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Abstract: Antisense and small interfering RNA (siRNA) oligonucleotides have been recognized as
powerful therapeutic compounds for targeting mRNAs and inducing their degradation. However,
a major obstacle is that unmodified oligonucleotides are not readily taken up into tissues and are
susceptible to degradation by nucleases. For these reasons, the design and preparation of modified
DNA/RNA derivatives with better stability and an ability to be produced at large scale with enhanced
uptake properties is of vital importance to improve current limitations. In the present study, we review
the conjugation of oligonucleotides with lipids and peptides in order to produce oligonucleotide
conjugates for therapeutics aiming to develop novel compounds with favorable pharmacokinetics.

Keywords: antisense oligonucleotides; siRNA; lipid-oligonucleotide conjugates; peptide-oligonucleotide
conjugates

1. Introduction

Over the last decade, therapeutic oligonucleotides have gained momentum as an
approach to drug development; consequently, there has been a large development of the
field. Although the first oligonucleotide approved for therapeutic application in humans
dates back to 1998 [1], the recognition of their full therapeutic potential started in 2016
with the authorization of Spinraza [2], for the treatment of Spinal muscular dystrophy,
and Etiplersen [3], for the treatment of Duchenne muscular dystrophy. In both cases,
the possibility of targeting a mutated gene through alternative splicing became a major
success for a long-time dream. Since then, the list of oligonucleotides approved for human
practices has reached the dozens, especially with the incorporation of siRNAs in the
therapeutic arena [4].

Oligonucleotide therapeutics include antisense oligonucleotides (ASOs) [5], small in-
terfering RNAs (siRNAs) [4], aptamers [6], microRNAs [7], and others [8]. ASOs are small
single stranded nucleic acids that by complementarity, bind to a particular mRNA and
form a hybrid molecule to modulate gene expression. They act through two mechanisms of
action (a) by steric blockade at the ribosomes or (b) by recruiting RNase H enzyme that
catalyzes the degradation of mRNA [5]. On the other hand, siRNAs consist of 21–23 mer
RNA duplex formed by a sense and an antisense strand complementary to mRNA. The
latter is responsible for the recruitment of the target transcript into the RNA-induced
silencing complex (RISC) that leads to gene silencing [4]. Unmodified oligonucleotides
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are not readily taken up into tissues and are also susceptible to degradation by nucle-
ases. For these reasons, the design and preparation of more stable modified DNA/RNA
derivatives to improve the existing limitations, like inefficient delivery and mature to
the position of clinical utility, is of key importance. Regarding the nuclease resistance,
novel derivatives are being developed [9]. The delivery issue is being addressed by the
following approaches: by encapsulation in nanomaterials such as solid lipid nanopar-
ticles (SLNs) or by preparing novel oligonucleotide conjugates with selective targeting
moieties [10]. The first FDA-approved siRNA, Onpattro [11], is the paradigm of the former;
N-acetylgalactosamine (GalNAc) oligonucleotide conjugates [12] are the paradigm of the
latter. GalNAc oligonucleotide-conjugates have been shown to be delivered to hepatocytes
by binding to asyaloglycoprotein receptors [12]. The latest FDA-approved therapeutic
siRNAs, including Givosiran [13], Lumasiran [14], Inclisiran [15], Vutrisiran [16], are based
on this strategy. Importantly, Inclisiran (Leqvio®) exerts its therapeutic action within a
twice-yearly administration regime [17] while most of the therapeutic siRNAs are adminis-
tered monthly or every two months [13,14,16]. The large duration of the therapeutic effects
of Inclisiran is not only due to a combination of the stability achieved by the modifications
on the siRNAs and the efficacy in the delivery, but also to the efficient inhibition of the
proprotein convertase subtilisin kexin type 9 (PCSK9) [15,17].

The success in exploring oligonucleotide conjugates for hepatic delivery has triggered
an intense quest for oligonucleotide conjugates with tissue-selective targeting properties,
particularly for extrahepatic delivery [18]. In this review, we provide an overview of major
developments on the preparation of lipid and peptide conjugates. At the beginning of
the antisense strategy, these conjugates had already been explored. They have regained
attention recently as extensive effort is being made to evaluate them on RNA interference
mechanisms and, in general, on new discoveries in the RNA field [19] to meet unsolved
and emerging clinical needs.

