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Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are anthropogenic

substances classified as persistent bioaccumulative compounds and are found in various environmental

compartments throughout the world, from industrialized regions to remote zones far from areas of

production. In this study, we assessed the effects of PFOA and PFOS on early life stages of marine test

species belonging to three different trophic levels: one microalga (Isochrysis galbana), a primary

consumer (Paracentrotus lividus) and two secondary consumers (Siriella armata and Psetta maxima).

Acute EC50 values for PFOS were 0.11 mg L�1 in P. maxima, 6.9 mg L�1 in S. armata, 20 mg L�1 in P.

lividus and 37.5 mg L�1 in I. galbana. In the case of PFOA, the toxicity was lower but the ranking was

the same; 11.9 mg L�1 in P. maxima, 15.5 mg L�1 in S. armata, 110 mg L�1 in P. lividus and 163.6 mg L�1

in I. galbana. The Predicted No Effect Concentration (PNEC) for PFOS and PFOA in marine water

derived from these acute toxicity values are 1.1 mg L�1 for PFOS and 119 mg L�1 for PFOA. This study

established a baseline dataset of toxicity of PFOS and PFOA on saltwater organisms. The data

obtained suggest that PFOA pose a minor risk to these organisms through direct exposure. In the

perspective of risk assessment, early life stage (ELS) endpoints provide rapid, cost-effective and

ecologically relevant information, and links should be sought between these short-term tests and effects

of long-term exposures in more realistic scenarios.
1. Introduction

Perfluoroalkyl and polyfluoralkyl substances (PFAS) are a group

of emerging contaminants made up of a few hundred chemically

and thermally stable compounds, mostly polymers, moderately
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Environmental impact

A number of studies have suggested that perfluoroalkyl and pol

accumulative. PFAS can be detected in all environmental media an

PFAS in marine organisms is very limited. Perfluorooctane-sulfonic

for all trophic levels, and the ranking of toxicity of species studies w

showed the highest sensitivity. For risk estimation the Predicted No

water derived from these acute toxicity values are 1.1 mg L�1 for PF
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soluble in water. Due to their unique characteristics, PFAS are

present in numerous commercial and industrial applications as

active ingredients, impurities, or as degradation products of

derivatives.1 It has been shown that the extreme stability of

PFAS makes them practically non-biodegradable and particu-

larly persistent in the environment.2

Among PFAS, both perfluorooctanoic acid (PFOA) and its

sulfonic acid analog, perfluorooctanesulfonic acid (PFOS), were

a particular focus of attention because of their widespread

occurrence in the environment.2 PFOS is a highly persistent,

bioaccumulative and moderately toxic substance,1,3–5 widely

used in a variety of consumer and industrial products such as

pesticides, stain repellents, cleaning agents, corrosion inhibitors,
yfluoralkyl substances (PFAS) are highly persistent and bio-

d biota, including humans, and our toxicological knowledge of

acid (PFOS) is more toxic than perfluorooctanoic acid (PFOA)

as the same. Among all the organisms tested, turbot P. maxima

Effect Concentration (PNEC) for PFOS and PFOA in marine

OS and 119 mg L�1 for PFOA.
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flame retardants and fire-prevention agents, adhesives or fire

fighting foams.6,7 PFOA, used as an additive in synthetic indus-

trial products such as corrosion inhibitors, lubricants or wetting

agents, has been shown to bioaccumulate in fish, but probably

less than PFOS.8 Published studies show that PFOA is readily

absorbed following ingestion, poorly eliminated, and tends

not to be metabolized.9 Immunotoxicity, developmental and

reproductive toxicity were also reported.10,11

In the marine environment, PFAS have been detected at

concentrations up to 58 ng L�1 in onshore waters, and 113 pg L�1

in offshore waters.12 Published papers report the presence of

perfluorinated compounds in a wide variety of wildlife species,

including marine mammals, fish, birds and shellfish.13,14 The

possibility of adverse ecological effects related to the PFAS in the

marine environment is needed for an ecological risk assessment

(ERA). For risk estimation the quotient of the compartmental

concentrations (PEC) and the concentration below which unac-

ceptable effects on organisms will not occur (predicted no effect

concentration, PNEC) is calculated. An ERA is performed in

phases or tiers and each tier has a higher cost and complexity and

less uncertainty. The magnitude of the undesired effects deter-

mines the required level of effort. For the aquatic compartment

the lower-tier tests are a set of acute bioassays corresponding to

three taxonomic groups of three trophic levels.15

The toxicity of PFAS has been extensively studied on fresh-

water species but the data for saltwater species is scarce.13,16–18

Few standard test methods for saltwater species have been

developed and the available data for marine organisms is in

general less abundant. To fill this gap, toxicity tests have been

developed for saltwater organisms of ecological relevance:

