1	1	Organic carbon and nitrogen in soil particle-size aggregates					
2 3	2	under dry tropical forests from Guanacaste, Costa Rica –					
4 5 6	3	Implications for within-site soil organic carbon stabilization					
7	4						
8 9	5	Juan J. Jiménez ^{1,2*} , Klaus Lorenz ² , Rattan Lal ²					
10 11 12 12	6	¹ Pyrenean Institute of Ecology (IPE), Consejo Superior de Investigaciones Científicas (CSIC), Avda.					
	7	Regimiento Galicia s/n, E-22700, Jaca (Huesca), Spain					
14	8	² Carbon Management and Sequestration Center, School of Environment and Natural Resources, The					
15 16	9	Ohio State University, 2021 Coffey Road, Columbus, OH-43210, USA					
17 18	10						
19 20	11	* Corresponding author					
21	12						
22	13	Address during the study:					
24 25 26 27 28 29 30 31 32 33 34	14	Carbon Management and Sequestration Center					
	15	School of Environment and Natural Resources					
	16	The Ohio State University					
	17	2021 Coffey Road					
	18	Columbus, OH-43210					
	19	USA					
35 36	20						
37 38 39 40	21	Present address:					
	22	Instituto Pirenaico de Ecología (IPE)					
41	23	Consejo Superior de Investigaciones Científicas (CSIC)					
42 43	24	Avda. Regimiento Galicia s/n					
44 45	25	E-22700, Jaca (Huesca)					
46 47	26	Spain					
48 49	27	E-mail: jjimenez@ipe.csic.es					
	28	Phone: +34 974 356963					
51 52	29	Fax: +34 974 363222					
53 54 55 56	30						

E-mail addresses: jjimenez@ipe.csic.es (Juan J. Jiménez, ARAID researcher), lorenz.59@osu.edu (Klaus Lorenz), lal.1@osu.edu (Rattan Lal)

31 Abstract

In this study we report results on the soil organic carbon (SOC) pool (0-50 cm) from a chrono-sequence of dry tropical forest (dTf) of increasing age and a yearly burned ancient pasture in the "Sector Santa Rosa" at the "Área de Conservación Guanacaste" (ACG) in northwestern Costa Rica, where intense human induced land-use modifications has occurred during the past century. The effects of land conversion on soil organic carbon (SOC) have mainly been conducted in the Atlantic humid forests while overlooking dTfs. We quantified the depth distribution of SOC concentration down to 50-cm and in physically separated mineral soil fractions, as these data are scanty from the dTf. Additional objectives were to identify the relationship with selected soil physical and chemical properties, including stabilized SOC fractions by means of multivariate ordination methods. Statistically significant differences were found for the main fixed factor ecosystem for all soil variables analysed (ANOVA). SOC and N concentrations were significantly higher in the oldest dTf compared to the other dTfs. Soil physical properties like aggregate size distribution and bulk density changed with depth, and varied significantly among the three dTf stands sampled. The multivariate analysis, i.e. between-within class principal component analysis (PCA), revealed a significant ordination of dTfs (P<0.0001). The SOC concentration decreased in particle size fractions of $<200 \,\mu\text{m}$ aggregates with increasing soil depth. The lowest and highest C concentrations were obtained in the fine sand (105-200 µm) and clay+silt (<20 µm) fractions, respectively. Mineral-associated and stable SOC pool increased with depth, and poorly crystalline Fe oxides and ferrihydrite were the most important minerals for SOC stabilization at 40-50 cm depth. The highest SOC pool was found in the old-growth and >80 years-old dTfs, i.e., 228.9 and 150.3 Mg C ha⁻¹, respectively, values similar to those obtained in the Atlantic humid forests of

Costa Rica. Comparatively to other studies, soils under dTf at Santa Rosa store a considerable amount of SOC with potentially large CO₂ emissions if this ecosystem is

58 not preserved.

59 Key words: Soil organic carbon, Nitrogen, particle size fraction, principal component

60 analysis, dry tropical forest.

The soil organic carbon (SOC) pool is the largest pool of terrestrial organic carbon, with an estimated 2,100 Pg (1 Petagram = 10^{15} g) ca. 3 times larger than the amount of C stored in above-ground vegetation (Post et al., 1982). In tropical soils the SOC pool amounts to 30% of the global C pool, i.e., 384–506 Pg down to 1-m depth (Kimble et al., 1990; Eswaran et al., 1993; Batjes, 1996), and more specifically 119 Pg C is stored in the top 1-m in the dry tropical forest (dTf) (Jobbágy and Jackson, 2000). The SOC is thus relevant for the terrestrial ecosystem C balance and its potential to respond to the global C cycle.

Compared to other ecosystems worldwide, the dTf has experienced the greatest transformation to agriculture lands (Hoekstra et al., 2005), and the process still continues in the dTfs of South America (Grau et al., 2008). The conversion of tropical forests to agricultural land has decreased over the past ten years but continues at an alarmingly high rate in many countries (FAO, 2010), resulting in depletion of the SOC pool as much as 75% in the tropical region (Lal, 2004). Tripathi and Singh (2009) reported SOC data (0-10 cm) from dTf in the Similipal Biosphere Tiger Reserve (India) to be 19.8 g kg⁻¹ while in pasture and cropland a reduction of 46 and 54% was observed, respectively. Changes on SOC pool after conversion of natural tropical ecosystems to agricultural land has been assessed by several authors (Werner, 1984; Buschbacher et al., 1988; García-Oliva et al., 1994; Veldkamp, 1994; Cerri et al., 1991; Tiessen et al., 1992; Trumbore et al., 1995; De Moraes et al., 1996; Neill et al., 1997; Groffman et al., 2001; Murty et al., 2002; García-Oliva et al., 2006; Schwendenmann and Pendall, 2006; Marin-Spiotta et al., 2009), with various responses observed, including increases, decreases, or no net long-term changes in

SOC. When agricultural land is no longer under cultivation and allowed to return to the previous vegetation cover, C accumulates in the soil by processes that essentially reverse initial losses of SOC after land conversion. SOC accumulation rates and time lag broadly vary depending on the productivity of the re-growing vegetation, physical and biological conditions in the soil, and the past history of SOC inputs and physical disturbance (Post and Kwon, 2000). Full recovery of SOC pool following deforestation depends on the length of time allowed for recovery and intensity of land use, taking several decades to achieve a new equilibrium (Ramankutty et al., 2006).

In Costa Rica, historic conversion of the dTf has potentially caused considerable loss of above- and belowground C due to extensive deforestation for land clearance following land colonization in Costa Rica during the 1950's to establish traditional livestock and agricultural land use (Calvo-Alvarado et al., 2009). Research on SOC in the dTf, as indicated by the small number of published studies (Sánchez-Azofeifa et al., 2005) in the Pacific region (Johnson and Wedin, 1997; Powers et al., 2009), has not kept pace with those conducted in humid forests at the Atlantic region (Powers, 2004; Veldkamp, 1994; Powers and Schlesinger, 2002; Powers and Veldkamp, 2005; Jiménez et al., 2007; Jiménez et al., 2008). Consequently, additional studies from the Pacific region are needed to increase our knowledge on SOC changes and the distribution and abundance of SOC in dTf, for which there are little published data, with comprehensive emphasis on the biological and physical factors involved.

Physical protection of soil C within aggregates is an important mechanism for C
sequestration (Jastrow, 1996; Six et al., 2002). Assessment of SOC concentration
within particle-size fractions from the dTfs and derived agro-ecosystems are not
abundant in the literature either (García-Oliva et al., 1994; García-Oliva et al., 1999b).

Soil physical fractionation methods have been generally used to reveal the factors involved in C and soil mineralogy associations and in the study of the dynamics and turnover of organic matter (OM) (Christensen, 1992; 2001; Six et al., 2002). The dynamics of OM varies with soil aggregates size and physical fractionation techniques are, thus, useful to isolate C pools more sensitive to changes in land management or differences between ecosystems in order to elucidate processes and mechanisms involved in the storage of C (Six et al., 2002).

The stabilization of SOC is relevant for biogeochemical processes in ecosystems although the mechanisms are still poorly understood and new framework has been proposed (Kleber et al., 2007). It is also important for global C cycing models to assess the effect of disturbance and recovery in the dTf in addition to identifying the processes of SOC stabilization. The main goal of this study was to increase our knowledge on the vertical distribution of SOC in size-class aggregates in the dTf, in addition to a better understanding of those factors that are correlated with soil C and the environmental between- and within-site control on SOC. Additional objectives were to: (1) assess C and N distribution associated with different soil mineral fractions of <250 µm aggregates, (2) investigate SOC relationships with selected soil properties, including C stabilization data obtained from chemical extraction methods by applying multivariate ordination techniques in order to identify meaningful trends in dTf recovery. A forest chronosequence approach was used to infer SOC pool recovery after perturbation, which is a normal procedure in tropical ecology studies (Aide et al., 2000).

2. Materials and methods

133 2.1. Study area

1	134	The study was conducted during August 2005 in Sector Santa Rosa
2 3	135	(85°36'54"W; 10°48'53"N) in the Área de Conservación Guanacaste (ACG, formerly
4 5	136	Parque Nacional Santa Rosa), north-western Pacific region of Costa Rica (Janzen,
6 7 8	137	2000). The area is defined as a tropical dry zone. All the dTf of Costa Rica is located
9 10	138	in ACG, and covers half the area of the total 120×10^3 ha of the park, while 3,556 ha
11 12 13	139	are dTf in Sector Santa Rosa (Maldonado et al., 1995; Kramer, 1997). The dTf is
14 15	140	characterized by a well defined dry season (Mooney et al., 1995). Yearly average
16 17 18	141	temperature and precipitation are 28 °C and 1,530 mm, respectively, with a marked 6-
19 20	142	mo dry season between November and May (Janzen, 1993). Geologic substrate at
21 22	143	Santa Rosa is Pleistocene aeolian ash. Soils at the study area are of volcanic origin
23 24 25	144	(Guanacaste volcanic Cordillera), and major soil parent material weathered in place
26 27	145	are andesite to rhyolite ash-flow tuffs (ignimbrites) with intercalated fluvial deposits
28 29 20	146	with high Fe content, and consisting mostly of plagioclase feldspar with biotite,
31 32	147	hornblende, amphibole, and pyroxene (Weyl, 1980; PDX, 2005). Soils are classified
33 34	148	as Inceptisols and Entisols (USDA taxonomy) defined as Typic Ustropept and Lithic
35 36 37	149	Ustropept (Oficina de Planificación Sectorial Agropecuaria, 1999).
38 39 40	150	The dTf at Santa Rosa contains the highest number of plant families, genera, and
41 42 43	151	species richness of all Central American dTfs (Gillespie et al., 2000). Acacia collinsii
44 45	152	Saff. (Mimosaceae) (Spanish name "Cornizuelo") and Quercus oleoides Schltdl. &
46 47	153	Cham. ("Encino") are two of the most abundant tree species (Janzen, 2000; Allen,
48 49 50	154	2001), although there is no single dominant species (Kalacska et al., 2004). Santa
51 52	155	Rosa contains both evergreen forests dominated by live oak, <u>Q. oleoides</u> , but also a
53 54 55	156	large number of other co-occurring species from the adjacent mixed deciduous forest
56 57	157	where oaks are less common. These include Tabebuia ochracea Standl.
58 59	158	(Bignoniaceae), the fern Selaginella sp., Enterolobium cyclocarpum (Jacq.) Griseb.
60 61 62	-	
63 64		7
65		

(Mimosaceae), <u>Hymenaea courbaril</u> L. (Fabaceae), <u>Cecropia peltata</u> L. (Moraceae),
<u>Bursera simaruba</u> (L.) Sarg. (Burseraceae), <u>Ficus</u> spp., and <u>Bromelia pinguin</u> L.
(Bromeliaceae).

