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21 Abstract

22 Image-based research in mesophotic and deep environments of the Mediterranean Sea 

23 has significantly increased during the past decades. So far, this research has been focused 

24 on the ecology of key structuring organisms such as scleractinians, antipatharians, 

25 gorgonians or large demosponges. However, the ecology of true soft corals has barely 

26 been studied and is still in a very preliminary stage. To overcome this situation, soft coral 

27 assemblages in shelf and slope environments of the Menorca Channel (Western 

28 Mediterranean Sea) have been studied through the quantitative analysis of 85 video 

29 transect recorded over 38500 m2. Highest soft coral diversity was encountered on the 

30 shelf edge, resembling deep Mediterranean gorgonian patterns. Three soft coral 



31 assemblages, segregated by depth, substrate, and slope were identified: two monospecific 

32 ones composed by Nidalia studeri and Alcyonium palmatum, respectively and a 

33 multispecific one composed by Paralcyonium spinulosum, Alcyonium sp., Chironephthya 

34 mediterranea and Daniela koreni. The evaluated species presented average densities 

35 within the same range as other deep Mediterranean anthozoans ranging from 1 to 9 col. 

36 ·m-2. However, N. studeri and P. spinulosum punctually formed dense monospecific 

37 aggregations, reaching maximum densities of 49 col.·m-2 and 60 col.·m-2 respectively. 

38 Both species monopolized vast extensions of the continental shelf and shelf edge. The 

39 identification and ecological characterization of these assemblages brings new insight 

40 about deep Mediterranean anthozoan communities, and provides baseline for future 

41 management plans in the study area. 

42

43 1. Introduction

44

45 Cold water corals (CWC) are extremely diverse including a wide range of anthozoans 

46 such as hydrocorals, scleractinians, antipatharians, gorgonians, or soft corals among 

47 others (Roberts et al., 2009). In deep environments worldwide, CWC are among the main 

48 structural species (e.g. Mortensen and Buhl-Mortensen, 2004; De Clippele et al., 2019), 

49 providing a three-dimensional structure that increases spatial heterogeneity and provides 

50 refuge to a variety of associated species (Buhl-Mortensen and Mortensen, 2005; Roberts 

51 et al., 2009; D'Onghia, 2019). During the past decades, research focused on these 

52 organisms has substantially increased worldwide due to the use of telepresence 

53 technologies, such as remotely operated vehicles (ROVs) or autonomous underwater 

54 vehicles (AUV) (Hall-Spencer et al., 2002; Gori et al., 2013; Baco et al., 2017). In the 

55 Mediterranean Sea, the discovery of several CWC habitats during the 1990's (e.g. Tursi 

56 et al. 2004; Schembri et al., 2007; Etiope et al., 2010) triggered an ongoing image-based 

57 research on the ecology of key structuring organisms. So far, this research has been 

58 focused on, framework-building scleractinians (Orejas et al., 2009; Gori et al., 2013; 

59 Chimienti et al., 2018a; 2019; Corbera et al., 2019), gorgonians (Bo et al., 2012; Grinyó 

60 et al., 2016), bamboo-corals (Mastrototaro et al., 2017; Bo et al., 2020), antipatharians 

61 (Bo et al., 2009, 2014, 2015; Deidun et al., 2014; Massi et al., 2018) and demosponges 

62 (Bertolino et al., 2015; Santín et al., 2018; 2019). Contrastingly, true soft corals, 

63 understood as a subgroup of alcyonaceans characterized by fleshy soft-bodied colonies 



64 without a supporting skeletal axis and with a non-encrusting morphology (Octocorallia: 

65 Alcyonacea: Alcyoniina; Lumsden et al., 2009), have remained understudied. Research 

66 regarding this group in deep areas of the Mediterranean Sea has mostly been focused on 

67 taxonomic aspects (López-González et al., 2012; 2015). In this regard, approximately 

68 eight soft corals species have been identified in deep environments of the Mediterranean 

69 Sea (Aguilar et al., 2017), some of them being recently described to science such 

70 as Chironephthya mediterranea (López-González et al., 2015) or rediscovered such 

71 as Nidalia studeri (Koch, 1891) (see López-González et al., 2012) or Daniela koreni von 

72 Koch, 1891 (López-González, unpublished data). Additionally, other cryptic species 

73 within the genus Alcyonium are still being discussed and yet to be resolved throughout 

74 molecular analyses and morphological descriptions (López-González, unpublished data).

