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Throughfall is the dominant input of water to forests. Throughfall drop size and
the distribution thereof are important because of their influence on the forest
water balance, soil erosion, and, possibly, biogeochemical cycling. However, our
inadequate understanding of throughfall drop size distributions has hampered
progress in the identification of direct and indirect linkages between throughfall
inputs and the biogeochemistry and physiological ecology of forests. This review
provides a snapshot of our current understanding of throughfall drop size distri-
butions by tracing the historical development of throughfall drop size studies and
examining the determinants of throughfall drop size. The theory and methods of
drop size studies also are reviewed to consolidate our collective knowledge of
throughfall drop size distributions to date. Some of the gaps in our current knowl-
edge, among many, include: (1) the effects of snowmelt on throughfall drop size;
(2) the role and extent to which different canopy phenophases affect throughfall
drop size; and (3) the extent to which throughfall drop size affects the chemistry of
and biogeochemical cycling within forest soils. Closing these knowledge gaps will
likely lead to the better conceptualization of rainfall partitioning processes and
more definitive linkages between the cause-and-effect relationships between
throughfall and soil erosion, forest biogeochemistry, and plant physiological ecol-
ogy, for example. © 2017 The Authors. WIREs Water published by Wiley Periodicals, Inc.
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INTRODUCTION

'I'rees are important modulators of biosphere—
atmosphere interactions, affecting atmospheric
carbon dioxide concentrations, surface energy fluxes,
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the hydrologic cycle, and biogeochemical cycling.'*
The multi-faceted nature of trees’ impacts on the sur-
rounding environment is complicated and con-
founded by species-specific traits, such as canopy
architecture and leaf habit that can alter soil moisture
status and soil microbial communities,>* as well as
phenoseason® and exogenous stressors.®” In this
paper, we specifically focus on one aspect of this
complex puzzle, seeking to better understand how
the scientific literature to date captures and charac-
terizes our collective understanding of rainfall parti-
tioning with specific regard to throughfall drop size.
Vegetation partitions incident rainfall into
interception loss, throughfall, and stemflow. The
throughfall component may be divided into free and
release throughfall,® with release throughfall subse-
quently further subdivided into splash throughfall
and canopy drip”!® (Figure 1). Free throughfall is
considered as the portion of throughfall which at no
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FIGURE 1 | Schematic diagram of throughfall drop component separation and drop size distribution of the different throughfall components.
(a) GR, gross rainfall; I, interception; SF, stemflow; TF, throughfall; TF, free throughfall, TF, release throughfall; TFp, canopy drip; TFs, splash
throughfall. The sum of TFy and TFs equals TFg. TF equals the sum of TF; and TFg. The box details the interaction of different throughfall types
with the canopy. Please note that the dashed line for TF denotes that it passes through the canopy without ever contacting any vegetative
surface. (b) The drop size of the different throughfall types and GR in relation to drop volume.

point comes into contact with any canopy surfaces,
thus maintaining a drop size distribution (DSD) iden-
tical to that of open precipitation.!' Splash through-
fall is often categorized as droplets <1.5 mm in
diameter (although this value is not fixed) and is gen-
erated by momentum transferred into the canopy by
rainfall,’® wind,"* or from the redistribution of inter-
cepted water in the canopy.'® Canopy drip is com-
prised of throughfall droplets with diameters
>1.5 mm.'®'* The diameter of canopy drip is partly
governed by its routing along vegetative surfaces,
meteorological conditions, canopy state, and the bio-
physical characteristics of the plant surface, among
other factors (e.g., Refs 10, 14-17).

A comprehensive understanding of throughfall
generation and DSD is of critical importance to the
forest water balance because it affects the amount of
water reaching the forest floor. It is likely that
throughfall DSD also exerts a detectable influence on
forest soil chemistry (e.g., pH as well as organic mat-
ter breakdown and cation exchange capacity) and its
functional ecology with particular regard to the spa-
tial patterning of soil moisture and microbial biogeo-
chemistry, although these have yet to be examined.
Moreover, throughfall processes, modifying the
kinetic energy of incident precipitation, may affect
soil erosion and slope stability.”>'®=>°> The purpose of
this review paper is to critically evaluate past work
on throughfall drop size and to map new research
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directions that will advance our current understand-
ing of throughfall drop generation and DSD. After
an initial primer on the theory and lexicon of
throughfall drop size studies, the next section of this
review traces the evolution of throughfall drop size
measurement methods. Another section reviews the
biotic and abiotic determinants of throughfall drop
size. The final section critically reviews the literature
and identifies knowledge gaps in our current under-
standing, thereby setting an agenda for future
research on throughfall drop size. This review draws
from studies around the world published in both
English and Japanese. This is particularly noteworthy
as there are a number of throughfall drop studies
that have been published in Japanese over the past
several decades that are inaccessible to most readers.

A PRIMER ON THROUGHFALL DROP
SIZE STUDIES: THEORY AND
LEXICON

Representative Parameters of Throughfall
Drop Size Distributions

DSD is an important concept in the analysis of rain-
fall and throughfall drops since the diameter of drops
is so variable, changing as a function of many fac-
tors, including rainfall intensity,*®*” rainfall type,*®
and throughfall type.'® Given the inherent variability
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in throughfall drop size, the aggregate number and
volume of drops in discrete drop classes is necessary
to construct throughfall DSDs. Two types of DSDs
have been widely used: the first is based on drop
number density, N(D) (mm™" m™), and the second
on drop relative volume, V(D) (dimensionless)*’
(Figure 2). They are calculated as:

N; 1
N(D;) = S —— 1
( /) Zi A'U,"At-AD/ ( )
N/
> Vi
V(D)=4=i_"' 2
( /) Vtotal ( )
where N; is the number of the drops in a drop diame-
ter class j, A the sampling area (m?), v; the velocity of
a respective drop i (m s™!), At the sampling time (s),
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FIGURE 2 | Example of drop size distribution of open rainfall
and throughfall based on drop number density, N(D) and drop
volume ratio, V(D) observed in 1-h with 14.7 mm h~" rainfall
intensity. The dashed blue and bold green lines indicate open

rainfall and throughfall, respectively. (Data source: K. Nanko,
Ref 10.)
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Throughfall drop size distributions