Within tropical forests the dTf represents 42% of the total (Brown and Lugo, 1982), and is among the most endangered ecosystems worldwide (Mooney et al., 1995). Currently, only 0.5% of the original dTf area in Pacific Mesoamerica is under protection (Janzen, 1988; Calvo-Alvarado et al., 2009) and remains in Costa Rica (Quesada and Stoner, 2004). During the 1950's and for more than 30 years severe deforestation reduced the area covered by dTf (Sader and Joyce, 1988). Land conversion and cattle grazing and human-induced fires, hugely reduced the area covered by the dTf in Guanacaste (Houghton et al., 1991; Toledo, 1992; Maass, 1995). This favored the invasion of the exotic pyrophite grass Hyparrhenia rufa (Ness) which fueled more fires and transformed drastically the original dTf physiognomy (Daubenmire, 1972). The area affected by this grass was reduced after cattle removal in addition to a fire-suppression active program (Janzen, 1988b; Kramer, 1997). Since 1979 the area covered by pastures in the ACG has decreased and, nowadays, natural fires are totally absent from ACG (R. Blanco, pers. comm.) Fire is an important disturbance for natural succession in the dTf (Vieira & Scariot, 2006). The management strategy of fire control has promoted oak passive regeneration of secondary dTf in Costa Rica. As analyses are expensive, only a limited number of stands were selected on the

As analyses are expensive, only a limited number of stands were selected on the same edaphological unit, i.e., three dTf stands and a pasture plot (Figure 1): a) a remnant patch of old-growth forest >400 years old (Of), b) a secondary deciduous forest (Df), San Emilio (>80 years), c) a Q. oleoides forest of ca. 65 years old (Qu),

and d) a yearly burned ancient pasture strip (Pa) (See list of plant species in appendix A). The vegetation structure of the Of is similar to the original dTf, it was never cleared except some old individual trees in the mid-forties of the last century, i.e., Swietenia macrophylla and Manilkara chicle (Janzen, pers. comm.). Some fires occurred in the late 1970s and early 1980s, when the pastures came closer to the edge of this forest, as an occasional event during late April to early May when leaf litter was extremely dry and burned very low to the ground and detached branches were converted to charcoal. Even today fire scars can be seen on the bases of the old-growth trees (Janzen, pers. comm.)

192 2.2. Soil sampling protocol

Four sampling points were selected along a 300-m transect line in each ecosystem. Optimal sampling distance for measuring SOC varies among studies from a few meters to tens and hundreds meters (Rossi et al., 2009). Despite no real plot replicates for each ecosystem were present, no significant pseudo-replication-induced bias was introduced in our results (Oksanen, 2001), as the inter-sampling distance, i.e., 100 m was higher than the minimum 25-50 m inter-sample distance that is recommended to avoid or reduce spatial dependence of variables in soil carbon studies (Powers and Veldkamp, 2005; Powers, 2006). Moreover, this procedure has also been used in recent studies (Paul et al., 2008) to reduce the possible effect of spatial autocorrelation between soil variables.

Leaf litter was hand-sorted within 0.5 m^2 metal frames and oven-dried at 60° C for 72 h prior to excavation of ca. $1 \times 0.5 \text{ m}^2$ pits. Soil samples were carefully collected down to 50 cm depth from one of the pit walls and split into 10 cm increments. Soil sampling started from the deepest layer (40-50 cm) to avoid likely contamination of

deeper layers with soil from upper layers. Approximately 0.5 kg of bulk soil was
taken and air-dried at ambient temperature for several days. Samples were gently
crumbled manually to break the aggregates along planes of weakness at field moist
conditions. Soils were dropped from 1-m height onto a hard surface to ease aggregate
separation, after air-drying, and sieved <8 mm to manually remove roots and stones
before packing and shipping to the lab at OSU, Columbus (Ohio).

213 2.3. Soil physical properties

Soil bulk density (ρ_b) was measured with the core method in each layer by using a 5x5 cm metal cylinder (Blake and Hartge, 1986). Soil ρ_b was expressed on a dry weight basis after placing a small amount of soil in the oven and drying at 105° C for 48 h to determine soil moisture content. Soil texture was determined by the hydrometer method (Bouyoucos, 1962) in a composite sample with approximately 50 g of dry soil from the four samples collected in each ecosystem. No chemical treatment was used to remove labile or light fraction organic matter. Aggregate sizeclass distribution and mean weight diameter (MWD) were assessed by standard dry-sieving procedure (Kemper and Rosenau, 1986). A sub-sample of air-dried soil of ca. 60 g was passed through a column of sieves of 4.75, 2.0, 1.0, 0.5 and 0.250 mm and mechanically moved in an automatic shaker for 30 min to obtain 6 aggregate size-classes. Finally, soil pH was determined in <2 mm air-dried samples in H₂O (1:1, v/v) and 0.01 M CaCl₂ (1:1, v/v).

Additionally, we collected soil from surface ant hills of the fungus-growing ant
 Atta (Formicidae) in the Of for C and N comparisons.

2.4. Simplified particle-size fractionation

Owing to the specific purpose of our study we dispersed soil aggregates followed by wet-sieving to release the primary particles, i.e., clay, silt and sand size-particles (Emerson and Greenland, 1990). Briefly, 50 g of <2mm air-dried soil were dispersed in 50 ml 0.5 M sodium-hexametaphosphate + 75 ml deionized water for 18 h, and mechanically stirred in a multi-mixer for 30 minutes. Then, the soil suspension was passed through a nest of sieves of 250, 105, 53, and 20 μ m diameter to separate the fine sand (105-250 μ m), very fine sand (53-105 μ m), coarse silt (20-53 μ m) and silt+clay ($<20 \mu m$) fractions (USDA nomenclature), respectively, in beakers that were oven-dried at 60 °C for 72 h. By following this procedure we aimed at also quantifying the C and N concentrations in micro-aggregates, i.e. $<250 \,\mu\text{m}$. The suspension containing the <20 µm fraction was flocculated with MgCl₂ and allowed to settle before discarding the supernatant. Uncomplexed OM was not determined, although likely present in some of the fractions since no chemical methods were used to remove organic debris from the mineral fractions, and thus neither free nor particulate OM was quantified.

246 2.5. Carbon and Nitrogen determinations

247 Concentrations of total C and N were determined for <2 mm air-dried soil aggregates 248 that were ground in a mortar and passed through a 250 μ m sieve, and for each particle 249 size fraction by dry combustion using a Vario Max CN Analyzer (Elementar GmbH, 250 Hanau, Germany). The presence of inorganic C in carbonates was tested qualitatively 251 with HCl. This test yielded negative results, and thus C concentration data were 252 referred as organic C. The SOC pool to 50-cm depth was computed using equation 1 253 (Batjes, 1996):

$$\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & &$$

254 Mg SOC ha⁻¹ =
$$\Sigma_{0-50}$$
 [SOC_{layer} (kg Mg⁻¹) × (ρ_d)_{layer} (Mg m⁻³) × soil depth (m) ×
255 10^{-3} Mg kg⁻¹ × 10^4 m² ha⁻¹] [Eq. 1]

256 2.6. Mineral-associated and stable SOC

257 Chemical extraction and standard selective dissolution methods of oxalate, dithionite-258 citrate and pyrophosphate (USDA, Table 1) were used on bulk soil from each 10-cm 259 depth increments. Acid oxalate predominantly extracts Al, Fe, and Si (Al_o, Fe_o, Si_o) 260 from organic complexes and poorly ordered minerals such as ferrihydrite, allophane, 261 and imogolite (Hartwig and Loeppert, 1993). Dithionite-citrate-extractable Fe (Fe_d) 262 represents both crystalline and poorly crystalline Fe oxides, and dithionite-citrate-263 extractable Al (Al_d) represents Al substituted in Fe oxides and from the partial 264 dissolution of poorly ordered Al (oxy)hydroxides (Kleber et al., 2005). Sodium 265 pyrophosphate extracts all organically bound Al (Al_p) and an intermediate fraction of 266 the organically bound Fe (Hartwig and Loeppert, 1993). The Fe_o/Fe_d ratio reflects 267 poorly crystalline fraction of total Fe oxides (Kleber et al., 2005). Thus, Fe_d-Fe_o 268 represents crystalline Fe oxides. Fe_o -Fe_p represents the content of ferrihydrite (López-269 Ulloa et al., 2005), while Al_p/Al_o ratio, which is an index of allophanic soil properties 270 (Dahlgren et al., 1993), is the relative amount of Al that is in organic complexes (Kleber et al., 2007b). The amount of sesquioxides is represented as $Al_0+0.5Fe_0$ 271 272 (Spielvogel et al., 2008). For a more complete description of the selective chemical 273 extractions see Lorenz et al. (2009).

Sodium persulfate (Na₂S₂O₈) was used to determine the amount of stable SOC (Eusterhues et al., 2003; Lorenz et al., 2008). The functionally passive SOC concentration was estimated as the amount of residual SOC left after treatment with hydrogen peroxide (H₂O₂) following a method described in Eusterhues et al. (2005).

Finally, soils were de-mineralized with hydrogen fluoride (HF) to isolate SOC from organo-mineral associations (Eusterhues et al., 2003). A more complete and detailed description of the chemical oxidation and separation methods can be consulted in Lorenz et al. (2009).

282 2.7. Statistical analyses

Normality of data distribution was explored for all variables with the Kolmogorov-Smirnov test. When necessary data were log transformed to meet the assumption of normality. A two-way analysis of variance (ANOVA-GLM procedure) was performed to test for significant differences with ecosystem and sampling depth as the fixed main factors for SOC and N concentrations, C:N ratio, pb, MWD and size-class aggregates. A Bonferroni corrected probability procedure for nested tests was used to ensure against statistical error (Cooper, 1968). The probability levels of 0.05, 0.01 and 0.001 were adjusted by dividing them by 33 (11 analyses x 3 tests). When differences were significant, multiple post-hoc comparisons of means were tested with Fisher PLSD at P<0.05. Correlation analysis was performed with the Pearson product moment correlation between SOC and texture, and between SOC and C concentration in particle-size fractions. Finally, the t-test was used to search for statistical differences in SOC pool among the four sampled sites. All statistical analyses were performed with the SPSS for Windows v. 17.0 (© SPSS, Chicago, Illinois), and the Sigmaplot software v. 11.0 (© Systat Inc.) was used for graphics. The main source/s of variation and significance were investigated with the

between-within principal component analysis (PCA), a specific multivariateordination technique. Firstly, a PCA is performed that focuses on between-groups'

301 differences, i.e., ecosystems (old-growth forest, deciduous forest, <u>Quercus</u> forest, and

burned ancient pasture) in order to identify the variables responsible in the definition
of axes. Details on the use and interpretation of this between-class PCA can be found
in Dolédec and Chessel (1989). The significance of variables and ordination of
objects in the plane formed by the first two axes was tested with a Monte Carlo
randomisation procedure with 10,000 simulations (Manly, 1991).

