plant individuals living in contrasted erosive 

environments.  

2) We test the hypothesis of Ellner and Shmida (1984) that in semi-arid environments 

antitelechoric dispersal mechanism is not an adaptive trait of plants to the increase of 

climate aridity or its constraints, but rather a side-effect to other forces such as erosion or 

seed predation (Chapter 2). To test it, we analyzed, at the plant community level, the 

joint effect of increasing aridity and plant erosion on the proportion of plant species with 

mucilaginous seeds. 

3) To test the effect that mucilage secretion has on reducing seed collection by 

granivorous ants, we compared the ratio of seed removal by ants between seeds glued 

to the ground with its own mucilage and seeds of the same species without mucilage 

secreted (Chapter 3).  

4) To test if mucilage secretion by seeds in the genus Fumana is a derived character 

state, we reconstructed the molecular phylogeny of the genus based on two plastid and 

one nuclear marker (matK, trnTL and ITS) onto which the appearance of seed mucilage 

and other morphological characters were drawn and analyzed (Chapter 4).  

5) To study the evolutionary history of the character of seed mucilage in the family of the 

Cistaceae we drawn the appearance of seed mucilage along the already constructed 

phylogenetic tree by Guzmán (2009). To test the hypothesis that mucilage secretion in 

this family is related to open and stressful habitats we analyze the association of 

mucilage secretion character to the ability of plants to colonize high competitive habitats 

under experimental conditions (Chapter 5).  
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Abstract 

 Diaspores of many plant species inhabiting open vegetation in semiarid 

environments secrete mucilage after wetting (myxospermy) that glues the diaspores to 

the ground and prevents movement when the mucilage dries. In the present paper we 

test whether mucilage secretion can be considered a selective response to soil erosion 

in plant species inhabiting semiarid environments. 

We relate the amount and type of mucilage secretion by seeds of Helianthemum 

violaceum and Fumana ericifolia (Cistaceae) with the number of raindrop impacts 

needed to remove these seeds after gluing them with their own mucilage to the ground 

and the time that these seeds resist water runoff without detaching. We also compare 

the amount of seed mucilage production by plants growing in habitats without erosion 

and plants affected by severe erosion by fitting mixed effect models.  

Our results show an important phenotypic variation in the amount of mucilage 

secretion in both species; but suggest that the effect of mucilage secretion in the rate of 

seed removal by erosion is species and mechanism dependent. For F. ericifolia, the 

amount of mucilage secreted by the seeds is directly proportional to their resistance to 

raindrop impacts and is positively related to the intensity of the erosive processes that 

the plants experience. Nevertheless, all the seeds resist the force of runoff during 60 

minutes irrespective of the amount of mucilage they produce. In H. violaceum, mucilage 

secretion per se, and not the amount of mucilage produced by the seeds has an effect 

on the rate of seed removal by erosive processes. Furthermore, cellulosic fibrils were 

found only in the mucilage of F. ericifolia but not in H. violaceum. Overall, our results only 

partially support the hypothesis that a selective response to soil erosion exist.  
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1. Introduction 

There is consensus that the cause of natural selection is any environmental or 

biotic agent that results in differential fitness among phenotypes (see MacColl, 2012), for 

a recent review). However, current understanding of the causes of natural selection is 

still poor and it is necessary to deepen our knowledge of selective agents by focussing 

on the structure and consequences of ecological variation on the traits we suspect are 

under selection (Siepielski, DiBattista and Carlson, 2009). We can tackle this by 

discovering how selection changes the phenotypic distribution of traits in nature and why 

selection operates in this way (Wade and Kalisz, 1990). 

The light environment, water conditions, temperature, mineral nutrition, 

competition, herbivory, plant pathogen interactions, pollinator and dispersal services, and 

perturbations have been frequently cited as selection agents for plants (Gurevitch, 

Scheiner and Fox, 2002; Herrera and Pellmyr, 2002; Niklas, 1997; Pausas and Keeley, 

2009). However, soil erosion has not yet been considered an agent of selection for 

plants and is usually only viewed as an environmental problem (Boardman, 2006). Arid 

and semi-arid regions of the world are characterised by sparse vegetation cover and in 

these regions most of the annual precipitation is concentrated into a small number of 

high intensity events, which have a high potential for soil erosion (Rodriguez-Iturbe and 

Porporato, 2004; Thompson, 2005; Whitford, 2002). Seeds resting on the soil surface of 

hillslopes after seed dispersal are at risk of losing opportunities for plant recruitment due 

to erosive processes that move them downhill, where they can become buried (García-

Fayos et al., 1995) or suffer strong competition with more competitive seedlings or from 

pre-established vegetation (Cantón et al., 2004). Under these circumstances, anchoring 

to the ground surface can help seeds of stress tolerant and less competitive plant 

species to resist removal by erosive processes and therefore increase their fitness. 

There are two main mechanisms by which soil erosion proceeds: soil particle 

splash detachment by raindrops and detachment and transport of soil particles by runoff 

for surface wash along hillslopes (Lal, 2001). The severity of these soil erosive 

processes depends on the characteristics of the rainfall (duration, intensity, amount, drop 

size), on the physical and chemical properties of the soil (aggregation, infiltration, and 

hydraulic conductivity), and on the topography of hillslopes (angle and length of the 

slope, Thornes, 1985). Similarly to what happens with the mineral particles of soil, the 

susceptibility of seeds to be removed from the ground by erosion mainly depends on 

seed size (García-Fayos and Cerdà, 1997), but also on characteristics such as shape, 
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presence of appendages ,and the ability to secrete mucilage from the seed coating or 

the pericarp (myxospermy; García-Fayos, Bochet and Cerdà, 2010; Wang et al., 2013). 

Once the myxospermic diaspores reach the soil surface, light rain as well as dew 

or even ground humidity, are enough to induce mucilage secretion in seconds or minutes 

(Meike Engelbrecht personal observation; Huang et al., 2008), and after drying ,it 

anchors the seed to the surface it is resting on (Van Rheede van Oudtshoorn and Van 

Rooyen, 1999). Two main types of mucilage have been recognized: “true” mucilage, 

consisting of almost exclusively of pectin, which occurs for instance in the genus Linum; 

and “cellulosic” mucilage, consisting of pectin and cellulose fibrils, which occurs in the 

genus Salvia and Artemisia. Pectin increases the amount of water and viscosity around 

the seed coat and once it dries result in adherence of the seed coat to the surface it rest 

on. Cellulose fibrils increase the amount and strength of the contact between the seed 

and the surface, thus enhancing the anchoring power of the pectin (Grubert, 1974; 

Gutterman, Witztum and Evenari, 1967; Kreitschitz, 2009; Werker, 1997; Witztum, 

Gutterman and Evenari, 1969). 

Mucilage secretion by diaspores was initially related to seed dispersal functions in 

plants inhabiting semiarid environments (Friedman and Stein, 1980; Zohary, 1962). 

However, other functions as protecting seeds from predation, flooding, and the regulation 

of germination have been demonstrated (Gutterman and Shem-Tov, 1996; Gutterman 

and Shem-Tov, 1997a; Witztum et al.,1969). Several authors then proved that mucilage 

secretion significantly hinders seeds from predation by granivorous ants (Engelbrecht 

and García-Fayos, 2012; Fuller and Hay, 1983; Gutterman and Shem-Tov, 1997a) and 

reduces the probability of seed removal by soil erosion, especially small seeds (Ellner 

and Shmida, 1981; García-Fayos et al., 2010; García-Fayos and Cerdà, 1997). Other 

studies found that the proportion of plant species whose diaspores are myxospermic 

varies among plant communities that differ in the severity of soil erosion and also that 

this proportion correlates with those soil properties linked to runoff generation (García-

Fayos, Engelbrecht and Bochet, 2013). Likewise, other authors showed that mucilage 

secretion plays a role in the germination of seeds in semiarid environments by increasing 

the water retention of seeds and increasing the seed-to-soil-particle contact (Gutterman 

and Shem-Tov, 1997b; Huang et al., 2008; Lu et al., 2010). 

Recent reviews have examined the functions proposed for mucilage secretion in 

diaspores (Kreitschitz, 2009; Western, 2012; Yang et al., 2012) and from them emerge 

the view that the adaptive value of mucilage may vary between plant lineages and may 

respond to several not mutually exclusive forces – so hindering the establishment of 
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general patterns. Away to disentangle the role of mucilage secretion of a plant species or 

a plant lineage is to analyse the variation in the amount of mucilage secreted by 

diaspores along gradients of selected environmental factors that presumably affect this 

amount (i.e. gradients of increasing climatic drought crossed with gradients of 

increasingly severe soil erosion). A complementary or alternative approach would be to 

analyse the variation in mucilage secretion in plants whose seeds have traits that 

simultaneously preclude some of the possible functions of mucilage. For example, in the 

case of plants whose seeds show physical dormancy or deep physiological dormancy 

(sensu Baskin and Baskin, 1998) and then require long periods of cold or warm 

stratification before germinating, it is unlikely that the role of mucilage secretion is related 

to enhance the rate or the speed of germination. Similarly, under sunny conditions in 

temperate and tropical climates the water captured by the mucilage is lost less than one 

hour after rainfall due to evaporation (Grubert, 1981; Ryding, Harley and Reynolds, 

1992), thus making improbable the use of this water for germination.  

To test the hypothesis that myxospermy is an adaptive response of plants to soil 

erosion it is necessary to prove that: (i) the amount of mucilage produced per seed is 

positively related to the reduction in the rate or in the distance of seed removal by soil 

erosion (mechanism selection); and (ii) increasing the intensity of soil erosion in the 

environment where plants develop produces a positive phenotypic selection at the 

population level in the amount of mucilage secretion (character selection) with other 

potential selective forces being equal. 

In the present paper, we analyse the relation between mucilage secretion by 

seeds and the intensity of soil erosion processes in several populations of Fumana 

ericifolia and Helianthemum violaceum (Cistaceae) and discuss the results at the light of 

the type of mucilage secreted by these species. Cistaceae species are characteristic of 

open plant communities in dry and sunny temperate habitats and their seeds have hard 

seed coats that impede germination until it is removed or scarified (Baskin and Baskin, 

1998; Ferrandis, Herranz and Martínez-Sánchez, 1999; Guzmán and Vargas, 2009; 

Herranz, Ferrandis and Martínez-Sánchez, 1999; Moreira et al., 2010; Thanos et al., 

1992; Thompson, 2005). In the family of the Cistaceae, pectin has been supposed to be 

the main component of mucilage, but for Fumana laevipes cellulose components have 

been described as well (Grubert, 1981). 
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2. Material and Methods 

2.1 Type of seed mucilage 

To detect differences in the type of seed mucilage of F. ericifolia and H. 

violaceum we observed wetted seeds of both species under the binocular. Chemical 

staining was used to distinguish pectin mucilage from cellulose mucilage. We therefore 

used methylene blue (0.1% solution) to detect the cellulose content, (Kreitschitz, 2009; 

Kreitschitz and Vallès, 2007) and ruthenium red was used to stain the pectin part of the 

mucilage red (Hanke and Northcote, 1975; Western et al., 2001; Western, Skinner and 

Haughn, 2000). 

 

2.2 Seed resistance to drop impact  

To measure the resistance to direct drop impacts of mucilaginous seeds adhered 

to the ground, we applied the water drop test method to fully developed seeds of 

Helianthemum violaceum and Fumana ericifolia. This method simulates the rain drop 

impact that seeds undergo in the field during storms and is usually used to test the 

stability of soil aggregates to erosion forces (Imeson and Vis, 1984). Seeds of both 

species were equally collected from the different study areas (see Section 1.4) and then 

mixed. We measured mucilage production by submerging 83 fully developed seeds of F. 

ericifolia and 104 fully developed seeds of H. violaceum in distilled water until the 

maximum mucilage production of each seed was reached (in less than 45 minutes). 

Although the technique may not reflect the exact natural conditions that seeds 

experience, this method gives us an idea about the amount of mucilage produced by 

each seed and permits us to homogenise the experimental conditions. High resolution 

photos were taken with an incorporated camera in a binocular (Leica LED 2500 80x) at 

an augmentation of 1 x 80. The projected area of the seed surface and the mucilaginous 

layer were measured with the image analysis software SigmaScan Pro Version 5 (1999). 

Then, seed surface was used as a proxy of seed size and relative mucilage production 

per seed was then calculated as the quotient of mucilage area by seed area.  

After taking the photo, each seed was immediately placed on a wet filter paper (2 

mm thick) and completely air-dried. The filter paper with the seed was placed on an 

inclined plastic surface (20º angle) and the number of drop impacts required to detach 

each seed from the filter paper was counted. The inclination angle was selected because 

it is in the range of the slope angles where plant populations of highly eroded habitats 
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develop (see Section 1.4). Drops were produced by a pipette with a water supply system 

with a constant head and fell on each seed with a frequency of approximately one drop 

per second from a height of 1 m. Mean drop size diameter (D50) was 5 mm which is in 

the range of rainfall drops during medium intensity storms with a return period of around 

five years in eastern Spain (Arnaez et al., 2007; Cerdà, Garrigós and García-Fayos, 

2002). The number of direct drop impacts needed to detach the seeds was evaluated 

separately for each species (F. ericifolia and H. violaceum) as they varied significantly in 

seed size and absolute and relative mucilage production (Table 1). Linear and quadratic 

regression models were used to fit the relation between the relative mucilage production 

as well as seed size with the number of drop impacts needed to detach the seeds. 

Statistical analyses were performed with the SPSS statistical package v. 19.0 and 

residuals were checked for normality. 

 

2.3 Seed resistance to runoff 

To simulate runoff, water flux experiments were conducted under laboratory 

conditions with a 250 cm long and 30 cm wide methacrylate flume modified from 

Poesenet al. (1999).The slope of the flume was set to an inclination of 25º and tap water 

was used to generate runoff. The strength of the overland flow caused by runoff was 

estimated by means of the flow shear stress, which was calculated following the 

equation described in De Baetset al. (2007). In the experiments, a flow shear stress of 

5Pa was applied because it was the minimum flow strength under which seed removal 

was observed and, at the same time, it is in the range of values that produces 

detachment and transport of particles on hillslopes– but is still below the critical flow 

strength that forms rills and gullies (1.8 to 10.6 Pa in Poesen et al., 2003).The return 

period of rainfall events with this intensity in western Mediterranean semiarid 

environments is 10 years, but for some coastal regions this period is shorter (Grove and 

Rackman, 2001). A thin layer of sand particles between 0.02 and 1 mm, with the major 

proportion between 0.25 and 0.5 mm, was previously glued to the surface of the flume 

channel to provide roughness approximating natural conditions. 

The quantity of mucilage in seeds was measured to establish a relation between 

the strength of seed adherence and the resistance to runoff. Fully developed seeds of H. 

violaceum and F. ericifolia collected in the study areas (see Section 1.4 for details) were 

moistened to provoke the secretion of mucilage and then photographed to measure the 

relative mucilage production and seed size as described in Section 1.2. Ten seeds were 
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then placed on 50 x 30 x 0.5 cm plastic sheets over a thin layer of the same sand 

material glued to the bottom of the flume. Seeds were arranged along a horizontal line, 

at 1.5 cm intervals, and at 8 cm from the left and right margin and 10cm from the upper 

margin of the sheet to prevent edge effects. For each species ten plastic sheets with 10 

or 11 seeds each (total of 104 seeds) were used. Once the seeds were dried, and in 

consequence glued to the sand layer, the sheet was placed in the flume, at 85 cm from 

the water flux entry, in a cavity equalling the size of the sheet so that the sample surface 

was at the same level as the flume surface. Once the water flow discharge began, time 

to detachment from the plastic sheet was measured for each seed with a maximum run 

time of 60min per experiment. We designed a complementary test with seeds of the two 

species in which the mucilage layer was eliminated and their resistance to being 

removed by runoff was compared with that of intact seeds using the same method as the 

previous experiment. In each experiment we used seeds of similar weight to enable a 

comparison of the results (García-Fayos et al., 2010). To eliminate the mucilage layer, 

seeds were first wetted for 15 minutes and then rubbed on filter paper until the mucilage 

was removed.  

Linear and quadratic regression models were used to fit the relation between the 

relative mucilage production as well as the seed size with the time in minutes needed to 

detach the seeds. Statistical analyses were performed with SPSS statistical package v. 

19.0 and residuals were checked for normality. 

 

2.4 Differences in amount of seed mucilage from plants growing under 

contrasting erosion regimes 

We looked for variations in the amount of mucilage produced by seeds of F. 

ericifolia and H. violaceum collected from plants growing in several populations that 

experienced contrasting soil erosion pressures. We also analysed the variations in seed 

weight (mg) and seed area (mm2) of these seeds to control for the indirect effects that 

erosion might have on the amount of mucilage through changes in seed size.  

The study area was located in the Alfambra River basin (province of Teruel, 

Spain), which is an area of 4000 m2 that lies at an altitude of 900 to 1100 m a.s.l. The 

study site has a yearly average temperature of 11.9 ºC and precipitation of 368 mm (see 

García-Fayos and Bochet, 2009, for a more detailed description of the study area).  
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We selected two geomorphological conditions, almost flat highlands (<5º slope 

angle) and their associated hillslopes (25-30º), as surrogates for ‘no erosion’ and ‘severe 

erosion’ treatments respectively. For ‘no erosion’ sites we used forest clearings larger 

than 0.05 km2 and for ‘severe erosion’ sites we used sectors of hillslopes longer than 100 

m length. All sites were southerly (see García-Fayos and Bochet, 2009, for more details). 

In spring and summer 2009 we identified three populations per treatment of the selected 

species, each at least 500 m from any other sampled slope and all containing more than 

100 individuals. In each population we collected mature seeds from15 individuals, each 

at least 5 m distant from other sampled plants. Under laboratory conditions, we weighed 

the seeds and measured the size (seed area in mm2) and the relative mucilage amount 

(surface of secreted mucilage/seed surface) of 10 fully developed seeds from each 

individual plant as described in paragraph 1.2. 

Because the seeds of the studied species were food items for granivorous ants 

(see Engelbrecht and García-Fayos, 2012), ants may also potentially exert a selective 

pressure on the amount of mucilage secreted by the seeds. However, nest density of 

granivorous ants – as a surrogate of seed harvesting pressure –in the ‘no erosion’ and 

‘severe erosion’ hillslopes was 97.6 ± 36.4 and 81.8 ± 15.8 nests/ha respectively (Mean 

±SE, see García-Fayos et al.,2013) and did not significantly differ between them (t-test= 

0.1512, df = 13.977, p-value = 0.882).  

 

2.4.1 Statistical analysis 

We fitted linear mixed models to analyse the relative amount of mucilage from the 

seeds. All these models included an erosion regime where plants grow as a fixed effect 

(‘no erosion’ vs. ‘severe erosion’) and various alternatives for random effects: i) the 

individual plant from which the seeds were collected; ii) the population where these 

plants develop; iii) the individual plant nested within the population; and iv) no random 

effects. Akaike’s information criterion was used to choose among competing statistical 

models, as suggested by Zuur (2009) and Crawley (2007). We performed linear mixed-

effect models using the R ‘lmer’ function from ‘lme4’ (Bates, Maechler and Bolker, 2011). 

We used the ‘lmer’ function as it fits a greater range of models and is more reliable than 

other similar functions (Bates, 2005). We constructed the models using the restricted 

maximum likelihood (REML) estimation procedure (Zuur et al., 2009). The significance of 

the fixed effects was evaluated by means of likelihood ratio tests by calling the function 

‘anova’ to compare models with and without the factor being tested – which was 
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previously fitted using maximum likelihood (ML) estimates (Crawley, 2007; Zuur et al., 

2009). In addition, to assess the uncertainty of parameter estimates from the linear 

mixed models, we ran 10000 Markov Chain Monte Carlo (MCMC) samples using the 

function mcmcsamp in lme4, estimating the posterior probability density of model 

parameters. Parameter estimates for which the 95% confidence interval (95% CI, 

defined by the 2.5 and 97.5% quantiles from the resampled distributions) did not overlap 

with zero were considered significant. The confidence interval was calculated using the 

HPDinterval function in ‘lme4’. 

Differences in seed weight and size under contrasting soil erosion pressures were 

evaluated for the two species with mixed effect models following the same steps as 

described above. All statistical analyses were carried out in R version 2.12.2 (R 

Development Core Team, 2011).  

 

3. Results 

3.1 Type of seed mucilage 

We found differences in the type of seed mucilage. Ruthenium red stained the 

mucilage of F. ericifolia and H. violaceum seeds homogeneous pink, revealing the pectin 

matrix of the mucilage in both species (Figure 1 A-D). After staining the seeds with 

methylene blue, dark blue cellulose strands were identified in the mucilage of F. ericifolia 

(Fig. 2 A-B) but not in the seeds of H. violaceum (Figure 2 C-D ). Seeds of H. violaceum 

seeds stained slightly blue in the outermost surface of the mucilage but no cellulose 

fibrils were coloured. The mucilage of F. ericifolia seeds therefore present a 

heterogeneous system made of pectin matrix with cellulose strands. 
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Figure 1: Structure of the mucilage stained with ruthenium red. Intense pink stained polysaccharides are 

visible in the mucilage layer around the seed.  

A) F. ericifolia seed 1.25 x 80 amplification, B) F. ericifolia seed 6.3 x 80 amplification, C) H. violaceum seed 

1.5 x 80 amplification, D) H. violaceum seed 6.3 x 80 amplification. 

 

Figure 2: Mucilage formation and staining results with methylene blue. Outermost surface is stained blue and 

cellulose fibrils are stained dark blue. A) F. ericifolia seed with cellulosic fibrils clearly stained dark blue (1.25 

x 80 amplification), B) F. ericifolia seed mucilage at 8 x 80 amplification. Thick helicoidal strands of 
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cellulosic fibrils, partially uncoiled, are stained dark blue, C) H. violaceum seed mucilage without cellulose 

fibrils, only the outer layer of the mucilage is stained blue (1.5 x 80 amplification), D) H. violaceum without 

cellulosic mucilage, only the surface is stained blue (6.3 x 80 amplification). 

 

3.2 Seed resistance to drop impact  

The number of water drop impacts needed to detach the F. ericifolia seeds are 

directly related to their relative mucilage production. After applying different regression 

models, the power relation was the best fit between the relative mucilage production of a 

seed and the number of drop impacts needed to detach it (R2= 0.482; F1;82 = 75.49; p< 

0.0001; Fig. 3a) and thereby indicating an exponential effect of mucilage secretion on the 

seed resistance to drop impacts. For H. violaceum, this relation follows a bell shape 

distribution (Fig.3b) indicating a lack of relation between seed mucilage secretion and the 

susceptibility of a seed to be moved by drop impacts.  

The number of water drop impacts needed to detach the seeds of both species 

had not related to the variation in seed size. Both species showed a cloud of points of 

seed size and numbers of drop impacts needed to detach to which no regression could 

be fitted (data not shown).  
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Figure 3a: Resistance of adhered seeds of Fumana ericifolia to detachment by drop impact (0.05g 

drops of water from a height of 1m). Seeds had been glued to filter paper with their own previously secreted 

mucilage and air dried. Relative mucilage was calculated as the total mucilage (in mm
2
) divided by the seed 

area (in mm
2
). Each point reflects one separately tested seed (N=83). 
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Figure 3b: Resistance of adhered seeds of Helianthemum violaceum to detachment by drop impact (0.05g 

drops of water from a height of 1m). Seeds had been glued to filter paper with their own previously secreted 

mucilage and air dried. Relative mucilage was calculated as the total mucilage (in mm
2
) divided by the seed 

area (in mm
2
). Each point reflects one separately tested seed (N= 104). 