2. Results and Discussion
2.1. Early Developments in the Synthesis of Lipid-Oligonucleotide Conjugates

The pioneering works on the antiviral activity of oligonucleotides [20,21] stimulated
the development on lipid-oligonucleotide conjugates as potential candidates for the inhi-
bition of the human immunodeficiency virus (HIV-1) in cell culture. Cholesterol was first
selected to enhance the interaction between oligonucleotides and cell membranes, which
increases the antiviral activity of the oligomers [22,23]. Letsinger’s group designed a syn-
thetic protocol based on the solid-phase oxidation of H-phosphonate dinucleotide inter-
mediates with amino-functionalized cholesterol and catalyzation by carbon tetrachloride,
which generated the desired cholesterol-oligonucleotides bond through a phosphorami-
date link (Figure 1A) [22] or by direct coupling at the 5′-termini with the H-phosphonate
derivative of cholesterol [23,24]. The H-phosphonate derivative of a diacylglycerol was
also used for the incorporation of 1,2-di-O-hexadecyl-rac-glyceryl residue at the 5′-end
of antiviral oligonucleotides [25]. Solution techniques using amino-lipids [26] or thioc-
holesterol [27] were also used for conjugation in order to generate physiologically-labile
ester [26] or disulfide [27,28] bonds between the lipid and the oligonucleotide. These
groundbreaking studies proved the utility of lipid-oligonucleotides by demonstrating
that the lipid moiety enhances nuclease resistance and maintains or improves hybridiza-
tion properties [25,29]. However, in some cases, antiviral properties groundbreaking
antisense inhibition rules suggest other mechanisms, such as binding to viral and/or
cell membranes [22,23,25].

The next step was the development of specific lipid-phosphoramidites and lipid-
functionalized solid supports (Figure 1B). Due to the lability of the ester bonds to am-
monia [30], they were replaced by ether, amide and urethane linkers. Several derivatives
carrying ether and glyceryl ether bonds were developed by the group of Tom Brown, includ-
ing 3′ and 5′-cholesteryl, 5′-(1,2-dihexadecylglyceryl), 3′ and 5′-hexadecyl, 5′-octadecyl and
5′-adamantyl [31] as well as vitamin E derivatives (Scheme 1) [32]. Other groups worked
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on new cholesterol derivatives containing aminodiols such as 3-amino-1,2-propanediol [29]
and 3-aminopropylsolketal [33,34], in which the cholesterol moiety was linked to the amino
group by reaction with cholesterol chloroformate generating an urethane bond stable
to ammonia.
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Figure 1. Synthetic approaches for the incorporation of lipids to the 5′ and 3′ end of an oligonucleotide.
(A) H-phosphonate [22–24] and phosphoramidite chemistry [29,31] and (B) Different cholesterol
functionalized solid supports [30,32].

On the other hand, postsynthetic conjugation reactions between amino-oligonucleotides
and carboxylic acid derivatives of lipids such as cholic acid, adamantane acetic acid and
fatty acids were described [35–37]. A variation of this protocol implies the addition of
9-fluorenylmethoxycarbonyl (Fmoc)-protected amino linkers into oligonucleotides. Af-
ter the assembly of the sequence, the Fmoc moiety can be removed generating a free
amino group that reacts with cholesterol chloroformate followed by standard ammonia
deprotection [38].
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The availability of lipid-oligonucleotides allowed its preclinical evaluation demon-
strating specific antisense activity, enhanced nuclease resistance and maintenance or im-
provement of hybridization properties [41,42]. Another interesting property is its capability
to bind to serum proteins and lipoproteins, which is important to avoid renal clearance of
oligonucleotides [43]. Several specific receptor-mediated uptake mechanisms have been
described to explain selective uptake by hepatocytes via lipoprotein receptors [44]. Al-
though lipid-oligonucleotide conjugates have interesting properties, none of them, except
polyethyleneglycol (PEG) derivatives, have found their way to clinical studies. The synthe-
sis of oligonucleotides functionalized with PEG has been described by the Erdmann and
Bonora groups, being somehow similar to the methodology described in this section for
other lipid diols [45–48]. Pegaptanib (Macugen®) is a therapeutic oligonucleotide used for
the treatment of aged-associated macular degeneration. This oligonucleotide is an aptamer
constituted by 28 nucleotides and functionalized with PEG at the 5′-end and an inverted-T
at the 3′-end to prevent degradation by nucleases [49]. This aptamer has a strong affinity
to the vascular endothelial growth factor VEGF165 (Kd = 49 pM), inhibiting the binding
of VEGF to its receptor, suppressing the VEGF-mediated angiogenesis and consequently
lowering vascular permeability and inflammation [50].