75 During the past decades Mediterranean continental shelves and slopes have been 

76 chronically impacted by bottom trawling, longline fishing and to a lesser extent artisanal 

77 fishing which is generally constrained to littoral and inner shelf environments (Smith et 

78 al., 2000; Maynou and Cartes, 2012; Mytilineou et al., 2014; Purroy et al., 2014; Bo et 

79 al., 2015; Enrichetti et al., 2019a). These fishing practices cause direct impacts on 

80 vulnerable marine ecosystems (VME) by removing, damaging or entangling habitat-

81 forming species (Maynou and Cartes, 2012; Mytilineou et al., 2014; Enrichetti et al., 

82 2019a). Due to their erected branching morphology, soft structure, low growth rates and 

83 high longevities, soft corals are extremely susceptible to these physical disturbances 

84 (Cordes et al., 2001); and can represent a large proportion of fishing bycatch in 

85 Mediterranean fisheries (Voultsiadou et al, 2011; Petović et al., 2016). In order to 

86 preserve areas that are still relatively well structured, the European Union has engaged in 

87 the establishment of special areas of conservation (SAC) for the Natura 2000 network. 

88 The Menorca Channel, hosts important benthic habitats and communities worthy of 

89 protecting, according to the EU Habitat Directive (Grinyó et al., 2018). Consequently, 

90 this area has recently been declared a site of community interest (SCI) within the Nature 

91 2000 network and is currently awaiting the development and application of a spatial 

92 management plan. For this reason, an exhaustive image-based exploration of mesophotic 

93 and deep benthic environments of the Menorca Channel was recently made, revealing the 

94 presence of well-preserved VME that occur over wide extents of the continental shelf and 

95 slope (Grinyó et al., 2016; 2018; Santín et al., 2018; 2019). In some of these assemblages, 

96 soft corals reached high abundances, representing the main habitat forming species 



97 (Grinyó et al., 2018). However, these studies have only proportioned a brief glimpse of 

98 this group’s ecology and large knowledge gaps still remain. 

99 In this context, we hypothesize that a) the Channel hosts different soft coral assemblages 

100 that b) respond to different environmental parameters, and that c) soft coral diversity is 

101 unevenly distributed within the explored geographic and bathymetric range. To answer 

102 these hypotheses this study has characterized the diversity and abundance of soft coral in 

103 mesophotic and deep habitats over a large bathymetrical extent (~40 – 360 m depth); 

104 assessing their vertical and geographic distribution patterns; and gain insight into some 

105 of the environmental drivers influencing their occurrence.

106

107 2. Material and Methods

108 2.1 Study Area

109 The Menorca Channel is located in the Western Mediterranean Sea (39° 53’ 0.73” N, 3° 

110 29’ 51.16” E) between the islands of Mallorca and Menorca (Fig. 1). The Channel’s shelf 

111 (40 – 100 m depth) extends between both islands covering an approximate area of 2000 

112 km2 and is widely covered by maërl beds and soft sediments, with hard substrates 

113 restrained to scattered coralligenous outcrops (Druet et al., 2017). The shelf edge (100 –

114 180 m depth) and continental slope (180 – 340 m depth) are characterized by smooth 

115 reliefs covered by large extensions of detritic sediments, while hard substrates where 

116 mostly constrained to the proximities of Cap Formentor and in the Menorca Canyon head 

117 (Fig. 1A and 1B) where vertical rocky walls are the dominant substrates (Grinyó et al., 

118 2016). Hydrologically, the Menorca Channel is located in a boundary zone between the 

119 Balearic and the Algerian sub-basins. The northern shelf edge and continental slope is 

120 influenced by the Balearic Current (Balbín et al., 2012) and its associated front (Ruiz et 

121 al., 2009), that flow northward over the continental slope of the Balearic archipelago at 

122 approximately 200 m depth (Ruiz et al., 2009). Except for the Menorca Canyon, where 

123 daily tidal currents occur (Grinyó et al., 2017), there are no constant currents influencing 

124 the southern slope of the Channel. This area is influenced by the sporadic arrival of 

125 mesoscale structures coming from the Algerian Current and the Almeria-Oran front 

126 (García et al., 2005).