AD; the class range of drop diameter (mm), V; the
volume of a respective drop i, and V., the total vol-
ume of all drops. In studies with natural rainfall, N
(D) has been generally calculated by using the drop
terminal velocity equations (e.g., Refs 30-33), while
V(D) has been generally used in throughfall studies
because throughfall drops do not always reach termi-
nal velocity.®18-34

Rainfall and throughfall diameter distributions
are positively skewed, which accounts for the com-
mon use of maximum drop diameter (Dysax, mm),
median volume drop diameter (Dsy, mm), and
median drop volume (vso, mm?®) as they better quan-
tify and characterize the non-normal distribution.
Dsg is a widely used index representing both open
rainfall (e.g., Refs 35-39) and throughfall (e.g., Refs
10, 15, 29, and 34), while vsy is used for the
Calder*® two-layer stochastic model to estimate can-
opy interception loss.

Characteristics, Prediction and Usage

of Throughfall Drop Size Distribution
Throughfall has a distinct DSD compared to open
rainfall (Figure 2); whereas open rainfall has a uni-
modal DSD, throughfall has a bimodal DSD.'**!
First, for a given time period, the total number of
throughfall drops is less than that for open rainfall
due to interception loss, storage, and partitioning of
incident rainfall by the canopy.'®**** Second, due
to canopy drip, the number of larger throughfall
drops (>3.0 mm) is higher than that for open rainfall.
Throughfall categorized as canopy drip usually com-
prises more than half of the total volume of through-
fall, and thus Dsq is usually higher than 2-3 mm.
For open rainfall, these larger raindrops are rare and
the volume percentage is low and only observed at
high rainfall intensities; for example, a 3 mm Ds,
value is observed at a rainfall intensity >100 mm
h='.'53% Third, the relative volume of smaller drops
(<1.0-1.5 mm) increases because of splash through-
fall. The impact of larger drops onto foliage gener-
ates splash droplets,* especially when open rainfall
is of higher intensity and strong winds jostle foliage
during rain storms.'® The generation process of these
splash droplets have been studied in agronomic
contexts*™ and in relation to forest canopy inter-
ception loss.*®
To determine the throughfall DSD, it is neces-
sary to know both the DSD and relative volume per-
centage for each throughfall component (i.e., free,
splash, drip)* (Figure 1). With this objective, a cou-
ple of models have been developed. One approach
used the combination of the DSDs of free throughfall
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and canopy drip,”>*" while a second approach by

Nakaya et al.’? added the splash throughfall compo-
nent. Frasson and Krajewski’® developed a physical
process-based rainfall interception model, where
throughfall DSD was estimated considering splash-
ing, drop breakup, and drop detachment. In all these
models, the DSD of free throughfall is estimated by
the Marshall and Palmer?® distribution, a widely
used exponential relation between raindrop size and
drop number density related to rainfall intensity, or a
general gamma relation.”” Both showed that higher
rainfall intensity generated higher drop number den-
sity totals for each diameter class, and larger rain-
drops. The DSD of canopy drip is empirically
estimated as a normal distribution based on V(D).
The application of mean, range, and standard devia-
tion of drop diameter are the values used to estimate
the DSD.?%? Last, the DSD of splash throughfall is
empirically estimated as an exponential distribution®?
or Weibull distribution®*> based on N(D).

Predictions of throughfall DSD are important
because they are used to estimate throughfall kinetic
energy for soil erosion studies (e.g., Refs 15, 21, and,
43). In fact, much of the mid-twentieth century
research on the DSD of open rainfall was motivated
by the need to mitigate soil erosion. This study
focused on both the determination of the terminal
velocity and erosive potential of precipitation®®>1-°
as well as radar calibration and validation studies to
establish an empirical relationship between drop size
and rainfall intensity.*®*® Chapman'® published the
first known study to understand the role of the tree
canopy on soil erosion. His work ultimately cor-
rected the generally held assumption that tree cano-
pies muted the erosive power of rainfall in forests.
He found that throughfall drops had a consistently
larger median size than open precipitation. This find-
ing was later substantiated by others (e.g., Refs 9,
11, 19, 43, and 57). Readers specifically interested in
throughfall DSD and throughfall kinetic energy in
relation to soil erosion are referred to Nanko et al.,>!
Geifller et al.,>* and Goebes et al.,>® among others
whose calculations of throughfall kinetic energy
assume that the fall height of release throughfall is
equal to the canopy height from which the droplets
detach,20-50:52,59-61

In addition to its application to soil erosion
studies, throughfall DSD is useful to estimate canopy
interception loss. A two-layer stochastic model of
rainfall interception,'**® based on the original sto-
chastic interception model,** accounts for the grad-
ual wetting of a vegetation canopy by raindrops and
water dripping from an upper canopy layer onto a

lower one.’> The stochastic model estimates
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maximum canopy storage from wvso and raindrop
kinetic energy to impact leaves. The maximum can-
opy storage decreased with the increase of median
drop volume.'*** The throughfall DSD is used to
calculate the median volume drop diameter of
throughfall impacting lower layers of the canopy.