The between-PCA was followed by the within-class PCA in order to focus on the remaining variability after the ecosystem effect has been removed. Removing the class effect is achieved by placing all centers of classes at the origin of the factorial maps while the sampling units are scattered with the maximal variance around the origin (Dolédec and Chessel, 1991). The within-class PCA gave very similar results compared to a normalized PCA (data not shown), and differences between sites would have been masked by those obtained within each site. The data matrix contained 19 columns, i.e. number of variables, and 20 rows (4 sites x 5 depths), i.e. number of objects = samples. Analyses were performed with the Discriminant module included in the ADE4 software package (Thioulouse et al., 1997).

As we were also interested in the pattern of SOC stabilization within the three different forests, i.e., Of, Df, and Qu, a second data matrix was used for a betweenwithin PCA. This matrix included data used in the first matrix with those data on SOC stabilization provided by Lorenz et al. (2009). This new data matrix contained 36 columns (variables) and 60 rows (samples).

3. Results

Soils at the study site were slightly acidic, and texture varied from sandy loam
and sandy-clay loam texture to clay loam and clay in the upper and deeper soil layers,
respectively (Table 2). Summary descriptive statistics of all variables used in this

study is listed in Table 3. Statistically significant differences were found for the main
fixed factor ecosystem for all variables (ANOVA, Table 4), and for the main fixed
factor depth but for SOC and N concentrations only (ANOVA, P<0.01). No
significant differences were found for the site and depth interaction.

SOC concentration was significantly higher in Of compared to the other ecosystems (Figure 2). Values decreased significantly with depth (P<0.05, Fisher PLSD test) in all ecosystems, and ranged from 37.2 to 61.3 g kg⁻¹ in 0-10 cm and from 8.4 to 29.5 g kg⁻¹ in 40-50 cm depth, respectively. The SOC concentration measured in the refuse material deposited in the surface ant hill at Of was within the range similar to that at 40-50 cm soil depth. Multiple post-hoc comparisons (P<0.05; Fisher PLSD test) for N(%) and C/N ratio are indicated in Table 5. In each ecosystem N concentration decreased significantly with increasing depth. The C:N ratio in the Pa was significantly greater (P<0.05) under Pa than under the three dTfs for all depths (Table 5). The C:N ratio decreased significantly with depth only in the Of.

Regarding soil structure the MWD of aggregates at Pa did differ significantly from that at the three dTf stands (Table 6). Significant differences were found in size-class aggregate distribution with depth at Of (P<0.05; Fisher PLSD test) for the 0.5-1 and 2-5 mm size-class aggregates, respectively (Figure 2). Statistical differences were found between Pa (<5% of aggregates $<250 \mu$ m) and the dTf stands (10-25% of aggregates $<250 \mu m$). Aggregates larger than 4.75 mm were the most abundant class in all depths, while at the forest stands the percentage of size-class aggregate was similarly distributed in all depths, except for the <0.25 mm size-class aggregates at the Df (values not significant).

The SOC concentration decreased in particle size fractions of <200 µm aggregates with increasing soil depth (Figure 3), with the highest concentration in the silt+clay fraction (<20 µm). Negative and positive significant correlation was observed between the percentage of clay (r = 0.688; p<0.001) and sand (r = 0.627; p=0.003) with SOC (bulk soil), respectively, while no correlation was observed between the percentage of silt and SOC (Figure 4a). Regression analysis for <200 µm aggregates indicated that SOC concentration in the bulk soil correlated significantly with all particle size fractions in the order 20-53>53-105>20>105-200 µm particles (Figure 4b).

3.1. Between-within differences of soil physico-chemical variables (data matrix 1)

The first two axes of the between-class PCA performed on data matrix 1 were retained, explaining 92.8% of the total variability (Figure 5a). Axis I (71.9% of variability) mainly separated soil physical properties, while axis II (20.9% of variation) separated soil bulk density, pH, and SOC concentrations in the silt+clay fraction from the percentage of aggregates <250 µm. The projection of objects (sites) onto the factorial plane (Figure 5c) clearly separated the Pa from the three dTfs. The separation of ecosystems in the factorial plane of the between-class PCA was highly significant (Monte Carlo permutation test, P<0.0001).

With regards to the within-class PCA the first two axes captured 77.1% of variability (Figure 6a). Axis I (61.5% of the within-class inertia) discriminated soil samples with high clay content from those with high C concentrations in the coarse (105-200 µm) and fine sand (53-105 µm) fractions. Axis II (15.6% of total variability) separated soil samples with higher sand content from those with high silt content.

3.2. Between-within differences of SOC stabilization (data matrix 2)

There was a significant effect of vegetation on the C/N ratio in Pa compared to the three dTf stands at Santa Rosa (ANOVA; Table 3). Thus, we performed a second between-within analysis without data from Pa to test for significant trends between the three dTfs.

Axis I of the between-class PCA explained 58.2% of total variation and discriminated pH, silt+clay C, SOC concentration and Al_p from HF resistant C, clay%, Na₂S₂O₈ resistant C, coarse silt C, Si_d, soil N concentrations and percentage of 1-2 mm aggregates (Figure 7a). Thus, more alkaline soils with higher concentrations of C in finer particle-size fractions and bulk soil were discriminated from those containing relatively higher amounts of mineral associated and stable SOC, and C in coarser particle size fractions. Axis II (41.8% of total variance) separated Fe_o/Fe_d, percent <0.25 mm aggregates, Al_d, Al_o+0.5Fe_o, Al_o+Fe_o, Al_o, Si_o and Fe_o from clay%, percent 2-4.75 mm aggregates, silt%, Fe_d-Fe_o, BD and Fe_d.

Multivariate analysis also showed that concentration of crystalline Fe oxides (Fe_d-Fe_o) in 10-20, 20-30 and 30-40 cm depth were highest at Df, intermediate at Qu and lowest at Of. Crystalline Fe oxides were highly related to clay%, which also increased with depth (Figure 7a). Moreover, the ordination of variables in the PCA (Figure 7a) highlighted that the Na₂S₂O₈-resistant proportions at Of and Qu was negatively correlated with SOC concentration and augmented with soil depth at Df. The "eigenvalues" (Figure 7b) and projection of objects (sites) onto the factorial plane defined by both axes (Figure 7c) separated Of from Qu forest and the Df in axis I, while axis II separated the latter two (Figure 7c, top left). The mineral-associated and stable SOC pool increased with depth as revealed by axis I, while axis II resulted in soil texture differences, from a loamy to clayey soil (Figure 7c, bottom left). The

ordination of the between-class PCA was highly significant (P<0.0001; Monte Carlo permutation test).

Regarding the within-class PCA the first two axes explained 49.8% of variation as revealed by the "eigenvalue" analysis (Figures 8a, b). Axis I (26.0% of the within-class inertia) separated soil samples containing high proportion of sesquioxides and Al-, Fe- and Si-minerals in organic complexes and poorly ordered minerals and high proportions of small aggregates, from soils with higher ratios of organically-bound to total amorphous Al, large aggregates and MWD (Figure 8a). Axis II (23.8% of total variability) separated stable SOC and clay% from C concentrations in the coarser fractions, C and N concentrations in bulk soil and sand% and silt%. The projection of objects onto the factorial plane is depicted in Figure 8c.

3.3. SOC and SON pools

The amount of litter collected was similar for Of and Ou, i.e., $1,326.7 \pm 240.7$ g m^{-2} and 1,322.0 ± 478.1 g m⁻², respectively, while it was 1,104.6 ± 726.2 g m⁻² at Df (Table 6). No surface litter was present at Pa. The SOC pool to 50-cm depth was highest at Of, i.e., 228.9 Mg C ha⁻¹, and decreased in the order Df > Pa > Qu, with significant differences observed with the latter two (Table 7). The SOC pool under Of was 52.3% and two-fold higher than under Df and Qu and Pa, respectively (Table 7). Between 50 to 65% of the total SOC pool to 50-cm depth was found in the top 20 cm. With regards to the SON pool, soils from the Of and Df contained 18.7 and 13.1 Mg N ha⁻¹, respectively, and from 30 to 45% of total SON pool was located in the upper 0-10 cm soil layer (Table 7). Significant differences pattern was similar to that observed for the SOC pool.

4. Discussion

421 4.1. Comparison with other studies

4 Published data on SOC from several studies in dTfs from Central America are 6 7 8 9 listed in Table 8. SOC concentration obtained in our study was higher to values reported by Powers et al. (2009) from the same area, while Johnson and Wedin (1997) reported a total soil C concentration in the topsoil at 52.3 and 42.6 g C kg⁻¹ in dTf and H. rufa grassland, respectively, in soils developed from volcanic tuffs in southern "Guanacaste" ("Lomas Barbudal" biological reserve). More recently, at Santa Rosa total soil C concentration for 0-10 cm depth has been reported at 26.5 and 37.9 g kg⁻¹ in a young Oak forest and a mixed deciduous forest, respectively, and 43.0 g C kg⁻¹ in a dTf at Palo Verde National Park in the Pacific region (Powers et al., 2009). Based on another study conducted in the "Osa peninsula" of southwestern Costa Rica, total soil C concentration to 10-cm depth ranged from 65 to 68 g C kg⁻¹ in a very humid lowland primary forest, and from 50 to 56 g C kg⁻¹ for a 20 yr-old pasture on an Oxisol and Mollisol, respectively (Cleveland et al., 2003). These values corresponded to a total soil C pool in 0-10 cm that ranged from 33.8 to 44.9, and from 37.5 to 55.4 Mg C ha⁻¹ in the primary forest and derived pasture, respectively. In the Mexican pacific coast, García-Oliva et al. (2004) reported a total soil C concentration in the dTf of 32.5 g kg⁻¹ for 0-5 cm, and its conversion to pasture after slash-and-burn management reduced SOC concentration by 18%, i.e. 29 and 23 g kg⁻¹, respectively (García-Oliva et al., 2006). In the same area Paul et al. (2008) reported a SOC pool of 30.9-45.9 Mg C ha⁻¹ at 0-10 cm depth in sedimentary and volcanic soils, respectively. In Puerto Rico, the SOC pool in 0-10 cm was estimated to be 61.6 and 65.8 Mg C ha⁻¹ in a 50-yr and 70-yr old dTf, respectively (Erickson et al., 2002). The SOC pool at Of, i.e., 228.9 Mg C ha⁻¹, was within the range reported in humid secondary forests of

445 northeastern Costa Rica (Powers and Veldkamp, 2005; Jiménez et al., 2008b),
446 whereas it was lower for the 65 years-old dTf.

Our data from the dTf were lower than those globally estimated for the top 1 m of mineral soil by Jobbagy & Jackson (2000), i.e., 158 Mg C ha⁻¹. However, our data were higher and lower than those reported by Delaney et al. (1997) and Jaramillo et al. (2003) in the first 10 cm of mineral soil in mature dTf of Venezuela and Mexico, i.e., from 27.4 to 98 Mg C ha⁻¹, respectively. In a lower montane wet evergreen forest of Puerto Rico, Marin-Spiotta et al. (2009) reported SOC and SON pool of 77.2 and 88.5 Mg C ha⁻¹, and 7.0 and 6.9 Mg N ha⁻¹ for 0-50 cm, during 60 and 80 years of secondary succession, respectively, values much lower than those obtained in our study (Table 7).

Comparatively to soils under moist forests from other sites in Central and South
America (Schwendenmann and Pendall, 2006; Paul et al., 2008) soils in Sector Santa
Rosa contained an important reservoir of SOC pool in the Of. Paul et al. (2008)
reported a SOC pool from 30.9 to 45.9 Mg C ha⁻¹ (0-10 cm) in sedimentary and
volcanic soils under montane humid forests in Ecuador, values lower than those
obtained in our study for the three dTfs stands.