127



128

129 Figure 1. Location of the video transects in the study area. (A) Enlargement showing video tracks in Cap 

130 Formentor; (B) Enlargement showing video tracks in the Menorca Canyon's head. The shaded surface 

131 represents the area that covers the Menorca Channel SCI. The location of the survey area in the 

132 Mediterranean Sea is shown in the upper right corner. 

133

134 2.2 Video recording

135 A total of 85 video transects were recorded during seven different surveys in the frame of 

136 the LIFE+ INDEMARES, ENPI-ECOSAFIMED and LIROBAL projects on board of the 

137 R/V “García del Cid” (September 2010, April 2011, October 2011, June 2012), the R/V 

138 “Miguel Oliver” (August 2011), the R/V SOCIB (July 2014) and the R/V Ángeles 

139 Alvariño (May 2015). From these surveys, 20 video transects were recorded with the 

140 manned submersible JAGO (IFM-GEOMAR), 65 video transects were recorded with the 

141 ROV “NEMO” (Gavin Newman) and one video transect was recorded with the ROV 

142 “LIROPUS” (Instituto Español de Oceanografia). Video transects covered an area of 

143 38500 m2 recorded over linear distance of 77.5 km and a width of 0.5 m. The JAGO and 

144 both ROVs were equipped with a high definition camera, a grabber and two parallel laser 

145 beams (50 cm for the Jago and 10 cm for the NEMO and LIROPUS ROVs) that provided 

146 a scale used to define a fixed width of the transects during the following video analysis. 

147 Transects were recorded in a close-zoom (~0.5 – 1.5 m width of view) and in a digital 



148 format. Positioning of JAGO, NEMO and LIROPUS was achieved with underwater 

149 acoustic positioning systems. All instruments moved at an approximate constant speed of 

150 0.3 knots and transect lengths ranged between 80 and 3000 m, over depths ranging from 

151 45 to 347 m. Transects were randomly located in order to cover the whole study area, 

152 however areas that presented morphological features associated to the presence of rocky 

153 bottoms were explored more intensively (Fig. 1).

154

155 2.3 Video analysis

156 Quantitative video analysis followed the methodology described in Gori et al. (2011), 

157 using the software Final Cut Pro 7 (Apple Inc.). Pauses and loops were removed from the 

158 footage to avoid overestimation of transect length. Sequences with poor image quality or 

159 recorded too far above the seafloor were discarded from the analysis. After removal of 

160 unsuitable sequences, the remaining 93% was considered suitable corresponding to a 

161 surface of 36000 m2 and a linear distance of 72 km. Every soft coral colony observed 

162 within a width of 0.5 m (based on the laser beams) along each video transect was branded 

163 with a time reference, resulting from the time elapsed since the beginning of the video 

164 transect to the crossing of the laser beams with the base of the colony (Gori et al., 2011). 

165 A similar procedure was used to characterize substrate type, depth and slope along each 

166 transect (Grinyó et al., 2016). Seabed substrate types were classified based on an 

167 adaptation of the Wentworth scale (Wentworth, 1922) made by Santín et al., (2018): sands, 

168 cobbles and pebbles, maërl, and outcropping rock. Seabed slope was classified as 

169 horizontal (0 – 30°), sloping (30 – 80°) or vertical (80 – 90°) following the methodology 

170 described in Ambroso et al. (2013). Depth was documented as the time reference of any 

171 0.1 m depth variation. Time references were transformed into distances (d) from the 

172 beginning of the video transect according to the vehicles speed (d = t· v, where t is the 

173 time reference expressed in seconds, and v is the velocity expressed in meters per second).

174

175 2.4 Species identification

176 Identification of soft coral species was based on the existing taxonomic works on Atlanto- 

177 Mediterranean soft corals. In order to validate the taxonomic identity voucher colonies of 

178 the six soft coral species considered in this study were sampled with the ROVs and 

179 manned submersible grab. Sampled colonies were fixed in ethanol 70% or 10% buffered 

180 formalin in sea water for morphologic analyses. The encrusting epibiotic species 



181 Alcyonium coralloides (Pallas, 1766), although present in the study area, was not 

182 considered since its occurrence is conditioned by the arborescent anthozoans it colonizes 

183 (McFadden, 1999).   

184

185 2.5 Data treatment

186 2.5.1 Soft coral occupancy

187 To quantify soft coral occupancy (frequency of occurrence in the set of sampling units), 

188 abundance (number of colonies per sampling unit) and examine species composition of 

189 soft coral assemblages, each transect track was divided into equal size fragments, referred 

190 to as sampling units of 2 m2 (0.5 m width and 4 m long) following Gori et al., (2011) 

191 methodological approach. This sampling unit dimension was chosen as representative of 

192 Mediterranean octocorals on rocky substrate (based on Weinberg, 1978), as well as to 

193 allow a comparison with previous studies (e.g. Ambroso et al., 2013; Grinyó et al., 2016). 

