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Abstract 

 
Haplosyllis spongicola is probably the most representative symbiotic syllid harboured by sponges and has been 

widely reported from tropical, subtropical and temperate seas. Its external morphology seems to be very well 

adapted for its life-style, with all chaetae being simple and having two small teeth and a large main fang. 

However, the species has been the subject of a long-lasting taxonomic controversy, which gave rise to more than 

15 synonymies, with hundreds of records worldwide. The present paper is based on the study of more than 28 

populations obtained from around the world. These populations have been carefully analysed using different 

approaches (morphometry, morphology and biology). As a consequence, the existence of a pseudo-sibling 

species-complex within the so-called cosmopolitan H. spongicola has been revealed. The most relevant 

characters (as well as their variability) that will allow a future identification of the species involved in the 

complex are fully described, illustrated and analysed. 
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Introduction 

 

There is growing evidence that many marine species with large distribution ranges (the 

so-called cosmopolitan species) are more subdivided than originally thought (Hilbish, 1996). 

Two main complementary research directions may address this question. The re-interpretation 

of the target species is based on accurate morphological studies and the separation of 

morphologically indistinguishable species using complementary approaches, such as life-

history or genetics. Although generic, these statements directly concern the systematics of the 

polychaetous annelids.  

The polychaetes substantially contribute to the biodiversity of benthic communities. 

There are more than 80 currently recognized families (Fauchald & Rouse, 1997), which 

include more than 10,000 species (many of them being considered to have a cosmopolitan 

distribution). The lack of consistent morphological information, however, is still a major 

source of uncertainty in current polychaete classifications (Fauchald & Rouse, 1997). Recent 

accurate morphological studies repeatedly showed that species formerly considered as 

cosmopolitan should be divided into several valid species. These cryptic species, which are 

known as “pseudo-sibling species-complexes” (Mayr & Ashlock, 1991), include taxa that 

may be readily distinguished morphologically once the appropriate characters are recognised. 

A striking example was reported by Pettibone (1993), who divided the ‘cosmopolitan’ 

scaleworm Harmothoe lunulata into 21 species belonging to 3 different genera 

(Malmgreniella, Paragattiana, and Wilsoniella). 

On the other hand, the cryptic species that are impossible to distinguish based on the 

morphological characters of adult specimens are known as “sibling species-complexes” (Mayr 

& Ashlock, 1991). They result from divergence in some features (habitat, life-history, 

genetics) without divergence in morphology. Although sibling species appear to be common 

among marine invertebrates, a comprehensive review of sibling species in the sea had not 

been undertaken until Knowlton (1993) reported about 90 different examples, 19 of them 

being polychaetes. Although the broad habitat and geographic distribution information 

characterizing many polychaetes still requires re-evaluation in this context, several attempts 

have been made (but see also Knowlton, 1993, and references therein) using life-history traits 

(Smith, 1958; Grassle & Grassle, 1976; Wilson, 1984; Fong & Garthwaite, 1994; Bastrop et 

al., 1995), karyotypes (Grassle et al., 1987; Robotti et al., 1991), protein electrophoresis 

(Robotti, 1978; Abbiati & Maltagliata, 1996), and genetics (Cadman & Nelson-Smith, 1990; 
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Wu et al., 1991; Lenaers & Bhaud, 1992; Manchenko & Radashevsky, 1993, 1994; Röhner et 

al., 1997; Jollivet et al., 1998; Pernet, 1999). 

The present study addresses the need to clarify the status of Haplosyllis spongicola 

(Grube, 1855). This species is probably the most representative symbiotic syllid harboured by 

sponges (Martin & Britayev, 1998). Its external morphology is relatively simple, with all 

chaetae being simple and having two small teeth on its large main fang and seems to be very 

well adapted to its life style. However, H. spongicola has been the subject of a long-lasting 

taxonomic controversy, which has given rise to more than 15 synonymies, together with 

hundreds of reports from tropical, subtropical and temperate seas (Licher, 2000). 

In this paper, several H. spongicola populations from around the world have been 

carefully studied using different approaches (morphology, morphometry and biology) to 

assess whether H. spongicola is a real cosmopolitan species or a complex of pseudo-sibling or 

sibling species. The most relevant characters allowing a future identification of the species 

involved in the complex have been fully described, illustrated and analysed, as well as their 

inter-population variability. 

 

 

Materials and methods 
 

As mentioned above, Licher (2000) recently summarized about 15 synonymies of 

Haplosyllis spongicola (Table 1), with a commonly accepted cosmopolitan distribution being 

one of the most surprising features of the complex (Fig. 1). Based on 28 different populations 

collected all around the world (Table 2), the present study describes the existing character 

variability within the complex. It should be pointed out, however, that it has not been possible 

to study all populations using all the different approaches, because of the differences in 

availablility of specimens, their state of preservation and the stage of their life-cycle when 

collected. 

For light microscope observations (LM), the specimens were placed on slides in a 

solution of glycerine and distilled water. LM micrographs were made with a ZEISS Axioplan 

stereomicroscope equipped with the SPOT hardware and software (SP100 KAF1400 digital 

camera, software version 2.1.) from DIAGNOSTIC INSTRUMENTS INC. 