 

3.3 Seed resistance to runoff 

All the seeds of F. ericifolia remained glued to the ground until the end of the 

water flux experiments (60 min) irrespective of the amount of mucilage the seeds 

produced; and 66.4% of the H. violaceum seeds remained glued until the end of the 

experiment. However, we found no relation between the times that these seeds resisted 

runoff and their relative mucilage production (Fig. 4). Also when relating the seed size of 

both species with the time that seeds resisted to runoff, we did not find any relation (data 

not shown). When we performed the experiment with demucilaged seeds of H. 

violaceum, most of the seeds were removed from the ground by runoff in just a few 

minutes and again we did not find a relationship with the amount of mucilage, indicating 

that mucilage secretion per se helps seeds of this species resist removal by runoff – but 

that there is no direct relationship with the amount of mucilage secretion. We could not 
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perform the experiment with demucilaged seeds of F. ericifolia as the mucilage layer of 

the seeds cannot be eliminated without strongly damaging the seed coat, thus 

influencing the condition of the seed to resist runoff. 

 

 

Figure 4: Resistance of adhered seeds of H. violaceum to detachment by runoff in a hydraulic flume with an 

inclination of 25º and flow shear stress of 5 Pa for a maximum of 60 minutes. Seeds were glued to the 

bottom of the flume channel with their own previously secreted mucilage and air dried. Relative mucilage 

was calculated as the total mucilage (in mm
2
) divided by the seed area (in mm

2
). Each point reflects one 

separately tested seed (N= 104).  

 

 

3.4 Differences in amount of seed mucilage from plants growing under 

contrasting erosion regimes 

The relative mucilage production of F. ericifolia seeds was lower (3.329 ± 0.031) 

for seeds collected from ‘no erosion’ plant populations than for seeds from ‘severe 

erosion’ plant populations (3.697 ± 0.033, 95% CI: –0.5805, –0.1875). Seeds of H. 

violaceum from plants in ‘no erosion’ and ‘severe erosion’ populations produced very 

similar amounts of mucilage (1.744 ± 0.006 vs. 1.727 ± 0.006, 95% CI: –0.0113, 0.0469).  
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When we evaluated the mixed models using the amount of mucilage secreted by 

each seed as the response variable, the model with the lowest AIC for F. ericifolia was 

that which used the individual plant from which the seed was collected as a random term 

(AIC= 903.74). However, for models using the individual plant nested within a population, 

those with the population as random terms, and the model using no random term, 

obtained higher AIC values (905.74, 1104.17 and 1151.36 respectively). For the H. 

violaceum species, the best adjusted model was also the one in which individual plants 

from which the seeds were collected were used as a random effect (AIC=-1038.47). The 

models with the individual plant nested within the AIC population (-1036.47) and those 

using only population as random terms, or no random terms, gave poorer fitted models 

(AIC= -924.59, AIC =-920.99, respectively). For both species, the ANOVA analysis 

indicated that the model with the lowest AIC was significantly better than the next lowest 

AIC model (p< 0.0005 in all cases).  

Our results also show that the effect of the treatment (fixed term) was significant 

only for F. ericifolia and not for H. violaceum (likelihood ratio test p= 0.0109, p= 0.3149, 

respectively), indicating a significantly higher mucilage amount in seeds collected from 

plants living in the severe erosion site for F. ericifolia (95% CI: –0.5805, –0.1875) but not 

for H. violaceum (95% CI: –0.0113, 0.0469).  

The selected terms in the mixed models were the same when we used seed 

weight and seed area as response variables. For both species, the lowest AIC was found 

when the plant individual from which the seeds were collected was used as random 

effect; while the models with the individual plant nested within the population, models 

using only population as random terms, and models with no random term gave poorer 

fitted models (Supplementary Table 1). We found significantly heavier seeds in the 

‘severe erosive’ treatment than in the ‘no erosion’ treatment for both species (H. 

violaceum: 0.86 ± 0.0083 mg vs. 0.72 ± 0.0069 mg and F. ericifolia: 2.22 ± 0.049 mg vs. 

1.74 ± 0.081mg respectively). However, we found significant differences in seed area 

between the two erosive sites in H. violaceum (95% CI-0.206; -0.123; 1.33 mm2; 1.16 

mm2, respectively), but not for F. ericifolia (95% C -0.152; 0.137).  
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Table 1a: Overview of the range (min-max) of seed mass, seed area, mucilage area, relative mucilage area, minimum time to secrete mucilage and time till maximum 

mucilage is released from seeds of Fumana ericifolia and Helianthemum violaceum for the flat geomorphologic site with no erosion. Seeds measured (N) were 

recollected in the different study sites from year 2007 to 2009. 

 

 

Species dry seed 

weight 

(mg) 

seed area 

(mm
2
) 

mucilage area 

(mm
2
) 

relative 

mucilage area 

(mucilage 

area/ seed 

area) 

Minimum time 

to mucilage 

secretion 

(min) 

Time till 

maximum 

mucilage is 

secreted 

(min) 

N 

F. ericifolia 0.57 – 2.58 1.41 – 4.18 2.24 – 12.93 1.22 – 5.11 1.0  5  480 

H. violaceum 0. 40 –1.06 0.69 – 1.69 1.31 – 2.84 1.40 – 2.23 1.5 45 451 
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Table 1b: Overview of the range (min-max) of seed mass, seed area, mucilage area, relative mucilage area, minimum time to secrete mucilage and time 

till maximum mucilage is released from seeds of Fumana ericifolia and Helianthemum violaceum the associated hillslopes with severe erosion. Seeds 

measured (N) were recollected in the different study sites from year 2007 to 2009. 

 

 

 

 

 

 

 

 

 

Species dry seed 

weight 

(mg) 

seed area 

(mm
2
) 

mucilage area 

(mm
2
) 

relative 

mucilage area 

(mucilage 

area/ seed 

area) 

Minimum time 

to mucilage 

secretion 

(min) 

Time till 

maximum 

mucilage is 

secreted 

(min) 

N 

F. ericifolia 0.90 – 3.17  1.73 – 4.44 6.08 – 15.8 2.03 – 6.80 1.0  5  464 

H. violaceum 0. 53 –1.35 0.69 – 1.97  1.38 – 3.27 1.42 – 2.45  1.5 45 461 
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4. Discussion 

The results of our study incompletely support the hypothesis that myxospermy 

can be considered as an adaption to soil erosion. Results clearly indicate that 

myxospermy reduce the probability of seeds of both species being removed by 

mechanisms of soil erosion (drop impact and runoff). However, the quantifiable effect of 

mucilage seems to be mechanism and species dependent.  

So, in F. ericifolia the relative amount of mucilage produced per seed is positively 

and strongly related to the reduction of seed removal by rain drop impact (mechanism 

selection); and, at the same time, the phenotypic variation of mucilage secretion was 

related to the intensity of soil erosion experienced by mother plants (character selection). 

However, no relation was found between the amount of mucilage released by the seeds 

and the time they resisted runoff. 

For H. violaceum, despite the close phylogenetic relation between both species 

(Guzmán and Vargas, 2009), results did not support any of the assumptions of 

mechanism and character selection that we found in F. ericifolia. Although we found a 

clear difference in H. violaceum between intact and demucilaged seeds in relation to 

removal rate by drop impact and runoff, we did not find any relation between the amount 

of mucilage secretion of intact seeds and the removal rate by these erosive mechanisms. 

Consistently, the erosive environment experienced by mother plants had no influence on 

the amount of mucilage secreted by the seeds. 

Differences in the kind of mucilage substances could be in the basis of the 

variation in adherence ability between both species, as stated by Grubert (1974), Werker 

(1997) and Kreitschitz (2009). The mucilage of F. ericifolia seeds has cellulosic fibrils 

embedded in the pectin layer while the mucilage of H. violaceum seeds is composed 

only of a pectin layer. Cellulosic strands in the matrix of the pectin mucilage are 

supposed to supply better adherence of the pectins to the seed and aids a stronger 

adherence of the seed to the soil surface than simple pectic mucilage (Grubert, 1974; 

Gutterman et al., 1967; Witztum et al., 1969). The seeds of F. ericifolia stayed attached 

to the soil surface under heavy runoff in a higher rate than that of H. violaceum and also 

the mucilage of F. ericifolia seeds cannot be removed from the seed coat but it is easily 

removed from H. violaceum seeds. We propose then that the mucilage composed only of 

pectin, such as of H. violaceum, has not been moulded by the forces of erosion, but yet 

has sufficient adhesion power to resist erosion events of average intensity. Therefore, 

we consider that other factors not tested in our study could influence their phenotypic 

variation. 
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Results also show that mother plants of both species exert considerable control 

over seed size and the amount of mucilage secretion, as indicated by the fitted mixed 

models. Seed related traits have often been found to be more strongly controlled at an 

individual than at a population level (as, for example, with seed output, size and 

dormancy). Adaptive and non-adaptive explanations have been proposed to explain this 

pattern. Intraspecific variability of reproductive traits can help species recruit under 

variable temporal and spatial environmental conditions, as may be the case for patchy 

vegetation in semiarid environments (Aguiar and Sala, 1999; Alados et al., 2010, Baraza, 

Arroyo and Garcia, 2010; Halpern, 2005; Moreira and Pausas, 2012). Under the erosive 

conditions that prevail in these environments, a quantitative increment in relative 

mucilage production may benefit the seeds only if longer or stronger adherence 

translates to a greater chance of the seeds germinating and establishing themselves in 

the environmental conditions of the sites where they were primarily dispersed. We did 

not obtain direct empiric or experimental evidence in the studied populations, but the 

spatial pattern of seedling recruitment in the Fumana species strongly suggests that it is 

the case. Arnan et al. (2010) found that 88% of all new individuals that established 

themselves during three years did so at distances of less than 0.5 m from the adult 

individuals. In the closely related phylogenetic species F. thymifolia, Jump et al. (2009) 

found a very limited seed dispersal within the population after studying the within-

population genetic structure using amplified fragment length polymorphism (AFLP). We 

cannot discard that the individual variation in the amount of mucilage secretion we found 

may also be the result of differences in resource acquisition among plants as a direct 

consequence of the spatial heterogeneity of soil-related resources in these 

environments, which can translate directly or indirectly to the mucilage secretion ability 

(through seed size).  

To consider erosion an agent of selection, plants under selection need to 

experience enough erosion events causing different seed survivals. Since rainfall with 

drop sizes as used in the experiments have an approximately five-year recurrence (see 

Section 2.1) and Fumana species have a mean life span of 15-20 years (Kovács, 

Kovács-Láng and Babos, 2002), then Fumana plants should experience 3-4 events of 

that magnitude during their lives. Superficial water flow in contrast, with intensities such 

as that used in the experiments, usually occurs only once in the life of the studied plants 

– and so selection pressure would be weaker than in the case of raindrop impact. Still, in 

the experiments of runoff we detected that the adhesive power of dried mucilage was 

strong enough to make seeds resistant to high intensity runoff events, as all F. ericifolia 

seeds, and 66.4% of H.violaceum seeds stayed glued until the end of the experiment. 
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Selective pressure towards stronger adherence might only be working in very extreme 

events– but those events have return periods that exceed the life of these plants. 

Moreover, during these extreme events the entire soil maybe eroded due to the 

formation of rills and gullies (Poesen, 2003) meaning that seeds would be removed 

together with the eroded soil layer– independently of the relative amount of mucilage 

produced.  

In conclusion, our results show that mucilage secretion reduces seed removal 

caused by erosive mechanisms that operate in natural conditions such as rain drop 

detachment and removal by water runoff. But our results also indicate that the adaptive 

value of mucilage secretion seems to depend on the species and the erosion 

mechanisms involved. Only in one of the two species we studied (F. ericifolia) we find 

that the reduction in seed removal due to raindrop impact is proportional to the amount of 

mucilage secreted – and also that the greater the strength of the erosion processes that 

plants experience, the more mucilage was produced by their seeds. However, the close 

relative species H. violaceum did not fit any of the assumptions of our hypothesis and it 

is possible that in this species mucilage secretion had been shaped by selective 

pressures not related to erosion.  
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Supplementary Table 1: Effects of erosive pressure on seed mucilage secretion, seed weight, and seed 

size derived from generalised linear mixed-effects model with individual plant and populations from which 

seeds were collected fitted as random effects for both studied plant species.  

 

Supplementary Table 1a: F. ericifolia 

 

Relative mucilage Random effects AIC p-value 

 Individual 903.74 <0.0005 

 Population 1104.17 1 

 Individual in population 905.74 1 

Seed weight     

 Individual -1819.7 <0.0005 

 Population -1730.0 1 

 Individual in population -1817.7 1 

Seed size Individual 523.24 <0.0005 

 Population 756.71 1 

 Individual in population 525.24 1 

 

Fixed effect  

Erosive pressure 

95% Credible interval 

 Lower Upper 

Relative mucilage –0.580 –0.187 

Seed weight (mg) -0.793 -0.212 

Seed size (mm
2
) -0.154 0.129 



CHAPTER 1 

77 

Supplementary Table 1a: H. violaceum 

 

Relative mucilage Random effects AIC p-value 

 Individual -1038.47 p< 0.0005 

 Population -924.59 1 

 Individual in population -1036.47 1 

Seed weight     

 Individual -8499.9 p< 0.0005 

 Population -8347.8 1 

 Individual in population -8497.9 1 

Seed size Individual -683.15 p< 0.0005 

 Population -443.34 1 

 Individual in population -681.15 1 

 

Fixed effect  

Erosive pressure 

95% Credible interval 

 Lower Upper 

Relative mucilage –0.0113 0.0469 

Seed weight (mg) -0.178 -0.105 

Seed size (mm
2
) -0.208 -0.124 
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Abstract 

In this paper we test the Ellner-Shmida’s hypothesis that in semiarid 

environments aridity may select for the lack of seed dispersal mechanisms (atelechory) 

of many plants, whereas post-dispersal selective forces such as soil erosion, seed 

predation or limitations to water uptake by seeds may select for structures facilitating 

seed anchorage to the ground (antitelechory).  

We analyzed the proportions of species with seed anchorage mechanisms and 

that of atelechoric species in shrubland colonizing flat areas and hillslopes in two sites 

differing in climate dryness. Their relation with several soil properties involved in runoff 

generation, seed-soil contact and water uptake by seeds and with nest density of 

granivorous ants was also explored.  

Our results support the hypothesis that in semiarid shrubland the proportion of 

species with seed anchorage mechanisms increases because of soil erosion but not 

because of climate dryness. This is the first time that a direct relation between the 

proportion of species with seed anchorage mechanisms and soil erosion is shown in 

plant communities; supporting the view that soil erosion shapes species composition in 

communities.   
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1. Introduction  

It has been repeatedly observed that long-distance seed dispersal syndromes are 

less frequent in arid and semiarid than in mesic habitats and even that mechanisms 

constraining spatial seed dispersal are a common trait of arid and semiarid floras (Van 

der Pijl 1972; Ellner and Shmida 1981; Van Rheede van Oudtshoorn and Van Rooyen 

1999). 

Early predictions claimed that plants inhabiting spatially heterogeneous 

environments benefits from long-distance seed dispersal because it allows plants to 

reach distant favourable patches and spread extinction risk in space (Levin et al. 1984; 

Cohen and Levin 1987). Contrary to this view, Stebbins (1971) and Friedman and Stein 

(1980) argued that the continuous occupation of the few favourable sites that exist for 

plant development in those environments may be a superior adaptative strategy for 

plants (mother-site theory). Accordingly, these authors suggested that, in plant 

communities inhabiting open environments, long-distance seed dispersal syndromes 

(telechory) should be selected against whereas short-distance seed dispersal 

syndromes, including both the lack of syndromes for seed dispersal (atelechory) and the 

presence of syndromes to avoid seeds to disperse (antitelechory), should be favoured. 

On the grounds of these arguments, spatial restrictions to seed dispersal have been 

widely proposed to explain the origin and maintenance of patches in semiarid vegetation 

(Kefi et al. 2008; Pueyo et al. 2008).  

There are two groups of antitelechoric mechanisms used by plants to avoid seed 

dispersal. One of them is based on the control of the time that seeds disperse and the 

other is based on mechanisms that anchor the seeds to the ground. Ellner and Shmida 

(1981) suggested that seed anchoring mechanisms should not be considered 

adaptations to claim the mother site in the same way that atelechory does, as the mother 

site theory proposed, because in plants with seed anchorage mechanisms seeds need to 

be dispersed before seed anchoring mechanisms can operate. They argue that “the 

openness of desert vegetation and the patterns of climatic variation favour atelechory 

while antitelechory is generally a side-effect of mechanisms whose adaptative value is 

not directly related to seed dispersal”. They maintain that anchoring mechanisms are 

adaptative, given that providing fruits or seeds with mechanisms that actively restrict 

post-dispersal movement has an additional cost to plants in terms of carbon allocation 

during their development, but they also argue that these mechanisms may be related to 

post-dispersal events, such as the loss of opportunities for seeds to germinate derived 
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from seed removal by erosion, seed predation or insufficient seed-soil contact in coarse 

textured soils. 

There are only two reputed mechanisms related to seed anchorage on the 

ground surface in plants living in semiarid areas, trypanocarpy and myxospermy (Van 

Rheede van Oudtshoorn and Van Rooyen 1999). Trypanocarpic diaspores have the 

ability to sink into the cracks or holes of the soil surface by means of hygroscopic 

movements of appendages attached to the upper part of the diaspore. This mechanism 

keeps diaspores safe from seed harvesters and removal by wind or water erosion, and 

also increases the chance for seed germination by increasing the contact surface of 

seeds with soil particles in coarse textured soils (Stamp 1989; Schöning et al. 2004). 

Typical examples of trypanocarpic species can be found in the Geraniaceae and 

Graminae families. Myxospermy is the ability of seeds or fruits to secrete mucilage from 

their testa or pericarp respectively, once they become moistened. It is a common feature 

in many families of Angiosperms (Grubert 1974; Western 2012). Rain, fog, dew or even 

soil moisture when soil is at field capacity are effective enough to stimulate the secretion 

of mucilage (García-Fayos and Cerdà 1997; Huang et al. 2004). The increase of the 

diaspore surface due to mucilage secretion reduces the probability of the diaspore being 

removed (García-Fayos et al. 2010) because when the mucilage turns dry, it strongly 

anchors the diaspore to the surface it is in contact with. Further research proved that 

mucilage secretion highly reduces seed predation by granivorous ants (Fuller and Hay 

1983; Gutterman and Shem-Tov 1997; Engelbrecht and García-Fayos 2012), 

significantly reduces seed losses by runoff (García-Fayos and Cerdà 1997; García-

Fayos et al. 2010) and, similar to trypanocarpy, increases the amount of surface contact 

between the seed coat and soil, aiding seed hydration and thus facilitating germination 

(Harper and Benton 1966; Gutterman and Shem-Tov 1996; Chambers et al. 1991).  

Semiarid vegetation is characterized by a two-phase structure of vegetated 

patches and bare soil (Aguiar and Sala 1999). Rainfall in arid and semiarid regions of the 

world is mostly concentrated into few high intensity events (Rodríguez-Iturbe and 

Porporato 2004) with the potential to trigger strong soil erosion processes (Poesen and 

Hooke 1997). Several authors have shown that the interaction of plant growth with soil 

erosion can explain the origin and maintenance of patchy vegetation in hillslopes (Aguiar 

and Sala 1999; Puidefàbregas 2005). In these hillslopes, seeds reaching the ground are 

at risk of being removed downslope by runoff water and deposited in the lower parts of 

slopes where they can get deeply buried (García-Fayos et al. 1995; Han et al. 2011) or 

where the seedlings they produce may be affected by stronger competition than those 
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seedlings emerging on the upper and medium parts of the hillslopes (Cantón et al. 2004; 

Alados et al. 2006). Although there has been less research on the subject, wind erosion 

also has the potential of putting seeds at risk in the same way as surface runoff (Whitford 

2002). Erosion also affects important soil properties related to plant establishment and 

development. Raindrop splashes break soil aggregates and sheet flow removes the 

finest particles and organic debris from the upper layer of soil, thus reducing soil fertility, 

the rate of water infiltration into the soil and the amount of available water for plants 

(Calvo-Cases et al. 2003; Monger and Bestelmeyer 2006). In addition, granivorous 

animals, mainly harvester ants, have a strong impact on seed survival in arid and 

semiarid ecosystems (Louda 1995; Hulme and Benkman 2002). 

Consequently, the loss of seed germination opportunities in semiarid slopes 

because seed removal by erosion, predation or soil degradation can be a major difficulty 

for plants to overcome and, therefore, post-dispersal mechanisms allowing diaspore 

anchorage to the ground, burying the seed into the soil or increasing the amount of 

contact of the surface of seeds with soil particles could be favourable adaptations. At the 

same time, seed anchorage mechanisms should be the instrument because a new patch 

of vegetation originate and maintain in hillslopes. Once a plant develops from the 

anchored seed it can restrain locally the downslope movement of water and sediments, 

increasing soil moisture and fertility at the microsite where plant established (Cerdà 

1997, Puigdefàbregas 2005) and favouring the growth of the plant and the patch, which 

in turn increases the ability of the patch to restrict the downslope movement of water and 

sediments.  

If, as Ellner and Shmida (1981) proposed, seed anchorage mechanisms, such as 

myxospermy and trypanocarpy, are the outcome of agents of selection that operate after 

seed dispersal, but not the outcome of selective forces shaping seed dispersal, then it 

should be predicted that an increase in the intensity of all, or some, of the agents of 

selection that operate on seeds once they have dispersed (i.e. soil erosion, seed 

predation) must lead to an increase in the proportion of plants with seed anchorage 

mechanisms, but should not affect the proportion of plant species with atelechory seed 

dispersal syndromes. On the contrary, increasing the intensity of selective forces that 

shape seed dispersal only (i.e. climate aridity), must lead to an increase in the proportion 

of species with atelechory syndromes, but should not affect the proportion of plant 

species with seed anchorage mechanisms.  

To test this hypothesis we compared the proportion of plant species with 

atelechory seed dispersal syndromes and the proportion of species with seed anchorage 
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mechanisms (myxospermy plus trypanocarpy) in plant communities colonizing flat areas 

and steep hillslopes at both extremes of an aridity gradient that has been proved to 

negatively affect soil properties (García-Fayos and Bochet 2009). The area comprising 

the aridity gradient is mainly composed of calcareous clays and marls and characterized 

by superficial soil erosion processes more influential in shaping the hillslope landscape 

than those occurring in other materials such as limestone or sandstone (Cerdà 2002). 

We also explored the relationships between these proportions of species and physical 

soil properties related to runoff generation (bulk density, as a surrogate of the rate of 

water infiltration in soils) and to water uptake by seeds (fine sand content, indicative of 

the amount of contact between the seed surface and the ground, and soil water 

availability as a surrogate of the amount of available water for seeds to germinate and 

establish). At the same time, since seed harvesting pressure by ants may also influence 

our results, we analyzed the current nest density of granivorous ants in the study area as 

a surrogate of seed harvesting pressure. All other factors being similar, the density of 

granivorous ants in semiarid areas highly depends on vegetation structure, food 

availability and microsite conditions for winter survival (Díaz 1991; Arnán et al. 2007) and 

we have not reason to expect that density of granivorous ants is affected by climate and 

erosion in the same way that these factors affect plant species composition. We predict 

that (i) an increase in climate dryness, but not an increase in soil erosion, should 

increase the proportion of species with atelechory syndromes; (ii) an increase in soil 

erosion, but not an increase in climate aridity, should increase the proportion of plant 

species with seed anchorage mechanisms in plant communities; and (iii) the effect of soil 

erosion on physical soil properties related to runoff generation and water uptake by 

seeds may explain the effect that soil erosion has on the proportion of plant species with 

seed anchorage mechanisms.  

 

2. Material and Methods 

2.1 Study Area  

The study area is located in the Alfambra river basin (province of Teruel, Spain). 