N concentrations were high in the topsoil of Df and Of, i.e. 4.5 and 5.3 g kg⁻¹, respectively. These values were higher than those reported in the same area by Powers et al. (2009), i.e. 3.5 g kg⁻¹ (0-10 cm), although similar to N concentrations found in a dTf at Palo Verde National Park. At Santa Rosa, soil N concentration in the Qu stand was higher than the value reported in Powers et al. (2009), i.e., 3.7 vs. 2.2 g kg⁻¹ for the same area. The reason could be related to within-site soil differences in the various regenerated dTfs.

Aggregate fractionation revealed significant differences on soil structure at Sector Santa Rosa. Our data revealed a much higher proportion of >250 µm aggregates in the Pa as compared to the dTf stands. Conversion of forest into pasture leads to reduction in the distribution of >250 µm aggregates (Garcia-Oliva et al., 2006; Schwendenmann and Pendall, 2006). The proportion of >250 µm aggregates in dTf soils of the Pacific Mexican coast was 80% of the total (García-Oliva et al., 1999a), whereas these aggregates made up only 35% of the sand-free soil mass in pasture soils (García-Oliva et al., 2006). Cotler and Ortega-Larrocea (2006) found a greater content of aggregates >4.75 mm in an unburned pasture (Panicum maximum), in opposition to the burned pasture, where a higher content of <0.25 mm aggregates was observed. Between the pasture and the TDF soil, the largest differences were found among the <0.25 mm aggregates, which are dominant in the pasture soils. In our study, aggregates >4.75 mm were more than 90% of the total in the burned ancient pasture (Figure 2d), while at the dTf stands the percentage of size-class aggregate was similarly distributed in all depths. In another study, Noguez et al. (2008) found that aggregates >250 µm under forest soils were ca. 80% of the total fraction.

Data on the vertical SOC concentration within particle-size fractions in the dTf
are scanty, and comparison with other studies is constrained by the few data available.
A high variability exists among studies in the results obtained for C concentration in
size-class aggregates. In the most recently recovered dTf, the Qu forest, SOC
concentration was higher (average of the four size-class aggregates, Figure 3) than
data reported in García-Oliva et al. (1994) and C concentration increased with
decreasing size of aggregates in similar textured soils, i.e. sandy-clay loam as in the

493	Qu forest. García-Oliva et al. (1999) reported that in ${<}53$ and 53-250 μm fractions,
494	total C ranged from 6 to 19, from 8 to 18 and from 19 to 60 g kg ⁻¹ in the dTf, a burned
495	plot and a 10 yr-old pasture, respectively, while in the control dTf total C
496	concentration was similar between >250 and <250 μm aggregates. They also reported
497	that distribution of SOC across aggregate size fractions was strongly affected by
498	slash-and-burn agriculture. The effect of burning on size-class aggregate C
499	distribution was assessed by García-Oliva et al. (1994). A reduction of C
500	concentration with decreasing size-class aggregates was observed after the dTf was
501	converted to pasture in 0-2 cm depth. In our study the three dTfs were affected by
502	different fire events of varying intensity and time lag that could have lead to a
503	redistribution of size-class aggregates, in addition to other abiotic and biotic factors
504	like tree root growth and biological activity related to the time elapsed since the last
505	fire event. Differences are determined by fire management and duration which in the
506	Qu forest occurred for longer periods than in the Df and Of (Lorenz et al., 2010), and
507	continuous burning in the Pa could result in higher MWD of aggregates.
508	Results from different studies in Central America indicate discrepancies on the
509	SOC concentration values reported in aggregates >250 and <250 µm differ among
510	studies conducted in Central America dTfs. Cotler and Ortega-Larrocea (2006) found
511	a significant positive and negative correlation between SOC concentration and >250
512	and $<250 \mu m$ aggregates, respectively in a Mexican dTf. Ashman et al. (2003) and
513	García-Oliva et al. (2003), on the contrary, reported that total soil C concentration in
514	the same area was higher in $<250 \ \mu m$ than in $>250 \ aggregates$ (0-5 cm depth). These
515	results were confirmed by Noguez et al. (2008) who reported C concentration in
516	aggregates $<250 \ \mu m$ at 43.6 mg C g ⁻¹ , higher than the values obtained in aggregates

>250 μ m, i.e., 28.8 mg C g⁻¹. These data are comparable to ours at Df and Qu dTfs,

but lower at Of (Figure 3). Different results obtained among studies are the result of
soil type, texture, clay content, and plant cover with OM of different quality.

520 4.3. Abiotic and biotic soil C stabilization processes

Results of the between-within PCA were interpreted to characterize the relationship between soil minerals and stabilized SOC fractions in 30-40 and 40-50 cm depth. The between PCA confirmed the analysis performed by Lorenz et al. (2009), i.e., mineral-associated and stable SOC pool increased with depth and C was preferentially bound to soil minerals (HF extraction) at both Of and Df compared to Qu, while the pool of functionally passive SOC was larger at Of than at Df and Qu forests. In other words, H₂O₂-resistant SOC pool in each depth and the total C pool down to 50-cm depth was higher in the order Of > Df > Qu.

Stabilization of SOC by Al-complexes has been revealed by Powers and Schlesinger (2002). In our study, this was the case in the Qu forest, as indicated by the positive relationship with Al_p/Al_o ratio, which was also related to Al- and Si-minerals (Figure 8a). The mineral-associated and stable SOC pool increased with depth as indicated by the multivariate analysis. Particularly, poorly crystalline Fe oxides and ferrihydrite were the most important minerals for SOC stabilization at 40-50 cm depth. High Fe_o/Fe_d ratios indicated that poorly crystalline Fe oxides were important for SOC stabilization at Of. Ferrihydrite was more relevant for SOC stabilization at Df and Qu forests as indicated by Fe_d-Fe_o with increasing depth and clay% in the PCA. No statistical differences were reported between stable SOC among the three dTfs (Lorenz et al., 2009). The regressions among selective dissolution data, mineral phase indicators and stabilized SOC indicate that poorly crystalline Fe oxides are most important for SOC stabilization in secondary dTf sub-soils (Lorenz et al., 2009).

Non-crystalline clays and metal-humus complexes also increase soil C residence times and pool sizes by decreasing the accessibility of soil C to microbes (Sollins et al, 1996). Regarding soil texture, Powers and Schlesinger (2002) reported that Al_p/Al_o was positively correlated with % clay and negatively correlated with Fe₀ in volcanic soils from very humid forest soils at La Selva Biological Station (northeastern Costa Rica). They found that ferrihydrite was negatively related to clay% and positively related to silt%. In our study Fe_o was indeed negatively correlated with clay% but also with silt% in the between-PCA (Figure 7a). Regarding Al_p/Al_o the relationship with clay% was very weak, and the within-PCA indicated a negative correlation with Fe_o (Figure 8a).

Soil C concentration was positively correlated with Al-humus complexes (Powers and Schlesinger, 2002), and the stabilization of soil C is determined by Al-humus complexes and non-crystalline hydroxides (Masiello et al., 2004), which are important for C stabilization at time scales longer than several decades (Paul et al., 2008). We also found a correlation of SOC with Al_p in the within-PCA (Axis II, negative axis, Figure 8a), especially in the topsoil of the Qu forest, but not in the between-PCA, where both variables were in opposite sides of Axis I (Figure 7a). The within-PCA revealed intra-site differences, mainly related to soil texture variations with increasing depth. This relationship can thus be useful to determine within-site differences. Other studies have reported this relationship in different soil types, including volcanic ash soils (de Koning et al., 2003). The different results obtained reflect variation in climate, parent material, weathering processes and land management like fire use, between more humid and drier forests in Costa Rica.

Clay mineralogical composition varies with soil development. Clays are transformed through weathering processes from non crystalline, allophanic minerals to Al/Fe-humus complexes and crystalline minerals such as kaolinite and gibbsite. Soils in the dTf of Sector Santa Rosa contain a high proportion of Al_p/Al_o which indicates that Si-minerals have been removed and gibbsite and goethite are the most likely dominant residual minerals. The relative amounts of Al in organic complexes (Al_p/Al_o) are not statistically different among depths and sites (Lorenz et al., 2009). The dTf at Santa Rosa is characterized by less-weathered, allophanic soils, as revealed by the Al_p/Al_o ratios below 0.5 throughout the profile at Of whereas this ratio is >0.5 at Df indicating that Al complexed by organic acids may have been present (Lorenz et al., 2009). Compared to soils in humid forests from northeastern Costa Rica, soils at dTfs in the Pacific region seem to have higher potential to stabilize SOC.

Knowledge of soil C stabilization mechanisms is necessary as these are varied. Among the factors that determine accumulation and stabilization of SOC are those related to soil biological activity, i.e. the rates of litter and OM inputs that are incorporated into the soil by invertebrates, such as diplopods, ants, beetles and earthworms, and belowground inputs from roots, root exudates, microorganisms, and stabilization by association with soil minerals. We do know little about the factors controlling the stability of carbon in deep soil layers. Some studies have highlighted that the stability of OC in deep soil layers is maintained in the absence of fresh organic C, an essential source of energy for soil micro-organisms, i.e. bacteria and fungi (Fontaine et al., 2007). A strong role for organo-mineral interactions in C stabilization within aggregates $<250 \mu m$ has been demonstrated by Lehmann et al. (2007). The higher content of aliphatic and carboxylic C of microbial origin than the OM of the aggregates <250 µm indicated that interactions between microbial

590 metabolites and surface of minerals are important in initiating SOC stabilization 591 (Lehmann et al., 2007). However, the stability of SOC in deep soil layers cannot 592 entirely be ascribed to SOC fixation on minerals (Fontaine et al., 2007). These authors 593 demonstrated that stabilization of SOC in deep soil layers was controlled by the 594 incorporation of fresh C supply. SOC in deeper layers can persist because it is bound 595 to soil minerals and exists in forms that decomposers cannot access (Baldock and 596 Skjemstad, 2000).

Soil invertebrates excrete faecal pellets and reduce the size of organic residues that are then decomposed by micro-organisms, and also protect OM from further decomposition by occlusion within aggregates (Lavelle and Spain, 2001). Important soil biological activity was observed in the Df and Of where abundant beetles (Elateridae, Coleoptera) and earthworms (Oligochaeta) were present. In the Of, ant nests of the genus Atta (Formicidae, Hymenoptera) were also present and SOC concentration in the ant hill equaled that observed at 40-50 cm depth. Low C concentration in the ant hills have been reported in other studies from tropical sites (Decaëns et al., 2001; Jiménez et al., 2008a). This soil translocation contributes to patchy distribution of low SOC concentration areas (Figure 2). More studies are needed on the ecology of soil invertebrates from the dTfs and their influence on SOC accumulation and stabilization in aggregates.

609 4.4. Preliminary SOC accumulation rates in the dTf at Santa Rosa

610 The SOC accumulation rates across global vegetation types and climates vary 611 considerably (Post and Kwon, 2000). Furthermore, SOC varies regionally with stand 612 age and vegetation composition (Powers, 2004). For instance, the SOC pool in 613 tropical old-growth forests tends to decrease exponentially as the

temperature/precipitation ratio increases, corresponding to a gradient from wet to dry forests (Brown and Lugo, 1982). The soil C accumulation rate in wet forests is half the value observed in the dTf over a 100-year time period, i.e. 0.51 and 1.02 Mg C ha ¹ yr⁻¹, respectively (Silver et al., 2000). A strong significantly linear relationship between soil C and forest age exists, at least during the first 100 years after recovery (Silver et al., 2000), although previous estimates are inconclusive (Lugo and Brown, 1993). This may indicate differences in organic matter contents due to previous land use since most fertile soils are generally used for pasture establishment or other agricultural land uses, even during the pre-hispanic period (Janzen, pers. comm.) The data analysed by Silver et al. (2000) showed that soil C concentrations in land uses derived from dTfs were initially high to start with, but the low number of replicates indicates the need for additional studies.