For scanning electron microscope observations (SEM), the specimens were washed 

three times in distilled water (30 min each), run through a series of increasing ethanol 

concentrations, and stored in 70% ethanol until required. Immediately prior to viewing in a 
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HITACHI S.570 scanning electron microscope (Laboratorio de Microscopía Electrónica of 

the Institut de Ciències del Mar of Barcelona, CSIC), they were run through a series of 

increasing ethanol concentrations ending with 100%, critical-point dried, attached to a stub, 

and coated with gold. All images were captured and stored in digital format using the 

Printerface System hardware and software. The studied populations are deposited in the 

personal collections of the authors, except for the populations obtained as loans from the 

National Museum of Natural History of the Smithsonian Institution (USNM) and the 

Australian Museum of Sydney (AMS) (Table 2). 

The relationships between the populations under study based on morphometric 

measurements were assessed by a Principal Component Analysis (PCA), which was carried 

out on normalized data using the PRIMER 5.2.2 (© PRIMER-2000) routines (Clarke & 

Gorley, 2001).  

 

 

Results 

 

After a detailed study of the 28 populations listed in Table 2, several characters emerge as 

relevant to the inter-population variability both in adults and the reproductive stolons. In the 

former, the following characters have been analysed: adult body size, shape of prostomium 

and palps, position of antennae, presence of sensory organs in palps, type of nuchal organs, 

length of appendages (antennae, tentacular cirri, dorsal and anal cirri), shape of pharynx, 

proventriculum and acicula, and chaetal arrangement and profile. In the stolons, in spite of 

size differences, the main distinguishing variability occurs in the presence or absence of a 

well-developed head and the corresponding cephalic organs and the presence of parapodial 

eye-spots. Among the studied characters, those being easily measurable under light 

microscopy have been used to analyse the inter-population morphometric relationships (body 

length, width, and number of chaetigers; extension of proventriculum; number of chaetae in 

anterior, middle and posterior regions). 
 

Adult size  

Initially, the studied populations reveal marked differences in adult size, either in 

length or in number of segments (Table 3). We are certain that most specimens are adults, as 

they often are mature and show traces of the stolon formation process. However, the range of 

variability between the largest specimens (Mediterranean, about 2 cm in length average, but 
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up to 4 cm in some complete specimens or even 6 cm in an incomplete, stolonizing specimen) 

and the smallest specimens (Indian Ocean: at most 0.3 cm) is strikingly evident when placed 

side by side (Fig. 2). Moreover, these size differences are always connected with density 

differences inside the host, the bigger specimens often living a solitary existence inside the 

host, while the smallest often occurs in large numbers (hundreds or thousands of specimens) 

inside a single host-sponge specimen (López et al., 2001).  

 

Anterior-most region 

The shape of the prostomium is highly variable among the different populations. Three 

main forms may be distinguished, the first two (i.e. round oval and sub-pentagonal) have a 

similar width to length ratio (Fig. 3A-C, F), while the third is clearly wider than long (Fig. 

3D-E). The relationships between prostomium and palp lengths may also vary, the palps 

being longer (Fig. 3D-F) or similar in length (or slightly shorter) (Fig. 3A-C) in comparison to 

the prostomium, independent of the prostomial shape. The antennae may be located near the 

anterior margin of the prostomium (usually directed upwards) (Fig. 3E) or attached to the 

middle of the prostomium (Fig. 3A-D, F). 

Like most polychaetes, Haplosyllis specimens bear different types of sensory organs in 

the anterior region. Their morphology and distribution (often only visible under SEM) show 

also a marked variability, particularly the nuchal organs, palps and pharyngeal papillae. The 

most frequent type of nuchal organ is a pair of variably developed ciliated regions, which are 

located laterally between prostomium and peristomium (4B-D). However, some populations 

show either pore-hole or papillate areas (Fig. 4A, E). Although some populations may have 

smooth palps (i.e., without visible sensory organs), most of them have different combinations 

of sensory organs, which are typically located ventrallly on palps (often two pairs below each 

palp) (Fig. 5) or laterally (often distributed in two longitudinal rows) (Fig. 6). Like nuchal 

organs, the typical external morphology of these sensory organs is a complex combination of 

ciliary tufts (Figs. 5A, 6A-B). However, some populations have glandular pore holes 

distributed in patches (ventrally, Fig. 5D-E) or located inside cavities (laterally, Fig. 6C-D). 

Only two different types of papillae have been observed on the distal pharyngeal end: smooth 

or ciliated ones. The latter have variably developed tuft or row of cilia from the tip towards 

the outer edge (Fig. 7). 