The basin is 4000 m2 in area and lies at an altitude of 900-1100 ma.s.l. It is composed 

mainly of calcareous marls. While the seasonal pattern is homogeneous in the whole 

basin, the amount of precipitation and average temperature differ between the southern 

and northern extremes of the basin with marked consequences on the plant 

communities. The extreme northern area, hereafter “cool&wet” area, has annual average 
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temperature and total precipitation of 10.3 ºC and 484 mm, respectively, and the 

southern area, hereafter ”warm&dry” area, 11.9 ºC and 368 mm, respectively (data from 

the 1990-2009 period, provided by AEMET: www.aemet.es).  

In spring 2006, we selected and marked one sampling plot (1x20 m) 

perpendicular to the main slope direction in each of 30 hillslopes in the “cool&wet” and in 

the “warm&dry” areas, all of them south-oriented. In each area, 15 plots were placed in 

flat sites (hereafter “no erosion” sites) and 15 in 25-30º steep hillslopes (hereafter 

“severe erosion” sites). Marked differences in erosion severity exist between flat and 

steep sites, varying from 0 to 25% rill development respectively (García-Fayos and 

Bochet 2009); the latter rill density indicates a notorious sign of erosion processes on 

steep sites (Cerdan et al. 2010). Wind erosion has not been taken into account in our 

experimental design, because it has been reported as unimportant in the eastern part of 

the Iberian Peninsula (Solé-Benet 2006). Vegetation cover in all the plots was low (< 

50%) and it was mainly composed of dwarf shrubs and some herbs.  

Plant species present in each plot were identified and, when necessary, the plots 

were surveyed several times during the growing season to ensure that all plant species 

were recorded. From 2006 to 2009 we collected seeds from all species and 10 mature 

and fully developed seeds per species were checked and assigned to the following 

categories: trypanocarpy, myxospermy and atelechory. Trypanocarpy corresponds to 

diaspores with hygroscopic awns or hairs that are able to enter into the soil; myxospermy 

corresponds to diaspores that secrete mucilage from their testa or pericarp when wet; 

and atelechory corresponds to diaspores with mechanisms for short-distance seed 

dispersal (ballistic, barochory, etc.) or diaspores lacking such mechanisms but also 

lacking mechanisms for long-distance seed dispersal. Since trypanospermy and 

myxospermy act after seed dispersal, a species can be classified at the same time into 

the atelechory category and one of the two seed anchoring categories.  

At the end of the summer of 2006, we took five soil subsamples 5 cm deep and 

300 cm3 volume at regular distances in each plot, that were mixed up in a single sample 

per plot. Samples were air-dried and sieved through a 2 mm mesh and fine sand content 

(mineral fraction size between 0.10 and 0.25 mm) and the soil moisture content available 

for plants were determined following the methodology proposed by Klute (1986). 

Additionally, we took three 57.7 cm3 soil cores per plot for bulk density determination at 

the same depth as previous soil sampling and the average value per plot was used for 

comparisons. These soil properties were significantly and negatively affected by both 

climate dryness and soil erosion in our study area (García-Fayos and Bochet 2009). Bulk 
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density is a key property influencing water infiltration into the soil and it was chosen as a 

surrogate of runoff generation. The higher the soil bulk density, the lower the soil water 

infiltration and consequently, in steep hillslopes lying on calcareous marls, the faster and 

higher the runoff generation (Cerdà 2002). Fine sand content and water availability were 

chosen respectively as surrogates of the extent of seed-soil contact and the amount of 

water stored in soils. The relation of these soil properties with the energy that seeds 

need to obtain water from soils was considered to be direct for fine sand content and 

inverse for water availability (Williams and Shaykewich 1971). So, the higher the fine 

sand content and the lower the water availability in soils, the higher the pressure that 

seeds need to exert in order to obtain enough water for germination and establishment 

(García-Fayos et al. 2000; Bochet et al. 2007).  

To analyze the current nest density of granivorous ants we sampled six hillslopes 

per treatment and counted all the ant nests of granivorous species in an area of 250 m2. 

Ant nests were attributed to granivorous ants after identification of the worker ants or 

inspecting the vast pile when direct ant identification was not possible.    

Analyses of the influence of climate dryness and soil erosion treatments on the 

proportion of species with seed anchorage mechanisms and the proportion of atelechoric 

species per plot were performed with Linear Models, considering climate dryness and 

erosion as main factors and the proportions of atelechoric species and of species with 

seed anchorage, as response variables. Analyses were firstly performed on the total set 

of species with seed anchorage mechanisms, either myxospermic or trypanocarpic, and 

secondly, separately on each of both categories. We checked residuals for departure 

from normal distribution.  

Because the size of the plots we used to sample ant nest density was greater 

than that used to sample plant species composition, it was not possible to directly 

analyze the effect of nest density on the proportion of plant species with seed anchorage 

mechanisms. Instead, we analyzed the effect of climate dryness and seed erosion on ant 

nest density per hillslope, and compared this result with that obtained from the analysis 

of the effect of the same factors on the proportion of species with seed anchorage 

mechanisms per plot. Statistical analyses were performed with the lm function of the R 

package v. 2.14.1 (R Development Core Team at http://cran.r-project.org/ last accessed 

25/05/2012).  
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3.  Results 

We found a total of 167 plant species in the study area. Of them, 139 were 

unambiguously assigned to the different dispersal and seed anchoring diaspore 

categories. Among these, 108 (77%) were considered to be atelechoric and 31 (22%) 

having any seed anchorage mechanism (26 myxospermic species -several 

Brassicaceae, Cistaceae, Lamiaceae, Asteraceae, Linaceae, Rosaceae, Plantaginaceae 

and Aristolochiaceae species- and only 5 trypanocarpic species -four Graminae, Stipa 

parviflora, S. celakowsky, S. lagascae, Avenula pratensis and one Geraniaceae, 

Erodium cicutarium). At the plot level, 67 to 94% of the species have atelechoric 

diaspores (79% in average, see Table 1) and 17 to 45% of the species have diaspores 

with anchorage mechanism (30% in average) and the proportion of myxospermic 

species is higher (15-44%, 26% in average) than that of trypanocarpic species (0-8%, 

2.4% in average). 

Table 1 shows the variation among plots in the proportion of atelechory and 

seeds with anchorage mechanisms. The linear model significantly explained the variation 

in the proportion of atelechoric species (Adjusted R2 = 0.1366; F3, 56 = 4.112; p = 0.0105) 

indicating that it is affected, although marginally (p = 0.0753), by climate dryness (81.2 ± 

4.5% (Mean ± SD) in the “warm&dry” plots vs. 77.5 ± 3.9% in the “cool&wet” plots), but 

that neither soil erosion (p = 0.3572) nor the interaction of both factors (p = 0.4178) 

affected the proportion of atelechoric species. 

Relative to the proportion of species with seed anchorage mechanisms, the linear 

model significantly explained a moderate proportion of the variance (Adjusted R2 = 

0.3481; F3, 56 = 11.5; p < 0.0001) showing that the proportion of species whose diaspores 

have anchorage mechanisms is positively affected by soil erosion (p = 0.0002) but 

neither by climate dryness (p = 0.6616) nor by their interaction (p = 0.7426). On average, 

the proportion of species with seed anchorage mechanisms is 26.7 ± 4.3% in the “no 

erosion” plots and 33.5 ± 4.6% in the “severe erosion” ones. 

When the proportion of species with myxospermic and trypanocarpic mechanisms 

was analysed separately, we found in the case of myxospermy that the model 

significatively explained almost 41% of the variance (F3, 56 =14.62; p < 0.0001) indicating 

that soil erosion (p = 0.0081), but not climate dryness (p = 0.8075), significantly 

increased the proportion of myxospermic species in plots. However, the significant 

interaction term (p = 0.0376) indicates that the increase in the proportion of myxospermic 

species due to the effect of soil erosion is higher when climate dryness is greater. In the 
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case of trypanocarpy, the model (Adjusted R2 = 0.3033; F3, 56 = 9.561; p < 0.0001) shows 

that climate dryness does not have a significant effect (p = 0.6645) but that soil erosion 

increases the proportion of trypanocarpic species (p = 0.0086). However, again, the 

significant interaction term between climate dryness and soil erosion (p = 0.0010) 

indicates that the proportion of trypanocarpic species in the “cool&wet” end of the climate 

gradient, is a little higher in the “no erosion” plots than in the “severe erosion”, but that 

the contrary occurs in the “warm&dry” end of the climate gradient (see Table 1). 
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Table 1: Average and standard deviation of the number (sp) and percentage (%) of species with different dispersal and soil anchorage mechanisms in 20 m
2
 plots and ant 

nest density per hectare (nests) in hillslopes for the different treatments (N = 15). “Terms in the model” gives information about factors that have significant effect on the 

response variable in the linear model (C= climate dryness, E= soil erosion). 

 

 Total 

“cool&wet” “warm&dry” 
Terms in the 

model 
“no erosion” “severe erosion” “no erosion” “severe erosion” 

Atelechory                                          sp 

                                                            % 

26.3 ± 8.5 

79.3 ± 4.5 

39.3 ± 3.0 

79.2 ± 3.3 

24.5 ± 4.5 

76.8 ± 4.3 

21.6 ± 3.9 

81.0 ±5.8 

20.0 ±3.8 

81.3 ± 2.8 
C 

Seed anchorage mechanisms              sp 

                                                            % 

9.8 ± 3.0 

30.1 ± 5.6 

13.5 ± 1.4 

27.0 ± 3.1 

10.6 ± 1.7 

33.5 ± 4.1 

7.0 ± 2.0 

26.3 ± 5.3 

8.2 ± 1.9 

33.5 ± 5.2 
E 

 

Myxospermy                                      sp 

                                                            % 

8.4 ± 2.5 

26.0 ± 5.5 

11.5 ± 1.5 

22.9 ± 3.0 

8.6 ± 1.3 

29.3 ± 3.0 

6.0 ± 1.6 

22.5 ± 4.7 

8.6 ± 1.3 

31.4 ± 5.7 
E, CxE 

Trypanocarpy                                     sp 

                                                            % 

0.8 ± 0.7 

2.4 ± 2.2 

1.1 ± 0.5 

2.1 ± 1.0 

1.3 ± 0.5 

4.2 ± 1.6 

0.6 ± 0.7 

2.1 ± 2.6 

0.3 ± 0.5 

1.1 ± 1.9 
E, CxE 

Ant nest density                             nests 100.2 ± 87.1 186.7 ±  96.1 36.6 ± 40.6 97.6 ± 89.1 81.8 ± 38.6 C, E, CxE 
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As hypothesized, both seed anchorage mechanisms (myxospermy and 

trypanocarpy together) and myxospermy were significantly and directly related to fine 

sand content and bulk density and also significantly but inversely related to water content 

(Table 2). This indicates that there is an increase in the proportion of species with 

anchoring mechanisms (mainly myxospermy) when physical soil properties related to 

runoff generation and water uptake worsen. Atelechory was positive and significatively 

related to fine sand content and inversely to water availability but not to bulk density 

(Table 2).  

 

Table 2: Pearson correlation indices between the percentage of species with different 

dispersal and soil anchorage mechanisms and soil properties  

 

 

 

 

 

(p-value:n.s.<0.05; * 0.05-0.01; ** <0.01; N = 60). 

 

Nests of ants collecting diaspores in the studied hillslopes were attributed mainly 

to the genus Messor (granivorous) and to a lesser extent to Aphenogaster (omnivorous). 

The total density of nests of these ants in hillslopes was highly variable (from 0 to 317.5 

nests/ha, Table 1) and the linear model fitting our data (Adjusted R2 = 0.2668; F3, 24 = 

4.276; p = 0.0149) showed that ant nest density significantly decrease because of 

climate dryness (p = 0.0295) and soil erosion (p = 0.0019), but the decrease of ant nest 

density because of soil erosion is higher in the “cool&wet” than in the “warm&dry” 

treatment (interaction term, p =  0.0287, Table 1).  

 

4. Discussion  

The proportion of species with diaspore anchorage mechanisms in our study area 

is similar, or even higher, to that found in desert and semi-desert areas of Africa (Van 

Rheede van Oudtshoorn and Van Rooyen 1999). At least 18.6% of the plant species in 

our study area and 17.0% of the species living in Namaqualand (Namibia) have 

 Fine sand content (%) Water availability Bulk density 

Atelechory          0.2713*       -0.3233*        0.0169 

Seed anchorage mechanisms          0.2753*       -0.2948*        0.3479** 

Myxospermy          0.3277**       -0.4260***        0.3745** 

Trypanocarpy         -0.1048        0.2708*       -0.0489 
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anchorage mechanisms in their diaspores and 15.6% of the species in our study area, 

15.7% in southeast Spain, 11.3% of the species in Namaqualand and 11.1% in 

northwest Africa are myxospermic (Van Rheede van Oudtshoorn and Van Rooyen 1999; 

Navarro et al. 2009). In relation to trypanocarpy, only 3.0% of the species in our study 

area are trypanocarpic, a similar value as in Namaqualand (5.7%) and in semi-desert 

areas of southeast Spain (<4%, Navarro et al. 2009). The proportion of species with 

short-distance dispersal syndromes (atelechory) was very high, approximately 80%, and 

is similar to that of desert areas of Israel (75.0%) but higher than that of Mediterranean 

and semi-desert areas of Israel (50.0%) and semiarid areas of Namaqualand (21.6%) 

(Ellner and Shmida 1981; Van Rheede van Oudtshoorn and Van Rooyen 1999). 

Interestingly, 100% of the myxospermic species also have short-distance dispersal 

mechanisms and 22% of atelechoric species are myxospermic. Ant nest density was 

also in the range of values reported for other semiarid shrubland (Diaz 1991; Azcárate 

and Peco 2003). 

According to the prediction of the Ellner-Shmida’s hypothesis, soil erosion but not 

climate dryness, increased the proportion of species with anchoring mechanisms living 

on hillslopes in our study area. Similarly, and in agreement with our prediction, 

atelechory increased, although slightly, with climate dryness, but soil erosion did not 

affect it. These results and the correlations between the proportions of species having 

atelechoric or seed anchorage mechanisms with the studied soil properties strongly 

suggest that the need to resist seed removal by water runoff and to enhance the rate and 

the amount of water uptake by seeds are selective forces affecting the proportion of 

species with seed anchoring mechanisms, mainly myxospermy, in our study area. 

However, the significant correlation of atelechory with fine sand content (positive) and 

water availability (negative) and the fact that all myxospermic species have also 

atelechoric syndromes, supports the idea that soil degradation because of vegetation 

openness positively selects plant species with short-distance seed dispersal 

mechanisms (Ellner and Shmida 1981; Kefi et al. 2008; Pueyo et al. 2008) but that 

myxospermy should be a specific adaptation to soil erosion. 

It is interesting to note that although the proportion of seed anchorage and 

myxospermic species are positively correlated with bulk density and bulk density 

increased with both, climate dryness and soil erosion, only soil erosion, but not climate 

dryness, positively affected the proportion of species with seed anchorage mechanisms 

and myxospermy. This can be explained by the fact that although bulk density decreased 

from the flat “warm&dry” plots to the flat “cool&wet” plots (García-Fayos and Bochet 
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2009), the low slope angle recorded in these areas (<5º) prevents water sheet flow from 

increasing in the same way. Therefore, plants of the flat “warm&dry” plots do not suffer 

from more intense erosion than their equivalents in the “cool&wet” area and 

consequently they do not need to increase mechanisms against seed removal by 

erosion.  

Our results also shed some light on the different roles that myxospermy and 

trypanocarpy play as seed anchorage mechanisms, although the very low frequency of 

trypanocarpic species (<1.5±0.9 species/plot in average) precludes obtaining robust 

conclusions. Whereas almost all the conclusions about seed anchorage mechanisms are 

applicable to myxospermy, this is not the case for trypanocarpy. In fact, the percentage 

of trypanocarpic species per plot is only significantly correlated with water availability and 

this relationship is positive, unlike myxospermy. This reinforces the results from the linear 

model indicating that trypanocarpic species seem to be selected by soil erosion only in 

the wetter extreme of the climatic gradient, but that myxospermic species are selected 

positively in both extremes of our climate gradient, although more intensely in the 

“warm&dry” extreme.  

It is unlikely that the interpretation of our results on seed anchorage and 

myxospermy was masked by the pressure exerted by harvester ants on plant species 

composition. Ant nest density was negatively related to soil erosion, especially in the 

“cool&wet” extreme of the gradient, probably because of the negative effect of soil 

erosion on the standing biomass and productivity. That is, the pattern of variation of the 

proportion of species with seed anchorage mechanisms and that of myxospermic 

species we found in our study was the opposite that it can be expected because of the 

pressure of harvester ants on plants. This does not mean that ant harvesting pressure 

cannot be a relevant force selecting anti-predatory mechanisms for seeds, such as 

myxospermy and trypanocarpy (see Schöning et al. 2004 and Engelbrecht and García-

Fayos 2012 for recent reports on this issue), but it simply means that this pressure 

cannot explain the proportion of species with seed anchorage mechanisms in our study 

design.  

Our results have implications for the controversies on the role of seed dispersal in 

buffering unpredictable small or medium-scale differences in patch quality in semiarid 

environments. It has been repeatedly suggested that atelechory and seed anchorage 

mechanisms contribute to the origin and maintenance of arid and semiarid patchy 

landscapes (Schurr et al. 2004; Kefi et al. 2008; Pueyo et al. 2008) but to date this 

assumption remains untested and needs to be directly verified. Siewert and Tielborger 



CHAPTER 2 

94 

(2010) found that in Mediterranean semiarid communities most species do not rely on 

seed dispersal mechanisms to buffer unpredictable small-scale differences in patch 

quality, but rather that the major contribution of plant species to population recruitment 

was through the investment in seed numbers and dormancy. In this context, investing in 

seed anchorage mechanisms, such as those analysed here, can be another way for 

plant species to survive in semiarid landscapes where soil erosion plays an important 

selection pressure.  

In conclusion, our report is, to our knowledge, the first attempt to examine 

systematically the importance of various factors associated with the selection of plant 

species whose diaspores have anchoring mechanisms to ground. Although the role of 

myxospermy and trypanocarpy as mechanisms enhancing seed-soil contact had already 

been widely studied, it is the first time that a direct relation of soil erosion with the 

proportion of myxospermy and trypanocarpy in plant communities has been shown, 

supporting the hypothesis that anchorage mechanisms in diaspores play a role shaping 

species composition in communities affected by intense soil erosion (see also Bochet et 

al. 2009 and García-Fayos et al. 2010). The correlative approach of our study and the 

complex nature of the explanatory characteristics used make it difficult to interpret 

unambiguously the ultimate causes behind the observed associations. Nevertheless, the 

patterns that we detected support the idea that in water-limited environments anchorage 

mechanisms can be a way for seeds to overcome the direct effects of soil erosion -seed 

removal- and the negative effects of soil erosion on soil properties related to water 

uptake by seeds, an important limiting factor for plant establishment in such 

environments (García-Fayos et al. 2000; Bochet et al. 2009; Moreno-de las Heras et al. 

2011).  
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Abstract 

 

Post-dispersal seed predation is a risk for plants in semiarid environments, 

leading to strategies to protect their propagules from seed collection by animals. In this 

study, we evaluated the importance of mucilage secretion in seeds as a mechanism to 

reduce seed collection by ants. We selected three Mediterranean species with strong 

mucilage secretion on their seeds which become sticky upon wetting. Seeds of 

Rosmarinus officinalis, Fumana ericoides and Fumana thymifolia were exposed to ants 

and survival was compared between dry loose seeds and seeds glued to the soil with 

previously secreted mucilage. The study site was in the Sierra Calderona, 25 km north of 

Valencia (Spain). 

The ant-plant interaction was analysed by scrutinizing seed collection by ants and 

by analysing the waste piles of ant nests. To test survival, groups of 10 seeds were 

placed on the ground. Each group consisted of 5 control (dry) and 5 mucilaginous seeds 

(previously mucilage secreted) and was covered by the cover of a Petri dish modified to 

permit only the entry of ants. Seeds were inspected weekly for seed disappearance and 

the survival function (Kaplan-Meier estimator –KM) was calculated.  

Seeds of the target species were important food items for ants and were actively 

collected, and more than 50% of the experimental seeds that were glued to the ground 

with their own mucilage survived at the end of the study period but only 0-20% of the 

control seeds survived after the same time of exposure. The implications for plant 

establishment of these findings are discussed.  
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1 Introduction 

In semiarid environments, post-dispersal seed predation is a frequent risk and 

has the potential to influence plant populations and community dynamics (Louda 1989; 

Davidson 1993; Hulme 1996, 1998; Crawley 2000; Azcárate and Peco 2007). An 

effective strategy to escape massive seed collection can be of crucial importance for 

plant species in order to maintain their population densities above extinction thresholds. 

Seeds can be consumed by mammals, birds and insects (Janzen 1971; Crawley 

2000; Kelt et al. 2004), but in some semi-arid and arid ecosystems granivorous ants 

have the strongest impact on post-dispersal predation relative to other animal groups 

(Mares and Rosenzweig 1978; Morton 1985; Kerley 1991; Predavec 1997; Hulme 1998; 

Lopez de Casenave et al. 1998). Ants have a strong influence because of their ability to 

search on large areas for food and also the great number of seeds they can collect in a 

season (Hölldobler and Wilson 1990). For some plant species it has been reported that 

ants collect more than 85% of available seeds, resulting in almost 70% of seeds 

effectively lost by predation (Retana et al. 2004).  

Ants tend to collect a wide range of seeds depending on their availability (Hobbs 

1985), but seed choice is also influenced by specific seed attributes, such as size, weight 

and structure (Willott et al. 2000; Azcárate et al. 2005). Some seeds are therefore 

strongly collected and strategies to escape massive seed collection in these species 

could be especially effective.  

Plants have developed mechanisms to escape from massive seed collection by 

animals, such as mechanical or chemical defences, seed burial in the soil (Crawley 

2000; Hulme and Benkman 2002; Schöning et al. 2004) or even seed dispersal by 

animals through rewarding with the fruit pulp or an elaiosome whereat the seed stays 

intact (Herrera 2002; Giladi 2006). Diaspores of many plants inhabiting semiarid habitats 

secrete a gel of polysaccharides around the seed or fruit coat which becomes sticky 

once they come in contact with water, getting them adhered to the soil upon drying 

(myxospermy) (Grubert 1974; Werker 1997). This hydrophilic, pectinaceous mucilage is 

deposited in the apoplast of epidermal cells in a compressed form during differentiation 

of the seed coat or pericarp, and is released on hydration to form a water-containing, gel-

like capsule surrounding the seed (Western 2012). Once dried up it glues the seed to the 

ground with a thin and strong layer and can rehydrate completely with the next rain or 

dew, drying and swelling for many times with almost no loss in volume. Rain and 

moistened soil are enough to release mucilage secretion, but Huang et al. (2004; 2008) 

have shown that experimental and natural dew at nights is enough for seeds to secrete 
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mucilage. This adherence to the ground has been suggested as a mechanism to reduce 

diaspore removal by erosion on slopes (García-Fayos et al. 2010) having the potential to 

act as a mechanism to escape from seed removal by ants. Seed harvesting by ants in 

the Negev Desert (Israel) was effectively slowed down and seed collection of Salvia 

columbaria in California (USA) was strongly reduced because of mucilage secretion 

(Fuller and Hay 1983; Gutterman and Shem-Tov 1997). Both studies were done over 

very short time periods, between two days and a week, so the long-term efficacy of the 

mucilage was untested. 

In this study we tested the hypothesis that myxospermy effectively reduces seed 

removal by ants in the medium timeframe using a set of plant species inhabiting open, 

semiarid Mediterranean shrubland. Our objective was to test: a) if seeds of the 

experimental plant species are of interest to ants; b) if survival of seeds glued to the soil 

by mucilage is higher when exposed to harvesting ants than dry and loose seeds of 

these species; c) the implications of these findings for plant establishment in semiarid 

Mediterranean shrubland.  