THROUGHFALL DROP SIZE
MEASUREMENT METHODS

The temporal evolution of drop size measurement
methods of direct relevance to throughfall DSDs is
depicted in Figure 3. The first known study to
describe raindrop size®’ utilized slate sheets with a 1-
inch (25.4 mm) grid drawn on them to examine the
size and distribution of naturally occurring rainfall.
Lowe® observed the irregular distribution of drop
diameters within a given event, as well as the ten-
dency of large drops to break into smaller droplets
upon impact. Another early effort to quantify rainfall
drop size emerged from a desire to confirm whether
tropical raindrops actually reached 1 inch in diame-
ter.®® Wiesner®® employed the paper staining method,
whereby paper is treated with a water reactive dye,
and then exposed to falling rain. The drop size of a
particular hydrometeor is then calculated from the
diameter of the dye stain and the thickness of the
paper.>%31-33:66 Mihara®” quantified drop size by the
glass plate method, whereby a glass plate is exposed
to falling rain. Raindrops intercepted by the glass
plate are then later absorbed by stain paper with a
water reactive dye in a laboratory. Compared with
the paper staining method, the glass plate method
permitted the measurement of larger raindrops,
which presumably remain intact due to surface ten-
sion, as opposed to the paper staining method, which
sometimes generated splash droplets at impact. The
glass plate method also allowed for the measurement
of smaller droplets than the flour pellet method
devised by Bentley.®® In contrast to paper staining
methods, this method relied upon a container of
sifted flour being exposed to rainfall for a known
period of time. Raindrops impacting the flour surface
create flour pellets. Pellets generated in this manner
are then dried and sorted via a sieve set. Pellet size
can be related to raindrop size through a calibration
function, where drops of a known size are generated
and the resultant pellets were measured.®® Addition-
ally, Fuchs and Petrjanoff®” described the oil method,
in which water drops are collected in a low-density
immiscible liquid-like oil. The oil envelops the drop,
preventing both evaporation of and condensation
onto the drops. Due to the high surface tension

Volume 4, July/August 2017



7
&' WIREs Water Throughfall drop size distributions

Lowe 189295
First sketch of raindrop

Mihara 195167
First description

Wiesner18956¢
First description

Joss and
Waldvogel 19677°

Gunnand
Kinzer 194931

size captured by sheets || of a drop staining|| First automated of a glass plate || First automated Drop impact
of slate method DSD instrument method momentum method measurement
oo—— o s
Bentley 190468 Fuchs and Laws 1941% lllingworth and Stevens 19877
First description Petrjanoff 1937°° || First description Development of an optical
of a flour pellet First description of || of a photographic disdrometer first used in sub-
method an oil method method canopy
& o o o
71890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Throughfall DSD studies

/o @ %@moa ool ST

Chapman 19488
First sub-canopy
study by a flour
pellet method

Brandt 1990°° ||Hall andCalder1993'5 || Nanko et al. 200443
First model to First sub-canopy study First sub-canopy
estimate by an optical disdrometer|| study by multiple
throughfall DSD laser disdrometers

FIGURE 3 | Historical evolution of throughfall drop size distribution (DSD) studies related to the development of raindrop measurement
methods. Open and filled circles indicate manual and automated sampling methods, respectively. Please note that this figure highlights certain key
studies and does not attempt to identify every study by name. The numbers in the top right of each box correspond with its number in the
reference list. The clustering of circles is intended to demonstrate the increase of throughfall DSD studies from 1980 onwards.

forces, the drops form spherical shapes, from which
the diameters can be measured with a microscope or
other device.”” These methods provided a low cost,
reasonable measurement of raindrop size, although
there were inherent issues with sample preparation,
drop size calibration, sample timing, and limited tem-
poral resolution.

To remedy the deficiencies of these earlier meth-
ods, automated methods of drop size and velocity
measurement were developed in concert with techno-
logical advances in meteorology. One early auto-
mated method involved using a camera and shutter
apparatus to sequentially measure the fall of a hydro-
meteor across a calibrated background to determine
fall speed, with the drop itself being captured via the
flour pellet or oil immersion method.’® A second
device exploited the naturally occurring electrical
charge on hydrometeors. Gunn”> developed an
instrument consisting of two insulated induction
rings, separated by a meter, and connected to an
oscillograph. When a drop possessing a charge
passed through the first ring, a pulse was sent to the
oscillograph. Once the drop passed through the sec-
ond ring, a second pulse was recorded. The two
pulses record the time it took for the drop to pass
1 m. The drop then impacted the oscillograph paper
reel, allowing the diameter to be recorded along with
the velocity. These methods were later replaced by
the advent of the disdrometer, an instrument that
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measures the DSD and velocity of hydrometeors.
Both impact and optical disdrometers are manufac-
tured, although impact disdrometers are not suitable
for throughfall measurements (as discussed below).

The manual and early electronic methods
allowed researchers to approximate the diameter and
terminal velocities of hydrometeors. These datasets
were used to generate early tables of raindrop size
and kinetic energy. Armed with the information
about drop sizes of hydrometeors from these earlier
studies, new methods were developed that electroni-
cally recorded raindrop impact to quantify drop size
and distribution. These impact methods relied upon
either hydrometeors impacting the ground or a mem-
brane connected to a transducer.”* The impacting
energy of the hydrometeor provided an estimate of
the kinetic energy of the drops (and by extension
drop size) on the basis of either a voltage output or a
sound file.”%”* The impact disdrometer is commonly
used in meteorological observations, as it can be rea-
sonably assumed that open precipitation is falling at
terminal velocity (e.g., Refs 30-32, and 75), allowing
the standard calibration equations to be employed.
However, the impact disdrometer is invalid for mea-
suring throughfall drops because canopy drip from a
low canopy layer may not always achieve terminal
velocity.”®

Optical disdrometers are the latest develop-
ment in drop size measurement methods and are in
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wide use today at airports, monitoring sites, and
research grade meteorological ~stations.!®”77=7?
Optical disdrometers rely on either camera technolo-
gies, infrared, or laser sensors. They accurately
measure both diameter and velocity from the attenu-
ation of a light source.”” Because the optical disd-
rometer directly measures diameter and velocity, it is
well-suited for the quantification of throughfall drop
size where drops may not reach terminal velocity.
Readers particularly interested in the development of
methods, monitoring, and modeling of DSD of open
rainfall are directed to a recent review by Kathira-
velu et al.?”