 

Appendages 
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One of the most conspicuous characters within the different populations is the length 

of the antennae (central and lateral), tentacular cirri (dorsal and ventral), dorsal cirri and anal 

cirri (in terms of number of articles, in order to avoid possible errors induced by different 

responses to the fixation process). The length appears to be highly specific within a certain 

population. Several characteristics may be analysed in order to define the length. The overall 

length of all appendages may vary from very long to short cirri along the body (Fig. 8A). The 

relationships between the anterior and posterior appendages may range from specimens 

having a marked length difference (the anterior-most much longer than the mid-body and 

posterior-most ones, Fig. 8B) to specimens showing a gradual decrease in length along the 

body (Fig. 8A,C). At mid-body, the dorsal cirri may show variably marked alternation in 

length, with either all cirri being similar in length, the long cirri only slightly longer than the 

short ones, or the long cirri much longer than the short ones (e.g. twice or three times longer) 

(Fig. 8A-C). An extreme case occurs in populations in which the dorsal cirri on middle and 

posterior regions are reduced to a single, often very small article (Fig. 8A-B). Finally, there is 

also a marked variability in the length of the anal cirri (Fig. 9).  

 

Internal structures 

The presence or absence of a pseudo-trepan in H. spongicola has been reported for the 

Mediterranean populations. According to San Martín (1984) specimens from the same 

population may either have a well-developed or slightly marked pseudo-trepan, or this 

structure may be absent. The NW Mediterranean specimens have a clearly chitinized 

pharyngeal border showing the same previously reported variability. Within this population, 

the shape of the pharyngeal border seems to be related to the worm size. The smallest 

specimens have well-defined pseudo-trepans, which seem to be eroded in large specimens. 

Although other populations around the world may show chitinized pharyngeal borders (e.g. 

Corsica, Arabian Gulf), in the studied populations, the presence of a pseudo-trepan seems to 

be restricted to the NW Mediterranean specimens.  

The proventriculum may be either sub-rectangular (clearly longer than wide) or ovoid 

(slightly longer than wide, with more or less rounded sides). The width/length ratio clearly 

reflects this inter-population variability, ranging from 0.25 to 0.53. Independently, the 

proventriculum may be short (extending through 3 to 4 chaetigers) or long (extending from 6 

to 9-10 chaetigers). Moreover, the position of the proventriculum in the body (starting 

chaetiger and number of occupied chaetigers) also differs among populations (Table 3).  



 7 

In the last body segments, which have a single acicula per paparpodium, the studied 

populations showed four different acicular shapes. Some of specimens have an acicula with 

an oblique end and a pointed tip clearly directed upwards (Fig. 10A) or a 90 degrees-bent end 

with rounded tip (Fig. 10B). However, the most common aciculum has a curved end, with a 

tip more or less directed downwards (Fig. 10C). Finally, the less frequent shape was that of 

the aciculum having a straight tip (Fig. 10D).  

 

Chaetal morphology. 

The chaetae of H. spongicola have always been figured as simple chaetae having two 

small teeth on its main fang, often based on LM observations (Fig. 10E-H). The results of our 

research within the worldwide complex have shown differences between chaetal arrangement 

and profile (Fig. 11A). Although the variability here reported is mainly based on SEM 

observations, some characteristics are also visible under light microscopy. H. spongicola 

typically shows two chaetae per parapodium. However, some populations consistently show 

only one, while others have three or more (Table 3). When more than one chaeta per 

parapodium is present they may have the same or different profiles, and may be similarly 

sized or with one chaeta larger than the other(s). In the latter case, the characters appearing to 

be species-specific often occur in larger chaetae, while smaller chaetae show less inter-

population differences. However, it should be pointed out that species-specific chaetal 

characteristics often occur in anteriormost or posteriormost body regions (except for the 

presence/absence of unidentate chaetae), while mid-body chaetae may be eroded and their 

characters difficult to distinguish.  

Several comparisons between measurements of the (large) chaetae may be made (Fig. 

11B). The base of the main fang may be either longer or similar in length to the distance 

between the main fang upper insertion point and the mid-joining point between teeth. The 

main fang may either be shorter, similar in length or longer than the chaetal width. The upper 

side of the main fang may be clearly longer than the lower side or both sides may be similar 

in length.  

There are usually two teeth at the tip of the chaeta. In this case, the two teeth may be 

similar in size or the distal tooth may be clearly smaller (Fig. 12). The angle between the teeth 

may be either narrow (Figs. 12D, 14A,E) or wide (Figs. 12A, 14B-D). However, some 

populations have clearly unidentate chaetae (Figs. 10F, 12E), while others have extra teeth in 

some chaetae (three or even four) in either the anterior or posterior parts of body (Fig. 13A-

F).  



 8 

Although the main fang may have a smooth or slightly ridged upper side (as figured 

for the “typical” H. spongicola chaetae), many populations have different types of denticles 

on this side (Fig. 14). There is variability (seen in lateral view) in the number of denticles 

present which may be a few (often 6 or less) or many (more than 10) and in the shape of the 

denticles. may show either a slight increase in size from the tip of the main fang to its base or 

may be small near the tip and much larger near the base). In frontal view, the denticles may be 

seen to be distributed in a single longitudinal row from the tip to the base of the main fang or 

they may form a series of transverse rows, having more denticles when closer to the base of 

the main fang. Distinguishing between chaetae having a nearly circular or a flattened elliptical 

main fang (in cross section) is possible either in an upper or frontal view of the chaetae. 

Usually, this last distinction is related to the shape of the cross section for the whole chaetae 

and may be observed in frontal view (Fig. 14). 

It is clear that the orientation of the chaetae during the SEM observations is critical 

either to allow proper comparisons or to observe all relevant features. 