a primary producer (the microalga Isochrysis galbana),19

a primary consumer (the echinoderm Paracentrotus lividus)20 and

two secondary consumers (the crustacean Siriella armata and the

fish Psetta maxima).21,22 The flagellate microalga Isochrysis gal-

bana is widely found in the coastal waters and easy to culture. P.

lividus is a sea urchin that occurs throughout the Mediterranean

Sea as well as in the North-Eastern Atlantic,23 and plays key

ecological roles in the general functioning of ecosystems.24 S.

armata is a mysid with a distribution along the European coast

from the North Sea to theMediterranean Sea, short life cycle and

easy maintenance. Turbot P. maxima is a native European

species of both ecological and economic importance. Adult

mature stocks are available all year round because this species is

reared under controlled conditions for aquaculture purposes.

This study aimed to assess the effect of exposure to PFOS and

PFOA in four marine organisms belonging to three trophic

levels, to estimate the PNEC and to conduct the first step of an

ERA of PFOS and PFOA in the marine environment.
2. Material and methods

2.1. Experimental solutions

Solutions of perfluorooctanoic acid (CF3(CF2)6COOH) (96%

purity Sigma Aldrich St. Louis, MO, EE.UU) and per-

fluorooctanesulfonic acid (C8HF17O3S) (98% purity Sigma

Aldrich, St. Louis, MO, USA) were obtained by dissolving them

in 0.22 mm filtered sea water (FSW) of oceanic characteristics

from the Ria of Vigo (NW Iberian Peninsula), mixing, overnight
1376 | J. Environ. Monit., 2012, 14, 1375–1382
stabilization and dilution of the stocks with FSW. For testing

high PFC concentrations, stock solutions were prepared in

DMSO and added to the test medium at a final maximumDMSO

concentration of 0.01% (v/v), plus one solvent control. Experi-

mental concentrations were chosen on the basis of some

preliminary tests for these species (Table 1). Glass vials were used

instead of plastic vials due to the organic nature of PFOS and

PFOA and there is literature supporting the use of glassware.25,26

All glass material was soaked in 10% HNO3 for 24 h and rinsed

with acetone and Milli-Q water before the experiments.
2.2 Toxicity testing

Bioassay with microalgae (Isochrysis galbana). The microalga

test followed OECD25 as modified by P�erez et al.19 An algal strain

of Isochrysis galbana was kindly provided by Estaci�on de Cien-

cias Mari~nas de Toralla (ECIMAT). Cultures of Isochrysis gal-

bana were grown in 250 mL Erlenmeyer flasks with auto-claved

filtered (0.22 mm) sea water and EDTA-free f/2 culture medium.

Flasks were kept in an isothermal room at 20 �C with a 24 h light

period (cool daylight lamps Osram L36W/865, emission spec-

trum range 380–780 nm, light intensity 60 mE m�2 s�1). An

inoculum culture was previously prepared in a 6 L round-bottom

flask with bubbling filtered air 1 day before starting the test in

order to reach the exponential growth phase. The experimental

dilutions were inoculated at a density of 10 000 cells mL�1, and

each dilution and control were performed in triplicate. The

samples were manually shaken each day and cell counts were

carried out at 0, 24, 48 and 72 h with a Multisizer 3 Coulter

Counter particle size analyzer (Beckman-Coulter, Miami, FL,

USA), and three measurements from each flask were recorded.

The inhibition growth rate was calculated in the interval from

0 to 72 h as described in the OECD guidelines.27

Bioassay with sea urchin (Paracentrotus lividus). Sea urchin

tests followed the methods of S�aco-�Alvarez et al.20 The gametes

of Paracentrotus lividus were obtained by dissection of a couple

of adults, and their maturity (ovum sphericity and sperm

mobility) was checked with a microscope. The ova were trans-

ferred to a 100 mL graduated cylinder containing sea water, ca.