DETERMINANTS OF THROUGHFALL
DROP SIZE

Role of Plant Surfaces

The biophysical examination of plant surfaces is not
new. Robert Hooke, more than three centuries ago,
described the presence of leaf hairs on nettle (Urtica
dioica), an herbaceous plant, in his treatise Microgra-
phia. Later, de Bary®' provided the first classification
of plant surface waxes and Albert Chinball trans-
formed our understanding of leaf wax chemistry in
the 1930s (e.g., Refs 82 and 83).** Then, with the
advent of chromatographic techniques and electron
microscopy, plant scientists achieved huge strides in
our understanding of the plant surfaces.** More
recently, hydrologists have started to couple the bio-
physical characteristics of leaf surfaces with their
water repellency and throughfall inputs.®* The link-
ing of the hydrophobicity of plant surfaces with
throughfall is of critical importance in understanding
the influence of different plant species on throughfall
drop size. Interested readers are referred to the
review by Rosado and Holder®® on the development,
theory, measurement, and importance of leaf water
repellency.

Recognizing that throughfall inputs are affected
by leaf hydrophobicity,®®*” Nanko et al.*’ found
that throughfall drop size was smaller beneath tree
species with more hydrophobic foliar surfaces. In
fact, specific experiments demonstrated that the
degree of foliar hydrophobicity determines droplet
contact angle, whereas droplet contact diameter and
contact length are more influenced by leaf roughness,
inclination, and geometry.”'-***>%% A wide range of
leaf traits, therefore, directly and/or indirectly affect
throughfall drop size (Table 1). Hall and Calder'®
even found that interspecific differences in leaf shape,
orientation, and surface characteristics trumped rain-
fall intensity in the determination of throughfall drop
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size comparing broadleaved and coniferous trees
(Eucalyptus camaldulensis (river red gum), Tectona
grandis (teak) and Pinus caribaea (Caribbean pine)).
Nanko et al.'® attributed differences among DSDs of
a few tree species (Quercus acutissima (sawtooth
oak), Chamaecyparis obtusa (Japanese cypress) and
Cryptomeria japonica (Japanese cedar)) to the fact
that intercepted water was better able to coalesce on
oak leaves than more hydrophobic conifer needles.
Leaf pubescence, which can also affect hydrophobic-
ity, is another factor affecting throughfall drop
size, 174559

For nine different tree species—Castanopsis sie-
boldii (Itajii chinkapin), Schima liukiuensis (Chinese
guger tree), Daphniphyllum teijsmannii (Japanese
daphniphyllum), Elaeocarpus japonicus, Cinnamo-
mum doederleinii (cinnamon), Machilus thunbergii
(Japanese bay tree), Ternstroemia gymnanthera
(cleyera), Distylium racemosum (evergreen witch
hazel), and Ilex liukiuensis (holly)—the median
throughfall drop size was similar for both adaxial
(3.2-4.5 mm) and abaxial foliar  surfaces
(3.3-5.0 mm).*” Intraspecific differences in leaf traits
did not appear to affect throughfall drop size in a
notable manner.®” Similarities in throughfall drop
sizes between adaxial and abaxial surfaces may be
partly attributable to likenesses in water contact
angles with the foliar surface. Indeed, Nanko et al.*’
reported that maximum throughfall drop diameter
was partially affected by droplet contact angle,
whereas the range of throughfall DSD was impacted
by droplet contact length and contact diameter at leaf
hanging points. Moreover, differences in throughfall
drop sizes among species were attributed to varying
leaf characteristics, such as leaf size and shape.'
Similarly, throughfall drop size was observed to
change as a function of leaf roughness, leaf inclina-
tion, and leaf geometry.”’

Herwitz’® observed that branch surfaces were
much more efficient at retaining intercepted droplets
than leaf surfaces, especially when already wetted or
under windy conditions.”’ Intercepted water on
branches was found to drain to the bottom of the
branch and efficiently channel that water as stem-
flow. Sometimes, an irregularity in the canopy can
cause the branchflow to become detached, likely as
large throughfall droplets (although Herwitz”® did
not measure the diameter of such droplets). Branch
inclination angle was a key factor controlling rain-
drop capture and its entrainment as branchflow.”® In
contrast, foliar surfaces encounter more drop-on-
drop impacts as rain and release throughfall from
above are intercepted as the water tends to stay on
the adaxial surface—this agitation minimizes drop
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TABLE 1 | Listing of Canopy Structural and Plant Surface Variables
That Likely Affect Throughfall Drop Size

Canopy Structure Variables

Broadleaved versus
coniferous

Tree species (and diversity
thereof)

Deciduous versus evergreen
Canopy phenophase
Tree/canopy metrics Tree size
Projected crown area’
Crown thickness
Height to first branch
Height to first live branch
Branch count
Branch inclination angle
Trunk lean

Woody: foliar surface area
ratio

Leaf geometry Leaf area
Leaf inclination angle
Leaf margin/tip shape?
Leaf thickness
Leaf rigidity
Needle length
Needle density
Petiole characteristics®
Plant area index Number of canopy layers?
3D canopy geometry
Wind effects, extent of fetch

Sun exposure

Distance from forest edge

Increased dry deposition

Plant Surface Variables

Interspecific/intraspecific
differences®

Foliar surface
wettability/
hydrophabicity

Surface roughness

Trichome type and density
Epicuticular wax®
Leaf/needle age

Presence/absence of spider webs
between leaves/needles

Bark surface wettability/ ~ Bark microrelief
hydrophobicity
Bark texture and spatial variation
thereof

Bark thickness

(continued overleaf)
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Throughfall drop size distributions

TABLE 1 | Continued

Plant Surface Variables

Bark chemistry”

Presence/absence of epiphytes,
bryophytes

Presence/absence of adventitious
roots

Presence/absence of surface
irreqularities®

Rate of dry deposition (change in
surface tension)

! Crown width, crown height, crown length.
2 Serrate, dentate, incised, etc.

3 Length, inclination angle, rigidity.

* Single versus multi-storied.

> Among and within tree species.

© Thickness, chemistry.

7 Suberin content, for example.

§ From insects/spiders/disease.

size and
surfaces.””