 

Stolon morphology 

Although still not well-defined, the shape of the stolons has often been considered as a 

powerful tool to assess the taxonomy of syllids, even at subfamily level (Estapé & San 

Martín, 1991; Garwood, 1991). The typical stolon reported for H. spongicola is acephalous 

and bears a pair of parapodial ocular spots on each segment. Although it is not easy to find 

these stolons in benthic samples, the presence of parapodial ocular spots may be observed 

early during the stolon formation process, with the reproductive segments still attached to the 

adult body (Fig. 15). Among the studied specimens, the presence of ocular spots has been 

observed in the Mediterranean Sea and the Arabian Gulf (Fig. 15A,B, respectively). Even 

whilst still attached to the parents, the stolons of these two populations greatly differ in size 

and number of segments. As expected, they are larger in the largest Mediterranean specimens 

(about 0.6 cm in length and having more than 30 segments with ocular spots; Fig. 15A) and 

shorter in the small Arabian Gulf specimens (about 0.2 cm in length and having about 10 

segments with ocular spots; Fig. 15B). 

Some of the small tropical populations within the complex, such as those in Barbados 

and Australia (morphotype-1) show different stolon morphologies (Fig. 16). The stolons do 

not have parapodial ocular spots and have a well-developed head. Two pairs of well-

developed reddish eyes are present on the prostomium, the anterior pair being larger than the 

posterior one, which has a crystalline-like structure visible by transparency under a light 
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microscope. Adult specimens are small and the stolons correspondingly small (less than 0.1 

cm long and about 0.2 cm long in the Barbados and Australian populations, respectively, for 

about 10 chaetigers). These stolons also have cephalic appendages: one digitiform pair in the 

Australian population and one semi-spherical pair in the Barbados population. The exact 

nature of these appendages could not be assessed. However, the digitiform appendages are 

more or less distinctly ringed and bear tufts of cilia at the joints (like the adult antennae and 

cirri) and thus are more probably antennae, while the semi-spherical ones are smooth and thus 

are tentatively considered as palps.  

An additional characteristic of these populations is that in all cases, male and female 

adults with stolons occur inside the host sponge (as well as all possible developmental stages 

from young juveniles with 3 or 4 segments), while only detached female stolons occur inside 

the host. No detached male stolons have been found inside the host sponge, in either the 

Caribbean or the Australian populations.  

 

Morphometric analysis 

The PCA analysis based on morphometric measurements (which are summarized in 

Table 3) is highly discriminative (Fig. 17). The different populations are distributed along the 

first axis (52.9% of variance explained) according to size-related variables (body length, 

proventriculum length or number of chaetigers), with the largest specimens having the most 

negative values. The second axis (18.5% of variance explained) is mainly correlated with the 

number of chaetae. The populations having consistently one chaetae per parapodium show the 

most negative values, the specimens with mainly (or typically) two chaetae per parapodium 

show intermediate values, and the most positive values of the axis corresponded to those 

populations having two or more chaetae per parapodium. Although the resulting spatial 

distribution along the two axes give rise to a clear isolation of the different populations, some 

trends may be specifically pointed out.  

Some detected associations may be correlated with the biogeographical vicinity of the 

involved populations. For instance, the specimens from the Sinai Peninsula and the Arabian 

Gulf occupy nearly the same position as those from the Great Bitter Lake (Israel), while the 

populations from Papua-New Guinea and Australia are also located very close to one another. 

On the other hand, the largest specimens occur in the two Ibero-Mediterranean populations 

(i.e. Cape of Creus and Arenys). However, the range of variability is higher than those 

observed among the other populations, to the extent that some of the specimens are located 

closer to the position of the remaining populations. Accordingly, there are some fine 
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morphological characters suggesting that two different species are involved, particularly in 

the shape of the appendages and the chaetal profile (see Fig. 12A-B). Moreover, there is a 

marked discontinuity between the position of these two populations and the specimens from 

Corsica, which clearly belong to a different morphotype (e.g. they were small and had 

unidentate chaetae in the mid-body region) (Fig. 12E).  

Like extreme positions: the specimens from Florida and Jamaica on one side and those 

from Puerto Rico and Bahamas on the other. The same situation is observed for the two 

Pacific populations (i.e. Mexico and Easter Island) and for the Asian populations (Taiwan, 

Sumatra and Vietnam). In all cases, the morphology of these populations will certainly help in 

the future definition of their taxonomic status.the Iberian and Corsica populations, the 

different Caribbean populations occupy two  

 

 

Discussion 

 

The variability observed within the sponge-associated Haplosyllis species-complex is 

so wide that it may be stated that virtually all studied morphotypes show enough 

taxonomically robust differences to be formally described as different species. As a 

consequence, the so-called Haplosyllis spongicola must be considered as a pseudo-sibling 

species-complex. Some of the studied populations clearly belong to previously unknown taxa, 

which merit being described as new species. However, we have started an extensive 

examination of type specimens for as many as possible of the known synonymized species, in 

order to clarify its taxonomic validity and to re-describe them (when required) in the light of 

new characters reported here. 