 

2 Methods 

2.1 Study area 

The study site is located in the municipality of Serra (39° 39' N, 0° 29' W) in 

Parque Natural de la Sierra Calderona, about 25 km north from Valencia (Spain) at 250 

m altitude. The vegetation consists of open Pinus halepensis forest with a very rich layer 

of shrubs (Rosmarinus officinalis, Erica multiflora, Cistus albidus, Rhamnus lycioides, 

Pistacia lentiscus, Thymus vulgaris, Helianthemum spp. and Fumana spp.) and 

perennial grasses (Stipa tenacissima and Brachypodium retusum) reaching 50% of soil 

cover in average (Andreu et al. 1998). Soils are loam and sandy-loam, rich in calcium 

carbonate (>40%), poor in organic matter (<5%) highly compacted and near of 3% of 

bare soil is covered by crust (Andreu et al. 1998). Mean annual temperature is 17.4 ºC 

and the mean annual rainfall 467 mm (García-Fayos and Gasque 2006). The total study 

area spans about 1.5-2 ha and has very little human influence, with scarce agriculture in 

the surroundings and no exposure to grazing for decades.  
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2.2 Plant species 

 

We use fruits of rosemary (Rosmarinus officinalis, Lamiaceae) and seeds of 

needle sun roses (Fumana ericoides and F. thymifolia, Cistaceae) based on two criteria: 

their high amount of seed production or large seed size both in combination with strong 

mucilage production. R. officinalis is a 0.5 to 1.5 m tall shrub widely distributed in the 

Mediterranean basin which produces large quantities of fruits. Fruits are soft nutlets 

(0.46 mg ± 0.024 mg, Lloret et al. 1999) that are an important food source for 

granivorous ants. For simplicity, we hereafter refer to them as seeds. Fumana ericoides 

and F. thymifolia are small sized shrubs, up to 0.4 m tall (Güemes and Molero 1993). 

Seeds are relatively large (2.44 mg ± 0.054 mg and 1.08 mg ± 0.023 mg respectively, 

Lloret et al. 1999) but they are produced in lower quantities than in R. officinalis. Despite 

their hard coats, seeds of Fumana are also strongly collected by granivorous ants (Arnan 

et al. 2010, author’s personal observations). The diaspores of the three species become 

covered with thick mucilage once they come in contact with water, which takes about 

one to five minutes to fully secrete. Dew has been observed to release the secretion of 

mucilage in these species (author's personal observation). 

Seeds of all three species (or the whole calyx in R. officinalis) are detached from 

the mother plant by gravity or by wind, rain or animal disturbance (Güemes and Molero 

1993 and authors’ personal observations), sometimes followed by secondary seed 

dispersal by ants (myrmecochory; Bouman et al. 1992; Arnan et al. 2010). In some 

occasions, we observed ants collecting fruits, seeds and ripe calices directly from the 

plants.  

 

2.3 Ant species and their interaction with the target plant species 

The research area displayed an average ant nest density of 175 nests per 

hectare (García-Fayos and Gasque 2006). Six different ant species are present in the 

study site: Messor bouvieri, M. capitatus, Aphaenogaster iberica, Formica subrufa, 

Tapinoma nigerrimum and Camponotus sylvaticus. Of these species, the genus Messor 

(47.8% of the ant nests in the study area) is the only reputed granivorous ant. A. iberica 

(13%) is ambiguously considered as granivorous (Azcárate and Peco 2011) and 

omnivorous (Rey et al. 2002), while F. subrufa (8.6%) and T. nigerrimum (26%) are 

considered to be nectarivorous and omnivorous (Cavia 1989; Cerdá et al. 1989). 
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Camponotus sylvaticus (4.3%) is recognized as a nectarivorous ant (Retana et al. 1988).  

All the ant species except C. sylvaticus and T. nigerrimum were observed 

carrying seeds during the observations, indicating that granivorous and omnivorous ant 

species were actively searching for seeds in the whole area.  

To properly interpret the results of our seed survival experiment we needed to 

know the strength of the interaction between the ants and the target plant species in our 

study site. In 2009 we selected and marked 15 nests of ants of Messor bouvieri, M. 

capitatus, Formica subrufa and Aphaenogaster iberica, the most frequent ant species 

collecting seeds in the experimental area, and marked one representative plant of R. 

officinalis, F. ericoides and F. thymifolia close to each ant nest. Over the time that the 

seed removal experiment was performed, we assessed the fruiting status of each plant 

every one or two weeks and estimated the amount of seeds available for ants. 

Additionally, we surveyed seed collection by ants in 10 of the 15 marked ant nests to 

determine the importance of seeds of the target species as a food source. For this, we 

counted the number of items that ants transported to individual nests during 10 minutes 

periods through the study period, with a total of 32 counts irregularly distributed among 

the 10 ant nests in function of the coincidence of observation periods with ant activity. 

Also we collected the entire waste pile from 14 of the 15 marked nests at different times 

along the experiment. To analyse the content of the waste piles, about 5% of dry weight 

was evaluated completely after mixing the entire waste pile and the relative content of 

the target plant species analysed. The content of the waste pile was then pulled apart 

visually under the binocular microscope. The separated material was weighted on a 

precision balance and the relative content of the seeds evaluated (seed weight/ total 

weight of the waste pile; where total weight includes all vegetal, animal and mineral 

materials). The seeds of the target species in our experiment were counted to species 

level, while the remaining seeds were recorded to the genus or family level when 

possible. 

 

2.4 Seed removal experiments and seed survival analysis 

To evaluate the importance of mucilage secretion as a mechanism to escape 

seed removal by granivorous ants, we performed experiments on ant removal of loose 

vs. glued seeds (by their own mucilage) of R. officinalis, F. ericoides and F. thymifolia.  

In the spring of 2009, groups of 10 experimental seeds were placed within a 

radius of 5 m but not closer than 50 cm from marked ant nests. We placed one group for 
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each studied plant species in the surroundings of ant nests, with a total of 15 replicates 

per plant species. Half of the seeds in the groups remained dry and loose (control seeds) 

and the other half of the seeds were placed in distilled water for 20 minutes until full 

mucilage secretion was reached. We then placed 5 control seeds and 5 moist 

(mucilaginous) seeds on a flattened patch of bare soil. Petri dish covers (9 cm Ø) were 

then carefully placed on top and secured with a stone to avoid its displacement. Petri 

dish covers were provided of two small entrance holes in the side (1 x 1 cm) to permit 

only the entry of ants. Mucilaginous seeds became glued to the soil surface within 1 h 

after putting them on the ground. Once mucilaginous seeds had become glued to the 

ground, they could only be detached when the soil around it was disturbed by animals. 

A total of 75 dry and loose (control seeds) and 75 mucilaginous seeds per 

species were used in the experiment and seed survival was checked every week. 

Groups of seeds were replaced as soon as control seeds changed the condition from 

loose to glued to the ground, because heavy rain, or when Petri dishes got destroyed. 

The experiments ran from the start to the end of the seed dispersal season of each 

shrub species (35 days in R. officinalis, 84 days in F. thymifolia and 91 days in F. 

ericoides).  

The fate of control and glued seeds were individually followed through the 

experiments and values of 0 and 1 were assigned to represent seed survival and seed 

removal, respectively. In all trials, the survival time, which served as the response 

variable, was considered to be the date of the latest survey that the seed was detected. 

The Kaplan-Meier estimator (KM) of the survival function was calculated for each 

of the different seed treatments and plant species. We then checked for differences in 

survival between the two treatments using the log-rank test (Mantel 1966; Cox 1972). 

The statistical analysis was made in R statistical package (V. 2.12.2).  

 

3 Results 

3.1 Ant species and their interaction with the target plant species 

From the inspection we made of items that granivorous ants carried to their nests, 

we can confirm that ants searched and collected large numbers of seeds of many plant 

species in the study area (a total of 2206 counted seeds during the observation times 

during the study period). About 42.5% of all observed items were diaspores of the 

species R. officinalis, F. ericoides and F. thymifolia (1109 items in 320 minutes) and 
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75.5% of the dry weight (comparing only the plant remains without soil) in the waste piles 

of ant nests belonged to propagules of these species.  

Large numbers of ripe calices of R. officinalis were collected by ants in the first 

half of April, when nearly 25% of the items that ants transported to nests were seeds or 

entire calices of this species (Figure 1a). In the case of F. ericoides, ants were 

increasingly interested in seeds of this species following its commencement of its fruiting 

period but never exceeded 10% of items that seeds transported to the nests (Figure 1b). 

For F. thymifolia, ants were found transporting high amounts of seeds of this species at 

the beginning of the fruiting period, counting to up 20% of the items seeds carried, and 

subsequently decreased (Figure 1c). 

 

 

 

Figure 1a:  Ripe fruit of Rosmarinus officinalis (R. officinalis with 1-4 seeds per fruit) and seed availability 

scores in an average of 15 plants, with mean number of seeds carried by ants to nests in four counts of 10 

minutes and time that fruits and seeds were offered in trial experiments to ants over the studied time period.  
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Figure 1b: Ripe fruit of Fumana ericoides and seed availability scores in an average of 15 plants, with mean 

number of seeds carried by ants to nests in four counts of 10 minutes and time that fruits and seeds were 

offered in trial experiments to ants over the studied time period. 
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Figure 1c: Ripe fruit of Fumana thymifolia and seed availability scores in an average of 15 plants, with mean 

number of seeds carried by ants to nests in four counts of 10 minutes and time that fruits and seeds were 

offered in trial experiments to ants over the studied time period. 

 

The highest proportion of items in the waste piles of ant nests were entire calices 

of fruits of Cistaceae, calices and seeds of R. officinalis, calices of Thymus vulgaris, and 

seeds of Stipa tenacissima plus different species of Fumana (Figure 2). Remains of 

other diaspores found in the waste pile were that of Pistacia lentiscus, Teucrium sp. and 

Thessium humifusum. Other vegetative plant components and reproductive remains of 

unknown species were present but are not displayed in the figures. 

 

 

 

Figure 2: Boxplots of the relative weight of remains of the target species in the waste piles of 14 ant nests in 

the area where the experiments on seed removal by ants were performed. Values were calculated from dry 

weight data. Only reproductive remains of plants were displayed (n: number of ant nests where an item class 

was found). The boxplot displays the smallest and largest value as well as the first quartile, the median and 

the third quartile. 
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3.2 Seed removal experiments and seed survival analysis 

Experimental seeds of R. officinalis were offered to ants at the end of the fruiting 

period of this species (Figure 1a). In the case of F. ericoides, experimental seeds were 

offered to ants from the third week that ripe fruits were observed in the field (Figure 1b) 

and in F. thymifolia the experiment started in the first week in which ripe fruits were 

counted (Figure 1c). 

Seeds that were glued to the ground with their own mucilage survived significantly longer 

to removal by ants than control (dry and loose) seeds in all three studied species 

(Figures 3a, b and c) and the differences were significant in all the species. 

 

 

 

Figure 3a:  Estimated survival probability along time of glued and control seeds based on the computed 

values of the Kaplan-Meier estimator for Rosmarinus officinalis. 

 

Control seeds of R. officinalis were predated strongly the first week that the 

experiment started and they reached a survival probability of 2% after 7 days and 0% 
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after 35 days. Glued seeds were significantly less predated, with a survival probability of 

84% after 7 days and still 54% of probability of survival after 35 days of exposure 

(Х2=125, p <0.00001, Figure 3a). 

 

 

 

Figure 3b:  Estimated survival probability along time of glued and control seeds based on the computed 

values of the Kaplan-Meier estimator for Fumana ericoides.  

 

Control seeds of F. ericoides reached a 57% survival probability after 7 days and 

a minimum of 13% after 91 days, while glued seeds showed a significantly higher 

survival probability, with 90% of seeds surviving after 7 days and a 71% survival 

probability after 91 days (Х2=55, p< 0.0005, Figure 3b). 
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Figure 3c:  Estimated survival probability along time of glued and control seeds based on the computed 

values of the Kaplan-Meier estimator for Fumana thymifolia. 

 

Seeds of F. thymifolia glued to the ground had a survival probability of 88% after 

7 days and remained very high, 68%, after 84 days of exposure. Control seeds reached 

a probability of survival of 47% after 7 days and a minimum 14% after 84 days of 

exposure. Differences in seed survival were significant (Х2= 44.6, p<0.00001, Figure 3c). 

 

4 Discussion  

Our experiments showed that seeds of the studied plant species are heavily 

collected by ants and that mucilage secretion of these diaspores strongly reduced ant 

removal, thus favouring a longer persistence in the field. These findings support the idea 

that granivory by ants is an important factor in seed survival in the study area and that 

the escape mechanism we here addressed may be relevant for the target plant species.  
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Inspection of seeds carried by ants and waste piles indicated that seeds of all 

three species were items of interest for ants. The high proportion of remains of R. 

officinalis in the waste piles and the relatively low proportion of remains of Fumana 

species is consistent with the survival curve of R. officinalis, which is removed to a 

greater extent than the other species (Figures 3a, b and c), thus seeming to be of higher 

interest to ants. Diet and seasonal pattern of harvesting may be explained by relative 

seed abundance (Briese and Macauley 1981; Hobbs 1985; Willott et al. 2000) and other 

factors, such as seed coat strength, which could influence ant’s preferences. This could 

explain why seeds of Rosmarinus are more likely to be eaten than stronger seeds of 

Fumana species (Rodgerson 1998). Still, seeds of the family Cistaceae are of high 

interest as a food source and are intensely collected in the Mediterranean ecosystem we 

studied (Bastida and Talavera 2002; Bastida et al. 2009).  

More than 50% of the glued seeds still survived at the end of the experiments but 

only 0-20% of the control seeds survived at that time and this strong antipredatory effect 

that mucilage has on seed removal is similarly effective in all species. In natural 

conditions mucilage secretes once the seed become moistened (Werker 1997) which 

occurs during rain, fog or dew (see Material and Methods) and seeds adhere strongly to 

the soil after drying, thus preventing further removal. Heavy rain events are usually 

scarce in summer under Mediterranean climate conditions when seeds are released 

from plants (4.5 days in average in our study area; data from the 2004–2011 period of 

the Valencia and Castellón meteorological stations, provided by the National 

Meteorology Agency, Ministerio de Medio Ambiente, http:/www.aemet.es/) but dew, fog 

and light rain are more frequent meteorological events in Mediterranean semiarid 

conditions. Morning dew can provide significant amounts of water in dry Mediterranean 

areas (Kosmas et al. 1998; Kidron 1999; Agam and Berliner 2006), and it frequently 

occurs during the summer; up to 20 days in late summer (Baier 1966). Summer is 

usually the season with the lowest fog water yield but still it can make up an important 

amount of moisture in comparison with rainfall events, occurring over 25-38% of the days 

without rain in the summer months (Estrela et al. 2008). 

Granivorous ants can also act as seed dispersers as they accidentally abandon 

viable seeds on the way to the nest or deposit them in other places that the waste piles 

(Wolff and Debussche 1999; Retana et al. 2004). Therefore, the view that granivorous 

ants only harm seeds has been frequently criticized. Ant removal can have beneficial 

and detrimental effects, destroying most of the seeds but selectively benefitting some of 

them (Levey and Byrne 1993; Boyd 1996). In areas where most seeds are consumed, 
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these exceptions can have significant influence on vegetation composition (Dean and 

Yeaton 1993; Arnan et al. 2010). It has been reported that up to 16.4% of the harvested 

seeds are lost on the track by Messor bouvieri and that these seeds were not recovered 

afterwards, therefore being effectively dispersed (Retana et al. 2004). Ant-mediated 

dispersal has been previously reported for R. officinalis and F. ericoides (Bouman et al. 

1992; Arnan et al. 2010), suggesting the importance of ant removal of seeds for the 

colonization of open patches. However, some ant species, such as M. barbarus, 

repeatedly find and recover seeds lost on the way to the nest (Detrain and Tasse 2000; 

Schöning et al. 2004). Whatever the case is, lost seeds on the track to the ant nests can 

increase their chance to survive if they get glued to the ground, escaping further 

predation and runoff. This is possible when it coincides with a rainfall event, or more 

probably, with strong morning dew or fog in summer. This escape strategy seems 

especially important for R. officinalis seeds, as their seeds are heavily predated before 

and during seed ripening. Often, ants even cut whole ripe calyxes directly from the plant 

to transport them to the nest, making the loss of single seeds on the track highly 

probable, as completely ripe seeds easily fall out of the calyx when it is moved (author’s 

personal observation).  

At the end of August we removed the Petri dishes covering the seeds of F. 

ericoides and F. thymifolia (only glued seeds remained under them) and followed the fate 

of the seeds. After the first rain in September we observed that 50% and 40.8% of the 

seeds of F. ericoides and F. thymifolia respectively germinated, in accordance with time 

of germination reported from field observations of these species and that of R. officinalis 

(Lloret 1998; De Luís et al. 2005). This observation and the results of our experiment of 

seed removal support the idea that myxospermy plays an important role in determine the 

spatial pattern of seedling recruitment of these species. So, Arnan et al. (2010) found 

that overall, 88% of all patches newly occupied by F. ericoides along three years were 

<0.5 m from adult individuals, which agrees with the primary seed dispersal distances of 

this species. Similarly, López et al. (2003) found that for R. officinalis, most of the new 

recruitments during two years were located within 1.75 m around the mother plants. For 

F. thymifolia, Jump et al. (2009) studying the within-population genetic structure of this 

species using amplified fragment length polymorphism (AFLP), found very limited seed 

dispersal within the population.  

In synthesis, we found that diaspores of the studied plant species were actively 

searched and collected by ants. Those diaspores that were glued to the ground due to 

their own mucilage secretion doubled the chance of surviving ant collection in 
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comparison to the control seeds after several months, thus increasing their chance to 

establish and providing a mechanism to explain the recruitment patterns of these shrubs. 
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Abstract 

 

The genus Fumana is one of the most diverse and least studied genera of the 

Cistaceae family. To date, there are 21 recognized species with high morphological 

diversity, divided into three subgenera (Fumana, Fumanopsis and Pomelina). We used 

three molecular markers with coding (matK) and spacer (trnT-L) sequences of plastid 

and nucleic DNA (ITS) to reconstruct the phylogeny of 19 Fumana species (using 

Bayesian Inference, Maximum Parsimony and Maximum Likelihood analysis) and to 

estimate divergence times (using Bayesian analysis). Phylogenetic relationships based 

on the plastid markers confirmed the monophyly of the genus. Results do not support the 

traditionally established infrageneric divisions, but confirm the presence of two main 

groups of species. Each clade clusters species differing in vegetative and reproductive 

characters and having been formerly grouped in three subgenera (Fumana, Fumanopsis 

and Pomelina). However, none of the clades clustered species exclusively from one of 

the recognized subgenera. Given the impossibility of defining morphologic characters 

which are common to all species of every clade we reject all infragenetic divisions and 

discard the existence of three subgenera. Nevertheless, phylogenetic analysis supports 

the taxonomic delimitation of nine species, frequently discussed in recent years. 

Significant ancestral character states were found in five cases (leaf form and leaf margin, 

glandular trichomes, diaspore and seed mucilage secretion), suggesting an adaptation to 

the Mediterranean environment and climate. Divergence times of Fumana date to around 

16.97 Ma ago (24-10 Ma), with the divergence of major clades between the Middle and 

Late Miocene (15.61-8.8 Ma). Area analysis reconstruction suggests Fumana has a 

western Mediterranean ancestor, with this region representing the main centre of 

diversification, and the eastern Mediterranean representing a secondary diversification 

zone. 
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1 Introduction  

The Mediterranean Basin is known for having many plant species and endemisms, 

making it a major hotspot for global biodiversity (Médail and Quezel, 1999; Sauquet et 

al., 2009). The contemporary flora in the Basin is the result of tectonic movements and 

climatic oscillations acting at different spatial and temporal levels (Thompson, 2005), 

which led to complex patterns of connection-isolation between territories (Rosenbaum et 

al., 2002; Meulenkamp and Sissingh, 2003; Ree and Sanmartín, 2009). Also, the 

formation of land bridges during the Oligocene and Miocene led to biotic expansions 

across the Mediterranean (Oosterbroek and Arntzen, 1992; Salvo et al., 2010) and we 

can still recognize biogeographical links between some plant clades that diversified in 

the western Mediterranean and related eastern Mediterranean taxa (Médail and 

Diadema, 2009; Jabbour and Renner, 2011). 

Insights into the evolutionary path of a plant family can be inferred from the evolution 

of morphological characters, based on phylogenetic analysis. Certain patterns of 

character evolution are typically in Mediterranean plant families and may indicate specific 

adaptations to climatic changes (Ackerly et al., 2002; Ackerly, 2004). Accordingly, leaf 

size and shape and trichome density have been viewed as adaptations to the increasing 

dryness and seasonality of the Mediterranean region (Fiz-Palacios et al., 2006; Guzmán 

et al., 2009; Guzmán and Vargas, 2009b; Turini et al., 2010). Recent years have seen a 

growing interest in both spatial and temporal patterns of diversification and speciation of 

plant groups in the Mediterranean region. Research has also attempted to understand 

the changes in the morphological characters that have marked the course of evolution of 

these groups (Guzmán and Vargas, 2005; Fiz-Palacios et al., 2006; Guzmán et al., 

2009; Salvo et al., 2010). Despite this, there are very few groups of Mediterranean plants 

that have been studied from both perspectives (Guzmán and Vargas, 2005; Galbany-

Casals et al., 2009; Guzmán and Vargas, 2009a; Pérez-Gutiérrez et al., 2012). 

Cistaceae is one of the most representative plant families of the Mediterranean 

region. The Cistaceae family, consisting of eight genera, five in the Old World (Cistus L., 

Halimium (Dunal) Spach, Helianthemum Mill., Tuberaria (Dunal) Spach and Fumana 

(Dunal) Spach) and three in the New World (Crocanthemum Spach, Hudsonia L. and 

Lechea L.), had the Mediterranean as the main differentiation centre (Arrington and 

Kubitzki, 2003; Guzmán and Vargas, 2009a). Phylogenetic hypotheses about the family, 

based on molecular and morphological analyses, indicate the isolated position of the 

Fumana genus at the base of Cistaceae (Ukraintseva, 1993; Nandi, 1998a; b; Guzmán 

and Vargas, 2009a). The early divergence of this lineage, which seemed to have taken 
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place in the Miocene (18.51-10.7 Ma), contrasts with that of most of the genera in the 

Old World, which took place in the Pliocene (4.22-5.30 clade Tuberaria-Halimium-Cistus; 

Guzmán and Vargas, 2009a). Fumana is a circum-Mediterranean genus and one of the 

most diverse and least studied genera of the family, and therefore represents an 

interesting plant system to study the process of plant evolution in the Mediterranean 

Basin.  

The morphological differentiation of the genus Fumana from the family of the 

Cistaceae was mainly based on the presence of a whorl of sterile stamens, and 

anatropous ovules arrangement (Spach, 1836a; b). Studies on morphological 

characteristics of reproductive and vegetative traits (Spach, 1836b; Willkomm, 1856; 

Grosser, 1903; Janchen, 1920; Jean and Pons, 1963; Güemes and Molero, 1993) have 

led to diverse proposals on the infrageneric organization that have been recognized to 

date. Fumana has been divided into three genera or subgenera (Fumana, Fumanopsis 

Pomel and Pomelina (Maire) Güemes & Raynaud) based, principally, on the 

reproductive characters: inflorescence, stamens, ovules, pollen and seeds (Pomel, 1860; 

Janchen, 1920; Raynaud, 1992; Güemes and Molero, 1993). Three species of Fumana, 

belonging to each of these subgenera respectively, were included in a molecular-based 

phylogeny of the family Cistaceae giving rise to reasonable doubt about the 

independence of the subgenus Pomelina, which should be integrated in the subgenus 

Fumana (Guzmán and Vargas, 2009a). 