Our results agree with Vargas et al. (2008), who have reported increases in the SOC pool after recovery of the dTf. In the dry subtropical forest, the rates of C accumulation during forest establishment after agriculture use have ranged from loss, i.e. -13.1 g C m⁻² yr⁻¹ in the pasture to gain of 0.38 Mg C ha⁻¹ yr⁻¹ after 25 and 35 years after establishment (Smith et al., 1951, op. cit. in Post and Kwon, 2000, and Brown and Lugo, 1990), respectively. In our study, the SOC pool increased with age of the restored dTf (Table 7), from 0.009 and 0.25 Mg C ha⁻¹ yr⁻¹ in the 0-10 and 0-20 cm between the Df and Of, respectively. No conclusion is to be drawn from these figures as no information was available about how much C was initially lost after replacement of the dTf and what the amount already incorporated into the soil after land conversion. From 18 to 25% reduction in SOC concentration in fire-affected dTf soils has been reported (García-Oliva et al., 2006; Erickson et al., 2002), and more

recently SOC changes related to history of fire events have been revealed (Lorenz etal., 2009).

640 Acknowledgements

This research was sponsored by the U.S. Department of Energy. We thank the assistance of Y. Raut in lab analyses and Jean-Pierre Rossi for his help in statistical analyses. We would like to acknowledge the invaluable and efficient support provided by the staff at "Area de Conservación Guanacaste, Sector Santa Rosa", especially Roger Blanco, W. Medina and A. Adamuz. Sincere thanks are extended to Prof. Daniel Janzen for allowing us to conduct this work at Santa Rosa National Park, and his comments on an earlier version of this manuscript. We thank two anonymous reviewers for their constructive and helpful comments provided on an earlier version of this paper.

651 Appendix A. List of vascular plant species in the burned ancient pasture of Sector

652 Santa Rosa¹

Family	Genus/Species	Descriptor	
Poaceae (= Gramineae)	Axonopus aureus	Beauv.	
	Hyparrenia rufa	(Nees) Stapf.	
	Ischaemum rugosum	Salisb.	
	Lasiacis ruscifolia	(Kunth) Hitchc.	
	Lasiacis sorghoidea	(Desv. ex Hamilton) A.S. Hitchc. & Chase	
	Melinis minutiflora	Beauv.	
	Oplismenus burmannii	(Retz.) Beauv.	
	Oryza latifolia	Desv.	
	Panicum maximum	Jacq.	
	Panicum sp.	0	
	Panicum trichoides	Sw.	
	Paspalum sp.	L.	
	Paspaium virgaium Patthaallia aaahinahinansia	L. $(I_{our}) W D$ Clauton	
Cuparacaaa	Seleria sp	(Loui.) w.D. Clayton Wall	
Cyperactae	Scieniu sp. Fimhristylis spadicea	(L) Vahl	
	Eleocharis sp.		
	Cyperus sp.	L.	
	Cyperus surinamensis	Rottb.	
	Rhynchospora sp.		
	Rhynchospora barbata	(Vahl.) Kunth	
Asclepiadaceae	Asclepia woodsianiana		
	Asclepia oenotheroides		
Asteraceae	Baltimora recta	L.	
Boraginaceae	Heliotropium filiforme	Lehm.	
Fabaceae/papillonaceae	Crotalaria incana	L.	
	Eriosema diffusum	(Kunth)G.Don	
	Indigofera costaricensis	Benth.	
	Indigofera suffruticosa	P. Mill.	
	Tephrosia vicioides	Schldl.	
Fabaceae/mimosaceae	Acacia farnesiana	L.	
	Dalea cliffortiana	Willd.	
	Mimosa pigra	L.	
Iridaceae	Cipura campanulata	Ravenna	
Malvaceae	Sida barclayi	Baker f.	
Ponteridaceae	Heteranthera limosa	Sw. Willd	
	Heteranthera spicata	J. Presl.	
Rubiaceae	Spermacoce exilis	(L.O. Williams) C. Adams	
Scrophulariaceae	<i>Bacopa</i> sp		

Bacopa salzmannii	(Benth.) Wettst.
Buchnera pusilla	Kunth
Polypremum procumbens	L.
Scoparia dulcis	L.
Stellaria ovata	Willd. ex Schlecht.
Stemodia durantifolia	(L.) Sw.

¹ Prepared by A. Guadamuz, "Area de Conservación Guanacaste".

Aide, T.M., Zimmerman, J.K., Pascarella, J.B., Rivera, L., Marcano-Vega, H., 2000. Forest regeneration in a chronosequence of tropical abandoned pastures: implications for restoration ecology. Restoration Ecol. 8, 328-338. Allen, W., 2001. Green Phoenix: Restoring the Tropical Forests of Guanacaste, Costa Rica. Oxford University Press, New York, 310 p. Ashman, A.H., Hallet, P.D., Brookes, P.C., 2003. Are the links between soil aggregate size class, soil organic matter and respiration rates artifacts of the fractionation procedure? Soil Biol. Biochem. 35, 435-444. Baldock, J.A., Skjemstad, J.O., 2000. Role of the matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31, 697-710. Batjes, N.H., 1996. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47(2), 151-163. Blake, G.R., Hartge, K.H., 1986. Bulk density, Methods of Soil Analysis, pp. 363-375. Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analysis of soil. Agron. J. 54, 464-465. Brown, S., Lugo, A.E., 1982. The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica 14(3), 161-187.

References

- 674 Brown, S., Lugo, A.E., 1990. Tropical secondary forests. J. Trop. Ecol. 6, 1-32.
 - Buschbacher, R., Uhl, C. and Serrao, E.A.S., 1988. Abandoned pastures in eastern Amazonia.
 II. Nutrient stocks in the soil and vegetation. J. Ecol. 76, 682-699.
 Calvo-Alvarado, J.C., McLennan, B., Sánchez-Azofeifa, G.A., Garvin, T., 2009.
 - 678 Deforestation and forest restoration in Guanacaste, Costa Rica: Putting conservation
 679 policies in context. Forest Ecol. Manag. 358, 931-940.
- 680 Cerri, C.C., Volkoff, B., Andreaux, F., 1991. Nature and behaviour of organic matter in soils under natural forest, and after deforestation, burning and cultivation, near Manaus.
 682 Forest Ecol. Manag. 38(3-4), 247-257.
- 683 Christensen, B.T., 1992. Physical fractionation of soil and organic matter in primary particle
 684 size and density separates. Adv. Soil Sci. 20, 1-90.
- 685 Christensen, B.T., 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur. J. Soil Sci. 52, 345-353.
- 687 Cleveland, C.C., Townsend, A.R., Schmidt, S.K., Constance, B.C., 2003. Soil microbial
 688 dynamics and biogeochemistry in tropical forests and pastures, southwestern Costa
 689 Rica. Ecol. Appl. 13(2), 314-326.
- 690Cotler H., Ortega-Larrocea, M.P., 2006. Effects of land use on soil erosion in a tropical dry2691forest ecosystem, Chamela watershed, Mexico. Catena 65, 107-117.
 - 692 Cooper, D.W., 1968. The significance level in multiple tests made simultaneously. Heredity
 693 23, 614-617.
- ⁵ 694 Dahlgren, R., Shoji, S., Nanzyo, M., 1993. Mineralogical characteristics of volcanic ash soils,
 ⁶ 695 in: Shoji, S., Nanzyo, M. and Dahlgren, R. (Eds.), Volcanic Ash Soils: Genesis,
 ⁷ 696 Properties, and Utilization. Developments in Soil Science. Elsevier, Amsterdam, pp.
 ⁹ 697 101-143.
 - 698Daubenmire, R., 1972. Ecology of Hyparrhenia rufa (Nees) in derived savanna in north-699western Costa Rica. J. Appl. Ecol. 9, 11-23.
 - de Koning, G.H.J., Veldkamp, E., López-Ulloa, M., 2003. Quantification of carbon
 sequestration in soils following pasture to forest conversion in north-western
 Ecuador. Global Biogeochem. Cycles 17, 1098-1110.
- 703 De Moraes, J.F.L., Volkoff, B., Cerri, C.C., Bernoux, M., 1996. Soil properties under
 704 Amazon forest and changes due to pasture installation in Rondônia, Brazil. Geoderma
 705 70(1), 63-81.

- Decaëns, T., Galvis, J.H., Amézquita, E., 2001. Propriétés des structures produites par les ingénieurs écologiques à la surface du sol d'une savane colombienne. C. R. Acad. Sci. Paris 324, 465-478. Delaney, M., Brown, S., Lugo, A.E., TorresLezama, A., Quintero, N.B., 1997. The distribution of organic carbon in major components of forests located in five life zones of Venezuela. J. Trop. Ecol., 13, 697-708. Dolédec, S., Chessel, D., 1989. Rythmes saisonniers et composantes stationnelles en milieu aquatique. II. Prise en compte et élimination d'effets dans un tableau faunistique. Acta Oecol. 10(3), 207-232. Dolédec, S., Chessel, D., 1991. Recent developments in linear ordination methods for environmental sciences. Adv. Ecol. 1, 133-155. Emerson, W.W., Greenland, D.J., 1990. Soil aggregates - Formation and stability, in: de Boodt, M.F., Hayes, M.H.B., Herbillon, A. (Eds.), Soil Colloids and Their Associations in Aggregates. Plenum Press, New York, pp. 485-511. Erickson, H., Davidson, E.A., Keller, M., 2002. Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest. Oecologia 130, 297-308. Eswaran, H., van den Berg, E., Reich, P., 1993. Organic carbon in soils of the world. Soil Science Society of America Journal 57, 192-194. Eusterhues, K., Rumpel, C., Kögel-Knabner, I., 2005. Stabilization of soil organic matter isolated via oxidative degradation. Org. Geochem. 36, 1567-1575. Eusterhues, K., Rumpel, C., Kleber, M., Kögel-Knabner, I., 2003. Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org. Geochem. 34, 1591-1600. FAO, 2010. Global Forest Resource Assessment, FAO, Rome. Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., Rumpel, C., 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277-280. García-Oliva, F., Casar, I., Morales, P., Mass, J.M., 1994. Forest-to-pasture conversion influences on soil organic carbon dynamics in a tropical deciduous forest. Oecologia 99, 392-396. García-Oliva, F., Gallardo Lancho, J.F., Montaño, N.M., 2006. Soil carbon and nitrogen dynamics followed by a forest-to-pasture conversion in western Mexico. Agroforest. Syst. 66, 93-100. García-Oliva, F., Oliva, M., Sveshtarova, B., 2004. Effect of soil macroaggregates crushing on C mineralization in a tropical deciduous forest ecosystem. Plant Soil 259(1-2), 297-305. García-Oliva, F., Sanford, R.L.J., Kelly, E., 1999a. Effect of burning of tropical deciduous forest soil in Mexico on the microbial degradation of organic matter. Plant Soil 206, 29-36. García-Oliva, F., Sanford, R.L.J., Kelly, E., 1999b. Effects of slash-and-burn management on soil aggregate organic C and N in a tropical deciduous forest. Geoderma 88, 1-12. Gillespie, T.W., Grijalva, A., Farris, C.N., 2000. Diversity, composition, and structure of tropical dry forests in Central America. Plant Ecol. 147, 37-47. Groffman, P.M., McDowell, W.H., Myers, J.C., Merriam, J.L., 2001. Soil microbial biomass and activity in tropical riparian forests. Soil Biol. Biochem. 33(10), 1339-1348. Grau, H.R., Gasparri, N.I., Aide, T.M., 2008. Balancing food production and nature conservation in the Neotropical dry forest of northern Argentina. Global Change Biol. 14, 985-997. Hartwig, R.C., Loeppert, R.H., 1993. Evaluation of soil iron, in: Barton, L.L., Hemming, B.C. (Eds.), Plants and Soil Microorganisms. Academic Press, San Diego, pp. 465-482. Hassink, J., 1997. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191, 77-87. Hoekstra, J.M., Boucher, T.M., Ricketts, T.H., Roberts, C., 2005. Confronting a biome crisis: global disparities of habitat loss and protection. Ecol. Lett. 8, 23-29.