One of the consequences of the reported differences is that mention of the different 

species or subspecies, which are currently being considered as synonymies of H. spongicola, 

in geographical locations other than the original one must be viewed with care. For instance, 

the presence of H. spongicola spongicola or H. spongicola tentaculata (either as subspecies 

or species), originally described from the Atlantic and the Mediterranean coasts of Europe and 

later reported from Japan or Korea (Cognetti, 1957, 1961; Imajima, 1966; Campoy, 1982; San 

Martín, 1984; Lee & Rho, 1994). Similarly, the mention of one species of the complex from a 

given area does not mean that all specimens found in the same area will necessary be 

conspecific. A clear example of the marked sympatry occurring within the complex may be 

the finding of 6 or even 7 different morphotypes in the Caribbean basin or the three found in 
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the western Mediterranean. As the type locality of the original description of H. spongicola, 

the Mediterranean populations deserve special attention. According to the corresponding 

descriptions, the western Mediterranean morphotypes may correspond to the previously 

described species H. spongicola (Grube, 1855), H. tentaculata (Marion, 1878) and H. hamata 

(Claparède, 1868). Together with the examination of type specimens, the authors are currently 

working on the formal re-description of these three species, as a first step in the process of 

solving the species complex taxonomy. 

Some trends on the possible grouping of species at a level higher than species have 

already been pointed out by means of the multivariate analysis of morphometric data. 

Certainly, the morphometric variables estimated in the present study are only part of the 

whole set of measurements that may be estimated within syllids (e.g. the length and width of 

the pharynx and most of the chaetal characters described in this study, which may be 

measured, have not been included). However, the characters used in our study have a clear 

advantage: they are easily measurable using light microscopy. Moreover, used as a part of a 

multivariate analysis, they were able to show clear trends in the inter-population relationships, 

which may be a complementary tool for the formal, more descriptive, taxonomic approach. 

As a consequence, together with the formal descriptions (or re-descriptions) of the 

morphotypes involved in the complex, a cladistic analysis of the phylogenetic relationships 

within the complex is also being carried out by the authors. These two approaches will 

provide a framework to define the new sponge-associated species of “Haplosyllis spongicola” 

that will certainly be discovered in the future. 

The observed differences in size, sensory organs and reproductive bodies would 

certainly be related to the ecology and behaviour of the different species. However, 

behavioural and ecological studies (e.g. to assess the complexities of the host-symbiont 

relationships) will require both field and laboratory experimental studies and, thus, are beyond 

the scope of the present study. Nevertheless, we are confident that they will be the source of 

highly interesting information in the near future. For instance, the recently described species 

Haplosyllis basticola Sardá et al., 2002 from Guam, which clearly belonged to the complex 

(Sardá et al., 2002), had a similar adult morphology and exactly the same type of stolon as the 

Australian (morphotype-1) population. Curiously enough, both populations have been found 

living inside host sponges belonging to the same family (i.e. Ianthellidae). Like the adult 

morphology, the few known life history data support the existence of different taxa within the 

complex. However, in this case, the differences are so marked that we suggest that they may 

indicate differences at a taxonomic level higher than species. 
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A particularly interesting feature, from an ecological point of view, is the presence of 

female stolons (or, even better, the absence of male stolons) inside the host sponges in some 

of the Australian and Caribbean populations. This allowed us to suggest that female stolons 

are not able to leave the host, while male stolons can be released and are responsible for 

fertilization of females from different host specimens. A similar strategy has been reported for 

the sponge symbiont syllid Haplosyllides floridana Augener, 1924. This species was first 

described as H. floridanus on the basis of a planktonic, free-swimming male stolon, while the 

non-reproductive specimens were described as Syllis (Haplosyllis) aberrans Fauvel, 1939. 

Both species were later synonymized under Haplosyllis floridana (Uebelacker, 1982) and the 

present status was established by San Martín et al. (1997). The presence of both male and 

female stolons inside the host sponge in Haplosyllis basticola (Sardá et al., 2002) may either 

indicate a different reproductive strategy or a delayed phase of the life cycle for this species. 

Male and female stolons left the host during sample treatment in the laboratory as did also the 

non-reproductive adults and juveniles. However, no conclusion may be inferred on the release 

of stolons in natural conditions. We suggest that the observed behavior is more likely an 

escape strategy related to the stress caused when collected and kept in the laboratory (i.e. like 

coral “bleaching”). A similar escape behaviour has been reported for other symbiotic 

polychaetes like Histriobdella homari (Martin & Britayev, 1998). 

Relative to biodiversity, a rough estimate may assume the number of polychaete 

species to be increased by an order of magnitude, if more potential species-complexes are 

analysed in depth. However, what is probably more important is that so many of the 

complexes discovered to date include species that often are “typical”, abundant, accessible, 

economically important, or used to assess the state of health of benthic communities. 

Consequently, to know whether the same nominal species found in different areas are really 

the same species or just similar organisms with significantly different biological and/or 

ecological features emerges as a matter of high relevance. 
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Table 1. List of known synonymies within the Haplosyllis spongicola species-complex (extracted 

from Licher, 2000). 