As previously demonstrated for throughfall vol-
ume and canopy interception,”” there are a number
of plant surface variables that can influence through-
fall drop size (Table 1). It is probable that there is a
mutual interaction among various canopy structure
and plant surface variables. For instance, canopy
phenophase should impact leaf age, trichome density,
photodegradation of epicuticular waxes, and the
hydrophobicity of foliar surfaces. The disentangle-
ment of these interactive effects is necessary to under-
stand whether the interplay among any given set of
variables is additive, countervailing, or synergistic
with respect to throughfall DSDs.

interception storage capacity of leaf

Role of Canopy Structure

As would be expected, there are interspecific differ-
ences in throughfall drop size values. Throughfall
Dsg values ranged around 2.0-3.0 mm at the lower
end to 6.0 mm at the upper end (Table 2). Through-
fall drop size maximum (Dyax) ranged between
2.6 mm for C. obtusa®* (Japanese cypress) and
10.0 mm for multi-layered forest.'®* However, many
studies reported a Dyax values between 6.0 and
8.0 mm for a variety of vegetation types (Table 2;
Table S1, Supporting Information). Even within a
single study, large differences in the median through-
fall drop size were observed between two tropical
tree species, differing by almost a factor of 2 between
P. caribaea (Caribbean pine, 2.3 mm) and T. grandis
(teak, 4.2 mm)."* The main canopy structure charac-
teristics affecting DSD are listed in Table 1.
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TABLE 2 | Abbreviated Summary of Maximum Diameter (Dyax) and Median Volume Drop Diameter (Dsg) of Throughfall Beneath Some Plant
Species in Previous Studies

Species Measuring Method” ~ Rainfall?  Dso (mm)®>  Dyax (mm)®  References
Acacia mangium (brown salwood) 0il N 3.8 NA %2
Betula ermanii (Erman'’s birch) Disdro-L N 3.9¢ NA 32
Chamaecyparis obtusa (Japanese cypress) Disdro-L N 25,397 6.0, 747 93
C. obtusa Disdro-L Sm 1.5-3.6 5.2-7.0° e
C. obtusa Disdro-L N 4.0° NA >
C. obtusa Disdro-L Sp 4.7 7.14 2
C. obtusa Disdro-L Sm 1.0-44°  26-6.77 3
C. obtusa Disdro-L N 1.8-2.1 4.5-6.17 10
Cissus antarctica (kangaroo vine) Mass Sp 3.9° NA 9
Cryptomeria japonica (Japanese cedar) Disdro-L N 1.9-2.9 51-73% 10
C. japonica Disdro-L N 3.8* NA 52
C. japonica Disdro-L Sp 5.1 7.4 2
C. japonica Glass N NA 6.4 19
Dipterocarpaceae (mixed lowland tropical tree species)  Filter N 5.5 6.8 o4
Elaeocarpus grandis (blue marble tree) Mass Sm 5.2° NA 9
Eucalyptus camaldulensis (river red gum) Disdro-0 Sm 2.8 <5.56 15
Eucalyptus populnea (poplar box) Mass Sp 6.3° NA o
Faqus crenata (Japanese beech) Disdro-L Sp 5.2 6.87 2
Fagus sylvatica (European beech) Flour Sm 1.6-2.5 NA 9
Fatsia japonica (Japanese aralia) Filter Sp 5.0 <7.0° "
Larrea tridentata (creosote bush) Flour Sm 16 <5.0° %
Liriodendron tulipifera (yellow poplar) Disdro-L N 3.3-5.77 5.6-7.0 14
Machilus thunbergii (Japanese bay tree) Filter Sp 4.48 NA 8
Malus pumila (common apple) Filter N 2.06 4.1 37
Melaleuca quinquenervia (broadleaved paperbark) Mass Sp 5.8° NA 9
Nothofagus moorei (Antarctic beech) Mass Sm 4.2° NA ?
Nothofagus obliqua (roble beech) Filter N 2.26 <5.4° 7
Olea europaea (common olive) oil Sm 1.4° <8.0° %
Picea abies (Norway spruce) Filter N 4.4 <7.3° %
P. abies Filter N <1.7° <3.9° 7
Pinus caribaea (Caribbean pine) Disdro-0 Sm 2.3 <5.5° 15
Pinus densiflora (Japanese red pine) Glass N NA 5.8 "
P. densiflora Glass Sp NA 46 19
P. densiflora Disdro-L Sp 3.7 6.2 2
P. densiflora Flour N 2.8-36 <8.0° 18
Pinus massoniana (Chinese red pine) 0il N 35 NA 92
Pinus thunbergii (Japanese black pine) Disdro-M N 1.6° 5.0 42
P. thunbergii Filter N NA 5.5 100
Platanus occidentalis (American sycamore) Filter N 43 <7.3° 9
Quercus acuta (Japanese evergreen oak) Disdro-L Sp 4.1 5.04 2
Quercus acutissima (sawtooth oak) Disdro-L N 1.9-3.6 5.8-7.67 10
Quercus dentate (daimyo oak) Glass Sp NA 6.3 19

(continued overleaf)
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TABLE 2 | Continued

Throughfall drop size distributions

Species Measuring Method”  Rainfall?  Dso (mm)®  Dyax (mm)®>  References
Quercus rubra (northern red oak) Filter N 3.3¢ <6.5° 97
Sassafras tzumu (Chinese sassafras) oil N 4.1 NA 2
Schima liukiuensis (Chinese guger tree) Filter Sp 3.87 NA 8
Tectona grandis (teak) Disdro-0 Sm 42 <5.56 15
Tsuga heterophylla (western hemlock) Filter N 2.3¢ <5.4° 97
Tsuga sieboldii (southern Japanese hemlock) Glass Sp NA 5.0 19
Zea mays (maize) Filter Sm 5.16 NA 101

NA, not available.

Please see Table S1 for the expanded version of this table, which includes tree, bush, and flower species to represent different vegetation types.
! Flour, flour pellet; Filter, filter paper; Glass, glass plate; Mass, estimated diameter of drips from water mass; Disdro-O, optical disdrometer; Disdro-M, micro-

phone disdrometer; Disdro-L, laser disdrometer.
2 N, natural rainfall; Sm, rainfall simulator; Sp, spray experiment.