194 A total of 13076 sampling units were derived from the division of the 85 video transects. 

195 Sampling units were characterized by the number of colonies of each species (density = 

196 number of colonies per m2), as well as by its depth and coverage percentage for each 

197 substrate and slope (Grinyó et al., 2018). Following the methodology described in Gori 

198 et al. (2011), Ambroso et al., (2013), Grinyó et al. (2016; 2018), Corbera et al. (2019) and 

199 Santín et al., (2018; 2019), average densities have been calculated in the subset of 

200 occupied sampling units. The reader should be aware that this approach has been selected 

201 for the following reason: within a transect, the environmental conditions (e.g., substrate, 

202 slope, bathymetric range) can be widely variable. Therefore, if all sampling units within 

203 a transect were used to calculate average densities, we would likely be considering 

204 sampling units that, due to their environmental conditions, are not suitable for this species 

205 occurrence, leading to a density underestimation (e.g. Alcyonium palmatum strictly 

206 occurs on soft sediments, considering sampling units on hard substrates would 

207 underestimate its density). This method guarantees that density is calculated only where 

208 species are present and to the authors understanding it provides meaningful ecological 

209 information. 

210

211 2.5.2 Geographical and vertical distribution



212 The geographical distribution of sampling units holding soft coral colonies, in the study 

213 area were registered on a geographically referenced map using GIS (ESRI ArcGIS ArcInfo 

214 v10). Vertical distribution of each species was studied grouping sampling units in 20 m 

215 depth intervals (based on their depth), and estimating the median (first and third quartile, 

216 and the range between minimum and maximum values) of soft coral density in each depth 

217 interval.

218

219 2.5.2 Assemblage composition and relationships with environmental parameters

220 Soft coral assemblages were evaluated based on species composition using a non-metric 

221 multidimensional scaling ordination (nMDS), soft coral colony abundance data were 

222 square root transformed and distances between pairs of samples were calculated using 

223 Bray-Curtis dissimilarity index using the metaMDS function of the R vegan package 

224 (Oksanen et al., 2016).

225 Adonis permutational multivariate analysis of variance were used to test for significance 

226 of differences between groups. Adonis was calculated with the adonis function of the R 

227 vegan packages (Oksanen et al., 2016).

228 Relationships between soft coral abundances and depth, substrate type and slope were 

229 explored by means of canonical correspondence analysis (CCA). This is a constrained 

230 multivariate ordination technique for identifying possible relationships between species 

231 composition (response variables) and their habitat (explanatory variables) (Greenacre and 

232 Primicerio, 2013). Oceanographic variables were not considered as there is no near 

233 bottom, long-term, large-scale data set covering the study area. No transformation was 

234 applied to either environmental or biological data. The CCA was performed with the 

235 function cca of the R vegan package (Oksanen et al., 2016).

236

237 3. Results

238 3.1 Soft corals occupancy and abundance 

239 A total of 9237 colonies of six soft coral species were observed on the study area (Fig. 2 

240 and Table 1), occurring in 9.5% of the 13076 sampling units. Overall, Paralcyonium 

241 spinulosum (Delle Chiaje, 1822), Alcyonium sp. and Nidalia studeri (von Koch, 1891) 

242 (Fig. 2a, 2b and 2c) were the most abundant species, respectively representing 55%, 

243 29.4% and 11.5% of all observed colonies. Chironephthya mediterranea López-

244 González, Grinyó & Gili, 2014, Daniela koreni von Koch, 1891 and Alcyonium palmatum 



245 Pallas, 1766 (Fig. 2d, 2e and 2f) respectively accounted for 2.1%, 1.8% and 0.2% of 

246 observed colonies.  

247 In terms of frequency of occurrence, Alcyonium sp., and P. spinulosum were the most 

248 frequent species occurring on 6.1% and 3% of all sampling units. C. mediterranea and D. 

249 koreni occurred on 0.7% and 0.6% of all sampling units, correspondingly. Finally, N. 

250 studeri and A. palmatum occurred in less than 0.5% of all observed sampling units. 