 

Species code Synonymized species names citations 

1 Syllis (Haplosyllis) djiboutiensis Gravier 1900 4 

        Syllis djiboutiensis 1 

        Haplosyllis djiboutiensis 8 

2 Haplosyllis gula Treadwell, 1924 1 

3 Syllis hamata Claparède, 1868 11 

        Haplosyllis hamata 5 

        Syllis (Haplosyllis) hamata 5 

        Haplosyllis (Syllis) hamata 1 

4 Syllis spongicola Grube, 1855 45 

        Haplosyllis spongicola 166 

       Syllis (Haplosyllis) spongicola 72 

5 Syllis spongicola spongicola Cognetti, 1957 5 

6 Haplosyllis spongicola brevicirra Rioja, 1941 2 

       Syllis (Haplosyllis) spongicola brevicirra 1 

7 Syllis spongicola tentaculata Marion, 1878 6 

       Haplosyllis spongicola tentaculata 4 

 Haplosyllis tentaculata Rho & Lee, 1987 1 

8 Syllis setubalensis Mcintosh, 1885  2 

        Syllis (Haplosyllis) spongicola setubalensis 1 

9 Syllis aurantiaca Eisig, 1881 4 

10 Syllis oligochaeta Bobretzky, 1870 1 

11        Haplosyllis oligochaeta pontica 1 

12 Syllis streptocephala Grube, 1857 5 

13 Syllis uncinigera Grube, 1878a 3 

14 Syllis violaceo-flava Grube, 1878a 2 

15 Haplosyllis madeirensis Czerniavsky, 1881 1 

 TOTAL NUMBER OF CITATIONS = 358 

 



 17 

Table 2. Summary of the available information on the geographical location of the studied 

populations of the Haplosyllis spongicola complex. 

 

MEDITERRANEAN 
- Cape of Creus, Catalonian coast, NW Mediterranean Sea, C. Alós coll. 
- Punta Santa Anna, Blanes, Catalonian coast, NW Mediterranean Sea, D. Martin, coll. 
- Arenys de Mar, Catalonian coast, NW Mediterranean Sea, D. Martin, coll. 
- Corsica Island, E. Dutrieux coll. 
ATLANTIC OCEAN 
- Tenerife, Canary Islands, J. Núñez coll. 
CARIBBEAN SEA 
- Belize, morphotype 1 27-12-99, 15m. E. Ballesteros coll. 
- Belize, morphotype 2 31-12-99, 11m. E. Ballesteros coll. 
- Belize, morphotype 3. E. Ballesteros coll. 
- Great Bahama Bank, South Exuma Cays, off Lee Stocking Island, M. Maldonado coll. 
- Barbados, off Holetown, 13° 11.3'N, 59° 38.5'W. H. Reiswig coll. 
- Discovery Bay, Jamaica, 15-aug-1969, USNM num. 41087. 
- Sea Horse Key, Florida, USA, 7-nov-1960, SMNH 30026. 
- Pajaros Island, Puerto Rico. USNM 51687. 
PACIFIC OCEAN 
- Bahia Falsa, La Paz, California, pen. of Mexico, 30-sept-1971, USNM 48910. 
- Easter Island, in tide pool between Hanga Roa and Hanga Piko, 15-febr-1969, USNM 49520. 
- Papua New Guinea. G. Magnino coll. 
- Sydney, Australia. Morphotype 1. AMS W26384. 
- Sydney, Australia. Morphotype 2. AMS W26379. 
SOUTH CHINA SEA 
- Nhatrang Bay, Tam Island, SE coast of Vietnam, 3–7m, 7-11-85, T.A. Britayev coll. 
- The seaport of Nhatrang city, Tam Island, SE coast of Vietnam, 04-04-89, T.A. Britayev coll.  
- Cambodia, Kampong Son Bay, 20m, 12-11-99. B. Tursch and Y. Kantor coll. 
- Taiwan, Lungstung Bay, 4-7-99. V. Radashevsky coll. 
INDIAN OCEAN 
- Pulo Melila, Banjak Is. West of Sumatra, 2° 15’N 97° 25’E, TE VEGA st. 98, nov. 1963, Kohn call. 

USNM 45365.  
- Off Asaluyeh, Arabian Gulf, Iran, 52° 34'E 27° 29' N. E. Dutrieux coll.  
- Mwamba Kuni reef bank, Bayamoyo, Zanzibar Channel, Tanzania. G. Magnino coll. 
RED SEA 
- Hurgada, coast of Egypt. G. Magnino coll. 
- Great Bitter Lake, N. Ben Eliahu coll. 
- Kafiah, Sinai Peninsula, N. Ben Eliahu coll. 
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Table 3. Summary of the morphometric measurements obtained from the different populations of the Haplosyllis spongicola complex. 

n = number of measured specimens; avg = average; std = standard deviation; ant = anterior chaetigers; mid = mid-body chaetigers; post 