10 mL of the sperm taken from the male gonad were added

through a Pasteur pipette, and the mixture was shaken gently to

facilitate fertilization. The fertilization rate was determined in

quadruplicate in samples of 100 individuals, as the proportion of

eggs with a fertilization membrane. Within 30 min, the fertilized

eggs were transferred to vials with 10 mL of FSW dosed with the

product to be tested. Each vial received 400 eggs and each dose

was performed in quadruplicate (the control was performed in

quintuplicate). The eggs were incubated in the dark at 20 �C for

48 h, and the larvae were fixed by adding 0.2 mL of 40% buffered

formalin. In each vial, the maximum length of 35 individuals was

measured using an inverted microscope and Leica QWIN image

analysis software version 3.4.0 (Leica Microsystems, Germany).

The response was quantified as described in Rial et al.28

Ri ¼ 1� DLi

DL0

(1)

where DL0 and DLi are the mean length increases in the control

and the ith dose, respectively.
This journal is ª The Royal Society of Chemistry 2012
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Table 1 PFOS and PFOA nominal concentrations (mg L�1) used in toxicity test

Species Group PFOS (mg L�1) PFOA (mg L�1)

Isochrysis galbana Prymnesiophyceae 3.75, 7.5, 15, 30, 60 25, 50, 100, 200, 400
Daphnia magna Cladoceran 5, 10, 20, 35, 50, 75, 100, 200 150, 200, 250, 300, 350, 400, 450, 500, 800
Siriella armata Mysidacea 1.25, 2.5, 5, 10, 20 0.1, 0.5, 1, 2, 5, 10, 20, 30, 40, 80
Paracentrotus lividus Echinoidea 0.5, 1, 2, 5, 10, 20 1, 2, 5, 10, 20, 50, 100, 200, 500, 750
Psetta maxima Teleostei 0.015, 0.030, 0.075, 0.15, 0.3, 0.325, 0.6, 1.2, 2.5, 5 1.5, 3, 5, 10, 12, 24, 100, 200
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Bioassay with misidacea (Siriella armata).Mysid tests followed

P�erez and Beiras.21 Swarms of Siriella armata were captured in

the R�ıa de Vigo (Galicia, NW Iberian Peninsula) and placed in

quarantine facilities at ECIMAT. In the laboratory, the mysids

were maintained in 100 L plastic tanks with circulating sand-

filtered seawater at a rate of 2 L min�1. The adult stock was fed

daily with nauplii or metanauplii of Artemia salina, ad libitum,

and parameters were checked daily (temperature ranged between

17 and 18 �C, salinity between 34.4 and 35.9&, and oxygen

6 mg L�1).

One day before the start of the test, mature females bearing

marsupium embryos in the last stage of development were

separated in well-aereated separate tanks. The neonates released

within less than 24 h were used in the tests. Incubations were

conducted in 20 mL glass vials. A total of twenty individuals were

used for each concentration, and, in order to prevent cannibalism

among neonates, a single individual per vial was used. Oxygen

concentration, pH and salinity were determined at the beginning

and at the end of each test. Vials were incubated in an isothermal

room at 20 �C and a 16 h light : 8 h dark period for 96 h. Daily

neonates were fed between 10–15 nauplii of Artemia salina.

Mortality was recorded after 96 h.

Bioassay with turbot (Psetta maxima). Turbot tests followed

Mhadhbi et al.29 Turbot eggs from a single stock of adults were

kindly supplied by a fish hatchery (PESCANOVA Insui~na,

Moug�as, Galicia, NW Spain). The eggs were transported to the

laboratory in portable ice-box plastic bags containing seawater,

and maintained in aquaria with running natural seawater

(salinity 34&). Eyed eggs were allowed to acclimatise to labo-

ratory conditions at 14 � 1 �C (hatchery rearing temperature)

before being exposed to the toxins. At 72 h post-fertilization

(hpf), the floating fertilized eggs were collected and the non-

fertilized eggs at the bottom discarded. The eggs were examined

under a dissecting microscope, and those embryos exhibiting

normal development that had reached the blastula stage were

selected for subsequent experiments. Briefly, 50 normal fertilized

eggs were randomly selected and distributed into exposure glass

beakers containing 500 mL FSW and spiked with the test solu-

tions. Treatments were incubated per quadruplicate in an

isothermal room (18 � 1 �C), in the dark. Neither food nor

aeration was provided during the bioassays. Test conditions are

summarized in Table 2.