3 Range indicate min-max from different seasons, rainfall events, meteorological conditions, sites, forest ages, or measuring points in same species.

# Newly calculated from observed data.

* Mean of five replicates with every 50 or 100 drips.

¢ Calculated from figures and/or tables of drop size distributions.

7 The diameter of the respective cumulative volume percentiles for 95%.
8 Mean of adaxial and abaxial sides of 30 leaves with 10-15 drips.

Canopy phenophase and the corresponding
changes in plant area index are an essential canopy
structural variable that can affect throughfall drop
size (Table 1). Nanko et al."* found that canopy state
(i.e., presence/absence of foliage) was one of the most
important factors controlling throughfall DSD. The
top three most influential factors (based on boosted
regression trees analysis) affecting D5y was foliation
state, air temperature, and wind speed.'* This is
because of the mutually interacting effects among
meteorological conditions, plant surface morphology,
and canopy structure. D5y was substantially larger in
the unfoliated period than the foliated period. This
could be due to the fact that water adhesion to
branches is stronger than foliar surfaces. Nanko
et al." suggested that water channeled along the
underside of branches of leafless tree crowns is
detained for longer spans of time with lower evapo-
ration rates and more viscous branchflow. This likely
increases contact time and larger drops only fall
when momentum transfer or gravitational forces out-
weigh the adhesion forces keeping the drop in situ.
Many of us may know this anecdotally from a walk
in the park during winter or summer—just after rain,
larger drops hit us in winter than in summer!

Canopy thickness has a detectable effect on
throughfall drop size. Canopy thinning, as simulated
by the pruning of branches, increased the volume
proportion of large throughfall drops'® and increased
Dso,* suggesting the capture and re-interception of
throughfall drops from above.'®** This pattern was
more pronounced for saturated canopies.'® Goebes
et al.'” also assumed that increase in crown width led
to increase in throughfall drop sizes. Dsy, was

Volume 4, July/August 2017

© 2017 The Authors. WIREs Water published by Wiley Periodicals, Inc.

observed to be the largest at the crown periphery,
decreasing with distance to the tree trunk.>**’ Simi-
lar results were found for maize whereby the differ-
ential and patchy obstructive capacity of the canopy
led to an increase in Dso.** Moreover, thicker cano-
pies tended to increase the probability of splash drop-
let formation, which led to a reduction in throughfall
drop size.'®*  Accordingly, throughfall kinetic
energy is negatively correlated with crown
length.'®! The erosive potential of throughfall drops
was able to be satisfactorily estimated using just two
canopy structural variables, namely plant height and
plant canopy area,'% although plot level tree species
richness was found to affect throughfall kinetic

energy.'**

Role of Meteorological Conditions

On the whole, less work has been done to know the
effects of meteorological conditions on throughfall
drop sizes than the influence of either canopy struc-
ture or the morphology of plant surfaces. Antecedent
moisture levels in the canopy can affect throughfall
drop sizes. Herwitz’® found that vegetative surfaces
that were already wetted detained a greater propor-
tion of incident rain than dry surfaces, thereby redu-
cing splash losses. In support of this observation, a
canopy in the wetting stage (as opposed to satura-
tion) had a lower volume proportion of large
throughfall drops.'® Thus, as a canopy wets-up some
intercepted water is devoted to filling the canopy
storage capacity (after Rutter et al.'®’) and some is
invariably lost to splash but less water is likely to
become canopy drip until the interception storage
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capacity is reached. Of course, there is a continuum
on the probability that a throughfall drop will be
released as splash or drip with the latter probability
increasing as the canopy approaches saturation.

Empirical evidence demonstrates that rainfall
intensity is not the most important factor affecting
throughfall drop size.!t1*H18:1941100:106 Thi ig pri-
marily due to the fact that higher rainfall intensities
increase the splash component of throughfall which
have smaller drop sizes.'®***? For both Ds, and
Dyax of canopy drip, Nanko et al.'"* found that
rainfall intensity ranked last or next to last in its rela-
tive influence on drop size, thereby ranking lower
than canopy state, air temperature, and host of other
factors. For multi-layered tree canopies, the low
effect of rainfall intensity on throughfall drop size is
reduced further as splash droplets from intense rain
is recaptured by branches and foliage lower in the
canopy.'® It is important to note that a species-
specific effect exists for impact of rainfall intensity
and canopy drip. For example, high rainfall intensi-
ties were observed to lower throughfall drop sizes for
sawtooth oak but had only a negligible effect on Jap-
anese cedar and Japanese cypress.'’ In fact, some
studies applied a constant DSD for released through-
fall independent of rainfall intensity to estimate
throughfall kinetic energy’*>*°**° and canopy
interception, '3

Increases in wind speed have been found to
reduce throughfall drop sizes for both coniferous and
deciduous tree species under foliated conditions.'®
Strong winds essentially dislodge intercepted water
from vegetative surfaces, albeit to a much greater
extent for foliar surfaces than woody surfaces,” by
concurrently dislodging intercepted water and pro-
moting the genesis of smaller-sized splash droplets
and diminishing canopy drip.'® For Dsy of canopy
drip, wind speed was found to be the third most
influential factor after the presence/absence of foliage
and air temperature.'* In the special case of unfo-
liated conditions, wind speeds between 3 and § m s~
actually increased canopy drip drop size,'* likely due
to the accumulation and subsequent detachment of
branchflow. Little work has investigated the effects
of wind direction of throughfall drop sizes under field
conditions. It could be that certain wind directions
have the highest wind speeds which could alter
throughfall DSD. Nanko et al.,'* however, found
that wind direction did not seem to have a significant
influence on Dsg or Dyax of canopy drop, although
it did impact the drop volume ratio of canopy drip.