= posterior chaetigers. 
   Body Proventriculum Number of chaetae 

  length width chaetiger  chaetiger  length width ratio    

 LOCALITY   (mm) (mm) numb. begin end numb. (µm) (µm) w/l ant mid post 

CAPE OF CREUS avg 16.50 0.90 66.20 10.90 19.00 7.90 2164.3 617.4 0.29 2.20 2.10 2.00 
 n = 10 std 11.60 0.50 23.80 2.40 2.70 1.60 1353.7 412.6 0.03 0.40 0.30 0.00 
ARENYS avg 8.52 0.63 60.10 7.80 16.65 9.80 1351.2 357.6 0.27 2.00 2.00 2.00 
 n = 20 std 3.91 0.16 17.48 1.06 2.42 2.22 467.1 134.4 0.05 0.00 0.00 0.00 
CORSICA IS. avg 2.28 0.35 36.25 4.00 9.25 6.25 460 155 0.35 2.00 2.00 2.00 
 n = 4 std 0.72 0.03 4.04 0.82 1.50 0.96 67.9 17.4 0.02 0.00 0.00 0.00 
ARABIAN GULF avg 3.61 0.45 34.84 4.95 10.28 6.34 737 237.7 0.33 1.84 1.89 2.12 
 n = 11 std 1.08 0.08 5.08 0.64 0.76 0.85 153.5 47.4 0.02 0.71 0.68 0.33 
SINAI avg 3.30 0.34 31.25 5.44 11.50 6.94 700.4 195.8 0.29 1.75 1.25 2.00 
 n = 8 std 1.00 0.07 5.63 1.12 1.42 1.02 183.4 51.1 0.04 0.47 0.47 0.00 
GREAT BITTER L. avg 3.71 0.30 37.89 4.86 9.56 5.65 555.9 162 0.31 1.36 1.42 1.24 
 n = 17 std 1.29 0.06 9.56 0.35 1.25 1.21 134.8 34.8 0.06 0.50 0.51 0.44 
USA avg 4.34 0.40 38.70 6.00 12.00 7.00 893.1 213.5 0.26 2.16 2.16 1.70 
 n = 13 std 0.89 0.05 6.32 0.58 1.16 1.00 210.9 35.4 0.06 0.38 0.38 0.49 
PUERTO RICO avg 6.99 0.33 33.16 6.08 8.85 3.62 730 217 0.31 1.00 1.00 1.00 
 n = 12 std 1.36 0.05 5.17 0.87 0.69 0.51 94.7 31 0.05 0.00 0.00 0.00 
JAMAICA avg 2.42 0.29 24.78 3.06 6.50 4.34 328.9 173.9 0.54 2.12 2.00 1.89 
 n = 18 std 0.69 0.07 3.92 0.94 0.99 0.60 111.1 60.2 0.03 0.33 0.00 0.33 
BAHAMAS avg 4.50 0.34 32.07 4.75 8.57 4.57 666.6 193.3 0.31 1.00 1.00 1.00 
 n = 16 std 1.05 0.08 4.66 0.94 1.29 0.69 191.7 43.2 0.04 0.00 0.00 0.00 
EASTER IS. avg 4.53 0.42 36.80 4.60 10.00 6.40 710 230 0.33 2.60 2.60 2.40 
 n = 5 std 0.55 0.03 3.50 0.55 0.71 0.55 53.4 35.4 0.03 0.55 0.55 0.55 
MEXICO avg 8.55 0.48 40.67 7.50 10.00 3.50 873.4 297.5 0.35 1.34 1.67 1.67 
 n = 6 std 0.71 0.07 2.43 0.55 0.64 0.55 212.1 65.5 0.05 0.52 0.52 0.52 
SUMATRA avg 2.57 0.31 26.12 4.00 7.78 4.56 404.5 160 0.42 2.12 2.34 1.78 
 n = 9 std 1.19 0.12 9.38 1.23 1.99 0.89 152.1 48.5 0.06 0.34 0.50 0.45 
TAIWAN avg 1.79 0.21 21.44 4.94 8.57 4.63 322.4 112.7 0.36 2.00 2.57 3.00 
 n = 16 std 0.45 0.04 6.00 0.69 0.92 0.54 50.8 16.9 0.05 0.00 0.52 0.64 
VIETNAM avg 2.59 0.31 28.35 5.00 9.65 9.25 507 159.3 0.32 1.00 1.10 2.00 
 n = 20 std 1.06 0.10 8.77 1.42 2.80 16.75 221.6 71.4 0.07 0.00 0.31 0.00 
AUSTRALIA avg 3.00 0.27 20.00 5.40 8.40 3.00 403 163.2 0.42 1.00 1.40 1.00 
 n = 5 std 0.29 0.08 3.00 0.90 0.90 0.00 97.5 35.1 0.05 0.00 0.55 0.00 
PAPUA avg 2.39 0.34 20.00 3.60 7.60 4.00 393.2 174.2 0.45 1.00 1.00 1.00 
 n = 5 std 0.34 0.08 3.00 0.90 0.90 0.00 85.1 37.6 0.03 0.00 0.00 0.00 
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Figure 1. Geographical distribution of the known reports of species included in the Haplosyllis spongicola 

complex; the numbers correspond to the species codes indicated in Table 1.  
 
 

 
Figure 2. Range of size variability within the Haplosyllis spongicola complex. A. Cape of Creus. B. Corsica. C. 