The effects of the toxicants on turbot embryos and larvae were

observed throughout the 6-day exposure period and dead

embryos and larvae were removed daily. The number of dead

eggs/embryos was recorded 48 h after the start of the experiment

(from day 0 to 2). Hatching was defined as the rupture of the egg

membrane. Partially and fully hatched larvae were counted as
This journal is ª The Royal Society of Chemistry 2012
hatched. Sublethal endpoints recorded included embryo mal-

formation and hatching success.

Survival of larvae was recorded every 24 h post hatching (hph)

from day 2 to 6 of the experiment. At day 6 of the experiment

(96 h old larvae), mortality was identified by a missing heartbeat

and a non-detached tail. Each larva was carefully placed in

a concave slide filled with clean seawater and observed at �1.5

magnification using a Nikon SMZ1500 MultiScan stereo

microscope (Nikon Corp., Tokyo, Japan) with computer image

analysis.

All test conditions are summarized in Table 2.
2.3 Statistical analyses

The dose–response relationships were fitted to the modified

Weibull model.30 Fitting parameters were obtained with the

statistical software Statistica 8.0 pack, which was also used to

calculate the parametric confidence intervals and model

consistency (Students t- and Fisher’s F-tests respectively in both

cases with a ¼ 0.05). The maximum no observed effect

concentration (NOEC) and the lowest observed effect concen-

tration (LOEC) were established through ANOVA and Dun-

nett’s post-hoc test, using the SPSS application, version 18.0.

Non-parametric tests, Kruskall-Wallis and the Mann-Whitney U,

were used when data did not meet the requirements of

normality and homoscedasticity. Differences were considered as

significant when P < 0.05.
3. Results

An increase in the concentration of both PFOS and PFOA

within the mg L�1 range caused growth inhibition in I. galbana,

embryogenesis inhibition in P. lividus, and a survival decrease in

S. armata and P. maxima tests (Fig. 1). The EC50 values and their

95% confidence intervals are summarized in Table 3. In all the

studied species, the toxicity of PFOS was between 2 and 100

times higher than that of PFOA, with both compounds showing

the same ranking of toxicity among different species. Acute EC50

values of PFOS in increasing order were 0.11 mg L�1 in P.

maxima, 6.9 mg L�1 in S. armata, 20 mg L�1 in P. lividus and

37.5 mg L�1 in I. galbana. In the case of PFOA, the EC50 values

were consistently higher; 11.9 mg L�1 in P. maxima, 15.4 mg L�1

in S. armata, 110 mg L�1 in P. lividus and 163.6 mg L�1 in I.

galbana.

Values of EC10, NOEC and LOEC showed the same ranking

of toxicity as EC50 values in the case of PFOA. For PFOS, the

ranking of EC50 values was similar, with higher toxicity for the

sea urchin P. lividus than for the mysid S. armata. Therefore, the

sensitivities of the test species for PFOS considering toxicity
J. Environ. Monit., 2012, 14, 1375–1382 | 1377
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Table 2 Summary of test conditions for Isochrysis galbana, Paracentrotus lividus, Siriella armata and Psetta maxima

Isochrysis galbana Paracentrotus lividus Siriella armata Psetta maxima

Test type Static, no-renewal Static, no-renewal Static, no-renewal Semi-static
Age of test organisms (hours) 72 <0.5 <24 72
T/�C 20 20 20 18
Photoperiod 24 h light Darkness 16 h light : 8 h darkness Darkness
Test chamber aeration No No No No
Nr. organisms per test chamber 10 000 cells mL�1 400 5 50
Nr. replicate chambers per concentration 3 4 4 4
Test solution volume (mL) 200 10 2–4 500
Feeding rate No feeding No feeding 10–15 nauplii or metanauplii of A. salina No feeding
Test duration (h) 72 48 96 144
Endpoint Growth inhibition Growth inhibition Mortality Abnormalities/Mortality
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thresholds in increasing order were: P. maxima > P. lividus > S.

armata > I. galbana.