1	759 760 761	Houghton, R.A., Skole, D.L., Lefkowitz, D.S., 1991. Changes in the landscape of Latin America between 1850 and 1985. II. Net release of CO ₂ to the atmosphere. Forest Ecol Manag. 38, 173-199
3	762	Janzen, D.H., 1988. Tropical dry forests: The most endangered major tropical ecosystem, in:
4 F	763	Wilson, E.O. (Ed.), Biodiversity. National Academy Press, Washington, DC, pp. 130-
5	764	137.
7	765	Janzen, D.H., 1988b. Guanacaste National Park: tropical ecological and biocultural
8	766	restoration, in: Cairns, J.J. (Ed.), Rehabilitating Damaged Ecosystems. CRC Press,
9	767	Boca Raton, FL, pp. 143-192.
10	768	Janzen, D.H., 1993. Caterpillar seasonality in a Costa Rican dry forest, in: Stamp, N.E.,
11	769	Carey, T.M. (Eds.). Caterpillars, Ecological and evolutionary constraints on foraging.
12	770	Chapman and Hall New York pp 448-477
13	771	Janzen D.H. 2000 Costa Rica's Area de Conservación Guanacaste: A long march to survival
14	772	through non-damaging biodevelopment Biodiversity 1(2) 7-20
15	773	Jaramillo VI Kauffman IB Renteria-Rodriguez I Cummings DI Filingson I I
16	771	2003 Biomass carbon and nitrogen pools in Maxican tropical dry forest landscapes
17	775	Ecosystems 6, 600, 620
18	776	ECOSYSTETIIS 0, 009-029. Lastrow LD 1006 Soil accordants formation and the accordal of norticulate and minoral
19	770	Jastrow, J.D., 1990. Son aggregate formation and the accruator particulate and mineral-
20 21	111	associated organic matter. Soli Biol. Biochem. 28, 005-070.
∠⊥ 2.2	118	Jimenez, J.J., Decaens, I., Lavelle, P., 2008a. C and N concentrations in biogenic structures
22	779	of a soil-feeding termite and a fungus-growing ant in the Colombian savannas. Appl.
2.4	780	Soil Ecol. 40(1), 120-128.
25	/81	Jiménez, J.J., Lal, R., Leblanc, H.A., Russo, R.O., 2007. Soil organic carbon pool under
26	782	native tree plantations in the Caribbean lowlands of Costa Rica. Forest Ecol. Manag.
27	783	241(1-3), 134-144.
28	784	Jiménez, J.J., Lal, R., Leblanc, H.A., Russo, R.O., Raut, Y., 2008b. The soil C pool in
29	785	different agroecosystems derived from the dry tropical forest of Guanacaste, Costa
30	786	Rica. Ecol. Eng. 34(4), 289-299.
31	787	Jiménez, J.J., Lal, R., Russo, R.O., Leblanc, H.A., 2008. The soil organic carbon in particle-
32	788	size separates under different regrowth forest stands of north eastern Costa Rica.
33	789	Ecol. Eng. 34(4), 300-310.
34 25	790	Jobbágy, E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its
35	791	relation to climate and vegetation. Ecol. Appl. 10(2), 423-436.
37	792	Johnson, N.C., Wedin, D.A., 1997. Soil carbon, nutrients, and mycorrhizae during conversion
38	793	of dry tropical forest to grassland. Ecol. Appl. 7(1), 171-182.
39	794	Kalacska, M., Sánchez-Azofeifa, G.A., Calvo-Alvarado, J.C., Quesada, M., Rivard, B.,
40	795	Janzen, D.H., 2004. Species composition, similarity and diversity in three
41	796	successional stages of a seasonally dry tropical forest. Forest Ecol. Manag. 200, 227-
42	797	247.
43	798	Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution, in: Klute, A.
44	799	(Ed.), Methods of Soil Analysis. Part I. Soil Science Society America, Madison, pp.
45 46	800	425-442.
40 47	801	Kimble, J., Eswaran, H., Cook, T., 1990. Organic carbon on a volume basis in tropical and
48	802	temperate soils, 14 th Int. Cong. Soil Sci., Kyoto, Japan, pp. 248-253.
49	803	Kleber, M., Mikutta, R., Torn, M.S., Jahn, R., 2005, Poorly crystalline mineral phases protect
50	804	organic matter in acid subsoil horizons. Eur. J. Soil Sci. 56, 717-725.
51	805	Kleber, M., Sollins, P., Sutton, R., 2007a, A conceptual model of organo-mineral interactions
52	806	in soils: self-assembly of organic molecular fragments into zonal structures on
53	807	mineral surfaces. Biogeochemistry 85, 9-24
54	808	Kleber, M., Schwendenmann, L., Veldkamp E. Rößner I. 2007b Hallovsite versus
55	809	gibbsite: Silicon cycling as a pedogentic process in two lowland neotronical rain
56	810	forest soils of La Selva Costa Rica Geoderma 138 1-11
57 58	811	Kramer F Δ 1997 Measuring landscape changes in remnant tropical dry forest in:
50 59	817	Laurance, W.F. Bierregaard, P.O.I. (Eds.), Tropical Ecroses Dompones: Ecology
60	012	Laurance, w.r., Dienegaaru, K.O.J. (Lus.), Hopical Folesis Kennianis. Ecology,
61		
62		
63		22

- 64
- 65

- Management and Conservation of Fragmented Communities. Chicago University Press, Chicago, pp. 386-399. Lal, R., 2004. Soil carbon sequestration impacts of global climate change and food security. Science 304, 1623-1627. Lavelle, P., Spain, A.V., 2001. Soil Ecology. Kluwer Academic Publishers, Dordrecht, 654 p. Lehmann, J., Kinyangi, J., Solomon, D., 2007. Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry 85, 45-57. López-Ulloa, M., Veldkamp, E., de Koning, G.H.J., 2005. Soil carbon stabilization in converted tropical pastures and forests depends on soil type. Soil Sci. Soc. Am. J. 69, 1110-1117. Lorenz, K., Lal, R., Jiménez, J.J., 2009. Soil organic carbon stabilization in dry tropical forests of Costa Rica. Geoderma 152(1-2), 95-103. Lorenz, K., Lal, R., Jiménez, J.J., 2010. Characterization of soil organic matter and black carbon in dry tropical forests of Costa Rica. Geoderma 158(3-4), 315-321. Lugo, A.E., Brown, S., 1993. Management of tropical soils as sink or sources of atmospheric carbon. Plant Soil 149, 27-41. Maass, J.M., 1995. Conversion of tropical dry forest to pasture and agriculture, in: Bullock, S.H., Mooney, H.A., Medina, E. (Eds.), Seasonally Dry Tropical Forest. Cambridge University Press, Cambridge pp. 399-422. Manly, B.F.J., 1991. Randomization and Monte Carlo Methods in Biology. Chapman and Hall, London, 281 p. Marin-Spiotta, E., Silver, W.L., Swanston, C.W., Ostertag, R., 2009. Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Global Change Biol. 15, 1584-1597. Masiello, C.A., Chadwick, O.A., Southon, J., Torn, M.S., Harden, J.W., 2004. Weathering controls on mechanisms of carbon storage in grassland soils. Global Biogeochem. Cycles, 18 GB4023. Mooney, H.A., Bullock, S.H., Medina, E., 1995. Introduction, in: Bullock, S.H., Mooney, H.A., Medina, E. (Eds.), Seasonally Tropical Dry Forests. Cambridge University Press, Cambridge, pp. 1-8. Murty, D., Kirschbaum, M.U.F., McMurtrie, R.E., McGilvray, H., 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biol. 8, 105-123. Neill, C., Melillo, J.M., Steudler, P.A., Cerri, C.C., De Moraes, J.F.L., Piccolo, M.C., Brito, M., 1997. Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecol. Appl. 7, 1216-1225. Noguez, A.M., Escalante, A.E., Forney, L.J., Nava-Mendoza, M., Rosas, I., Souza, V., García-Oliva, F., 2008. Soil aggregates in a tropical deciduous forest: effects on C and N dynamics, and microbial communities as determined by t-RFLPs. Biogeochemistry 89, 209-220. Oksanen, L., 2001. Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94, 27-38. Paul, S., Flessa, H., Veldkamp, E., López-Ulloa, M., 2008. Stabilization of recent soil carbon in the humid tropics following land use changes: evidence from aggregate fractionation and stable isotope analyses. Biogeochemistry 87, 247-263. Post, W.M., Kwon, K.C., 2000. Soil carbon sequestration and land-use change: processes and potential. Global Change Biol. 6, 317-327. Post, W.M., Emanuel, W.R., Zinke, P.J., Stangenberger, A.G., 1982. Soil carbon pools and world life zones. Nature 298, 156-159. Powers, J.S., 2004. Changes in soil carbon and nitrogen after contrasting land-use transitions in northeastern Costa Rica. Ecosystems 7(2), 134-146. Powers, J.S., 2006. Spatial variation of soil organic carbon concentrations and stable isotopic composition in 1-ha plots of forest and pasture in Costa Rica: implications for the natural abundance technique. Biol. Fertil. Soils 42, 580-584.