2.2. Lipid-Oligonucleotide Conjugates and the Development of RNA-Based Therapeutics

The discovery of the RNA interference mechanisms provided a great resurgence in
the area of therapeutic oligonucleotides. Soon after the work of Mello and Fire [51], it
was established that the effector molecules of the RNA interference process were double
stranded RNA molecules of 19–21 nucleotides. Then, synthetic oligonucleotides with
chemical modifications were proved to improve the efficacy and the duration compared to
natural substrates [52,53]. Later, the discovery of the microRNAs increased the therapeutic
potential of oligonucleotides [54]. Cholesterol-siRNAs were developed and were demon-
strated to be successful derivatives for the inhibition of lipoproteins [55]. Stable nucleic
acid lipid nanoparticles (SNALP) and solid-lipid nanoparticles (SLN) were developed for
the delivery of siRNAs [56,57] showing for the first time the in vivo inhibition of ApoB in
non-human primates [56]. To expand the arsenal of available cationic lipids for siRNAs
delivery, several lipids and lipoids libraries were screened, thereby generating lipids with
high efficiency and less toxicity [58,59].
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These studies led to the search for new hydrophobic molecules to enhance the cel-
lular uptake of siRNAs [60–63]. Conjugation of amino-siRNAs with a small library of
carboxyl-lipids including cholesterol, fatty-acids and bile acids resulted in hydrophobic
siRNA derivatives that interact with lipoproteins [44]. The obtained hydrophobic (lipo-
siRNA-protein) complexes were efficiently delivered to liver, gut and kidney by specific
lipoprotein-mediated receptors. Inspired by these results, we studied a small lipid library
including both neutral [39] and cationic lipids [40]. The study of TNF-alpha inhibition with
and without lipofectamine proved that these lipid-siRNA conjugates carrying ammonia-
resistant glycerol ether bonds were compatible with RNA interference mechanisms. A
lipid carrying two linear hydrocarbon chains was the best derivative in terms of increasing
cellular entrance (Scheme 1) [39]. These double-chain lipid-siRNA conjugates stimulated
the formation of small vesicles that may explain the improved uptake properties [64,65].
In addition, a good correlation was found among cell lines expressing abundant CR3
receptors [64]. The vesicle formation properties and the enhanced binding of siRNAs
carrying double-chain lipids to hydrophobic membranes has also been observed by several
authors [66–68]. Furthermore, we found that the sonication of lipophilic siRNA in presence
of serum enhanced the binding of lipophilic-siRNA to lipoproteins, resulting in a more
efficient transfection [69].

In a different approach, cholesterol-conjugated single-stranded short RNA molecules,
or antagomiRs, were successfully used to silence miRNA [70–73]. In addition, G-quadruplex-
forming oligonucleotides carrying lipid moieties were found to increase their affinity for vi-
ral membrane proteins showing antiviral properties by inhibition of viral cell entry [74–76].
The most frequent methodology for the preparation of oligonucleotide-lipid conjugates
is based on amide formation (Figure 2), but other reactions such as the copper catalyzed
azide-alkyne cycloaddition (click chemistry) have also been reported [77].
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Figure 2. Chemical structure of several linker molecules connecting solid supports and lipids used
for the preparation of lipid-oligonucleotide conjugates. (A) Lipid conjugation to the 5′ or 3′ end of an
oligonucleotide in solution [35–37]. (B) Lipid conjugation to the 5′ or 3′ terminus of an oligonucleotide
on a solid support [29,31].

Recently, studies have been addressed towards the application of lipid-oligonucleotides
to transfect cells and tissues other than liver. Primary neurons are difficult to transfect with
siRNAs because the unique nature of the blood brain barrier (BBB) and the difficulty of
direct administration [78]. Alterman et al. found that cholesterol-tetraethyleneglycol func-
tionalized siRNA at the passenger strand was efficiently internalized in primary cortical
neurons, inducing a potent and specific silencing of huntingtin gene [79,80]. This potent
silencing activity was maintained in vivo when injected into mouse brain [79]. Additionally,
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docosahexaenoic acid conjugation (Figure 3) was judged to increase further the distribution
and the inhibitory properties of lipid-siRNAs when administered into the brain [81].

Another interesting property of lipid-siRNAs is the enhancement of siRNA loading
into extracellular vesicles [82,83], which generates attractive nanoparticles for the delivery
of therapeutic siRNAs. The best option in terms of higher loading and efficiency was
the conjugation of vitamin E (Sheme 1) [83]. Recently, siRNAs were modified with vita-
min E by a benzonorbonadiene linker, which releases active siRNAs when reacting with
tetrazines [84].