251

a) b)

d) e) f)e)

c)

252

253 Figure 2. Studied species images. (a) Paralcyonium spinulosum, (b) Alcyonium sp., (c) Nidalia studeri, (d) 

254 Chironephthya mediterranea, (e) Daniela koreni, (f) Alcyonium palmatum. Scale Bar: 10 cm.

255

256 3.2 Geographic and vertical distribution

257 Four species were observed on continental shelf (40 – 100 m depth), which were A. 

258 palmatum, Alcyonium sp., Daniela koreni and P. spinulosum. Here, the two most abundant 

259 species were P. spinulosum and Alcyonium sp., which, respectively represented 67.9% and 

260 32% of the colonies (Table 1). For both species, the highest abundance was observed on 

261 the outer continental shelf between 80 – 100 m depth, and shared a similar geographic 

262 distribution (Figs. 3 and 4). Paralcyonium spinulosum was mainly restricted to the 

263 continental shelf at approximately 80 m depth, where it punctually formed highly dense 

264 monospecific facies, reaching densities of 60 colonies m-2 (Table 1, Figs. 3 and 4, 

265 Supplementary material 1). Alcyonium sp. was scattered over wide areas of the continental 

266 shelf, where it reached its highest densities (18.5 colonies m-2) (Table 1, Figs. 3 and 4). 

267



268 Table 1. Soft coral occupancy and abundance in the study area. Occupancy (frequency of occurrence in the 

269 set of sampling units), abundance (number of colonies) and mean and maximum density of each species is 

270 given per each bathymetric range. Mean densities have been calculated considering occupied sampling 

271 units only. 

Sampling units Species Occupancy Abundance Mean density ± SD 

(col.·m-2)

Max density 

(col.· m-2)

Num. With 
colonies

(%) Num (%) Num (%)

4362 860 (19.7) Paralcyonium 

spinulosum

366 (42.6) 5033 (67.9) 6.9 ± 10.5 60

Alcyonium sp. 624 (72.6) 2367 (32.0) 1.9 ± 2.3 18.5

Continental 

shelf

(40 – 100 m)
Daniela koreni 5 (0.6) 5 (0.1) 0.5 ± 0.0 0.5

Alcyonium 

palmatum

3 (0.3) 3 (0.0) 0.5 ± 0.0 0.5

5227 359 (6.87)

Paralcyonium 

spinulosum

22 (6.1) 48 (2.7) 1.1 ± 0.9 3.5Shelf edge (100  

–180 m)

Alcyonium sp. 174 (48.5) 347 (19.2) 1.0 ± 0.9 5.5

Nidalia studeri 54 (15.0) 1057 (58.6) 9.8 ± 10 49

Chironephthya 

mediterranea

76 (21.2) 179 (9.9) 1.2 ± 1.2 7

Daniela koreni 71 (19.8) 156 (8.6) 1.1 ± 1.2 7

Alcyonium 

palmatum 18 (5.0) 18 (1.0) 0.5 ± 0.0 0.5

Upper slope Nidalia studeri 2 (11.8) 3 (12.5) 0.8 ± 0.4 1

(180 – 360 m) 3487 17 Chironephthya

 mediterranea 13 (76.5) 18 (75) 0.7 ± 0.3 1

Daniela koreni 3 (17.6) 3 (12.5) 0.5 ± 0.0 0.5



272

273 Figure 3. Vertical distribution. In order of decreasing abundance: Paralcyonium spinulosum, Alcyonium sp., 

274 Nidalia studeri, Chironephthya mediterranea, Daniela koreni, Alcyonium palmatum distribution is 

275 represented along the studied bathymetric range based on sampling unit density. Black square indicates the 

276 median value; the box indicates the first and third quartiles; and the line indicates the range between 

277 minimum and maximum values. Gray-scale histograms represent the total number of sampling units for 

278 each substrate type (see legend) over the studied bathymetric range. The numbers on the right indicate the 

279 percentage of sampling units with species presence (n = number of colonies).  Black dots represent lower 

280 out layers, red dots represent upper out layers.

281 Daniela koreni occurred throughout the outer continental shelf (80 – 100 m depth) to the 

282 upper continental slope, at the northernmost part of the studied area, near Cap Formentor 



283 (Fig. 4). However, most colonies were observed between 96 – 180 m depth, where it 

284 reached its highest densities in the shelf edge between 100 – 120 m depth (Fig. 3). 

285 Chironephthya mediterranea occurred from the shelf edge to the upper continental slope, 

286 concentrating in two locations, the Cap Formentor and the Menorca Canyon (Fig. 4). 