Both PFOS and PFOA caused the same types of body mal-

formations in the early life stages (ELS) (Table 4). For embryos,

the most frequently observed response were alterations in yolk

sac: at 16 and 14 occasions for PFOS and PFOA respectively. No

rupture of the egg membrane was observed in 13 and 11 cases

respectively. In the larval stage, the main abnormalities found

were the pericardial edema: 22 and 17 cases for PFOS and

PFOA, respectively. The second most significant abnormality

recorded were the skeletal deformities with 15 and 10 cases,

respectively (Fig. 2).
4. Discussion

Environmental risk assessment may require knowledge of acute

and chronic toxicity to different trophic levels of the environ-

mental compartment of concern. However, at the moment little is

known about the toxicity of perfluorinated compounds in the

marine environment, in particular for PFOA and PFOS.

In this manner, the results obtained in these assays provide

acute toxicity data for saltwater organisms which allow us to

carry out a comparative study between species of different

trophic levels and to assess the potential effects of both

compounds in wildlife.

The data (Table 3) show a common trend: PFOS is more toxic

than PFOA to all the trophic levels studied, particularly for fish.

In both cases, the ranking of toxicity was the same: P. maxima >

S. armata > P. lividus > I. galbana.
Fig. 1 Percentage of response to PFOS (left) and PFOA (right) for I. galbana

Error bars represent standard error of the mean.

1378 | J. Environ. Monit., 2012, 14, 1375–1382
The comparison of our results with previous research is

not straightforward, since studies on the effects of PFOS and

PFOA to aquatic organisms were carried out mainly in fresh-

water. For instance, the L(E)C50 values for PFOS reported by

Beach et al.31 in phytoplankton, mysids and fish ranged from

3.5 to 305 mg L�1. Those values are in moderate agreement with

the results reported here for PFOS in I. galbana, P. lividus and S.

armata (6.9 to 37.5 mg L�1), but P. maxima yielded lower values

(0.11 mg L�1).

Acute toxicity of perfluorinated compounds to phytoplankton

has been investigated thoroughly and the values found are

moderate or low. The EC50 values reported in the literature

for PFOS were: $3.2 mg L�1 for Skeletonema costatum,32

48.2 mg L�1 for Selenastrum capricornutum and 81.6 mg L�1 for

Chlorella vulgaris.3 In addition, Lata1a et al.33 reported higher

EC50 values for Chlorella vulgaris and Geitlerinema amphibium

exposed to PFOA of 386.5 and 977.2 mg L�1, respectively.

The EC50/72 h values obtained here for I. galbana (37.5 and

163.6 mg L�1 respectively for PFOS and PFOA) are lower than

those reported in previous studies and, hence, this species seems

to be moderately sensitive to these compounds.

Aquatic invertebrates vary markedly in their sensitivity to

PFOS and PFOA. This might be explained by differences in life

history and physiological response to pollutants. The EC50 of

PFOS in the sea urchin embryo-larval test (20 mg L�1) was higher

than the values determined by Robertson34 for Artemia nauplii

(8.9–9.4 mg L�1) but lower than the EC50/LC50 values found for

Daphnia magna, 63 and 130 mg L�1.1,3 The NOEC in the sea

urchin test (1 mg L�1) was similar to the value determined for
($$$O$$$), P. lividus (–,–), S. armata (—B—) and P. maxima (—C—).

This journal is ª The Royal Society of Chemistry 2012
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Table 3 Toxicity thresholds (NOEC, LOEC and EC10) and semi-maximum response concentration (EC50) for PFOS and PFOA (mg L�1)a

Toxicant Species NOEC LOEC EC10 EC50 EC50/EC10

PFOS Isochrysis galbana 7.5 15 12.2 (8.0–18.5) 37.5 (31.1–45.2) 3.1
Paracentrotus lividus 1 2 2.6 (1.8–3.5) 20.0 (15.8–25.3) 7.7
Siriella armata 1.25 2.5 3.2 (3.1–3.3) 6.9 (6.8–7.0) 2.2
Psetta maxima 0.015 0.03 0.02 (0.01–0.04) 0.11 (0.07–0.16) 5.5