Blanes. D. Arabian Gulf. E. Australia (morphotype-1). F. Barbados. 
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Figure 3. Examples of prostomium shape, palps vs. prostomium length and position of antennae within the 

Haplosyllis spongicola complex. A. Belize (morphotype-1). B. Papua New Guinea. C. Tanzania. D. 
Mediterranean (Blanes). E. Bahamas. F. Australia (morphotype-1).  

 
 

Figure 4. Types of nuchal organs in the 
Haplosyllis spongicola complex. A, a. Pore hole plates 
(Canary Is.): A. General view; a. Detail. B. Ciliary tufts. 
(Arabian Gulf). C. Ciliary tufts (Barbados). D, d. 
Ciliary tufts (Australia, morphotype-1): A. General 
view; a. Detail. E. Papillate areas (Belize, morphotype-
3). The arrows indicate the location of the nuchal 
organs. 
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Figure 5. Examples of ventral sensory organs of palps in the Haplosyllis spongicola complex. Paired ciliary 

tufts: Arabian Gulf (A), Corsica (B) and Cape of Creus (C). Pore holes: Canary Islands (D, E). Smooth: 
Barbados (F). 

 

 
 
Figure 6. Examples of lateral sensory organs on palps in the Haplosyllis spongicola complex. A. Paired rows of 

ciliated tufts (Papua New Guinea). B. Smooth laterals (Belize, morphotype-1). C, D. Paired rows of pore 
hole cavities (Canary Islands). 
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Figure 7. Examples of pharyngeal papillae from the Haplosyllis spongicola complex. A, a. Smooth papillae 

(Canary Islands): A. General view; a. Detail. B, b. Ciliated papillae (Cape of Creus): A. General view; a. 
Detail.  

 
 
 

Figure 8. Examples of different 
patterns of alternation in length of the 
appendages in the Haplosyllis spongicola 
complex, compared with the NW 
Mediterranean population from Cape of 
Creus (i.e. with the longest cirri and the 
most marked alternation). A. Short 
appendages with non-marked alternation. B. 
Anterior-most cirri much longer than the 
posterior-most, with marked alternation. C. 
Anterior-most cirri slightly longer than the 
posterior-most, with non-marked 
alternation. 
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Figure 9. Examples of anal cirri in the Haplosyllis spongicola complex. Short: A. Barbados. B. Taiwan. Long: C. 

Cambodia. D. Florida. 
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Figure 10. Light microscope images of the four types of acicular tips (A, B, C, D) and the corresponding chaetae 
(E, F, G, H) in the Haplosyllis spongicola complex. A, E. Barbados. B, F. Arabian Gulf. C, G. Cadaques. 
D, H. Belize (morphotype-2).  

 
Figure 11. Scheme of typical chaeta of the Haplosyllis spongicola complex. A. Terminology used to describe the 

chaetal morphology. B. Definition of the measures used to compare the chaetal profile. MJ: mid-joining 
point between teeth. BMF: basis of the main fang. SW: chaetal width. LMF: length of the main fang. US: 
upper side of the main fang. LS: lower side of the main fang. 

 
 

Figure 12. Variability of the shape of 
chaetae on the same parapodium, angle between 
teeth and shape of the distal tooth in the 
Haplosyllis spongicola complex. A. Blanes. B. 
Cape of Creus. C. Canary Island, D. Bahamas. 
E. Corsica. F. Florida. 
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Figure 13. Examples of populations of the Haplosyllis spongicola complex with spare tooth in some chaetae. A-

C. Mexico (A-B: anterior-most, C: posterior-most). D-F. Taiwan (D: anterior-most, E-F: posterior-most). 
 
 

 
Figure 14. Chaetae in frontal view, showing details of the different types of serration on the main fang present in 

the Haplosyllis spongicola complex. A. Bahamas. B. Australia. C. Blanes. D. Mexico. E. Belize. 
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Figure 15. Examples of stolons 
of the Haplosyllis spongicola complex 
with acephalous stolons and parapodial 
eye-spots. A. Cape of Creus. B. Arabian 
Gulf. The arrows indicate the position of 
the ocular spots. 
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Figure 16. Examples of stolons of the Haplosyllis spongicola complex with well-developed head. A. Whole view 
of a female stolon (SEM). B. Detail of the head (SEM). C. Whole view of a female stolon (LM). D. Detail 
of the anterior end (LM). E. Whole view of a female stolon (SEM). F. Detail of the head (SEM). G. Whole 
view of a female stolon (LM). H. Detail of the anterior end (LM). A-D. Australia (morphotype-1). E-H. 
Barbados. The arrows indicate the position of eyes. 
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Figure 17. Results of the PCA analysis performed on the morphometric parameters measured on the studied 

populations of the Haplosyllis spongicola species complex. U = USA (Florida); S = Sumatra; P = Puerto 
Rico; M = Mexico; J = Jamaica; I = Iran (Arabian Gulf); E = Easter Island; Co = Corsica Island; Cr = Cape 
of Creus; A = Australia; N = Papua / New Guinea; Ar = Arenys; Si = Sinai Peninsula; GB = Great Bitter 
Lake; Bh = Bahamas; T = Taiwan; V = Vietnam (from Haliclona); Grey labels indicate the relative position 
of the mean population values. Number of specimens measured per population as in Table 3. 

 