To date, there are 21 recognized species of Fumana which have an almost 

exclusively circum-Mediterranean distribution with two core diversification centres, one in 

the western region, principally in the Iberian Peninsula, and one in the eastern region, 

located in the Peninsula of Anatolia. The genus is distributed north to south, from the 

Anti-Atlas in southern Morocco and Algeria (along 30°N parallel) to the island of Godland 

(located in the parallel 57°N); and west to east, from Agadir (in the meridian 9°W) to the 

Urals (60°E meridian) (Grosser, 1903; Janchen, 1920; Janchen, 1925). Unlike other 

Cistaceae (Cistus and Helianthemum), Fumana is poorly represented in the 

Mediterranean islands, and missing in the eastern Atlantic oceanic islands (Canary 

Islands, Azores, Madeira). Its distribution covers four biogeographic regions: 

Mediterranean, Irano-Turanian, Circumboreal and Saharo-Arabic. The Mediterranean 

region has been proposed as the main centre of diversification, especially the Iberian 

Peninsula, with 18 species, of which six are endemic to this region. The Irano-Turanian 

region, especially the Anatolian peninsula, has been proposed as a secondary centre of 

diversification, with 10 species of which three are endemic. There are no exclusive 
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species inhabiting others biogeographic regions. Only one species (F. procumbens 

(Dunal) Gren. & Godr.) reaches the Circumboreal region, and three species (F. arabica 

(L.) Spach, F. laevis (Cav.) Pau, and F. thymifolia (L.)Spach ex Webb) extend to the 

Saharo-Arabic region (Coode, 1965; Güemes and Molero, 1993).  

Despite interest in understanding the evolution of the Cistaceae in the 

Mediterranean region, the evolutionary history of the genus Fumana has never been 

examined from a phylogenetic viewpoint or within a biogeographic context. Although the 

morphological character of these species is very well known, their role as possible 

adaptations and their ancestral states have not been established and analysis of this 

type could shed light on the formerly established subdivisions of the genus. Therefore to 

investigate the pattern of evolution in the genus Fumana, we have adopted an integrative 

approach, including a detailed phylogenetic study based on two plastids (matK, trnT-L) 

and one nuclear (ITS) region of 19 of the 21 recognized species. Our results provide a 

molecular dating of the phylogenetic tree, a biogeographic analysis and a character-state 

reconstruction analysis.  

 

2 Materials and Methods 

2.1 Species sampling  

A total of 55 Fumana accessions, representing 19 of the 21 species currently 

recognized (Coode, 1965; Heywood, 1968; Greuter et al., 1984; Güemes and Molero, 

1993; Güemes, 1999) were sampled for the study (Table 2). Fumana grandiflora Jaub.& 

Spach and F. oligosperma Boiss.& Kotschy could not be sampled as neither species has 

been collected since their first description in the 19th century, and DNA extraction from 

the original herbarium collection was not possible. Species were represented by more 

than one population, with the exception of F. fontqueri Güemes, F. lacidulemiensis 

Güemes and F. trisperma Hub.-Mor. & Reese, because each has only one known 

population. The populations were sampled throughout the geographic range of each 

species according to (Güemes and Molero, 1993; 2002) for the western Mediterranean 

species, to Coode (1965), for the eastern species, and Heywood (1968) for the north 

Mediterranean species. Based on previous phylogenetic studies (Dayanandan et al., 

1999; Guzmán and Vargas, 2009a), accessions from the related genera Hopea and 

Neobalanocarpus (Dipterocarpaceae), and Cistus (Table 2) were used as outgroups.  
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2.2 DNA extraction and amplification  

DNA was extracted from freshly collected leaves, subsequently dried and stored in 

silica gel, or from leaves taken from herbarium vouchers (Table 2). DNA was extracted 

with the Speedtools Plant DNA extraction Kit (Biotools, Spain) following the 

manufacturer´s protocol but modifying the lysis step by adding 2-Mercaptoethanol and 

PVP till reaching a final concentration of 0.2% and 3% respectively. Before DNA 

extraction, an extra step was added to reduce the excess of polysaccharides, which in 

preliminary test were thought to inhibit DNA isolation and amplification. Therefore, 20-30 

mg of plant material was ground and 1 ml of NaCl (5M) was added. Material was shaken 

(vibrational frequency 30 Hz, 28.00 agitations per second, 90 s) and then centrifuged at 

maximum revolution speed for 2 min in a standard tabletop centrifuge. The NaCl solution 

was then removed and the steps repeated 2-4 times.  

DNA amplification of nuclear (ITS-internal transcribed spacer region of the 18S–

5.8S–26S nuclear ribosomal cistron) and plastid regions (matK- MaturaseK gene, trnT-L- 

trnT/trnL spacer) were carried out by polymerase chain reaction (PCR). The ITS4 and 

NS5 standard primers were used to  amplify the ITS region (Sun et al., 1994), and the 

matK intron and the trnT-L intergenic spacer were amplified using the 3914F and 1470R 

(Johnson and Soltis, 1994) and the a and b primers (Taberlet et al., 1991), respectively. 

Amplifications were unsuccessful in many samples (15 for ITS, 37 for matK, 31 for trnT-

L) so we designed new internal primers for all regions based upon preliminary results, 

with two 21/20-nucleotide-long internal primers for ITS (ITS-intF: 5´-GTT GCG TGA CGC 

CCA GGC AG-3´; ITS-intR: 5´-GAG CAC AGC CTC CGT GGC TAG-3´); and two 21/20-

nucleotide-long internal primers for matK region (matK-intF: 5´-GTC AAT TRA ATA AAT 

GGA TAG-3´; matK-intR: 5’-AGA GGA AGA CTC TTT TAM CC-3´). As expected, for the 

trnT-L region just one 21-nucleotide-long internal primer was amplified (trnTL-intF: 5´-

GTA CAT ACG AAT TAC GCA AAC-3´), and this was combined with the standard 

primers a, b and d from Taberlet et al. (1991). DNA was amplified using a FlexCycler 

(AnalyticJena AG, Jena, Germany) or a 2720 ThermalCycler (AppliedBiosystems, Foster 

City, USA). After 4 min at 94ºC pretreatment, PCR conditions were set as follows: 39 

cycles of 1 min at 94ºC, 1 min at 45ºC-58ºC, and 90 s at 72ºC. We added 0.2-0.8 µl of 10 

mg/ml BSA (bovine serum albumin) in a total of 20 µl reaction volume in all reactions and 

0.2-1 µl DMSO (dimethyl sulfoxide) was only included in reactions for ITS amplification. 

The PCR products were purified using spin filter columns (QIAquick PCR Purification Kit, 

California), following the manufacturer´s protocol. The cleaned product was then 

sequenced directly using dye terminators  (Big Dye Terminator v. 2.0, Applied 
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Biosystems, LitteleChalfront, UK) following the manufacturer´s instructions and run in 

polyacrylamide electrophoresis gels (7%) using an Applied Biosystems Prism Model 

3730 automated sequencer.  

2.3 Phylogenetic analyses 

To perform phylogenetic analyses, two matrices were constructed: one with 54 

sequences (ingroup, 48; outgroup, 6) of the ITS region and the other one with 61 

sequences (ingroup, 55; outgroup, 6) of the two concatenated plastid regions (matK, 

trnT-L). Sequences of ITS region, matK intron and trnT-L spacer, were aligned using 

MAFFT v.6.822 (Katoh, 2008) hosted on the CIPRES Science Gateway (Miller et al., 

2010). The aligned sequences were inspected and corrected manually on BioEdit 

v.7.0.9.0 (Hall, 1999) to minimize the number of gaps following the method of Kelchner 

(2000). Phylogenetic analyses were performed using Maximum Parsimony (MP), 

Maximum Likelihood (ML) and Bayesian Inference (BI) separately for nuclear (ITS) and 

for the concatenated plastid sequences (matK, trnT-L). The robustness for all nodes was 

estimated with posterior probability (PP) in BI and bootstrap values (BS) in both MP and 

ML. 

For the Maximum Parsimony (MP) analysis, the dataset was analysed using 

equally weighted parsimony in TNT v.1.1 (Goloboff et al., 2008), with a heuristic search 

and a tree memory of 10000. Gaps were treated as missing data in all analyses. We 

chose 1,000 replicates of Wagner trees, followed by tree bisection-reconnection (TBR) 

branch swapping, and saved five trees per replication. A strict consensus tree was then 

generated. Nodal support was calculated using bootstrap resampling with 1,000 

replications summarizing the absolute frequency of each group.  

To adjust the BI and ML analyses with the most proximate model available, we tested 

the simplest model of sequence evolution that best fit the sequence data via the bottom-

up strategy of hierarchical Likelihood Ratio Test (hLRT) and the Akaike Information 

Criterion (AIC, Akaike, 1979) using jModelTest v.0.1.1 (Guindon and Gascuel, 2003; 

Posada, 2008). The test was run separately for each of the three independent data sets 

(ITS, matK, trnT-L). The BI analysis was with MrBayes v.3.1.2 (Ronquist and 

Huelsenbeck, 2003), and concatenated plastid sequences were treated as partitioned, 

implementing the GTR+Γ model. Data matrices were run for three million generations on 

four MCMC chains with a temperature of 0.2 with sampling every 100 generations. A 

consensus tree was calculated at a 50% majority-rule with the sumt command to obtain 

the final estimated phylogeny. The ML analysis was calculated using RaXML v.7.0.3 
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(randomized axelerated maximum likelihood for high performance computing; 

Stamatakis, 2006) with the GTRGAMMA mode and default settings for both nuclear 

(ITS) and plastid (matK, trnT-L) data sets separately, treating plastid sequence data set 

as partitioned. TenML searches were performed starting from 10 different randomized 

parsimony trees to obtain the best scoring tree. A standard nonparametric bootstrap with 

100 replicates was carried out for internal support using the default estimation algorithm.  

2.4 Divergence time estimates and DIVA analysis 

Divergence time analysis for both nuclear and plastid data sets were performed 

under BI using BEAST 1.6.1 (Drummond and Rambaut, 2007). Xml-files for the BEAST 

analyses were constructed using BEAUti 1.6.1 (BEAST package). A combined matrix 

containing ITS, matK and trnT-L data sets was constructed to estimate the divergence 

times and concatenated datasets were analysed under partition-specific models. For the 

three genetic data sets we used the GTR+Γ model as the best fit substitution models, 

based on the AIC (Akaike, 1979). The data were analyzed under the uncorrelated 

lognormal relaxed clock model (UCLD) and a Yule Tree Prior was employed in all runs, 

which assumes a constant speciation rate for each branch of the tree. 

The BEAST analysis was calibrated by using the same fossil records as described 

in Guzmán and Vargas (2009a). The tree root, consisting of the divergence time of 

Dipterocarpaceae and Cistaceae, was constrained with a minimum of 23 Ma and a 

maximum of 39 Ma, following Wikström et al. (2001). The prior for the age of the root 

was therefore set to a normal distribution with a mean of 31 Ma and a standard deviation 

of 4.1 Ma. We chose a normal distribution as it places higher probability on intermediate 

dates, providing a more appropriate prior calibration (Ho and Phillips, 2009). 

The crown group of the Cistaceae family was constrained using the earliest fossil found 

of the family of the Cistaceae. This fossil was described as a reproductive structure of 

Cistinocarpum roemeri Conis (Palibin, 1909) and dated from the Middle Oligocene in 

Germany (28 Ma old). We therefore employed a lognormal distribution prior with an 

offset of 28 Ma and a standard deviation of 0.8 Ma  

The MCMC post chain was run with for 50 x 106 generations (with a burnin of 

approximately 10%) and sampled every 1000th generation. Tracer v.1.4 (Rambaut and 

Drummond, 2007) was then used to measure the effective sample size (ESS) of each 

parameter, which in all cases exceeded 100. Trees were then summarized with Tree 

Annotator v.1.6.1 (Rambaut and Drummond, 2010) as maximum clade credibility, mean 
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node heights and a 0.5 posteriori probability limit. FigTree v.1.3.1 (Rambaut, 2009) was 

used to visualize the tree.  

To reconstruct ancestral areas of distribution, a dispersal-vicariance analysis (S-

DIVA) was performed using RASP v.2.0 beta (Yu et al., 2010). This method resolves the 

phylogenic uncertainty of using a collection of trees. DIVA allows the reconstruction of 

ancestral distributions without any previous assumptions about the area (Ronquist, 

1997), and its use has been recommended under reticulated biogeographical scenarios, 

such as the Mediterranean Basin (Sanmartín, 2003; Oberprieler, 2005). After discarding 

10,000 trees from a BI analysis of the nuclear (ITS) and plastid (matK, trnT-L) data, we 

employed a subsample of 20,000 trees with the slow ancestral reconstruction option 

selected to infer ancestral distribution areas. To define the areas, a paleographical 

criterion was followed (Meulenkamp and Sissingh, 2003) and the selected areas were: A, 

northwestern Mediterranean; B, southwestern Mediterranean; C, southeastern 

Mediterranean; D, northeastern Mediterranean; E, Eurosiberian (Table 1; Fig. 3). The 

biogeographical analysis was restricted to a maximum number of five areas, given that 

this is the maximum number of areas occupied by Fumana procumbens Gren. &Godr., 

the more widespread species. Outgroups from the Dipterocarpaceae were excluded from 

the analysis and were coded as "null", according to Yu et al. (2012).  

 

2.5 Ancestral state reconstruction 

There are 15 morphological characters that have traditionally been considered for 

circumscription of the genus Fumana (Güemes, 1991).For the analysis of character 

evolution we chose six characters which are considered taxonomically important for the 

genus Fumana and one (mucilage secretion in seeds) which has not been studied 

before. Therefore, a total of seven characters of seed morphology (dispersal unit; seed 

vs. fruit), number, mucilage secretion and ornamentation), leaf morphology (margin and 

form) and trichome types (presence of glandular trichomes) were analyzed and mapped 

on a pruned total evidence phylogeny. Character states were determined for each 

species from fresh and herbarium material. The complete morphological matrix was 

performed coding for a total of seven characters. We used the “drop.tip” command of the 

“ape” software (Paradis et al., 2013) in R v.3.0.1 (R Core Team, 2013) to prune the tree, 

excluding repeated species. To infer patterns of character evolution, we used the ML 

function of Mesquite v.2.74 (Maddison and Maddison, 2009) to trace character states on 

the consensus tree obtained from the BI analysis. The “Trace Character History” option 
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was used under the likelihood reconstruction method to display the ancestral state. The 

maximum likelihood model provides information on genetic branch lengths and uses the 

Markov k-state one parameter model (Mk1), which assumes a single rate for all 

transitions between character states (Lewis, 2001). Character states with a significant 

likelihood for reconstruction were considered the most likely ancestral states (i.e., using 

the average likelihood decision threshold of 2.0, with a proportional likelihood of 0.88 or 

higher(Maddison and Maddison, 2009). 

 

3 Results 

3.1 Phylogenetic analyses 

In the genus Fumana, trnT-L sequence diversity, using the K-2-p model of 

evolution, ranged from 0.0% (between 31 conspecific accessions and between F. 

ericifolia - F. paradoxa, F. juniperina - F. thymifolia) to 5.1% (between F. laevipes - F. 

trisperma); matK sequence diversity ranged from 0.0% (in 36 conspecific accessions and 

11 congeneric accessions) to 3.3% (between F. arabica and F. laevipes); and ITS 

sequence diversity varied from 0.0% (between 14 conspecific accessions and 11 

congeneric accessions) to 3.1% (between F. arabica and F. thymifolia, Table 3). The 

genus Fumana was recognized as monophyletic in the BI, MP, and ML analyses using 

ITS (100 PP, 100% BS, 100% BS, respectively, Fig. 2) and matK and trnT-L sequences 

(100 PP, 98% BS, 92% BS, respectively, Fig. 1). 

The BI, MP and ML analyses of matK and trnT-L sequences yielded similar 

topology with BI displaying higher values (Fig. 1). The ML and MP analysis had lower 

resolution and lower support, only adding a well-supported clade with two conspecific 

accessions of Fumana thymifolia in ML (accessions number 2 and 3). When the GTR+G 

was used as the simplest model, the BI analysis for the combined matrix of plastid 

sequences reached equilibrium after 75,000 generations. Six conspecific accessions 

formed well supported monophyletic groups in BI, MP and ML (with exception of F. 

ericoides with a 62% BS in MP and F. baetica with 63% BS in MP and 70% BS in ML). 

The consensus tree of the BI, MP and ML analysis of plastid regions revealed four major 

clades (named I, II, III, IV), where clades I, II and IV were strongly supported with BS 

values ≥85% and Bayesian PP >0.95. Clade I was clustered together with clade II with 

low PP and BS support (78 PP in BI, <50% BS in MP, 74% BS in ML); while clade III 
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clustered with clade IV with high PP and moderate BS values (97 PP in BI, 77% BS in 

MP, 70% BS in ML).  
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Figure 1: Majority consensus tree (50%) from BI analysis based on plastid sequences (trnT-L, matK) of 

Fumana species. Population numbers are given after species name (see Table 2). Above branches: BI 

Posterior Probability/MP Bootstrap/ML Bootstrap. Strict consensus tree of 475 MP trees (CI = 0.805, RI = 

0.941, 206/1059 steps).A hyphen represents incongruence between BI tree and MP or ML consensus tree. 

Branches with posterior probability ≥0.95 are represented by thick lines.  
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Two of the four major clades partially follow the traditional separation in two 

subgenera, with clades II and IV containing almost all species previously grouped in the 

Fumanopsis and Fumana subgenera respectively (6 out of 8 in Fumanopsis, and 10 out 

of 12 in Fumana). Clade II includes five species of which two (Fumana thymifolia and F. 

laevipes) clustered together with 96 PP in BI, 60% BS in ML and <50% BS in MP. Clade 

IV clusters 10 species formed by F. trisperma and by two other groups of species. One 

group clusters four species (F. procumbens, F. fontqueri, F. paphlagonica and F. 

baetica) and the other holds five species (F. scoparia, F. ericoides, F. ericifolia, F. 

lacidulemiensis and F. paradoxa). F. scoparia and F. ericoides clustered together (100 

PP in BI, 98% BS in MP, 97% BS in ML) and were separated from the monophyletic 

clade of F. ericifolia, F. paradoxa and F. lacidulemiensis (100 PP in BI, 83% BS in MP, 

88% BS in ML).  

A majority rule consensus tree of the nuclear ITS sequences from BI under the 

GTR+G model is shown in Fig. 2, with the corresponding values of ML and MP analyses. 

The BI analysis reached equilibrium after 100,000 generations. ITS sequence data 

produced limited resolution with unresolved polytomies in all three analyses. Monophyly 

for Fumana was only clearly supported by in the MP analysis (100% BS), while BI and 

ML analyses depicted Fumana with Cistus as a monophyletic clade (100 PP in BI, 100% 

BS in ML). The ITS phylogeny revealed monophyly in six species, with 3 well supported 

groups of conspecific accessions in the BI, MP and ML analyses (Fumana fontanesii, F. 

laevipes and F. thymifolia). There was a partial congruence in the topology to the plastid 

tree, since accessions of clades II and III in the matK and trnT-L analyses were also 

clustered together (clade II: 100 PP in BI, 99% BS in MP and 98% BS in ML; clade III: 97 

PP in BI, <50% in MP, 53% in ML) in the ITS analysis.  
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Figure 2: Majority consensus tree (50%) from BI analysis based on nuclear sequences (ITS) of Fumana 

species. Population numbers are given after species name (see Table 2). Above branches: BI Posterior 

Probability/MP Bootstrap/ML Bootstrap. Strict consensus tree of 400 MP trees (CI = 0.704, RI = 0.884, 
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176/813 steps). A hyphen represents incongruence between BI tree and MP or ML consensus tree. 

Branches with posterior probability ≥0.95 are represented by thick lines. 

 

3.2 Divergence time estimates and DIVA analysis 

According to our molecular dating analysis, divergence times of Fumana took 

place about 16.97 Ma ago (24-10 Ma). The first branch to separate was the group 

formed by clade I (Fumana arabica and F. fontanesii) and clade II (Fumanopsis) in the 

Miocene about 14.6 Ma ago (21-8.8 Ma). The second branch to separate was the group 

that included clades III and IV, located in the Miocene about 11.8 Ma (17.5-6.3 Ma).  

Table 1 and Fig. 3 show the results of the dispersal-vicariance analysis. The 

analysis established the area for the ancestor of the genus in the northwestern 

Mediterranean area with a probability of 84.55%. Results support that species 

divergence in nodes c, e, f and g occurred through a dispersal event with a probability 

higher than 0.80. One vicariance event was also detected in node d (probability 

>0.8756).  
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Figure 3: Chronogram obtained with BI dating of the combined data (ITS, trnT-L, matK). The pie 

charts represent the relative probability of ancestral areas reconstructed for each node using the 

DIVA analysis. The black portion represents reconstructions with a probability <0.10. Letters next 

to pie charts and terminals correspond to areas (A, north-western Mediterranean; B, south-

western Mediterranean; C south-eastern Mediterranean; D, north-eastern Mediterranean). 

Ancestral area reconstructions are only indicated for nodes with phylogenetic support (PP ≥0.90; 

≥70%). 

 

 

Table 1. Results of the DIVA analysis. Nodes refer to Fig. 3. (A, north-western Mediterranean; B, 

south-western Mediterranean; C south-eastern Mediterranean; D, north-eastern Mediterranean).  

 

Node Height (Ma) Height 95% (Ma) Event Reconstruction Probability 

a 18.29  24.92-11.85 Dispersal A  A/ABD 0.2322 

b 11.34 17.83-5.49 Dispersal B  AB/DB 0.2463 

c 9.41 14.53-4.55 Dispersal A  ABCD/A 0.8015 

d 13.10 19.49-7.42 Vicariance AD  A/D 0.8756 

e 10.08 15.08-5.5 Dispersal A AD/A 0.2863 

f 5.51 11.29-3.88 Dispersal A A/A 1 

g 2.88 5.09-0.91 Dispersal A ABCD/A 1 
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3.3 Ancestral state reconstruction 

Ancestral states of all seven characters were reconstructed for all nodes of the tree 

and are shown in Figs. 4a-d. The character state reconstruction showed that seed 

number and ornamentation were equivocally reconstructed. We found a higher likelihood 

for a nine-seeded state as an ancestral reconstruction, but it was not statistically 

significant (Fig. 4a). Clades II and IV separated, respectively, species with six reticulated 

seeds and species with nine papillated seeds. However, three-seeded Fumana aciphylla 

and F. trisperma are separated into clades I and IV while six-seeded F. bonapartei is 

located in clade III. The two types of seed ornamentation are present in both clades I and 

III.   
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Figure 4a: Likelihood-based ancestral state reconstruction of seven selected morphological-anatomical 

characters. Proportional likelihoods of the most likely state are shown at nodes for all species and clades. 

Seed number and seed ornamentation characteristics are mapped onto the majority consensus tree (50%) 

from BI analysis based on plastid sequences (matK and trnT-L).  
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Figure 4b: Likelihood-based ancestral state reconstruction of seven selected morphological-anatomical 

characters. Proportional likelihoods of the most likely state are shown at nodes for all species and clades. 

Leaf margin and leaf form are mapped onto the majority consensus tree (50%) from BI analysis based on 

plastid sequences (matK and trnT-L). 

