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Abstract

The quantum reflection measured previously by Zhao et al (Phys. Rev. A, 2008, 78,

010902(R)) for the scattering of He atoms off a microstructured grating is described and

analyzed theoretically. Using the close-coupling formalism with a complex absorbing

potential and describing the long range interaction in terms of the Casimir-van der

Waals potential, we find probabilities and diffraction patterns which are in fairly good

agreement with the experimental results. The central outcomes of this study are two

fold. First is the theoretical confirmation that indeed, the phenomenon of quantum

reflection may be detected not only through the elastic peak but also in terms of a

quantum reflected diffraction pattern. Secondly, we demonstrate that the phenomenon

of quantum reflection is the result of a coherent process where all the potential regions

are involved on an equal footing. It is a nonlocal property and cannot be related only

to the long range badlands region of the potential of interaction.
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As described by Friedrich and Jurisch1 ”quantum reflection ... refers to the classically for-

bidden reflection of a particle in a classically allowed region without classical turning points

and can occur in the attractive tails of atom-atom or atom-surface potentials.” A similar

description claims that ”Quantum reflection is a process in which a particle reflects from a

potential without reaching a classical turning point”.2 This quantum reflection probability

increases with low kinetic energies or incident velocities, approaching unity at threshold. It

has been observed experimentally for He atoms, dimers and trimers scattered from a mi-

crostructured grating at very low kinetic energies and grazing angles.3,4 It has also been

measured experimentally through the diffraction pattern of He atoms scattered from a mi-

crostructured grating.3 It was specifically claimed in Ref.4 that the quantum reflection of He

dimers occurs several nanometers above the surface grating. The effect is sometimes termed

as a quantum suppression effect because presumably the contact between the two partners

of the collision is suppressed.

Total reflection probabilities and diffraction intensities are usually described theoretically

in terms of the long-range Casimir-van der Waals potential tail and, in general, for potentials

falling off faster than r−2.6 At this near-threshold condition, semiclassical theories break

down.7 In particular, the WKB approximation is not expected to work well far away from

the surface since the local de Broglie wavelength is not slowly varying. By considering the

modified Schrödinger equation for which the WKB wave function is an exact solution, it is

possible to infer the region where the WKB approximation is poor. This local property is

given by a function Q(r) also called the quantality or badlands function which is always real

(positive and negative) involving the first two derivatives of the local classical momentum. In

regions of high quantality, quantum effects are important and, therefore, quantum reflection

is expected to be dominant in the corresponding scattering. For He atom scattering, the

badlands region of the potential is typically located at distances of several hundreds (or

even thousands) of atomic units from the surface. By considering the time delay,7 which is

much shorter than the classical time delay, one infers that effectively the reflection occurs

3



far away from the surface. Recently, it has been theoretically shown that the scattering of

light particles (with a static polarizability) from periodically distributed charge dopants on

flat surfaces can also exhibit quantum reflection.8

In this work, we will demonstrate that quantum reflection may show up in the diffraction

pattern. Not less important is our observation that the reflection is not a local property and

is not determined only by the long range interaction potential and the badlands region of

the attractive potential. We find that the interaction between the He atoms and the grat-

ing or, in general, the surface is critical for obtaining reflection probabilities and diffraction

patterns displaying fairly good agreement with the experimental results. The coherent pro-

cess involving such a reflection can not be theoretically described by the van der Waals and

Casimir potential tail alone, the inner part of the interaction potential plays an important

role. By using the close-coupling (CC) formalism,9 which is a numerically exact method,

we find that the quantum reflection is a coherent process involving the full potential region

and, therefore, it can only be considered as a nonlocal property. As the CC formalism is by

definition unitary, absorbing boundary conditions are used to suppress the reflection compo-

nent coming from the inner repulsive part of the potential. This is carried out by using the

so-called complex absorbing potentials.10,11 The basic strategy is to introduce an imaginary

potential which is essentially zero in the physically relevant interaction region and is turned

on at the edge of the coordinate grid for numerical integration.

In the experiment, the reflection grating, which is assumed to be in the x-direction,

consists of a 56-mm-long microstructured array of 110-nm-thick, 10 µm-wide and 5-mm-long

parallel chromium strips on a flat quartz substrate.3,4 The center-to-center distance of the

strips, and thereby the period, d, is 20 µm. Given this geometry, the quartz surface between

the strips is completely shadowed by the strips for all the incidence angles used. A chromium

oxide surface is expected to be formed while the grating is exposed to air before mounting

it in the apparatus. Diffraction patterns were measured at different source temperatures T0

(ranging from 14 K up to 31 K) and pressures around P0 = 6 bar were also reported. In the
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cryogenic free jet expansion of He atoms, the incident energy is given by Ei = (5/2)kBT0

where kB is the Boltzmann constant .5 The incident grazing angle θi is varied between 3 and