PFOA Isochrysis galbana 25 50 41.6 (25.9–66.6) 163.6 (131.7–203.2) 3.9
Paracentrotus lividus 10 20 30.7 (25.7–36.8) 110.0 (99.2–121.9) 3.6
Siriella armata 5 10 7.8 (5.4–11.1) 15.5 (13.0–18.6) 2.0
Psetta maxima 1.5 3 3.9 (2.4–6.3) 11.9 (9.5–14.9) 3.1

a Values are in mg L�1, with 95% confidence intervals in parentheses.
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Crassostrea virginica (1.8 mg L�1).35 Neither a decrease of

hatching success nor an increase of morphological abnormalities

were found at the highest concentration tested (0.37 mg L�1) in

a 16 day embryo-larval test for Psammechinus miliaris.36 The

EC50 of PFOA for sea urchins, 110 mg L�1, are in line with the

values reported for D. magna, EC50 181 and 476 mg L�1 1,37 and

M. macrocopa, 199.5 mg L�1.37

Mysids seem to show greater sensitivity to PFAS than algae

and sea urchins. Moreover, the NOEC/96 h of PFOA for S.

armata (5 mg L�1) is less than the chronic NOECs/21d

(21 mg L�1) for D. magna.13 On the contrary, the measured

toxicity of PFOS to Siriella armata (LC50/96h 6.9 mg L�1) is

similar but slightly lower than those found in a test conducted

with Mysidopsis bahia (LC50/96 h 3.5 mg L�1).38

The acute toxicity of PFOS to turbot larvae (LC50/96 h

0.11 mg L�1), as expected, was greater than that determined in

studies with adult fish, since early ontogenetic stages of fish

are regarded as the most sensitive to toxic agents. Therefore,

LC50/96 h values for Oncorhynchus mykiss acclimatised to salt-

water was 13.7 mg PFOS/L34 and 9.1 mg PFOS/L for Pimephales

promelas.39 Furthermore, the lethal toxicity for adult fish is not

highly dependent on exposure time, as the LC50/28 d calculated
Table 4 Morphological abnormalities of turbot embryos larvae exposed to
membrane, (C) pericardial edema, (D) skeletal deformities, + indicate numbe

Toxin
Concentration
[mg L�1]

Embrionary stage (120 hpf)

A B

PFOS 0.015 — —
0.03 + —
0.075 + +
0.15 + ++
0.3 + ++
0.325 ++ —
0.6 ++ ++
1.2 ++ +++
2.5 +++ +++
5 +++ —

PFOA 1.5 — +
3 + —
5 + +
10 ++ ++
12 ++ —
24 ++ ++
100 +++ ++
200 +++ +++

Control + +
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for fathead minnow was 7.2 mg PFOS/L according to Oakes

et al.40 Pointing in the same direction as the results found for

PFOS, the LC50/96 h of PFOA for turbot larvae, 11.9 mg L�1, is

substantially less than the genus mean acute values for Pime-

phales promelas and Lepomis macrochirus, 511 and 601 mg L�1

respectively.13

For PFOS, high sensitivity of the early life-stages of fish has

been documented previously41–44 and this accords with its toxicity

to turbot found in the present work. Du et al.41 found that 50 and

250 mg L�1 PFOS 30 d treatments reduced body weight and

length in zebrafish fry; and Huang et al.42 reported an EC50/120

hpf of 1.12 mg L�1 for zebrafish embryos. In the same way,

a significant decrease in hatchability and survival, as well as an

increase in sublethal malformations of embryos and larvae, were

observed here for PFOS and PFOA (Tables 3 and 4). It might be

noted that the sensitivity and cost-effectiveness of turbot larval

fish test emphasizes the suitability of its routine use in

ecotoxicology.

An assessment factor of 100 was chosen on the basis of the

lowest short-term L(E)C50 in a set comprising at minimum algae,

crustaceans and fish to derive a Predicted No Effect Concentra-

tion (PNEC) for PFOS and PFOA in marine water.15 The
PFOS and PFOA: (A) yolk sac alterations, (B) no rupture of the egg
r of individuals affected. n ¼ 200

Larval stage (96 hph)