 

Character optimization was significant on reconstructing the leaf margin and leaf 

form (Fig. 4b). No revolute leaf margin was reconstructed as the most likely ancestral 

state with a change to revolute leaf margin in three species of clade II. Lanceolate leaf 

form was the most likely ancestral state, which changed to ericoid in clade IV, and to 

ovate in Fumana arabica and F. thymifolia, in clade II. F. laevipes was the only species 

shifting to a filiform shape. Glandular trichomes were reconstructed as ancestral state 

and have changed twice to non-glandular trichomes, once in clade IV and F. fontanesii in 

clade I (Fig. 4d). 
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Figure 4c: Likelihood-based ancestral state reconstruction of seven selected morphological-

anatomical characters. Proportional likelihoods of the most likely state are shown at nodes for all 

species and clades. Dispersal and mucilage secretion are mapped onto the majority consensus 

tree (50%) from BI analysis based on plastid sequences (matK and trnT-L).  
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Figure 4d: Likelihood-based ancestral state reconstruction of seven selected morphological-

anatomical characters. Proportional likelihoods of the most likely state are shown at nodes for all 

species and clades. Presence of glandular trichomes is mapped onto the majority consensus 

tree (50%) from BI analysis based on plastid sequences (matK and trnT-L).  

 

The diaspore only changed in two species in clade IV from seed to fruit dispersed 

(Fig. 4c). Seed dispersal has been reconstructed as a significant ancestral state while 

fruit dispersal is shown to be a derived character. Strong mucilage secretion in seeds of 

Fumana has been significantly reconstructed as an ancestral state and is present 

throughout most of the clades. There were two changes in a very weak or absent 

mucilage secretion of seeds in clades IV and I, in the latter, only in F. fontanesii. 
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4 Discussion 

4.1 Phylogenetic analyses and systematic implications 

Analysis of the combined plastid sequences of Fumana significantly supports the 

monophyly (100PP, 100% BS in MP and 92% BS in ML) of the genus in Cistaceae, 

according to Guzmán and Vargas (2005; 2009a). However, these results do not support 

the traditionally established infrageneric divisions of this genus (supplementary Table 1). 

Former authors tried to categorize the high morphological diversity and proposed 

divisions of the genus (Willkomm, 1856; 1880). With extended knowledge about of genus 

Fumana and the successive description of new species throughout the 20th Century, 

some species did not fit into any of the previously established groups, and these 

infrageneric divisions were successively revised. Janchen (1920) established the most 

complex division by separating the genus in two subgenera based on embryologic 

characters, and then each one into two sections based on vegetative characters. In 

some occasion, the genus was divided into two (Pomel, 1860) or three genera 

(Raynaud, 1992), although this approach was never approved by other botanists.  

Our results confirm the presence of four clades of species (Fig. 1), in which the two 

main clades (II and IV) correspond with the proposal of Ukraintseva (1993), based on the 

characteristics of the pollen grain and the proposal of Janchen (1920) based on the 

characteristics of the embryo form (Fig. 1). Clade II primarily clusters species originally 

placed in the subgenus Fumanopsis, bearing subprolate to prolate pollen with a 

granular-reticulate ornamentation and a curved embryo. Clade I comprises species 

formerly placed in the classic subgenus Fumana, with different pollen and seed 

characteristics to clade II, as well as different vegetative and reproductive characters. 

Clades III and IV are composed of species traditionally placed in the subgenera 

Fumanopsis and Fumana, respectively, with oblate-spheroidal shaped pollen with 

retipilate ornamentation. However, these clades differ in their embryologic characters. 

Clade III clusters species with three to six homomorphous seeds with a curved embryo, 

while clade IV clusters species with nine heteromorphous seeds with a circinate embryo 

(Fig. 1 and Fig. 4a). 

We find a concordance of 80% (15 of 19 studied species) between the molecular 

phylogenetic and the classic infrageneric divisions in clades II and IV. However, clades I 

and III are not in accordance with the established taxonomic divisions. Both clades hold 

two species that are morphologically the most inconsistent and conflicting ones of the 

whole genus. The two species in clade I and III share very few characters with the 



CHAPTER 4 

145 

adjacent clade and do not share common characters that clearly define them as a group. 

Therefore, even though the molecular analysis confirms the presence of four clades, 

species in the clades defined by the molecular approach do not share enough vegetative 

or reproductive characters to clearly delimit them as a subgenus. Consequently, and in 

concordance with Grosser (1903), these findings neglect any infragenetic division and 

therefore we suggest invalidating the independency of the three subgenera.  

Focusing on the details of the taxonomic analysis, our study supports the 

separation of some of the species frequently discussed in recent years. This is the case 

of Fumana baetica, a species commonly confounded with F. procumbens and F. 

paradoxa(Güemes, 1989), which shows a well-defined monophyletic group in our 

phylogenetic analysis, separated from the other two taxa. Fumana ericoides and F. 

scoparia also clustered as two independent species, as previously proposed by 

Cavanilles (1793) and Coode and Davis (1964). It now appears they are clearly 

separated from the other species in the group, like F. ericifolia and F. paradoxa, as 

maintained in the most recent reviews of the genus(Güemes and Molero, 1993). The 

group of F. thymifolia also forms a clade apart, confirming the separation from the group 

of species having glabrous and opposite positioned leafs (F. juniperina, F. hispidula, F. 

laevis). Fumana fontanesii, F. laevipes, F. aciphylla, F. bonapartei and F. trisperma, 

whose morphological characters strongly differ from each other and from the rest of 

species in the genus, which had always been considered by taxonomists as 

independents, are confirmed as monophyletic groups in our phylogeny. 

 

4.2 Divergence time estimates and DIVA analysis 

Based on the analysis of dating, the origin of the genus is between the Early and 

the Middle Miocene (Fig. 3, Table 1), while the divergence of major clades occurred 

between 15.61 and 8.8 Ma, between the Middle and Late Miocene, followed by an 

important process of diversification during the Pliocene (5.3-2.6 Ma). Our results agree 

with those obtained in other Mediterranean genera, with different life forms and 

biogeographic histories, such as Cistus (Guzmán and Vargas, 2005), Antirrhinum 

(Vargas, 2009), Dianthus (Valente et al., 2010), Narcissus (Santos-Gally et al., 2012) or 

Erodium (Fiz-Palacios et al., 2010), whose diversification also occurred mainly between 

the late Late Miocene and Pleistocene. 

During the Cenozoic, there was an increase in aridity that ended in the Messinian 

Mediterranean salinity crisis (5.96-5.33 Ma, Bocquet et al., 1978) and the subsequent 
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stabilization of the Mediterranean climate 2.8 Ma ago (Suc, 1984). These changes had a 

great impact in the Mediterranean Basin, and suggest a strong relationship between the 

subsequent period of climatic stability and the high diversity of species in several groups 

of Mediterranean plants during this time (Fiz-Palacios et al., 2010; Fernández-Mazuecos 

and Vargas, 2011). Within Fumana, the major species diversity occurred in the Late 

Pliocene and could be interpreted as a sign of ancestral divergence associated with 

adaptation to the onset of seasonal drought, characteristic of the Mediterranean climate. 

Many species of the genus (e.g. F. ericoides or F. thymifolia) are well adapted to fire and 

drought and are effective colonizers of disturbed environments (Arnan et al., 2010; 

Moreira and Pausas, 2012) and also probably due to their selfing ability (Güemes and 

Boscaiu, 2002; Carrió et al., 2008; Carrió and Güemes, 2013). 

The results of the reconstruction of areas suggest a western Mediterranean 

ancestor for the genus Fumana (Fig. 3, Table 1). Based on the number of species, 

historical biogeography highlighted the western Mediterranean as the main center of 

diversification, and the eastern Mediterranean as a secondary center for this genus. Our 

analysis also suggests that at least two colonization processes in the Late Miocene and 

Pliocene (9.41 Ma and 2.88 Ma) from the NW to the NE, and from SW to SE 

Mediterranean; and one vicariant process between NW and NE lineages in Medium 

Miocene. These events would explain the origin of the secondary diversification centre 

for Fumana in the eastern Mediterranean and coincide with other proposals to explain 

the current species distribution of other Mediterranean plant groups (Galicia-Herbada, 

2006; Font et al., 2009). 

 

4.3 Ancestral state reconstruction 

Results of character reconstruction suggested that shifts in seed, leaf and trichome 

characters occurred in the diverse clades of Fumana (Fig. 4a-d). 

The leaves of Fumana have strong sclerophyllous characters with a thick cuticle 

covered by dense hair (Güemes, 1991). Leaf modifications are important adaptations to 

arid environments (Puigdefábregas and Pugnaire, 1999). By reducing their evaporation 

surface, plants may reduce water loss and therefore, small leaf size, especially narrow 

ones, are generally favoured under high sun exposure and low water availability 

(Parkhurst and Loucks, 1972; Givnish and Vermeji, 1976; Witkowski and Lamont, 1991). 

In our character reconstruction the ancestral state appears to be a strongly reduced leaf 

area (lanceolate) which was maintained in three clades, but evolved to a still stronger 
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reduction (filiform in F. laevipes), and to an ericoid leaf form only in clade IV. 

Furthermore we found one transition to revolute leaf margin in clade II, reducing the 

evaporation area even more. Still, F. juniperina and F. laevipes do not show revolute leaf 

margins but their leaves have a strongly reduced surface where the margins simply 

cannot rollup any further. The leaf form is not the only trait related to arid conditions. 

Trichomes have been described as characters related to both water control and 

resistance against herbivores in various plant species (Levin, 1973; Ehleringer et al., 

1976; Woodman and Fernandes, 1991). Under strong drought conditions and in highly 

insulated environments, trichomes decrease the head load over the surface area and 

also radiation absorbance, thus reducing evaporation and water loss (Wuenscher, 1970; 

Ehleringer et al., 1976). In Fumana leaves, two main types of trichomes (glandular and 

non-glandular) have been found, and then being simple or pluricellular hair. In the genus 

Fumana, we found that glandular trichomes are the ancestral state, and are maintained 

in most species, indicating the adaptation to arid and drought conditions under strong 

radiation, as water loss due to evaporation can be reduced. Meanwhile the loss of 

glandular trichomes occurs in only four species and is linked to species with a broader 

leaf form inhabiting moister environments (clade IV, Fig. 4d).  

Furthermore, our data suggests that nine seeded capsules are the ancestral state. 

The evolution of different levels of allocation to reproduction is thought to be driven 

largely by the level of disturbance in the habitat (Fenner and Thompson, 2005). Ovaries 

of Fumana have four ovules in three carpels, in which one of each is aborted to reach a 

maximum of nine seeds per capsule (Güemes, 1991). Water stress during flowering has 

been shown to almost totally inhibit or prevent fruit development in some species (Gusta 

et al., 1997; Aragón et al., 2008; Whittle et al., 2009) by abortion or reduced 

megagametophyte fertility (Young et al., 2004). Regulating reproduction and resource 

allocation during drought stress could improve plant resources and benefit persistence in 

a changing environment, as hypothesized by Aragón et al. (2008) and Sun et al. (2004). 

These adaptations usually act over a short time period, but could have initiated the 

reduction from 12 seeds (currently non-existent) to nine, six or three seeds per capsule, 

characteristic of the different species of Fumana, due to environmental changes.  

Seeds of many Fumana species produce a sticky and thick mucilaginous layer 

around the seed coat when they come into contact with water. The gel is made of 

polysaccharides and adheres them to the soil upon drying (Grubert, 1974; Werker, 1997; 

Engelbrecht et al., 2013). Our results show that strong mucilage secretion is an ancestral 

state in Fumana but also that it changed twice into a weak or absent state of mucilage, 
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particularly in clades I and IV. The dispersal unit in Fumana is predominantly the seed. 

However, a shift to fruit-dispersal appeared in three species in clade IV. We hypothesize 

that the simultaneous absence of mucilage and the dispersal of seeds inside fruit (fruit 

dispersed) could be related to high mountain habitats in the Mediterranean, as it is the 

habitat of the species F. baetica, F. procumbens and F. paphlagonica of clade IV. 

Mucilage secretion in seeds in these habitats could place the seed in danger of getting 

glued onto rocks and stones were seedling growth is impossible. In contrast, dispersal of 

seeds inside the fruit may increase the possibility of fruits getting trapped inside their 

own or other plant structures or in rocky fissures, a mechanism that also enhances 

survival, as seeds can fall out of the fruit once it opens on the ground. An in-depth study 

should be conducted to confirm this hypothesis.  
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Table 2: List of studied material with accession number in brackets after species name, species distribution (A, north-western Mediterranean; B, south-

western Mediterranean; D, north-eastern Mediterranean; C south-eastern Mediterranean; E, Eurosiberian), locality, geography coordinate, voucher sample 

and ITS, matK, trnT-L GenBank accession numbers. 

 

Taxon 

 

Distribution Locality 
Geographic 
coordinate  

Voucher sample 

Accesion 
no. 

ITS 

Accesion no. 

matK 

Accesion no. 

trnT-trnL 

Fumana (Dunal) Spach 

F. aciphylla Boiss. (1) 
D 

Greek: Grevena, Varis 40º8’N/21º37’W 
FJC778, VAL188194 

 
KJ534144 KJ534086 KJ534192 

F. aciphylla Boiss. (2) 
 Turkey:  Erzincan Koçyatagi, 

Sakaltutan Geçidi 
39º52’N/39º7'W JA2697, VAL146325 KJ534145 KJ534087 KJ534193 

F. arabica Spach (1) 
DB Cyprus: Famagusta, 

Karpasian Peninsula 
35º16’N/33º53’W 

JRV5630, VAL189027 

  
KJ534146 KJ534088 KJ534194 

F. arabica Spach (2) 
 Greek: Kalavryta, Mega 

Spileon monastery 
37°58’N/22°18’W JC0811, VAL190953 KJ534147 KJ534089 KJ534195 

F. baetica Güemes 
(1) 

A Spain: Jaen, Cazorla, Sierra 
de Cazorla, Guadahornillos 

37º55’N/2º50’W JG s/n, VAL26605 KJ534148 KJ534090 KJ534196 

F. baetica Güemes 
(2) 

 Spain: Cuenca, Las 
Catedrales 

40º14’N/01º58’W JG4230, VAL207028 KJ534149 KJ534091 KJ534197 
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F. bonapartei Maire & 
Petitm. (1) 

D Greek: Kozani Palaiokastro, 
Mt. Vourinos 

40º11’N/21º38’W FJC808, VAL190472 KJ534152 KJ534094 KJ534200 

F. bonapartei Maire & 
Petitm. (2) 

 Greek:  Ioannina Pades, Mt. 
Smolikas, Dracolimni 

40º4’N/20º54’W RG827, VAL191581 KJ534153 KJ534095 KJ534201 

F. ericifolia Wallr. (1) 
ABCD Spain: Cádiz, Grazalema, 

Puerto de las Palomas 
36º47’N/5º22’W JG4192, VAL189048 KJ534159 KJ534101 KJ534207 

F. ericifolia Wallr. (2) 
 

Spain: Murcia, Benizar 38º16’N/1º59’W 
JG4073, VAL181308 

 
KJ534160 KJ534102 KJ534208 

F. ericifolia Wallr.  (3) 
 

Spain: Cuenca, Alarcón 39°32’N/2°5’W 
JGs/n-1 

BdB 566 
KJ534157 KJ534099 KJ534205 

F. ericifolia Wallr. (4) 
 Tunisia: Kasserine 

Governorate, Dashrat Zawiyat 
Sidi Salis, Djebel Chambi 

35º12’N/8º40’W 
JC3239, VAL201881 

 
KJ534158 KJ534100 KJ534206 

F. ericoides Wallr. (1) 
A Spain: Alicante, La Nucía, 

San Vicente chapel 
38º36’N/0º6’W 

 JGs/n-2 

BdB 10 
KJ534155 KJ534097 KJ534203 

F. ericoides Wallr. (2) 
 Spain: Valencia, Serra, Porta-

Coeli 
39º39’N/0º28’W ECA161, VAL203638 KJ534156 KJ534098 KJ534204 

F. fontanesii Clauson 
ex Pomel (1) 

AB Morocco: Taza-Al Hoceima-
Taounate, Aknoul 

34º38’N/3º51’W ABH55407 KJ534162 KJ534104 KJ534210 

F. fontanesii Clauson 
ex Pomel (2) 

 Spain: cultivated in the 
Botanical Garden of the 
University of Valencia from 
seeds collected in Alhama de 

39º28’N/0º23’W ECA250, VAL 207011 KJ534161 KJ534103 KJ534209 
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Murcia 

F. fontqueri Güemes 
(1) 

 Morocco: Tanger-Teouan, 
Bab Taza, Parc National 
Talassemtane, Jbel Lakraa 

35º8’N/5º8’W AQ2774, MA782664 - KJ534105 KJ534211 

F. hispidula Loscos & 
Pardo (1) 

A Spain: Valencia, El Saler, Les 
Gavines 

39º21’N/0º19’W 
ECA81, VAL189070 

 
KJ534163 KJ534106 KJ534212 

F. hispidula Loscos & 

Pardo (2) 
 

Spain: Teruel, Castelserás 40°58’N/0°8'W JG4239, VAL207031 KJ534164 KJ534107 KJ534213 

F. juniperina (Lax. ex 
Dunal) Pau (1) 

ABC Tunisia: Bizerte Governorate, 
Sidi Ferdjani, Cap Serrat 

37º13’N/9º13’W 

 
AQ3028, VAL201342 KJ534165 KJ534108 KJ534214 

F. lacidulemiensis 
Güemes (1) 

A Spain: Cádiz, Grazalema, 
Puerto de las Palomas 

36º47’N/5º22’W 
JG4190, VAL189059 

 
KJ534167 KJ534110 KJ534216 

F. laevipes Spach (1) 
ABCD Tunisia:  Nabeul Governorate, 

Korbous  
36º49’N/10º34’W AQ3303, VAL201343 KJ534171 KJ534115 KJ534221 

F. laevipes Spach (2) 
 

Spain: Almería, Cabo de Gata 36º43’N/2º11’W 
JGs/n-3 

BdB 17 
KJ534172 KJ534116 KJ534222 

F. laevipes Spach (3) 
 Spain: Valencia, Tavernes de 

Valldigna, Fontetes de 
Cantus 

39º4’N/0º16’W ECA162, VAL203637 KJ534173 KJ534117 KJ534223 

F. laevis Sennen (1) 
ABCD Tunisia: Nabeul Governorate, 

Korbous 
36º49’N/10º34’W AQ3297, VAL201248 KJ534168 KJ534111 KJ534217 
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F. laevis Sennen (2) 
 

Spain: Valencia, Chella 39º1’N/0º41’W 
JG4042, VAL181311 

 
- KJ534112 KJ534218 

F. laevis Sennen (3) 
 Greek: Corinth Mesi Synoikia 

Trikalon 
38º0’N/22º28’W AH3517, VAL191287 KJ534169 KJ534113 KJ534219 

F. laevis Sennen (4) 
 

Spain: Cuenca, Alarcón 39°32’N/2°5’W 
JGs/n-4 

BdB 567 
KJ534170 KJ534114 KJ534220 

F. paphlagonica 
Bornm. & Janch. (1) 

D Turkey: Karabük Safranbolu, 
canyon Incekaya   

41º16’N/32º41’W CA6322, MA688598 KJ534174 KJ534118 KJ534224 

F. paphlagonica 
Bornm. & Janch. (2) 

 
Turkey: Çankırı 40º31’N/33º36’W 123PV06, MA774870 KJ534175 KJ534119 KJ534225 

F. paradoxa 
Heywood in Guinea 
(1) 

A 
Spain: Cazorla, Puertollano 37°46'N/2°58'O JG s/n, VAL8951 KJ534176 KJ534120 KJ534226 

F. paradoxa 
Heywood in Guinea 
(2) 

 
Spain: Jaen, Huelma, Sierra 
Magina 

37º43’N/3º28’W JG s/n, VAL206642 - KJ534121 KJ534227 

F. paradoxa 
Heywood in Guinea 
(3) 

 
Spain: Cuenca, Tragacete, 
Puerto de Cubillo 

40º19’N/1º46’W JG4219, VAL207025 KJ534177 KJ534122 KJ534228 

F. paradoxa 
Heywood in Guinea 
(4) 

 
Spain: Jaén, Cazorla, Los 
Arenales  

37º56’N/2º52’W JG s/n, VAL26606 KJ534178 
KJ534123 

 
KJ534229  

F. procumbens Gren. 

& Godr. (1) 
ABCDE Spain: Castellón, Fredes, 

Portell de l´Infern  
40º42’N/0º11’W JG4095, VAL181312 KJ534179 KJ534124 KJ534230 
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F. procumbens Gren. 
& Godr. (2) 

 
Greek: Ioannina Flampourar 39º51’N/20º59’W FJC716, VAL190471 KJ534181 KJ534128 KJ534234 

F. procumbens Gren. 
& Godr. (3) 

 Armenia: Syunik Tatev, 
Devil´s Bridge 

39°23’N/46°15’W RG78, VAL177315 KJ534180 KJ534125 KJ534231 

F. procumbens Gren. 
& Godr.  (4) 

 Portugal: Bragança, 
Mogadouro, Bemposta 

41º17’N/6º28’W CA17820, VAL203793 - KJ534126 KJ534232 

F. procumbens Gren. 
& Godr. (5) 

 
Spain: Jaén, GR, Hoyo Frío 37º43’N/3º28’W 

JGs/n-5 

BdB 570 
- KJ534127 KJ534233 

F. procumbens Gren. 
& Godr. (6) 

 
Turkey: Sivas Gürün 38º43’ N/37º17’W FM4586, MA688958 KJ534182 KJ534130 KJ534236 

F. procumbens Gren. 
& Godr. (7) 

 
Turkey: Karabük , Safranbolu  41º16’N/32º41’W CA6277, MA688761 - KJ534131 - 

F. procumbens Gren. 

& Godr. (8) 
 Morocco: Meknès-Tafilalet, 

Aït Aomar 
32º36’N/4º48’W SC18067, MA745059 KJ534183 KJ534132 KJ534237 

F. procumbens Gren. 
& Godr. (9) 

 Greek: Kozani Palaiokastro, 
Mts. Vourinos 

40º11'N/21º38'W FJC856, VAL190473 - KJ534129 KJ534235 

F. procumbens Gren. 
& Godr. (10)  

 
Bulgaria: Nova Lovcha 41º28’N/23º45’W  AQ1253, VAL163135 KJ534150 KJ534092 KJ534198 

F. procumbens Gren. 

& Godr. (11) 
 

Greek: Grevena, Varis 40º8’N/21º37’W FJC778, VAL201699 KJ534151 KJ534093 KJ534199 

F. procumbens Gren. 
& Godr. (12) 

 Greek: Achaea, Aghia 
Varvara, Mt. 
Ghaidhourorachi,Neraidorachi 

37°58’N/22°18’W JC0811, VAL190953 KJ534154 KJ534096 KJ534202 
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F. scoparia Pomel (1) 
ABCD Tunisia: Kasserine 

Governorate, Dashrat Zawiyat 
Sidi Salis, Djebel Chambi  

35º12’N/8º40’W JC3255, VAL201884 KJ534184 KJ534133 KJ534238 

F. scoparia Pomel (2) 
 Spain: Valencia, Serra, Porta-

Coeli 
39º38’N/0º28’W  ECA160, VAL203636 KJ534185 KJ534134 KJ534239 

F. scoparia Pomel (3) 
 Morocco: Meknès-TafilaletAït, 

Aomar 
32º36’N/4º48’W SC18033, MA745867 KJ534186 KJ534135 KJ534240 

F. thymifolia Spach  
(1) 

ABCD Spain: Valencia, Bolbaite, 
Canal de Navarrés 

39º1’N/0º41’W 
JG4043, VAL181313 

 
KJ534190 KJ534139 KJ534244 

F. thymifolia Spach 

(2) 
 Tunisia: Nabeul Governorate, 

Korbous  
36º50’N/10º34’W AQ3311, VAL201344 KJ534189 KJ534138 KJ534243 

F. thymifolia Spach 
(3) 

 Spain: Cádiz, Grazalema, 
Puerto de las Palomas 

36º47’N/5º22’W 
JG4193, VAL189047 

 
KJ534187 KJ534136 KJ534241 

F. thymifolia Spach 
(4) 

 Cyprus: Paphos, Dhrousha, 
Akamas peninsula, Turtle Bay 

34º57’N/32º18’W 
JRV5604, VAL189001 

  
KJ534188 KJ534137 KJ534242 

F. thymifolia Spach 

(5) 
 Spain: Cádiz, Barbate, Torre 

del Tajo 
36º10’N/5º58’W JG4187, VAL189058 KJ534166 KJ534109 KJ534215 

F. trisperma Hub. - 
Mor. & Reese (1) 

D 
Turkey: Sivas Gürün 38º43’N/37º17’W FM4585, VAL146758 KJ534191 KJ534140 KJ534245 

 Cistus L.  