15 mrad and measured with respect to the grating surface plane. The diffraction angles θn

are given by the conservation of the momentum or Bragg’s law in terms of wave vectors

cosθi − cosθn =
nλ

d
(1)

where λ is the de Broglie wave length of the incident particle and the diffraction order is

given by n. Negative diffraction orders correspond to diffraction angles close to the surface

grating. Final results are usually plotted as a function of the corresponding perpendicular

wave vector along the z-direction

kperp ≃
√
5mkBT0

~
sinθi (2)

where m is the mass of the incident particle. A detailed theoretical model correctly account-

ing for the atom-surface interaction potential would be needed to determine the correspond-

ing parameters from the experimental data.

In this work, the interaction potential is modelled by a product of two functions

U(x, z) = V (z)h(x) (3)

where the first factor V (z) takes into account the interaction along the perpendicular coor-

dinate z and the second factor h(x) describes the periodic grating by means of an infinite

series of squared pulses along the horizontal coordinate x. The first factor is assumed to

be a Morse potential, VM(z), at short distances, and an attractive Casimir-van der Waals
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potential VC , at large distances, written as

V (z) =

 VM(z) = D [e−2χz − 2e−χz] , z < z̄

VC(z) = − C4

(l+z)z3
, z ≥ z̄

(4)

where C4 = C3l, C3 is the vdW coefficient and l a characteristic length (l = 9.3 nm for

He3) indicating the transition from the vdW (z ≪ l) to the Casimir (z ≫ l) regime. The

matching point z̄ and the well depth of the Morse potential are determined by imposing the

continuity condition for the interaction potential (VM(z) = VC(z)) and its first derivative

(V ′
M(z) = V ′

C(z)):

V ′(z) =

 V ′
M(z) = D [−2χe−2χz + 2χe−χz] , z < z̄

V ′
C(z) =

C4(4z+3l)
(l+z)2z4

, z ≥ z̄
(5)

By denoting x = χz̄ and L = χl, the resulting dimensionless continuity equation is given by

ex =
1

2
− 1

2
[
3
x
+ 1

L+x
− 1

] . (6)

The C3 parameter is known within a certain interval of values and therefore, within this

model, the only free parameter of the Morse potential is the stiffness parameter, χ. The

well depth D is readily obtained from the condition VC(z̄) = VM(z̄). For example, if C3 =

3.5× 10−50 Jm3 and χ = 0.5 Å−1, then x = 3.13 and D = 9.8meV .

The periodic function for the squared pulses is

h(x) =
+∞∑

n=−∞

∏(
x− nd

a

)
(7)

where a is the width of the strips and d the period (a < d). The Π(y)-function is the so-called

unit impulse function: 0 for |y| > 1/2, 1 for |y| < 1/2 and 1/2 for |y| = 1/2. In terms of a
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Fourier series, h(x) is expressed as

h(x) =
+∞∑

n=−∞

cne
i2πnx/d (8)

the corresponding cn = c−n coefficients being given by

cn =


a
d

, n = 0

a
d
sinc(na

d
) , n ̸= 0

(9)

where the normalized sinc-function is defined as sinc(x) = sin(πx)/πx. When d = 2a,

the terms beyond the sixth order are no longer significant. In our case, d = 20µm and

a = 10µm. This Fourier series can also be expressed as

h(x) = c0

[
1 + 2

+∞∑
n=1

sinc(n
a

d
) cos(

2πnx

d
)

]
. (10)

Finally, the periodic interaction potential thus formed can be expressed as

U(x, z) =
+∞∑

n=−∞

Vn(z)e
i 2πnx

d (11)

where the first term (n = 0) provides the interaction potential V0(z) = V (z) and the coupling

terms (n ̸= 0) are given by

Vn(z) = 2sinc(n
a

d
)V (z). (12)

The c0 coefficient can be seen as a scaling parameter and may be ignored.

The CC formalism provides numerically exact quantum reflection probabilities as well as

diffraction patterns. The time-independent Schrödinger equation for purely elastic scattering

of He atoms with mass m and incident wave vector ki is given by

[
− ~2

2m
∇2 + U(r)− ~2

2m
k2
i

]
Ψ(r) = 0. (13)
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Here only in-plane scattering is going to be considered, that is, r = (x, z). Since the wave

function and the interaction potential are periodic, both can be Fourier expanded and one

finally reaches a set of coupled equations which reads as

[
~2

2m

d2

dz2
+

~2

2m
k2
n,z − V0(z)

]
Ψn(z) =

∑
n ̸=n′

Vn−n′(z)Ψn′(z) (14)

with V0(z) the grating-averaged interaction potential and ~2
2m

k2
n,z being the z-component of

the kinetic energy of the scattered particles. The squared z-component of the wave vector is

written as

k2
n,z = k2

i −
(
ki sin θi +

2πn

d

)2

. (15)

where θi here is, on the contrary, measured wih respect to the normal to the surface.