Next, the distribution of siRNAs conjugated to a small library of complex lipids
was analyzed, including saturated and unsaturated fatty acids, steroids and lipophilic
vitamins with or without phosphocholine heads. The level of hydrophobicity is crit-
ical in order to define accumulation in the liver or in the kidney. In addition, it was
shown that some lipid derivatives were able to accumulate in non-hepatic tissues such
as lung, muscle, heart, adrenal glands and fat [85,86]. In more detailed studies, factors
such as the chemical structure of the lipids [86], the phosphorothioate content [87], the
presence of single-stranded phosphorothioate regions [88] or the valency of fatty acid
modifications [89] were demonstrated to affect the pharmacokinetics, the extrahepatic
distribution and the in vivo efficacy of lipid-siRNAs [90,91]. Recently, the in vivo prop-
erties of siRNA carrying 2′-O-hexadecyl (C16) moieties have been described (Figure 3).
These lipophilic siRNAs can be delivered into the central nervous system, eye and lungs
of rats and non-human primates, where they exert inhibitory properties for at least
3 months [92]. These results opened the possibility of using lipophilic siRNAs in the
treatment of Alzheimer’s disease.
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A systematic study on the effect of the conjugation of antisense oligonucleotides with
fatty acids confirms its potential delivery to muscle and other extrahepatic tissues [93,94].
Moreover, palmitic acid-, tocopherol-, and cholesterol-conjugated (Scheme 1) antisense
oligonucleotides were reported to increase protein binding and enhance intracellular up-
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take [95]. These properties were explored by several groups for the development of lipid-
antisense oligonucleotides targeting the exon 51 of human Duchene Muscular Distrophy
gene [96,97].

The development of mRNA vaccines, especially during the COVID-19 pandemic,
triggered the interest in lipid nanoparticles for mRNA delivery. The approval of Onpattro
for the treatment of transthyretin–mediated amyloidosis demonstrated the efficacy and
safety of these non-viral vectors for siRNA delivery to liver [11]. This approval facilitated
the rapid authorization of the two mRNA vaccines for SARS-CoV-2 [98,99]. The great
potential of mRNA vaccines for cancer, infectious diseases and genetic disorders is stimu-
lating the search for the next generation of lipid nanoparticles that would increase efficacy,
degradability [100] and tissue-specificity properties [101].

2.3. Early Developments in the Synthesis of Oligonucleotide-Peptide Conjugates

Peptides can be used to improve the potency of therapeutic oligonucleotides by con-
ferring tissue and attaching cell-targeting, cell-penetrating or antiviral and antibacterial
properties to them. The cellular internalization mechanisms of peptides may be divided
in two main pathways: direct penetration or translocation, i.e. energy independent or
energy-dependent endocytosis [102]. The energy-independent mechanisms are described
for peptide/oligonucleotides non-covalent complexes at high peptide concentration. While
most of the oligonucleotide-peptide conjugates use the natural energy-dependent pro-
cess, this one involves encapsulation of the cargo in membrane vesicles. Depending on
the nature and size of the conjugate, it can be classified as macropinocytosis, clathrin-
or caveloin-mediated endocytosis as well as clathrin/caveloin- independent endocyto-
sis [103]. Once internalized, an important issue is to facilitate the endosomal escape to
avoid degradation of the conjugates. Some peptides introduce pH-sensitive domains for
the destabilization of the membranes and allow the release of the conjugates into the cy-
tosol [103]. One of the first examples of this was demonstrating that the conjugation of
oligonucleotides complementary to the vesicular stomatitis virus (VSV) to poly(L-lysine)
had increased antiviral properties than unmodified oligonucleotide [104,105]. Then, defined
peptides carrying the Lys-Asp-Glu-Leu (KDEL) peptide [106] and the Lys-rich SV-40 large
T-antigen nuclear localization sequences [107] were incorporated into oligonucleotides.
In these cases, the thiol-oligonucleotides reacted with peptides carrying maleimide or
Cys [106–108] residues in a postsynthetic conjugation (Figure 4A). Several variations have
been described [109], including the reaction of thiol-oligonucleotides with bromoacetyl-
peptides [110] or iodoacetamide- or maleimide oligonucleotides with thiol-containing
peptides [111,112].

Thereafter, stepwise methods for the synthesis of the conjugates using one single
solid support were developed [113–116] (Figure 4B). Usually, the peptide moiety is
first assembled using t-butoxycarbonyl (Boc)-amino acids with base labile protecting
groups, avoiding the use of strong acids in the presence of the oligonucleotide [115,117].
However, in some cases Fmoc-amino acids protected with the Boc- [117,118] or the
1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene) ethyl (Dde) [114] groups have been described.
The study of appropriate Fmoc-protected amino acids for trifunctional amino acids has been
carefully analyzed by several groups [119–122]. The preparation and condensation of pro-
tected peptide fragments has also been used in the preparation of peptide-oligonucleotide
conjugates (Figure 5A) [123]. This approach allows the incorporation of the peptide at the
5′-end in one single coupling reaction, thus avoiding repetitive deblocking steps.
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Figure 4. Preparation of oligonucleotide-peptide conjugates. (A) Postsynthetic conjugation of a
thiol-oligonucleotide with a peptide by a maleimide moiety [124]. (B) Stepwise method for the
synthesis of oligonucleotide-peptide conjugates on a solid support [113–116].