C. albidus L.  
 Spain: Valencia, Serra, 

Porta-Coeli 
39º40’N/0º28’W MEs/n-1 KJ534141 KJ534083 - 
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C. clusii Dunal  
 Spain: Valencia, Serra, 

Porta-Coeli 
39º39’N/0º29’W MEs/n-2 KJ534142 KJ534084 - 

C. creticus L.  
 Greek: Ahaia, Akrata, 

Zarochla 

37º58'N/22º17'E 

 
CN7078,VAL190419  

 

KJ534143 KJ534085 - 

 Hopea Roxb.  

H. nervosa King 
 

   
AY026651.1 

GI:22034171 

AB006384.1   

GI:4210570 

EF660015.1 

GI:157272096 

H. wightiana Wall.  
 

   
AY026656.1 

GI:22034176 

AB246461.1 

GI:94966593 

EF660026.1   

GI:157272107 

 Neobalanocarpus P.S.Ashton 

N. heimii (King) 
P.S.Ashton 

 

   

 

AY026657.1 

GI:22034177 

 

 

AB006383.1 

GI:4210568 

 

EF660032.1  

GI:157272113  
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Table 3: Characteristics of DNA regions used in the phylogenetic analyses of the Fumana accessions.  
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Supplementary Table 1: Comparsion of historical taxonomic treatments of Fumana using taxa names as 

published in original publications. 

Dunal (1824) Spach (1836) Willkomm (1857-1863) 

Helianthemum   

Sec. Fumana Fumana Fumana 

  Sec. Eufumana Willk. 

   

H. arabicum F. arabica Fumana arabica var. genuina 

  Fumana arabica var. 

parviflorum 

   

   

H. ericoides F. vulgaris var. major Fumana ericoides 

   

H. fumana F. vulgaris var. minor Fumana spachii 

   

H. procumbens  Fumana procumbens 

   

   

   

   

   

   

   

   

  Sec. Helianthemoides Willk. 

H. laevipes F. laevipes Fumana laevipes 

H. laeve F. viscida var. longifolia Fumana viscida var. laevis 

H. viride  Fumana viscida var. viride 

H. juniperinum  Fumana viscida var. juniperina 

H. barrelieri  Fumana viscida var. barrelieri 

H. thymifolium F. viscida var. thymifolia Fumana viscida var. genuina 

H. glutinosum   

  Fumana viscida var. papilosa 

 

 

 

Continuation of supplementary table 1 

 

Grosser (1903) Janchen (1920) Coode (1965, only Güemes & Molero 
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turkish species) (1993) 

    

Fumana Fumana Fumana Fumana 

 Subgen. I Eufumana (Willk.) Janch. Subgen. I Fumana 

 Sec. 1. Platyphyllon Janch.  

Fumana arabica var. 

genuina 

Fumana arabica f. 

viridifolia 

Fumana arabica var. arabica 

Fumana arabica var. 

incanescens 

Fumana arabica f. 

incanescens 

Fumana arabica var. incanescens 

 Sec. 2. Leiosperma Janch.  

    

Fumana ericoides var. 

typica 

Fumana ericoides f. typica Fumana ericoides 

Fumana ericoides var. 

grandiflora 

Fumana ericoides f. grandiflora  

Fumana ericoides var. 

montana 

Fumana ericoides f. montana Fumana ericifolia 

 Fumana ericoides f. 

glandulosa 

Fumana scoparia Fumana scoparia 

Fumana procumbens Fumana vulgaris f. 

typica 

Fumana procumbens Fumana procumbens 

 Fumana vulgaris f. alpina  

 Fumana vulgaris f. 

paphlagonica 

Fumana paphlagonica 

   Fumana baetica 

   Fumana paradoxa 

   Fumana 

lacidulemiensis 

   Subgen. II Pomelina 

Maire 

Fumana calycina Fumana calycina  Fumana fontanesii 

 Subgen. II Fumanopsis (Pomel) Janch. Subgen. III Fumanopsis 

(Pomel) Janch. 

 Sec. 3. Helianthemoides Willk.  

Fumana laevipes Fumana laevipes  Fumana laevipes 

 Fumana thymifolia f. laevis Fumana laevis 

Fumana thymifolia f. viridis Fumana viscida var. viridis 

Fumana thymifolia f. juniperina  Fumana juniperina 

Fumana thymifolia f. barrelieri   
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Fumana thymifolia f. 

typica 

Fumana thymifolia f. 

glutinosa 

Fumana thymifolia 

var. thymifolia 

Fumana thymifolia 

    

Fumana thymifolia 

var. papillosa 

Fumana thymifolia f. papillosa  

   Fumana hispidula 

 Sec. 4. Megalosperma Janch.  

Fumana grandiflora Fumana grandiflora Fumana grandiflora 

 Fumana bonapartei  

 

Fumana oligosperma 

 

Fumana oligosperma 

 

Fumana oligosperma 

Fumana aciphylla Fumana aciphylla Fumana aciphylla  

  Fumana trisperma  
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Abstract  

 

Mucilage secretion by diaspores occurs in at least 83 Angiosperm families and it 

has been recently proposed that it is a derived character in the phylogeny of 

Angiosperms. The family Cistaceae provides us an opportunity to study the evolution of 

this character because the large variability of mucilage occurrence and their 

characteristics in genera and species within this family and the availability of a well 

solved phylogeny.  

We use a phylogenetic approach to study mucilage seed evolution and to test the 

hypothesis that the presence of seed mucilage in the Cistaceae is an ancestral character 

state related to the ability of species to colonize eroded slopes. To achieve these 

objectives we mapped the presence of the character seed mucilage along the phylogeny 

of the Cistaceae, and analyse the relation of this character with traits associated to the 

competitive ability of the plants, such as relative growth rate (RGR), seed longevity and 

seed size of seven representative species of the family and discuss the results in the 

light of the environmental changes that occurred along the history of the family.  

Seed mucilage secretion in the Cistaceae is the most likely ancestral character 

state and when the type of mucilage (cellulosic and pectin) was included in the analysis, 

we found that pectin mucilage seems to be the ancestral character state in the family. 

Seed mucilage was lost several times throughout the family but the most noticeable 

change is the total loss in the genus of Cistus. A pattern was found in the Cistaceae from 

low competitive species with strong mucilage secretion of cellulosic type, low RGR 

values, short seed longevities and big seed sizes that characterize the oldest genus (i.e. 

Fumana) towards the most modern species with a higher competitive ability, no mucilage 

secretion, higher RGR and seeds with longer viability and smaller sizes in the species of 

Cistus.  
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1. Introduction  

Mucilage secretion by the testa of seeds (myxospermy) or the pericarp of fruits 

(myxocarpy) is a common attribute in many families of Angiosperms (Grubert, 1974; 

Grubert, 1981). Mucilaginous diaspores secrete a mucilage envelope once they come in 

contact with water (Werker, 1997) as a result of light rain, dew or even soil moisture 

(Huang et al., 2008). This mucilage absorbs a considerable amount of water in a short 

time and has been studied in relation to seed dispersal and germination processes. The 

accumulation of water can accelerate seed germination in some species (Gat-Tilman, 

1995; Gutterman and Shem-Tov, 1996; Huang, Gutterman and Hu, 2000; Kreitschitz, 

Tadele and Gola, 2009) or delay it in some others as it makes seeds impermeable to 

gases (Atwater, 1980; Gutterman and Shem-Tov, 1996; Gutterman, Witztum and 

Evenari, 1967; Witztum, Gutterman and Evenari, 1969). Also, mucilage has been related 

to the repair of embryo DNA in desert conditions through its ability to hold water and to 

transfer it to the embryo in the first phase of seed rehydration (Huang et al., 2008; Yang 

et al., 2011). In addition, diaspores that secrete mucilage are strongly glued to the soil 

surface once the mucilage has dried completely. This phenomenon has been proven to 

minimize seed collection by ants (Engelbrecht and García-Fayos, 2012; Gutterman and 

Shem-Tov, 1997; Yang et al., 2013) and to reduce seed losses by soil erosion (García-

Fayos and Cerdà, 1997; García-Fayos, Engelbrecht and Bochet, 2013; Han et al., 2011). 

Mucilage secretion in diaspores probably cannot be reduced to one single function for all 

species. It is likely that mucilage secretion in certain plant groups fulfils various functions 

at the same time yet integrated studies examining several functions are still lacking.  

Two categories of mucilage have been described in relation to their composition 

and properties, “true” mucilage, which is in most species almost exclusively formed of 

pectin, and “cellulosic” mucilage, with the additional presence of a skeleton of cellulosic 

fibrils (Kreitschitz, 2009; Kreitschitz and Vallès, 2007; Mühlethaler, 1950; Werker, 1997). 

However, in some species the “true” mucilage can also contain hemicellulose. 

Differences in composition of the mucilage have been hypothesised to change its 

functionality, since cellulosic threads added structural strength to the pectin mucilage 

thus increasing the degree of adhesion and anchorage of the diaspore (simple staining 

reactions help to visualize and differentiate between both types; Grubert, 1974; 

Engelbrecht, Bochet and García-Fayos, 2014; Kreitschitz, 2009; Kreitschitz et al., 2009; 

Kreitschitz and Vallès, 2007; Western et al., 2000). 
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Mucilage secretion by diaspores has been reported to occur in at least 83 

Angiosperm families Grubert (1974; Grubert, 1981, personal data). Yang (2012), after 

reviewing the available evidences proposed that mucilage secretion could be a derived 

character in the phylogeny of Angiosperms. However, in their review they did not take 

into account that mucilage secretion in diaspores is not a constant character throughout 

plant orders, families and even genera within families and, therefore, comprehensive 

data and analysis are still lacking.  

In the present study we focus on the family of the Cistaceae, as a large variability 

of mucilage occurrence and quality in seeds can be found and the family phylogeny has 

been recently solved (Guzmán and Vargas, 2009). Examining the patterns of variation in 

the character mucilage secretion across the family Cistaceae in the context of the 

phylogeny, paleoenvironmental changes and the relationships between mucilage 

secretion and plant traits related to its colonization ability could help us to determine the 

history and function of seed mucilage secretion in this plant linage.  

The family of the Cistaceae consists of 8 genera with about 180 species and is 

one of the most characteristic plant families living in open and degraded shrubland of 

European-African Mediterranean ecosystems. (Guzmán, Lledó and Vargas, 2009; 

Thompson, 2005). Seed mucilage has been found in 7 out of 8 genera in the family and 

it is only completely missing in the genus Cistus (Appendix; Muñoz Garmendia and 

Navarro, 1993). Furthermore, the occurrence of species with seed mucilage varies 

between genera, from Fumana and Helianthemum, which have a very high proportion of 

species with mucilaginous seeds to Halimium and Lechea, which have a very low 

proportion of species. There is almost no information about the type of mucilage in this 

family. Interesting, the only study on this topic found differences in mucilage composition 

between phylogenetically near genera (Engelbrecht et al., 2014) with cellulosic mucilage 

in Fumana ericifolia but pectin mucilage in Helianthemum violaceum (Engelbrecht et al., 

2014). 

A recent phylogeny of the family of the Cistaceae has been established (Guzmán 

and Vargas, 2005; Guzmán and Vargas, 2009) revealing that Fumana is a basal genera 

in the family that appeared during middle Miocene (18.51–10.17 Ma) while Cistus is the 

most recent genus, with the formation of the Tuberaria-Halimium-Cistus clade appearing 

during the Pliocene (5.3-4.22 Ma; Guzmán and Vargas, 2005) and a posterior radiation 

of Cistus during the Pleistocene (Guzmán et al., 2009). The main diversification centre of 

the Cistaceae is proposed to be the Mediterranean Basin (Guzmán and Vargas, 2009). 
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Putting together all these data emerged the suggestion that mucilage is an ancestral 

character in this family, which has been lost in the most recently evolved genera.  

The function of seed mucilage secretion has been recently studied in 

Helianthemum and Fumana species, emphasizing its importance as an antitelechoric 

dispersal mechanism that reduces seed loss through runoff as well as it diminishes seed 

predation by granivorous ants (Engelbrecht and García-Fayos, 2012; García-Fayos, 

Bochet and Cerdà, 2010; García-Fayos et al., 2013). Soil erosion and water runoff along 

slopes are frequent phenomena in arid and semi-arid regions of the Mediterranean, in 

which most of the annual rainfall is concentrated into a small number of high intensity 

events (Thompson, 2005). As a consequence, high soil erosion occurs on steep slopes 

(Poesen and Hooke, 1997), and diaspores on the soil surface are at a risk of being 

removed downslope with runoff water and deposited in the lower parts of the slopes or in 

the valley bottoms where they can get buried (García-Fayos et al., 1995) or where 

seedling establishment and development can be affected by stronger competition than 

on the slopes. In consequence, anchoring the diaspore to the ground by adherence 

mechanisms can be a favourable adaptation to remain on the slopes and to avoid strong 

competition with other plants.  

Small seeds are more prone to be removed by soil erosion than bigger seeds 

(Cerda and Garcia-Fayos, 2002). In addition, in most of the temperate floras small seeds 

have been associated to high seed persistence (Leishman et al., 2000) but also that 

competition between seedlings, and particularly between siblings, favours seed 

persistence (Siewert and Tielborger, 2010; Thompson, 2000). On the other hand, a 

faster and larger plant growth positively influences survival in competitive environments, 

as other plants can be outgrown, and plant growth immediately after seed germination is 

dependent on the specific relative growth rate (RGR; Turnbull et al., 2008). Therefore, 

we predict that a gradient of mucilage occurrence must be found in relation to other 

gradients of decreasing seed size and increasing seed persistence and RGR in the 

species of Cistaceae.  

We use a phylogenetic approach to study mucilage seed evolution and to test the 

hypothesis that the presence of seed mucilage in the family of the Cistaceae is an 

ancestral character state related to the ability of species to colonize eroded slopes. We 

also explore the association between the ability of seeds to secrete mucilage and plant 

traits related to the competitive ability of species. To achieve these objectives we 

mapped the presence of the character seed mucilage along the entire phylogeny of the 

Cistaceae, and analyse the relation of this character with the relative growth rate (RGR), 
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seed longevity and seed size of some representative species of the family, then 

discussing all it in the light of environmental changes that occurred along the history of 

the family.  

 

2. Material and Methods 

2.1 Ancestral character state reconstruction  

To detect if seed mucilage secretion in the Cistaceae is an ancestral character 

state, we first tested for its presence in seeds of all genera and as much species per 

genera as possible. We used seeds from field samples and from seed banks and also 

collected information from the literature. Tests were carried out by fully submerging the 

seeds in distilled water during at least 3 hours and then checked under microscope for 

the presence of a mucilaginous envelope. To differentiate between pectin and cellulosic 

mucilage, seeds whose mucilage has been secreted were stained with methylene blue 

for 1 to 3 hours to detect cellulosic strands. 

We used a reduced version of the phylogenetic tree of the family of the Cistaceae 

published by Guzmán et al. (2009) maintaining the same branch lengths but pruning the 

tree with the “drop.tip” command of the package “ape” (Paradis et al., 2013) in R version 

3.0.1 (R Development Core Team, 2011) to keep only species for which mucilage 

character state could be determined.  

To estimate the evolutionary pathways of mucilage secretion in seeds in the family 

of the Cistaceae, we used three different approaches. As a first approach we ran a 

maximum likelihood character reconstruction and as second approach a parsimony 

character reconstruction in the program Mesquite v.2.74 (Maddison and Maddison, 

2009) to study presence and absence of mucilage secretion in the seeds. Species of 

Cistaceae where traced onto the pruned phylogenetic tree of Guzmán (2009), using the 

“Trace Character History” option under the parsimony and likelihood reconstruction 

method of the program Mesquite v.2.74 (Maddison and Maddison, 2009). The maximum 

likelihood model includes information from genetic branch lengths and used the Markov 

k-state 1 parameter model (Mk1), which assumes a single rate for all transitions between 

states. 

As a third approach, we ran a Bayesian binary Markov chain Monte Carlo (MCMC) 

approach implemented in RASP (Reconstruct Ancestral State in Phylogenies) version 
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2.0 beta (Yu, Harris and He, 2010), an updated version of S-DIVA (Yan et al.,2010), to 

analyse the different types of mucilage (pectin mucilage, cellulosic mucilage or absence 

of mucilage). We ran 5000 000 MCMC cycles with 10 chains, a temperature of 0.1 and a 

fixed JC + G (Jukes-Cantor + Gamma) with null root distribution and equal rates. The 

maximum number of areas for this analysis was kept as 3. RASP was designed for 

phylogeographical analyses, but the methodology is appropriate for other traits if these 

are discrete or polymorphic. RASP determines the probabilities of each character state 

for each node. In our analysis we used the consensus BI tree (Guzmán and Vargas, 

2009) and we did not allow the internal nodes to be polymorphic. 

 

2.2 Mucilage and competitive ability relationships 

We used species of 5 different genera of the family (Cistus populifolius, C. 

monspelliensis, Fumana ericoides, F. leavipes, Helianthemum syriacum, H. violaceum, 

Halimium halmifolium and Tuberaria lignosa) for the experiments described below. 

Species ranged from herbaceous plants to small shrubs and are representative of seed 

mucilage response for each genus in the family. Seeds were collected in the summer of 

2009 at Sierra Calderona, 25 km north of Valencia, Spain (39°39'26N 0°28'49E) except 

for seeds of Halimium halmifolium, which were collected at El Saler, 10km south of 

Valencia (39°21'34N 0°19'31E ), and those of Cistus monspeliensis collected at Teruel 

(40°20'13N 1° 9'30E) in the same dates.  

 

2.2.1 Relative growth rate (RGR) 

Seed weight of all experimental species was obtained by weighting 50 fully mature 

seeds individually to the nearest 0.01 mg with a precision balance (Mettler Toledo AX 

205), except seeds of Tuberaria lignosa, which were weighted in 50 lots with 10 seeds 

each. Seeds were pretreated and germinated following Moreira (2010). Seedlings were 

transferred to prepared pots (10x10cm), which were filled with a mixture of coconut and 

peat fibers. Plants were grown in a greenhouse for 56 days (8 weeks), from January till 

March of 2012, with temperatures ranging between 6° C and 30°C. Pots were watered 

daily and their location in the greenhouse was rearranged every week to homogenize 

temperature and light conditions for all plants. On day 56, plants were removed from the 

pots and the roots cleaned with water. Remaining soil particles were carefully removed 

from roots by hand in the laboratory. Leaves and roots were then air dried at 80°C for 12 
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hours and weighted directly afterwards with a precision balance (Mettler Toledo AX 205). 

The final RGR per species was calculated as the mean of the ratio of plant to seed 

weights expressed in grams and was used as a surrogate for the speed that seedlings 

can growth and then potentially overtake and overtop its competitors.  

 

2.2.2 Seed longevity 

Twenty four sets of 25 fully mature seeds of the selected species were mixed with 

sand (pH: 9.4; Carbonates (%) :<0.5) and placed in 5×5cm nylon bags of fine mesh that 

avoided seed losses but allowed the circulation of water and air. The bags were then 

buried in the same sand at a depth of 10cm in a block design at the CIEF (Autonomous 

Government of Valencia) experimental site in Quart de Poblet. Each block consisted in 

one bag per species. Seeds were buried on November 2009 and then 6 bags with 25 

seeds per bag (150 seeds per species) were recovered in November of years 2010, 

2011 and 2012.  

After extracting the bags from the soil, we brought them to the laboratory and then 

sieved the content of each individual bag until the immediate greater particle size than 

seeds of the species contained at that bag and then recovered the seeds from the 

remaining sand using a microscope. Intact and germinated seeds were recognized and 

the intact seeds checked for viability. Intact seeds were soaked in water for 12 hours, 

then the testa cut under a binocular, and afterwards immersed in a 1% Tetrazolium 

chloride (TTC) solution in the dark for 24 hours at 25ºC. Embryo and cotyledon were 

checked for strong pink staining using a binocular. Very light staining as well as small 

stained spots on the embryo were not counted as viable seeds (Peters, 2000). The ratio 

of seed survival per bag (viable seeds recovered per bag/viable seeds per bag) was 

used to estimate mean seed viability for each species and year. Then, we fitted linear 

models of seed viability decay through time per species and the slope of the linear model 

was used as a surrogate of seed persistence.  

 

2.2.3 Statistical Analysis  

ANOVA analysis was used to analyse the relationship between the type of mucilage 

(pectin or cellulosic) as predictor variable and relative growth rate (RGR), seed 

persistence (slope of seed viability decay) and seed size (mean seed weight) of the 
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species as response variables. To calculate pairwise comparisons between group levels, 

post hoc analyses with the p-value adjusted by Bonferroni method were performed. 

Statistical analyses were carried out with the “lm” and the “pairwise.t.test” commands in 

R version 3.0.1 (R Core Development Team, 2011).  

 

3. Results 

3.1 Ancestral Character State 

We found that all the 21 tested species in the genus Fumana have seeds that 

secrete mucilage on wetting (Engelbrecht et al., Submitted). Likewise, all the seeds in 

the genus Helianthemum and Tuberaria used in the phylogenetic tree of Cistaceae by 

Guzman (2009) secreted mucilage on wetting and only 5 of 60 additionally tested 

species in the genus Helianthemum (110 sp.) were found to not secrete mucilage. Eight 

species in the genus Halimium (9 sp.) showed no mucilage secretion when tested with 

exception of one species (Halimium umbellatum) for which a positive result was found in 

the literature (Grubert, 1974). However, Lechea tripetala as well as 7 of 13 additionally 

tested species of the genus Lechea (17 sp.) do not secrete mucilage while mucilage was 

completely absent in all species tested of the genus Cistus (18 tested of 20 sp.). Number 

of species per genera in Cistus follows Guzmán and Vargas (2005) Engelbrecht 

(Submitted) for Fumana and for the rest of the genera information was extracted from 

Mabberley (1997). 

Mucilage secretion on wetting in seeds of the Cistaceae resulted in the most likely 

ancestral character state in the parsimony, likelihood and Bayesian analysis (1, 0.80 and 

0.99 respectively). We only display the results of the Bayesian analysis as results are 

similar (Figure 1).  
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Figure 1: Graphical results of ancestral state reconstructions for mucilage secretion obtained by 

RASP (S-DIVA). Presence of pectin mucilage (A) and absence of mucilage (B) is analyzed at each node of 

the phylogeny of the family of the Cistaceae (Guzman, 2009) Pie charts represent Bayesian credibility values 



CHAPTER 5 

178 

and the legend represents colour key to possible ancestral character states at different nodes; with blue 

represents other ancestral ranges.  

 

We found that Fumana seeds have cellulosic type mucilage, with cellulosic fibrils 

embedded in the pectin coat, while Helianthemum, Tuberaria and Halimim halmifolium 

seeds have mucilage of the pectin type only. We could not test the seeds of Lechea for 

mucilage type for the present paper, but after revising the detailed drawings after the 

mucilage tests performed in our laboratory in 1998 (Ana Vila and García-Fayos, 

unpublished data), we were able to assign it to the pectin mucilage type.  