Thus, when comparing with experimental results, theoretical positive n diffraction orders

correspond to experimental negative n ones. For every n, the effective potential V0(z) +

~2
2m

(ki sin θi + 2πn/d)2 in Eq.(14) represents a diffraction channel, the second term is the

asymptotic energy. This energy depends on n and the incident scattering conditions (energy

and polar angle). Open diffraction channels have a positive normal kinetic energy (k2
n,z > 0)

while channels which have a negative normal kinetic energy (k2
n,z < 0) are called closed. The

diffraction probabilities are obtained by solving the CC equations with the corresponding

boundary conditions and the intensities are given by

In = |Sn0|2 (16)

where Snn′ are the elements of the scattering or collision matrix. These intensities give the

probability for an incident wave in the specular channel (n′ = 0) ending in each one of the

open n-channels. By construction, the S-matrix is unitary since no Debye-Waller attenuation

has been included due to the surface temperature.

The interaction potential given by Equation (4) displays classical turning points due
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to the repulsive part of the Morse potential. To distinguish between the phenomenon of

quantum reflection and the ”normal” reflection from the inner repulsive part of the Morse

potential we impose absorbing boundary conditions10,11 in the inner part. For this purpose,

a Woods-Saxon (WS) potential has been introduced in the imaginary part of the diffraction

channels

VWS =
V0

1 + eα(z−zi)
(17)

which is essentially zero in the physical relevant interaction region and turns on sufficiently

rapidly but smoothly at the left edge of the grid to absorb the flux over a short distance as

possible. We used V0 = 0.02 a.u. and α = 1.2χ. As a result, the resulting scattering matrix

S̄ is no longer unitary. The diffraction intensities are still given by

Īn = |S̄n0|2 (18)

and the quantum reflection probability is

PQR =
∑
n

|S̄n0|2 < 1 (19)

for each initial condition. Numerical convergence was obtained by using 61 diffraction chan-

nels (n = −30, · · · , 30) with a grid of 10,000 points between -10 Å and 210 Å. Two types of

calculations are carried out. First, a one-channel calculation with the specular channel only

in order to obtain an estimation of the total reflection probability, and second a multichannel

calculation to determine the numerically exact values for the quantum reflected diffraction

pattern. Numerical convergence is reached by considering open as well as closed channels,

unlike some previous work.8 Sometimes it is claimed that considering only open channels is

justified because quantum reflection occurs far away from the grating where the influence of

those channels is expected to be negligible. The presence of closed channels could also be

an indication of the importance of the inner region of the potential to describe the quantum
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reflection. In any case, this scattering is essentially a multichannel scattering due to the

periodicity of the grating.

Figure 1: Quantum reflection probabilities are plotted versus the perpendicular incident wave
vector (in nm−1) for a source temperature of 20 K (a) and 10.8 K (b). Experimental results:
red points; one channel (specular) calculation: green points; multichannel calculations: blue
points.

In Figure (1), the quantum reflection probabilities are plotted versus the perpendicular

incident wave vector for two different source temperatures, 20 K (left panel) and 10.8 K

(right panel). Red points represent the experimental values,3 green points are obtained from

a one channel (specular channel) calculation and blue points correspond to the multichannel

calculation. The overall agreement is fairly good. These results were reached by fitting the

two potential parameters C3 and χ, leading to the values mentioned above. The C3 value is

in the expected range for He atoms interacting with a transition metal surface.3 It should

be stressed that, at small perpendicular wave vectors, the one channel (specular) calculation

is also quite similar to the same type of calculation reported in3 where only the attractive

Casimir-van der Waals potential is considered in a one-dimensional Schrödinger equation.

This equation is solved with a boundary condition that the wave function vanishes at small
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z values, that is, small or vanishing distance from the grating. However, as also pointed

out in the same reference, at higher perpendicular wave vectors, where He atoms explore

deeper regions of the potential well, the agreement with experimental quantum reflection

probabilities is rather poor. In these regions, the attractive part is no longer of the type

of the Casimir-van der Waals tail. This part is considered in our calculation by means of

a Morse potential which should be much more appropriate. In any case, the agreement at

any perpendicular wave vector value with the results coming from the multichannel results

is fairly good.

These results are only obtained when the absorbing potential is shifted towards the

classical turning point of the interaction potential; in particular, at the initial value of the

grid zi. Quantum reflection is not observed when the absorbing potential is placed far to the

right of the potential well, where the Casimir-van der Waals tail of the interaction potential

is prevalent. In other words, the inner part of the interaction potential has a profound

effect on the reflection probability, showing that this region cannot be omitted by the z-grid

integration. To demonstrate this further, we present in Table 1 the multichannel quantum

reflection probabilities obtained at an incident energy of 20 K and angle of 3.38 mrad for

different values of the Morse well depth D. The badlands region of the long range potential

is not affected by these changes.