Oligonucleotides linked to cell penetration peptides (CPP) are among the most stud-
ied conjugates [103,125] (Table 1). These short peptides can pass through cell membranes,
facilitating the intracellular transport of various payloads. They can be: polycationic,
with examples including Arg-rich [126,127], Tat peptide [128], Penetratin [129,130]; am-
phipatic, for example Transportan [131], MAP-peptide [132]; proline-rich [133,134]; or
hydrophobic, like C105Y [135], Pept1 [136] or MPM-peptides [137]. A similar strategy
was developed consisting in the derivatization of antisense oligonucleotides with pep-
tides that are recognized by membrane receptors, such as RGD peptides with affinity
to integrins [138] or octreotate derivatives with affinity to somatostatin receptors [139].
Interestingly, these strategies combined with the addition of fusogenic peptides help
endosomal escape [138].
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Table 1. Selected sequences of peptides, especially cell-penetrating peptides, that are studied for
enhanced oligonucleotides delivery. The two main cellular mechanism of delivery used are direct
penetration or energy-dependent endocytosis, described in the main text. Once internalized, some
peptide sequences facilitate the endosomal escape.

Name Sequence Type Application Ref.

Hydrophobic

P4 LGAQSNF ASO (PS) SSO(2OMe) for DMD [140]

Polycationic

TAT RKKRRQRRR siRNA Neurodegenerative pathologies
Lung and Malignant glioma [141–143]

ASO (PNA/PMO) bacteria & nematodecell lines [144,145]
pAnt RQIKIWFQNRRMKWKKGGC ASO (PNA/PS) bacteria & nematodecell lines [129,144]

PolyArg Rn (n = 6–18) optimal 8 to 10 siRNA Neurons and different cancers [146,147]
(KFF)3K KFFKFFKFFK ASO (PNA/LNA) Anti-bacterial [144,148]
(RXR)4 RXRRXRRXRRXRXR ASO (PMO) Anti-viral anti-bacterial [144,149–152]

B peptide (RXRRBR)2XB ASO (PMO) SSO of DMD DM1 [153–158]
Pip5e RXRRBRRXR-ILFQY-RXRBRXRB ASO (PMO) SSO of DMD, SMA [159]
Pip6a RXRRBRRXR-YQFLI-RXRBRXRB ASO (PMO) SSO of DMD, SMA [160–163]
Pip6b RXRRBRRXR-IQFLI-RXRBRXRB ASO (PMO) SSO of DMD, SMA [164,165]

Amphipathic

MPG-8 GALFLGFLGAAGSTMGAWSQPKKKRK siRNA Xenograft tumor model [166]
ASO Mammalian cells [167]

Pep-1 KETWWETWWTEWSQPKKRK siRNA Cells [168]
CADY GLWRALWRLLRSLWRLLWRA siRNA Several cancer cells [169]

ASO Anti-bacterial [170]
RICK KWLLRWLSRLLRWLARWLG siRNA H glioblastoma cells [171]
599 GLFEAIEGFIENGWEGMIDGWY(G)4(R)9K siRNA Oral cancer [172,173]

Pepfect6 AGYLLGK(ε-Mtt)INLKALAALAKKIL siRNA Cell lines (various) [174]

ASO, antisense oligonucleotide; SSO, splice-switching oligonucleotides; DMD, Myotonic dystrophy; DM1, My-
otonic dystrophy type J; SMA, spinal muscular atrophy; PS, phosphorothioate; PNA, peptide nucleic acids; PMO,
phosphorodiamidate morpholinos; LNA, locked nucleic acid, 2OMe, 2′-O-methyl; X, 6-aminohexanoic acid;
B, beta-alanine.

2.4. Peptide-Oligonucleotide Conjugates and the Development of RNA-Based Therapeutics

Peptides are an attractive source of ligands being that its conjugation to oligonucleotide-
siRNAs is of special interest. Table 1 shows some of the most advanced peptide sequences
described for the delivery of therapeutic oligonucleotides. A large number of these pep-
tides are amphipathic peptides with the ability of self-assembling into NPs, to which
oligonucleotides are associated by electrostatic or hydrophobic interactions [165–173].

In addition, siRNAs have been directly conjugated to peptides. The lability of
siRNAs to basic conditions and the protection of the 2′-OH created extra challenges
the preparation of RNA-peptide conjugates. Although there is some work describing
the preparation of siRNA-peptide conjugates by stepwise synthesis [175], most of the
protocols are based on postsynthetic conjugation (Figure 5). The first ones described
the use of thiol-maleimide reactions (Figures 4A and 5B) [176] or disulfide formation
(Figure 5C) [177–179]. The following ones define a large variety of novel postsynthetic
reactions, including native ligation (Figure 5D) [180], formation of oxime (Figure 5E),
thiazolidine or hydrazone bonds [181–183], Diels-Alder (Figure 5F) [184,185] and alkyne-
azido click reactions (Figure 5G) [186–188]. All these studies generated a large number of
specialized phosphoramidites and functionalized solid supports to produce the desired
oligonucleotides carrying reactive groups, such as: amino, thiol, carboxylic, alkyne,
alkene, aldehyde and azido (Figure 5). These methodological advances can be found in
recent reviews [103,189–191].
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Figure 5. Postsynthetic reactions for the synthesis of oligonucleotide-peptide conjugates. (A) Us-
ing protected peptide segments for fragment condensation [175], (B) thiol-maleimido and thiol-
bromoacetamido reactions [176], (C) disulfide formation [177–179], (D) synthesis by native lig-
ation [180], (E) oximes or thiozolidine reactions [181–183], (F) conjugation by Diels-Alder reac-
tion [184,185], (G) conjugation reactions catalyzed by copper to produce alkyne-azide cyclo addi-
tions [186–188].