287 Highest densities were located on shallower environments of the shelf edge, between 100 

288 and 120 m depth, where this species reached densities of 7 colonies m-2 (Fig. 3 and Table 

289 1). On the continental slope, C. mediterranea was the most frequent and abundant species 

290 with few isolated colonies below 210 m depth (Fig. 3). Alcyonium palmatum was the 

291 species with the narrowest bathymetric distribution occurring at low densities at the 

292 northern side of the study area’s outer continental shelf (3 colonies at 99 m depth) (Table 

293 1) and shelf edge between 100 – 140 m depth with the highest abundances (Figs. 3, 4 and 

294 Table 1).

295

296 Figure 4. Geographical distribution of soft coral species, represented in order of decreasing abundance. 

297 Distribution is represented on the study area based on sampling unit density.

298

299 3.2 Assemblage composition and relationships with environmental parameters

300 Three soft coral assemblages were differentiated in the nMDS analyses (Fig. 5). Two 

301 monospecific assemblages composed by N. studeri (Supplementary material 2) and A. 



302 palmatum; and one multispecific characterized by P. spinulosum, Alcyonium sp., C. 

303 mediterranea and Daniela koreni (Supplementary material 3), which respectively 

304 represented 62.3%, 33.3%, 2.4% and 2% of the colonies in this assemblage (Fig. 5, 

305 Supplementary materials 1, 2 and 3). Adonis test revealed that all assemblages were 

306 significantly different from one another (p < 0.001). 

307  
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309 Figure 5. Non-metric multidimensional scaling (nMDS) ordination plot. Sampling units (n=1236) 

310 containing soft corals are represented considering a) depth, b) slope and c) substrate types. A stress estimate 

311 of 0.0024 was obtained. Alcy_sp = Alcyonium sp., Alcy_palm = Alcyonium palmatum, Chiro_medi = 

312 Chironephthya mediterranea, Dani_kor = Daniela koreni, Nida_stud = Nidalia studeri, Para_spin = 

313 Paralcyonium spinulosum

314

315 Environmental factors explained 29.2% of the total inertia (explained variation) in the 

316 CCA. According to the ANOVA permutation test, the three environmental factors 

317 significantly contributed (p < 0.001) to the ordination (Fig. 6a). The first two axis of CCA 

318 accumulated 25.7% of the species variance and 87.8% of the species-environmental 

319 relation variance. 

320 Both monospecific assemblages mostly occurred on shelf edge environments, however 

321 while the N. studeri assemblage was found on sloping rocky grounds, the A. palmatum 

322 assemblage occurred on horizontal sandy bottoms (Figs. 5 and 6). The multispecific 

323 assemblages were found on horizontal maërl beds and rocky outcrops along the 

324 continental shelf and shelf edge (Figs. 5 and 6). 



325

0

10

20

30

40

50

60

70

80

90

100

Multispecific

assemblage

N. studeri

assemblage
A. palmatum

assemblage

Sand Pebbles & Cobbles Maërl

Vertic

a

l Sloping Horizontal

0

10

20

30

40

50

60

70

80

90

100

Multispecific

assemblage

N. studeri

assemblage
A. palmatum

assemblage

a)

c)

%

%

-5 0 5 10

-1
0

-5
0

CCA1

C
C

A
2

Alcy_palm

Alcy_sp

Chiro_medi
Dani_kor

Nida_stud

Para_spin

-1
0

Dep

OR

PC

S

M

Ver

Slo

Hor

b)

Outcroping Rock

326 Figure 6. Soft coral assemblage relationship with environmental factors. a) Canonical correspondence 

327 analysis (CCA): biplot showing the ordination of soft coral species and the roles of the significant 

328 environmental variables. M: Maërl, S: Sand, CSP: cobbles and pebbles, OR: Outcropping rock, Slo: 

329 Sloping, Hor: Horizontal, Ver: Vertical, Dep: Depth. Alcy_sp = Alcyonium sp., Alcy_palm = Alcyonium 

330 palmatum, Chiro_medi = Chironephthya mediterranea, Dani_kor = Daniela koreni, Nida_stud = Nidalia 

331 studeri, Para_spin = Paralcyonium spinulosum. Column charts representing each assemblage sampling unit 

332 percentage occupied by a certain b) substrate or c) slope. 