	868	Powers, J.S., Becknell, J.M., Irving, J., Pérez-Avilés, D., 2009. Diversity and structure of
1	869	regenerating tropical dry forests in Costa Rica: Geographic patterns and
2	870	environmental drivers. Forest Ecol. Manag. 258, 959-970.
3	871	Powers, J.S., Schlesinger, W.H., 2002. Relationships among soil carbon distributions and
4	872	biophysical factors at nested spatial scales in rain forests of northeastern Costa Rica.
5	873	Geoderma 109, 165-190.
6 7	874	Powers, J.S., Veldkamp, E., 2005. Regional variation in soil carbon and ¹³ C in forests and
/ Q	875	pastures of northeastern Costa Rica. Biogeochemistry 72(3), 315-336.
9	876	Ouesada, M., Stoner, K.E., 2004. Threats to the conservation of the tropical dry forest in
10	877	Costa Rica, in: Frankie, G.W., Mata, A., Vinson, S.B. (Eds.), Biodiversity
11	878	Conservation in Costa Rica: Learning the Lessons in a Seasonal Dry Forest.
12	879	University of California Press, Berkeley, California, pp. 266-280.
13	880	Ramankutty N Gibbs HK Achard F Defriess R Foley I A Houghton R A 2007
14	881	Challenges to estimating carbon emissions from tropical deforestation. Global
15	882	Change Biol 13 51-66
16	883	Rossi I Govaerts A de Vos B Verbist B Vervoort A Poesen I Muys B Deckers
17	884	I 2009 Spatial structures of soil organic carbon in tropical forests
18	885	Southeastern Tanzania Catena 77, 19-27
20	886	Sader S A Joyce A T 1988 Deforestation rates and trends in Costa Rica 1940 to 1983
20	887	Biotropice 20, 11, 10
22	888	Dioliopica 20, 11-17. Sénahaz Azafaifa G.A. Oyasada M. Badríguaz I.O. Nassar I.M. Stonar K.E. Castilla
23	000	Sanchez-Azolena, O.A., Quesada, M., Rounguez, J.O., Nassai, J.W., Stoller, K.E., Castino,
24	800	A., Galvill, I., Zelli, E.L., Calvo-Alvalauo, J.C., Kalacska, W.E.K., Fajaluo, L., Comon, J.A., Cuoves Boyes, B. 2005, Besserah priorities for Neotropical dry forests
25	090 001	Distancia 27, 477, 495
26	891	Biotropica $5/, 4//-485$.
27	892	Schwendenmann, L., Pendall, E., 2006. Effects of forest conversion into grassiand on soil
28	893 804	aggregate structure and carbon storage in Panama: evidence from soil carbon
29	894	If actionation and stable isotopes. Plant Soli 288, 217-232.
30	895	Silver, W.L., Neff, J., McGroddy, M., Veldkamp, E., Keller, M., Cosme, R., 2000. Effects of
3⊥ 20	896	soil texture on belowground carbon and nutrient storage in a lowland Amazonian
32 33	897	Forest ecosystem. Ecosystems 3, 193-209.
34	898	Six, J., Conant, R.T., Paul, E.A., Paustian, K., 2002. Stabilization mechanisms of soil organic
35	899	matter: Implications for C-saturation of soils. Plant Soil 241(2), 155-176.
36	900	Smith, R.M., Samuels, G., Cernuda, C.F., 1951. Organic matter and nitrogen build-ups in
37	901	some Puerto Rican soil profiles. Soil Science 72, 400-427.
38	902	Spielvogel, S., Prietzel, J., Kögel-Knabner, I., 2008. Soil organic matter stabilization in acidic
39	903	forest soils is preferential and soil type-specific. Eur. J. Soil Sci. 59 674-692.
40	904	Thioulouse, J., Chessel, D., Dolédec, S., Olivier, JM., 1997. ADE-4: a multivariate analysis
41 40	905	and graphical display software. Statistical Computing 7(1), 75-83.
42 12	906	Tiessen, H., Salcedo, I.H., Sampaio, E.V.S.B., 1992. Nutrient and soil organic matter
44	907	dynamics under shifting cultivation in semi-arid northeastern Brazil. Agr. Ecosyst.
45	908	Environ. 38(3), 139-151.
46	909	Toledo, V.M., 1992. Bio-economic cost, in: Downing, T., Hecht, S. Pearson, H. (Eds.),
47	910	Development or Destruction? The Conversion of Tropical Forest to Pasture in Latin
48	911	America. Westview, New York, pp. 63-71.
49	912	Tripathi, N., Singh, R.S. 2009. Influence of different land uses on soil nitrogen
50	913	transformations after conversion from an Indian dry tropical forest. Catena 77, 216-
51	914	223.
52 52	915	Trumbore, S.E., Davidson, E.A., Barbosa De Camargo, P., Nepstad, D.C., Martinelli, L.A.,
55	916	1995. Belowground cycling of carbon in forests and pastures of eastern Amazonia.
55	917	Global Biogeochem. Cycles 9(4), 515-528.
56	918	Veldkamp, E., 1994. Organic carbon turnover in three tropical soils under pasture after
57	919	deforestation. Soil Sci. Soc. Am. J. 58(1), 175-180.
58	920	Vargas, R., Allen, M.F., Allen, E.B., 2008. Biomass and carbon accumulation in a fire
59	921	chronosequence of a seasonally dry tropical forest. Global Change Biol. 14(1), 109-
60	922	124.
61		
62		
ni		

- 63 64
- 65

- Werner, P., 1984. Changes in soil properties during tropical wet forest succession in Costa
 Rica. Biotropica 16(1), 43-50.
- 925 Weyl, R., 1980. Geology of Central America. Gebrüder Borntraeger, Berlin.

927	Figure captions
928	
929	Fig 1. Vertical SOC concentration (mean \pm 1 S.E.) in the four ecosystems studied at
930	Santa Rosa. Fisher PLSD test critical significance level is 4.3 and 4.8 (P<0.05) for
931	ecosystem and depth, respectively.
932	
933	Fig 2. Size-class aggregate distribution with depth in the four ecosystems analysed.
934	Only significant differences for each size-class aggregate are indicated (P<0.05,
935	Fisher PLSD). NS = Not significant.
936	
937	Fig 3. Vertical SOC concentration in the different particle size fractions at Santa
938	Rosa; clay+silt (<20 μm), coarse silt (20-53 μm), very fine sand (53-105 μm) and fine
939	sand (105-200 µm).
940	
941	Fig 4. a) Regression analysis between the percentage of clay (black dots), silt (blue
942	triangles) and sand (red squares) and SOC concentration in the bulk soil; b)
943	correlation between SOC concentration in the bulk soil and SOC in the different
944	particle size fractions in <250 µm aggreagates.
945	
946	Fig 5. Between-class PCA of the soil variables (data matrix 1). a) ordination of
947	variables; b) "Eigenvalues" diagram; c) projection of sampling sites owing to
948	categories soil depth and texture onto the factorial plane defined by the first two axes.
949	P<0.0001 (Montecarlo simulation).
950	
951	Fig 6. Within-class PCA of the soil variables (data matrix 1). a) Projection of the
952	sampling sites onto the factorial plane defined by axes 1 and 2; b) "eigenvalues"
953	diagram; c) the ecosystem effect is removed by placing the center of classes
954	(representing the 4 stands) at the origin of the factorial maps (top left); open circles
955	are placed at the centre of gravity of each soil depth and texture (the lines connect the
956	different ecosystems to their corresponding category).
957	
958	Fig 7. Between-class PCA of the soil variables (data matrix 2). a) ordination of
959	variables; b) projection of sampling sites onto the factorial plane defined by the first
960	two axes extracted in the analysis. P<0.0001 (Montecarlo simulation).

961	
962	Fig 8. Within-class PCA of the soil variables (data matrix 2). a) Projection of the
963	sampling sites onto the factorial plane defined by axes 1 and 2; b) "eigenvalues"
964	diagram; c) ordination of sites with all centroids (representing the three dTfs) at the
965	origin; open circles are placed at the centre of gravity of each soil depth and texture
966	(the lines connect the different ecosystems to the corresponding category).
967	

1	Tables
2	
3	Table 1. Overview of chemical extraction and separation treatments for targeted SOC-
4	related and mineralogical variables (from Lorenz et al. 2009).
5	
6	Table 2. Soil texture and pH in the four ecosystems, Sector Santa Rosa, Costa Rica.
7	
8	Table 3. Summary statistics for all soil variables analysed in this study.
9	
10	Table 4. Two-way ANOVA for all soil variables studied in the four ecosystems,
11	Sector Santa Rosa, Costa Rica. The F-ratios for each variable are indicated.
12	Bonferroni corrected P for 0.05, 0.01 and 0.001 are 0.0015(*), and 0.0003 (**), and
13	0.00003(***), respectively; NS, not significant.
14	
15	Table 5. Mean N concentrations and C:N ratios in all ecosystems studied, Sector
16	Santa Rosa, Costa Rica. Within rows, different capital letters indicate significant
17	differences between mean values for ecosystems (P<0.05, Fisher PLSD test). Within
18	columns, different lowercase letters indicate significant differences between mean
19	values for depth (P<0.05, Fisher PLSD test). Standard error within parentheses.
20	
21	Table 6. Mean values of soil bulk density (ρ_b) and mean weight diameter (MWD) of
22	soil aggregates down to 50 cm depth in the four systems studied in "Sector Santa
23	Rosa", Guanacaste. Within columns, different lowercase letters indicate significant
24	differences between mean values for depth (P<0.05, Fisher PLSD test). Standard error
25	within parentheses.
26	
27	Table 7. Litter C pools and vertical distribution of SOC pools (Mg C ha ⁻¹) by 10-cm
28	depth increments in the ecosystems studied. Values followed by the same letter are
29	statistically different at P<0.01 (t-test).
30	
31	Table 8. SOC concentrations in selected studies conducted in different successional
32	dry tropical forests (dTfs) and pastures in Central America.
33	

Table 1

Treatment/Ratio	Extraction and separation output
Hydrogen fluoride	Mineral-associated SOC pool
Hydrogen peroxide	Functionally passive SOC pool
Sodium persulfate	Stable SOC pool
$Al_o + 0.5 Fe_o$	Sesquioxides
Al _p /Al _o	Ratio organically-bound to total amorphous Al, relative
	amount of Al in organic complexes
$Fe_o - Fe_p$	Ferrihydrite
$Fe_d - Fe_o$	Crystalline Fe oxides
Fe _o /Fe _d	Poorly crystalline fraction of Fe oxides
Pyrophosphate	Organically-bound Al and intermediate fraction of
	organically-bound Fe
Dithionate-citrate	Fe in crystalline and poorly crystalline Fe oxides, Al
	substituted in Fe oxides and Al in partial dissolved
	poorly ordered Al (oxy) hydroxides
Acid ammonium-oxalate	Al, Fe, Si in organic complexes and poorly ordered
	minerals

Ecosystem	Soil depth	Soil separates (%)		(%)	Textural class	pН	
5	(cm)	Sand	Silt	Clay	_	H ₂ O 1:1	CaCl ₂
> 400 years-old growth	0-10	60.8	21.9	17.3	Sandy loam	6.7	6.6
deciduous forest (Of)	10-20	55.0	25.8	19.2	Sandy loam	6.9	6.6
	20-30	50.6	26.2	23.2	Sandy clay loam	6.8	6.3
	30-40	44.4	26.2	29.4	Clay loam	6.8	6.2
	40-50	55.1	20.8	24.1	Sandy clay loam	6.7	6.1
>80 years-old deciduous	0-10	52.3	22.7	25.0	Sandy clay loam	6.5	6.2
forest (Df)	10-20	38.6	26.6	34.9	Clay loam	6.5	6.1
	20-30	38.9	24.3	36.8	Clay loam	6.5	6.1
	30-40	23.3	24.9	51.8	Clay	6.3	6.1
	40-50	15.8	27.4	56.7	Clay	6.2	5.9
65 years old <u>Quercus</u>	0-10	61.4	14.2	24.5	Sandy loam	6.1	5.6
forest (Qu)	10-20	45.4	20.2	34.4	Sandy clay loam	6.0	5.2
	20-30	45.4	20.2	34.4	Sandy clay loam	5.9	5.3
	30-40	46.8	21.1	32.1	Sandy clay loam	5.7	5.2
	40-50	38.9	27.0	34.1	Clay loam	5.6	5.1
Burned ancient pasture	0-10	21.6	28.0	50.4	Clay	5.8	5.2
(Pa)	10-20	17.9	25.8	56.3	Clay	5.8	5.3
	20-30	37.8	13.9	48.3	Clay	5.8	5.5
	30-40	34.8	14.8	50.4	Clay	6.1	5.7
	40-50	11.6	23.2	65.2	Clay	6.2	5.8