Another type of peptide known as homing peptides were developed by phage display
technology. These peptides were successfully used to deliver antisense oligonucleotides to
cardiac tissue [140] (Table 1), or siRNAs [192] and DNA plasmids [193] to spinal cord or to
microglia. Centyrins are small proteins that can be redesigned to bind numerous antigens
increasing extrahepatic delivery. Centyrins-siRNA conjugates have been shown to improve
tumor delivery and tumor regression [194].

Antisense oligonucleotides can also selectively bind to immature mRNAs to redirect
splicing. The design of antisense oligonucleotides complementary to splice regions has
received much attention due to its ability to create steric blocks to permit the binding
of splicing factors of the immature mRNA. Exon skipping is based on the observation
that excluding out-of-frame exons generates truncated but partially functional proteins
instead of harmful proteins. This is the mechanism of Eteplirsen [3] and other antisense
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oligonucleotides approved for neurological disorders. In this particular strategy, the
modification of ASOs with phosphorodiamidate morpholino oligomers (PMO) is frequently
exploited. The conjugation of peptides to PMOs (Figure 6A) is being intensively studied
for the treatment of various muscular dystrophies, most notably for Duchenne muscular
dystrophy (DMD) (Table 1). For this reason, several peptide libraries have been screened
and various peptide-PMOs are being validated in preclinical studies [165,195,196].
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diamidate morpholino oligomers (PMO) [197] and (B) peptide nucleic acids (PNA) conjugates [198].

Recently, several peptides such as EDO (enhanced delivery oligonucleotide, PepGen),
and SRP-5051 (Sarepta) [197] are being analyzed for the treatment of DMD.

Other types of nucleic acid conjugates being investigated are peptide nucleic acids
(PNA, Figure 6B) linked to peptides, especially CPP conjugates, as promising antibacterial
agents [198]. The assembly of peptides on PNA oligomers is done by stepwise synthesis on
the same support as both PNA and amino acid monomers which have similar protecting
group schemes [198,199]. This topic has special interest as the number of bacteria resistant
to antibiotics is growing dangerously; therefore, nucleic acid derivatives have an important
role for the gene-specific bacterial control.

2.5. Multifunctional Conjugates

Successful developments in the field of lipid- and peptide-oligonucleotide conjugates,
as well as the achievement of the therapeutic use of the triantennary GalNAc siRNA mod-
ification, have sparked the progress of multifunctional oligonucleotide conjugates. The
ligands can be identical, as seen in the triantennary GalNAc, different, such as diverse pep-
tides or lipids, or both in the same oligonucleotide (Figure 7A). The multifunctionalization
can be achieved by the incorporation of several ligands in one oligonucleotide (Figure 7)
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or by hybridization of several monofunctionalized oligonucleotides in simple or complex
DNA nanoassemblies (Figure 8).
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Figure 7. Chemical synthesis of multifunctional peptide and/or lipid oligonucleotide conjugates.
(A) Modified phosphoramidite for the incorporation of two ligands, (B) combination of amino-
protection and click chemistry allowing the addition of two different ligands [200], (C) base-labile
and photolabile protecting groups allow the successive combination of two different ligands [201].
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Figure 8. Schemes of DNA nanostructures carrying multifunctional ligands to improve drug delivery.
(A) G-quadruplex functionalized with ASOs and hydrophobic groups [202,203], (B) G-quadruplex
functionalized with FdUn oligomers [204], (C) DNA tetrahedron with four siRNAs carrying folic
acid [205], (D) DNA tetrahedron and DNA origami functionalized with cholesterol moieties to deliver
floxuridine [206], and (E) DNA cube with oligonucleotides carrying dendritic alkyl chains being able
to modulate the affinity to human serum albumin [207].