Air temperature and vapor pressure deficit
appear to be effective meteorological factors, which
can influence throughfall drop size. Larger canopy
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drip could be caused by higher surface tension and
higher viscosity of intercepted water due to lower air
temperature and higher water storage capacity due to
lower vapor pressure deficit.'*

Fog represents an interesting case with regard
to canopy drip generation processes. The occult dep-
osition of water droplets onto aboveground vegeta-
tive surfaces through coalescence and their
subsequent release from the canopy is useful to con-
sider due to the impact of frequently occurring fog
and persistent cloud shading on the hydrology and
ecology of some ecosystems.'?”~'1* Precipitation aug-
mentation via fog interception and throughfall
release is partially dependent on the leaf surface wett-
ability and leaf inclination as these are two important
determinants of canopy drip diameter.**%”

KNOWLEDGE GAPS IN
THROUGHFALL DROP SIZE
DISTRIBUTIONS: FUTURE RESEARCH
DIRECTIONS

Overview

As detailed in this review, we have learned a great
deal about some of the factors that affect throughfall
drop size. It is clear that throughfall drop size is gov-
erned by a suite of mutually interacting factors that
change both spatially and temporally at different
scales. Biotic factors, such as tree species and leaf
morphology (e.g., Refs 9, 15, 29, and 104), as well
as abiotic factors involving weather conditions
(e.g., Ref 10) both affect throughfall drop size.
Despite the great deal of progress in throughfall drop
size studies, there are a number of areas in which
present knowledge is weak and where our under-
standing is insufficient. Closing these knowledge gaps
will likely lead to the better conceptualization of
rainfall partitioning processes and more definitive lin-
kages (both direct and indirect) between the cause-
and-effect relationships between throughfall DSD
and the biogeochemistry and functional ecology of
forests. This section identifies certain areas and ave-
nues for future work so that a comprehensive under-
standing of throughfall in the hydrologic and
biogeochemical cycle of forested ecosystems can be
achieved for better stewardship of forest resources.

Effect of Plant Surfaces on Throughfall
Drop Size

An entire literature exists on plant surfaces and water
repellency of foliage (see Ref 85). On the level of
individual plants, future work needs to quantify and
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assess the effects of varying bark morphologies on
throughfall drop size. One would expect throughfall
DSDs to differ between smooth- and rough-barked
trees. But, how do throughfall DSDs differ, if at all,
between tree branches with linear furrows or those
with curvilinear overlapping structures or those with
irregular detaching bark? Does the residence time of
throughfall differ among tree species with differing
bark structures? How might that influence drop size?
Does longer residence time on some bark surfaces
equate to larger or smaller throughfall DSDs? Given
the apparent importance of leafless tree crowns in
altering throughfall drop sizes,'* it would be prudent
to commission further studies that specifically exam-
ine differing bark structures and morphologies on
throughfall drop sizes.

On the level of foliar and woody surfaces, the
effects of the phyllosphere and cortisphere on
throughfall drop size are largely unknown. Using
confocal, light, and scanning-electron microscopy, it
is possible to characterize the biophysical surfaces of
both leaves/needles and bark. Such biophysical char-
acterizations are not new in the bioimaging commu-
nity (e.g., Ref 84), but may be used in a fruitful
manner by hydrologists to examine the effects of
plant surfaces on throughfall droplet genesis and
DSDs. Bioimaging of plant surfaces has been success-
fully employed in other contexts to examine both
ant locomotion in tropical canopies''' and particu-
late matter dynamics in terrestrial solutions.''* So,
with respect to throughfall, do hairs on the abaxial
surface of leaves alter throughfall drop size? If so, to
what extent? How does the density of leaf hairs and
their thickness affect throughfall drop size? Do water
droplets detained on foliage of amphistomatous spe-
cies have higher or lower water contact angles and
drop sizes? Does the presence of particulate matter on
foliage with different hair densities or types alter the
surface tension of detained droplets? How does the
surface roughness of bark at the scale relevant to
drop formation influence throughfall drop size?
Because bark morphology also changes vertically for
any given tree, attention must also be paid to the ver-
tical change of throughfall drop size. Do fractures in
foliar or woody surfaces affect throughfall droplet
size? Thus, hydrologists can utilize bioimaging techni-
ques to better understand throughfall droplet genesis
and DSDs.

We also contend that X-ray photoelectron
spectroscopy could be used in conjunction with
bioimaging techniques to advance throughfall drop-
let studies by simultaneously investigating surface
chemistry, often related to degree of water repel-
lency and biophysical structure. Do differences in
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the surface chemistry and biophysical structure of
the phyllosphere and cortisphere have a detectable
effect on throughfall DSD? What role do epicuticu-
lar waxes and hydrophobic substances (like suberin)
play in throughfall drop size? Comparing two spe-
cies with similar surface chemistries but different bio-
physical structures (and vice versa) would permit
one to pinpoint the differential effects of surface
chemistry and bark structure on throughfall DSD.
Both foliar and woody surfaces of many tree species
should be examined to link throughfall DSDs to
plant traits. This would help demystify some species-
specific idiosyncrasies and permit forest or plant
functional type models of throughfall DSD.

As surface chemistry and biophysical structure
of the phyllosphere and cortisphere changes with
stress initiated by insects, fire, ice storms, drought
(or other stressor), how does the throughfall DSD
respond? Does throughfall DSD change with type
and severity of stressor? Which stressors most affect
throughfall DSD and how does that affect soil mois-
ture status and fine root development? With the
advent of the optical disdrometer and of low cost
minirhizotron microscopes, the work of Ford and
Deans''? can be greatly amplified, to determine if, in
fact, fine root development mirrors throughfall hot
spot locations.