Table 2

Table	3
-------	---

Variables	Mean	Std Dev	Std. Error	$C.V.^1$	Skewness	Kurtosis	$K-S^2$
SOC_HF	43.13	15.295	1.975	35.47	0.768	0.253	0.038
$SOC_H_2O_2$	4.61	2.164	0.279	46.93	1.499	2.252	<0.001
$SOC_Na_2S_2O_8$	10.65	6.786	0.876	63.72	1.608	3.207	0.002
C(%)	2.84	1.685	0.218	59.31	0.856	0.108	0.088
N(%)	0.24	0.145	0.019	60.67	0.922	0.107	0.019
C/N	11.97	1.521	0.196	12.71	1.620	3.043	<0.001
MWD (mm)	2.04	0.926	0.120	45.46	1.341	2.506	0.045
Bulk density (g cm ⁻³)	1.11	0.164	0.021	14.74	-0.802	1.453	0.287
<0.25 mm	13.10	10.052	1.298	76.76	1.279	1.199	<0.001
0.25-0.5 mm	12.64	5.098	0.658	40.34	-0.170	0.401	0.510
0.5-1 mm	20.81	8.983	1.160	43.18	2.510	13.393	<0.001
1-2 mm	19.86	5.542	0.715	27.91	0.732	4.190	0.026
2-4.75 mm	20.76	9.093	1.174	43.79	-0.252	-0.482	0.105
>4.75 mm	12.84	13.585	1.754	105.80	2.445	6.717	<0.001
Fe _o /Fe _d	0.07	0.031	0.004	44.40	0.168	-0.404	0.285
Fe _d -Fe _o	14.53	4.454	0.575	30.65	0.394	-0.847	0.008
$Al_o + 0.5 Fe_o$	1.43	1.225	0.158	85.48	2.742	8.957	<0.001
Al _o +Fe _o	1.93	1.437	0.186	74.38	2.746	9.455	<0.001
Al_p/Al_o	0.66	0.681	0.088	102.87	3.162	11.578	<0.001
Al-Dit	2.26	1.326	0.171	58.70	1.467	2.148	<0.001
Fe-Dit	15.53	4.473	0.577	28.80	0.337	-0.900	0.016
Si-Dit	0.90	0.243	0.031	27.00	-0.141	-0.744	0.339
Al-Oxa	0.93	1.022	0.132	109.42	2.676	7.997	<0.001
Fe-Oxa	1.00	0.468	0.061	46.89	2.136	8.563	<0.001
Si-Oxa	0.41	0.559	0.072	135.68	2.965	9.293	<0.001
Al-Pyr	0.36	0.214	0.028	59.78	1.468	1.541	<0.001
Fe-Pyr	0.31	0.172	0.022	55.13	1.227	2.267	0.121
Si-Pyr	0.41	0.356	0.046	85.99	4.397	22.810	<0.001

C.V. = Coefficient of variation (%) K-S = Kolmogorov-Smirnov probability test

Ta	bl	e	4
----	----	---	---

Source	df	С	Ν	C/N ratio	MWD	ρ_d	Aggregate size-class distribution (mm)					
of variation							< 0.25	0.25-0.50	0.50-1.00	1.00-2.00	2.00-4.75	>4.75
Ecosystem (A)	3	42.38 **	39.09 **	11.61 **	42.68 **	21.92 **	18.64 **	28.08 **	20.04 **	22.83 **	7.71 **	41.55 **
Depth (B)	4	66.60 **	53.84 **	0.28 NS	0.71 NS	0.57 NS	1.26 NS	1.04 NS	0.73 NS	0.32 NS	4.64 NS	1.29 NS
Interaction AxB	12	0.34 NS	0.75 NS	0.31 NS	0.76 NS	1.56 NS	1.19 NS	0.74 NS	0.95 NS	0.79 NS	1.14 NS	0.71 NS
Sum of squares	60	27.50	0.24	368.51	66.77	1.02	3590.39	1282.96	4216.10	2419.76	4282.72	22374.24
Mean of squares	60	0.46	0.004	6.14	1.11	0.02	59.84	21.38	70.27	40.33	71.38	372.90

Table 5

Depth (cm)	Variable	Forest stands			Grassland
		Of	Df	Qu	Ра
0-10	N (%)	0.53 (0.06) A,a	0.45 (0.13) B,a	0.37 (0.12) C,a	0.25 (0.04) D,a
	C/N	11.5 (0.3) B,a	11.3 (0.3) B,a	12.4 (0.6) B,a	15.0 (0.8) A,a
10-20	N (%)	0.36 (0.09) A,b	0.23 (0.05) B,b	0.21 (0.07) B,b	0.13 (0.05) C,b
	C/N	11.8 (0.7) B,a	11.2 (0.3) B,a	11.6 (0.7) B,a	15.6 (1.5) A,a
20-30	N (%)	0.27 (0.07) A,c	0.18 (0.05) B,c	0.12 (0.03) C,c	0.08 (0.04) D,c
	C/N	12.7 (0.7) B,ab	11.3 (0.1) BC,a	11.1 (0.2) C,a	16.3 (2.6) A,a
30-40	N (%)	0.24 (0.06) A,cd	0.13 (0.04) B,d	0.10 (0.03) BC,c	0.07 (0.02) C,c
	C/N	13.7 (1.1) B,b	12.0 (0.5) C,a	11.0 (0.6) C,a	15.5 (2.5) A,a
40-50	N (%)	0.22 (0.08) A,d	0.10 (0.03) B,d	0.08 (0.02) B,c	0.06 (0.02) B,c
	C/N	13.7 (1.3) B,b	12.0 (0.4) C,a	12.0 (1.4) C,a	15.6 (2.6) A,a

Values are means of 4 replicates

Tab	le 6
-----	------

Depth (cm)	Variable	Of	Df	Qu	Pa
0-10	ρ_b	1.07 (0.04) B,a	1.24 (0.07) C,a	1.05 (0.02) A,b	1.13 (0.06) B,a
	MWD	2.12 (0.17) A,a	2.32 (0.15) A,a	1.98 (0.38) A,abc	4.07 (0.64) B,a
10-20	$ ho_b$	1.19 (0.05) B,b	1.17 (0.05) B,a	0.91 (0.03) A,a	1.39 (0.04) C,c
	MWD	2.03 (0.23) A,a	2.31 (0.15) A,a	1.66 (0.57) A,ab	4.70 (0.84) B,ac
20-30	$ ho_b$	1.19 (0.06) B,b	1.23 (0.05) B,a	0.98 (0.10) A,b	1.36 (0.04) C,c
	MWD	1.66 (0.10) A,a	2.39 (0.39) B,a	1.32 (0.38) A,a	5.38 (0.72) C,bc
30-40	$ ho_b$	1.23 (0.04) B,b	1.18 (0.07) B,a	0.89 (0.14) A,a	1.34 (0.06) C,b
	MWD	1.37 (0.11) A,a	2.45 (0.56) C,a	2.13 (0.77) B,bc	5.25 (0.66) D,bc
40-50	$ ho_b$	1.15 (0.03) A,a	1.14 (0.08) A,a	1.08 (0.09) A,c	1.34 (0.04) B,b
	MWD	1.51 (0.28) A,a	2.08 (0.09) AB,a	2.52 (0.94) B,c	5.88 (0.44) C,b

Values are means of 4 replicates

	Ta	bl	e	7
--	----	----	---	---

Depth (cm)		Of	Df	Qu	Pa
Litter C		6.6	5.5	6.6	0
0-10	С	65.9	63.0	48.2	42.2
	N	5.71	5.54	3.89	2.82
10-20	С	49.3	30.4	21.1	27.4
	N	4.26	2.70	1.88	1.85
20-30	С	39.7	25.1	12.7	16.4
	N	3.19	2.22	1.15	1.14
30-40	С	40.1	18.5	10.0	12.7
	N	3.00	1.54	0.92	0.89
40-50	С	33.9	13.3	10.6	11.3
	N	2.57	1.09	0.89	0.77
Total ¹	SOC	228.9 a	150.3 ab	102.6 b	110.0 b
	SON	18.72 a	13.09 ab	8.72 b	7.47 b

¹ Litter not included

Table	8					
Region,	Site	Plant community	Soil type	Soil depth	SOC	Reference
Country		composition ¹		(cm)	(g kg dry soil ⁻¹)	
Mexico	Chamela-Cuixmala reserve	Deciduous forest	Entisol	0-2	37.4	García Oliva et al., 1994
Mexico	Chamela	Deciduous forest	Entisol	2-5	21.1	García Oliva et al., 1994
Mexico	Chamela	Recently burned forest	Entisol	0-2	27.2	García Oliva et al., 1994
Mexico	Chamela	Recently burned forest	Entisol	2-5	21.1	García Oliva et al., 1994
Mexico	Chamela	10 yr-old pasture	Entisol	0-2	25.6	García Oliva et al., 1994
Mexico	Chamela	10 yr-old pasture	Entisol	2-5	15.3	García Oliva et al., 1994
Mexico	Chamela	Deciduous forest	Eutric Regosol	0-5	86.1	Cotler and Ortega-Larrocea, 2006
Mexico	Chamela	Unburned pasture	Eutric Regosol	0-5	27.0	Cotler and Ortega-Larrocea, 2006
Mexico	Chamela	burned pasture	Eutric Regosol	0-5	36.6	Cotler and Ortega-Larrocea, 2006
Mexico	Chamela	Deciduous forest	Eutric Regosol	0-5	28.3-44.1	Noguez et al., 2008
Puerto Rico	Guánica forest reserve	Deciduous, semi-deciduous	Calciustolls	0-10	50.7^2 -72.5 ³	Erickson et al., 2002
		forest	(Mollisol)			
Puerto Rico		70 yr-old semi-deciduous	Calciustolls	0-10	77.9-78.8	Erickson et al., 2002
		forest	(Mollisol)			
Costa Rica	Guanacaste, Lomas	Dry tropical forest	Inceptisol	0-15	52.3	Johnson & Wedin, 1997
	Barbudal	Pasture	Inceptisol	0-15	42.6	Johnson & Wedin, 1997
Costa Rica	Guanacaste, ACG; Sector	Dry tropical forest,	Inceptisol	0-10	26.5	Powers et al. 2009
	Santa Rosa	Quercus				
		Dry tropical forest	Inceptisol	0-10	37.9	Powers et al., 2009
Costa Rica	Guanacaste, Palo Verde	Deciduous forest	Inceptisol	0-10	43.0	Powers et al., 2009
Costa Rica	Guanacaste, Osa peninsula	Wet deciduous forest	Oxisol	0-10	50-65 ⁴	Cleveland et al., 2003
		20 years old pasture	Mollisol	0-10	56-68 ⁴	Cleveland et al., 2003
Costa Rica	Guanacaste, ACG; Sector	Old-growth forest (Of)	Inceptisol	0-10 to 40-50	61.3; 41.6; 33.4;	This study
	Santa Rosa				32.7; 29.5	
		Deciduous forest (Df)	Inceptisol	0-10 to 40-50	50.9; 26.0; 20.4;	This study
			-		15.7; 11.6	
Costa Rica	Guanacaste, ACG; Sector	Quercus forest (Qu)	Inceptisol	0-10 to 40-50	45.8; 23.3; 12.9;	This study
	Santa Rosa				11.2; 9.9	

(Pa) 9.5: 8.4	F	Burned ancient pasture	Inceptisol	0-10 to 40-50	37.3; 19.7; 12.1;	This study
		(Pa)			9.5; 8.4	

¹ Forest types are named as they were originally in the published paper. ² Pasture until 1950s ³ Pasture until 1950s, then burned in 1970s ⁴ Figures refer to SOC concentration in a pasture and forest, respectively ⁴ Pasture until 1950s, then burned in 1970s

Fig 2.

Fig 3.