One of the first studies showed that the conjugation of three histidine-rich peptides
enhanced the efficacy of antisense oligonucleotides [208]. Peptides which include bombesin
peptide sequences for receptor targeting are covalently linked to a splice switching antisense
oligonucleotide. The multifunctional conjugates were more effective than conjugates con-
taining only one bombesin peptide. A second study demonstrated that the addition of two
peptides in internal positions of an antisense oligonucleotide targeting BRAF V600E onco-
gene increased target recognition and stability to exonuclease degradation [209]. A triden-
tate derivative carrying three cyclic RGD peptides have been developed and incorporated
into siRNAs showing an increase in inhibitory properties [124]. In recent research, novel
reagents that allow the incorporation of multiple peptides by click chemistry have been
developed [200]. In addition, they allow the preparation of heterofunctional conjugates
through a clever use of click chemistry and amino-protection (Figure 7B) [200]. Similarly,
thiol and amino-linkers carrying base-labile and photolabile protective groups were de-
signed in order to add different ligands in the same oligonucleotide (Figure 7C) [201].
Recently, aminooxy click chemistry has been used for the preparation of building blocks to
synthesize oligonucleotides carrying two equal or different ligands [210].

Interestingly, the assembly of monofunctionalized oligonucleotides generates multi-
functional structures. For example, three oligonucleotides designed to form a triplex were
functionalized with a short coiled peptide that interacts between them, thereby stabilizing
the triplex structure [211]. Lipids conjugated to guanine rich oligonucleotides are also of
great interest. AS1411, a nucleolin-binding aptamer capable to fold into multiple mono-
and bimolecular G-quadruplex, has been seen to form nanoaggregates when conjugated
to lipids facilitating the delivery of anticancer or antiviral agents [212,213]. Similarly,
G-quadruplex formation is shown to address the assembly of two peptide strands generat-
ing two-loop structures on top of the G-quadruplex. This approach can be used with homo
and hetero peptide sequences [214]. G-rich oligonucleotides designed to form parallel
G-quadruplex functionalized with hydrophobic groups (Figure 8A) are able to tetramerize,
which results in a multifunctionalized G-quadruplex with affinity to viral proteins [74–76]
and/or cell membranes [202,203].

Moreover, advances in nanotechnology offer solutions to the challenge of therapeutic
oligonucleotides delivery. DNA nanostructures allow the simple generation of molecularly-
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defined multifunctionalized therapeutic drugs, as they are biocompatible and can be
programmed in different sizes (in the range of 20 nm (DNA tetrahedron and DNA cube)
to 120 nm of DNA origami) and shapes [215–217]. DNA nanostructures used as drug
delivery vehicles incorporate nucleic acids drugs and target ligands within the structure
itself. Among them, DNA tetrahedra [218] have been studied to show excellent results in
terms of drug-loading and drug release [219]. For example, DNA tetrahedron has been
functionalized with four siRNAs carrying folic acid [205], which resulted in increased
therapeutic properties (Figure 8C). Similarly, a DNA tetrahedron carrying four units of a
cationic amphipathic peptide was prepared to deliver doxorubicin to mitochondria [220].
DNA tetrahedron and DNA origami (Figure 8D) were also assembled to prepare defined
nanodrugs to deliver floxuridine functionalized with up to eight molecules of cholesterol,
which demonstrates the beneficial properties of cholesterol in terms of enhanced cellular
uptake [206]. In another study, the assembly of a DNA nanocube (Figure 8E) and oligonu-
cleotides carrying dendritic alkyl chains allowed the preparation of nanocubes carrying
defined hydrophobic sites being able to modulate the affinity of the DNA cube to human
serum albumin [207]. The resulting hydrophobic nanocubes have increased serum stability.
In a more complex way, the addition of several units of the iron transporter protein trans-
ferrin into a planar DNA origami [221] resulted in protein-DNA origami complexes with
higher cytoplasmatic uptake, compared to unmodified structures.

2.6. Oligonucleotide Conjugates Currently in Advanced Preclinical or Clinical Trials

Several oligonucleotide conjugates are being analyzed in the initial phases of clinical
studies. Table 2 summarizes some examples that have been mentioned in a recent bibli-
ography. Although the information is fragmented, the activity in this field is intensive.
Most of the pharmaceutical companies working in therapeutic oligonucleotides include
a large investment in the development of targeting molecules to improve their clinical
outcome, and are thrilled by the success of the GalNAc modification. The incorporation
of peptides into phosphorodiamidate morpholino oligomers (PMO) for the treatment of
hereditary neuromuscular diseases such as DMD or Myotonic Dystrophy type 1 (DM1) is
one of the most studied subjects. These conjugates, known as PPMOs (peptide-PMO, [165]),
are exon-skipping antisense oligonucleotides that modulate RNA splicing aiming to skip
the mutated exon that causes the disease. Some unconjugated PMO oligomers have been
approved for DMD human treatment but, in some cases, low activity and poor delivery
to muscle have been described. For these reasons, PPMOs, such as SRP-5051 (Sarepta),
PGN-EDO51 (PepGen) or ENTR-601-44 (Entrada), are being extensively studied for DMD
treatment [197]. DM1 is also a target in these studies, although there is not an oligonu-
cleotide approved for human use [222]. PGN-EDODM1 (Entrada) targets the inhibition of
the dystrophia myotonia protein kinase (DMPK) gene, while ENTR-701-CUG (Entrada)
targets the muscleblind like splicing regulator (MBNL) protein, by binding to the CUG
repeat. Both carry a peptide component, an EDO (enhanced delivery oligonucleotide) or
an EEV (endosomal escape vehicle) peptide [197]. Pip6a-PMI-CAG7 (Oxford University) is
a PPMO that combines a PMO and the cellular penetrating peptide Pip6a (Table 1), which
promotes an occupancy-based mechanism for MBNL protein and prevents the binding of
the toxic CUG repeat [222].