One may well ask where does this nonlocality appear in the semiclassical analysis of

quantum reflection, as presented for example in7? We note that the general formulation of

quantum reflection always has in it a modification of the semiclassical wavefuncion with an

exact solution which is based on nonlocal boundary conditions. When considering scattering

from a surface/grating, this condition is that the exact wavefunction vanishes at the sur-

face/grating. When considering potentials which do not have a reflective wall, such as step

potentials, the boundary conditions are also nonlocal as they include both transmitted and

reflected waves. These nonlocal boundary conditions are essential in deriving the quantum

reflection.12 In other words, the quantum wavefunction necessarily extends into the inner
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region of the potential away from the badland region. One cannot claim that it is merely

reflected by the badland region. In this context we also note that the reflection coefficient for

an Eckart potential well (−1/cosh(x)2) is zero at any energy.13 In this case, even though the

Eckart well has a badlands region typical of an exponential potential, there is no quantum

reflection at all. Had the phenomenon of quantum reflection been localized to the badlands

region only, then the Eckart potential well would have a finite reflection probability.

Table 1: The dependence of the multichannel quantum reflection probabilities,
PQR, on the D-parameter of the Morse potential obtained for a source tempera-
ture of 20 K and incident angle of 3.38 mrad.

D (meV) PQR

7.1 1.95 (-2)
8.1 1.70 (-2)
10.4 1.65 (-2)
11.7 1.78 (-2)
14.6 2.30 (-2)

The CC formalism may also be used to compute the diffraction patterns coming from

the quantum reflection effect. In principle, there is no reason a priori to expect a one-to-

one mapping between good CC quantum probabilities (when comparing to the experimental

ones) and the corresponding diffraction patterns. In fact, as shown in Equations (18) and

(19), the reflection probability is a global quantity and there are many ways to obtain the

same quantity from the sum of diffraction intensities corresponding to the same initial con-

ditions in energy and angle. This is precisely what we observe in our theoretical analysis.

In Figure (2), relative diffraction intensities (in %) are displayed as a function of the per-

pendicular incident wave vector kperp (in nm−1) at various source temperatures for θi = 4.9

mrad (left plot) and θi = 7.2 mrad (right plot). Colored lines are the experimental values

obtained from the magnitude of the measured diffraction peak divided by the magnitude of

the specular peak. Black numbers label the experimental diffraction orders. Red numbers
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Figure 2: Relative diffraction intensities (in %) as a function of the perpendicular incident
wave vector in nm−1, kperp at various source temperatures for θi = 4.9 mrad (left plot) and
θi = 7.2 mrad (right plot). Color lines are the experimental values. Black numbers label
the experimental diffraction orders. Red numbers near the diffraction orders correspond to
the CC results: a single red number means that in the corresponding interval of kperp the
diffraction intensity is nearly constant; a → b means that in the whole interval of kperp, the
diffraction intensity displays a smooth variation going from the initial value a to the final
value b.

near the diffraction orders correspond to the CC results: a single red number means that in

the corresponding interval of kperp the diffraction intensity is nearly constant; a → b means

that in the whole interval of kperp, the diffraction intensity displays a smooth variation going

from the initial value a to the final value b. The agreement of the experimental diffraction

patterns with the computed ones is not quantitative. However, the qualitative features are

present: (i) Important asymmetries in the intensities for positive and negative diffraction

orders are noticeable; (ii) Pronounced variations of the diffraction intensities are also found;

and (iii) Intensities for the even diffraction orders are quite negligible (for the experimental

values up to 18 % but for the theoretical resuts, less than 0.5%). None of these features are

found if one neglects the Casimir-van der Waals tail of the interaction potential.

In conclusion, we would like to emphasize the fact that by considering the full grid, in the

integration coordinate, as well as appropriate boundary conditions at the edges of the grid,

very good quantum reflection probabilities and acceptable diffraction patterns are obtained

when comparing to experimental ones, providing also physically acceptable potential param-

eters. Quantum reflection has been in most cases measured for scattering from surfaces. At
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long range, one has a Casimir-van der Waals attractive potential, but at short range, the

approaching particle feels the repulsive wall of the surface atoms. This is the justification

for the boundary condition that the wave function vanishes for sufficiently small distances

from the grating, this boundary condition implies that the quantum reflection is not local to

the badlands region alone. Our analysis is consistent if the quantum reflection is considered

as a coherent process underlying the nonlocal character of quantum mechanics.

Acknowledgment: The authors would like to thank W. Schöllkopf and B. S. Zhao for
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