333

334 4. Discussion

335 4.1 Soft coral diversity and abundance: 

336 Soft coral diversity values are higher than those reported in shallow and other mesophotic 

337 and deep Mediterranean environments where less than three species are generally present 

338 (Ambroso et al., 2013; Topçu and Öztürk, 2015; Casas-Güell, 2016; Bo et al., 2011; 

339 Pierdomenico et al., 2016, Cau et al., 2017a, Corbera et al., 2019; Enrichetti et al., 2019b). 

340 In this sense, the Menorca Channel is one of the richest areas in terms of soft coral 

341 diversity, known so far, in the Mediterranean Sea.  Along the explored bathymetric range 

342 highest soft coral diversity was found on the shelf edge, where all species were present 

343 (Figs. 3, 4 and 5). These high diversity values in shelf-edge environments could derive 

344 from the merging of species with shallow and deep distributions, resulting in a mid-

345 domain effect (Colwell and Lees, 2000), resembling diversity trends observed on 

346 octocoral assemblages on other areas of the world (Matsumoto et al., 2007). In this regard, 

347 gorgonian diversity in the study area also presented its highest diversity values on the 

348 shelf edge (Grinyó et al., 2016). Conversely, highest sponge diversity was found on the 



349 outer continental shelf (Santín et al., 2018; 2019). The fact that anthozoan and porifera 

350 diversity patterns differ from one another could indicate that different environmental 

351 factors drive passive and active suspension feeder distribution in the Channel.

352 Total abundances in the study area were remarkable; a total of 9360 colonies were 

353 recorded over 72 km clearly exceeding total abundances in more extensively explored 

354 environments such as Newfoundland canyons where 8757 soft coral colonies were 

355 recorded over 105.3 km (Baker et al. 2012). Compared to other Mediterranean anthozoans 

356 average soft corals densities were within the same range as several gorgonians found in 

357 the Mediterranean continental shelf and slope (Grinyó et al., 2016), but exceeded those 

358 reported for other deep Mediterranean anthozoans such as the bamboo coral Isidella 

359 elongata (Esper, 1788) (Bo et al., 2015; Pierdomenico et al., 2018; Ingrassia et al., 2019), 

360 pennatulaceans (Grinyó et al., 2018; Chimienti et al., 2018b; Pierdomenico et al., 2018), 

361 antipatharians (Bo et al., 2009; 2014; 2015; Cau et al., 2015; Corbera et al., 2019), and 

362 solitary and framework-building scleractinians (Orejas et al., 2009; Corbera et al., 2019). 

363 Soft corals tent to present smaller colony dimensions, than the previously mentioned 

364 CWCs, which could allow them to form more densely packed aggregations (McFadden, 

365 1986). This would agree with the fact that highest Mediterranean CWC densities have 

366 been reported among small sized species (< 20 cm) that form dense monospecific 

367 aggregations, such as the hydrocoral Errina aspera (Linnaeus, 1767), that can reach 

368 densities of 445 col·m-2 (Salvati et al., 2010). In this regard, in the study area N. studeri 

369 and P. spinulosum punctually formed dense monospecific aggregations reaching densities 

370 of 49 and 60 col·m-2, respectively (Table 1; Supplementary material 1 and 2). These 

371 monospecific aggregations extended over several hundreds of meters where both species 

372 monopolized substrate representing >90% of all observed sessile megabenthic species. In 

373 this sense, Enrichetti et al., (2019b) have recently described P. spinulosum fields in the 

374 Ligurian Sea where this species reached densities of 76.6 col.· m-2. Similarly, on the North 

375 Atlantic and North Pacific, soft corals have also been reported to form dense beds 

376 monopolizing space (Bulh-Mortensen et al., 2015; Yoklavich et al., 2018). These densely 

377 packed monospecific aggregations have been suggested to derive from both vegetative 

378 mechanisms, such as fission and migration (Benayahu and Loya, 1986; McFadden, 1986), 

379 and certain reproductive strategies, such high fertility rates and large lecithotrophic larvae 

380 (Yoklavich et al., 2018), which may increase colonization success. However, this topic 



381 requires further investigation as most biological aspects of the species evaluated in this 

382 study remain unknown. 

383

384 4.2 Soft coral assemblages:

385 Assemblage composition analysis revealed three soft coral assemblages, which were 

386 mostly segregated by depth and substrate and to a lesser extent slope (Figs. 5 and 6). The 

387 multispecific soft coral assemblage occurred along the continental shelf and shelf edge 

388 (Figs. 3, 4 and 5) on rocky outcrops (17% of occupied sampling units), but mostly on 

389 maërl beds (70% of occupied sampling units) (Fig. 6). Overall soft coral density was 

390 significantly higher (Adonis, p < 0.001, Pseudo-F= 16.22) on maërl beds (11.2 ± 15.2 

391 col.·m-2 (mean ± SD)) than on rocky substrates (5.2 ± 5.4 col.·m-2 (mean ± SD)). This 

392 would indicate that deep maërl beds are a particularly suitable habitat for deep 