A definitive coupling between throughfall drop
size and forest biogeochemical cycles is needed to
provide some meaningful conclusions on the effects
of throughfall DSD on the genesis of hot spots and
the spatial variability thereof, and their correspond-
ing impact on the hydrology and biogeochemistry of
the soils. Throughfall collectors should be positioned
under optical disdrometers to examine the effects of
throughfall DSD on throughfall chemistry to assess
the potential for hot spot development. Ideally, such
an experiment would employ 100 disdrometers over
similar soils with 50 disdrometers coupling through-
fall DSD with chemistry and the other 50 examining
soil moisture and biogeochemical reactivity in the
soil. This way one could parcel the effects of
throughfall DSD on chemical input from the canopy
and then its impact on the hydrology and biogeo-
chemistry of the soils. Microbial assessments of the
soil also could be made as there are no known stud-
ies that have linked throughfall DSD with the diver-
sity and functional ecology of soil microbes. The
aqueous samples collected should be analyzed by tra-
ditional inductively-coupled plasma-mass spectrome-
try (ICP-MS), fluorescence spectroscopy, isotopes,
13C-nuclear magnetic resonance (C-NMR), and time
of flight secondary ion mass spectrometry. This
would permit a thorough database on the chemistry
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of throughfall inputs, their relation to DSD, and their
impact on hot spot development. While deployment
of 100 disdrometers is no small feat, it would allow
for a sufficient sample size to provide some meaning-
ful conclusions on the effects of throughfall DSD on
fundamental questions relating to the genesis of hot
spots and the spatial variability thereof.

Finally, further work needs to be conducted to
investigate the existence and magnitude of intraspe-
cific variation of throughfall DSDs. This is especially
true with tree age over the course of years as the
bark  morphology''® and branch inclination
angles''® change. What species have the largest
intraspecific variation? What accounts for the
observed variation? Differences in woody surfaces,
foliar surfaces, or both? Answers to these questions
are important for age distribution management of
forests, especially if certain tree ages are found to
affect carbon cycling or soil erosion more so than
others.

Canopy Structure and Throughfall

Drop Size

The study by Nanko et al.'* showed the effect of
canopy state on throughfall drop size. However, it
was based on just a single tree species (Liriodendron
tulipifera L., yellow poplar), which begs the question
of whether the presence or absence of foliage signifi-
cantly affects the throughfall DSD beneath other tree
species. Logic dictates that the substantial differences
between the biophysical structure and morphology
of foliar and woody surfaces would lead to differen-
tial throughfall DSDs between foliated and unfo-
liated states across tree species. Future work is
necessary to qualify and quantify the effect of foliage
and woody surfaces on throughfall drop size. As
such, do other phenophases besides fully leafed and
leafless, such as leaf emergence and leaf senescence,
exert a differential effect on throughfall drop sizes?
Which phenophase produces the largest and smallest
throughfall droplets? We make a call for studies that
examine the influence of phenophase on
throughfall DSDs.

Branch inclination angle was observed to influ-
ence the flowpath of intercepted water on
branches,”® and leaf inclination changes in canopy
drip size were mathematically estimated.®” But pre-
cisely how does branch inclination angle affect
throughfall drop size, if at all? Is there a correlation
between woody area index and throughfall DSD?
Are there threshold angles at which there are marked
shifts in throughfall drop size? How do branch angle
and wind interact to affect throughfall drop size?
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Suffice it to say, future studies are necessary to
answer these and many other questions regarding
the interactions between branch angle and throughfall
drop size. Such studies should take advantage of cou-
pling light detection and ranging technologies
(LIDAR), destructive sampling, and optical disdrom-
eters to provide quantitative answers to these and
other questions.

Furthermore, spatial variation of throughfall
DSD has not been considered without foliage. For
leafed trees, Nanko et al.>* estimated the spatial vari-
ation of throughfall drop size under an isolated Japa-
nese cypress tree in an indoor rainfall simulator.
Crown length above the measuring point influenced
throughfall DSD, whereas the analysis was insuffi-
cient to detect the determinant of the spatial varia-
tion of throughfall drop size. The spatial variation
and distribution of throughfall drop size, both in the
leafed and leafless periods, is important information
to consider in relation to the distributions of fine
roots in the soil,''® mosses and lichens,''® water
uptake and percolation fluxes,'!” bacterial commu-
nities tolerant to moisture stress,''® surface runoff
generation,”® and splash detachment rates on bare
forest floors.?!

Meteorological Conditions and Throughfall
Drop Size

Hydrometeors inherently differ with respect to their
interception efficiencies.''” Rain, for instance, has a
higher interception efficiency than sleet. One would
expect there to be different throughfall drop sizes
and DSDs of free and release (splash and drip)
throughfall for different hydrometeors. Studies that
quantify throughfall drop size of different hydrome-
teors are necessary. Of particular interest, is the
throughfall DSD for snowmelt-induced canopy drip
and how throughfall drop size varies under different
snowmelt-induced scenarios. For example, how do
snowmelt-induced throughfall drop sizes vary with
air temperature? What is the impact of wind and
vapor pressure deficit? And, are snowmelt-induced
throughfall drop sizes constant over the course of a
snowmelt event or do they differ? If so, how?
Answers to such questions are important to the
development of a more holistic understanding of soil
moisture recharge and the possible development of
hot spots of biogeochemical reactivity. Given that the
routing of canopy drip in tree crowns is com-
plex'?%!21 and the fluxes of meltwater in forests dur-
ing snowmelt is highly variable, even for
homogenous deciduous forest stands,'?* it is proba-
ble that a better understanding of throughfall drop
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sizes of snowmelt-induced canopy drip could help to
explain the dynamism of vadose zone moisture dur-
ing episodes of snowmelt and the snow ablation
season.

New research needs to examine the effects of
differences of intrastorm characteristics on through-
fall DSD, particularly with respect to the number of
wetting/drying cycles with a given rain event, the
number and duration of rainfall lapses during an
event, solar radiation inputs, vapor pressure deficit,
and wind speed and direction. How are throughfall
drop sizes affected by variable lapses in rainfall dur-
ing a discrete rain event, if at all> Are wind gusts
more important than mean wind speeds in altering
throughfall drop size? Does the influence of wind
speed and direction change over the course of an
individual rain event? Do increases in evaporative
demand during rain events, due to fluctuations in
vapor pressure deficit, impact throughfall drop size?
Some findings from Nanko et al.'* suggest that vapor
pressure deficit exerts some influence on throughfall
drop size between foliated and unfoliated periods but
further research is necessary to see if this observation
holds for different tree species during other times of
the year.
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