When mapping the type of mucilage (cellulosic, pectin and absence of mucilage) 

along the phylogenetic tree, the Bayesian analysis in RASPs shows pectin mucilage (A) 

as the most likely ancestral character state (0.899), with a small probability of cellulosic 

mucilage (AC) as ancestral state (0.086) and a minor fraction of other combinations and 

the absence of mucilage (B, 0.0001). The parsimony analysis also reveals pectin 

mucilage as significant most parsimony ancestral character state (1.00) while the 

likelihood analysis shows as significant most likely ancestral state for the pectin mucilage 

(0.69) followed by the cellulosic mucilage type (0.27).  
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Figure 2: Graphical results of ancestral state reconstructions for mucilage secretion obtained by 

RASP (S-DIVA). Presence of pectin mucilage (A), absence of mucilage (B) and pectin with cellulosic 

mucilage (AC) is analyzed at each node of the phylogeny of the family of the Cistaceae (Guzman, 2009) Pie 
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charts represent Bayesian credibility values and the legend represents colour key to possible ancestral 

character states at different nodes; with blue represents other ancestral ranges.  

 

3.2 Relative growth rate (RGR) 

We found the largest relative growth rate (RGR) in Halimium halimifolium, followed 

by T. lignosa (see Table 1). Both species show a value over 200 g.g-1 after 56 days. 

Cistus monspeliensis, C. populifolius and H. syriacum show similar values, while we 

found a strong decline in H. violaceum plants. The lowest values were measured in F. 

ericifolia and F. laevipes (Table 1). 

When comparing the seed weight of each species, F. ericoides followed by F. 

laevipes had the heaviest seeds (Table 1). Cistus populifolius showed heavy seeds as 

well, followed by H. violaceum and then C. monspeliensis. Halimium halimifolium, T. 

lignosa and H. syriacum (Table 1).  

 

 

 

 

  



CHAPTER 5 

181 

Table 1: Mean measured value and typical error of relative growth rate (RGR), seed 

longevity, decay of seed viability as well as presence and type of mucilage for the 7 

studied species. 

Species Cistus 

monspeliensis 

C. 

populifolius 

Halimium 

halmifolium 

Helianthemum 

syriacum 

H. 

violaceum 

Fumana 

ericoides 

F. 

leavipes 

Tuberaria 

lignosa 

Mucilage No No No Yes Yes Yes Yes Yes 

Mucilage 

type 

absent absent absent pectic pectic cellulosic cellulosic pectic 

RGR (g.g
-1
) 198.07 ± 15.31 172.29 ± 

19.572 

267.23 ± 

38.63 

161.38 ± 25.2 84.19 ± 

12.36 

17.95 ± 

1.22 

29.37 ± 

1.67 

220.49 ± 

44.51 

Viability after 

3 years (%) 

77.33 ± 1.97 46.69 ± 3.42 13.33 ± 2.45 8 ± 2.06 67.48 ± 

2.31 

8 ± 2.53 2 ± 0.89 12.66 ± 

4.11 

Longevity 

decay (slope 

of function) 

5.261 13.829 13.575 28.548 9.017 27.58 29.435 25.759 

Dry seed 

weight (mg) 

0.921 ± 0.027 1.298 ± 

0.033 

0.673 ± 

0.019 

0.351 ± 0.006 0.959 ± 

0.036 

2.389 ± 

0.047 

1.431 ± 

0.017 

0.373 ± 

0.07 

 

 

3.3 Seed longevity 

 Seed viability after three years was the highest in C. monspeliensis, followed by H. 

violaceum. Both species have also the lowest slope when fitting a linear model over the 

seed survival (Table 1). Almost 50 percent of Cistus populifolius seeds still survived after 

three years buried but only 13.33 percent of Halimum halimifolium seeds did. However, 

linear models in both species showed similar declining slopes of seed survival (Table 1). 

In T. lignosa, after three years, only 12 percent of the seeds still survived and the slope 

of the fitted linear model was relatively steep. Helianthemum syriacum and F. ericifolia 

had similar low seed survival percentage after three years and similar declining slopes. 

However, the lowest survival percentages were found in F. laevipes and T. guttata, with 

only 2 and 3 percent respectively of all seeds surviving after three years. These species 

also showed the steepest slope of seed survival declining (Table 1).  
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3.4 Mucilage and competitive ability relationships 

We found a significant relationship between the type of mucilage secretion and 

RGR. Seeds without mucilage had significantly higher RGR values than seeds with 

mucilage of cellulosic type (p-value: 0.011).  

The analysis of the relation between mucilage type and the slope of seed viability 

decay indicate that seeds with cellulosic mucilage had significantly higher viability decay 

than seeds with pectin mucilage and also than seeds without mucilage (p-value: 0.047). 

Likewise, seeds without mucilage had marginally significant lower viability decay 

compared with the other seeds (p-value: 0.051). 

When we analysed mucilage type in relation to seed weight across species, we 

found that seeds with cellulosic mucilage had marginally significantly heavier seeds (p-

value: 0.057) than seeds with pectin type and seeds without mucilage. Likewise, seeds 

with pectin type of mucilage were lighter than the rest of the tested seeds (Table 1) but 

only marginally significant lighter than seeds with cellulosic mucilage (post-hoc 

bonferroni p-value: 0.052).  

 

4. Discussion  

Seed mucilage secretion in the Cistaceae is the most likely ancestral character 

state when mucilage presence and absence was analysed along the phylogenetic tree. 

When the type of mucilage (cellulosic and pectin) was included in the analysis, we found 

that pectin mucilage seems to be the ancestral character state in the family. The 

evolution of the character in the family then started with a presumed ancestor whose 

seeds secrete pectin mucilage only, then the basal Fumana clade acquire the cellulosic 

mucilage character while only pectin mucilage was maintained in the remainder clades 

and in several of them tended to a progressive loss of mucilage secretion (Figures 1 and 

2). The loss of seed mucilage seems to have occurred three times in the history of the 

Cistaceae, in genus Lechea, Hudsonia and Cistus (Figure 1). However, the phylogenetic 

tree does not include all species of the family and some additional variation may be lost. 

In this sense, we also report three additional losses of mucilage character within the 

genus Helianthemum, Halimium and in species of Lechea differing from the one included 

in the phylogenetic analysis (see section 2.1). The loss of seed mucilage in species of 

Helianthemum and Halimium occurred at the same time frame that the diversification of 

genus Cistus (Pliocene- Pleistocene, Guzmán and Vargas, 2009) and it can be assumed 

that similar climatic and vegetation conditions could have triggered these changes in the 
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seeds. In Lechea, dating information is lacking and hence, no conclusions can be drawn. 

The pattern we found that mucilage secretion is an ancestral character in the Cistaceae 

family put into question the proposal by Yang et al. (2012) who stated that mucilage is an 

evolutionary advanced state character because they found it more frequently in 

phylogenetically advanced families of Angiosperms.  

The dated phylogenetic tree estimates the appearance of Cistaceae to have 

occurred 29-22 Ma ago (Guzmán and Vargas, 2009) during the Oligocene, with Fumana 

being the most ancestral genus as it branched up first in Middle Miocene (18.51-10.7 

Ma). It was an age of global expansion of Angiosperms after the notable extinction event 

that occurred at the start of Oligocene. Middle Miocene represents one of the last warm 

episodes of the Neogene (Miocene Climatic Optimum, MCO). In a general cooling trend, 

it was an age when desert conditions expanded against tropical forests and new niches 

were available for plants (Axelrod, 1975; Jiménez-Moreno, Fauquette and Suc, 2010; 

Jiménez-Moreno and Suc, 2007). Oligocene was also a time of strong tectonic changes 

and important erosion processes occurred in western Mediterranean Basin when Alps 

started to rise in Europe (Alpine Orogeny; Barrón et al., 2010). All these conditions might 

favour plant species that were able to colonize and survive in open areas with low plant 

competition and stressful conditions, like Fumana. 

Cistaceae branched up further in the Middle Miocene towards the end of the 

Miocene (Barrón et al., 2010) with the appearance of the Hudsonia-Helianthemum clade 

(9.20-5.15 Ma) and the loss of the cellulosic type of mucilage, but maintaining the pectin 

mucilage, at the same time that species largely increased their competitive ability (H. 

syriacum) and reduced seed size and seed survival (H. violaceum, see Table 1). 

Towards the end of Miocene and after the important cooling event that occurred 14.8-

14.5 Ma ago, a predominance of herbs was already established in large parts of the 

Western Mediterranean Basin, and from the Pliocene a strong expansion of the 

grasslands and steppes occurred (Jiménez-Moreno et al., 2010) with a subsequent 

increase of wildland fires (Retallack, 2001). In this time period the Tuberaria-Halimium-

Cistus clade appeared (Guzmán and Vargas, 2009). In consonance with this scenario, 

species of this clade also have high competitive ability and small seed sizes, like 

Helianthemum-Hudsonia clade, but at the same time species are characterized by an 

increase in seed longevity and by seeds whose germination is favoured by forest fires 

(Doussi and Thanos, 1994; Thanos et al., 1992). The subsequent radiation of genus 

Cistus, Halimium and Helianthemum from the end of the Pliocene and along the 

Pleistocene occurred after the onset of the Mediterranean climatic conditions 2.5 Ma 
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ago, and has been related to the establishment of heterogeneous ecological conditions 

coexisting in the Mediterranean landscapes (Guzmán et al., 2009).  

A pattern was found in the Cistaceae from species with strong mucilage secretion 

of cellulosic type, low RGR values, short seed longevities and big seed sizes that 

characterize the oldest genus (i.e. Fumana) towards the most modern species with no 

mucilage secretion, higher RGR and seeds with longer viability and smaller sizes in the 

genus Cistus. Species with mucilage secretion of pectin type (i.e. Helianthemum) 

showed intermediate values of these variables (see Table 1).  

Models and empirical data show that large seeds have a better chance of 

success in competitive environments than smaller ones but also that large seeds are 

selected in environments under harsh environmental conditions, such as those with low 

but predictable precipitation or fertility (Turnbull et al., 2004; Volis and Bohrer, 2013). 

According to the tolerance-fecundity model, large seed sizes would be selected in plant 

colonization of stressful habitats (Muller-Landau, 2010), as has been found to explain the 

variability in seed size among populations of Plantago coronopus, even though variation 

in plant size and other life cycle components as additional strategy to cope with 

environmental variations were found as well (Villellas and García, 2012). 

Bigger seeds have larger energy reserves to assist seedlings to produce more 

extensive root systems than smaller seeds, allowing them to obtain enough water and 

nutrients and conferring better establishment opportunities under stressful conditions in 

Mediterranean shrubland, as it has been reported for Fumana ericoides (Lloret, 

Casanovas and Peñuelas, 1999). In species with big seeds, mucilage secretion may be 

an additional advantage because it aids seeds to survive from seed collection by ants 

and the loss because soil erosion (Engelbrecht et al., 2014; Engelbrecht and García-

Fayos, 2012). Likewise, models also showed that enhancing precipitation, increasing its 

unpredictability or introducing other perturbations (i.e. gap opening, drought events and 

forest fire) produce a selection towards decreasing seed mass and increasing dormancy 

as compared with more constant environments (Hodkinson et al., 1998; Leishman et al., 

2000; Volis and Bohrer, 2013). The relative high RGR and the smaller size, higher 

longevity and physical dormancy of the non-mucilaginous seeds of Cistus, confer them 

an advantage to establish and survive in more competitive or frequently perturbed 

environments than do Cistaceae species with mucilaginous seeds. Additionally, because 

species producing small seeds can produce numerous seeds too, these species have 

large population growth rates that moreover increase intraspecific competition (Luis-

Calabuig, Tárrega and Valbuena, 2000).  
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Despite these two extreme trends, models also show that there is a broad range 

of combinations of seed size and dormancy that result in similar fitness values under 

almost the full range of precipitation and environment predictability in Mediterranean 

conditions (Volis and Bohrer, 2013).  
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Discussion 

 

Our study on mucilage secretion by seeds showed clearly that myxodiaspory 

functions as antitelechoric mechanism in several species of the Cistaceae, as the 

mucilage effectively glued the seeds to the ground thus hindering further movement 

under simulated erosive conditions (drop impact and runoff) and preventing seed 

collection by granivorous ants. Regarding the evolutionary history of mucilage in the 

family of the Cistaceae, we found that the most ancestral character state is the presence 

of mucilage while the loss of mucilage is a derived character. The same pattern was 

found when focusing on the genus Fumana, in which a strong mucilage secretion was 

revealed to be the most ancestral state with a shift towards weak and absent mucilage in 

some of the more recent species.  

Our results show that mucilage secretion works efficiently as an antitelechoric 

mechanism as proposed by Ellner and Shmida (1981) and Van Rheede van Oudtshoorn 

(1999) since the seeds of the tested species that were glued to the ground with their own 

mucilage survive longer to predation by granivorous ants and from being washed away 

by runoff and erosion than those seeds whose mucilage was prevented to be secreted.  

In relation to the role of mucilage secretion in restricting seed predation by ants, 

our work goes further in the timeframe than previous experimental studies that captured 

only its effects during few days, which might not be enough time to guarantee that the 

mechanism effectively runs until seeds can germinate. In F. ericoides, seeds germinated 

between 3-24 month after being dispersed (Llorens et al., 2008) and in F. thymifolia 

typically between 4-5 month (50% germinated; Moreira et al., 2010) thus being exposed 

to seed collection in the season in which granivorous ants have their maximum of 

activity, from spring to late summer (Cerdá, Retana and Cros, 1998). In the present 

study, seeds of F. ericoides glued to the ground with their own mucilage maintained a 

71% survival probability even after 3 month (91 days) and F. thymifolia 68% after 2.5 

month (84 days), hence almost doubling the chance of survival for those seeds.  

Ellner and Shmida (1981) proposed that antitelechory should not be considered 

an adaptation to aridity per se and the constraints imposed due to climate water 

shortage. Instead, it should be considered a side effect to the consequence of this 

aridity; that is, the chance of the seeds to be predated by animals or be removed by 
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erosion processes in such open habitats. The frequency of plants with antitelechoric 

mechanism, such as myxospermy, would then be favoured in plant communities affected 

by soil erosion but it would not be affected by increasing aridity. Accordingly, we found 

higher frequency of antitelechoric species in plant communities of areas affected by 

erosive pressures in comparison to those communities of flat areas without soil erosion, 

but frequency of antitelechoric species was not influenced by the increase of aridity. In 

contrast, the proportion of species with atelechoric mechanisms (the absence of 

dispersal mechanism) increased slightly with dryness but was not influenced by soil 

erosion. These results agree with other results supporting the hypothesis that anchorage 

mechanisms in diaspores play a role in shaping species composition in communities 

affected by intense soil erosion.  

However, mucilage secretion as antitelechoric mechanism could not only be a 

side effect but an adaptive mechanism to soil runoff per se (Cantón et al., 2004; García-

Fayos et al., 1995). We tested the adaptive response of myxospermic seeds to soil 

erosion and expected to find two assumptions coming true: first, that intra and inter-

population variation of this ability exists and that this variation should be related to the 

soil erosion pressure in which the plants live and second, that a higher amount of 

mucilage would be related to a higher soil adherence and then a higher resistance of the 

seeds to be removed by rain (drop impact and water runoff).  

According to our hypothesis, we detected individual variation of seed mucilage 

among individuals within populations and among populations. The higher amount of 

mucilage was found in seeds collected from individuals that had developed under high 

soil erosion pressure. However, it only holds for F. ericifolia but not for H. violaceum, for 

which the differences were not significant. Also supporting our hypothesis, we found that 

a higher amount of seed mucilage was translated into a stronger and longer seed 

adherence under drop impact for one of the species studied (F. ericifolia) but not for the 

other species (H. violaceum). Consequently, the environment where the mother plant 

lives have a critical impact on the success of seedling establishment of F. ericifolia, as 

arid and semi-arid ecosystems are characterized by a sparse vegetation cover, which is 

often arranged as a two-phase mosaic of vegetated and bare ground patches that is 

under the control of water runoff and soil erosion (Valentin, 1994). Our results indicate 

that mucilage secretion can be an adaptive response, but seems to be species 

dependent. However, this species dependency response could be linked to the 

differences in the type of seed coat mucilage between the studied species. Till now little 

focus has been put on the structural differences in seed coat mucilage within a plant 
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family. Here, we found pectin type mucilage in H. violaceum and cellulosic type mucilage 

in F. ericifolia, which furthermore behaved differently under run-off and drop-impact 

conditions. Seeds with cellulosic mucilage of F. ericifolia showed a stronger adherence 

(100% of seeds stayed glued during the experiment) in runoff experiments than the 

seeds with pectin mucilage of H. violaceum (60 % of seeds stayed glued), which could 

be a result of the assumed extra strength to the gluing abilities by the cellulosic strands 

(Grubert, 1974; Gutterman, Witztum and Evenari, 1967; Sullivan et al., 2011). Likewise, 

mucilage secretion of seeds of F. ericifolia related positively with their resistance to drop 

impact but seeds of H. violaceum did not have an obvious relationship. 

When analysing the phylogenetic relations and mucilage occurrence in the family 

of the Cistaceae, we found that the presence of mucilage in seeds is the most likely 

ancestral character state with a tendency towards a loss of mucilage towards the more 

recently separated clades (Cistus, Halimium). As we assume that myxospermic species 

in this family are adapted to soil erosion processes, we can predict that life cycle 

strategies of those plants to colonize such environmental conditions should differ 

strongly to that of non-myxospermic species. Soil erosion is a geomorphologic process 

that increases both the stress and frequency of disturbances affecting plants and 

therefore tends to reduce plant cover and species diversity (Guerrero-Campo and 

Montserrat-Martí, 2000; Thornes, 1990). Life cycle strategies to cope with this 

environmental condition should then focus to provide seeds with enough resources to 

establish and survive in such poor conditions. On the contrary, species without seed 

mucilage secretion should be frequently removed to the downslope where they may 

compete with other conspecifics or other plant species. When focusing on live cycle 

strategies, we found a significant relation between the loss of seed mucilage and traits 

related to the competitive ability of the plant, as the relative growth rate (RGR), seed 

longevity and smaller seed size. This indicates an advantage to establish and survive in 

more competitive or frequently perturbed environments than species of the same plant 

family with mucilaginous seeds. This is coherent with the assumption of Grime (Grime, 

1977; 1973), that nutrient rich and undisturbed habitats should have more species with 

high competitive abilities relative to species of disturbed and stressful habitats, such as 

erosive environments in the present case.  

The phylogenetic history of the family of the Cistaceae emerges between the 

Miocene till the Pleistocene and climatic and ecological changes seem to have triggered 

diverse changes in plant traits (Guzmán, Lledó and Vargas, 2009; Guzmán and Vargas, 
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2009a; Guzmán and Vargas, 2009b), indicating that similar pressures could have 

provoked the changes in seed mucilage and competitive traits.  

Analysing the ancestral character state of the genus Fumana, a similar tendency 

was found in which the most likely ancestral character state is a strong mucilage 

secretion with a trend towards a loss of mucilage in a more recently separated group of 

species. However, three of the four species the genus Fumana with less mucilage are 

found frequently in mountainous environment (Güemes, 1991) in which we expected a 

high amount of mucilage due to soil erosion pressure and the advantages of an 

antitelechoric mechanism. Interestingly, the change towards a loss of seed mucilage in 

these species is connected to a change in the dispersal abilities of the seed in general, 

changing from seed dispersed to fruit dispersed mode, retaining the seed inside of the 

capsule. As environments of these species are extremely rocky, we hypothesize that 

seed dispersal inside of the capsule bears higher chances to be rolled in a rocky fissure 

than a mucilaginous seed, which could be glued onto stones where seedling 

establishment would be impossible. In this case, the loss of seed mucilage is triggered 

by other factors than in the case of the family of the Cistaceae.  

In conclusion, the family Cistaceae provides an interesting case to study the 

origin and function of seed mucilage from an ecological and evolutionary point of view. 

Our results offer evidence on the ancestral character of this trait and the environmental 

forces that shaped it. We also found support for our hypothesis that mucilage secretion 

in seeds in species of this family may be related to a successful colonization of open and 

frequently eroded habitats. We put on evidence that phenotypic variability exists in the 

amount of mucilage secreted by the seeds in some species and that this variability was 

related to the ability of these seeds to resist removal by erosive forces. However, trait 

heritability and how this variability translates to differential plant fitness in those 

environments remain untested. Further research is also needed in order to confirm this 

trend in other plant families living in semiarid conditions and also to deepen the 

knowledge of the connection between the different types of mucilage, their evolutionary 

history and their ecological functions.  
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Conclusions 

I. Mucilage secretion reduces seed removal produced by erosive processes 

which occur in natural conditions. These processes can be rain drop 

detachment and removal by water runoff.  

 

II. The adaptive value of the mucilage secretion is species dependent as a 

relation between the amount of seed mucilage and adhesion power under 

rain drop impact was found for Fumana ericifolia, but not for 

Helianthemum violaceum. 

 

III. The adaptive value of mucilage secretions seems to be mechanism 

dependent, as a relation in the amount of seed mucilage secreted 

proportional to the loss of seeds to rain drop impact was found, but not to 

the process of water runoff.  

 

IV. The amount of seed mucilage in some species is influenced by the 

conditions in which the mother plant lives, as a positive relation between 

the strength of the erosion processes that plants experience and the 

amount of mucilage secreted by the seed was detected in Fumana 

ericifolia. However, the individual and not the population from which the 

seed was collected had the highest influence over the amount of mucilage 

produced.  

 

V. The results indicate that an antitelechoric mechanism, such as 

myxodiaspory, are not adaptive to arid environments, as increasing aridity 

did not influence the frequency of its appearance. Furthermore, 

antitelechoric mechanisms seem to be favoured by surface runoff, as 

predicted by Ellner and Shmida (1981), since a higher frequency of 

species with those dispersal mechanisms under erosive conditions in 

comparison to non-erosive sites was found. 
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VI. Intense soil erosion can shape species composition at a community level 

as anchorage mechanisms in diaspores strongly influenced the species 

composition in communities affected by those mechanisms.  

 

VII. The studied target species were extensively predated by diverse 

granivorous ants in the study area as flowers, calices, capsules and seeds 

were highly predated during the studied time period. Seed mucilage 

reduced the predation by granivorous ants significantly. When comparing 

seeds which were glued to the ground with their own previously secreted 

mucilage to lose seeds without mucilage, survival probabilities of the 

seeds were 54% higher for R. officinalis, 58% for F. ericoides and 54% for 

F. thymifolia. Higher seed survival should increase seedling establishment 

of the studied species.  

 

VIII. Phylogenetic relationships of the genus Fumana based on the 

phylogenetic reconstruction of the two plastid markers confirmed the 

monophyly. Results do not support the traditionally established 

infrageneric divisions, but confirm the presence of two main groups of 

species.  

 

IX. Divergence times of Fumana took place about 16.97 Ma ago (24-10 Ma), 

with a divergence of major clades between the Middle and Late Miocene 

(15.61-8.8 Ma). 

 

X. Ancestral character states were analysed in 9 different morphological 

characters and significant ancestral states were found in five cases (leaf 

form and leaf margin, glandular trichomes, diaspore and seed mucilage 

secretion). This suggests an adaptation to the environment in the 

Mediterranean climate. 

 

XI. Seed mucilage in the genus Fumana is most likely the ancestral character 

state, having devolved from a strong mucilage secretion to a reduced and 

almost absent form of mucilage in 4 of the 19 studied species.  

 

XII. Seed mucilage in the family of the Cistaceae seems to be the most likely 

ancestral character state. Furthermore seed mucilage seems to have 
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developed from pectin mucilage to cellulosic mucilage in the genus 

Fumana and to the total loss of seed mucilage in Cistus. 

 

XIII. We found a pattern in the Cistaceae from species with strong mucilage 

secretion of cellulosic type, low RGR values, short seed longevities and 

big seed sizes that characterize the oldest genus (i.e. Fumana) towards 

the most modern species with no mucilage secretion, higher RGR and 

seeds with longer viability and smaller sizes in the genus Cistus. 
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