393 Mediterranean soft corals species, resembling multispecific soft coral assemblages on 

394 mesophotic rhodolite beds in subtropical and tropical environments (Richards et al., 2013; 

395 Linklater et al., 2019). Contrastingly, previous studies have suggested that the presence 

396 of arborescent anthozoans, on maërl beds may be limited by substrate instability, which 

397 under intense currents may derive in colony toppling (Kahng et al. 2010). However, 

398 unlike most arborescent anthozoans, soft-corals have the capacity to contract their 

399 colonies. In this sense, it has been observed that under strong water flows soft corals tend 

400 to contract their colonies, substantially reducing their dimensions and resistance to water 

401 flow (Fabricius et al., 1995), which may allow them to thrive in this unstable substrate. 

402 The densely packed N. studeri assemblage was also found on hard substrates of the shelf 

403 edge. Unlike the multispecific assemblage that was restricted to horizontal grounds, the 

404 N. studeri assemblage was generally restricted to sloping grounds (72% of occupied 

405 sampling units) (Figs. 5 and 6). Ecological information about this species is quite scarce, 

406 however in recent years sightings of this rediscovered species have increased all over the 

407 western Mediterranean expanding their geographic extent and bathymetric distribution, 

408 which has now been extended to 600 m depth (Oliveri et al., 2016; Aguilar et al., 2017; 

409 Álvarez et al., 2019). In most cases, N. studeri has been observed to occur on hard 

410 substrates as isolated colonies or forming small aggregations over a wide bathymetric 

411 range (Álvarez et al., 2019). However, on the Gulf of Naples this species was described 

412 to dominate certain areas of the continental slope below 300 m depth (Oliveri et al., 2016) 

413 resembling N. studeri aggregations in the study area. 



414 The A. palmatum assemblage was restricted to soft sediment grounds on the outer 

415 continental shelf and the shelf edge where this species sparsely occurred (Figs. 4, 5 and 

416 6). In the study area, A. palmatum presented similar density values as in areas of the inner 

417 continental shelf of the North Western Mediterranean (Ambroso et al., 2013), however 

418 its distribution was narrower than in other areas of the northwestern Mediterranean where 

419 this species has been reported between 40–120 m depth (Gili et al., 2011). In the study 

420 area fine soft sediments were mainly found between 100 to 140 m depth on the northern 

421 site of the Channel. In other areas of the Mediterranean, A. palmatum’s occurrence has 

422 been associated to fine sediments (Galil and Lewinsohn, 1981; Sardá et al., 2012; 

423 Ambroso et al., 2013). Currently, very few studies have considered granulometry among 

424 the environmental factors that might explain anthozoan distribution in soft sediment 

425 environments (Orejas et al., 2019). Future studies should address if A. palmatum’s 

426 distribution is related to a certain grain size.

427

428 4.3 Conservation remarks:

429 Due to their three-dimensional, branched morphology and soft colonial consistence, soft 

430 corals are particularly vulnerable to fishing activities (Mytilineou et al., 2014; Bo et al., 

431 2015). In several areas of the Mediterranean various soft corals (genus Alcyonium sp., 

432 especially Alcyonium palmatum) have been commonly observed associated to lost fishing 

433 gears on Mediterranean continental shelf (Voultsiadou et al., 2011; Angiolillo et al., 2015) 

434 or as main components of fishing bycatch (Dimitriadis et al., 2016). Among the different 

435 fishing practices bottom trawling is the most harmful for anthozoan assemblages (Althaus 

436 et al., 2009). In the Menorca Channel, trawling has mostly been restricted to areas above 

437 75 m and below 500 m depth (Grinyó et al., 2018). It is likely that the high soft coral 

438 diversity observed in the study area and the massive aggregations of P. spinulosum and 

439 N. studeri, may respond to low trawling pressure within the explored depth range. Derelict 

440 long-lines, trammel and gill nets have also been reported to cause impacts on anthozoan 

441 assemblage (Cau et al., 2017b; Calgani et al., 2018; Enrichetti et al., 2019a). Although, 

442 no soft coral colony was observed to be damaged by derelict fishing gears, future studies 

443 should address the potential negative effects that fishing practices may cause in the 

444 studied soft coral assemblages in order to develop and implement management plans that 

445 ensure their preservation. 

446
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758 9237 soft coral colonies belonging to six soft coral species were identified. 
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760 3 soft coral assemblages were identified in shelf and shelf edge environments. 
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762 N. studeri and P. spinulosum monopolized substrates over vast extensions. 
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