C A B C D

— — — — +
+ — — + —
— + + ++ ++
++ + — + + —
+ ++ + + ++ +
+ — — +++ ++
— ++ + ++ + ++
— +++ + ++ + ++
+ ++++ + ++++ ++
— — ++++ ++
— — ++ — —
— — — + +
++ + — + + ++
+ ++ — + + +
— — — ++ —
+ + + +++ +
— ++ + ++ + ++
+++ ++ + ++++ +++
— + — + +
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Fig. 2 Morphological abnormalities of turbot embryos larvae exposed

to PFOS and PFOA: (A) Normal embryo, (B) Normal larva, (C) no

rupture of the egg membrane, (D) yolk sac alterations, (E) pericardial

edema, (F) skeletal deformities.
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estimated PNECs are 1.1 mg L�1 for PFOS and 119 mg L�1 for

PFOA, a little more conservative than the criteria continuous

concentration (CCC) proposed by Giesy et al.13 (5.1 mg PFOS/L

and 2.2 mg PFOA/L) for freshwater environments. In order to

estimate the level of risk associated with the occurrence of PFAS,

the environmental concentrations of those substances were

compared with the PNECs. The concentrations of PFOS in

coastal and ocean environments are low (Table 5). The PNEC for

PFOA119mgL�1, ismuchhigher than the range of concentrations

found in coastal, 0.076–192 ng L�1, and oceanic waters, 0.015–

0.439 ng L�1.12 However, PFOS levels in effluents of wastewater

treatment plants are high and the corresponding hypothetical risk

quotient (PEC/PNEC)would take values greater than 1 (Table 5).

The concentration of PFAS in municipal wastewater treatment

plant effluents is conditioned by domestic (cleaning and care of

surface-treated products) and industry use, the contribution of the

industry being more important.45 Likewise, Bossi et al.46 found
Table 5 Hypothetical maximum risk quotients (RQ) for PFOS in seawatera

Medium

Costal waters
Oceanic water
Municipal wastewater treatment plant effluent

a Bold values indicate a risk to this species. b Yamashita et al. 2005.12 c OEC

1380 | J. Environ. Monit., 2012, 14, 1375–1382
that the range of PFOS concentrations in effluents ranged from

<1.5 to 1115 ng L�1 for four industrial plants and from <1.5 to

18.1 ng L�1 for six municipal wastewater treatment plants.

The present findings suggest that, although toxic effects of

PFOS might occur at mg L�1 concentrations, such water

concentrations are only found in effluents of municipal waste-

water treatment plants and industrial plants.

On the other hand, it is worth noting that high concentrations

of PFOS have been detected in fish. For instance, PFOS found in

the liver was up to 7760 mg kg�1 wet weight for plaice (Pleuro-

nectes platessa) and 9031 mg kg�1 wet weight for eels (Anguilla

anguilla).47,48 The bioaccumulation factors based on liver and

surface water concentrations derived from field studies varied

from 1260 to 125 000 and are significantly larger than the bio-

concentration factors obtained in the laboratory, 484 to 4300.31

It has been pointed out that uptake through water and diet may

be a relevant exposure route for PFAS such as PFOS and PFOA.

It is clear that more studies are needed to shed light upon whether

PFOS concentrations in fish might have toxic effects, as the

proposed critical body residue, 87 mg PFOS/kg,13,31 was derived

from lethal endpoints and an assessment factor was used neither

to extrapolate from lethal to sublethal effects and from labora-

tory to field conditions, nor to account for interspecific

differences.
5. Conclusions

In all the species studied, perfluorooctanesulfonic acid (PFOS) is

more toxic than perfluorooctanoic acid (PFOA), and for both

toxicants, the ranking of toxicity was the same. Among all the

organisms tested, turbot P. maxima showed higher sensitivity,

while I. galbana was the most resistant.

Up to now, little information has been published about the

toxicity of perfluorinated compounds in saltwater, such as those

used in our study. The results of this research makes it possible to

compare the sensitivity of different trophic levels to per-

fluorinated compounds as well as to assess the potential effects of

PFOS and PFOA on marine ecosystems. Such information could

improve the scientific basis for PFAS control but perhaps also

provide important information for adequate priority setting of

environmental remedial activities of polluted sites. However,

acute toxicity tests can only be a first step for the assessment of

the environmental risk of these chemicals.

Nevertheless, further detailed studies involving the bio-

accumulation and biomagnifications potential, reproduction and

maternal transfer effects, fate and behavior of these contami-

nants are deemed important for the future improvement of the

risk assessment.
Range of PFOS levels
(ng L�1) RQ

0.008–57.7b 0.1
0.001–0.078b 0.0001
41–5290c 4.8

D.26
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