Table 2. Oligonucleotide conjugates in recent advanced preclinical and clinical studies.

Therapeutic
Target/Disease Name Conjugate Sponsor Status

DMD, Exon51 SRP-5051 Peptide-PMO Sarepta therapeutics Phase II
DMD, Exon 51 PGN-EDO51 Peptide EDO-PMO PepGen Phase I
DMD, Exon 53 PGN-EDO53 Peptide EDO-PMO PepGen preclinical
DM1, DMPK PGN-EDODM1 Peptide EDO-PMO PepGen preclinical

DMD, Exon 44 ENTR-601-44 Peptide-PMO Entrada therapeutics precilinal
DMD, Exon 44 ENTR-601-45 Peptide-PMO Entrada therapeutics precilinal
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Table 2. Cont.

Therapeutic
Target/Disease Name Conjugate Sponsor Status

DM1 ENTR-701-CUG Peptide EEV-PMO Entrada therapeutics precilinal
DM1, MBNL1 Pip6a-PMI-CAG7 CPP peptide-PMO Oxford University preclinical

Telomerase GRN163-L, imetelstat Palmitate-ASO Geron Corporation Phase III
Chronic Hepatitis B ARC-520-HBV Two cholesterol-siRNAs Arrowhead pharmaceuticals Phase II

CPP, cell-penetrating peptide; DM1, Myotonic Dystrophy type 1; DMD, Duchenne Muscular Dystrophy; DMPK,
dystrophia myotonia protein kinase; EDO, enhanced delivery oligonucleotide; EEV, endosomal escape vehicle;
MBNL1, muscleblind like splicing regulator 1.

Imetelstat (GRN163L, Geron) is a lipid-oligonucleotide conjugate with palmitic acid at
the 5′-end that is designed to inhibit telomerase activity [223]. Currently, a phase III clinical
trial has finalized with positive results for the treatment of myelofibrosis [224].

ARG520-HBV (Arrowhead) is a 1:1 mixture of two cholesterol-siRNAs against Hepati-
tis B virus (HBV). The cholesterol moiety is used to enhance delivery to hepatocytes. Phase
II clinical trials demonstrate good pharmacokinetic properties in a single-dose study [224].
Recent studies show that ARC-520 is active in HBV patients; but absolute Hepatitis B
antigen reduction is moderate [225].

3. Conclusions

Drugs based on nucleic acids are capturing a large interest in the pharmaceutical field
due to the recent successes on the development of unique and safe drugs for several heredi-
tary and metabolic diseases. However, some challenges remain, the most important being
the development of specific formulations to deliver the oligonucleotide active compound
to the target cells and tissues. Both peptide and lipid-DNA conjugates have been studied to
solve the delivery issue. Since the early 1990s, during the development of the antisense
technology, different strategies to prepare them have appeared.

At the beginning, lipids were thought to act as passive hydrophobic cellular entry
facilitators, but the role of cellular receptors was soon discovered. Recently, it has been de-
scribed that extrahepatic delivery by oligonucleotide-lipid conjugates is possible, especially
for oligonucleotides aimed to act in muscle and the central nervous system.

On the other hand, peptide-oligonucleotide conjugates are difficult to synthesize be-
cause of the incompatibility of the protection schemes; nevertheless, efficient postsynthetic
conjugate chemistries, as well as stepwise approaches, are effective in the production of rel-
atively large amounts that are needed for clinical studies. Several oligonucleotide-peptide
conjugates are being translated to clinical evaluation with increased activity. PMO-peptide
conjugates for Exon-skipping therapies and PNA-peptide conjugates as potential antibiotics
are also intensively considered.

Hetero- or homo-bi/trifunctional conjugates carrying lipid and/or peptides have
been prepared showing interesting properties such as increased affinity and higher potency.
Furthermore, DNA nanostructures are promising compounds for the preparation of defined
multifunctional drugs offering the possibility of preparing molecularly homogeneous
nanostructures carrying several drugs and/or delivery and targeting agents.
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